
e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 97–115, DOI 10.37190/e-Inf200104

Extending UML Use Case Diagrams to Represent
Non-Interactive Functional Requirements

Saqib Iqbal∗, Issam Al-Azzoni∗, Gary Allen∗∗, Hikmat Ullah Khan∗∗∗

∗Department of Software Engineering and Computer Science, Al Ain University, Al Ain, UAE
∗∗Department of Computer Science, University of Huddersfield, UK

∗∗∗Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
saqib.iqbal@aau.ac.ae, issam.alazzoni@aau.ac.ae, g.allen@hud.ac.uk,

hikmat.ullah@ciitwah.edu.pk

Abstract
Background: The comprehensive representation of functional requirements is a crucial activity
in the analysis phase of the software development life cycle. Representation of a complete set of
functional requirements helps in tracing business goals effectively throughout the development life
cycle. Use case modelling is one of the most widely-used methods to represent and document
functional requirements of the system. Practitioners exploit use case modelling to represent
interactive functional requirements of the system while overlooking some of the non-interactive
functional requirements. The non-interactive functional requirements are the ones which are
performed by the system without an initiation by the user, for instance, notifying something to
the user or creating an internal backup.
Aim: This paper addresses the representation of non-interactive requirements along with
interactive ones (use cases) in one model. This paper calls such requirements ‘operation cases’ and
proposes a new set of graphical and textual notations to represent them.
Method: The proposed notations have been applied on a case study and have also been empirically
evaluated to demonstrate the effectiveness of the new notations in capturing non-interactive
functional requirements.
Results and Conclusion: The results of the evaluation indicate that the representation of
operation cases helps in documenting a complete set of functional requirements, which ultimately
results in a comprehensive translation of requirements into design.

Keywords: Use Case modeling UML Requirements Engineering Functional Requirements

1. Introduction

Software Engineering is concerned with develop-
ing software as per the stakeholders’ expectations
(requirements). Gathering, eliciting and docu-
menting these requirements is the most crucial
phase of the software engineering process. Dur-
ing this phase, detailed software requirements
specification (SRS) documents are developed to
specify the system requirements. One of the most
widely used requirements specification tools is
use case modelling, which represents the system

users (actors) and their interactive requirements
(use cases). Use case modelling was proposed by
Jacobson [1] and was later adopted by the Unified
Modelling Language (UML) [2]. The purpose of
use case modelling is to represent requirements
in such a way that all stakeholders (from a tech-
nical or non-technical background) could easily
understand and review them [3]. Use case mod-
elling has been considered as an effective tool
by the academic research community [4, 5] and
industry [6, 7] to specify and model functional re-
quirements. There are, however, some functional

Submitted: 3 September 2019; Revised: 13 April 2020; Accepted: 4 June 2020; Available online: 24 June 2020

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_14/eInformatica2020Art04.pdf

98 Saqib Iqbal et al.

requirements which often are not represented as
use cases as they are not initiated by an actor.
Examples of such requirements in a simple ATM
banking system would be ‘Check Cash Dispenser’,
‘Notify Bank About an Empty Cash Dispenser’ or
‘Display Promotional or Informational Messages’.
These functions are triggered either in response
to an interactive requirement (a use case), an
event, or at a specified time according to the
internal system clock. We may call these require-
ments non-interactive requirements as they are
triggered by the system without users’ initiation.
System specification is not complete without the
representation of these requirements along with
use cases.

A use case, as the name suggests, has always
been considered as a case of usage of the system,
a usage scenario in other words. The represen-
tation of a requirement that does not represent
a usage scenario (a non-interactive requirement)
as a use case would only lead to confusions. There
is a need for a separate representation for such
requirements which is graphically and textually
different from a use case. Both types of require-
ments, however, are needed to be represented
in one model because they are both functional
requirements and their representation in one
model would provide a single point of reference
for a complete list of functional requirements.

To cater for this need, we propose a new con-
struct called ‘Operation Case’. The Operation
Case is a system function which is not initiated
by an actor, rather is triggered either by a use
case or is initiated in response to an event or sys-
tem clock. Operation cases are modelled along
with the use cases in the same subject (system
or module) to represent a full set of functional
requirements of the subject. The construct has
been added to the use case models in addition to
other constructs by introducing a new profile to
UML. The proposed constructs have been applied
on a case study to show the comprehensiveness
of the approach in representing functional re-
quirements. In addition, an empirical evaluation
has been conducted. The evaluation focuses on
addressing the hypothesis that the proposed con-
structs and method represent a comprehensive
list of functional requirements which eventually

leads to a complete and consistent design. The
empirical evaluation demonstrates that use case
modelling without operation cases can lead to
overlooking of key functional requirements.

The rest of the paper is organized as follows:
Section 2 provides a review of the related litera-
ture. Section 3 outlines the problem and motiva-
tions behind the research. Section 4 describes op-
eration cases in detail. Section 5 provides details
of the implementation of the proposed concepts.
Section 6 illustrates the application of the new no-
tation via a worked case study. Section 7 reports
on the results of a controlled experiment. To
address possible internal validity threats to the
conclusion of the controlled experiment, a second
experiment was conducted and it is presented in
Section 8. Section 9 concludes the paper with
a discussion on the future work.

2. Related work

In [8], Glinz identifies and demonstrates several
deficiencies of UML, with emphasis on use case
models and system decomposition. Our work
attempts to address two of the deficiencies men-
tioned. The first deficiency is the omission of
active objects in UML use case diagrams. In-
clusion of active objects in use case diagrams
is needed to specify interaction requirements
where the system itself initiates an interaction
between the system and an external actor. The
use of observers in our new notation fills this
gap. The second deficiency is that UML use case
models cannot express state-dependent system
behaviour adequately. We address this issue by
introducing operation cases, which can be speci-
fied to capture the system state.

Several papers have also presented prob-
lems and limitations of use cases. The paper
by Génova et al. [9] identifies sources of ambi-
guity that exist in use case models. The paper
by Metz et al. [10] looks at the problem of use
case interleaving present in UML 1.3. In [11],
the authors highlight major problems associated
with the semantics of extension points and rejoin
points, which are used as branching and return
locations for a use case’s alternative interaction

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 99

courses. The paper by Simons [12] traces the un-
stable semantics of use cases from Jacobson [13]
to UML 1.3.

The paper by Tiwari and Gupta [14] presents
a systematic literature review that examines the
evolution of use cases, their applications, quality
assessments, open issues and the future direc-
tions. In addition, the paper identifies a total
of twenty existing templates that are used to
specify use cases. In [15], the authors investi-
gate via empirical studies the comprehension
and learnability aspects of these templates.

The paper by Misbhauddin and Alshayeb [16]
proposes an extension to the UML use case meta-
model. The extended metamodel captures both
the structural and behavioural views of use cases.
The aim is to exploit the extended metamodel
for model composition, model evaluation, and
model interchange.

