
2021 volume 15 issue 1

2021 volume 15 issue 1

Editor-in-Chief
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)
Editor-in-Chief Emeritus
Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)

Faculty of Information and Communication Technology, Department of Applied Informatics
Wrocław University of Science and Technology,
50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl, DOI: 10.37190/e-inf
Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the LATEX 2𝜀 Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2021

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Print and binding: beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.37190/e-inf
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board
Editor-in-Chief

Lech Madeyski (Wrocław University of Science and Technology, Poland)

Editor-in-Chief Emeritus

Zbigniew Huzar (Wrocław University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Apostolos Ampatzoglou (University of
Macedonia, Thessaloniki, Greece)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center
Hagenberg, Austria)
Markus Borg (SICS Swedish ICT AB Lund,
Sweden)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer
Science & Informatics, Ireland)
Steve Counsell (Brunel University, UK)
Maya Daneva (University of Twente The
Netherlands)
Norman Fenton (Queen Mary University
of London, UK)
Joaquim Filipe (Polytechnic Institute
of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover,
Germany)
Francesca Arcelli Fontana (University
of Milano-Bicocca, Italy)
Félix García (University of Castilla-La
Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University
of Technology, Poland)
Tracy Hall (Lancaster University, UK)
Andreas Jedlitschka (Fraunhofer IESE,
Germany)
Barbara Kitchenham (Keele University,
UK)
Stanisław Kozielski (Silesian University
of Technology, Poland)
Pericles Loucopoulos (The University
of Manchester, UK)

Kalle Lyytinen (Case Western Reserve
University, USA)
Leszek A. Maciaszek (Wrocław University
of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Science
and Technology, Poland)
Zygmunt Mazur (Wrocław University
of Science and Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG,
Germany)
Jürgen Münch (University of Helsinki,
Finland)
Jerzy Nawrocki (Poznan University
of Technology, Poland)
Mirosław Ochodek (Poznan University
of Technology, Poland)
Janis Osis (Riga Technical University, Latvia)
Fabio Palomba (University of Salerno, Italy)
Mike Papadakis (Luxembourg University,
Luxembourg)
Kai Petersen (Hochschule Flensburg,
University of Applied Sciences, Germany)
Łukasz Radliński (West Pomeranian
University of Technology in Szczecin, Poland)
Guenther Ruhe (University of Calgary,
Canada)
Krzysztof Sacha (Warsaw University
of Technology, Poland)
Martin Shepperd (Brunel University
London, UK)
Rini van Solingen (Drenthe University,
The Netherlands)
Miroslaw Staron (IT University of Göteborg,
Sweden)

4

Tomasz Szmuc (AGH University of Science
and Technology Kraków, Poland)
Guilherme Horta Travassos (Federal
University of Rio de Janeiro, Brazil)
Adam Trendowicz (Fraunhofer IESE,
Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University
of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit,
Spain)
Corrado Aaron Visaggio (University
of Sannio, Italy)

Bartosz Walter (Poznan University
of Technology, Poland)
Dietmar Winkler (Technische Universität
Wien, Austria)
Bogdan Wiszniewski (Gdańsk University
of Technology, Poland)
Marco Zanoni (University of Milano-Bicocca,
Italy)
Jaroslav Zendulka (Brno University
of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University
of Science and Technology Kraków, Poland)

Contents

What Support do Systematic Reviews Provide for Evidence-informed Teaching
about Software Engineering Practice?

David Budgen, Pearl Brereton, Nikki Williams, Sarah Drummond 7
A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks

Hani Bani-Salameh, Mohammed Sallam, Bashar Al shboul 29
Use of Agile Practices in Start-up Companies

Eriks Klotins, Michael Unterkalmsteiner, Panagiota Chatzipetrou, Tony Gorschek,
Rafael Prikladnicki, Nirnaya Tripathi, Leandro Bento Pompermaier 47

A Framework for the Regression Testing of Model-to-Model Transformations
Issam Al-Azzon, Saqib Iqbal . 65

Mining Non-Functional Requirements using Machine Learning Techniques
Rajni Jindal, Ruchika Malhotra, Abha Jain, Ankita Bansal 85

Software Deterioration Control Based on Issue Reports
Omid Bushehrian, Mohsen Sayari, Pirooz Shamsinejad 115

A Systematic Reuse Process for Automated Acceptance Tests: Construction
and Elementary Evaluation

Mohsin Irshad, Kai Petersen . 133
Multi-View Learning for Software Defect Prediction

Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant 163
Business Model Flexibility and Software-intensive Companies: Opportunities
and Challenges

Magnus Wilson, Krzysztof Wnuk, Lars Bengtsson . 185

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 7–27, DOI 10.37190/e-Inf210101

Fixing Design Inconsistencies of Polymorphic
Methods Using Swarm Intelligence

Renu George∗, Philip Samuel∗
∗Department of Computer Science, Cochin University of Science and Technology, India

renugeorge@ceconline.edu, philips@cusat.ac.in

Abstract
Background: Modern industry is heavily dependent on software. The complexity of designing
and developing software is a serious engineering issue. With the growing size of software systems
and increase in complexity, inconsistencies arise in software design and intelligent techniques are
required to detect and fix inconsistencies.
Aim: Current industrial practice of manually detecting inconsistencies is time consuming, error
prone and incomplete. Inconsistencies arising as a result of polymorphic object interactions are
hard to trace. We propose an approach to detect and fix inconsistencies in polymorphic method
invocations in sequence models.
Method: A novel intelligent approach based on self regulating particle swarm optimization to solve
the inconsistency during software system design is presented. Inconsistency handling is modelled
as an optimization problem that uses a maximizing fitness function. The proposed approach also
identifies the changes required in the design diagrams to fix the inconsistencies.
Result: The method is evaluated on different software design models involving static and dynamic
polymorphism and inconsistencies are detected and resolved.
Conclusion: Ensuring consistency of design is highly essential to develop quality software and
solves a major design issue for practitioners. In addition, our approach helps to reduce the time
and cost of developing software.

Keywords: UML models, software design inconsistency, polymorphism, particle swarm
optimization

1. Introduction

Today′s biggest industry is software industry in
terms of manpower, complex interactions and
changing tasks with evolving designs. The way
people coordinate activities and work has seen
a major transformation since the use of software
in industries. With the increasing relevance of
software in industries, software development has
become more complex. Software changes are fre-
quent due to evolution, agility and adaptability.
Customized software is used to increase produc-
tivity in industries and quality of the software
is a prime concern. Design and development of
quality software is a major challenge for software
developers and many a times, the process is man-

ual. Artificial intelligence (AI) techniques can
replace many of these manual efforts to make the
development of software easier and cost effective.

Artificial intelligence replicates human deci-
sion making techniques to make machines more
intelligent. Software development involves sev-
eral complex human decision makings that deal
with the task of designing, implementing and
deploying complex systems. Software engineer-
ing problems can be represented as optimization
problems. Search based software systems use op-
timization techniques and computational search
techniques to solve problems in software engineer-
ing [1]. Although search based systems address
many problems in software requirements and
design, design verification is not yet addressed

Submitted: 08 April 2020; Revised: 02 November 2020; Accepted: 14 December 2020; Available online: 02 February 2021

8 Renu George, Philip Samuel

[2, 3]. Particle swarm optimization (PSO) is an
optimization technique based on population with
computational intelligence [4]. Self Regulating
Particle Swarm Optimization (SRPSO) is an im-
proved version of PSO that provides optimum
solutions by incorporating the best strategies
for human learning [5]. We present an intelli-
gent approach based on SRPSO to solve the
inconsistency in polymorphic methods during
the software system design.

The modelling language widely used for re-
quirements modelling and documentation of the
system is Unified Modeling Language (UML).
UML models handle the complexity of the sys-
tem by expressing different views with different
diagrams that consist of a number of interre-
lated model elements. The interrelated design
diagrams contain redundant information in the
overlapping model elements. Hence, the proba-
bility of occurrence of design inconsistencies is
more. The diagrams of a single system repre-
senting the static and dynamic aspects should
be consistent and not contradictory [6]. Explicit
mechanisms are required to verify the consistency
of redundant information present across the dia-
grams [7, 8]. Generally, models are constructed
for a specific application and the models are even-
tually implemented, usually in an object oriented
programming language. Validating the models
for consistency in the design phase guarantee
that the design inconsistencies are not carried
over to the code generation phase of software
development. Automated consistency checking
during the design phase ensures software quality,
reduced development and maintenance cost and
less time to market. Inconsistent design results
in incorrect code, design rework, failure to meet
timelines, and increase in cost of production.

Polymorphism is one of the key concepts that
determine the quality of object oriented software
systems [9]. Polymorphism enables different be-
havior to be associated with a method name. New
methods with different implementation can be
created with the same interface and the amount of
work required to handle and distinguish different
objects is reduced [9]. The result of execution of
a polymorphic method depends on the object that
executes themethod andproduces different results

when received by different objects. The advan-
tages of designingmultiple methods with the same
name make polymorphism an efficient approach
during software design.We define an inconsistency
related to object interactions in polymorphic and
non-polymorphic methods: method-invocation
inconsistency. Inconsistency exists if the method
invocations are bound to a wrong class in the
sequence diagram, i.e., the method is not invoked
on an object of the class in which the method is
defined. Inconsistencies in polymorphic method
invocations cannot be identified by validating
the method names as all polymorphic methods
have the same name. Hence, detection of method
invocation inconsistency in polymorphic methods
requires more effort than non-polymorphic meth-
ods. As the design complexity increases, manual
verification of inconsistencies in polymorphic
methods is not practical. Intelligent techniques
that require expertise are required to detect and
solve the inconsistencies.

Method-invocation inconsistency occurs when
a polymorphic or non-polymorphic method is in-
voked on a wrong object in the sequence diagram.
The existing approaches of detecting inconsisten-
cies in method invocations specified in [10–15]
do not mention inconsistencies in polymorphic
methods. Although polymorphism has a number
of advantages, serious flaws may occur due to
inconsistencies. Programmers may find it a chal-
lenging task to understand all the interactions
between sender and receiver objects [16]. Under-
standing polymorphic codes is hard and there-
fore, fault-prone. Usually inconsistencies related
to polymorphic method invocations are difficult
to identify during testing phase. Separate tests are
required for each polymorphic method binding.
Identifying and testing all possible bindings of
certain polymorphic references is difficult thereby
increasing the chances of errors [17]. Inconsistent
polymorphic behaviours may cause huge financial
problems when detected.

Software design is prone to errors and design
imperfections have a significant effect on software
quality. Software failure can be attributed to var-
ious factors starting from requirements gathering
to testing and poor quality management [18]. In-
consistencies in the design lead to the generation

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 9

of defective software. One of the major activi-
ties in ensuring quality involves detection and
removal of defects in the design. As the errors are
carried over from the software design phase to the
development phase, the cost incurred in fixing
the error also increases. Defect detection during
the design phase significantly prevents propaga-
tion of errors to further stages of software devel-
opment and reduces development cost [19, 20].
Hence, code generation is based on consistent
designs. This facilitates generation of software
with fewer faults and improves the quality of
the software generated. Development of software
with fewer faults reduces the maintenance cost
of the software. Cost increases with the delay in
detecting and correcting the error. The cost of de-
tecting defects after release is 30 times more than
the cost of detecting defects in the analysis and
design phase [19]. Therefore, inconsistency detec-
tion in the software design phase is inevitable for
the development of accurate and quality software.
We propose an intelligent approach to detect
and fix inconsistencies during the design phase
of software development. Inconsistencies are de-
tected and handled with a fitness function by
generating fitness values for each polymorphic
and non-polymorphic method in the class dia-
gram and sequence diagram. Inconsistencies are
handled by maximizing the fitness values of meth-
ods subject to the constraint that the methods
are invoked on the right classes. The proposed
automated intelligent approach for consistency
checking during the design phase facilitates gen-
eration of software with fewer faults, improves
software quality, and reduces development and
maintenance cost.

The organization of the paper is as follows.
The related works in the areas of consistency
checking and the various applications of PSO and
its variants is presented in Section 2. Section 3
deals with the inconsistencies in polymorphic
methods. The architecture of the consistency
checking system is described in Section 4 and
the implementation of the proposed approach is
presented in Section 5. Results and discussion
are presented in Section 6, threats to validity is
presented in Section 7 and Section 8 concludes
the paper.

2. Related work

The section presents the consistency handling
techniques available in the literature and the
applications of PSO techniques to find optimal
solutions in software development and industries.

Inconsistencies in the design may result in
the failure of a software project. The problems
of establishing and maintaining consistency is
discussed in [21]. The authors state that it is
impossible to avoid inconsistency and more flexi-
bility can be obtained by using tools that manage
and tolerate inconsistency. A tool that detects
inconsistency and locates the choices for fixing
inconsistency is proposed in [10]. Model profiling
is used to determine the model elements affected
while evaluating a rule; a set of choices for fixing
the inconsistency is proposed and the designer de-
cides the choice for fixing the inconsistency. The
method proposed in [11] fixes inconsistencies in
class, sequence and statechart diagrams by gen-
erating a set of concrete changes automatically.
The work focuses on deciding a method to fix
inconsistencies. An approach that performs real
time detection and tracking of inconsistencies
in class, sequence and state chart diagrams is
presented in [12]. Consistency checks are initiated
during a model change.

The algorithm proposed in [13] performs con-
sistency check on class and sequence diagrams
based on the syntax specified and generates a se-
quence of Relational Calculus of Object Sys-
tems (rCOS) class declarations. Inconsistencies
in well-formed class and sequence diagrams are
detected with an algorithm based on breadth first
search technique. Transformation, refactoring,
merging or repair of models result in changes in
the model and during consistency checking it may
lead to performance problems. An automated
approach with tool support to re-validate parts
of the design rule affected by model transforma-
tion or repair is proposed in [22]. Although the
paper mentions inconsistency in sequence and
class diagrams, the focus is on improving the
performance of incremental consistency check-
ing by identifying parts of the model affected
by model changes. A prototype tool developed
using a UML based approach to handle impact

10 Renu George, Philip Samuel

analysis is proposed in [14]. Consistency check
is performed on the UML diagrams, difference
between the two versions is identified and the
model elements that are directly or indirectly
affected by the changes are determined. The fo-
cus of the paper is on changes and its impact,
i.e., which model elements are affected by the
change. Instant detection of consistency between
source code and design models is performed in
[23] and a live report of the consistency status
of the project is provided to the developers.

A classification of model repair techniques
based on features is presented in [24]. The fo-
cus is on proposing taxonomy for model repair
techniques and not on inconsistency detection
and causes of inconsistency. The paper [15] pro-
poses a method for automatic generation of exe-
cutable and concrete repairs for models based on
the inconsistency information, a set of generator
functions and abstract repairs. An automated
planning approach based on artificial intelligence
is proposed in [25] to resolve inconsistencies. A re-
gression planner is implemented in Prolog. The
approach is restricted to detection of structural
inconsistencies in class diagrams only.

A review of the consistency management ap-
proaches available in the literature is presented
in [26]. The works described does not address
inconsistencies related to polymorphic methods.
Object Constraint Language (OCL) rules are spec-
ified for consistency checking of UML model in
[27], the approach does not address polymorphic
methods. Consistency rules to detect inconsis-
tencies in method invocations between sequence
and class diagrams are presented in [28], but no
approaches are presented to detect and fix in-
consistency. A method to detect inconsistencies
between state diagrams and communication dia-
grams using the language Alloy is presented in [29].

Soft computing techniques find its application
in providing solutions to problems in industries.
PSO is used to minimize the cost of heating sys-
tem [30], to assign applications to resources in the
cloud [31], in job-shop scheduling [32], in network-
ing [33], power systems [34, 35], signal processing
[36], control system [37] and many more. PSO is
also applied to find effective solutions to prob-
lems in software development. PSO is applied to

UML class diagram and an algorithm for class
responsibility assignment problem is presented
in [38]. The PSO method reassigns the attributes
and methods to the different classes indicated in
the class diagram. The application of SRPSO and
PSO in detecting and resolving inconsistencies in
class attribute definitions is presented in [39, 40].
The fitness value determines the consistency of
attributes and the PSO and SRPSO algorithm
iterates to fix inconsistency by optimizing the
fitness value of attributes. The papers deal with
fixing inconsistencies in attribute definitions only.
The performance of SRPSO algorithm is better
than PSO in term of statistical evaluation pa-
rameters and convergence. An SRPSO based
approach to fix state change inconsistencies in
state diagrams and sequence diagrams is pro-
posed in [41]. Inconsistencies are detected and
fixed with a fitness function.

An optimization based approach using PSO
and simulated annealing to find transformation
fragments that best cover the source model is
proposed in [42]. PSO is applied to achieve high
structural code coverage in evolutionary struc-
tural testing by generating test cases automat-
ically [43]. Parameter estimation using PSO to
predict reliability of software reliability growth
models (SRGM) is described in [44]. During
testing, faults are detected and a mathemati-
cal model SRGM, models the properties of the
process. A comparative study of metaheuristic
optimization framework is proposed in [45] and
the study states that a wider implementation of
software engineering practices is required.

The application of PSO in diverse areas of en-
gineering has yielded better results over existing
methods, but works that describe the applica-
tion of PSO in the design phase for software
design consistency checking is rare. Although
consistency checking of UML models is a widely
discussed problem and different techniques to
detect and fix inconsistencies are available in the
literature, techniques that perform consistency
checking of polymorphic methods are rarely re-
ported. We present an intelligent approach that
detects inconsistencies with a fitness function.
Inconsistencies are fixed by remodelling the se-
quence diagram method invocations during iter-

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 11

ations of the SRPSO algorithm. Our approach
efficiently detects and fixes the inconsistencies.

3. Inconsistencies
in polymorphic methods

Polymorphism is an important feature of object
oriented programming that provides simplicity
and flexibility to the design and code. It en-
ables different behaviour to be associated with
a method name. Polymorphism keeps the design
simple, flexible and extensible [46]. New meth-
ods with different implementation can be created
with the same interface and the amount of work
required to handle and distinguish different ob-
jects is reduced. Each polymorphic method has
a class specific way to respond to a message. Poly-
morphic methods execute different subroutines
depending on the type of object they are applied
to. Inconsistency occurs if the method is invoked
on a wrong class. Two methods of implement-
ing polymorphism are (a) static binding: meth-
ods have the same name, different signature and
different implementation (b) dynamic dispatch:
methods have the same name, same signature
and different implementation [47]. Static binding
occurs with method overloading at compile time
and the method to be invoked is determined from
the signature of the method call. Dynamic dis-
patch is related to inheritance hierarchy. Method
overriding provides a superclass/subclass inher-
itance hierarchy allowing different subclass im-
plementation of inherited methods [48, 49]. The
overriding methods represent different function-
alities and require different algorithms [50]. The
exact method to which the method call is bound
is known only at run time. Method overriding is
implemented with dynamic dispatch [49].

Inconsistency in UML models occurs when
two or more diagrams describe different aspects
of the system and they are not jointly satisfiable.
Any method invoked on an object in the sequence
diagram should be defined in the class instan-
tiated by the receiving object. The rule is part
of the UML well-formedness principle. There is
scope for many subtle errors with polymorphism
since a method name occurs in more than one

class. The exact operation to be performed is de-
termined from the data types of the arguments
in static polymorphism. The same signature is
used by more than one class in dynamic poly-
morphism and determining whether the correct
method is invoked in the sequence diagram is
an issue. Understanding polymorphic codes is
hard and therefore fault-prone [16]. Hence, in-
consistency detection during the design phase
has become inevitable for the development of
accurate software [16]. We propose an intelligent
approach using SRPSO algorithm to detect and
fix method-invocation inconsistency in polymor-
phic methods. Method invocation inconsistency
is identified from the signatures of the class di-
agram and sequence diagram methods in static
polymorphism. The method signatures are the
same for all polymorphic methods in dynamic
polymorphism and hence more difficult. Incon-
sistency is detected from the guard condition for
message invocation in the sequence diagram and
precondition for the method in the class diagram.

The inconsistencies are illustrated with the
UML models 3DObject and ThreeDObject repre-
sented in Figures 1 and 2, respectively. The class
diagram and sequence diagram for the UML
model 3DObject is represented in Figure 1 . The
model provides an example of static polymor-
phism. The class diagram consists of 4 classes.
A generalized class ThreeDShape is defined with
an attribute Area of type float. The classes
Sphere, Cuboid and Cylinder are specializations
of the class ThreeDShape. The methods com-
puteArea() and perimeter() defined in the classes
Sphere, Cuboid and Cylinder are polymorphic
since methods with the same name and different
signature are defined. The method vertices()
defined in the class Cuboid is non-polymorphic.
The sequence diagram represents the method in-
vocations to compute the area of the objects. The
class Cuboid has a method computeArea(l, b, h)
with signature computeArea(int, int, int). Simi-
larly, the signatures of the method computeArea()
defined in the classes Sphere and Cylinder are
computeArea(int) and computeArea(float, fint),
respectively. The signatures of the method com-
puteArea() invoked on the objects of classes
Cuboid, Sphere and Cylinder in the sequence

12 Renu George, Philip Samuel

Figure 1. Class Diagram and Sequence Diagram for UML Model for 3DObject

Figure 2. Class Diagram and Sequence Diagram for UML Model for 3DObject

diagram are computeArea(int, int, int), com-
puteArea(float, int) and computeArea(int). The
invocations of the polymorphic method com-
puteArea(l, b, h) and the non-polymorphic
method vertices() are consistent whereas the
invocations of the polymorphic methods, com-
puteArea(s) and computeArea(r, h) are incon-
sistent. The inconsistencies, if unnoticed will
result in a wrong value for area. Inconsistencies
are detected by computing the fitness values
of methods. The fitness value computation to
detect inconsistency is represented in Table 1.

A UML model ThreeDObject representing
dynamic polymorphism is depicted in Figure 2.
A method computeArea() and two attributes
Area and face are defined in the class Three-
DObject. The method is overridden in the child
classes since the method of computing area de-
pends on the shape of the object. The attribute
face represents the number of faces possessed by
an object. Sphere has no face, Cylinder has two
faces, Cuboid and Cube have 6 faces and Triangu-
larPrism has 5 faces. Constraints are defined for
the methods and expressed as preconditions in

Table 1. Fitness values of methods in UML Models 3DObject and ThreeDObject

Method name CD Class SD Class Fitness value UML Model
computeArea(r, h) Cylinder Sphere 0.9375 3DObject
computeArea(l, b, h) Cuboid Cuboid 1 3DObject
vertice() Cuboid Cuboid 1 3DObject
computeArea(s) Sphere Cylinder 1.11 3DObject
computeArea() Cylinder Cylinder 1 ThreeDObject

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 13

object constraint language. The preconditions for
the method computeArea() in the classes Cuboid,
Cube, Sphere, TriangularPrism and Cylinder
state that the value of the attribute face should
be equal to 6, 6, 0, 5 and 2, respectively. As
the signatures of all the methods involved in
dynamic polymorphism are the same, it is impos-
sible to detect inconsistency by comparing the
method signatures. The guard conditions and the
preconditions are compared and method invoca-
tion inconsistency is detected with the method
computeArea() invoked on the objects of classes
Cuboid, Sphere and Cylinder. The method com-
puteArea() invoked on the object of class Sphere
should satisfy the guard condition face = 6 which
is not true resulting in run time errors. The in-
vocation of the method computeArea() on the
object of class TriangularPrism is consistent as
the value of the attribute face in the guard con-
dition and precondition is equal to 5.

The inconsistent method invocations in Fig-
ures 1 and 2 result in wrong value for Area. If
the models are used in the cost estimation of
buildings, the estimated cost will be computed
with wrong values of area. The cost estimation
will produce a wrong value affecting the feasi-
bility of the project. Since the design errors are
propagated to the code generation phase, the
software generated will have errors. Identifying
the source of errors in the code and fixing the er-
rors is more difficult, time consuming and costly
than detecting the errors in the software design.
Errors detected in the testing phase may delay
the software project. The errors identified during
the testing phase or after delivery of the soft-

ware product increases the time to market as
well as development and maintenance cost of the
software.

4. Architecture of the consistency
handling system

PSO is an intelligent algorithm that can be used
in scientific and engineering area [51]. Consis-
tency checking is formulated as an optimization
problem with a maximizing fitness function that
operates on the diagram specification. An opti-
mization problem maximizes or minimizes a fit-
ness function subject to the condition that the
constraints are satisfied. In our approach the
fitness function represents the consistency and
completeness of method invocations. The aim
of the SRPSO algorithm is to optimize the con-
sistency of polymorphic method invocations in
sequence diagram subject to the constraint that
the methods are invoked on the right classes. The
SRPSO algorithm is preferred because it does
not require transformation of models and can
be directly applied on UML model specification.
The inconsistent particles are guided by the best
particles to achieve consistency and hence search
speed is high [52].

The architecture of the system to perform
consistency checking using SRPSO is described
in Figure 3. The algorithms are implemented in
Java running on a windows platform. The con-
sistency checking system comprises of UML tool
to model the requirements, parser to generate
diagram specification and consistency checker to

Figure 3. Architecture of Consistency Checking System

14 Renu George, Philip Samuel

detect method-invocation inconsistency and fix
the inconsistency using SRPSO algorithm.

4.1. UML tool

The requirements of the system to be designed
are gathered and modelled into graphical rep-
resentations using a UML tool. Several UML
modelling tools like Magic Draw, Rational Soft-
ware Architect, Agro UML, Papyrus, etc. are
available for modelling software. Our method
can be integrated with any tool that give XMI
format. The models are saved in XMI format.
The static and dynamic aspects are represented
using class diagram and sequence diagram. Class
diagrams represent the information regarding
the classes required to implement a system and
the type of relationship that exists between the
classes. The attributes and operations describe
the properties and behaviour of the objects of
a class. Preconditions associated with method in-
vocations are also represented. The preconditions
of the overridden methods in the super class and
subclass are different [50]. Sequence diagram rep-
resents the dynamic aspects by portraying the
interactions in the form of messages/methods
between objects and the ordering of the interac-
tions to produce a desired outcome. Polymorphic
behaviour can be represented using a sequence
diagram by controlling the polymorphic invoca-
tions with guard conditions.

4.2. Parser

The parser parses the UML model and produces
specifications of the diagrams. We have used the
Document Object model (DOM) parser to parse
the diagrams saved in XMI format. A class dia-
gram specification comprises of the classes, the
type of association between the classes, attributes
and methods of each class and the preconditions
for method invocations. The sequence diagram
specification consists of the objects in the se-
quence diagram, messages, sender and receiver
of each message, the guard conditions on the
message invocations and the order of method
invocations.

4.3. Consistency checker

The design inconsistencies in polymorphicmethod
invocations are detected by consistency checker
module. Although the focus is on detection of
inconsistencies in polymorphic methods, the algo-
rithm detects inconsistencies in polymorphic and
non-polymorphic methods. The specifications of
class and sequence diagrams are input to the con-
sistency checker. Inconsistencies are detected by
a fitness function. The inconsistency is resolved
by reassigning methods with the SRPSO algo-
rithm. Consistency checking is a two-step process:
a) inconsistency detection and b) inconsistency
fixing.

4.3.1. Inconsistency detection

The fitness function, fs computes the fitness
value of the methods to detect inconsistency.
The fitness value is computed as a function of
the class name, method signature and properties
of the method. The sequence diagram method is
defined in terms of its properties like name, id,
parameters, sender, receiver, guard and a number
that represents the message order. Each method
has a specific value for a property (denoted as
weight) and each position in the vector corre-
sponds to one property of the method. The values
for the properties are set as 5, 3, 5, 5, 5, 4 and 3,
respectively. The fitness function fs computes the
fitness value of each sequence diagram method.
A method invocation is classified as inconsistent
if the fitness value is not equal to one. The fitness
function is defined with equation 1 as

fs =

(
m∑

i=1
ti ∗ wi) ∗ (wn + wcs +

n∑

k=1
wk ∗ pk

)

W ∗

q∑

j=1
wj ∗ pj

(1)
where ti represents the property i of method
specification, wi represents the weight of the
property ti, wn represents the weight value as-
sociated with the method name n, pj and wj

represents the position and weight of parame-

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 15

ter j of the method n in the class diagram, pk

and wk denotes the position and weight of the
parameter k of the method n in the sequence
diagram, wcc represents the class name of the
method in the class diagram, wcs represents the
class name of the object on which the method
is invoked in sequence diagram and W repre-
sents the weight assigned to a complete method
specification. The value of W is set as 30. A com-
plete method specification has values for all its
properties. Unique values are assigned as the
weights for method names, class names and data
type of parameters. Distinct method names, data
types and classes have distinct weight. All poly-
morphic methods have the same weight value
for name and any numerical value can be se-
lected to correspond to wn. The UML model in
Figure 1 has a polymorphic method with name
computeArea. The value of wn is set as 5. The
value of wn for the method names vertices() and
perimeter() are set as 3 and 4, respectively. The
classes are assigned weights in the range [1 . . . n]
where n is the number of classes. Each class has
a unique weight. A class name present in both
the class diagram (wcc) and sequence diagram
(wcs) has the same weight. The UML model in
Figure 1 has four classes Cuboid, Sphere, Cylin-
der and ThreeDShape and the weight values for
the classes Cuboid, Sphere, Cylinder and Three-
DShape are 1, 2, 3 and 4, respectively. The weight
value of parameter is defined as the number of
bytes required for the storing the data type of
the parameter and the weights of char, int and
float are defined as 1, 2 and 4, respectively. The
weights assign unique numerical values to the
method name, class name and data types of the
parameters. The fitness value computation for
the methods in the sequence diagram of Figures 1
and 2 is illustrated in Table 1.