In [17], the authors propose an extension to
the UML metamodel for presenting a refinement
relationship between two use cases. The authors
discuss the differences between include and refine
relationships. The refinement of a use case results
in more detailed use cases. Refinement can be de-
fined by decomposing a use case according to the
parts that compose the object of that use case, or
according to the activities that compose the use
case being refined. In our new notation, we do
not attempt to represent use case refinement, but
rather we introduce the concept of operation case
to model non-interactive requirements. In [17],
both the refining and refined use cases represent
external functionality of the system and thus
they agree with the UML definition of use cases.
In our work, an operation case is not a type of
use case. Other work that builds on use case
refinement is [18]. There the authors present an
approach to decompose a use case model into
models at several levels of abstraction. The au-
thors extend the UML use case metamodel with
a refine relationship between a use case and a Use-
CaseModel. For each abstraction level, several
use case diagrams are used to capture the use
cases at that abstraction level.

Several authors have attempted to formal-
ize use case notations. In [19], the control-flow
semantics of use cases is described in terms of

control-flow graphs. The technical report by Hurl-
but [20] presents a survey of approaches for de-
scribing and formalizing use cases. The paper by
Metz et al. [21] provides definitions for different
types of alternative interaction courses in the
context of goal-driven requirements engineering.
Stevens [22] explores how UML use case nota-
tions can be formalized. Savic et al. in [23] pro-
pose the idea of use case specification at different
levels of abstraction: interaction, behaviour, and
user interface levels. Each abstraction level ex-
tends the previous level. The interactions in a use
case are specified using the SilabReq language,
which is a textual domain specific language.

The paper of Al-alshuhai and Siewe [24] pro-
poses an extension to the UML use case dia-
gram with new notations to model context-aware
applications. The proposed extension, called
a use context diagram, allows the modelling of
context-aware requirements in addition to the
functional requirements of a software application.
The new notations include new metamodel ele-
ments such as Context Sources and Use Contexts
as well as a new utilise relationship between Use
Contexts. This extension is useful to cater for
the modelling and analysis of the requirements of
context-aware applications. We note that our new
notation can also be used to model context-aware
requirements: an Operation Case can be used as
a Use Context to model sequences of actions
a system performs to acquire, aggregate, or infer
context information. A Context Source can be
represented as an Observer that measures context
information, and a trigger relationship replaces
the utilise relationship.

A systematic literature review on producing
high quality use case models is presented by
El-Attar andMiller [25]. In their work, twenty
six anti-patterns are suggested. A use case
anti-pattern explains a repeated pattern in use
case models that may initially appear beneficial
but ultimately may cause deficiencies [25]. Mod-
ellers can exploit these anti-patterns to improve
the quality of their use case models.

Identifying use cases can be very useful for
the subsequent phases in software development.
For instance, Yue et al. have created a tool to
automatically generate a UML analysis model

100 Saqib Iqbal et al.

comprising class, sequence, and activity diagrams
from a use case model [26]. The tool also supports
the automatic generation of traceability links
between model elements of the use case model
and the generated analysis model. Wang et al.
have proposed an approach for automatically gen-
erating executable test cases by exploiting the
behavioural information described in use case
specifications [27]. The use cases are assumed
to be specified in a restricted form of use case
specification called Restricted Use Case Mod-
elling (RUCM) [28]. Kesserwan et al. present an
approach for generating test artefacts from sce-
nario models through model transformation [29].
In the proposed approach, the scenarios are de-
duced from use case specifications written in the
Cockburn use case notation [30]. It is of interest
to apply such work on operation cases as well.

In the book by Smialek and Nowakowski [31],
the authors present a language specific for re-
quirements modelling, called the Requirements
Specification Language (RSL). RSL forms the
basis for the framework of model transformation
and code generation presented in the book. Func-
tional requirements in RSL are defined mostly
through use case models. Use cases in RSL are
derived from UML, but several new and changed
features exist. These changes are due to the am-
biguous semantics of the use case models, as
defined in the UML specification [31]. RSL is de-
signed to be a comprehensive language to model
use case scenarios while linking those scenarios
to their respective domain model elements. We
note that the authors define use cases in relation
to outside actors. In their definition, a use cases
starts with the interaction of an outside actor
with the system. Hence, RSL seems to capture in-
teractive functional requirements only. The abil-
ity of RSL to model non-interactive requirements
requires further investigation.

Use cases can also be useful for effort es-
timation in use case driven projects. Qi and
Boehm [32] have proposed an effort estimation
model based on a use case model that can be
used to estimate project effort during the early
iterations in system development. In their work,
the size metrics are defined based on the arte-
facts of a use case model. For example, the Early

Use Case Points (EUCP) metric is a size metric
that weights each use case with the number of
scenarios identified from the use case description.
We believe that operation cases can be dealt
with in a manner similar to use cases and they
can be useful in effort estimation as well. Use
Case Points (UCP) is a software effort estimation
technique based on the use case model. A review
of effort estimation frameworks and tools based
on UCP is provided in [33].

3. Problems and motivation

There have been a number of efforts to extend
use case models for representing non-functional
requirements [8, 34] along with use cases but
there is no evidence in the literature of addressing
representation of non-interactive requirements.
These requirements are the functional require-
ments, which are not initiated by an actor rather
are triggered by a use case, event or the sys-
tem clock. For instance, ‘turn on power saving
mode’ in a mobile phone operating system is
triggered in response to the battery level drop-
ping to a certain level. Similarly, messages to
the user, such as ‘battery fully charged’, ‘new
SMS received’, or ‘application update available’
are also triggered without the user’s involvement.
We may call these requirements non-interactive
requirement as they are performed by the system
without interaction with the user.

To illustrate these non-interactive require-
ments in more detail, let us consider Library
Management System with the use case diagram
in Figure 1. The functional requirements of the
system would be:
R1: The librarian shall be able to add items

such as books, journals and magazines to
the system.

R2: The librarian shall be able to issue a li-
brary item to a user.

R3: The librarian shall be able to return an
issued item.

R4: The librarian shall be able to send a re-
quest for a new library item to a vendor.

R5: The user shall be able to search for a li-
brary item.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 101

Figure 1. The use case diagram of Library Management System

R6: The user shall be able to request issuance
of an item that is available.

R7: The user shall be able to reserve an item if
the item is already issued to someone else.

R8: The user shall be able to pay fines where
these have been incurred.

R9: The user shall be able to make suggestions
for new library items.

R10: The system shall notify the user when
a reserved book becomes available.

R11: The system shall calculate fine for late
returns, with fines accruing each day after
15 days of issuance of an item.

R12: The system shall notify the user of any
fines every 3 days.

R13: The system shall notify the suggestions
provided by the users to the librarian.

R14: The system shall make backups at speci-
fied times.

The use case diagram of these functional re-
quirements, shown in Figure 1, captures the in-
teractive requirements, but is unable to capture
the system requirements, R10 to R14. These
requirements are as important for the complete
functionality of the system as any other require-
ment, but they cannot be captured/represented
by a use case model as they are not initiated by
an actor.

The design artefacts extracted from the use
case model would not include these requirements,

which would eventually lead to incomplete imple-
mentation. Representation of these requirements
at use case modelling level would make the re-
quirement specification complete and compliant
with the system goals. More detailed discussion
of this example is provided in Section 7.

4. Operation cases

We propose a new construct for the representa-
tion of non-interactive requirements, called ‘op-
eration cases’. An operation case is an internal
function which is initiated within the system
either by a system timer, an event observer, or
a use case. An operation case cannot initiate
other operation cases, but can interact with the
user, for instance, in case of a dialogue input
or a message display to the user. The rationale
behind the name of the operation case is that an
operation case will represent a complete scenario
of an internal operation. It has a separate nota-
tional representation to distinguish it from a use
case. A complete use case model would include
both use cases and operation cases representing
all functional requirements identified during the
analysis phase, which later will be translated into
design mechanisms and design constructs.

A complete list of new notations and related
associations is given in Table 1.

102 Saqib Iqbal et al.

Table 1. Notations and Descriptions of New Constructs

Construct Notation Description

Operation Case

An Operation Case specifies a set of actions performed by its subjects,
which may or may not yield an observable result that is of value for
one or more Actors or other stakeholders of each subject. The actions in
an Operation Case can only be triggered by an action in a Use Case or
initiated by an Observer or a Timer.

Timer A Timer represents an internal clock of the system or a specific interval
of time represented in the implementing software.

Observer An Observer represent a system component that initiates Operation Cases
in response to an internal or external event.

Trigger Trigger relationship defines that a Use Case triggers an Operation Case.

Initiate Initiate relationship defines that an Observer or a Timer initiates an
Operation Case.

5. Extension to use case modelling

The UML [1] is a widely used modelling lan-
guage for representing and designing structural
and behavioural properties of a system. It pro-
vides graphical models and notations that help
in modelling internal and external behaviour of
a system and representing the structural orga-
nization of system modules. Although UML is
the most popular visual modelling language in
software design, it only supports one paradigm of
software design, which is object-oriented design.
To counter this problem, the Object Management
Group (OMG), the proprietary owner of UML,
has proposed UML 2.0, which offers flexibility of
extending UML diagrams and design notations.
The extension is achieved through the introduc-
tion of profiles. A UML profile is an element of
the UML; it is defined inside the UML meta-
model [2]. Profiles are used to extend classes of
the UML metamodel with additional stereotypes,
tagged values, and constraints. The stereotypes
are used to distinguish similar design notations
representing different concepts; the tagged values
are new attributes attached to a design construct;
whereas constraints are used to introduce invari-
ants and semantic-related limitations on a design
diagram or a notation.

5.1. Operation cases profile definition

Since the operation cases introduce a new nota-
tional concept in the use case model, we intro-

duce a new profile, named OperationCasesProfile,
to extend UML metaclasses. The new profile de-
fines several stereotypes which extend standard
UML metaclasses. Figure 2 shows the new op-
eration cases profile. The new stereotypes are:
OperationCase, Trigger, Initiate, Observer, and
Timer. Their corresponding icons are shown in
Table 1.

An OperationCase extends the UML meta-
class UseCase. An OperationCase specifies some
behaviour that a subject can perform. An Opera-
tionCase defines an offered behaviour of the sub-
ject with possible reference to its internal struc-
ture. Similar to a UseCase, an OperationCase
may apply to any number of subjects.

An OperationCase may include or extend any
number of other OperationCases, but may not
include or extend any other BehaviouredClassi-
fiers (i.e. UseCases or Actors). In addition, an
OperationCase cannot be included or extended
by a UseCase. The definitions of the Include and
Extend relationships between OperationCases is
the same as those between UseCases.

A new relationship added by the profile is
the Trigger relationship. It is a relationship from
a UseCase to an OperationCase. It specifies that
a UseCase triggers an OperationCase. Trigger ex-
tends both Include and Extend metaclasses, such
that the source is the triggering UseCase and
the target is the triggered OperationCase. This
indicates that the behaviour of theOperationCase
is triggered while the behaviour of the UseCase is
being executed. In UML profiles, if a stereotype

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 103

OperationCasesProfile <<import>>

«metaclass»
UseCase

«metaclass»
BehaviouredClassifier

«metaclass»
Include

«metaclass»
Extend

«stereotype»
OperationCase

«stereotype»
Observer

«stereotype»
Timer

«stereotype»
Trigger

<<metamodel>>
uml

«stereotype»
Initiate

«metaclass»
Association

Figure 2. The operation cases profile

extends several metaclasses, it can only be applied
to exactly one instance of one of those metaclasses
at any point of time. The rationale for extending
both Include and Extend metaclasses is that the
behaviour of a triggered operation case can be
inserted into the behaviour of the including opera-
tion case (in the case of Include), or can be added,
possibly conditionally, to the behaviour of the
extended operation case (in the case of Extend).

When an OperationCase applies to a subject,
it specifies a set of behaviours performed by the
subject. These behaviours can be triggered by an
action in a UseCase or initiated by an Observer
or a Timer. An Observer extends the UML meta-
class BehaviouredClassifier. Part of a subject, an
Observer observes events and when an observed
event occurs it causes (initiates) the execution
of the behaviour of an associated OperationCase.
A Timer also extends BehaviouredClassifier. Part
of a subject, a Timer initiates an operation case
when its time interval expires. Observers are
useful to model behaviours that are initiated by
internal or external events. Timers are useful to
model behaviours that are initiated at specified
times according to an internal system clock. The
OperationCasesProfile defines an Initiate stereo-
type which extends the UML metaclass Associa-
tion. An Initiate association is between a Timer
or an Observer on one end of the association and
an OperationCase on the other end.

An OperationCase cannot be associated with
Actors. Rather, it can only be associated with
Timers or Observers. An Actor interacts with
a subject through its associated UseCases which
can indirectly trigger OperationCases.

We also add the following constraints to the
operation cases profile:
– OperationCases can only be involved in bi-

nary associations.
context OperationCase
inv : As soc i a t i on . a l l I n s t a n c e s ()−>

f o rA l l (a | a .memberEnd . type −>
inc l ud e s (s e l f) imp l i e s
a .memberEnd−>s i z e () = 2)

– An OperationCase cannot include Opera-
tionCases that directly or indirectly include it.
context OperationCase
inv : not a l l Inc ludedOperat i onCase s ()

−> inc l ude s (s e l f)
Here, the operation allIncludedOpera-
tionCases() returns the transitive closure
of all OperationCases included by this Oper-
ationCase.

– An OperationCase must have a name.
context OperationCase

inv : name −> notEmpty ()
– An Observer must have a name. The same is

true for a Timer.
context Observer

inv : name −> notEmpty ()
– An Observer can only have Associations to

OperationCases. Furthermore, these Associ-
ations must be binary. The same is true for
Timers
context Observer
inv : As soc i a t i on . a l l I n s t a n c e s () −>

f o rA l l (a | a .memberEnd −>
c o l l e c t (type) −> inc l ude s (s e l f)
imp l i e s
(

a .memberEnd −> s i z e () = 2 and

104 Saqib Iqbal et al.

l e t
observerEnd : Property =
a .memberEnd −> any (type = s e l f)
in
observerEnd . oppos i t e . c l a s s .

oc l I sKindOf (OperationCase)
)

)

5.2. Operation case template

Jacobson [1] introduced a use case template to
represent and document the description of a use
case. Due to the complexity and unneeded for-
malism within the template, several variations
have been introduced [35–39]. Operation cases
are represented in a similar textual template, as
shown in Table 2. The template contains a de-
scription of constituent items of an operation
case, its associations, and related details. The
template also mentions the requirements which
are represented by the operation case. This helps
to improve documentation and traceability.