Method invocation inconsistency is detected
with the methods computeArea(r, h) and com-
puteArea(s) since the fitness values of the meth-
ods are not equal to one. The methods com-
puteArea(l, b, h) and vertices() are consistent
since the fitness values are equal to one. Although
inconsistency is detected from the fitness value in
static polymorphism, fitness value alone does not
reveal inconsistency in dynamic polymorphism.

Irrespective of the object on which the method
is invoked, the fitness value of the method com-
puteArea() in the UML model ThreeDObject is
one since the method is overridden in the child
classes. Hence, validation of the guard condi-
tion and method precondition is necessary. The
guard condition and precondition are represented
as tuples consisting of attribute, operator-value
pairs. Depending on the precondition, there can
be more than one operator-value pair. The tu-
ples are compared to identify inconsistency. The
tuple corresponding to the guard condition for
the method computeArea() in Figure 2 in the
sequence diagram invoked on the object of class
Cylinder is (face, (=, 0)). The tuple represen-
tation for the precondition of the method com-
puteArea() in the class Cylinder is (face, (=, 2)).
There is a mismatch in the value of the attribute
face and method invocation inconsistency is de-
tected.

4.3.2. Inconsistency fixing with SRPSO

The inconsistency is resolved by identifying the
right classes and remodelling the sequence dia-
gram by replacing the inconsistent method in-
vocations with consistent method invocations
using SRPSO. To identify the right class, we
compute the cohesion of the attributes of the
inconsistent method to all the classes in the
class diagram. The inconsistent method is re-
assigned to the class with the highest cohesion
value. The cohesion value between the method at-
tributes and the class attributes is computed for
each method-class pair. The method attributes
MA(m) of method m are derived from the pa-
rameters of the method. The class attributes
of class C, CA(C) are obtained from the class
specification. The cohesion value of a method m
to class C is computed using equation 2 as

cohesion(m,C) = n(CA(C) ∩MA(m))
n(MA(m)) (2)

where CA(C) represents the attributes defined
in class C, MA(m) represents the attributes of
method m and n represents the number of at-
tributes. The SRPSO algorithm iterates until all
the method definitions are complete and consis-

16 Renu George, Philip Samuel

tent. The sequence diagram is remodelled during
iterations of the SRPSO algorithm. With static
binding, the cohesion value determines the class
to which an inconsistent method is to be reas-
signed whereas in dynamic binding, the cohesion
value and guard condition together determine
the class to which the method belongs.

5. Consistency handling
with SRPSO algorithm

SRPSO is a bio-inspired metaheuristic technique
that can provide better results than exact tech-
niques even with increased size of search space.
Metaheuristic techniques are more effective in
finding software errors utilizing less number of
resources when compared with exact techniques
[53]. SRPSO is an intelligent, optimization proce-
dure in which the solution space contains a swarm
of particles and the optimum value is attained
by an iterative process of updating generations.
The particles occupy a position in the solution
space. They have a velocity, a fitness value and
the particles update their velocity and position
based on the direction of a) the previous velocity,
b) the personal best position and c) position of
the global best [54]. The fitness function deter-
mines how close a particle is to the optimum
solution by computing the fitness value. The
velocity directs the movement of particles and
during each iteration of the SRPSO algorithm
the particles compute their new velocity. The
position is updated using the new velocity and
with each position update the particle moves to
a better position. The process is iterated until
an optimum solution is reached.

5.1. Fitness function

The fitness function is an integral part of the
SRPSO algorithm and it determines how close
a particle is to the optimum solution. We have
defined a maximizing fitness function, fs to de-
tect and fix method invocation inconsistency.
The fitness function is defined with equation 1.
The consistency and completeness of a sequence
diagram method is computed using the fitness

function. The invocations of inconsistent meth-
ods are removed from the sequence diagram and
the inconsistent methods are added to the set of
inconsistent methods (IM).

5.2. Particle creation

The search space of the SRPSO algorithm is ini-
tialized with particles. The proposed approach
focuses on inconsistency in polymorphic and
non-polymorphic method invocations and hence,
the methods invoked in the sequence diagram are
treated as particles. A sequence diagram method
is specified using a set of properties and is rep-
resented as a vector. The representation of the
sequence diagram method (SeqM) is SeqM =
[name id param sender receiver guard number]

The representation of SeqM consists of
a method name, a unique xmi id, the parameters,
sender class of the method, receiver class of the
method, guard condition for method invocation
and number representing the message order in
the sequence diagram. Each method has a spe-
cific value for a property and each position in
the vector corresponds to one property of the
method. The values for the properties are fixed as
5, 3, 5, 5, 5, 4 and 3, respectively. Any numerical
value can be used to represent a property. The
restriction is that the value of W should be equal
to the sum of the numerical values assigned to
the properties. The inconsistent methods in the
set IM are represented as particles.

5.3. Velocity and position update

The particles in the search space are characterized
by a position and velocity. A particle is defined in
terms of its properties and in our approach; the
position of a particle represents the number of
properties defined for the particle. The specifica-
tion of the inconsistent particle initially has only
one property, name and hence, the value of posi-
tion is one. As the iteration progresses, depending
on the value of velocity the particle specification
will be updated with its properties like id, sender,
receiver etc. The number of properties of the par-
ticle to be updated in one iteration is determined
by the value of velocity. If the value of velocity

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 17

is one, one property will be added to the particle
specification and position will be incremented by
one. Velocity of the best particle is computed with
equation 3, velocity of the rest of the particles
with equation 4, position is updated using the
equation 5 and inertia weight with equation 6.

Vk(t+ 1) = ωk + Vk(t) (3)

Vk(t+ 1) = ωk + Vk(t) + a1 ∗ r1 ∗ (pBestk

−Xk(t)) + a2 ∗ r2 ∗ pso ∗ (gBest−Xk(t)) (4)

Xk(t+ 1) = Xk(t) + Vk(t+ 1) (5)

ωk(t) =
{
ωk + η∆ω for best particle
ωk −∆ω otherwise

(6)

where Vk(t) represents the velocity of particle k at
time t, a1 and a2 are the acceleration coefficients,
r1 and r2 are the random numbers, Xk(t) repre-
sents the position of particle k at time t, pBestk

represents the personal best of particle k and gBest
the global best of all the particles in the swarm,
pso is the perception for the social cognition, ωk

is the inertia weight of the kth particle, ∆ω =
(∆ωI −∆ωF)/Itr , ∆ωI = 1.05 and ∆ωF = 0.5,
Itr is the number of iterations, and η = 1 is the
constant to control the rate of acceleration.

5.4. Stopping criteria

The SRPSO algorithm resolves method invoca-
tion inconsistency. The algorithm iterates until
method invocation inconsistency is resolved or
the number of iterations reaches a maximum
limit. We have defined a variable method con-
sistency count (MCC) that keeps track of the
number of methods with consistent and complete
invocations. MCC is incremented if fitness value
of a method is equal to one. If MCC is equal to
the number of inconsistent methods in the set
IM, method invocation inconsistency is resolved.

5.5. Algorithm

The consistency checking algorithm for polymor-
phic methods is outlined in algorithm 1.
Algorithm 1: Consistency Checking
Begin
Initialize SRPSO parameters, IM = φ

for each method, m in sequence diagram do
identify sender class, SC(m) and receiver class,
RC(m)
compute fs(m) with equation 1
Case I: fs(m) == 1

if guard conditions do not match
IM = IM ∪ {m}

endif
Case II: fs(m) 6= 1

IM = IM ∪ {m}
endfor
identify the receiving class
for each method, m in set IM do

identify method attributes, MA(m)
for each class, Ci in class diagram do

determine class attributes CA(Ci)
endfor
compute cohesion(m, Ci)
RCnew = Cj where Cj = max(cohesion(m, Ci),

i = 1 to number of classes
delete sequence diagram invocation for the

method m
endfor
Initialize the search space with particles in the set
IM
repeat

for each particle k in IM do
compute fitness of particle k
if (fs(Xk) > fs(pBestk))

pBestk = Xk(t)
endif
if (fs(Xk) > fs(gBest))

gBest = Xk(t)
endif
Compute inertia weight using equation 6
Update velocity of gBest particle using equa-

tion 3
for each particle except gBest particle do

Generaterandomnumber,rbetween 0and 1
if (r > 0.5)
pso = 1 else pso = 0

endif
Compute velocity using equation 4

endfor
if(Vk(t+ 1) > 1

Vk(t+ 1) = 1 else Vk(t+ 1) = 0
endif
Update position using equation 5

18 Renu George, Philip Samuel

if (fs(Xk(t+ 1)) == 1)
Increment MCC

endif
endfor
Increment iteration count, Itr

until Itr = maxCount or MCC = number of incon-
sistent methods
End

The algorithm initializes the search space
with particles and SRPSO parameters. The ac-
celeration coefficients are set as 1.49445 [5], Itr is
initialized as zero, W is set as 30 and maxCount
is set as 35. The set IM is initialized to null. The
algorithm computes the fitness values of methods.
The guard conditions and preconditions of meth-
ods are also validated. The inconsistent method
names are added to the set IM and the inconsis-
tent method invocations are removed from the
sequence diagram.

To fix the inconsistency, the inconsistent
methods in the set IM are treated as new par-
ticles and the position of the particles are ini-
tialized. The cohesion of each method in the set
IM to the different classes of the class diagram
is computed to identify the new receiving class,
RCnew. The class with the maximum cohesion
value is identified as RCnew. The receiving class
is identified from the precondition and cohesion
value in dynamic polymorphism.

The newly created particles are inconsistent
since its properties are not completely specified.
Initially, all the inconsistent particles have only
one property, its name. The fitness values of the
particles in their current position are computed
using the fitness function, fs. If the current po-
sition is better than the personal best (pBest)
position of the particle, the personal best position
of the particle is updated. If the current position
is better than the global best (gBest) position
of all the particles in the swarm, the global best
position is updated. New velocity and position
of the particles are computed. Depending on
the velocity value, properties such as id, sender,
receiver etc. are added to the particle specification.
The velocity component determines the number
of properties to be updated in one iteration. If the
fitness value is equal to one, the method consis-
tency count is incremented. The velocity, position,

fitness value, pBest and gBest values of all the
particles in the set IM are updated during an
iteration of the algorithm. The iteration count is
also incremented. The SRPSO algorithm iterates
until the method consistency count is equal to
number of particles in the set IM or maximum
number of iterations is reached. The updation of
the properties of the inconsistent particles ensures
that inconsistencies are resolved and the method
specification is complete. The SRPSO algorithm
efficiently detects and resolves inconsistency.

6. Results and discussions

The consistency checking algorithm is applied
to the UML models to detect method invoca-
tion inconsistency. The UML model in Figure 1
contains the polymorphic method computeArea.
The method-invocation inconsistency detection
module detects two inconsistent methods: com-
puteArea(r, h) and computeArea(s) by comput-
ing the fitness values of the methods. The incon-
sistent methods are added to the set IM and the
sequence diagram invocations of the inconsistent
methods are removed. The attributes required
for the implementation of the method are derived
from the parameters of the method. The cohesion
of the method attributes to the different classes
in the class diagram is computed. The cohesion
values of the inconsistent methods to different
classes are represented in Table 2.
Table 2. Cohesion Value for UML Model 3DObject

Method Class Name
Cube Cuboid Cylinder

computeArea(r, h) 0.0 f 0.5 1.0
computeArea(s) 1.0 0.0 0.0

The class Cylinder has the highest cohesion
value for the method computeArea(float, int)
and the class Cube has the highest cohesion
value for the method computeArea(int). The re-
ceiving class of the inconsistent method com-
puteArea(r, h) is identified as class Cylinder
and the new receiving class of the method com-
puteArea(s) is identified as class Cube. The se-
quence diagram methods are specified with a set

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 19

of properties. On detecting inconsistency, the
properties related to the method invocation of
the inconsistent methods are also deleted. The
inconsistency is fixed during iterations of the
SRPSO algorithm. During each iteration of the
SRPSO algorithm, the specification of the se-
quence diagram method in the set IM is updated
by adding the properties of the methods. The ap-
proach ensures that method invocation inconsis-
tency is resolved and the method specification is
complete. The algorithm terminates when MCC
becomes equal to the number of inconsistent
methods or when Itr reaches the maxCount.

A graph representing the fitness value of the
inconsistent methods computeArea(r, h) and
computeArea(s) during different iterations of the
SRPSO algorithm with acceleration coefficient
values equal to 1.49445 is represented in Figure 4.
The method computeArea(s) has a fitness value
0.0925 during the first iteration of the algorithm.
As the iteration count increases, the fitness value
of the particle increases. In iteration 8, the fitness
values of the two inconsistent particles become
one and the UML model 3DObject is consistent
in terms of polymorphic method invocation and
specification. The fitness value of the inconsis-
tent method in the UML model ThreeDObject is
represented in Figure 5. The algorithm is imple-
mented with acceleration coefficient values equal
to 1.49445 and converges in 8 iterations.

The result of implementation of the algorithm
is represented in Figure 6. The XMI parser identi-
fies the methods present in each class of the class
diagram. The method computeArea() is overrid-
den in all child classes. The signatures of the class

diagram method and sequence diagram methods
are compared and no inconsistency is detected.
A further validation of guard conditions and pre-
conditions identifies three inconsistent methods
due to wrong guard conditions. The SRPSO algo-
rithm resolves the inconsistencies in 8 iterations
and the sequence diagram specification has con-
sistent method invocations with guard conditions
matching the preconditions. The execution time
of the algorithm is 875 ms.

The UML model Deposit and Payroll Sys-
tem used for evaluating the algorithm are rep-
resented in Figures 7 and 8, respectively. The
UML model exhibits dynamic polymorphism,
whereas the UML model Payroll system exhibits
static polymorphism. The UML model Deposit
has three inconsistent method invocations. The
method invocations are prefixed with the guard
condition. The UML model Payroll System has
9 method invocations out of which 5 invocations
are inconsistent. The UML model Deposit in
Figure 7 forms a part of the banking system
to compute the interest of term deposits. The
method Interest() is overridden in the derived
classes. The interest rate depends on the period
of the term deposit. The three method invoca-
tions are inconsistent. Inconsistent design results
in wrong values for the interest calculated and
maturity value. This creates a set of unsatisfied
customers and affects the credibility of the bank-
ing system. Inconsistent design results in the
creation of software with faults. This affects the
software quality. The errors may be identified
either during the testing phase or after delivery
of the product, which increases the software de-

Figure 4. Fitness Values of Inconsistent Methods
for UML model 3DObject

Figure 5. Fitness Values of Inconsistent Methods
for UML model ThreeDObject

20 Renu George, Philip Samuel

Figure 6. Handling Inconsistencies for the UML model ThreeDObject

Figure 7. UML Model Deposit

vlopment cost, maintenance cost, and time to
market the software.

The algorithm is evaluated based on two
criteria: convergence and execution time. The
convergence of the algorithm is evaluated based

on the number of iterations required to resolve
inconsistency. Inconsistency is resolved when the
fitness values of all particles in the swarm are
equal to one. We have modelled different case
studies and the algorithm is experimented on

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 21

Figure 8. UML Model Payroll System

22 Renu George, Philip Samuel

Table 3. Execution Time and Convergence

Number of
UML Model Polymorphism Methods Inconsistent Iteration Avg. Running

Type Invocations Count Time(ms)
Deposit Dynamic 3 3 8 764
3DObject Static 4 2 8 954
ThreeDObject Dynamic 4 3 8 984
Course Registration System Dynamic 12 6 7 850
Payroll System Static 9 5 7 998
Demonstrative Sample Static 12 7 8 1052

different inconsistent models exhibiting static
and dynamic polymorphism. Table 3 represents
the execution time and convergence of the al-
gorithm on different UML models. The table
represents the UML models, the type and num-
ber of inconsistencies present in the models, the
number of iterations required to converge, and
the average running time of the algorithm. The
execution time of the algorithm is computed on
an Intel Core i7 CPU running at 2.80 GHz with
4 GB primary memory. The UML model Deposit
requires an average running time of 764 ms to
achieve consistency; the average running time of
UML model 3DObject and ThreeDObject are
954 ms and 984 ms, respectively. The UML model
3DObject exhibits static polymorphism and has 4
method invocations out of which two invocations
are inconsistent. Models Deposit and ThreeDOb-
ject exhibit dynamic polymorphism. The UML
model Demonstrative Sample has polymorphic
and non-polymorphic methods. Inconsistencies
in non-polymorphic methods are detected from
the fitness value computation. The results show
that the average time taken by the algorithm
to detect and fix inconsistencies in polymorphic
methods is of the order of milliseconds and the
algorithm converges in all cases.

Table 4 represents the statistical evaluation
results of the algorithm. The values of mean,
standard deviation and variance are computed
for different values of acceleration coefficients.
The algorithm is statistically evaluated on the
UML model and better results are obtained with
acceleration coefficient values equal to 1.49445.
The evaluation results have shown that the algo-
rithm detects and fixes all inconsistent method

invocations. As a result, no false positives or false
negatives are detected. Hence the precision and
recall values are high and equal to the one in our
approach.

Inconsistency handling has a prime role in the
development of quality software. Polymorphism
makes the design extensible. It simplifies the
design and enables the addition of new functions
without creating additional overheads. Inconsis-
tencies arising due to method invocation inconsis-
tency of polymorphic methods are hard to detect.
We have presented an AI based approach that de-
tects and fixes inconsistency in polymorphic and
non-polymorphic methods. Our approach pro-
vides significant role in ensuring software design
consistency. The proposed approach of incon-
sistency detection has a number of advantages.
The method operates on a specification of the
diagram and uses a direct approach of detecting
and fixing inconsistencies without transforming
the model to an intermediate representation. The
approach detects and fixes method invocation in-
consistency in polymorphic and non-polymorphic
methods. The fitness function uses simple cal-
culations. Addition of new rules requires only
a redefinition of the fitness function. Inconsis-
tencies are fixed by identifying the receiver class
from the cohesion values and guard conditions
and redefining the method invocations in the
sequence diagram. The algorithm is fast and com-
putationally inexpensive. As the inconsistencies
are detected and fixed in the design phase, the
errors are not propagated to the code generation
phase. Hence, the development and maintenance
costs are reduced and quality of the code can be
improved.

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 23

Table 4. Statistical Evaluation of the Algorithm

UML Model Parameter a1 = a2 = 1.49445 a1 = a2 = 1
4 Runs 7 Runs 4 Runs 9 Runs

3DObject
Mean 0.4685 0.95 0.2768 1
SD 0 –5.551E–17 0 0
Variance 0.017292 0.0025 0.003624 0

ThreeDObject
Mean 0.544444 0.9333333 0.488889 1
SD –3.70E–17 –1.110E–16 0 0
Variance 0.00617 0.0022222 0.000202 0

Deposit
Mean 0.65556 0.95556 0.4888809 1
SD 0 3.701E–17 –1.850E–17 0
Variance 0.006173 0.003951 0.00617284 0

Course Registration System
Mean 0.711111 1 0.416667 0.911111
SD 0 0 9.2519E–18 –3.701E–17
Variance 0.006173 0 0.001389 0.003951

Payroll System
Mean 0.7 1 0.413333 1
SD 0 0 –1.110E–17 0
Variance 0.006667 0 0.0016 0

7. Threats to validity

The section deals with threats to validity.
External Validity concerns with how the

result of the experiments can be generalized to
other environments. As part of the evaluation, we
have evaluated the algorithms on UML models
involving polymorphic method invocations. The
proposed approach detects and fixes inconsisten-
cies involving static and dynamic polymorphic
method invocations. The algorithm canbe general-
ized to detect inconsistencies in non-polymorphic
method invocations and handle other inconsis-
tencies involving sequence diagrams. The gen-
eralization can be performed by modifying the
fitness function. This argument is substantiated
by describing how another inconsistency related
to the class and sequence diagram is handled. The
consistency rule states that two objects in the se-
quence diagram interact only if there is an associ-
ation in the class diagram between the interacting
objects. The fitness function can be modified to
include another term comprising of the sender
and receiver classes in the class and sequence
diagram. The proposed approach models inconsis-
tency handling as an optimization problem and
detecting inconsistencies with fitness function.
The algorithm can be expanded to detect and

fix intra-model inconsistencies among different
diagrams. We have defined the fitness function in
terms of the properties of the inconsistent model
elements. Inconsistency detection among different
diagrams requires definition of the fitness function
in terms of the properties of the inconsistentmodel
element and a particle representation has to be
formulated for the inconsistent model element in
terms of its properties.

Construct Validity refers to the extent to
which the experiment setting reflects the theory.
We are able to successfully implement the algo-
rithm on a set of UML models involving static
and dynamic polymorphic method invocations.
The fitness functions are defined with the aim of
detecting method invocation inconsistencies and
inconsistencies are identified and resolved accu-
rately. The UML models are a representative of
the models on which a consistency check can be
performed. The number of inconsistencies in the
UML models varies from 3 to 7 and the number
of method invocations varies from 3 to 12.

Internal Validity represents the extent to
which the casual relationship established can-
not be explained by other factors. The casual
relationships between class diagram method sig-
nature and sequence diagram method signature
are analyzed to detect inconsistency. Method

24 Renu George, Philip Samuel

invocation inconsistency arises due to the invoca-
tion of a method on an object of a class in which
the method is not defined. Fitness function is
defined in terms of the method signature and
class names. Hence, the method signature is the
major component in inconsistency detection and
the casual relationship between method signa-
tures is exploited to detect inconsistencies. In the
case of dynamic polymorphism, since the method
signatures of the polymorphic methods are the
same, a further comparison of guard conditions
and constraints is performed.

Conclusion Validity: We have performed
a statistical evaluation of the algorithm and the
results are summarized in Table 4. The models
used for evaluation are a representative of the
UML models used in the design of software sys-
tems. The statistical evaluation results show that
the algorithm converges in less number of itera-
tions with acceleration coefficient values equal to
1.49445. The convergence of the algorithm and
execution time are also computed. The average
execution time is of the order of milliseconds and
the number of iterations required for the algo-
rithm to converge is independent of the number
of method invocations or the number of inconsis-
tencies.

8. Conclusion

With the increasing relevance of software in in-
dustries and manufacturing, the complexity and
size of the software and the complexity of the
design has increased. Developing quality software
is one of the major challenges faced by software
developers. One of the definitions of quality soft-
ware is fitness for purpose and quality software
should be able to function as per the user′s re-
quirements. One of the key aspects to ensuring
software quality is good design. Inconsistent de-
sign leads to the generation of software with
faults. A periodic review of the software design
is one the factors that can enhance the software
quality and reduce software failures thereby im-
proving manufacturing and productivity. The re-
view helps to detect inconsistencies and fix the in-
consistencies. Polymorphism is an important fea-

ture that makes the software design compact and
extensible. It is hard to trace the polymorphism
as it is often detected at run time. We introduce
an intelligent automated approach that uses the
SRPSO algorithm to detect and fix inconsistency
in polymorphic methods. The algorithm is evalu-
ated on different case study involving static and
dynamic polymorphism. The method detects and
fixes inconsistencies in all cases. Analysis of the
results shows that the inconsistency detection
and fixing in our approach is quick, easy, and
effective. The proposed approach has a number
of advantages. The algorithm can be invoked
after the application is modelled or during and
after refinements to the models. The method
operates directly on the diagram specification
and does not require transformation to another
representation. Addition of new rules requires
only a redefinition of the fitness function. The
fitness function uses simple calculations. The
time required to detect and fix inconsistencies
is of the order of milliseconds. The inconsisten-
cies developed in the design are detected and
corrected in the same phase. Maintenance cost
of software is a huge burden for manufacturing
industries. Automatic detection of inconsisten-
cies in polymorphic methods during the design
phase ensures quality of the code produced and
reduces development and maintenance cost of
the software.

References

[1] M. Harman, “The role of artificial intelligence
in software engineering,” in First International
Workshop on Realizing AI Synergies in Software
Engineering (RAISE). IEEE, 2012, pp. 1–6.

[2] M. Harman and B.F. Jones, “Search-based soft-
ware engineering,” Information and Software
Technology, Vol. 43, No. 14, 2001, pp. 833–839.

[3] O. Raiha, “A survey on search-based software
design,” Computer Science Review, Vol. 4, No. 4,
2010, pp. 203–249.

[4] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Proceedings of IEEE Interna-
tional Conference on Neural Networks. IEEE,
1995, pp. 1942–1948.

[5] M.R. Tanweer, S. Suresh, and N. Sundararajan,
“Self regulating particle swarm optimization al-

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 25

gorithm,” Information Sciences, Vol. 294, 2015,
pp. 182–202.

[6] P. Stevens and R.J. Pooley, Using UML: Soft-
ware engineering with objects and components.
Pearson Educationr, 2006.

[7] R. France and B. Rumpe, “Model-driven develop-
ment of complex software: A research roadmap,”
in Future of Software Engineering. IEEE Com-
puter Society, 2007, pp. 37–54.

[8] B. Selic, “The pragmatics of model-driven devel-
opment,” IEEE Software, Vol. 20, No. 5, 2003,
pp. 19–25.

[9] C. Pons, L. Olsina, and M. Prieto, “A for-
mal mechanism for assessing polymorphism in
object-oriented systems,” in Proceedings of First
Asia-Pacific Conference on Quality Software.
IEEE, 2000, pp. 53–62.

[10] A. Egyed, “Fixing inconsistencies in UML de-
sign models,” in 29th International Conference
on Software Engineering (ICSE’07). IEEE, 2007,
pp. 292–301.

[11] A. Egyed, E. Letier, and A. Finkelstein, “Gener-
ating and evaluating choices for fixing inconsis-
tencies in UML design models,” in Proceedings
of the 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering. IEEE
Computer Society, 2008, pp. 99–108.

[12] A. Egyed, “Automatically detecting and tracking
inconsistencies in software design models,” IEEE
Transactions on Software Engineering, Vol. 37,
No. 2, 2011, pp. 188–204.

[13] Q. Long, Z. Liu, X. Li, and H. Jifeng, “Con-
sistent code generation from UML models,” in
Proceedings of the Australian Software Engineer-
ing Conference. IEEE, 2005, pp. 23–30.

[14] L.C. Briand, Y. Labiche, and L. O’Sullivan, “Im-
pact analysis and change management of UML
models,” in Proceedings of the International Con-
ference on Software Maintenance, ICSM 2003.
IEEE, 2003, pp. 256–265.

[15] R. Kretschmer, D.E. Khelladi, A. Demuth,
R.E. Lopez-Herrejon, and A. Egyed, “From
abstract to concrete repairs of model incon-
sistencies: An automated approach,” in 24th
Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2017, pp. 456–465.

[16] A. Rountev, A. Milanova, and B.G. Ryder,
“Fragment class analysis for testing of polymor-
phism in Java software,” IEEE Transactions
on Software Engineering, Vol. 30, No. 6, 2004,
pp. 372–387.

[17] D.K. Saini, “Testing polymorphism in object
oriented systems for improving software quality,”
ACM SIGSOFT Software Engineering Notes,
Vol. 34, No. 4, 2009, pp. 1–5.

[18] R. Kaur and J. Sengupta, “Software process mod-
els and analysis on failure of software develop-
ment projects,” arXiv preprint arXiv:1306.1068,
2013.

[19] K.A. Briski, P. Chitale, V. Hamilton, A. Pratt,
B. Starr, J. Veroulis, and B. Villard, “Minimiz-
ing code defects to improve software quality and
lower development costs,” Development Solu-
tions White Paper, IBM, 2008.

[20] P. Jalote, “An integrated approach to software
engineering,” Springer Science and Business Me-
dia, 2012.

[21] B. Nuseibeh, S. Easterbrook, and A. Russo,
“Making inconsistency respectable in software
development,” Journal of Systems and Software,
Vol. 58, No. 2, 2001, pp. 171–180.

[22] A. Reder and A. Egyed, “Incremental consis-
tency checking for complex design rules and
larger model changes,” in International Con-
ference on Model Driven Engineering Languages
and Systems. Springer, Berlin, Heidelberg, 2012,
pp. 202–218.