6. Application of new notations

We have selected a subset of functional require-
ments of a simple mobile phone system for the

sake of simplicity. The selected subset of require-
ments is summarised according to their classifi-
cation below:
– Interactive Functional Requirements:

– Make a phone call,
– Receive a phone call,
– Send a message,
– Add a contact,
– Set an alarm.

– Non-Interactive Functional Require-
ments:
– Transmit data to the service provider,
– Manage Contact Book (This requirement

is concerned with system adding new con-
tacts and placing them in alphabetical
order),

– Receive Push Notifications,
– Turn on Power Saving Mode in the case

that the battery is lower than a threshold,
– Notify user of updates,
– Make the phone ring on receipt of an in-

coming call,
– Sound an alarm at the required time.
Figure 3 shows the traditional representa-

tion of these requirements in a use case dia-
gram. The non-interactive requirements are miss-
ing from this model as they do not represent
any usage scenario. This model is supposed to

Table 2. Operation Case Template

Operation Case ID:
Operation Case Name:
Requirement ID:
Created By: Last Updated By:
Date Created: Date Last Updated:
Description:
Pre-conditions:
Post-conditions:
Priority:
Frequency of Use:
Normal Course of Events:
Alternative Courses:
Exceptions:
Includes:
Triggered/Initiated By:
Special Requirements:
Assumptions:
Notes and Issues:

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 105

Figure 3. Use case diagram of a mobile phone
system

Figure 4. Revised use case diagram of a mobile
phone system with operation cases

be translated into design artefacts and models,
but if the model is taken as a complete set
of functional requirements, a number of criti-
cal requirements (non-interactive requirements)
may be overlooked. Figure 4, on the other hand,
shows a representation of a complete set of re-
quirements. The requirements, such as ‘Turn on
power saving mode’ or ‘Receive push notifica-
tion’, are represented along with other interactive
functional requirements in the same sub-system
boundary.

As can be seen, the basic use cases remain
the same, showing how the user will interact with
the system. However, we can also see that:
– The “Receive Call”, “Make Call”, and “Send

Message” use cases each trigger a “Transmit
Data” operation case. In traditional use case
modelling this could be modelled as a step in
the primary path of each of the three sepa-
rate use cases, but would not be shown on the
diagram. By triggering an operation case the
shared nature of this functionality becomes
explicit, thus both simplifying the descrip-
tions of the individual use cases and captur-
ing the relationships between these functional
concerns.

– The “Add Contact” use case triggers the
“Manage ContactBook” operation case. It
could be argued that the latter is simply
a step in the primary path of the former, how-

ever we would argue that our model is clearer
and it allows for reuse of the “Update Contact
Book” operation case. Additionally, the imple-
mentation of the operation case would need
to deal with issues such as poor network con-
nectivity and failure to connect to the server.
This functionality would sit more sensibly in
the “Update Contact Book” operation case
than in the “Add Contact” use case.

– Three observers have been implemented, two
of which monitor incoming connections (in-
coming calls and incoming push notifications),
and one of which monitors the battery and
turns on power saving mode when required.
This latter example is a classic case of func-
tionality that is difficult to represent clearly
using a traditional use case model. There is
no actor to drive the functionality, as it is not
an interactive use case, instead being event
driven. The use of the observer makes this
internal functionality explicit.

– One timer driven event has also been imple-
mented. This is the “Sound Alarm” operation
case, which is initiated by a timer. Again,
standard use case models do not allow for the
representation of such functionality.
Note that, while a use case can trigger an op-

eration case, the reverse is not true. Take as an
example the “Make Phone Ring” operation case.
It may, at first sight, appear that this could in

106 Saqib Iqbal et al.

turn trigger the “Receive Call” use case. However,
making the phone ring does not necessarily cause
the user to answer it. The user may be away from
the phone, the phone may be on silent, or the
user may simply choose to ignore the incoming
call. It is not, therefore, possible to assume that
the operation case will cause the user to react.
Similarly, the “Display Message” operation case
may cause the user to read that message, but
this is not certain, so the operation case cannot
trigger a “Read Message” use case, nor can the
operation case deliver data to the user via a di-
rected association. In essence, an operation case
may be triggered by use cases, but not vice-versa.

Having modelled the use cases and operation
cases in a diagrammatic form, the next step is
to write up detailed use case and operation case
descriptions. Traditional use case modelling al-
ways includes this step, and several standards
have been suggested for the layout of use case
descriptions. These standards tend to be very
similar, and the one chosen for use here is one of
the selection that can be found at [40]. One exam-
ple operation case description, for the Transmit
Data operation case, is given in Table 3.

As can be seen, the primary, alternative, and
exception paths of several of the use cases can be
simplified by the use of operation cases, as their
use helps to partition the system behaviour, and
to identify and abstract out shared or common
functionality. As an example, the Send Message
use case in the traditional model contains the
following steps in the primary path:
5. The phone handset connects to the mobile net-

work and attempts to send the SMS message.
6. The message is sent successfully.
and the following alternatives or exceptions:
5.1. If the mobile network is unreachable then the

phone will retry at intervals until successful.
5.2. If the receiver’s phone is unreachable (e.g.

a wrong number or the phone is switched off)
then an error is displayed to the phone user.

All of this behaviour can be abstracted out to the
Transmit Data operation case, thus simplifying
the use case description.

In order to integrate Operation Cases fully
into the requirements model a small number of
amendments have been made to the use case de-

scription template. The template has also been
adapted for the description of Operation Cases.
The changes proposed are:
– A new section, “Triggers:” has been added

to the Use Case Description template. This
section lists the Operation Cases that can
(optionally) be triggered by the use case.

– When describing Operation Cases, the “Use
Case ID” and “Use Case Name” have been
changed to “Operation Case ID” and “Oper-
ation Case Name”.

– When describing Operation Cases, the “Ac-
tor” section has been removed.

– When describing Operation Cases, a new
section, “Triggered/Initiated By:” has been
added to the template. This section is used to
list the use cases, operation cases, observers,
or timers that can trigger or initiate the op-
eration case.

With these modifications and additions to the
template, we have provided a clear mechanism
for the description of all use cases and operation
cases within the system model.

We can see that the operation case “Transmit
Data” is triggered by the “Make Call”, “Receive
Call”, and “Send Message” use cases. The clarity
of this information aids understanding of the
structure of the requirements, and helps software
engineers identify shared and core functional-
ity, in a way that traditional use case modelling
is unable to support. This should in turn help
software architects with the design of the soft-
ware, and help project managers to prioritise the
development of the system components.