[23] M.R. Ehrenleitner, A. Demut, and A. Egyed,
“Towards model-and-code consistency checking,”
in 38th Annual Computer Software and Applica-
tions Conference. IEEE, 2014, pp. 85–90.

[24] N. Macedo, T. Jorge, and A. Cunha, “A fea-
ture-based classification of model repair ap-
proaches,” IEEE Transactions on Software En-
gineering, Vol. 43, No. 7, 2017, pp. 615–640.

[25] J.P. Puissant, R.V.D. Straeten, and T. Mens,
“A regression planner to resolve design model in-
consistencies,” in European Conference on Mod-
elling Foundations and Applications. Springer,
Berlin, Heidelberg, 2012, pp. 146–161.

[26] F.J. Lucas, F. Molina, and A. Toval, “A sys-
tematic review of UML model consistency man-
agement,” Information and Software technology,
Vol. 51, No. 12, 2009, pp. 1631–1645.

[27] D. Kalibatiene, O. Vasilecas, and R. Dubauskaite,
“Rule based approach for ensuring consistency in
different UML models,” in EuroSymposium on
Systems Analysis and Design. Springer, Berlin,
Heidelberg, 2013, pp. 1–16.

[28] C.F. Borbaand and A.E.A. Da Silva, “Knowl-
edge-based system for the maintenance registra-
tion and consistency among UML diagrams,” in
Brazilian Symposium on Artificial Intelligence.
Springer, Berlin, Heidelberg, 2010, pp. 51–61.

[29] D. Torre, Y. Labiche, and M. Genero, “ML con-
sistency rules: A systematic mapping study,” in
Proceedings of the 18th International Confer-
ence on Evaluation and Assessment in Software
Engineering. Springer, Berlin, Heidelberg, 2014,
pp. 1–10.

26 Renu George, Philip Samuel

[30] R.J. Ma, N.Y. Yu, and J.Y. Hu, “Application
of particle swarm optimization algorithm in the
heating system planning problem,” The Scien-
tific World Journal, 2013, pp. 1–11.

[31] S. Pandey, L. Wu, S.M. Guru, and R. Buyya,
“A particle swarm optimization-based heuristic
for scheduling workflow applications in cloud
computing environments,” in 24th International
Conference on Advanced Information Networking
and Applications. IEEE, 2010, pp. 400–407.

[32] D.Y. Sha and H.H. Lin, “A multi-objective PSO
for job-shop scheduling problems,” Expert Sys-
tems with Applications, Vol. 37, No. 2, 2010,
pp. 1065–1070.

[33] M. Gong, Q. Cai, X. Chen, and L. Ma, “Complex
network clustering by multiobjective discrete
particle swarm optimization based on decom-
position,” IEEE Transactions on Evolutionary
Computation, Vol. 18, No. 1, 2014, pp. 82–97.

[34] N.K. Sharma, D.S. Babu, and S.C. Choube, “Ap-
plication of particle swarm optimization tech-
nique for reactive power optimization,” in Inter-
national Conference on Advances in Engineer-
ing, Science and Management (ICAESM-2012).
IEEE, 2012, pp. 88–93.

[35] P. Sivakumar, S.S. Grace, and R.A. Azeezur,
“Investigations on the impacts of uncertain wind
power dispersion on power system stability
and enhancement through PSO technique,” in
International Conference on Energy Efficient
Technologies for Sustainability. IEEE, 2013,
pp. 1370–1375.

[36] F. Li, D. Li, C. Wang, and Z. Wang, “Net-
work signal processing and intrusion detection
by a hybrid model of LSSVM and PSO,” in 15th
IEEE International Conference on Communica-
tion Technology. IEEE, 2013, pp. 11–14.

[37] Z. Jun and Z. Kanyu, “A particle swarm opti-
mization approach for optimal design of PID
controller for temperature control in HVAC,” in
Third International Conference on Measuring
Technology and Mechatronics Automation. IEEE,
2011, pp. 230–233.

[38] D.K. Saini and Y. Sharma, “Soft computing
particle swarm optimization based approach for
class responsibility assignment problem,” In-
ternational Journal of Computer Applications,
Vol. 40, No. 12, 2012, pp. 19–24.

[39] R. George and P. Samuel, “Fixing class design in-
consistencies using self regulating particle swarm
optimization,” Information and Software Tech-
nology, Vol. 99, 2018, pp. 81–92.

[40] R. George and P. Samuel, “Particle swarm op-
timization method based consistency checking

in UML class and activity diagrams,” in Inno-
vations in Bio-Inspired Computing and Applica-
tions. Springer, Cham, 2016, pp. 117–127.

[41] R. George and P. Samuel, “Fixing state change
inconsistency with self regulating particle swarm
optimization,” Soft Computing, Vol. 24, No. 24,
2020, pp. 18 937–18 952.

[42] M. Kessentini, H. Sahraoui, and M. Boukadoua,
“Search-based model transformation by example,”
Software and Systems Modeling, Vol. 11, No. 2,
2012, pp. 209–226.

[43] A. Windisch, S. Wappler, and J. Wegener, “Ap-
plying particle swarm optimization to software
testing,” in Proceedings of the 9th annual confer-
ence on Genetic and evolutionary computation.
ACM, 2007, pp. 1121–1128.

[44] R. Malhotra and A. Negi, “Reliability mod-
eling using particle swarm optimization,” In-
ternational Journal of System Assurance Engi-
neering and Management, Vol. 4, No. 3, 2013,
pp. 275–283.

[45] J.A. Parejo, A. Ruiz-Cortes, S. Lozano, and
P. Fernandezi, “Metaheuristic optimization
frameworks: A survey and benchmarking,” Soft
Computing, Vol. 16, No. 3, 2012, pp. 527–561.

[46] S. Milton and H. Schmidt, “Dynamic dispatch
in object-oriented languages,” The Australian
National University, Canberra, Technical Report
TR-CS-94-02, January 1994.

[47] E. Ernst and D.H. Lorenz, “Aspects and poly-
morphism in AspectJ,” in Proceedings of the 2nd
International Conference on Aspect-Oriented
Software Development. ACM, 2003, pp. 150–157.

[48] D. Ancona, S. Drossopoulou, and E. Zucc, “Over-
loading and inheritance,” in FOOL’ 01 – Inter-
national. Workshop on Foundations of Object
Oriented Languages, 2001.

[49] D.P. Friedman, M. Wand, and C.T. Haynes,
Essentials of Programming Languages, 2nd ed.,
Prentice-Hall of India, 2001.

[50] R.V. Binder, “Testing object oriented soft-
ware: A survey,” Software Testing, Verifica-
tion and Reliability, Vol. 6, No. 3–4, 1996, pp.
125–252.

[51] D.P. Rini, S.M. Shamsuddin, and S.S. Yuha-
niz, “Particle swarm optimization: technique,
system and challenges,” International Journal
of Computer Applications, Vol. 14, No. 1, 2011,
pp. 19–26.

[52] Q. Bai, “Analysis of particle swarm optimization
algorithm,” Computer and Information Science,
Vol. 3, No. 1, 2010, pp. 180–184.

[53] M. Ferreira, F. Chicano, E. Alba, and
J.A. Gomez-Pulido, “Detecting protocol errors

Fixing Design Inconsistencies of Polymorphic Methods Using Swarm Intelligence 27

using particle swarm optimization with Java
pathfinder,” in Proceedings of the High Perfor-
mance Computing and Simulation Conference
(HPCS 08), 2008, pp. 319–325.

[54] D. Floreano and C. Mattiuss, “Bio-inspired ar-
tificial intelligence: theories, methods, and tech-
nologies,” MIT Press, Aug 2008.

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 29–45, DOI 10.37190/e-Inf210102

A Deep-Learning-Based Bug Priority Prediction
Using RNN-LSTM Neural Networks

Hani Bani-Salameh∗, Mohammed Sallam∗, Bashar Al shboul∗
∗Department of Software Engineering, The Hashemite University, Jordan

hani@hu.edu.jo, mohammed.yasser@intix.net, bashar.alshboul@hu.edu.jo

Abstract
Context: Predicting the priority of bug reports is an important activity in software maintenance.
Bug priority refers to the order in which a bug or defect should be resolved. A huge number of bug
reports are submitted every day. Manual filtering of bug reports and assigning priority to each
report is a heavy process, which requires time, resources, and expertise. In many cases mistakes
happen when priority is assigned manually, which prevents the developers from finishing their
tasks, fixing bugs, and improve the quality.
Objective: Bugs are widespread and there is a noticeable increase in the number of bug reports
that are submitted by the users and teams’ members with the presence of limited resources, which
raises the fact that there is a need for a model that focuses on detecting the priority of bug reports,
and allows developers to find the highest priority bug reports.
This paper presents a model that focuses on predicting and assigning a priority level (high or low)
for each bug report.
Method: This model considers a set of factors (indicators) such as component name, summary,
assignee, and reporter that possibly affect the priority level of a bug report. The factors are
extracted as features from a dataset built using bug reports that are taken from closed-source
projects stored in the JIRA bug tracking system, which are used then to train and test the
framework. Also, this work presents a tool that helps developers to assign a priority level for the
bug report automatically and based on the LSTM’s model prediction.
Results: Our experiments consisted of applying a 5-layer deep learning RNN-LSTM neural
network and comparing the results with Support Vector Machine (SVM) and K-nearest neighbors
(KNN) to predict the priority of bug reports.
The performance of the proposed RNN-LSTM model has been analyzed over the JIRA dataset with
more than 2000 bug reports. The proposed model has been found 90% accurate in comparison with
KNN (74%) and SVM (87%). On average, RNN-LSTM improves the F -measure by 3% compared
to SVM and 15.2% compared to KNN.
Conclusion: It concluded that LSTM predicts and assigns the priority of the bug more accurately
and effectively than the other ML algorithms (KNN and SVM). LSTM significantly improves the
average F -measure in comparison to the other classifiers. The study showed that LSTM reported
the best performance results based on all performance measures (Accuracy = 0.908, AUC = 0.95,
F -measure = 0.892).

Keywords: Assigning, Priority, Bug Tracking Systems, Bug Priority, Bug Severity,
Closed-Source, Data Mining, Machine Learning (ML), Deep Learning, RNN-LSTM, SVM,
KNN

Submitted: 03 July 2020; Revised: 07 November 2020; Accepted: 23 December 2020; Available online: 08 February 2021

30 Hani Bani-Salameh et al.

1. Introduction

Software projects (both open and closed source)
get an overwhelming number of bug reports, and
the presence of bugs usually affects reliability,
quality, and cost management of software. In
practice, it is impossible to have a bug-free soft-
ware unless the software is implemented carefully
and developers can quantify software behaviors
as being a bug or not [1].

Bugs are prevalent, and many software pro-
jects are delivered with bugs. To address these
bugs and to improve the quality of the released
products, bug tracking systems such as JIRA
and Bugzilla allow users and team members to
report bugs [2].

Bug tracking systems help to predict the
progress of a milestone-based on bug reports
raised. They allow users to add stories (functional
requirements) and divide them into tasks, as well
as preparing bug reports and test suites [2].

Developers and testers can create new bug
reports, monitor the state of bug reports as well
as any update on existing bug reports. Bug re-
ports progress through a series of states, where
the bug reports begin when the bug is found and
ends when the bug reports are closed [1].

Bug reports may then be used to direct the
software corrective maintenance behavior and
contribute to creating more stable software sys-
tems. Prioritizing software bug reports can help
to handle the bug triaging process, and allows
developers to prioritize and fix important reports
first [2]. Developers are often receiving numer-
ous bugs reports and may fail to fix it due to
different constraints including time. The pro-
cess of prioritizing bug reports is manual and is
time-consuming. Thus, there is a need to develop
a bug’s priority prediction model that helps to
automate the priority’s prediction process.

The model helps to (1) improve accuracy and
effectiveness in predicting the priority of the bug
reports, (2) improve efficiency by reducing the
time spent during manual priority prediction, and
(3) reduce the cost of assigning incorrect priority.

This article proposes a framework that used
a dataset extracted from five closed-source pro-
jects containing more than 2000 bug reports (pro-
vided by JIRA). Also, it uses different algorithms,

namely RNN-LSTM, SVM, and KKN, to predict
the priority and compare the accuracy results.

The rest of this paper is organized as follows.
The rest of Section 1 provides background about
the bug reports lifecycle and machine learning
(ML) and its relationship with software bug prob-
lems. Section 2 presents the related works. Sec-
tion 3 presents the detailed description of the
proposed approach. The results of the study are
presented in Section 4. Section 5 discusses the
priority prediction tool. The possible threats to
the validity of our work were listed in Section 6.
Finally, Section 7 presents the conclusion of the
research work along with future work directions
and enhancement.

1.1. Bug reports lifecycle

Bug reports go through a cycle during their life-
time. This article divides the life cycle of the
bug reports into five states: Open, InProgress,
Resolved, Closed, and Reopened. These phases
are described hereunder (see Fig. 1).

When a tester posts a bug, a bug report is
opened and logged in to the tracking system,
the status is set to OPEN. After that, the leader
approves that the bug exists and assigns the bug
to the appropriate developer. Once the developer
starts analysis and works on fixing the bug, the
status set to INPROGRESS.

If a bug is posted twice, the status is set
to CLOSED with a resolution duplicate. If the
developer feels that the bug is not logical or
incompatible with the specific user experience,
the status is set to CLOSED with resolution
will not do. If the bug is not reproducible (all
attempts to reproduce this bug have failed, or in-
sufficient information was available to reproduce
the bug), then the status is set to CLOSED
with resolution cannot reproduce.

Once the developer fixes the issue and verifies
the changes, the status is set to RESOLVED.
After fixing the bug, testing is pending and the
tester either confirms the change or re-test the
changes to make sure that the bug is no longer
exists in the software. Next, the status is set to
CLOSED with the decision done. If the bug
still exists and not resolved, the status is set to
REOPEN.

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 31

Figure 1: Lifecycle of bug reports

Finally, when the software delivery date
(deadline) reaches and low priority bugs are not
fixed, they must be moved to the next release
by the product owner, and the status remains
OPENED.

1.2. Bug reports contents

A bug report contains information on how the
bug could be reproduced and the information
that can help in its debugging and tracing. A bug

report includes a set of factors like summary,
descriptions, report id, project name, priority, en-
vironment, attachment, assignee, reporter, created
date, status, fix version, and component. Table 1
shows the defined factors.

2. Related works

This article focuses on related works and studies
that are mainly related to machine learning (ML)

Table 1: Summary of bug report fields

Field Description
Summary A brief one-line summary of the bug.
Descriptions Details including test step, actual result, and expected result to reproduce this bug
Report ID A unique identifier for this bug
Project Name The parent project to which the bug belongs.
Priority How quickly a bug should be fixed and deployed (e.g., Low, Medium, and High)
Environment The environment in which the issue occurred (e.g., production, pre-production, staging,

and development.)
Attachment Documents, screenshots, and other elements that can help in identifying and fixing bugs.
Assignee A person who created the bug (e.g., QA).
Reporter A person who is responsible for fixing the bug (e.g., QA, scrum master, and owner).
Created Date Date when a bug is submitted.
Status The stage the bug is currently in during the lifecycle (workflow).
Fix Version Project version(s) that contains the bug.
Component Component(s) to which the bug relates (e.g., Android, IOS, and Backend (DB)).

32 Hani Bani-Salameh et al.

and the techniques were applied to assigning bugs
priority and prediction. This section introduces
recent studies and literature that are related to
bugs’ priority.

2.1. Bug reports assignment

Anvik et al. [3] introduced a machine learning
method that classifies appropriate developer
names to resolve the report based on classify-
ing and reporting bug using accuracy and recall.
Applying their method on Firefox and Eclipse,
they achieved +50% accuracy.

Wang et al. [4] address three limitations of
the supervised bug fix approaches and propose an
unsupervised method for assigning bugs for de-
velopers based on their involvement (“activeness
score”) in the project. The result of experiments
showed that FixerCache gives better accuracy
when compared with the supervised approaches,
and it achieves prediction accuracy up to 96.32%
and diversity up to 91.67% in Eclipse and Mozilla
datasets.

Recently, Mani et al. [5] proposed an algo-
rithm using a deep-bidirectional recurrent neu-
ral network (DBRNN-A) model. The model is
for a specific software bug reports classifying
an adequate developer depending on the title
and characteristics of the bug reports using
naive Bayes, cosine distance, SVM, and soft-
max. Experiments on bug reports from software
projects (e.g., Google Chromium, Mozilla Core,
and Mozilla Firefox). It showed a precision of 47%
for Google Chromium, 43% precision for Mozilla
Core, and 56% precision for Mozilla Firefox.

2.2. Bug priority prediction

Prioritizing bug reports is not an easy task. Only
a small percentage of bug reports are extremely
impactive reports (e.g., according to Ohira et
al. [6] less than 1% of Ambari bug reports are
absent in the dataset).

2.2.1. Traditional approaches
to bug priority prediction

Tian et al. [2, 7] suggested an automated classifica-
tion method to predict the priority of bug reports.

They used a machine learning (ML) algorithm
to prioritize bug reports and achieved an average
F -measure of 209%. The dataset of the bug re-
ports is usually unbalanced according to the low
number of high impact bugs in the project.

Umer et al. [8] proposed an emotion-based
automated priority prediction approach. Their
approach combines the NLP techniques and ML
algorithms. It allows team members to assign
appropriate priority level bug reports in an auto-
mated manner. The results suggest that the pro-
posed approach outperforms the state-of-the-are
and it improves F1-score by more than 6%.

Mihaylov [9] conducted a study that aims
to examine the behavior of NNs and predict
the priority of bug reports. Their focus was to
analyze the importance of adding numerical fea-
tures to textual features by combining different
kinds of NNs. The results suggest that adding
numerical features to textual features improves
the accuracy of priority classification. The results
show that the priority classification improves the
accuracy of about 85.5%.

Choudhary et al. [10] introduce an ANN tech-
nique used to develop prediction models for sev-
eral Eclipse versions that set priority levels based
on the textual, temporal, relevant report, author,
severity, and the product.

Yu et al. [11] proposed an enhanced ANN-
-based system to predict the priorities of five
different product bugs identified by an inter-
national health-care company. The threefold
cross-validation tests suggest that the alternative
approach is better in terms of precision, recall,
and F -measure.

Jaweria Kanwal [12] proposed an ML-based
recommender to automatically prioritize reported
bugs. They used SVM to train a classification-
-based approach on Eclipse bug reports. The eval-
uation of the proposed approach used precision,
retrieval, and F -measure to set the priority of the
automatic defect.

Lin et al. [19] applies both of SVM and C4.5
classifiers on different fields (e.g., bug type, sub-
mitter, phase-ID, module-ID, and priority). They
used a dataset with 2,576 bug reports. Their
models achieve the accuracy of up to 77.64%.

Sharma et al. [13] proposed a priority pre-
diction approach using SVM, NB, KNN, and

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 33

neural networks. The proposed approach allows
to predict the priority of the bug reports. The
results showed that the accuracy of the used
machine learning techniques in predicting the
priority of bugs’ reports within the project is
found above 70% except NB technique.

Alenezi and Banitaan [14] proposed an ap-
proach to predict bugs’ priority prediction. They
used different ML techniques NB, Decision Tree,

and Random Forests. The results show that the
proposed approach is feasible in predicting the
priority of bug reports. Also, the study shows that
Random Forests and Decision Trees beat NB.

Others [15] They proposed an approach that
constructs multiple decision trees based on exist-
ing datasets and features, which selects the best de-
cision trees to measure the new bugs’ priority and
severity. They proposed the applicability of ran-

Table 2: Summary of machine learning based bug priority approaches available in literature

Paper(s) Performance Features Used Classifier(s)
Traditional Bug Priority Prediction

[7] improves the average of
F -measure by a relative im-
provement of 58.61%

temporal, textual, author,
related-report, severity,
product

Drone, SVM, NBM,

[8] improves F -score by more
than 6%

summary NLP + ML algorithm

[9] accuracy = 85.5% sentiment and textual anal-
ysis

MLP, CNN, LSTM

[10] both algorithms are efficient temporal, textual, severity,
product, component

MLP, NB

[11] suggested improvement in
terms of precision, recall,
and F -measure

milestone, category, module,
main workflow, function, in-
tegration, frequency, sever-
ity, and tester

Rnhanced ANN, Bayes

[12] SVM is better categorical, summary, long
description

SVM, NB

[13] above 70% except NB SVM, NB, KNN
[14] F -measure values (Random

Forest = 0.611, Decision
Trees = 0.603, NB = 0.593)

component, operating sys-
tem, severity

RF, DT, NB

[15] accuracy = 75% – Decision Trees (DT), Ran-
dom Forest(RF)

Deep Learning in Bug Priority Prediction
[5] improvement = 12–15%, ac-

curacy = 37–43%
title, description softmax, SVM, MNB, cosine

distance based machine
[16] accuracy = 56–88% title, component, priority,

product
NB, TF-IDF with SVM,
fastText, and DeepTriag

[17] F1-measure improved by
14% and AUC by 7%

– CNN, RNN-LSTM, and
DP-ARNN

[18] F1-measure improved by
7.9%

– CNN, LSTM), Multinomial
NB (MNB), RF

Our approach accuracy = 90.8% component, summary, as-
signee, and reporter of bug
reports.

LSTM, SVM, KNN

34 Hani Bani-Salameh et al.

dom forest (RF) for bug reports analysis. Results
showed that RF yields 75% as an accuracy score.

2.2.2. Deep learning approaches
to bug priority prediction

Mani et al. [5] propose a a bug report represen-
tation algorithm using deep-bidirectional RNN
network model (DBRNN-A). They chose two fea-
tures as input for the classification (title, descrip-
tion of the issues). They used bug reports from
different projects such as Chromium, Mozilla
Core, and Mozilla Firefox. The result shows that
DBRNN-A achieves an improvement of 12–15%
and performance between 37–43% when com-
pared to other classifiers. Lyubinets et. al [16]
present a model to label bugs reports using RNNs.
The achieved accuracy were 56–88%.

Fan et al. [17] proposed a deep learning-based
method called DP-ARNN, to help predict
prospective code defects. They used the attention
mechanism to capture important features that
might help improve the defect prediction per-
formance. They made use of seven open-source
projects. Results indicated that DP-ARNN im-
proves the state-of-the-art traditional methods
of software defects prediction where F 1-measure
improved by 14% and AUC improved by 7%.

Ramay et al. [18] proposed a deep neural
network-based approach for bug reports severity.
They evaluated their model on the history-data
of bug reports. The results showed that there
is an improvement in the F -measure by 7.90%,
which indicates that the approach outperforms
the state-of-the-art approaches.

The above mentioned closely related works
on bug priority are summarized in Table 2.

These studies have focused on using on both
of deep learning and traditional classification al-
gorithms such as C4.5, Bayesian, MLP, and Sup-
port Vector Machine (SVM). Our work presents
an approach to predict and assign bugs’ priority
level using deep learning. The proposed approach
use of LSTM and outperforms the other classi-
fiers where accuracy improved by 90.8%.

3. Proposed approach

Given a dataset of bug reports from closed-source
software projects, this study uses RNN-LSTM
neural networks to detect and prioritizes bug re-
ports. The process of assigning the priority level
for bug reports consists of two phases (see Fig. 2).
This section briefly explains the process phases.

Figure 2: Proposed framework

Phase 1: involves data collection, formatting
priority of the bug reports, and text preprocess-
ing (tokenization, stop words, and stemming).

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 35

Phase 2: involves feature selection, dataset
training, applying ML algorithms (LSTM, SVM,
and KNN), and finally evaluation process.

3.1. Data collection

As mentioned earlier, this study used a dataset
that was extracted from the JIRA bug track-
ing system using the INTIX DWC company
dashboard [25]. The datasets consist of data
from five closed-source projects and contain-
ing more than 2000 bug reports. Past studies
[3, 4, 12, 26–28] used common datasets extracted
from Bugzilla [29] system that are related to
Eclipse and Mozilla.

JIRA dataset consists of 17 columns. The
factors are summary, description, bug id, sta-
tus, project name, project lead, priority, resolu-
tion, assignee, reporter, created date, resolved
date, component, environment, sprint, attach-
ment files, and comments.

In this work, we used a specific number of
factors from the chosen dataset. The factors that
are considered as the most appropriate to pre-
dict the priority level (high, medium, and low):
component, summary, assignee, and reporter of
bug reports.

Table 3 shows the bug reports in the closed-
-source projects included in the used dataset,
which are Martix, Hashfood, Tazaj, Workspaces,

and Maharah. The project with the highest num-
ber of bug reports is Hashfood. The bug reports
are divided into three levels of priority (high,
medium, and low). The number of bug reports
with medium priority is higher in each dataset
compared to the number of low and high priorities.

3.1.1. Labeling priority of reports

The priority of bug reports was labeled using
the to_categorical function from the TensorFlow
Keras library [30]. The used labels are 0 and 1,
where 0 refers to the high priority and 1 refers
to the low priority of bug reports.

3.1.2. Text preprocessing

Text preprocessing is applied using the Natural
Language Toolkit library [31]. This is performed
by practicing Python programming using Py-
Charm [32].

This section gives a brief definition of each
activity.
– Tokenization: the process of splitting text

into sentences, words, and clauses. It replaces
all the punctuations with blank spaces, re-
moves all the nonprintable escape characters,
and converts all the words to lowercase [7].

– Stop word removal: prepositions, articles,
conjunctions, verbs, pronouns, nouns, adjec-

Table 3: High, medium, low, and unselect priority levels in each project dataset

Projects name High Medium Low Unselect
Martix [20] 207 489 135 38
Hashfood [21] 453 659 95 0
Tazaj [22] 80 169 18 0
Workspaces [23] 143 186 9 0
Maharah [24] 55 61 9 0

Figure 3: Text preprocessing activities

36 Hani Bani-Salameh et al.

Table 4: Example illustrates the effect of preprocessing activities

Original Description Crashed when clicking on order details “Consumer application”
Tokenization Crash when I click on order details consumer application
Stop Words Crashed click order details consumer application
Stemming Crash click order detail consumer application

Table 5: The top-30 keywords based on their frequency (sorted using NLTK)

Rank Keyword Rank Keyword Rank Keyword
1 IOS 11 search 21 back
2 Android 12 seller 22 login
3 Screen 13 click 23 logo
4 app 14 App 24 account
5 incorrect 15 Api 25 network
6 message 16 backend 26 payment
7 product 17 chat 27 google
8 user 18 button 28 service
9 order 19 mobile 29 server
10 error 20 design 30 web

Table 6: Keywords classified based on the priority level

Keywords Count of frequency Priority level Keywords Count of frequency Priority level
crash 186 high color 29 low
error 159 high inconsistent 22 low
icon 110 low layout 21 low
photo 108 low avatar 20 low
tab 65 low placeholder 20 low
image 101 low doesn’t Work 16 high
menu 53 low ux 16 low
design 52 low toolbar 15 low
logo 47 low textview 9 low
label 45 low hot fix 9 high
title 34 low failure 8 high

tives, and adverbs, which has no meaning in
NL processing [7].

– Stemming: is the process for reducing words
to their stem or root. All words with a com-
mon stem are replaced. For example, words
like “take”, “takes”, “took”, and “taking” can
be replaced with a single word as “take” [7].
Table 4 illustrates the preprocessing activities

using Natural Language Toolkit (NLTK) [31].

3.1.3. Feature selection

Text preprocessing generates a large set of fea-
tures that are still costly to be processed using

the proposed machine learning algorithms. Thus,
it is important to decide what features of the
input are relevant.

Various techniques have been proposed to
derive relevant features (terms/keywords) from
the bug reports. This research used the NLTK
library [7] as a features’ selection technique to
reduce the number of input features and help
improve the performance.

Features are derived from the bug reports to
provide the most important words that impact
the priority level, then the words are ranked
highest to lowest based on the frequency of the
word (see Table 5).

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 37

Also, manual analysis was applied and iden-
tified the strongest set of keywords that refer
to the low and high priority levels of the bug
reports (see Table 6).

3.2. Evaluation metrics

The performance and effectiveness of the
classification algorithms were evaluated using
well-known metrics such as precision, accuracy,
recall, F -measure, and improvement [18].

Also, these metrics were used to evaluate the
performance of the proposed approach to the
priority bug reports. The metrics present the
precision, accuracy, recall, and F -measure of the
proposed approach in assigning priority of the
bug reports. Following is a description of the
used metrics.