7. A controlled-experiment based
evaluation

This section reports on a controlled experiment
that was conducted to test whether using use case
diagrams extended with operation cases results in
a comprehensive system design that incorporates
both interactive and non-interactive functional
requirements. Section 7.1 presents the research
question and hypothesis. Section 7.2 presents the
research design, and Section 7.3 presents and
discusses the results.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 107

Table 3. Transmit Data Operation Case Description

Operation Case ID: MP_OC1

Operation Case Name: Transmit Data

Requirement ID: SR15, SR20, SR35

Created By: GA Last Updated By: GA

Date Created: 25 May, 2018 Date Last Updated: 29 May, 2018

Description: This is a background process running on the phone which receives
data from apps such as the dialler app and the messaging app and
uploads those data to the mobile network.

Pre-conditions: The phone must be switched on and connected to the mobile network.

Post-conditions: None.

Priority: High – this is a core piece of functionality.

Frequency of Use: Variable, depending on the usage patterns of the user.

Normal Course of Events: 1. The operation case receives a request to upload data from another
use case or operation case.
2. A connection to the mobile network is opened.
3. The data are uploaded.
4. The connection to the mobile network is closed.

Alternative Courses: 2.1 A connection cannot be established. Try again.
3.1 The data does not upload correctly. Try again.

Exceptions: If at any time the connection is lost and cannot be re-established
within 1 second, then the operation case will return an error to the
calling use case or operation case.

Includes: None.

Triggered/Initiated By: Triggered by use cases MP1a Make Call; MP2a Receive Call; MP3a
Send Message.

Special Requirements: None.

Assumptions: None.

Notes and Issues: None at present.

7.1. Research question and hypothesis

Our main proposition is that the UML use case
diagrams fail to represent non-interactive func-
tional requirements. Therefore, a systems ana-
lyst following an object-oriented development
methodology that uses these diagrams to design
the system, i.e., construct the class diagram,
will likely fail to include the necessary methods
to implement the system’s non-interactive func-
tional requirements. The end result is a design

and an implementation of a system that do not
implement all functional requirements and for
which late changes are likely to be costly.

We carried out a controlled experiment to
investigate the following research question:

Will using extended use case diagrams
help systems analysts to not miss incorpo-
rating non-interactive functional require-
ments in system design?
The experiment was structured as follows. We

developed a system story and asked the partici-

108 Saqib Iqbal et al.

pants to draw the class diagram. We separated
the participants into two equal groups: partici-
pants in the UC group were requested to draw
the use case diagram for the system first and use
it to draw the class diagram, while participants
in the OC group were instructed on the use
of operation cases and extended use diagrams
and subsequently requested to draw the extended
use case diagram and use it to draw the class
diagram. More details on the participants are
provided in Section 7.2.

In relation to our research question, we for-
mulated the following hypothesis:

The number of correctly identified meth-
ods and classes related to non-interactive
functional requirements will be higher in
the OC group compared to the UC group.
The research variables are as follows. The

independent variable is the diagram used: the
use case diagram in the case of the UC group
or the extended use case diagram in the case
of the OC group. The dependent variable is the
completeness of the class diagram with respect
to incorporating the non-interactive functional
requirements. This is captured in a score that
ranges from 0 to 9. The scoring system is de-
scribed in the next section.

7.2. Research design

There were 14 participants in the experiment.
The participants were asked to fill a consent form
before participating in the experiment. These
participants were undergraduate students taking
core courses in the program of Software Engi-
neering in the College of Engineering at Al Ain
University of Science and Technology. The OC
group consisted of 7 students taking the course
“Formal Specifications and Design Methods”, and
the UC group consisted of 7 students taking
the course “Software Measurement and Testing”.
These courses were selected because they are
advanced courses and the prerequisite course for
both courses is “Software Requirements and Spec-
ification”. In this prerequisite course the students
study capturing and representation of require-
ments. The students have completed courseworks
and projects in which they have gathered and

represented requirements using use case mod-
elling.

The experiment was conducted in the form
of two voluntary quizzes; one in each course.
The quizzes were conducted on separate days,
and involved the participation of the first two
authors. The students were given an incentive in
the form of bonus points, which would be added
to their final grade for the course. To encour-
age the students, the number of bonus points
for each student were tied with the student’s
score as follows: 3 points to scores of 7 or more,
2 points to scores of 4–6, and 1 point to scores of
3 or less. During the selection of students it was
also ensured that the average Cumulative Grade
Point Average (CGPA) of both groups was the
same (UC group = 2.54/4, OC group = 2.62/4).

The students had been informed of the vol-
untary quiz and the bonus points in the earlier
class. They were simply asked to show up in the
same classroom at the regular class time. There
were 10 students who attempted the quiz from
the course “Formal Specifications and Design
Methods”. On the other hand, only 7 students
attempted the quiz from the course “Software
Measurement and Testing”. Since the cumula-
tive degree averages of both groups are different,
we only scored a subset of the students who
attempted the quiz in the “Formal Specifica-
tions and Design Methods” class. We ranked
the 10 students in terms of their cumulative de-
gree averages, and then we selected a sequence
of 7 students such that the group’s cumulative
degree average was close to the that of the group
of the second course. The attempts by the other
students were discarded; these attempts were
never evaluated.

The experimental procedure was as follows:
the first author gave a half-an-hour tutorial re-
viewing use case modelling. For both groups,
the tutorial included a review of use cases and
use case diagrams. An example system story
was used in both tutorials. The instructor of
the tutorial worked out an exercise developing
a use case diagram that modelled the functional
requirements presented in the example system
story. The instructor presented how to create
a class diagram based on the identified use cases.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 109

In particular, the instructor reminded the stu-
dents of the usefulness of use case scenarios in
identifying the classes and their methods. The in-
structor encouraged the students to apply what
they had learned in their earlier courses such
as the use of sequence diagrams to model the
use case scenarios and construct the class dia-
gram. The instructor worked with the students
on constructing the class diagram representing
the initial design of the example system story.

The contents mentioned earlier were common
in both tutorials. However, there were two key
differences between the two. In the tutorial in-
structing the UC group, there was no mention of
non-interactive requirements. The students were
simply asked to apply what they already knew.
On the other hand, operation cases and extended
use case diagrams were introduced in the tutorial
instructing the OC group. Non-interactive func-
tional requirements were defined and discussed
in this tutorial. These were also applied on the
example system story. The students were rec-
ommended to use the identified operation cases
in constructing the class diagram in a similar
fashion to what they would do using use cases.

Figure 5 shows the system story. It describes
the functional requirements of an online library
management system. We selected this system
since undergraduate students at this level are
typically familiar with the services provided by
the University’s online library system. Therefore,
they are familiar with library concepts such as
searching for and reserving library items. The

figure includes the instructions handed to the
UC group’s students; for the OC group, the
students were given the same instructions but
were asked to first draw the extended use case
diagram with operation cases rather than the
standard UML use case diagram. The descrip-
tion includes a set of interactive requirements,
such as requesting an item for issuance and re-
questing new items from vendors, in addition
to a set of non-interactive requirements, such
as the weekly back-up and the fine’s calculation
and notification requirements.

An expert solution in the form of a class
diagram was created by the first author and
checked by the second author. The class diagram
includes five classes, including the class Library
which is used as a system class implementing
the methods that are necessary to realise some
non-interactive requirements. A total of 19 meth-
ods were identified, including 6 methods to realise
the non-interactive requirements. The form used
in the evaluation of each student’s work is pre-
sented in Figure 6. The six methods realising the
non-interactive requirements are shown in bold.

Since the experiment is concerned with non-in-
teractive requirements, we developed a scor-
ing method for these requirements only. A stu-
dent gets one point for each correctly identified
non-interactive method, i.e., one of the six meth-
ods realising the non-interactive requirements. If
a student places a method in an incorrect class,
they are not rewarded the point. The justification
for this is that the use case diagram (or its ex-

Figure 5. The description of Library Management System used in the evaluation

110 Saqib Iqbal et al.

Evaluation Form

Student ID:

Completeness - Identification of Classes
Library
LibraryItem
User
Librarian
Vendor
Score:

Completeness – Correct Allocation of Methods to the Classes
Library

notifySuggestion()
notifyLateReturn()
notifyFine()
createBackUp()

 User
reserveItem()
returnItem()
makeSuggestion()
payFine()
requestIssuence()

LibraryItem
searchItem()
reserveItem()
return()
issue()
calculateFine()
notifyAvailability()

 Librarian

 addItem()
 orderItem()
 issueItem()
 returnItem()

Vendor
supplyItem()

Score:
No. of Methods Identified:
No. of Non-Interactive Methods Identified:

Figure 6. The evaluation form used in evaluating a student’s work

tended diagram variant) should help the systems
analyst in building a complete and sound design.
The only class that is critical to implement the
non-interactive requirements is the system class
Library. Four out of six non-interactive methods
are in this class. Given its relevance, we assigned
the weight of three points for identifying the
Library class. Thus, the maximum score is nine
points, including three points for the Library
class and one point for each correctly identified
non-interactive method. The presented scoring
method is similar to [41], but it only considers
non-interactive requirements.

The first author who presented the tutori-
als also evaluated the students’ class diagrams.
These were subsequently checked by the sec-
ond author. Since the expert solution is not the
only correct one, the evaluators were tolerant of

class diagram variations as long as the identified
classes and methods were in line with the criteria
mentioned earlier. For example, a student may
use different method and class names and/or
place a method in a different, but correct class.

7.3. Results and discussion

To address our research question presented in
Section 7.1, we tested the following hypothesis
which is similar to hypotheses in [41–43]:
H0: There is no difference between the scores of
the UC and OC groups.

We tested the research hypothesis using the
Mann–WhitneyU test, as in [42, 44]. Mann–Whit-
ney U test is a nonparametric test for the differ-
ence in two means [45]. The results of the test
were obtained using XLSTAT which is a statis-

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 111

tical analysis tool for Microsoft Excel [46]. The
findings indicate that the score of the OC group
is significantly higher than the score of the UC
group (p-value = 0.027), and therefore hypothesis
H0 is rejected. Note that a significance level of
α = 0.05 is chosen as the level of significance.
On average, participants in the OC group scored
significantly higher (X̄ = 4.286, SD = 2.498)
than participants in the UC group (X̄ = 1.286,
SD = 2.215; p = 0.027) (see Figure 7).

Below, we consider the four categories of
threats to validity:
1. Conclusion validity: A study has con-

clusion validity if the results are statisti-
cally significant using appropriate statistical
tests [47, 48]. We used the Mann–Whitney
U test to analyse the results. The assump-
tions of using this test have been checked.
In order to increase the reliability of mea-
sures [48], all student evaluations performed
by the first author were checked by the second
author. All solutions were checked against an
expert solution that was constructed prior
to the evaluation and checked for correctness
and completeness by the authors.

2. Internal validity: Internal validity refers to
the cause and effect relationship between the
independent and dependent variables. One
factor affecting this kind of validity is hav-
ing any prior significant difference between

the groups. In the design of our experiment,
there was no significant difference between
the groups with respect to the cumulative de-
gree average. In addition, we believe that the
exercise of identifying operation cases causes
the systems analyst to identify non-interactive
functional requirements, and thereby not miss
incorporating them in system design. This is
our rationale for why the independent variable
would affect the dependent variable. One could
argue that the participants in the OC group
received direct training on identifying and
modelling non-interactive requirements while
the participants in the UC group did not. This
could represent a threat to the internal validity
of the experiment. To address this potential
threat, we conducted a second experiment (see
Section 8) that demonstrates that practitioner
software engineers who typically create use
case diagrams and follow the unified process
of constructing use case diagrams first and
using them to create the analysis and design
level class diagrams are expected to miss some
non-interactive requirements. This is because
these non-interactive requirements are not em-
phasized (in fact, they are neglected) by the
standard use case notations.

3. Construct validity: Construct validity con-
cerns the use of measures that are relevant
to the study. One factor affecting construct

OC

UC

0

1

2

3

4

5

6

7

8

9

Box plots

Figure 7. The box plots depicting the scores of the OC and UC groups

112 Saqib Iqbal et al.

validity is how much the experimental setting
differed from a real-world setting. The par-
ticipants were not involved in a real-world
system with real clients and users. However,
with regards to the limitation of use case di-
agrams in modelling non-interactive require-
ments, the experimental setup highly resem-
bles real-world conditions. A systems analyst
cannot capture non-interactive requirements
using a use case diagram only; and this has
a significant impact on the completeness of sys-
tem design and implementation. Another rele-
vant factor is the use ofmeaningful measures of
the completeness of designmodels with respect
to non-interactive requirements. We used the
same measure for completeness in terms of
the number of identified methods in the class
diagram as in [41]. We believe that this is
a relevant measure since missing a method
implies a design and an implementation that
do not implement all functional requirements.

4. External validity: External validity refers
to the generalisability of the results. One fac-
tor related to external validity concerns the
fact that all participants were students. How-
ever, the study in [49], as noted in [42], found
that there are minor differences between soft-
ware engineering students and professional
software developers suggesting the use of stu-
dents instead of professional developers in
software engineering experiments is valid un-
der certain conditions. A second factor is re-
lated to the number of participants which is
relatively small. Given the resources available
on hand, this is the best subject population
we could find. A third factor is related to the
size of the task which is relatively small and
does not reflect the typical work by a systems
analyst. However, most software engineering
experiments use such small tasks due to the
inherent difficulty of measuring attributes of
large and complex tasks [41–43, 47].

8. An Empirical evaluation using
a case study

To address the threats to the internal validity of
the controlled experiment presented in Section 7,

a second experiment was conducted. The experi-
ment was in the form of a case study analysing
the performance of 30 graduate students in the
Master of Science in Computer Science program
at COMSATS University Islamabad (Wah Cam-
pus) on identifying non-interactive requirements
of a system. All of the students who participated
in the study had a bachelor’s degree and had com-
pleted at least one undergraduate-level course on
object-oriented analysis and design. The majority
of the students were part-time students who were
actively working in industry. They were taking
the course Advanced Topics in Object-Oriented
Software Engineering at the time of the exper-
iment. The experiment was conducted during
regular class hours. All students completed the
tasks during the regular class hours, although
they had been informed that extra time would
be given in case it was needed.