Accuracy is the percentage of correctly pre-
dicted observation to the total, which is consid-
ered as an important performance measure when
using asymmetric datasets that present when
false positive and false negatives are the same
value [33]. Accuracy can be measured using the
following formula:

Accuracy = TP + TN
TP + FP + FN + TN (1)

Precision is the ratio of correctly predicted
positive to the total predicted positive. The per-
centage of priority bug reports was predicted, and
then considered precision for the high and low
level of priority [33]. Precision can be measured
using the following formula:

Precision = TP
FP + TP (2)

Recall (Sensitivity) is the ratio of correctly
predicted positive to the total observation in the
same class. The percentage of all high-priority
and low-priority bug reports that are correctly
predicted [33]. Recall can be measured using the
following formula:

Recall = TP
TP + FN (3)

F -measure means the average accuracy and
recall taking into account false positives and false
negatives. F -measure is more effective than accu-
racy, especially if the data distribution is unbal-
anced. If false positives and false negatives have
the same results, this means that the accuracy is
more effective [33]. F -measure can be measured
using the following formula:

F -measure = 2 ∗ Precision ∗ Recall
Precision + Recall (4)

Improvement considers calculating the im-
provement between selected classification algo-
rithms [34]. Improvement can be measured using
the following formula:

Improvement =

(F -measureLSTM)− (F -measureKNN)
F−measureKNN

(5)

Also, to measure the quality of the classifiers,
we calculated Mathews Coefficient Correlation
(MCC).

MCC =

(T P ∗T N)−(F P ∗F N)√
(T P +F P)(T P +F N)(T N+F P)(T N+F N)

(6)

3.3. Machine learning algorithms

The proposed approach is compared with some
existing ML algorithms. We used three differ-
ent machine learning algorithms to predict the
bug reports’ priority. Theses algorithms are
Long Short-Term Memory (LSTM), Support Vec-
tor Machine (SVM), and K-nearest neighbors
(KNN).

3.3.1. Long short-term memory (LSTM)

RNN-LSTM is an example of supervised learn-
ing used in deep learning, which uses history
measurements to generate bandwidth prediction
and remembers the information for long peri-
ods. It can learn to transform input data into
a preferred response and is widely used for pre-

38 Hani Bani-Salameh et al.

diction problems [35]. RNN-LSTM can remem-
ber past events that are seen and forget unim-
portant data. This happens through different
activation function layers called gates. The In-
ternal Cell State presents the relevant informa-
tion that was selected to be saved. RNN-LSTM
is a type of a Recurrent Neural Network
(RNN) that uses past events to inform future
ones [35–38].

In this research, we implemented a Python
code for the LSTM neural network with five hid-
den layers feed-forward to predict the priority of
the bug reports. The number of hidden layers has
been selected to achieve the best performance.
It includes a cell that saves relevant information
which has an impact on the priority level. The
model helps to assign an appropriate priority
level of bug reports [38].

3.3.2. Support vector machine (SVM)

SVM is a supervised machine learning model that
applies classification on two-group classification
problems. It can be used for classifications, re-
gression, and outliers’ detection. The objective of
applying SVMs is to classify the dataset space by
finding the best line or hyperplane [39–41]. SVM
is implemented using a Python code, mainly us-
ing Sklearn.svm library [42, 43].

3.3.3. K -nearest neighbors (KNN)

KNN is a supervised machine learning algorithm
that can be used to solve both classification and

regression problems. Using KNN, the input vari-
ables consist of the k closest training examples
in the dataset. Predicting the output depends on
whether k-NN is used for classification or regres-
sion problems [44, 45]. KNN is implemented using
a Python code, mainly using Sklearn.neighbours
library [42].

3.4. Building the LSTM neural network

As mentioned earlier, Python was used to imple-
ment the LSTM neural network with five hidden
layers feed-forward to predict the priority of bug
reports.

3.4.1. Input variables

The input variables were selected to predict the
priority level by considering a set of factors (in-
dicators). The factors are component name, sum-
mary, assignee, and reporter of the bug reports
(see Table 7).

3.4.2. Output variables

In this study, Priority is the output variable
used in the ML algorithms to be predicted (see
Table 8).

3.5. Supervised training of LSTM

To train the LSTM neural network, we are using
a python library called TensorFlow [46] that
divides the datasets into training and test sets

Table 7: Factors considered from the bug reports

Field name Field description Field value
Component Bug component(s) to which this bug relates. Android, IOS, Backend (DB).
Summary A brief one-line summary of the bug. String(crash, failure, design, UX, or UI).
Assignee A person who created a bug Senior, Junior, and a fresh graduate.
Reporter A person who is responsible to fix the bug. QA, developer, scrum master, product owner.

Table 8: Output variable

Field name Field description Field value
Priority How quickly the bug should be fixed and

deployed?
Low/High

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 39

in the ratio 8:2. The datasets were converted
from the .xlsx format into .cvs format using the
panda’s library [47] to make the module faster.

The priority data is converted into [0, 1] using
the to_categorical function from the TensorFlow
Keras library [46]. The assigned values to the
priority of bug reports are (0 = high priority, 1 =
low priority).

The architecture of LSTM units was trained
using Adam algorithms and the Mean Square
Error loss function. Adam algorithm has been
used in our research instead of the traditional
algorithms to update network weights based on
training data [48]. The main benefits of Adam
algorithms are computationally efficient and suit-
able for handling problems with large data.

The learning rate variable is set to 0.001 and
it decays every 5 epochs and drops-out in each
layer in 0.2 to remove any loss value in valida-
tion split. In this article, the model has been
trained with 100 sequences per batch and the
count of the batches is 64 with patience from
3 samples.

4. Experimental results and discussion

The performance of the proposed LSTM model
was evaluated by the experiment on a dataset
extracted from five different projects, which are
Matrix, Hashfood, Tazaj, Workspaces, and Ma-
harah, which have a different number of priority
bug reports, as shown earlier in Table 4.

The proposed approach is compared with the
existing ML algorithm. Three ML algorithms
were utilized on the selected dataset. The evalua-
tion was performed with LSTM, KNN, and SVM
after defining that the test size is equal to 0.20 of
our dataset, then the bug reports were selected
randomly. This is done using the train_test_split
Python library to split datasets into a random
train and test subsets [49]. The model was trained
and tested with more than 2000 bug reports.

This rest of this section presents the results
of the experiment that was conducted to validate
the proposed model and answers the research
question.

4.1. Research question

This work investigates the following research
question to evaluate the proposed framework:

“Does the proposed approach outperform the
other machine learning algorithms in predicting
and assigning bug priority? Does the proposed ap-
proach improve the accuracy of assigning priority
levels of bug reports?”

The research question compares the selected
deep neural network (LSTM) against other al-
ternatives as shown in Sections 4.1–4.3. Also,
it investigates the performance improvement of
the proposed approach as shown in Sections 4.4
and 4.5.

4.2. LSTM neural network

The experiments performed on LSTMNeural Net-
work after training epoch. The LSTM recurrent
neural network model was developed in Python
using the Keras deep learning library [30].

Accuracy and loss in Keras model for valida-
tion data could be changed with different cases.
When every epoch increases, the loss becomes
lower and the accuracy becomes higher. With
Keras validation loss and accuracy, the following
cases may occur [50]:
– The model is not learning (cramming

values): when validation loss starts increas-
ing, validation accuracy starts decreasing.

– Overfitting: both of validation loss and val-
idation accuracy start increasing.

– The model is learning probably: vali-
dation loss starts decreasing, and validation
accuracy starts increasing.
As shown in Figures 4(a) and 4(b), this re-

search defined the loss and accuracy functions
which are considered as a return to the difference
between the training and testing data (predicted
and actual outcome). Then we calculated the
accuracy, precision, recall, and F -measure.

Figures 4(a) and 4(b) illustrate that the
model has higher training accuracy and lower
validation accuracy, thus it is learning probably.
The training loss is decreasing, which means that
the model is learning to recognize the training

40 Hani Bani-Salameh et al.

(a) Model loss (b) Model accuracy

Figure 4: Comparison between training and validation(loss and accuracy)

set. Also, the model is a good fit because training
loss is slightly higher than validation loss.

4.3. Support vector machine (SVM)

This section presents the results when SVM was
applied to datasets extracted from closed-source
projects. Table 9 shows the performance results
of the SVM model based on the level of priority.
Based on the High priority, the metrics values are
(F -measure = 0.87, Recall = 0.88, and Precision
= 0.85). Based on the Low priority, the metrics
values are (F -measure = 0.86, Recall = 0.85, and
Precision = 0.88).
Table 9: Performance metrics results from apply-
ing SVM

Priority level Precision Recall F -measure
High 0.85 0.88 0.87
Low 0.88 0.85 0.86

4.4. K-nearest neighbors (KNN)

Based on the performance results of KNN, the
metrics values are Accuracy = 0.741, F -measure
= 0.740, Recall = 0.742, and Precision = 0.740.

Table 10 shows the evaluation results of the
three algorithms. It shows the performance of
LSTM, SVM, and KNN.

Table 10: A comparison between performance
results from applying LSTM, SVM, and KNN

LSTM SVM KNN
Accuracy 0.898 0.865 0.741
F -measure 0.892 0.865 0.742
Recall 0.897 0.865 0.741
Precision 0.876 0.866 0.743
MCC 0.796 0.732 0.485

Figure 5 illustrates the performance differ-
ences between the three ML algorithms.

4.5. Comparison between LSTM, SVM
and KNN results

The results of our experiments indicate that the
proposed framework based on LSTM Neural
Network correctly predicts the priority of the bug
reports and the performance can be significantly
increased compared with both SVM and KNN as
shown in Figure 5.

Based on Table 11 and Figure 5, we make the
following observations:
– The proposed approach obtains a slight im-

provement in performance. The LSTM im-
provement was calculated and compared with
the other selected algorithms SVM and KNN.

– F -measure results show a 3% improvement
for LSTM compared with SVM. Also, it shows
a 15% improvement for LSTM compared with
KNN.

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 41

Figure 5: Comparison between LSTM, SVM, and KNN

Table 11: LSTM Improvement compared to SVM and KNN

SVM LSTM Improvement KNN LSTM Improvement
F -measure 0.865 0.892 3% F -measure 0.742 0.892 15.2%
MCC 0.732 0.796 6.4% MCC 0.485 0.796 31.1%

– MCC values improved by 6.4% compared to
SVM and by 31.1% compared to KNN, which
show that LSTM outperforms the other al-
gorithms in detecting and assigning the bugs
priority.

4.6. LSTM, SVM, KNN
– Output quality comparison

To compare the selected algorithms, this study
summarizes and compares the performance of
each classifier by calculating the area under the
ROC curve (AUC).

Figure 6: ROC curve for SVM Figure 7: ROC curve for KNN

42 Hani Bani-Salameh et al.

Figure 8: ROC curve for LSTM

Results show that LSTM is with better AUC,
which is an effective measure of sensitivity and
specificity (a measure of predictive accuracy).
The AUC values for LSTM, SVM, and KNN
are 0.95, 0.87, and 0.74, respectively (see Fig-
ures 6–8).

5. Bugs’ priority prediction tool

Assigning priority to bugs’ reports may play an
important role in improving the bug triaging pro-
cess which is an important process in software
maintenance.

Figure 9: Predicting priority level for a bug report

This article introduces a tool that helps de-
velopers and team to predict and assign prior-
ity for bugs’ reports. This tool was built using
pyqt5.qt widgets [51]. It allows them to enter the
input (RNN-LSTM input features) as a single

comma separated statement (component name,
summary, assignee, and author). Then, the neu-
ral network predicts the priority of the report.
Figure 9 shows an example of the labeling panel
in the proposed tool.

6. Threats to validity

Like any research, some factors may affect the
performance of the proposed approach. The
threats to the validity of our study are as follows.

The internal validity relates to the adoption
of LSTM and not the other algorithms. We chose
LSTM since others proved it effective for text
classification [52, 53]. Also, the results are verified
to avoid any errors.

External validity makes it difficult to gener-
alize the results. As mentioned earlier the used
dataset extracted from bug reports related to
five closed-source projects. Using datasets from
other projects, it is not sure to achieve the same
performance results.

7. Conclusion

This research provides a framework for automat-
ically assigning the appropriate priority level for
bug reports to avoid time-consuming and limited
resources during the software testing process.

The proposed framework involves the use of
text pre-processing methods (tokenization, stop
words, and stemming) and then extracting im-
portant keywords from the description of the
bug reports. A dataset was extracted from JIRA
using the INTIX DWC company dashboard [4],
which consists of five closed-source projects and
containing more than 2000 bug reports. The
dataset was divided into training and test cases
and applied dataset variations (20% test and
80% training).

The proposed model has been validated on
a dataset extracted from five real projects. The
performance of the model is compared with two
well-known ML algorithms, SVM and KNN. The
results show that LSTM predicts and assigns the
priority of the bug more accurately and effec-
tively. LSTM significantly improves the average

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 43

F -measure in comparison to the other classi-
fiers. The study showed that LSTM reported
the best performance results based on all perfor-
mance measures (Accuracy = 0.908, AUC = 0.95,
F -measure = 0.892). This answers our research
question, which suggests that LSTM outperforms
the alternatives and improves performance.

In the future, we will validate other deep
learning approaches on open-source projects like
Eclipse and Mozilla. This includes experiments
to evaluate the performance of different classifiers
such as Naive Bayes, RBF Networks, and Func-
tional Trees. Also, a future work direction might
involve integrating the proposed framework with
JIRA software.

References

[1] H. Rocha, G. De Oliveira, H. Marques-Neto,
and M.T. Valente, “NextBug: a Bugzilla exten-
sion for recommending similar bugs,” Journal of
Software Engineering Research and Development,
Vol. 3, No. 1, 2015, p. 3.

[2] Y. Tian, D. Lo, X. Xia, and C. Sun, “Auto-
mated prediction of bug report priority using
multi-factor analysis,” Empirical Software Engi-
neering, Vol. 20, No. 5, 2015, pp. 1354–1383.

[3] J. Anvik, L. Hiew, and G.C. Murphy, “Who
should fix this bug?” in Proceedings of the 28th
international conference on Software engineering,
2006, pp. 361–370.

[4] S. Wang, W. Zhang, and Q. Wang, “FixerCache:
Unsupervised caching active developers for di-
verse bug triage,” in Proceedings of the 8th
ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement,
2014, pp. 1–10.

[5] S. Mani, A. Sankaran, and R. Aralikatte, “Deep-
Triage: Exploring the Effectiveness of Deep
Learning for Bug Triaging,” arXiv:1801.01275
[cs], Jan. 2018. [Online]. http://arxiv.org/abs/
1801.01275

[6] M.Ohira,Y.Kashiwa,Y.Yamatani,H.Yoshiyuki,
Y. Maeda, N. Limsettho, K. Fujino, H. Hata,
A. Ihara, and K. Matsumoto, “A dataset of high
impact bugs:Manually-classified issue reports,” in
IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 2015, pp. 518–521.

[7] Y. Tian, D. Lo, and C. Sun, “DRONE: Predict-
ing Priority of Reported Bugs by Multi-factor
Analysis.(2013),” in 29th IEEE International

Conference on Software Maintenance (ICSM),
2013, pp. 22–28.

[8] Q. Umer, H. Liu, and Y. Sultan, “Emotion based
automated priority prediction for bug reports,”
IEEE Access, Vol. 6, 2018, pp. 35 743–35 752.

[9] M. Mihaylov and M. Roper, Predicting the Reso-
lution Time and Priority of Bug Reports: A Deep
Learning Approach, Ph.D. dissertation, Depart-
ment of Computer and Information Sciences,
University of Strathclyde, 2019. [Online]. https:
//local.cis.strath.ac.uk/wp/extras/msctheses/p
apers/strath_cis_publication_2727.pdf

[10] P.A. Choudhary, “Neural network based bug pri-
ority prediction model using text classification
techniques,” International Journal of Advanced
Research in Computer Science, Vol. 8, No. 5, 2017.

[11] L. Yu, W.T. Tsai, W. Zhao, and F. Wu, “Pre-
dicting defect priority based on neural net-
works,” in International Conference on Advanced
Data Mining and Applications. Springer, 2010,
pp. 356–367.

[12] J. Kanwal and O. Maqbool, “Bug prioritization
to facilitate bug report triage,” Journal of Com-
puter Science and Technology, Vol. 27, No. 2,
2012, pp. 397–412.

[13] M. Sharma, P. Bedi, K.K. Chaturvedi, and
V.B. Singh, “Predicting the priority of a reported
bug using machine learning techniques and cross
project validation,” in 12th International Con-
ference on Intelligent Systems Design and Ap-
plications (ISDA). IEEE, 2012, pp. 539–545.

[14] M. Alenezi and S. Banitaan, “Bug reports prior-
itization: Which features and classifier to use?”
in 12th International Conference on Machine
Learning and Applications, Vol. 2. IEEE, 2013,
pp. 112–116.

[15] H.M. Tran, S.T. Le, S. Van Nguyen, and P.T. Ho,
“An analysis of software bug reports using ma-
chine learning techniques,” SN Computer Sci-
ence, Vol. 1, No. 1, 2020, p. 4.

[16] V. Lyubinets, T. Boiko, and D. Nicholas, “Au-
tomated labeling of bugs and tickets using
attention-based mechanisms in recurrent neural
networks,” in IEEE Second International Con-
ference on Data Stream Mining and Processing
(DSMP). IEEE, 2018, pp. 271–275.

[17] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen,
“Software defect prediction via attention-based
recurrent neural network,” Scientific Program-
ming, Vol. 2019, 2019.

[18] W.Y. Ramay, Q. Umer, X.C. Yin, C. Zhu, and
I. Illahi, “Deep neural network-based severity
prediction of bug reports,” IEEE Access, Vol. 7,
2019, pp. 46 846–46 857.

44 Hani Bani-Salameh et al.

[19] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang,
“An empirical study on bug assignment au-
tomation using Chinese bug data,” in 3rd In-
ternational Symposium on Empirical Software
Engineering and Measurement. IEEE, 2009,
pp. 451–455.

[20] Martix. [Online]. https://www.martix.me/ (Last
accessed May 17, 2020).

[21] Hashfood. [Online]. https://itunes.apple.com/u
s/app/hashfood/id1117103333?l=ar&ls=1&m
t=8 (Last accessed May 17, 2020).

[22] Tazej. [Online]. https://itunes.apple.com/jo/ap
p/%D8%B7%D8%A%D8%B2%D8%AC/id11
50041871?mt=8 (Last accessed May 17, 2020).

[23] Workspaces. [Online]. https://itunes.apple.com
/us/app/theworkspacesid1246555146?l=ar&l
s=1&mt=8 (Last accessed May 17, 2020).

[24] Maharah. [Online]. https://play.google.com/st
ore/apps/details?id=com.mharah.app&hl=ar
(Last accessed May 17, 2020).

[25] INTIX DWC Company. [Online]. http://intix.
net/ (Last accessed May 17, 2020).

[26] S.N. Ahsan, J. Ferzund, and F. Wotawa, “Pro-
gram file bug fix effort estimation using ma-
chine learning methods for open source software
Projects,” Institute for Software Technologist
Technical, 2009.

[27] L. Marks, Y. Zou, and A.E. Hassan, “Study-
ing the fix-time for bugs in large open source
projects,” in Proceedings of the 7th International
Conference on Predictive Models in Software En-
gineering, 2011, pp. 1–8.

[28] P. Kaur and C. Singh, “A systematic approach
for bug severity classification using machine
learning’s text mining techniques,” Journal of
Computer Science and Information Technology,
Vol. 5, No. 7, 2016.

[29] Bugzilla. [Online]. https://www.bugzilla.org/
(Last accessed May 17, 2020).

[30] M. Günel, Keras: Deep Learning library for
Theano and TensorFlow. [Online]. https://web.
cs.hacettepe.edu.tr/~aykut/classes/spring201
6/bil722/tutorials/keras.pdf (Last accessed May
17, 2020).

[31] S. Bird, E. Klein, and E. Loper,Natural Language
Processing with Python: Analyzing Text with
the Natural Language Toolkit, 1st ed. Beijing;
Cambridge Mass.: O’Reilly Media, Jul. 2009.

[32] Pycharm, The Python IDE for Professionals.
[Online]. https://www.jetbrains.com/pycharm/
(Last accessed May 17, 2020).

[33] Z. Imran, Predicting bug severity in open-source
software systems using scalable machine learning

techniques, mathesis, Youngstown State Univer-
sity, 2016.

[34] I. Mani and I. Zhang, “kNN approach to unbal-
anced data distributions: A case study involv-
ing information extraction,” in Proceedings of
Workshop on Learning from Imbalanced Datasets,
Vol. 126, 2003.

[35] S. Hochreiter and J. Schmidhuber, “Long short-
-term memory,” Neural Computation, Vol. 9,
No. 8, 1997, pp. 1735–1780.

[36] M.N. Karim and S.L. Rivera, “Comparison
of feed-forward and recurrent neural net-
works for bioprocess state estimation,” Com-
puters and Chemical Engineering, Vol. 16, 1992,
pp. S369–S377.

[37] R. Santos, M. Rupp, S. Bonzi, and A.M. Fileti,
“Comparison between multilayer feedforward neu-
ral networks and a radial basis function network
to detect and locate leaks in pipelines transport-
ing gas,” Chemical Engineering Transactions,
Vol. 32, 2013, pp. 1375–1380.

[38] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li,
and J. Li, “Realtime mobile bandwidth predic-
tion using lstm neural network,” in International
Conference on Passive and Active Network Mea-
surement. Springer, 2019, pp. 34–47.

[39] S. Ray, “Suppor vector machine algorithm in
machine learning,” Sep. 2017. [Online]. https://
www.analyticsvidhya.com/blog/2017/09/under
staing-support-vector-machine-example-code/

[40] W. Harrad, “A top machine learning algorithm
explained: Support vector machines (svms),” Feb.
2020. [Online]. https://www.vebuso.com/2
020/02/a-top-machine-learning-algorithm-
explained-support-vector-machines-svms/

[41] M. Waseem, “Support vector machine in python,”
Nov. 2019. [Online]. https://www.edureka.co/b
log/support-vector-machine-in-python/

[42] sklearn.metrics.accuracy_score. [Online]. https:
//scikit-learn.org/stable/modules/generated
/sklearn.metrics.accuracy_score.html (Last
accessed April 30, 2020).

[43] U. Malik, Implementing SVM and Kernel SVM
with Python’s Scikit-Learn. [Online]. https://st
ackabuse.com/implementing-svm-and-kernel-
svm-with-pythons-scikit-learn/ (Last accessed
April 30, 2020).

[44] O. Harrison, Machine Learning Basics with the
K-Nearest Neighbors Algorithm, 2018. [Online].
https://towardsdatascience.com/machine-
learning-basics-with-the-k-nearest-neighbors-
algorithm-6a6e71d01761 (Last accessed April
30, 2020).

A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks 45

[45] KNNAlgorithm - Finding Nearest Neighbors. [On-
line]. https://www.tutorialspoint.com/machine
_learning_with_python/machine_learning_w
ith_python_knn_algorithm_finding_nearest
_neighbors.htm (Last accessed April 30, 2020).

[46] Google Brain Team, tensorflow. Develop and
train ML models, 2015. [Online]. https://ww
w.tensorflow.org/ (Last accessed December 15,
2019).

[47] T. Mester, Pandas Basics (Reading Data Files,
DataFrames, Data Selection), 2019. [Online].
https://data36.com/pandas-tutorial-1-basics-
reading-data-files-dataframes-data-selection/
(Last accessed May 17, 2020).

[48] D.P. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[49] train_test_split. [Online]. https://scikit-learn.
org/stable/modules/generated/sklearn.model

_selection.train_test_split.html (Last accessed
May 17, 2020).

[50] J. Brownlee, How to Diagnose Overfitting and
Underfitting of LSTM Models, 2017. [Online].
https://machinelearningmastery.com/diagnos
e-overfitting-underfitting-lstm-models/ (Last
accessed May 17, 2020).

[51] PyQt5 Reference Guide. [Online]. https://www.
riverbankcomputing.com/static/Docs/PyQt5/
(Last accessed September 05, 2020).

[52] G. Yang, S. Baek, J.W. Lee, and B. Lee, “Analyz-
ing emotion words to predict severity of software
bugs: A case study of open source projects,” in
Proceedings of the Symposium on Applied Com-
puting, 2017, pp. 1280–1287.

[53] T. Young, D. Hazarika, S. Poria, and E. Cambria,
“Recent trends in deep learning based natural lan-
guage processing,” IEEE Computational Intelli-
gence Magazine, Vol. 13, No. 3, 2018, pp. 55–75.

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 47–64, DOI 10.37190/e-Inf210103

Use of Agile Practices in Start-up Companies

Eriks Klotins∗, Michael Unterkalmsteiner∗, Panagiota Chatzipetrou∗∗, Tony Gorschek∗∗∗,
Rafael Prikladnicki∗∗∗∗, Nirnaya Tripathi∗∗∗∗∗, Leandro Bento Pompermaier∗∗∗∗∗∗

∗Software Engineering Research Lab, Blekinge Institute of Technology, Sweden
∗∗Department of Informatics, CERIS, Örebro University School of Business, Sweden

∗∗∗Software Engineering Research Lab, Blekinge Institute of Technology, Sweden
∗∗∗∗Software Engineering Research Lab, Pontifical Catholic University of Rio Grande do Sul, Brasil

∗∗∗∗∗Software Engineering Research Lab, University of Oulu, Finland
∗∗∗∗∗∗Software Engineering Research Lab, Pontifical Catholic University of Rio Grande do Sul, Brasil
eriks.klotins@bth.se, michael.unterkalmsteiner@bth.se, panagiota.chatzipetrou@oru.se,

tony.gorschek@bth.se, rafael.prikladnicki@pucrs.br, Nirnaya.Tripathi@oulu.fi,
leandro.pompermaier@pucrs.br

Abstract
Context Software start-ups have shown their ability to develop and launch innovative software
products and services. Small, motivated teams and uncertain project scope makes start-ups good
candidates for adopting Agile practices.
Objective We explore how start-ups use Agile practices and what effects can be associated with
the use of those practices.
Method We use a case survey to analyze 84 start-up cases and 56 Agile practices. We apply
statistical methods to test for statistically significant associations between the use of Agile practices,
team, and product factors.
Results Our results suggest that development of the backlog, use of version control, code
refactoring, and development of user stories are the most frequently reported practices. We identify
22 associations between the use of Agile practices, team, and product factors. The use of Agile
practices is associated with effects on source code and overall product quality. A teams’ positive or
negative attitude towards best engineering practices is a significant indicator for either adoption
or rejection of certain Agile practices. To explore the relationships in our findings, we set forth
a number of propositions that can be investigated in future research.
Conclusions We conclude that start-ups use Agile practices, however without following any
specific methodology. We identify the opportunity for more fine-grained studies into the adoption
and effects of individual Agile practices. Start-up practitioners could benefit from Agile practices
in terms of better overall quality, tighter control over team performance, and resource utilization.

Keywords: Agile practices, start-up companies

1. Introduction

Software start-ups are important suppliers of
innovation, new products, and services. However,
engineering of software in start-ups is a com-
plicated endeavor as the start-up context poses
challenges to software engineers [1]. As a result
of these challenges, most start-ups do not survive

the first few years of operation and cease to exist
before delivering any value [2, 3].

Uncertainty, changing goals, limited human
resources, extreme time, and resource constraints
are reported as characteristics of start-ups [1, 4].

To survive in such a context, start-ups use
ad hoc engineering practices and attempt to
tailor agile methods to their needs. However,

Submitted: 31 August 2020; Revised: 04 December 2020; Accepted: 12 January 2021; Available online: 29 March 2021

48 Eriks Klotins et al.

scaled-down agile methods could be irrelevant
and ignore start-up specific challenges [5, 6].

Giardino et al. [7] suggest that start-ups
adopt practices as a response to some problem-
atic situations and do not consider adopting full
agile methodologies, e.g., scrum or XP, at least
in early stages.

Pantiuchina et al. [8] make a similar obser-
vation and argue that start-ups focus more on
speed-related practices, e.g., iterations and fre-
quent releases, than quality-related practices,
e.g., unit testing and refactoring.

In this study, we explore the use of Agile
practices in start-ups. We focus on identifying
the associations between certain Agile practices,
product, and team factors. We aim to understand
what positive, and potentially adverse effects can
be associated with the use of specific practices.
We use our results to formulate propositions for
further exploration.

We use a case survey to collect data from
84 start-up cases [9]. We use statistical meth-
ods to analyze 11,088 data points and identify
associations between the use of Agile practices
and respondents’ estimates on various team and
product factors.

We identify 20 statistically significant asso-
ciations pointing towards potential causes and
effects of using Agile practices. We identify that
the use of automated tests and continuous in-
tegration is associated with positive attitudes
towards following best practice. However, the
use of planning and control practices are more
associated with negative attitudes towards fol-
lowing the best practices.

The rest of this paper is structured as follows.
In Section 2, we discuss relatedwork. Section 3 cov-
ers the research methodology, data collection, and
our approach to data analysis. Section 4 presents
the results. We answer our research questions and
discuss the implications for research and practice
in Section 5. Section 6 concludes the paper.

2. Background and related work
2.1. Software start-ups

Software start-ups are small companies created
for developing and bringing an innovative soft-

ware intensive product or service to the market,
and to benefit from economies of scale.

Start-up companies rely on external funding
to support their endeavors. In 2015 alone, start-
-up companies have received investments of 429
billion USD in the US and Europe alone [10, 11].
With an optimistic start-up failure rate of 75%
that constitutes of 322 billion USD of capital
potentially wasted on building unsuccessful prod-
ucts.

Earlier studies show that product engineer-
ing challenges and inadequacies in applied en-
gineering practices could be linked to start-up
failures [1, 12]. To what extent software engi-
neering practices are responsible or linked to the
success rate is very hard to judge. However, if
improved software engineering practices could
increase the likelihood of success by only a few
percent, it would yield a significant impact on
capital return.

Some authors, e.g., Sutton [13] and Giardino
[3], point out the unique challenges in start-ups,
such as high risk, uncertainty, lack of resources,
rapid evolution, immature teams, and time pres-
sure among other factors. At the same time,
start-ups are flexible to adopt new engineering
practices, and reactive to keep up with emerg-
ing technologies and markets [7]. However, our
earlier study [12] analyzing the amount of em-
pirical evidence supporting the uniqueness of
start-ups found that most start-up character-
istics are based on anecdotal evidence. Thus,
there could be a negligible difference between
start-ups and other organizations launching new
software-intensive products on the market in
terms of software engineering.

2.2. Agile practices

Agile software engineering practices originate
from the Agile manifesto, proposing a shift from
heavyweight, plan-driven engineering towards
more lightweight, customer-oriented, and flex-
ible methodologies [14]. Agile methodologies,
such as Scrum and XP, prescribe specific sets of
Agile practices [15, 16]. However, in practice,
by-the-book methodologies are often tailored
with additional practices to address specific con-
cerns [17, 18]. Thus, we focus our study on what

Use of Agile Practices in Start-up Companies 49

practices start-ups use, without considering any
specific agile methodology.

Small organizations have successfully adopted
Agile practices for projects where requirements
are uncertain and expected to change [19, 20].
In theory, Agile practices could be perfect for
software start-ups [6]. However, successful adop-
tion of Agile practices requires highly skilled
teams and support throughout the organiza-
tion [19, 21].

Earlier work on software engineering practices
in start-ups suggests that start-ups initially rely
on an ad hoc approach to engineering and adopt
agile principles incrementally when the need for
more systematic practice arises. The shift is often
motivated by excessive technical debt, hindering
quality, and lack of control over the engineering
process [7].

The motivations for adopting agile practices
in start-ups include accelerated product deliv-
ery, ability to manage changing priorities, and
increased team productivity. Practices concern-
ing team collaboration such as open work areas,
use of task boards, and a prioritized backlog are
reported as the most widely used [22]. Souza et
al. [23] reports that start-ups primarily adopt
practices that provide immediate benefits and
help to accelerate time-to-market.

We explore the associations between 56 Agile
practices, product, and team factors. We use a list
and descriptions of Agile practices compiled by
Agile Alliance, a non-profit community promot-
ing agile principles [24]. To our best knowledge,
their website contains the most comprehensive
list of Agile practices to date.

In this study, we consider the following prac-
tices whose definitions can be found at the Ag-
ile Alliance’s website [24]: Card, Conversation,
Confirmation (3C’s), Acceptance tests, Accep-
tance Test-Driven Development (ATDD), Au-
tomated build, Backlog, Backlog grooming, Be-
havior Driven Development, Burndown chart,
Collective ownership, Continuous deployment,
Continuous integration, Class Responsibility Col-
laborator (CRC) Card cards, Daily meeting, Def-
inition of Done, Definition of Ready, Exploratory
testing, Facilitation, Frequent releases, Given-
-When-Then, Heartbeat retrospective, Incremen-

tal development, INVEST, Iterations, Iterative
development, Kanban board, Lead time, Mock
objects, Niko-Niko, Pair Programming, Personas,
Planning poker, Point estimates, Project char-
ters, Quick design session, Refactoring, Relative
estimation, Role-Feature-Reason, Rules of sim-
plicity, Scrum of Scrums, Sign up for tasks, Sim-
ple design, Story mapping, Story splitting, Sus-
tainable Pace, Task board, Team, Team room,
Test-driven development, Three Questions, Time-
box, Ubiquitous language, Unit tests, Usability
testing, User stories, Velocity, and Version con-
trol.

In this paper, we follow Agile Alliance naming
of the practices. Some of the terms describing
practices can also refer to artifacts, e.g., accep-
tance tests. When we use such a term, we mean
the practice of creating and utilizing acceptance
tests.

2.3. Effects of using Agile practices

The use of Agile practices is associated with
increased product quality and fewer defects com-
pared to plan-driven approaches [25, 26]. We
analyze the associations between the use of Agile
practices, product documentation, software archi-
tecture, quality of the source code, tests, and the
overall product quality. In this paper, we adopt
the product view on software quality, recogniz-
ing the relationship between internal product
characteristics and quality of use [27].

Product documentation comprises of written
requirements, architecture documentation, and
test cases. Deficiencies in such artifacts are as-
sociated with hindered knowledge distribution
in the team and with adverse effects on further
development and maintenance of the product [28].
Note that we analyze if documentation artifacts
are understandable and useful without implying
any specific format.

Even though the Agile manifesto emphasizes
working software over comprehensive documen-
tation, some documentation is essential [14]. For
example, user stories are one of the key agile tools
to document requirements [29]. System metaphor
is useful to communicate the logical structure of
the software to all stakeholders [30]. The use of

50 Eriks Klotins et al.

automated testing in continuous integration and
deployment pipelines require formally defined
tests [31].

Software architecture denotes how different
components, modules, and technologies are com-
bined to compose the product. Symptoms such
as outdated components, a need for workarounds
and patches point towards deficiencies in the
software architecture and the lack of attention
to refactoring [32, 33].

Source code quality is determined using cod-
ing standards and refactoring practices [34, 35].
Degrading architecture and poorly organized
source code is associated with increased software
complexity, difficult maintenance, and product
quality issues down the road [28].

We analyze the quality (or lack thereof) of
automated test scripts, removing the need to per-
form manual regression testing on every release
of the product. The effort of manual regression
testing grows exponentially with the number of
features, slowing down release cycles and making
defect detection a time-consuming and tedious
task [28].

We also examine the associations between
product quality and the use of Agile practices.
With product quality, we understand nonfunc-
tional aspects of the product, such as perfor-
mance, scalability, maintainability, security, ro-
bustness, and the ability to capture any defects
before the product is released to customers [28].

Good communication, teamwork, adequate
skills, and a positive attitude towards the follow-
ing best practices are recognized as essential team
factors for project success [19]. Agile software
engineering practices aim to facilitate communi-
cation, empower individuals, and improve team-
work [36]. We analyze the associations between
team characteristics and the use of specific Agile
practices.

Attitudes determine the level of apathy or
interest in adopting and following the best en-
gineering practices. Skills characterize to what
extent individual members of a start-up team
possess relevant engineering skills and knowl-
edge. Communication captures to what extent
the team can communicate and coordinate the

engineering work. Giardino et al. [7] identify the
team as the catalyst for product development in
start-ups. Sufficient skills, positive attitudes, and
efficient communication are essential for rapid
product development in both agile and start-up
contexts [7, 19].

Pragmatism characterizes to what extent
a team can handle trade-offs between investing
in perfected engineering solutions and time-to-
-market. Agile practices advocate for frequent
releases and good-enough solutions [15]. Such
practices help to validate the product features
early and gather additional feedback from cus-
tomers [12]. On the other hand, quick product re-
leases need to be accompanied by frequent refac-
toring and unit tests to manage technical debt
and keep regression defects under control [19].
Start-ups often overlook such corrective prac-
tices [7, 12].

Sufficient time and resources for product engi-
neering are essential for project success [19]. We
analyze what Agile practices can be associated
with better resource estimation and planning in
start-ups. Several authors, e.g., Giardino et al. [3]
and Sutton [13] identify resource shortage as one
of the critical challenges in start-ups. However,
we, in our earlier study identify the lack of ade-
quate resources, planning and control practices
in early start-ups [9].

We look into respondent estimates on the en-
gineering process in their organizations. Process
characterizes to what extent product engineering
is hindered by unanticipated changes in organiza-
tional priorities, goals, and unsystematic changes
in the product itself. Lack of organizational sup-
port for agile product engineering contributes to
project failures [19]. On the other hand, Agile
practices offer some room for adjusting to unclear
and changing objectives [20].

Agile methods on a high level attempt to
address and promise improvements in all these
concerns [36]. However, analyzing the effects of
applying the whole methodology on a large num-
ber of factors does not help to pinpoint specific
practices for specific challenges. We aim to es-
tablish a fine-grained view on the use and effects
of individual practices.

Use of Agile Practices in Start-up Companies 51

3. Research methodology

3.1. Research aim

We aim to explore how software start-ups use
Agile practices and what positive and negative
effects can be associated with specific practices.

3.2. Research questions

To guide our study, we define the following re-
search questions (RQ):
RQ1: How are Agile practices used in start-ups?
Rationale: With this question, we identify what
Agile practices and in what combinations start-
-ups use.
RQ2: What are the associations between specific
Agile practices and product factors?
Rationale: With this question, we explore the as-
sociations between specific Agile practices, qual-
ity of documentation, architecture, source code,
testing, and overall product quality.
RQ3: What are the associations between specific
Agile practices and team factors?
Rationale:With this question, we explore the asso-
ciations between specific Agile practices, attitudes
towards following best engineering practices,
pragmatism, communication, skills, resources,
engineer process, and teams’ productivity.

3.3. Data collection

We used a case survey method to collect primary
data from start-up companies [9, 37].

The case survey method is based on a ques-
tionnaire and is a compromise between a tradi-
tional case study and a regular survey [38]. We
have designed the questionnaire to collect prac-
titioners’ experiences in specific start-up cases.

During the questionnaire design phase, we
conducted multiple internal and external reviews
to ensure that all questions are relevant, clear
and that we receive meaningful answers. First,
the questions were reviewed in multiple rounds
by the first three authors of this paper to refine
the scope of the survey and question formula-
tions. Then, with the help of other researchers

from the Software Start-up Research Network1,
we conducted a workshop to gain external input
on the questionnaire. A total of 10 researchers
participated and provided their input.

Finally, we piloted the questionnaire with
four practitioners from different start-ups. Dur-
ing the pilot, respondents filled in the question-
naire while discussing questions, their answers,
and any issues with with the first author of this
paper.

As a result of these reviews, we improved the
question formulations and removed some irrele-
vant questions. The finalized questionnaire con-
tains 85 questions in 10 sections. The question-
naire captures 285 variables from each start-up
case.

We use a list of 56 Agile practices to cap-
ture the respondent’s answers on what practices
they use in their companies, as described in Sec-
tion 2.2. The answers are captured in a binary
use or not use format. In addition to specific prac-
tices, we offer an “I do not know” and “other” op-
tion to accommodate for the lack of respondents
knowledge and to discover other, unlisted prac-
tices. We rely on the respondents best judgment
to gauge whether the extent of using a practice
in their start-ups qualifies as an application of
the practice or not.

We use 45 other questions to capture respon-
dents evaluations of product and team-related
statements, such as:
– Initial product/service architecture has be-

come outdated;
– Communication and collaboration within

the development team regarding the prod-
uct/service architecture is insufficient;

– Incremental changes to the product/service
are unsystematic and degrades the architec-
ture;

– Quick delivery of functionality is considered
more important than good code.
The questions capture the respondents’ agree-

ment with a statement characterizing a factor on
a Likert scale: not at all (1), a little (2), some-
what (3), very much (4). The values indicate
the degree of agreement with a statement. State-
ments are formulated consistently in a way that

1The Software Start-up Research Network, https://softwarestartups.org/

52 Eriks Klotins et al.

lower values indicate less, and higher values in-
dicate more agreement with the statement.

The questionnaire is designed to be filled in
by one person and we analyze one response per
start-up. To control this, we collect the contact
information of the respondent and the title of
their company. In addition to questions about
software engineering, the questionnaire contains
questions inquiring about the respondents back-
ground, and engineering context in the start-up.
The full questionnaire is available as supplemen-
tal material on-line2.

The data collection occurred between De-
cember 1, 2016, and June 15, 2017. The sur-
vey was promoted through personal contacts,
by attending industry events, and with posts
on social media websites. The survey was pro-
moted as “help us to understand what engineer-
ing practices work and does not work in start-ups”
and targeted for practitioners with an under-
standing about the engineering parts of their
start-up.

We invited other researchers from the Soft-
ware Start-up Research Network to collaborate
on the data collection. This collaboration helped
to spread the survey across many geographical
locations in Europe, North and South America,
and Asia.

3.4. Data analysis methods

To analyze the survey responses, we used several
techniques. We started by screening the data
and filtering out duplicate cases, responses with
few questions answered, or otherwise unusable
responses. In the screening, we attempt to be
as inclusive as possible and do not remove any
cases based on the provided responses.

Overall, we analyzed responses from 84 start-
-up cases, 132 data points per each case, and
11,088 data points. We use the Chi-Squared test
of association to test if the associations between
the examined variables are not due to chance.
To prevent Type I errors, we used exact tests,
specifically, the Monte-Carlo test of statistical
significance based on 10,000 sampled tables and
assuming (p < 0.05) [39].

To examine the strength of associations, we
use Cramer’s V test. We interpret the test re-
sults as suggested by Cohen [40], see Table 1.
To explore the specifics of the association, such
as which cases are responsible for this associa-
tion, we performed post hoc testing using ad-
justed residuals. We consider an adjusted resid-
ual significant if the absolute value is above
1.96 (Adjusted residual > 1.96), as suggested by
Agresti [41].

Table 1. Interpretation of Cramer’s V test

Cramer’s V
value Interpretation

≥0.1 Weak association
≥0.3 Moderate association
≥0.5 Strong association

The adjusted residuals drive our analysis on
how different groups of start-ups estimate as-
pects of technical debt. However, due to the
exploratory nature of our study, we do not state
any hypotheses upfront and drive our analysis
with research questions.

3.5. Validity threats

In this section, we follow the guidelines by Rune-
son et al. [42] and discuss four types of validity
threats and applied countermeasures in the con-
text of our study.

3.5.1. Construct validity

Construct validity concerns whether operational
measures represent the studied subject [42]. A po-
tential threat is that the statements we use to
capture respondent estimates are not capturing
the indented team and product factors.

To address this threat, we organized a series
of workshops with other researchers and poten-
tial respondents to ensure that the questions are
clear to the point and to capture the studied
phenomenon.

We triangulate each factor by capturing it by
3–4 different questions in the questionnaire. To
avoid biases stemming from respondents precon-

2Full questionnaire: http://eriksklotins.lv/files/GCP_questionnaire.pdf

Use of Agile Practices in Start-up Companies 53

ceived opinions about the effects of agile prac-
tices, we separate questions about the use of
practices and questions inquiring about team
and product factors.

To accommodate for the fact that a respon-
dent may not know the answers to some of the
questions, we provide an explicit “I do not know”
answer option to all Likert scale questions.

Regarding the use of agile practices, we ask
a binary question capturing the use/not use of
a practice. Such an approach does not capture
the extent, nor other specifics of the application
of a practice. This creates a room for a wide
interpretation of what entails using the practice.
For example, cases having one automated test
and cases with an extensive suite of automated
tests would be treated the same.

In this study, we aim for breadth, in terms
of studied cases and practices, to understand
what agile practices are relevant to start-ups and
the team and product factors associated with
specific practices. Details of the optimal use of
the practices is an avenue for further work.

3.5.2. Internal validity

This type of validity threat addresses causal re-
lationships in the study design [42].

In our study, we do not seek to establish
causal relationships, thus this type of validity
threat is not relevant.

3.5.3. External validity

This type of validity threat concerns to what
extent the results could be valid to start-ups
outside the study [42]. The study setting for
participants was close to real life as possible.
That is, the questionnaire was filled in without
researcher intervention and in the participant’s
environment.

The sampling of participants is a concern to
external validity. We use convenience sampling
to recruit respondents and with the help of other
researchers, distributed the survey across several
different start-up communities. Demographic in-
formation from respondent answers shows that
our sample is skewed towards active companies,

respondents with little experience in start-ups,
young companies, and small development teams
of 1–8 engineers. In these aspects, our sample fits
the general characteristics of start-ups, see, for ex-
ample, Giardino et al. [1, 3] and Klotins et al. [5].
However, there is a survivor bias, that is, failed
start-ups are underrepresented. Thus, our results
reflect state-of-practice in active start-ups.

Another threat to external validity stems
from case selection. We marketed the question-
naire to start-ups building software-intensive
products. However, due to the broad definition
of software start-ups (see Giardino et al. [3]),
it is difficult to differentiate between start-ups
and small-medium enterprises. We opted to be
as inclusive as possible and to discuss relevant
demographic information along with our findings.

3.5.4. Conclusion validity

This type of validity threat concerns the possi-
bility of incorrect interpretations arising from
flaws in, for example, instrumentation, respon-
dent and researcher personal biases, and external
influences [42].

To make sure that respondents interpret the
questions in the intended way, we conducted
several pilots, workshops and improved the ques-
tionnaire afterwards. To minimize the risk of sys-
tematic errors, the calculations and the first and
the third author performed statistical analysis
independently, and the findings were discussed
among the authors.

It could be that some respondents may lack
the knowledge to fully answer our questions. We
mitigate this threat by providing the “I do not
know” option to all our questions. We further
analyze the respondent demographics and back-
ground (see Section 4) to gauge the credibility
of their responses. However, we cannot exclude
that in some cases the responses are incomplete.
As a result, we cannot reliably make conclusions
from the absence of information in the responses.

To test if the order of appearance of Agile
practices affects practitioner responses, we run
a Spearman’s rank-order correlation test [43].
We examine a potential relationship between the
order of appearance and the frequency chosen by

54 Eriks Klotins et al.

respondents. The results showed that there is no
statistically significant correlation (p > 0.05).

4. Results

The majority of the surveyed start-ups (63 out
of 84, 75%) are active and have been operating
for 1–5 years (58 out of 84, 69%). Start-ups are
geographically distributed among Europe (34 out
of 84, 40%), South America (41 out of 84, 49%),
Asia (7 out of 84, 8%), and North America (2 out
of 84, 2%).

Our sample is about equally distributed in
terms of the product development phase. We
follow the start-up life-cycle model proposed by
Crowne [44] and distinguish between inception,
stabilization, growth, and maturity phases. In
our sample, 16 start-ups have been working on
a product but have not yet released it to the
market, 24 teams have released the first version
and actively develop it further with customer
input, 26 start-ups have a stable product and

they focus on gaining customer base, and another
16 start-ups have mature products, and they fo-
cus on developing variations of their products.

The questionnaire was filled in mostly by
start-up founders (64 out of 84, 76%) and engi-
neers employed by start-ups (15 out of 84, 18%).
About half of the respondents have specified that
their area of expertise is software engineering
(49 out of 84, 58%). Others have specified mar-
keting, their respective domains, and business
development as their areas of expertise.

The respondents’ length of software engineer-
ing experience ranges from 6 months to more
than 10 years. A large portion of respondents
(44 out of 84, 52%) had less than 6 months of
experience in working with start-ups at the time
when they joined their current start-up.

We provide a complete list of studied cases
and their demographical information as supple-
mental material on-line3.

The responses on what development type best
characterizes the company suggest that most
companies, 51 out of 84, 60%, follow agile and

��-��� ��������� ���� ��������� ����� � �� ��� ���� �/� �����
�

��

��

��

��

Figure 1. Use of development approaches in the studied cases

3The studied cases: http://eriksklotins.lv/files/GCP_demographics.pdf

Use of Agile Practices in Start-up Companies 55

� � �� �� �� �� �� �� �� �� �� �� �� ��
�

��

��

��

��

���� #

#
�
�
��
�
�
��
�
�
�
��
�
��
�
�
�

Figure 2. The number of reported agile practices in the studied start-up companies. y-axis show the number
of reported practices, x-axis show the studied cases. The cases are sorted by the number of reported practices

����� �� ����������
������� ��������
����-����
���������� ��������
����� ���������
����-�������-������
��� �����
����
���
��������� �������������
���� ����
���� ����
������
�����-����-����
������������
�������
����������� ����
� ��� (����� ������������� ������������)
��������
���� �� ��� �����
���� �������
����� �� ������
�������� ����������
���������� �� �����

����� ���������
����-������ �����������
�������� �����
���������� �����
����� �������
����� ������ �������
����� ���������
��������
������� ��������
�������� �����

������ ������
����������� �����������
���������� ���������
���������� �� ����
��������� �������
����������� �������
����
���������� ����������

��������� �����������
�������� ��������
��������� �����
���� �����������
����������
����� �������
���� �����

���������� �����������
���� �������
���� �����
������ �����
�����������

������� �������
�������

� �� �� �� �� ��

�% ����% ����% ����% ����% ����%

Figure 3. Frequency of Agile practices

56 Eriks Klotins et al.

iterative processes. A few 2 out of 84 follow
a waterfall-like process, 10 companies report us-
ing an ad hoc approach, see Figure 1.

We presented respondents with a list of 56 Ag-
ile practices and asked to tick off the practices
that they use in their companies. Most start-ups
use between 0 and 20 Agile practices. However,
the majority of companies report using only a few
practices, see Figure 2. There is also a small
cluster of companies reporting the use of more
than 35 individual practices. Only 7 companies
explicitly reported not using any agile practices,
16 respondents have not provided their answers.

The most frequently used Agile practices are
backlog and version control reported by 42 and
39 companies, respectively (50% and 46% out
of 84 cases). The use of other practices varies,
see Figure 3. Respondents do not report the
use of practices such as the Niko-Niko calendar
(visualizing the team’s mood changes), project
charters (a poster with a high level summary
of the project), and rules of simplicity (a set of
criteria to evaluate source code quality).

4.1. Overview of the findings

In Table 2, we summarize the associations be-
tween the use of certain practices and product

factors. In Table 3, we summarize the associa-
tions between the use of certain practices and
team factors. We show only practices with sta-
tistically significant associations (p < 0.05). The
numbers in the table show Cramer’s V values
denoting the strength of the associations, see
Table 1 for interpretation of the values.

4.2. Interpretation of associations

An association shows that a specific practice and
certain estimates of a factor are reported together.
We use the Pearsons Chi-squared test (p < 0.05)
to determine if the association is statistically sig-
nificant. However, from associations alone, we can-
not explain the phenomenon with confidence and
guide guide practitioners in adopting Agile prac-
tices in start-ups. To explain the associations, we
formulate 5 archetypes (A) of propositions charac-
terizing the potential explanations of our findings:

It could be that a statistically significant asso-
ciation is a false positive. That is, the association
between a practice and a factor is due to an error
or some confounding factor.
A0: There is a spurious association between

P and F .
An association could point towards a causal

relationship between the use of a practice (P) and
Table 2. Results of Cramer’s V test on the association between product factors and use of Agile practices
with p < 0.05. Up (↑) and down (↓) arrows denote whether the association is positive, i.e., use of the practice

is associated with more positive responses, or negative, i.e., use of the practice is associated with more
negative estimates from respondents

Practice D
oc
um

en
ta
tio

n

A
rc
hi
te
ct
ur
e

So
ur
ce

co
de

Te
st
in
g

O
ve
ra
ll
qu

al
ity

Card, Conversation, Confirmation – – – 0.422↑ –
Unit tests – – – 0.391↑ –
Automated build – – 0.374↑ – –
Facilitation – – 0.330↓ – –
Given-When-Then – – 0.330↓ – –
INVEST – – 0.330↓ – –
Iterations – 0.359↑ – – –
Continuous integration – – – – 0.368↑
Collective ownership – – – – 0.372↓

Use of Agile Practices in Start-up Companies 57

Table 3. Results of Cramer’s V test of association (p < 0.05) between the use of Agile practices and team
factors. Up (↑) and down (↓) arrows denote whether the association is positive, i.e., use of practice is

associated with more positive responses, or negative, i.e., use of practice is associated with more negative
estimates from respondents

Practice A
tt
itu

de
s

Pr
ag

m
at
ism

C
om

m
un

ic
at
io
n

Sk
ill
s

R
es
ou

rc
es

Pr
oc
es
s

Backlog – – – – 0.401↓
Unit tests 0.379↑ – – – – –
Continuous integration 0.360↑ – – – – –
Automated build – – – – – 0.346↓
Definition of Done 0.411↓ – – – – –
Simple design – – – – 0.365↓ –
Burndown chart 0.383↓ – – – 0.384↑ –
Story mapping – 0.356↑ – – – –
Relative estimation 0.399↓ – – – 0.399↑ –
Velocity 0.435↓ – – – – –
Team room – – – – 0.343↓ –

a factor (F). We are measuring factors through
respondent evaluation, thus we cannot distinguish
between actual and perceived improvements.
A1: Use of P improves perception of F .

Some of the associations appear to be nega-
tive, i.e., the use of a practice is reported together
with unfavorable estimates. It could be that the
practice has adverse effects, or the use of the
practice helped to expose the problematic factor:
A2: Use of P hinders F .
A3: Use of P exposes issues with F .

It could be that a practice is introduced as
a consequence of a situation. That is, we could
be observing a reverse causal relationship.
A4: F is the cause or enabler for using P .

4.3. Specific findings

In this section, we link together our specific find-
ings with relevant propositions, see Figure 4. In
the figure we show a list of agile practices with sta-
tistically significant associations to factors. The
factors are grouped into four blocks A1–A4 repre-
senting our propositions.The arrows denote poten-
tial explanations between factors and practices.

A product backlog is an authoritative list of new
features, changes, bug fixes, and other activities
that a team may deliver to achieve a specific
outcome [24].

Our results show a moderately strong
(Cramer’s V = 0.401) association between the
use of a backlog and worse perception of the en-
gineering process. In particular, frequent changes
in requirements, unclear objectives, and unsys-
tematic changes hindering the engineering pro-
cess are reported together with the use of the
backlog.
Unit testing is a practice to develop short scripts
to automate the examination of low-level behav-
ior of the software [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.379) between the use
of unit tests and teams’ attitudes. In particular,
a positive attitudes towards following the best
design, coding, and testing practices are reported
together with using unit testing.

Our findings also show a moderately strong
association (Cramer’s V = 0.391) between the
use of unit testing and less reliance on manual
testing of the product.

58 Eriks Klotins et al.

A2: Use of P hinders F
Potential adverse effects from

using practices

A3: Use of P exposes issues with F
Situations potentially exposed by using

practices

A1: P improves perception of F
Potential (perceived) improvements

from using a practice

A4: F is a the cause for using P
Situations potentially causing a

practice to be used

Unit testing

Positive attitude towards
following the best practices

Continuous integration

Story mapping

Relative estimation

Balanced tradeoff between
time-to-market and scope

Minimal resources and time
pressure

More automation and less
dependency on manual

testing

Automated build

Card, conversation,
confirmation

Good source code quality

Iterations

Up to date architecture and
more optimal technologies

Better overall product quality

Given-When-Then

INVEST

Collective ownership

Backlog

Facilitation

Definition of done

Velocity

Simple design

Team room

Good process in place to
handle vague goals and

changing objectives

Poor source code quality

Substantial resources and
time pressure

Poor overall product quality

Improved attitude towards
following the best practices

Improved tradeoff between
time-to-market and scope

Alleviated resources and time
pressure

More automation and less
dependency on manual

testing

Improved source code quality

Improved architecture and
optimal selection of

technologies

Improved overall product
quality

Exposes issues with source
code quality

Exposes issues with overall
product quality

Exposes process issues from
unanticipated changes and

vague objectives

Exposes negative attitudes
towards following the best

practices

Exposes issues with
resources and time

constraints

Creates issues with source
code quality

Hinders overall product
quality

Introduces unanticipated
changes and vague objectives

Fosters negative attitudes
towards following the best

practices

Tightens resources and time
constraints

Burndown chart

Negative attitudes towards
following the best practices

Agile practices (P)

Figure 4. Overview of the findings and the propositions.
We show agile practices and different explanations for the associations (A1–A4)

Continuous integration aims to minimize the du-
ration and effort of each integration episode and
maintain readiness to deliver a complete product
at any moment [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.360) between the use
of continuous integration and more positive atti-
tudes towards using sound design, coding, and
testing practices.

Our findings also show a moderately strong
association (Cramer’s V = 0.368) between the
use of continuous integration and more positive
estimates of product internal and external qual-
ity, and less slipped defects.
Automated build is a practice to automate the
steps of compiling, linking, and packaging the
software for deployment [24].