This experiment used the same system story
as the one in the controlled experiment. The stu-
dents were handed the description of the Library
Management System shown in Figure 5. The
task was identical to the task performed by the
UC group in the controlled experiment, however
no tutorial was provided on use case modelling.
Information on each participant was collected
with the submission, including the student id
number, number of years since graduation, and
current employment if any. The class diagrams
developed by the students were collected and
evaluated following the same scoring procedure
as in the controlled experiment.

The same evaluation form was used as in the
controlled experiment (shown in Figure 6). With
respect to the number of non-interactive methods
identified, the average score was 1.1 out of 6. On
a 95%-confidence level, the confidence interval for
the average score was (0.66, 1.54). The analysis
was done using XLSTAT. This shows that many
non-interactive requirements were missed and
therefore not incorporated in the class diagram.
Furthermore, there were only 20 participants who
had identified at least one non-interactive method.
Of these, 13 participants (i.e., 65%) incorrectly
represented the system itself as an actor in the use
case diagram. This shows that the standard use
case notation as practised might be inadequate
in capturing non-interactive requirements.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 113

Since the task done by the participants in this
experiment is identical to that of the UC group
in the controlled experiment, this experiment is
likely to suffer from the same threats to validity
as in the controlled experiment. However, the
number of participants is much higher in this
experiment. In addition, the participants have
higher proficiency on use case modelling since
they are graduate students with the majority
working in industry. This experiment demon-
strates that systems analysts who typically create
use case diagrams and follow the unified process
of constructing use case diagrams first and using
them to create the analysis-level class diagrams
are expected to miss some non-interactive re-
quirements. This is because these non-interactive
requirements are not emphasized (in fact, they
are neglected) by the standard use case notations.

9. Conclusion and future work

The representation and documentation of func-
tional requirements at the analysis phase is the
most crucial activity in the software development
life cycle. Use case modelling solves this problem
by providing both textual and graphical methods,
which makes it the most widely-used methodol-
ogy. Use cases are designed into implementable
modules in the next phase of the development
life cycle. The problem, however, is the exclusion
of some of the functional requirements in the use
case models. These requirements are often not
represented as use cases as they are not initiated
by a user, and are thus known as non-interactive
requirements. Such requirements are often di-
rectly addressed in the design phase without hav-
ing any backward tracing to the use case models.
It is evident from the available literature and
existing software development practices that use
case models are considered as a complete repre-
sentation of all functional requirements of the sys-
tem. Due to this practice, non-interactive require-
ments are often overlooked and consequently re-
sult in implementation of an incomplete system.
To represent and document a complete system,
non-interactive requirements need to be com-
prehensively represented and documented along

with interactive requirements (use cases) in the
analysis phase. This paper addresses this problem
and proposes an extension to use case models
to accommodate non-interactive requirements.
These requirements have been named as Opera-
tion Cases and are represented with a new set of
graphical notations and textual templates. The
paper presents a new profile to extend UML’s
use case notation with operation cases and their
related constructs. The addressing of operation
cases at the analysis phase allows analysts and
designers to comprehensively document and trace
the functional requirements effectively.

We applied operation cases in modelling
a (partial) Mobile Phone operating system. For
the sake of keeping it concise, only a few relevant
functional requirements of the case study are dis-
cussed. In the case study, we showed that using
use case models alone cannot represent internal
non-interactive requirements of the system. Rep-
resentation of operation cases solves this problem
and makes use case models a more comprehensive
graphical representation of the functional require-
ments of the system. A controlled experiment
was also conducted to investigate the hypothesis
that using operation cases results in more com-
prehensive designs than when using traditional
use cases only. The results of the experiment
confirmed our hypothesis.

Acknowledgement

This work has not received any funding.

References

[1] I. Jacobson, “Object-oriented development in
an industrial environment,” in Proceedings of
the Conference on Object-oriented Program-
ming Systems, Languages and Applications, 1987,
pp. 183–191.

[2] “Unified modeling language,” 2015, [Accessed
September 2019]. [Online]. http://www.omg.or
g/spec/UML/2.5

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The
Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[4] B. Anda, K. Hansen, and G. Sand, “An investiga-
tion of use case quality in a large safety-critical

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

114 Saqib Iqbal et al.

software development project,” Information and
Software Technology, Vol. 51, No. 12, 2009,
pp. 1699–1711.

[5] S. Tiwari and A. Gupta, “Does increasing for-
malism in the use case template help?” in Pro-
ceedings of the 7th India Software Engineering
Conference, 2014, pp. 6:1–6:10.

[6] D. Parachuri, A.S.M. Sajeev, and R. Shukla, “An
empirical study of structural defects in industrial
use-cases,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering, 2014,
pp. 14–23.

[7] M. Ivarsson and T. Gorschek, “A method for
evaluating rigor and industrial relevance of tech-
nology evaluations,” Empirical Software Engi-
neering, Vol. 16, No. 3, 2011, pp. 365–395.

[8] M. Glinz, “Problems and deficiencies of UML as
a requirements specification language,” in Pro-
ceedings of the International Workshop on Soft-
ware Specification and Design, 2000, pp. 11–22.

[9] G. Génova, J.L. Morillo, P. Metz, R. Prieto-Díaz,
and H. Astudillo, “Open issues in industrial use
case modeling,” Journal of Object Technology,
Vol. 4, No. 6, 2005, pp. 7–14.

[10] P. Metz, J. O’Brien, and W. Weber, “Against
use case interleaving,” in Proceedings of the In-
ternational Conference on the Unified Modeling
Language, Modeling Languages, Concepts, and
Tools, 2001, pp. 472–486.

[11] P. Metz, J. O’Brien, and W. Weber, “Specifying
use case interaction: Clarifying extension points
and rejoin points,” Journal of Object Technology,
Vol. 3, No. 5, 2004, pp. 87–102.

[12] A.J.H. Simons, “Use cases considered harmful,”
in Proceedings of the International Conference
on Technology of Object-Oriented Languages and
Systems, 1999, pp. 194–203.

[13] I. Jacobson, M. Christerson, P. Jonsson, and
G. Övergaard, Object-oriented software engineer-
ing – A use case driven approach. Addison-Wesley,
1992.

[14] S. Tiwari and A. Gupta, “A systematic litera-
ture review of use case specifications research,”
Information and Software Technology, Vol. 67,
2015, pp. 128–158.

[15] S. Tiwari and A. Gupta, “Investigating com-
prehension and learnability aspects of use cases
for software specification problems,” Informa-
tion and Software Technology, Vol. 91, 2017,
pp. 22–43.

[16] M. Misbhauddin and M. Alshayeb, “Extending
the UML use case metamodel with behavioral
information to facilitate model analysis and inter-

change,” Software and Systems Modeling, Vol. 14,
No. 2, 2015, pp. 813–838.

[17] S. Azevedo, R.J. Machado, A. Bragança, and
H. Ribeiro, “The UML �include� relationship
and the functional refinement of use cases,” in
Proceedings of the EUROMICRO Conference on
Software Engineering and Advanced Applications,
2010, pp. 156–163.