Our findings show a moderately strong
(Cramer’s V = 0.346) association between the

use of automated build and worse estimates in
the engineering process.

Our findings also show a moderately strong
(Cramer’s V = 0.374) association between the
use of automated builds and more positive esti-
mates on the source code quality.
Definition of done is a list of criteria which a task
must meet before it is considered done [24].

Our findings show a moderately strong
(Cramer’s V = 0.411) association between the
use of a definition of done and worse attitudes
towards following best engineering practices.
Simple design is a practice to favor simple, mod-
ular, and reusable software designs that are cre-
ated as needed [24].

Our findings show a moderately strong as-
sociation (Cramer’s V = 0.365) between simple
design practices and more pressing time and re-
source concerns.

Use of Agile Practices in Start-up Companies 59

Burndown chart is a graph visualizing the re-
maining work (x-axis) over time (y-axis) [24].

Our findings show a moderately strong as-
sociation (Cramer’s V = 0.383) between the
use of the burndown chart and worse estimates
on teams’ attitudes towards following the best
engineering practices.

Our findings also show a moderately strong
association (Cramer’s V = 0.384) between the
use of the burndown chart and less time and
resource pressure.
Story mapping is a practice to organize user sto-
ries in a two-dimensional map according to their
priority and level of sophistication. Such a map
is used to identify requirements for a bare-bones
but usable first release, and subsequent levels of
increased functionality [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.356) between the use of
story mapping and a more pragmatic approach
to handing the trade-off between time-to-market
and following best engineering practices.
Relative estimation comprises of estimating task
effort in relation to other similar tasks, and not
absolute units [24].

Our findings show a moderately strong as-
sociation (Cramer’s V = 0.399) between the
use of relative estimation and worse attitudes
towards following the best testing, architecture,
and coding practices.

Our results also show a moderately strong as-
sociation (Cramer’s V = 0.399) between the use
of relative estimates and less time and resource
pressure.
Velocity is a metric to calculate how long it will
take to complete the project based on past per-
formance [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.435) between the use of
velocity and worse attitudes towards following
the best engineering practices.
Team room is a dedicated, secluded, and equipped
space for an agile team to collaborate on the
project [24].

Our findings show a moderately strong as-
sociation (Cramer’s V = 0.343) between theuse

of a team room and more pressing time and
resource constraints.
Facilitation is a practice to have a dedicated
person in the meeting, ensuring effective com-
munication, and maintaining focus on the objec-
tives [24].
Given-When-Then is a template for formulat-
ing user stories comprising of some contextual
information, triggers or actions, and a set of
observable consequences [24].
INVEST is a checklist to evaluate the quality of
a user story [24].

Our findings show a moderately strong as-
sociation (Cramer’s V = 0.330) between the
use of any of the three practices (Facilitation,
Given-When-Then, and INVEST) and worse es-
timates on the product source code quality.
Iterations are time-boxed intervals in an agile
project in which the work is organized. The
project consists of multiple iterations, tasks, and
objectives for the next iteration and is revised
just before it starts [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.359) between the use
of iterations and more positive estimates on the
quality of the product architecture. Specifically,
respondents report fewer workarounds, more op-
timal selection of technologies, and fewer issues
with outdated designs.
Collective ownership is a practice to empower
any developer to modify any part of the project
source code [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.372) between collective
ownership and worse estimates on the product’s
internal and external quality.
Card, Conversation, Confirmation is a pattern
capturing the life cycle of a user story. The life cy-
cle starts with a tangible “card”, “conversations”
regarding the user story occurs throughout the
project; finally, a “confirmation” is received of
a successful implementation of the user story [24].

Our findings show a moderately strong asso-
ciation (Cramer’s V = 0.422) between the use
of the life-cycle pattern and less dependence on
manual testing of the product.

60 Eriks Klotins et al.

5. Discussion

5.1. Answers to our research questions

RQ1: How are Agile practices used in start-
-ups. Our results show that start-ups use Agile
practices, even though they do not follow any
specific agile methodology. Such results confirm
earlier findings, e.g., Giardino et al. [7], and Yau
and Murphy [6], stated that engineering practices
and processes in start-ups gradually evolve from
rudimentary and ad hoc to more systematic.

The most frequently used practices are a back-
log, version control, refactoring, user stories, unit
tests, and kanban board. We could not identify
any clear tendencies comparing the frequencies
of practices between different cohorts, e.g., team
size, product stage, and team skill levels.

Our results show limited adoption of ver-
sion control, a backlog, and refactoring. The use
of these practices is reported only by 30–50%
of cases. Disuse of such practices is reported
both by respondents with and without software
engineering background. This is surprising, as,
e.g., version control is a widely adopted soft-
ware development practice, can be applied with
minimal overhead, and provide substantial ben-
efits [45, 46]. Thus, not benefiting from version
control to manage the source code is difficult
to excuse with lack of resources, time shifting
priorities, or other pressing concerns [3].

The use of Agile practices does not imply
that an organization follows agile principles as
proposed by the Agile manifesto [14]. Many of
the Agile practices, for example, version con-
trol, unit testing, and refactoring, among others,
could be equally well applied to other types of
development methodologies. That said, a major-
ity of start-ups characterize their development
methodology as agile. Exploring the maturity of
agile processes in start-ups remains a direction
for further exploration [9, 47].
RQ2: What are the associations between
specific Agile practices and product factors.
We identify associations between the use of Agile
practices and product architecture, source code
quality, test automation, and the overall level of
quality. We could not identify any associations

regarding the quality and understandability of
product documentation.

Practices related to automation, e.g., unit
tests, automated build, and continuous inte-
gration, are associated with positive estimates
of product factors. Practices related to re-
quirements quality, e.g., Given-When-Then, and
INVEST, show negative associations. It could
be that start-ups introduce such practices as
a response to the adverse effects of poor require-
ments. However, the causal effects of using Agile
practices need to be explored further to draw
any definitive conclusions.

The use of collective ownership is associated
with negative estimates of overall product qual-
ity. We propose two interpretations: a) collective
ownership exposes the actual state of product
internal quality, b) collective ownership has ad-
verse effects.

If two or more developers collaborate on the
same part of the product, they may have a more
objective view of its flaws. A single developer
working on and “owning” a part of a product
may be biased in estimating its quality [48].

Alternatively, inviting other developers to
work on the part of a product could introduce
defects. Other developers, who are not the orig-
inal authors, may lack the essential contextual
information to evaluate and change the compo-
nent without introducing defects. Practices such
as unit testing, continuous integration, and pair
programming may help to prevent defects and
distribute knowledge in the team. Collective own-
ership could be an example of a practice that
must be supported by other practices to avoid
adverse effects.
RQ3: What are the associations between
specific Agile practices and team factors.
Most associations pertain to teams’ attitudes to-
wards the following the best engineering practices.
Both positive and negative attitudes towards the
best engineering practices are precedents for using
several practices. Automation practices, such as
unit tests and continuous integration, are asso-
ciated with positive attitudes. However, control
and planning practices, such as the definition of
done, burndown chart, relative estimation, and
velocity, are associated with negative attitudes to-

Use of Agile Practices in Start-up Companies 61

wards the following the best engineering practices.
We explain such results with the need for tighter
control over the team’s performance when they
do not see the benefits of following best practices.

We observe several associations between the
use of Agile practices and respondents’ estimates
towards time and resource pressures. The use
of burndown charts and relative estimates are
associated with less pressure. We interpret such
findings that the use of resource planning and
control practices helps to plan any amount of
resources better and alleviate the pressure.

We have not identified any associations about
communication in the team. Other authors, e.g.,
Yau et al. [6] and Sutton [13], have identified
that in small start-up teams, communication is
not an issue. Small collocated teams do not need
additional support for coordination. Such find-
ing leads us to argue that the primary reasons
for introducing Agile practices in start-ups are
tighter control over a team’s performance and
resource utilization.

5.2. Implications to research

In this study, we have set forth a number propo-
sitions for further investigation. Looking at the
propositions summarized in Figure 4, we identify
several cross-cutting concerns to address with
further studies in the area.

Our results suggest that software start-ups
adopt Agile practices one by one without fol-
lowing any particular agile methodology, e.g.,
scrum or XP. Such finding is supported by ear-
lier work, for example, Giardino et al. [7] and
Gralha et al. [49], reporting that new practices
are introduced gradually and aimed at address-
ing specific concerns. However, existing research
on adopting agile software engineering considers
mostly the adoption of whole methodologies, e.g.,
scrum or XP, and not individual practices [36].
We identify an opportunity for more fine-grained
research on how to adopt Agile practices in small
organizations to address their specific concerns.

Our results suggest a limited adoption of ubiq-
uitous engineering practices such as the use of ver-
sion control, backlog, and refactoring, reported
only by 30–50% of cases, see Figure 3. While

this result could be explained by the limitations
of the survey data collection method, it also
suggests a potential disuse of essential software
engineering practices in start-ups. This result
invites further research to understand how much
neglect of the best engineering practices is moti-
vated by the engineering context and how much
by the lack of engineering acumen in start-ups.

Related work identifies the need to be more
flexible and to alleviate the need for rigorous up-
front planning as the primary goal for adopting
agile. Other objectives include the aim to improve
product quality, shorten feedback loops with cus-
tomers, and to improve teams’ morale [36]. Such
objectives are superficial and do not support the
adoption of specific practices or addressing spe-
cific start-up specific challenges [3]. We identify
an opportunity to explore the precedents of intro-
ducing specific Agile practices, and longitudinal
studies examining the effects of specific practices.

5.3. Implications for practitioners

Examining our findings, we identify several rele-
vant patterns for practitioners.

Teams’ attitudes towards following the best
engineering practices appear as a strong denomi-
nator of adopting a range of Agile practices. Pos-
itive attitudes towards good practices drive the
adoption of automated testing and continuous
integration. Such practices have further positive
effects on software quality.

Many respondents, both with and without
a software engineering background, failed to re-
port using, for example, version control, refactor-
ing, and unit tests. These are standard software
engineering practices, applicable with minimal
overhead, and could provide substantial benefits
in any software development context.

Negative attitudes towards best practices are
associated with the use of practices for progress
control, such as the definition of a done, burn-
down chart, and effort estimation. Our explana-
tion for such a finding is that teams implement
such practices to have tighter control over the
development process.

Our results suggest that the primary benefits
of adopting Agile practices are tighter control

62 Eriks Klotins et al.

over the team’s performance and product quality.
The use of progress control practices alleviates
resource pressures.

6. Conclusions

In this study, we investigate associations between
the use of Agile practices and perceived impact
on various product and team factors in software
start-ups. Based on our findings, we set forth a
number of propositions that narrow down the
space of investigation for future studies on Agile
practices and start-ups.

We conclude that start-ups adopt Agile prac-
tices, however do not follow any specific method-
ology. The use of Agile practices is associated
with improved product quality, more positive
attitudes towards following the best engineering
practices, and tighter control over resource uti-
lization. However, the exploration of the causal
effects remains a direction of further work.

We have formulated several implications for
researchers and practitioners. We identify an op-
portunity for more fine-grained studies (on a
practice level) into the adoption and effects of
Agile practices. We conclude that Agile practices
show a potential to be used in start-ups setting,
however, adopting individual practices without
considering supporting practices could lead to
adverse effects.

7. Acknowledgements

The authors of this paper would like to thank
all practitioners who found time and motiva-
tion to participate in this study. Reaching this
diverse population of start-ups would not be
possible without help and support from Soft-
ware Start-up Research Network4 community,
and specifically Nana Assyne, Anh Nguyen Duc,
Ronald Jabangwe, Jorge Melegati, Bajwa Sohaib
Shahid, Xiaofeng Wang, Rafael Matone Chanin,
and Pekka Abrahamsson.

This work is partially funded by the Foun-
dation for Research Support of the State of Rio

Grande do Sul (17/2551-0001/205-4) and the
Brazilian National Council for Scientific and
Technological Development.

References

[1] C. Giardino, S.S. Bajwa, and X. Wang, “Key
challenges in early-stage software startups,” in
Agile Processes, in Software Engineering, and
Extreme Programming, Vol. 212, 2015, pp. 52–63.

[2] S. Blank, “Why the lean start up changes every-
thing,” Harvard Business Review, Vol. 91, No. 5,
2013, p. 64.

[3] C. Giardino, M. Unterkalmsteiner, N. Paternos-
ter, T. Gorschek, and P. Abrahamsson, “What
do we know about software development in star-
tups?” IEEE Software, Vol. 31, No. 5, 2014,
pp. 28–32.

[4] N. Paternoster, C. Giardino, M. Unterkalm-
steiner, T. Gorschek, and P. Abrahamsson,
“Software development in startup companies:
A systematic mapping study,” Information and
Software Technology, Vol. 56, No. 10, 2014,
pp. 1200–1218.

[5] E. Klotins, M. Unterkalmsteiner, and
T. Gorschek, “Software engineering in start-up
companies: An analysis of 88 experience reports,”
Empirical Software Engineering, Vol. 24, No. 1,
2019, pp. 68–102.

[6] A. Yau and C. Murphy, “Is a rigorous agile
methodology the best development strategy for
small scale tech startups?” University of Pennsyl-
vania Department of Computer and Information
Science, Tech. Rep., 2013.

[7] G. Carmine, N. Paternoster, M. Unterkalm-
steiner, T. Gorschek, and P. Abrahamsson, “Soft-
ware development in startup companies: The
greenfield startup model,” IEEE Transactions
on Software Engineering, Vol. 42, No. 6, 2016,
p. 233.

[8] J. Pantiuchina, M. Mondini, D. Khanna,
X. Wang, and P. Abrahamsson, “Are software
startups applying agile practices? the state of
the practice from a large survey,” in Interna-
tional Conference on Agile Software Develop-
ment. Springer, Cham, 2017, pp. 167–183.

[9] E. Klotins, M. Unterkalmsteiner, P. Chatzi-
petrou, T. Gorschek, R. Prikladniki, N. Tripathi,
and L. Pompermaier, “A progression model of
software engineering goals, challenges, and prac-
tices in start-ups,” IEEE Transactions on Soft-
ware Engineering, 2019.

4The Software Start-up Research Network, https://softwarestartups.org/

Use of Agile Practices in Start-up Companies 63

[10] PitchBook Data, Inc., “European middle market
report 2h 2015,” Tech. Rep., 2015.

[11] PitchBook Data, Inc., “U.S. middle market re-
port Q4 2015,” Tech. Rep., 2015.

[12] E. Klotins, “Software start-ups through an em-
pirical lens: are start-ups snowflakes?” in 1st
International Workshop on Software-Intensive
Business: Start-Ups, Ecosystems and Platforms,
SiBW 2018, Espoo, Finland, 3 December 2018.
CEUR-WS, 2018.

[13] S.M. Sutton, E.C. Cubed, and M. Andretti, “The
role of process in a software start-up,” IEEE
Software, Vol. 17, No. 4, 2000, pp. 33–39.

[14] K. Beck, M. Beedle, A. Van Bennekum, A. Cock-
burn, W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries et al., “Mani-
festo for agile software development,” 2001.

[15] L. Rising and N.S. Janoff, “The Scrum software
development process for small teams,” IEEE
Software, No. August, 2000, pp. 26–32.

[16] V.E. Jyothi and K.N. Rao, “Effective implemen-
tation of agile practices-incoordination with lean
kanban,” International Journal on Computer
Science and Engineering, Vol. 4, No. 1, 2012,
p. 87.

[17] P. Diebold and M. Dahlem, “Agile practices in
practice: a mapping study,” in Proceedings of
the 18th International Conference on Evaluation
and Assessment in Software Engineering. ACM,
2014, p. 30.

[18] S. Jalali and C. Wohlin, “Global software en-
gineering and agile practices: a systematic re-
view,” Journal of software: Evolution and Pro-
cess, Vol. 24, No. 6, 2012, pp. 643–659.

[19] T. Chow and D.B. Cao, “A survey study of
critical success factors in agile software projects,”
Journal of Systems and Software, Vol. 81, No. 6,
2008, pp. 961–971.

[20] S. Misra, V. Kumar, U. Kumar, K. Fantazy,
and M. Akhter, “Agile software development
practices: evolution, principles, and criticisms,”
International Journal of Quality and Reliability
Management, Vol. 29, No. 9, 2012, pp. 972–980.

[21] A. Solinski and K. Petersen, “Prioritizing agile
benefits and limitations in relation to practice
usage,” Software Quality Journal, Vol. 24, No. 2,
2016, pp. 447–482.

[22] E. Mkpojiogu, N. Hashim, A. Al-Sakkaf, and
A. Hussain, “Software startups: Motivations for
agile adoption,” International Journal of Inno-
vative Technology and Exploring Engineering,
Vol. 8, No. 8S, 2019, pp. 454–459.

[23] R. Souza, L. Rocha, F. Silva, and I. Machado,
“Investigating agile practices in software star-

tups,” in Proceedings of the XXXIII Brazil-
ian Symposium on Software Engineering, 2019,
pp. 317–321.

[24] Agile Alliance, “Agile glossary,” https://www.
agilealliance.org/agile101/agile-glossary/, 2018,
[Online; accessed 20-April-2018].

[25] L. Layman, L. Williams, and L. Cunningham,
“Exploring extreme programming in context: an
industrial case study,” in Agile Development
Conference. IEEE, 2004, pp. 32–41.

[26] S. Ilieva, P. Ivanov, and E. Stefanova, “Analyses
of an agile methodology implementation,” in
Proceedings. 30th Euromicro Conference. IEEE,
2004, pp. 326–333.

[27] B. Kitchenham and S.L. Pfleeger, “Software qual-
ity: the elusive target [special issues section],”
IEEE Software, Vol. 13, No. 1, 1996, pp. 12–21.

[28] E. Tom, A. Aurum, and R. Vidgen, “An explo-
ration of technical debt,” Journal of Systems and
Software, Vol. 86, No. 6, 2013, pp. 1498–1516.

[29] G. Lucassen, F. Dalpiaz, J.M.E. van der Werf,
and S. Brinkkemper, “Forging high-quality user
stories: towards a discipline for agile require-
ments,” in IEEE 23rd international require-
ments engineering conference (RE). IEEE, 2015,
pp. 126–135.

[30] R. Khaled, P. Barr, J. Noble, and R. Bid-
dle, “System metaphor in extreme program-
ming: A semiotic approach,” in 7th International
Workshop on Organizational Semiotics. Citeseer,
2004.

[31] E.F. Collins and V.F. de Lucena, “Software test
automation practices in agile development en-
vironment: An industry experience report,” in
7th International Workshop on Automation of
Software Test (AST). IEEE, 2012, pp. 57–63.

[32] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sil-
litti, and G. Succi, “A case study on the impact
of refactoring on quality and productivity in an
agile team,” in IFIP Central and East European
Conference on Software Engineering Techniques.
Springer, 2007, pp. 252–266.

[33] B. Selic, “Agile documentation, anyone?” IEEE
Software, Vol. 26, No. 6, 2009.

[34] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
and A. De Lucia, “Do they really smell bad?
A study on developers’ perception of bad code
smells,” in IEEE International Conference on
Software Maintenance and Evolution. IEEE,
2014, pp. 101–110.

[35] M. Mantyla, J. Vanhanen, and C. Lassenius,
“A taxonomy and an initial empirical study of
bad smells in code,” in International Conference
on Software Maintenance, 2003, pp. 381–384.

64 Eriks Klotins et al.

[36] T. Dybå and T. Dingsøyr, “Empirical studies of
agile software development: A systematic review,”
Information and Software Technology, Vol. 50,
No. 9-10, 2008, pp. 833–859.

[37] E. Klotins, “Using the case survey method to ex-
plore engineering practices in software start-ups,”
in Proceedings of the 1st International Work-
shop on Software Engineering for Startups. IEEE
Press, 2017, pp. 24–26.

[38] R. Larsson, “Case survey methodology: Quanti-
tative analysis of patterns across case studies,”
Academy of Management Journal, Vol. 36, No. 6,
1993, pp. 1515–1546.

[39] A.C. Hope, “A simplified Monte Carlo signifi-
cance test procedure,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), 1968,
pp. 582–598.

[40] J. Cohen, Statistical power analysis for the be-
haviour sciences. Lawrence Erlbaum Associates,
1988.

[41] A. Agresti, An introduction to categorical data
analysis. Wiley New York, 1996, Vol. 135.

[42] P. Runeson, M. Höst, A. Rainer, and B. Reg-
nell, Case study research in software engineering.
John Wiley and Sons, Inc., 2012.

[43] W.W. Daniel, “Spearman rank correlation coef-
ficient,” Applied Nonparametric Statistics, 1990,
pp. 358–365.

[44] M. Crowne, “Why software product startups
fail and what to do about it,” in Engineering
Management Conference. Cambridge, UK: IEEE,
2002, pp. 338–343.

[45] B. De Alwis and J. Sillito, “Why are software
projects moving from centralized to decentral-
ized version control systems?” in ICSE Workshop
on Cooperative and Human Aspects on Software
Engineering. IEEE, 2009, pp. 36–39.

[46] E. Daka and G. Fraser, “A survey on unit test-
ing practices and problems,” in IEEE 25th In-
ternational Symposium on Software Reliability
Engineering. IEEE, 2014, pp. 201–211.

[47] L. Gren, R. Torkar, and R. Feldt, “The prospects
of a quantitative measurement of agility: A valida-
tion study on an agilematuritymodel,” Journal of
Systems and Software, Vol. 107, 2015, pp. 38–49.

[48] M. Ozer and D. Vogel, “Contextualized rela-
tionship between knowledge sharing and per-
formance in software development,” Journal
of Management Information Systems, Vol. 32,
No. 2, 2015, pp. 134–161.

[49] C. Gralha, D. Damian, A.I.T. Wasserman,
M. Goulão, and J. Araújo, “The evolution of
requirements practices in software startups,”
in Proceedings of the 40th International Con-
ference on Software Engineering. ACM, 2018,
pp. 823–833.

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 65–84, DOI 10.37190/e-Inf210104

A Framework for the Regression Testing of
Model-to-Model Transformations

Issam Al-Azzoni∗, Saqib Iqbal∗
∗Department of Software Engineering and Computer Science, Al Ain University, Al Ain, UAE

issam.alazzoni@aau.ac.ae, saqib.iqbal@aau.ac.ae

Abstract
Background: Model transformations play a key role in Model-Driven Engineering (MDE).
Testing model transformation is an important activity to ensure the quality and correctness of the
generated models. However, during the evolution and maintenance of these model transformation
programs, frequently testing them by running a large number of test cases can be costly. Regression
test selection is a form of testing, which selects tests from an existing test suite to test a modified
program.
Aim: The aim of the paper is to present a test selection approach for the regression testing of
model transformations. The selected test case suite should be smaller in size than the full test
suite, thereby reducing the testing overhead, while at the same time the fault detection capability
of the full test suite should not be compromised.
Method: approach is based on the use of a traceability mapping of test cases with their
corresponding rules to select the affected test items. The approach is complemented with a tool
that automates the proposed process.
Results: Our experiments show that the proposed approach succeeds in reducing the size of the
selected test case suite, and hence its execution time, while not compromising the fault detection
capability of the full test suite.
Conclusion: The experimental results confirm that our regression test selection approach is
cost-effective compared to a retest strategy.

Keywords: Model Transformation, Regression Testing, MDE

1. Introduction

Model-Driven Engineering (MDE) refers to rep-
resenting, designing, and developing a system
in the form of models [1]. A model is a core
artifact of MDE, which refers to an abstract
representation of data and behavior of a sys-
tem. Model transformations are currently used
in a variety of industrial projects [2] and ensur-
ing their correctness is important [3, 4]. Model
transformation programs are frequently changed
during the evolution and maintenance phases
of their life cycle. Several techniques for testing
model transformations have been proposed in
the literature [5, 6]. However, these techniques

generally require executing a large number of
test cases to ensure the desired coverage criteria.
This can be time-consuming and may require
days or even weeks to complete.

During the regression testing of model trans-
formations, a test suite is generally available
for reuse [7]. However, a retest-all approach in
which all tests are rerun may consume excessive
time and resources. In contrast, regression test
selection techniques aim to reduce the time re-
quired to retest a modified program by selecting
a smaller subset of the existing test suite [7, 8].

There have been many regression test se-
lection techniques proposed for conventional
software written in regular programming lan-

Submitted: 15 August 2020; Revised: 31 January 2020; Accepted: 09 February 2021; Available online: 29 March 2021

66 Issam Al-Azzoni, Saqib Iqbal

guages [8]. However, only a few exist for testing
model transformation programs. For example,
the work of Alkhazi et al. [3] proposes an ap-
proach for test case selection for model transfor-
mations based on a multiobjective search. An-
other work by Shelburg et al. [9] examined the
issue of determining which test cases become
invalid when changes occur in a model transfor-
mation program. The work of Troya et al. [4]
presents an approach for fault localization for
model transformations.

In this paper, we present a framework for the
regression testing of model transformations, which
is based on the use of a metamodel that links test
cases to their corresponding test items and test
artifacts. To the best of our knowledge, this is
the first paper specifically proposing a framework
for the regression testing of model transforma-
tion programs based on traceability models. We
present a tool that can automatically create the
traceability model, given the source meta-model
and a set of input test models. The tool can also
be queried to obtain the set of selected test cases
for a changed rule.

Regression testing approaches can be classi-
fied into three main categories [8]: test suite min-
imization, test case selection, and test case pri-
oritization. Test suite minimization approaches
aim to reduce the size of a test suite by perma-
nently eliminating redundant test cases from the
test suite. Test case selection approaches aim to
select a subset of test cases that will be used to
test the changed parts of the software. Finally,
test case prioritization approaches attempt to
order test cases in a way that maximizes desir-
able properties, such as early fault detection. In
the context of model transformation testing, our
proposed approach can be classified into the test
case selection category.

The main contributions of this paper are sum-
marized as follows:
1. We present a test case metamodel that can be

exploited in the regression testing of model
transformations.

2. We present a tool that can automatically
build the required traceability models and se-
lect test cases based on the names of changed
rules.

3. We demonstrate the effectiveness of the pro-
posed framework using several experiments
which involve introducing several mutations
to the model transformation program and
being able to kill all the mutants using only
a subset of the test case set that is chosen
based on the framework. The experiments
also demonstrate the time saving benefit of
the proposed approach.
The organization of the rest of this paper is

as follows: First, we provide the necessary back-
ground and a motivating example in Section 2.
Our proposed approach for regression testing is
presented in Section 3. Section 4 discusses and
evaluates our experiments. The related literature
is discussed in Section 5. The conclusion and
future work are discussed in Section 6.

2. Study background and motivating
example

This section provides a description of the core
concepts and terms used in this research. In ad-
dition, we present a model transformation exam-
ple which motivates the regression test selection
framework presented in the paper.

2.1. Models and model transformation

Models play a central role in MDE. A model
represents a simplified or abstract representa-
tion of a part of a world (system) [10]. Models
of a system help to analyze certain properties
of the system without the need to consider its
full details. Models help designers and architects
to deal with the complexity present in systems.
The model needs to conform to a metamodel.
This means that the model needs to satisfy the
rules defined in the metamodel and it must re-
spect its semantics. A meta-modeling language is
used to specify metamodels. For example, Ecore
is a meta-modeling language used to specify
metamodels in the Eclipse Modeling Framework
(EMF) [11].

Models can be transformed into other models
allowing for several types of analysis at different
levels of abstraction. Model transformation refers

A Framework for the Regression Testing of Model-to-Model Transformations 67

Figure 1: Model transformations pattern [12]

(a) Class diagram before executing the push
down method transformation

(b) Class diagram after executing the push
down method transformation

Figure 2: Class diagram before and after executing the push down method transformation

to automatically creating a target model from
an existing source model by following transfor-
mation rules. A source model that conforms to
a source metamodel is transformed into a tar-
get model that conforms to a target metamodel.
A model-to-model transformation language is
used to specify the transformation rules. The
Epsilon Transformation Language (ETL), one
of the Epsilon platform [13, 14] set of languages
and tools, is a model-to-model transformation
language that can be used to transform models
specified in metamodels conforming to Ecore.
ETL builds on the Epsilon Object Language
(EOL), which is the main language in Epsilon for
providing common model management facilities
upon which several Epsilon-based languages are
based. The ATLAS Transformation Language
(ATL) is another model transformation language
developed on top of the Eclipse platform [15].

Figure 1, taken from [12], depicts the general
pattern of model transformations. M1 in Figure 1
represents the models, which are instances of the
metamodels represented by M2. Transformation
rules are specified to transform the model ele-
ments of the source model to the model elements
of the target model. The transformations are
performed by a transformation engine, which
reads a source model conforming to a source
metamodel and produces a target model that
conforms to a target metamodel.