[18] E.F. Cruz, R.J. Machado, and M.Y. Santos, “On
the decomposition of use cases for the refinement
of software requirements,” in Proceedings of the
International Conference on Computational Sci-
ence and Its Applications, 2014, pp. 237–240.

[19] K. van den Berg and A.J.H. Simons, “Con-
trol-flow semantics of use cases in UML,” Infor-
mation and Software Technology, Vol. 41, No. 10,
1999, pp. 651–659.

[20] R.R. Hurlbut, “A survey of approaches for de-
scribing and formalizing use cases,” Department
of Computer Science, Illinois Institute of Tech-
nology, Tech. Rep., 1997.

[21] P. Metz, J. O’Brien, and W. Weber, “Specify-
ing use case interaction: Types of alternative
courses,” Journal of Object Technology, Vol. 2,
No. 2, 2003, pp. 111–131.

[22] P. Stevens, “On use cases and their relationships
in the unified modelling language,” in Proceed-
ings of the International Conference on Fun-
damental Approaches to Software Engineering,
2001, pp. 140–155.

[23] D. Savic, A.R. da Silva, S. Vlajic, S. Lazarevic,
V. Stanojevic, I. Antovic, and M. Milic, “Use case
specification at different levels of abstraction,” in
Proceedings of the International Conference on
the Quality of Information and Communications
Technology, 2012, pp. 187–192.

[24] A. Al-alshuhai and F. Siewe, “An extension of
the use case diagram to model context-aware ap-
plications,” in Proceedings of the SAI Intelligent
Systems Conference, 2015, pp. 884–888.

[25] M. El-Attar and J. Miller, “Constructing high
quality use case models: a systematic review of
current practices,” Requirements Engineering,
Vol. 17, No. 3, 2012, pp. 187–201.

[26] T. Yue, L.C. Briand, and Y. Labiche, “aToucan:
an automated framework to derive UML analysis
models from use case models,” ACM Transac-
tions on Software Engineering and Methodology,
Vol. 24, No. 3, 2015, pp. 13:1–13:52.

[27] C. Wang, F. Pastore, A. Goknil, L.C. Briand,
and M.Z.Z. Iqbal, “Automatic generation of
system test cases from use case specifications,”
in Proceedings of the International Sympo-

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 115

sium on Software Testing and Analysis, 2015,
pp. 385–396.

[28] T. Yue, L.C. Briand, and Y. Labiche, “Facili-
tating the transition from use case models to
analysis models: Approach and experiments,”
ACM Transactions on Software Engineering and
Methodology, Vol. 22, No. 1, 2013, pp. 5:1–5:38.

[29] N. Kesserwan, R. Dssouli, J. Bentahar, B. Stepien,
and P. Labrèche, “From use case maps to ex-
ecutable test procedures: a scenario-based ap-
proach,” Software and Systems Modeling, 2017.

[30] S. Adolph, A. Cockburn, and P. Bramble, Pat-
terns for Effective Use Cases. Addison-Wesley
Longman Publishing Co., 2002.

[31] M. Smialek and W. Nowakowski, From Require-
ments to Java in a Snap – Model-Driven Require-
ments Engineering in Practice. Springer, 2015.

[32] K. Qi and B.W. Boehm, “A light-weight in-
cremental effort estimation model for use case
driven projects,” in Proceedings of the IEEE
Software Technology Conference, 2017.

[33] M. Saroha and S. Sahu, “Tools and methods for
software effort estimation using use case points
model – A review,” in Proceedings of the Inter-
national Conference on Computing, Communi-
cation and Automation, 2015, pp. 874–879.

[34] M. Grossman, J.E. Aronson, and R.V. McCarthy,
“Does UML make the grade? insights from the
software development community,” Information
and Software Technology, Vol. 47, No. 6, 2005,
pp. 383–397.

[35] D. Kulak and E. Guiney, Use Cases: Require-
ments in Context. ACM Press, 2000.

[36] D. Liu, K. Subramaniam, B. Far, and A. Eber-
lein, “Automating transition from use cases to
class model,” in Proceedings of the Canadian
Conference on Electrical and Computer Engi-
neering. Toward a Caring and Humane Technol-
ogy, 2003, pp. 831–834.

[37] P. Kruchten, The Rational Unified Process: An
Introduction, 3rd ed. Addison-Wesley, 2003.

[38] S.S. Somé, “Supporting use case based require-
ments engineering,” Information and Software
Technology, Vol. 48, No. 1, 2006, pp. 43–58.

[39] J. Kettenis, “Getting started with use case mod-
eling: White paper,” Oracle Corporation, Tech.
Rep., 2007.

[40] “40 use case templates and examples,” [Accessed
September 2019]. [Online]. http://templatelab.
com/use-case-templates/

[41] B. Anda and D.I.K. Sjøberg, “Investigating the
role of use cases in the construction of class dia-
grams,” Empirical Software Engineering, Vol. 10,
No. 3, 2005, pp. 285–309.

[42] D. Beimel and E. Kedmi-Shahar, “Improving the
identification of functional system requirements
when novice analysts create use case diagrams:
the benefits of applying conceptual mental mod-
els,” Requirements Engineering, 2018.

[43] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio,
and E. Astesiano, “Assessing the effect of screen
mockups on the comprehension of functional
requirements,” ACM Transactions on Software
Engineering and Methodology, Vol. 24, No. 1,
2014.

[44] M. Dahan, P. Shoval, and A. Sturm, “Compar-
ing the impact of the OO-DFD and the use case
methods for modeling functional requirements
on comprehension and quality of models: a con-
trolled experiment,” Requirements Engineering,
Vol. 19, No. 1, 2014, pp. 27–43.

[45] D.C. Montgomery and G.C. Runger, Applied
Statistics and Probability for Engineers, 6th Edi-
tion. John Wiley and Sons, 2013.

[46] “XLSTAT,” [Accessed March 2019]. [Online].
https://www.xlstat.com/en/

[47] N. Fenton and J. Bieman, Software Metrics:
A Rigorous and Practical Approach, 3rd ed. CRC
Press, Inc., 2014.

[48] C. Wohlin, P. Runeson, M. Hst, M.C. Ohlsson,
B. Regnell, and A. Wessln, Experimentation in
Software Engineering. Springer Publishing Com-
pany, 2012.

[49] M. Höst, B. Regnell, and C. Wohlin, “Using
students as subjects-a comparative study of
students and professionals in lead-time impact
assessment,” Empirical Software Engineering,
Vol. 5, No. 3, 2000, pp. 201–214.

http://templatelab.com/use-case-templates/
http://templatelab.com/use-case-templates/
https://www.xlstat.com/en/

	Introduction
	Related work
	Problems and motivation
	Operation cases
	Extension to use case modelling
	Operation cases profile definition
	Operation case template

	Application of new notations
	A controlled-experiment based evaluation
	Research question and hypothesis
	Research design
	Results and discussion

	An Empirical evaluation using a case study
	Conclusion and future work
	Acknowledgement
	References