Figure 2 shows an example of a model trans-
formation where a push-down method transfor-
mation has been applied to a class diagram. The
transformation pushed one of the methods from
the super class to a child class while implement-
ing better cohesiveness. Figure 2 (a) shows the
source model and Figure 2 (b) shows the tar-
get model. The automatic model transformation

68 Issam Al-Azzoni, Saqib Iqbal

saves time and energy compared to the manual
conversion and brings in the consistency of the
information provided the model transformation
is correctly defined.

In this paper, we used several languages and
tools from Epsilon. Epsilon [13, 14] is a family of
languages and tools for automating model man-
agement tasks, such as model transformation
and model testing. Epsilon is built on top of
the Eclipse platform and supports EMF-based
model management tasks. One of the languages
of Epsilon is the Epsilon Unit Testing Frame-
work (EUnit)’s language. EUnit [16, 17] is a unit
testing framework, specifically designed to test
model transformations. It is based on EOL and
Ant’s workflow task description. EUnit provides
a language for comparing models. Test cases can
be defined, reused, and automatically run on
different sets of models. The results of the test
cases can be viewed, and the differences between
the expected and the actual models are graphi-
cally visualized. EUnit uses EMF Compare as the
comparison engine [18]. For example, if the value
of an attribute of an element in the source model
is not equal to the value of the same element
in the target model, then the two models are
considered not equivalent. In this case, EUnit
reports the test case as a failed one.

2.2. Motivation example

In this example, we consider a model transfor-
mation example that uses ETL to transform
a model that conforms to an Object-Oriented
(OO) metamodel to a model that conforms to
a Database (DB) metamodel. The code of the
example was obtained from [19] and is presented
in the Appendix. Model transformation from
OO to DB models is a classic example which has
been used by several authors in the literature to
evaluate new techniques and approaches [20–22].

Figure 3 shows the OO metamodel. We only
include the metamodel elements that are involved
in the ETL transformation. The names of ab-
stract classes are shown in italics. There are four
concrete classes in the OO metamodel: Class, At-
tribute, Reference, and Package. In an OO model,
a package can be composed of other packages and
classes. A class can have features: attributes and
references. A feature can have a type: a DataType
in the case of an attribute and a Class in the case
of a reference. A class may extend another class.
In this case, the class will inherit all features of
the parent class.

Figure 4 shows the DB metamodel. We only
include the metamodel elements that are involved
in the ETL transformation. The names of ab-

OO

Class

isAbstract: Boolean

extends

0..1

0..*

extendedBy

Classifier

PackagableElement

NamedElement

name: String

Attribute

Feature

StructuredFeature

isMany: Boolean

owner
0..1

0..*
features

0..1
type

Reference

Package

package contents
0..*

DataType

Figure 3: The OO metamodel

A Framework for the Regression Testing of Model-to-Model Transformations 69

DB

Database

DatabaseElement

NamedElement

name: String

0..*

contents
database

Column

type: String

ForeignKey

isMany: Boolean

Table 0..*

table columns

0..*
primaryKeys 0..10..1

parentchild

Figure 4: The DB metamodel

stract classes are shown in italics. There are four
concrete classes in the DB metamodel: Table, Col-
umn, ForeignKey, and Database. In a DB model,
a database is composed of database elements:
tables, columns, and foreign keys. A table is
composed of zero or more columns. For a table,
a set of columns represent the primary keys for
the table. A foreign key is associated with two
columns: a child column and a parent column
that could be in different tables. The table has
a name attribute. Columns and foreign keys have
name and type attributes.

The ETL code for the OO to DB model trans-
formation consists of four rules: Class2Table,
SingleValuedAttribute2Column, MultiValuedAt-
tribute2Table, and Reference2ForeignKey. A brief
description of each rule is provided in the com-
ments. In ETL, each rule has a unique name
and also specifies one source element and at
least one target element. A rule can optionally
define a guard which is a Boolean expression
specifying a condition that must be met by the
source element in order to apply the rule on
that element. The body of a rule contains the
logic specifying how to populate the values of
the features of the target model elements. Some
of the rules invoke one or more of the three
user-defined EOL operations listed at the end
of the code: primaryKeyName(), valuesTable-
Name(), and toDbType(). The operation prima-
ryKeyName() returns a string that represents the
name of the primary key of the new table. The

operation valuesTableName() returns a string
that represents the name of the new table corre-
sponding to a multivalued attribute in the OO
model. The operation toDbType() returns a string
that represents a type in the DB model.

ownertype

demo:Package

Student:Class

isAbstract=false

Class:Class

isAbstract=false

students:Reference

isMany=true

Figure 5: A sample source test model

During the testing of the model transforma-
tion program, a tester typically creates a large
number of test cases. In each test case, the tester
defines two test models: the first one is the source
test model and the second one is the target test
model. The source test model conforms to the
source metamodel, while the target test model
conforms to the target metamodel. The assump-
tion is that in order for the test case to pass, the
model generated by the model transformation
program when the input is the source model
must be equivalent to the target model. Figure 5

70 Issam Al-Azzoni, Saqib Iqbal

:Database

Student:Table Class:Table

students:ForeignKey

studentID:Column

type="INT"

studentsId:Column

type="INT"

classId:Column

type="INT"

parentchild

primaryKeys

primaryKeys

Figure 6: The target model corresponding to the source model in Figure 5

shows a sample source test model. It is an OO
model containing two Classes: Student and Class
contained in the Package named demo. Both
Classes are not abstract (the value of isAbstract
is false in both Classes). There is a Reference
named students whose owner is Class and type
is Student. The target DB model obtained when
executing the model transformation is shown in
Figure 6. As expected, the Database contains
two Tables: Student and Class. The primary key
columns, classID and studentID, are created by
the rule Class2Table. The ForeignKey named
students and the foreign key column studentsId
are created by the rule Reference2ForeignKey.
The parent and child references of the students
ForeignKey are also set by the same rule to clas-
sId and studentsId, respectively.

The problem that this paper aims to tackle
can be summarized as follows. Suppose that
a tester has created a large number of test cases,
each with its corresponding source and target
models. During the maintenance and evolution
of the model transformation program, several
changes can be made to the program. A change
usually involves one or more of the transforma-
tion program’s rules. When a change is made
to the program, a tester needs to rerun the test
cases to ensure the correctness of the program.
However, instead of rerunning the whole test case
suite, this paper proposes a new framework that

selects a subset of the test cases in a way that
does not reduce the fault detection capability of
the original suite. The framework exploits the
traceability links between the rules in the trans-
formation program and the source and target
models of the related test cases. By applying this
regression test selection framework, the tester
benefits from the overhead and execution time
that are saved when using a smaller subset of
test cases for testing.

3. Approach

The proposed framework for regression test selec-
tion for model transformation relies on the use
of a metamodel that links test cases with their
corresponding test items and test artifacts. A test
item represents an item under test. In the context
of model transformation, a test item corresponds
to a rule (or a statement block within the rule).
A test case has a name that is used as an identifier
for the test case. The test artifacts identify the
test models related to the test item, including
the source (input) and target (expected) models.

A metamodel that meets such requirements
is shown in Figure 7. The metamodel is named as
TestCasesMM. A test case set consists of zero or
more test cases. Each test case is associated with
a test item which corresponds to the rule being

A Framework for the Regression Testing of Model-to-Model Transformations 71

TestCasesMM

TestCase

name: String

TestCaseSet

0..*testCases

SourceModel

name: String

TargetModel

name: String

sourceModel

0..1

targetModel

0..1

Rule

name: String
rule testCases
0..1 0..*

Figure 7: The test cases metamodel

tested by the test case. In cases where a test case
is related to more than one rule, the metamodel
definition allows to have repeated instances of
the TestCase meta-class, with the same name,
where each one is linked to an instance of the
Rule meta-class. In addition, a test case has two
test artifacts: a source model and a target model.
When a rule is changed, the model of the test
case set which conforms to TestCasesMM can
be used to identify the test cases that need to be
reexecuted. In addition, the model can be used
to identify the source and target models required
by each test case.

The traceability links in a test case model
can also be used to provide information on the
adequacy of the test cases. One example is check-
ing that every rule is linked to at least one test
case. If a rule is not linked to any test case, this
could indicate that this rule is not covered by
the test case set. In this case, a tester would
need to reexamine the test case set and add new
test cases to improve its coverage. In the Object
Constraint Language (OCL) [23] which is the
common standard to express constraints on mod-
els specified using object-oriented metamodeling
technologies, the constraint that every rule is
linked to at least one test case can be stated as
follows:

context Rule
inv RuleLinkedToAtLeastOneTestCase :
s e l f . t e s tCases −>notEmpty ()

Here, for a test case model to be valid, this con-
straint requires that the collection of test cases
linked to any rule is not empty. The keyword
context is used to specify the model element
to which the statement of the constraint applies.
This statement is a Boolean expression referred
to as invariant. The keyword inv is used to spec-
ify the invariant: first the name of the invariant is
provided, followed by a colon, which is followed
by the Boolean expression. In the expression,
self refers to the model element on which the
constraint is evaluated (i.e., whose name follows
the keyword context). Note that this example is
just one possible option for describing constraints
on test case models and that our approach does
not require it.

We have developed a tool to automate the
regression test selection process. The main objec-
tive of the tool is to automatically create the test
case model which conforms to the metamodel
shown in Figure 7. The project files are available
on GitHub at https://github.com/ialazzon/Re
gressionTestSelectionTool. The tool is a Java
program that does the following. First, it parses
the model transformation program and the EUnit
file containing the test case definitions. It also
reads all source test model files that are used by
the test cases defined in the EUnit file. Then,
it automatically creates the test case model, as
specified by our approach. Finally, when a tester
enters the name of a modified rule in the model

72 Issam Al-Azzoni, Saqib Iqbal

transformation program, the tool shows the con-
tents of a new EUnit file defining the test cases
selected by our approach. The tester can run
this EUnit file to execute the selected test cases,
rather than rerunning the original EUnit file con-
taining the full set of test cases. The tool was used
in all experiments conducted when validating the
approach (see Section 4).

4. Validation

To evaluate our approach, we conducted several
experiments using four different model transfor-
mation programs. This section starts with a list
of two research questions that the experiments
attempt to address. This is followed by a dis-
cussion of the experimental setup and results.
Finally, a discussion on the threats to validity is
provided.

4.1. Research questions

We defined two research questions as follows:
– RQ1: How does our approach of regression

test selection compare with a re-test-all strat-
egy? Investigating this question serves as
a sanity check step. If the results of our exper-
iments show no benefit of using our approach,
then we can conclude that our approach is
not needed and hence a tester would be better
off rerunning all test cases in a test suite.

– RQ2: How cost-effective is our approach?
We want to ensure that the fault detection
capability when rerunning a selected set of
test cases is not compromised, while at the
same time there is a significant saving in the
overhead involved when running these test
cases.

4.2. Experimental setup
and results discussion

To evaluate these research questions, we applied
our approach using the automated tool discussed
in Section 3 on four different transformation
programs. The first one is the OO2DB trans-
formation which has been presented as a moti-

vating example in Section 2.2. The second one
is the QN2QPN transformation which trans-
forms queueing networks into queueing Petri
nets. The QN2QPN transformation is written in
ATL [15]. It was developed by one of the authors
and is presented in [24]. The third one is the
BibTeX2DocBook transformation which trans-
forms a BibTeX model to a DocBook composed
document [25]. The fourth one is the CPL2SPL
transformation which transforms a CPL model
to an SPL model [26]. CPL and SPL are two
domain-specific languages used in telephony sys-
tems. Both BibTeX2DocBook and CPL2SPL
transformations are written in ATL and available
in the ATL Zoo [27].

Consider the OO2DB transformation. For
regression testing, we adopt the test case meta-
model, TestCasesMM, shown in Figure 7. Fig-
ure 8 shows part of the test case set model cre-
ated by our tool. It shows three test cases: TC1,
TC2, and TC3, with their associated rules and
test artifacts. For example, the test case TC1 is
designed to test the rule Reference2ForeignKey.
For this test case, the source model is OO1 and
the target model is DBExpected1. Note that the
model OO1 is the model shown in Figure 5 and
the model DBExpected1 is the model shown in
Figure 6.

We manually created a total of 15 test cases
using EUnit [17]. Five of the test cases were
designed to achieve full line coverage. These test
cases apply a white-box approach for testing the
model transformation code. For example, test
case TC1 whose input model is shown in Fig-
ure 5 covers the rule Reference2Foreign. Also,
two test cases TC3 and TC5 are needed to cover
the rule Class2Table since it has a Boolean con-
dition: one for the case where a class extends
some other class and one for the case where no
such class exists. The remaining test cases were
designed to achieve full partition coverage for all
classes, attributes, and associations in the OO
metamodel. This test design applies the coverage
adequacy criteria as defined by the black-box
model transformation testing approach in [28].
For example, in the OO metamodel (see Fig-
ure 3) a Class can have zero or more features.
Following the approach in [28], if a property

A Framework for the Regression Testing of Model-to-Model Transformations 73

TC1:TestCase

:TestCaseSet

OO1:SourceModel

DBExpected1:TargetModel

sourceModel

targetModel

Reference2ForeignKey:Rule

TC2:TestCase
OO2:SourceModel

DBExpected2:TargetModel

sourceModel

targetModel

SingleValuedAttribute2Column:Rule

TC3:TestCase
OO3:SourceModel

DBExpected3:TargetModel

sourceModel

targetModel

Class2Table:Rule

Figure 8: A partial model of the test case set

Table 1: The list of mutants

Mutant Line Original Code Modified Code
Number Number

1 102 fkCol.type=”INT”; fkCol.type=”INTX”;
2 54 c.name=a.name; c.name=”name”;
3 86 fkCol.type=”INT”; fkCol.type=”INTX”;
4 19 t .columns.add(pk); Line removed
5 36 childFkCol.type=”INT”; childFkCol.type=”INTX”;

Table 2: The test cases corresponding to the mutants in Table 1 and their results

Mutant Affected Selected Test No. of Coverage No. of
Number Rule Cases Selected Failed

Test Cases Test Cases
1 Reference2ForeignKey TC1, TC9 2 13.33% 2
2 SingleValuedAttribute2Column TC2, TC6–8 4 26.67% 3
3 MultiValuedAttribute2Table TC4 1 6.67% 1
4 Class2Table TC3, TC5-15 12 80.00% 12
5 Class2Table TC3, TC5-15 12 80.00% 3

74 Issam Al-Azzoni, Saqib Iqbal

has a multiplicity of 0..*, a partition such as
{{0}, {1}, {x}}, with x ≥ 2, is defined to ensure
that the test model contains instances where this
property holds with zero, one and more than one
object. Test cases TC6, TC7, and TC8 include
a Class which has zero, one, and two attributes,
respectively.

We introduced several mutations to model
transformation. For each mutant, our tool builds
the model of the test case set to trace the affected
rules to the test cases that need to be rerun. Ta-
ble 1 shows a list of the five mutants used in the
experiments. For each mutant, Table 2 shows the
set of test cases selected by our tool in addition to
their total number and coverage and the test case
results. Here, coverage refers to the proportion
of the number of selected test cases out of the
total number of available test cases. The results
show that our tool was successful in reducing
coverage in every case. It can also be observed
that at least one test case failed for each mutant.
This indicates that using the traceability links
in the test case model was effective in identify-
ing a subset of test cases that need to be rerun
and that are able to kill the mutants without
requiring to rerun the complete set of test cases.
In other words, the reduction in coverage of the
selected test cases did not compromise the fault
detection capability of our tool.

Consider the QN2QPN model transforma-
tion. This transformation consists of 10 rules. Ta-
ble 3 shows the information and results concern-

ing ten experiments using the QN2QPN trans-
formation. We created a mutation on a single
rule in every experiment. For each experiment,
the table shows which rule was mutated and the
type of mutation that was applied. The experi-
ments covered the four main types of mutation
operators on ATL transformations presented by
Troya et al. [29]. These mutation operators were
introduced by previous researchers to resemble
common semantic faults that programmers make
in model transformations [4]. Our experiments
were designed to have a good coverage of all
mutation operators proposed in literature. For
each experiment, the table shows the number of
test cases that were run and the execution time
in milliseconds (ms) when rerunning all the test
cases and when rerunning only the test cases se-
lected by our tool. The percentages shown in red
are the reductions (savings) that were achieved
when rerunning the selected test cases only vs.
rerunning all test cases. Larger values for the
reductions represent higher savings.

To report the execution times, we conducted
the experiments on a desktop with 4-core CPU
running at 2.7 GHz and 8 GBs of RAM. Every
measurement was repeated 10 times and the
average values are presented here. Before each
repetition, a warm-up session was conducted to
eliminate the overhead caused by initialization
processes in EUnit. The execution time of run-
ning a test suite was reported by EUnit as the
wallclock time of executing the whole test suite.

Table 3: Results for the QN2QPN model transformation example

ID Rule Affected Type of Change Rerun All Rerun Selected Only
of test Execution # of test Execution

cases time (ms) cases time (ms)
1 Main Binding – Value Change 34 13064 34 (0%) 13255 (−1%)
2 Server Filter – Addition 34 13762 23 (32%) 9015 (34%)
3 SourceNode Binding – Deletion 34 12982 17 (50%) 6804 (48%)
4 SinkNode In Pattern Element – Class Change 34 11890 7 (79%) 2937 (75%)
5 NonServerNode Binding – Deletion 34 13375 13 (62%) 5442 (59%)
6 ThinkDevice Matched Rule – Deletion 34 12256 13 (62%) 5157 (58%)
7 Arc Out Pattern Element – Addition 34 13446 23 (32%) 8982 (33%)
8 ServiceRequest Binding – Deletion 34 13277 22 (35%) 8263 (38%)
9 WorkloadRouting Binding – Value Change 34 12898 22 (35%) 8474 (34%)

10 Workload Out Pattern Element – Addition and
Deletion

34 12013 30 (12%) 10462 (13%)

A Framework for the Regression Testing of Model-to-Model Transformations 75

Table 4: Results for the BibTeX2DocBook model transformation example

ID Rule affected Type of change Rerun all Rerun selected only
of tests Execution # of tests Execution

cases time (ms) cases time (ms)
1 Author Binding – Value Change 25 7038 24 (4%) 6710 (4.66%)
2 TitledEntry Title NoArticle Binding – Deletion 25 6765 9 (64%) 2813 (58.42%)
3 Article Title Journal Binding – Deletion 25 7007 19 (24%) 5269 (24.80%)
4 Article Title Journal Matched Rule

– Deletion
25 6737 19 (24%) 5157 (20.26%)

5 Main Out Pattern Element
– Addition

25 6690 25 (0%) 6690 (0%)

6 UntitledEntry Binding – Deletion 25 5844 25 (0%) 5844 (0%)
7 TitledEntry Title NoArticle Binding – Value Change 25 6648 9 (64%) 2666 (59.90%)

The results in Table 3 show good reduction
in terms of the number of selected cases and the
execution time. The exception is in the first rule,
Main, where there is no reduction in the number
of selected test cases. This is because this rule is
executed by the transformation on every input
model, and hence any input test model will be
automatically selected by our tool. The reduc-
tions reached more than 75% in Experiment 4.
It is also important to mention that in each ex-
periment at least one of the test cases failed the
test (as reported by the EUnit tool) in both the
Rerun all and Rerun Selected-only cases. This
indicates that the fault detection capability was
not diminished when rerunning the selected test
cases. At the same time, a good savings in terms
of the testing execution time were materialized.

Table 4 presents the results concerning the
BibTeX2DocBook transformation. Note that this
transformation consists of nine rules. In our
experiments, we randomly selected a total of
25 test cases out of the 100 test cases available
in the test suite taken from a previous work on
spectrum-based fault detection in model transfor-
mations [4]. The test cases in the test suite were
semi-automatically created using model genera-
tion scripts. We obtained the test suite from [30].
These 25 test cases represent the full test suite
that is input to our tool for test case selection.
The table shows good reductions in the size of the
selected test cases and the execution time as well.
However, there is little or no reduction in cases 1,
5, and 6. For case 1, the Author rule applies on
Author elements which appear in almost all of

the test cases. Hence, our tool selects all of these
test cases resulting in a very small reduction in
the size of the selected test cases. For cases 5 and
6, the Main and UntitledEntry rules apply on
source meta-classes whose instances appear in
all of the test cases. For example, the Main rule
which applies on BibTeXFile elements is executed
on every input model since every BibTex model
has a root element of type BibTeXFile. Also, the
UntitledEntry rule applies on elements of the Bib-
TeXEntry source meta-class which is a superclass
for many of the source meta-classes. Note that in
each of the cases in Table 4 at least one of the test
cases failed when running the selected test cases.

Table 5 presents the results concerning the
CPL2SPL transformation. This transforma-
tion consists of 19 rules. Similar to the Bib-
Tex2DocBook transformation case, we randomly
selected a total of 35 test cases from the test suite
taken from [30]. In all cases, the table shows good
reductions in the size of the selected test cases
and the execution time as well. In addition, in
all cases, rerunning the test cases selected by
our tool resulted in at least one test case failure,
indicating that the test suites selected by our
tool were able to discover the mutants.

Table 6 shows the execution time results for
the four case studies. For each case study, the
table shows the time it took our tool to generate
the test case model. The table shows the confi-
dence intervals on a 95% confidence level. These
intervals were obtained using the one-sample
t-test [31] which is valid to be used in our case
since the same size is small (30 execution time

76 Issam Al-Azzoni, Saqib Iqbal

Table 5: Results for the CPL2SPL model transformation example

ID Rule affected Type of change Rerun all Rerun selected only
of test Execution # of test Execution

cases time (ms) cases time (ms)
1 NoAnswer2SelectCase Binding – Value

Change
35 12656 2 (94.29%) 1118 (91.17%)

2 Busy2SelectCase Filter – Addition 35 14130 3 (91.43%) 1419 (89.96%)
3 NoAnswer2SelectCase Binding – Deletion 35 14459 2 (94.29%) 1131 (92.18%)
4 StringSwitch2SelectStat In Pattern Element

– Class Change
35 13224 11 (68.57%) 4458 (66.29%)

5 SwitchedAddress2SelectCase Binding – Deletion 35 13039 1 (97.14%) 739 (94.33%)
6 Outgoing2Method Matched Rule

– Deletion
35 13191 2 (94.29%) 1087 (91.76%)

7 SubAction2Function Out Pattern Element
– Addition

35 13529 4 (88.57%) 1858 (86.27%)

8 StringSwitch2SelectStat Binding – Deletion 35 14792 11 (68.57%) 5052 (65.85%)
9 Incoming2Method Binding – Value

Change
35 12716 4 (88.57%) 1889 (85.14%)

10 Proxy2Select Out Pattern Element
– Addition and
Deletion

35 14064 5 (85.71%) 1251 (91.10%)

Table 6: The execution times for test case model generation

Case Study Mean (ms) The 95% Confidence Interval
OO2DB2 29.73 (25.46, 34.00)
QN2QPN 62.17 (54.62, 69.72)

BibTeX2DocBook 54.63 (48.73, 60.54)
CPL2SPL 75.13 (65.25, 85.01)

results in each case study) and the normality
check provides good support for the assumption
that the population is normally distributed. It is
of interest to note that these observed execution
times are very small compared with the test case
execution time results noted in the previous ta-
bles in this section. In addition, our tool was able
to automatically generate the test case models
with no considerable cost on part of the tester.

4.3. Threats to validity

There are four basic types of validity threats that
can affect the validity of the conclusions of our
experiments [32]:
1. Conclusion Validity: Threats to the conclu-

sion validity are concerned with factors that
affect the ability to draw the correct conclu-
sions based on the observed data. To address

this threat, we used confidence intervals based
on a 95% confidence level. These intervals
were obtained using the one-sample t-test
after passing the normality check. Also, we
used the wallclock times reported by the EU-
nit tool for all test case suite execution time
results reported in the paper. We have also
used a variety of mutation operators in the
experiments.

2. Construct Validity: This validity is concerned
with the relationship between theory and ob-
servation. To address this threat, we used
standard performance measures and metrics,
including rule coverage and execution time.
These metrics have been used in other similar
work on regression testing for model transfor-
mations, such as [3, 4].

3. Internal Validity: This validity is concerned
with establishing a causal relationship be-

A Framework for the Regression Testing of Model-to-Model Transformations 77

tween the treatment (in this case, the appli-
cation of our approach) and the results of our
evaluation. Threats to this validity include
any disturbing factor that might influence the
results. As our experiments demonstrated,
the execution time of a test case suite is di-
rectly proportional to its size. Therefore, the
observed reductions in execution time can be
justified by the selection of a smaller num-
ber of test cases by applying our approach.
In addition, in every experiment we made
a mutation to a single rule only. Every mu-
tation applied one of the mutation operators
proposed in literature [29, 33]. If a rule is
mutated, then this would affect any input
test model that includes an element on which
the rule is applied. Hence, our tool would
automatically select the corresponding test
case for rerun. Hence, the fault detection ca-
pability of the original test case suite is not
compromised by the suite of the test cases
selected by our tool.

4. External Validity: This validity is concerned
with generalization. The evaluation applied
our approach on two model transformations
written in two languages: ETL and ATL. We
applied different types of mutation opera-
tors, and the test models were of different
sizes. The test cases were created manually
to achieve a variety of coverage criteria. Yet,
we cannot make a firm conclusion that our
results can be generalized for all model trans-
formations. More experiments are needed in
the future to confirm our findings on a wider
scope of model transformations, including dif-
ferent languages, coverage criteria, types of
mutations and faults, and input test models.

5. Related work

Alkhazi et al. [3] propose an approach for test
case selection for model transformation based
on multiobjective search. The approach enables
a tester to find the best tradeoff between two con-
flicting objectives: maximizing rule coverage and
minimizing the execution time of the selected test
cases. A multiobjective algorithm (NSGA-II) is

used to find the Pareto-optimal solutions for this
problem. The approach was validated using differ-
ent transformation programs written in ATL. In
comparison to their approach, our approach aims
to be a safe test case selection technique. A test
selection technique is said to be safe if it selects
all modification-revealing tests [7]. Our proposed
technique will select any test case for rerun when
its input model contains an element that could
be affected by a change in one of the model trans-
formation rules. Our approach does not consider
the trade-off between rule coverage and execu-
tion time. However, our experiments show good
saving in test execution time when applying our
approach while not compromising the fault de-
tection capability of the full test case suite.

In [20], model transformation traceability is
used to enhance the automation of qualifying
and improving a set of test models in the mu-
tation analysis of model transformation. The
approach relies on a representation of different
mutation operators and a traceability mecha-
nism to establish links between the input and
output models of each transformation. Patterns
are used to identify cases where an input test
model lets a given mutant alive. Subsequently,
heuristics provide recommendations to generate
new test models that are able to kill the mutant.
Several aspects of the approach are independent
from the transformation language being used,
including the traceability and the mutation op-
erator representation. Our approach focuses on
regression testing of model transformation rather
than mutation analysis. Hence, our approach uses
a traceability model linking test cases to the rules
in a given model transformation. When a rule
is changed, the traceability model can be used
to identify the test cases that need to be rerun.
Our traceability model differs from that in [20]
which maintains links between elements of the
input and output models for each mutant. This
is a more detailed model suitable for mutation
analysis of model transformation.

A multiobjective optimization algorithm is
employed in [9] to generate test models for the
regression testing of model transformations. The
proposed approach assumes that the changes
occur in the input metamodel only. In this case,

78 Issam Al-Azzoni, Saqib Iqbal

a test model may become invalid when it does
not conform to the updated input metamodel.
The optimization algorithm has three objectives
that define the characteristics of a good solution:
maximize coverage of the updated metamodel,
minimize the number of input model elements
that do not conform to the updated metamodel,
and minimize the number of refactorings used to
refactor the existing test models. In our approach,
we assume that the input and output metamod-
els are fixed and only the model transformation
program may change. While the approach in [9]
is useful to determine and update the test models
that become invalid due to a change in the input
metamodel, our approach utilizes traceability
links to determine the test cases that need to be
rerun due to an update in the model transforma-
tion program.

Honfi et al. [34] presented a method on how
model-based regression testing can be achieved in
the context of autonomous robots. The method
uses optimization for selecting the minimal sub-
set of tests that have a maximum test cover-
age of the changed components. Although the
method is presented in the context of robots,
it is applicable to other domains which employ
Model-Driven Development (MDD) paradigm.
In MDD, models are adopted as the main devel-
opment artifacts. These models are commonly
created using domain specific languages (DSLs).
When a model is changed, this can impact the
system functions and properties and hence the
influenced parts of the system need to be retested.
A prototype tool that implements the method
using the Eclipse framework [35] and its modeling
platform EMF [11] is presented. The tool sup-
ports model checkpointing and automatic change
detection. Our approach is similar to [34] in terms
of employing a metamodel to represent the rela-
tionship between the test items and the test cases.
However, our approach is focused on applying
regression testing to a model transformation. We
consider the issues specific to a model transfor-
mation which can be more useful to a tester of
model transformation programs.

A survey of model transformation testing ap-
proaches is provided in [6] and [36]. Gonzálex
and Cabot [37] developed a tool, called ATLTest,

to generate test input models for ATL transfor-
mations. The tool applies a white-box approach
for model transformation testing. In the work of
Fleurey et al. [28], model fragments are used as
a test adequacy criterion which forms the basis
of the black-box approach proposed by the au-
thors. Other approaches rely on formal methods
to verify the transformation and its associated
properties [38–40]. The problem with these ap-
proaches is their computational complexity which
becomes cumbersome with the scale of the model
transformation program.

Zech et al. proposed a model-based regres-
sion testing method based on OCL [41]. The
method derives test cases for a given system
under test (SUT) based on the availability of
a class diagram that captures its system design.
The approach is based on a Model Versioning
and Evolution (MoVE) framework and uses UML
testing profile (UTP) to model test cases. The
method calculates a delta from a base model
(the initial development model) and the working
model (the current development model). The
resulting change set (delta) then contains the dif-
ferences between the two versions of the model.
There are three main differences between the
method by Zech et al. and our method. First, our
method presents a regression testing approach for
model transformation while the method by Zech
et al. presents a regression testing approach of
a software system using its design model. Second,
Our approach requires a metamodel of the test
case set while the method by Zech et al. does
not need any metamodel, but rather uses the
facilities provided in an MoVE framework. The
last difference is that our approach exploits trace-
ability links between models while the method
by Zech et al. does not use any traceability link.
A similar model-based regression testing for soft-
ware systems that works with sequence diagrams
is presented in [42]. In [43], Al-Refai et al. pro-
vide a framework for model-based regression test
selection supporting modifications to UML class
and activity diagrams. Using mutation testing,
their experimental results demonstrate that the
selected test cases achieve the same fault detec-
tion capability as that achieved by the complete
set of test sets.

A Framework for the Regression Testing of Model-to-Model Transformations 79

The work of Troya et al. [44] proposes an ap-
proach for automatically inferring metamorphic
relations for testing ATL model transformations.
The inferred metamorphic relations can be used
to detect faults in model transformations in sev-
eral application scenarios including regression
testing. The metamorphic relations are inferred
by exploiting the trace model produced when
a transformation is executed. The trace model
is composed of traces. When a rule is executed,
a trace can be automatically obtained by using
tools such as TraceAdder [45]. For the executed
rule, a trace links the name of the rule with the
elements instantiating the classes of its source
metamodel and the new elements that are cre-
ated by the rule and hence instantiate classes
in the target metamodel. The authors used
mutation-based testing, similar to what is done in
this paper, to evaluate how effective the approach
is in detecting faults in regression testing.

PIn [4], Troya et al. presented an approach
for debugging and fault localization for model
transformations by applying spectrum-based fault
localization techniques. The approach is based
on the use of a trace model that can be obtained
when the test cases are executed. When a test case
fails, the approach ranks the transformation rules
according to how much they are suspected of hav-
ing the fault causing its failure. Mutation-based
testing is applied to validate the effectiveness of
their approach in fault localization.

In [46], Naslavsky et al. presented an ap-
proach for selective regression testing that is
model-based. In this approach, test cases are
selected for retesting based on modifications to
the model, rather than to the source code. The
approach uses traceability links between model el-
ements and test cases that traverse such elements.
As a modeling perspective, the approach adopts
UML class and sequence diagrams. While their
presented approach is designed for testing gen-
eral software programs, our work is designed for
testing model-to-model transformation programs.
In our approach, we exploit the traceability links
between test cases and model transformation
program elements such as rules.

Our approach for regression testing of model
transformation utilizes traceability links between

test cases and test artifacts. Traceability has
been studied by researchers in the areas of re-
quirements engineering and model-driven devel-
opment (MDD) for a long time. Winkler and
Pilgrim [47] provide an extensive literature sur-
vey on traceability in both areas.

Due to the continuous increase in the size and
complexity of software, model-based engineering
is gaining a lot of interest from the industry and
research community [48]. Model-based testing,
which is an important part of model-based engi-
neering tests the consistency of information and
behavior of source models by applying transfor-
mation mechanisms. The automatic nature of
model-based testing makes it a more adoptable
approach for detecting software defects fast and
effectively [49, 50]. Regression testing is a quite
a tedious work which is repeated with every
sizeable refactoring of the model. Model-based
approaches can make this process easier by au-
tomating, managing, and documenting efficiently.
Yoo et.al [8] suggest, based on their extensive
survey, that model-based regression testing tech-
niques increase the effectiveness and scalability
of the overall testing of the system. Model-based
regression testing approaches have several ad-
vantages over code-based testing [51, 52]. The
effort could be estimated at a very early stage
and the tools are largely language independent.
The models are mostly abstract, which makes
the size of the testable data considerably smaller
than the code.

The majority of model-based regression test-
ing approaches exploit UML models for devel-
oping test suites for regression testing. UML
class models have been used for this purpose
along with state machines, sequence diagram
and activity diagrams [51–53]. Farooq et al. [52]
use state machines to represent changes in the
tested parts of the system. The method is also
automated using an Eclipse-based tool. Briand et
al. [51, 54] presented a sequence diagram-based
technique to classify and analyze regression test
suites. The approach is complemented with a tool
to evaluate the presented models. Finite State
Machines (FSMs) have also been used to gener-
ate regression test suites. Chen et al. [55] have
deployed extended FSMs to model the effects of

80 Issam Al-Azzoni, Saqib Iqbal

changes and generate test suites for the modified
parts of the system. Korel et al [56] have used
a similar approach and have exploited extended
FSMs to reduce the size of an existing regression
test suite. In both approaches, modifications (up-
dates, additions and deletions) are represented
as transitions of extended FSMs. In one study,
Vaysburg et al. [57] used extended FSMs for the
dependency analysis of the system that represent
various interactions between components for the
regression test selection process. In another study,
Almasri et al [58] conducted an impact analysis
using extended FSMs to identify the parts of
the system that are affected the most. Feldere et
al. [59, 60] also used FSMs to represent all model
elements of the system. They proposed a process
to identify model elements which trigger change
events. The identified models are then changed
to make the system consistent.

6. Conclusion and future work

In this paper, we have presented a framework for
the regression test selection for model transfor-
mation programs. The framework exploits the
traceability links in a test case model. In the
evaluation, we applied the framework to several
model transformation examples and showed the
effectiveness and time-saving benefit of the frame-
work. The experiments were performed in the
context of the Epsilon platform of integrated
tools and languages for model management. We
also presented a tool that can automatically build
the test case model and thus facilitate the imple-
mentation of our proposed framework.

Following this work, there are several av-
enues for future research. First, the proposed
framework needs to be integrated with exist-
ing model transformation tools and technologies.
For instance, when a designer makes a change
to the model transformation code, the relevant
test cases identified by our framework can be
automatically rerun by the integrated tools. In
this case, the designer does not need to manually
rerun the test cases. Second, it is recommended
to apply the proposed framework to industrial

case studies involving larger models and more
complex model transformation logic.

7. Acknowledgement

This work has not received any funding.

References

[1] A.R. da Silva, “Model-driven engineering: A sur-
vey supported by the unified conceptual mode,”
Computer Languages, Systems & Structures,
Vol. 43, 2015, pp. 139–155.

[2] P. Mohagheghi and V. Dehlen, “Where is the
proof? – A review of experiences from applying
mde in industry,” in Proceedings of the European
Conference on Model Driven Architecture – Foun-
dations and Applications, 2008, pp. 432–443.

[3] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and
M. Wimmer, “Multi-criteria test cases selection
for model transformations,” Automated Software
Engineering, Vol. 27, No. 1, 2020, pp. 91–118.

[4] J. Troya, S. Segura, J.A. Parejo, and A. Ruiz-
-Cortés, “Spectrum-based fault localization in
model transformations,” ACM Transactions on
Software Engineering and Methodology, Vol. 27,
No. 3, 2018.

[5] D. Calegari and N. Szasz, “Verification of model
transformations: A survey of the state-of-the-art,”
Electronic Notes in Theoretical Computer Sci-
ence, Vol. 292, 2013, pp. 5–25.

[6] G.M.K. Selim, J.R. Cordy, and J. Dingel, “Model
transformation testing: The state of the art,” in
Proceedings of the First Workshop on the Analy-
sis of Model Transformations, 2012, pp. 21–26.

[7] G. Rothermel and M.J. Harrold, “Analyzing re-
gression test selection techniques,” IEEE Trans-
actions on Software Engineering, Vol. 22, No. 8,
1996, pp. 529–551.

[8] S. Yoo and M. Harman, “Regression testing min-
imization, selection and prioritization: A survey,”
Software Testing, Verification and Reliability,
Vol. 22, No. 2, 2012, pp. 67–120.

[9] J. Shelburg, M. Kessentini, and D.R. Tauritz,
“Regression testing for model transformations:
A multi-objective approach,” in Proceedings of
the International Symposium on Search Based
Software Engineering, 2013, pp. 209–223.

[10] E. Seidewitz, “What models mean,” IEEE Soft-
ware, Vol. 20, No. 5, 2003, pp. 26–32.

A Framework for the Regression Testing of Model-to-Model Transformations 81

[11] Eclipse Modeling Framework (EMF), Eclipse
Foundation. [Online]. https://www.eclipse.org/
modeling/emf/ [Accessed December 2020].

[12] K. Czarnecki and S. Helsen, “Feature-based sur-
vey of model transformation approaches,” IBM
Systems Journal, Vol. 45, No. 3, 2006, pp. 621–645.

[13] Eclipse Epsilon, Eclipse Foundation. [Online].
https://www.eclipse.org/epsilon/ [Accessed
December 2020].

[14] D. Kolovos, L. Rose, A. Garćıa-Domı́nguez, and
R. Paige, The epsilon book. Eclipse Foundation.,
2018. [Online]. https://www.eclipse.org/epsilon/
doc/book/

[15] ATL – A model transformation technology,
Eclipse Foundation. [Online]. https://www.ecli
pse.org/atl/ [Accessed December 2020].

[16] The Epsilon Unit Testing Framework, Eclipse
Foundation. [Online]. https://www.eclipse.org/
epsilon/doc/eunit/ [Accessed December 2020].

[17] A. Garćıa-Domı́nguez, D.S. Kolovos, L.M. Rose,
R.F. Paige, and I. Medina-Bulo, “EUnit: A unit
testing framework for model management tasks,”
in Proceedings of the International Conference
on Model Driven Engineering Languages and
Systems, 2011, pp. 395–409.

[18] EMF Compare, Eclipse Foundation. [Online].
https://www.eclipse.org/emf/compare/ [Ac-
cessed December 2020].

[19] Epsilon – Examples. [Online]. https://www.ecli
pse.org/epsilon/examples/ [Accessed December
2020].

[20] V. Aranega, J. Mottu, A. Etien, T. Degueule,
B. Baudry, and J. Dekeyser, “Towards an au-
tomation of the mutation analysis dedicated to
model transformation,” Software Testing, Ver-
ification and Reliability, Vol. 25, No. 5-7, 2015,
pp. 653–683.

[21] F. Fleurey, J. Steel, and B. Baudry, “Valida-
tion in model-driven engineering: Testing model
transformations,” in Proceedings of the First In-
ternational Workshop on Model, Design and Val-
idation, 2004, pp. 29–40.

[22] S. Sen, B. Baudry, and J. Mottu, “On combining
multi-formalism knowledge to select models for
model transformation testing,” in Proceedings
of the First International Conference on Soft-
ware Testing, Verification, and Validation, 2008,
pp. 328–337.

[23] Object Constraint Language, Object Manage-
ment Group, 2014. [Online]. http://www.om
g.org/spec/OCL/2.4 [Accessed December 2020].

[24] I. Al-Azzoni, “ATL transformation of queueing
networks to queueing Petri nets,” in Proceedings

of the International Conference on Model-Driven
Engineering and Software Development (MOD-
ELSWARD), 2017, pp. 261–268.

[25] ATL Transformation Example: BibTeXML to
DocBook, 2005. [Online]. https://www.eclipse.
org/atl/atlTransformations/BibTeXML2DocB
ook/ExampleBibTeXML2DocBook[v00.01].pdf
[Accessed December 2020].

[26] F. Jouault, J. Bézivin, C. Consel, I. Kurtev, and
F. Latry, “Building DSLs with AMMA/ATL,
a case study on SPL and CPL telephony lan-
guages,” in Proceedings of the ECOOP Workshop
on Domain-Specific Program Development, 2006.

[27] ATL Transformations Zoo, Eclipse Foundation.
[Online]. https://www.eclipse.org/atl/atlTrans
formations/ [Accessed December 2020].

[28] F. Fleurey, B. Baudry, P. Muller, and Y.L. Traon,
“Qualifying input test data for model transfor-
mations,” Software and System Modeling, Vol. 8,
No. 2, 2009, pp. 185–203.

[29] J. Troya, A. Bergmayr, L. Burgueño, and M. Wim-
mer, “Towards systematic mutations for and with
ATL model transformations,” in Proceedings of In-
ternational Conference on Software Testing, Veri-
fication and Validation Workshops, 2015, pp. 1–10.

[30] J. Troya, Implementation of the Spectrum-Based
Fault Localization in Model Transformations,
2018. [Online]. https://github.com/javitroya/S
BFL MT [Accessed December 2020].

[31] D.C. Montgomery and G.C. Runger, Applied
Statistics and Probability for Engineers, 6th Edi-
tion. John Wiley and Sons, 2013.

[32] C. Wohlin, P. Runeson, M. Hst, M.C. Ohlsson,
B. Regnell, and A. Wessln, Experimentation in
Software Engineering. Springer Publishing Com-
pany, 2012.

[33] E. Guerra, J. Sánchez Cuadrado, and J. de Lara,
“Towards effective mutation testing for ATL,” in
Proceedings of the International Conference on
Model Driven Engineering Languages and Sys-
tems, 2019, pp. 78–88.

[34] D. Honfi, G. Molnár, Z. Micskei, and I. Majzik,
“Model-based regression testing of autonomous
robots,” in Proceedings of the International Sys-
tem Design Language Forum, 2017, pp. 119–135.

[35] Eclipse, Eclipse Foundation. [Online]. https:
//www.eclipse.org/ [Accessed December 2020].

[36] L.A. Rahim and J. Whittle, “A survey of ap-
proaches for verifying model transformations,”
Software and Systems Modeling, Vol. 14, No. 2,
2015, pp. 1003–1028.

[37] C.A. González and J. Cabot, “ATLTest: A white-
-box test generation approach for ATL transfor-

82 Issam Al-Azzoni, Saqib Iqbal

mations,” in Proceedings of the International
Conference on Model Driven Engineering Lan-
guages and Systems, 2012, pp. 449–464.

[38] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara,
“Verification and validation of declarative model-
-to-model transformations through invariants,”
Journal of Systems and Software, Vol. 83, No. 2,
2010, pp. 283–302.

[39] K. Ehrig, J.M. Küster, and G. Taentzer, “Gener-
ating instance models from meta models,” Soft-
ware and Systems Modeling, Vol. 8, No. 4, 2009,
pp. 479–500.

[40] J. Troya and A. Vallecillo, “Towards a rewriting
logic semantics for ATL,” in Proceedings of the
International Conference on Theory and Practice
of Model Transformations, 2010, pp. 230–244.

[41] P. Zech, P. Kalb, M. Felderer, C. Atkinson, and
R. Breu, “Model-based regression testing by
OCL,” International Journal on Software Tools
for Technology Transfer, Vol. 19, No. 1, 2017,
pp. 115–131.

[42] L. Naslavsky, H. Ziv, and D.J. Richardson,
“A model-based regression test selection tech-
nique,” in Proceedings of the IEEE Interna-
tional Conference on Software Maintenance,
2009, pp. 515–518.

[43] M. Al-Refai, S. Ghosh, and W. Cazzola, “Support-
ing inheritance hierarchy changes in model-based
regression test selection,” Software and Systems
Modeling, Vol. 18, No. 2, 2019, pp. 937–958.

[44] J. Troya, S. Segura, and A. Ruiz-Cortés, “Auto-
mated inference of likely metamorphic relations
for model transformations,” The Journal of Sys-
tems and Software, Vol. 136, 2018, pp. 188–208.

[45] F. Jouault, “Loosely coupled traceability for
ATL,” in Proceedings of the European Confer-
ence on Model Driven Architecture Workshop on
Traceability, 2005, pp. 29–37.

[46] L. Naslavsky, H. Ziv, and D. Richardson, “Mb-
SRT2: Model-based selective regression testing
with traceability,” in Proceedings of the Interna-
tional Conference on Software Testing, Verifica-
tion and Validation, 2010, pp. 89–98.

[47] S. Winkler and J. von Pilgrim, “A survey of
traceability in requirements engineering and
model-driven development,” Software and Sys-
tems Modeling, Vol. 9, No. 4, 2010, pp. 529–565.

[48] B. Legeard, “Model-based testing: Next gener-
ation functional software testing,” in Practical
Software Testing: Tool Automation and Human
Factors, M. Harman, H. Muccini, W. Schulte, and
T. Xie, Eds. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Germany, 2010.

[49] A.C. Dias Neto, R. Subramanyan, M. Vieira,
and G.H. Travassos, “A survey on model-based

testing approaches: A systematic review,” in
Proceedings of the International Workshop on
Empirical Assessment of Software Engineering
Languages and Technologies, 2007, pp. 31–36.

[50] M. Utting and B. Legeard, Practical Model-
-Based Testing – A Tools Approach. Morgan
Kaufmann, 2007.

[51] L.C. Briand, Y. Labiche, and S. He, “Automating
regression test selection based on UML designs,”
Information and Software Technology, Vol. 51,
No. 1, 2009, pp. 16–30.

[52] Q. Farooq, M.Z.Z. Iqbal, Z.I. Malik, and
A. Nadeem, “An approach for selective state ma-
chine based regression testing,” in Proceedings
of the International Workshop on Advances in
Model-based Testing, 2007, pp. 44–52.

[53] Y. Chen, R.L. Probert, and D.P. Sims, “Specifi-
cation-based regression test selection with risk
analysis,” in Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative
Research, 2002.

[54] L.C. Briand, Y. Labiche, and G. Soccar, “Au-
tomating impact analysis and regression test
selection based on UML designs,” in Proceed-
ings of the International Conference on Software
Maintenance, 2002, pp. 252–261.

[55] Y. Chen, R.L. Probert, and H. Ural, “Regression
test suite reduction using extended dependence
analysis,” in Proceedings of the International
Workshop on Software Quality Assurance, 2007,
pp. 62–69.

[56] B. Korel, L.H. Tahat, and B. Vaysburg, “Model
based regression test reduction using dependence
analysis,” in Proceedings of the International
Conference on Software Maintenance, 2002.

[57] B. Vaysburg, L.H. Tahat, and B. Korel, “Depen-
dence analysis in reduction of requirement based
test suites,” in Proceedings of the International
Symposium on Software Testing and Analysis,
2002, pp. 107–111.

[58] N. Almasri, L. Tahat, and B. Korel, “Toward
automatically quantifying the impact of a change
in systems,” Software Quality Journal, Vol. 25,
No. 3, 2017, pp. 601–640.

[59] M. Felderer, B. Agreiter, and R. Breu, “Evolu-
tion of security requirements tests for service-cen-
tric systems,” in Engineering Secure Software
and Systems, Ú. Erlingsson, R. Wieringa, and
N. Zannone, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 181–194.

[60] M. Felderer, B. Agreiter, and R. Breu, “Manag-
ing evolution of service centric systems by test
models,” in Proceedings of the Tenth IASTED
International Conference on Software Engineer-
ing, 2011, pp. 72–80.

A Framework for the Regression Testing of Model-to-Model Transformations 83

Appendix: ETL OO2DB code

pre {
2 ”Running ETL”.println();

var db : new DB!Database;
4 }

6 // Transforms a class into a table and
// a primary key column

8 rule Class2Table
transform c : OO!Class

10 to t : DB!Table, pk : DB!Column {

12 t .name = c.name;
t .database = db;

14
// Fill the details of the primary key

16 // of the table
pk.name = t.primaryKeyName();

18 pk.type = ”INT”;
t .columns.add(pk);

20 t .primaryKeys.add(pk);

22 // If the class extends some other class
// create a foreign key pointing towards

24 // the primary key of the parent class
if (c .‘ extends‘. isDefined()){

26
var fk : new DB!ForeignKey;

28 var childFkCol : new DB!Column;
var parentFkCol : DB!Column;

30 var parentTable : DB!Table;

32 parentTable ::= c .‘ extends‘;
parentFkCol = parentTable.primaryKeys.first();

34
childFkCol.name = parentFkCol.name;

36 childFkCol.type = ”INT”;
childFkCol.table = t;

38
fk .database = db;

40 fk .parent = parentFkCol;
fk . child = childFkCol;

42 fk .name = c.name + ”Extends” + c.‘extends‘.name;
}

44 }

46 // Transforms a single−valued attribute
// to a column

48 rule SingleValuedAttribute2Column
transform a : OO!Attribute

50 to c : DB!Column {

52 guard : not a.isMany

54 c.name = a.name;
c. table ::= a.owner;

56 c.type = a.type.name.toDbType();
}

58
// Transforms a multi−valued attribute

60 // to a table where its values are stored
// and a foreign key

62 rule MultiValuedAttribute2Table
transform a : OO!Attribute

64 to t : DB!Table, pkCol : DB!Column, valueCol :
DB!Column, fkCol : DB!Column,

66 fk : DB!ForeignKey {

68 guard : a.isMany

70 // The table that stores the values
// has an ”id” column and a ”value” column

72 t .name = a.valuesTableName();
t .database = db;

74
pkCol.name = ”id”;

76 pkCol.table = t;
pkCol.type = ”INT”;

78 valueCol.name = ”value”;
valueCol.table = t;

80 valueCol.type = a.type.name.toDbType();

82 // Another column is added into the table
// to link with the ”id” column of the

84 // values table
fkCol.name = a.name + ”Id”;

86 fkCol.table ::= a.owner;
fkCol.type = ”INT”;

88
// The foreign key that connects

90 // the two columns is defined
fk .parent = pkCol;

92 fk . child = fkCol;
fk .database = db;

94 }

96 // Transforms a referecne into a foreign key
rule Reference2ForeignKey

98 transform r : OO!Reference
to fk : DB!ForeignKey, fkCol : DB!Column {

100
fkCol.table ::= r .type;

102 fkCol.name = r.name + ”Id”;
fkCol.type = ”INT”;

104 fk .database = db;
fk .parent = r.owner.equivalent().primaryKeys.first ();

106 fk . child = fkCol;
fk .name = r.name;

108
}

110
operation DB!Table primaryKeyName() : String {

112 return self .name.firstToLowerCase() + ”Id”;
}

114
operation OO!Attribute valuesTableName() : String {

116 return self .owner.name + ” ” +
self .name.firstToUpperCase() + ”Values”;

118 }

120 operation Any toDbType() : String {
var mapping : OO2DB!TypeMapping;

122 mapping = OO2DB!TypeMapping.allInstances().
select (tm|tm.source = self). first ;

124 if (not mapping.isDefined()){
(”Cannot find DB type for OO type ” + self +

126 ”. Setting the default .”). println ();
return OO2DB!TypeMap.allInstances().first().

128 ‘ default ‘. target ;
}

130 else {
return mapping.target;

132 }
}

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 85–114, DOI 10.37190/e-Inf210105

Mining Non-Functional Requirements using
Machine Learning Techniques

Rajni Jindal∗, Ruchika Malhotra∗∗, Abha Jain∗∗∗, Ankita Bansal∗∗∗∗
∗Dept. of Computer Science Engineering, Delhi Technological University, India

∗∗Dept. of Software Engineering, Delhi Technological University, India
∗∗∗Dept. of Computer Science, Delhi University, India

∗∗∗∗Division of Information Technology, Netaji Subhas University of Technology, India
rajnijindal@dce.ac.in, ruchikamalhotra2004@yahoo.com, abhajain.src@gmail.com,

ankita.bansal06@gmail.com

Abstract
Background: Non-Functional Requirements (NFR) have a direct impact on the architecture of the
system, thus it is essential to identify NFRs in the initial phases of software development. Aim: The
work is based on extraction of relevant keywords from NFR descriptions by employing text mining
steps and thereafter classifying these descriptions into one of the nine types of NFRs. Method:
For each NFR type, keywords are extracted from a set of pre-categorized specifications using
Information-Gain measure. Then models using 8 Machine Learning (ML) techniques are developed
for classification of NFR descriptions. A set of 15 projects (containing 326 NFR descriptions)
developed by MS students at DePaul University are used to evaluate the models.
Results: The study analyzes the performance of ML models in terms of classification and misclas-
sification rate to determine the best model for predicting each type NFR descriptions. The Naïve
Bayes model has performed best in predicting “maintainability” and “availability” type of NFRs.
Conclusion: The NFR descriptions should be analyzed and mapped into their corresponding
NFR types during the initial phases. The authors conducted cost benefit analysis to appreciate
the advantage of using the proposed models.

Keywords: requirement engineering, text mining, non-functional requirements, machine
learning, receiver operating characteristics

1. Introduction

Non-Functional Requirements (NFRs) are the
basic quality constraints which specify the oper-
ation of a system [1, 2]. NFRs go hand-in-hand
with the Functional Requirements (FRs) and
are highly essential to ensure the development
of an efficient and a reliable software system
that meets the customers needs and fulfills their
expectations [3]. Set of NFRs need to be cor-
rectly identified in the initial phases of Software
Development Lifecycle (SDLC) process as they
play a crucial role in the architecture and design
of the system which in turn affects the quality of
the system [4]. NFRs form the basis for architects

to create the technical architecture of the system.
This architecture of the system then acts a plat-
form in which the functionality of the system is
delivered [5]. Unfortunately, NFRs are discovered
in the later phases of software development. This
may be due the reason that some requirement
engineers tend to overlook NFRs failing to realize
their importance and thereby assume them to
be implicitly understood [6]. They do not elicit
NFRs in the Software Requirement Specification
(SRS) document as clearly as they state FRs, but
rather state NFRs in a very adhoc and random
fashion due to which the final SRS document is
organized by functionality with non-functional
requirements scattered throughout the document

Submitted: 27 February 2020; Revised: 08 January 2021; Accepted: 19 February 2021; Available online: 28 June 2021

86 Rajni Jindal et al.

[7, 8]. Failure to identify and analyze NFRs in the
early phases can result in unclassified, incomplete
or conflicting NFRs, requiring costly rework in
later stages of the software development [5]. The
work in this paper focuses on mining the descrip-
tions of NFRs which are stated throughout the
requirement specification document in an adhoc
and random fashion and thereafter classify them
into one of the types of NFRs using a suitable
Machine Learning (ML) technique. In this work,
nine types of NFRs have been considered viz.
Availability (A), Look-and-Feel (LF), Legal (L),
Maintainability (MN), Operational (O), Perfor-
mance (PE), Scalability (SC), Security (SE) and
Usability (US). The work is based on extrac-
tion of relevant keywords from NFR descrip-
tions by employing a series of text mining steps.
Firstly, the NFR descriptions are pre-processed
to remove irrelevant words from the descriptions.
These are the stop words like prepositions, arti-
cles, conjunctions, verbs, pronouns, nouns, adjec-
tives and adverbs whose presence will not have
any impact on the performance of the prediction
models but will rather degrade their performance.
Once pre-processing is done, we need to find the
words which are relevant in describing the NFR
descriptions. One of the methods is to extract
the relevant words using fixed set of pre-defined
keywords available in the catalogues. These cat-
alogues contain a standardized set of keywords
specific to different types of NFRs. However, the
main problem of using this approach (standard
keyword method) is the difficulty of finding ac-
cepted and standardized catalogues for all the
types of NFR specified in the datasets [9]. Even
for the NFR types whose catalogues were avail-
able, it was observed that the keywords specified
in the catalogue for that particular NFR type
could not classify the NFR descriptions pertain-
ing to that NFR type accurately. This was ob-
served by the authors Cleland-Huang et al. [9]
who concluded that classification of NFRs based
the keywords extracted from the catalogues result
in unclassified, incomplete or conflicting NFRs.

In order to address this problem, the authors
in this paper are using a training set to discover
a set of keywords specific to each type of NFR.
Since the keywords in our study are extracted from

pre-categorized requirement specifications, there-
fore problem of finding accepted and standardized
catalogues for all the NFR types is removed.

These keywords are the weighted indicator
terms (specific to each NFR type) which are
extracted using Information-Gain (IG) measure.
IG measure extracts those keywords (also known
as indicator terms) from the specifications that
most accurately identify the target concept (NFR
type). For example, terms such as “authenticate”
and “access” represent strong indicator terms for
security NFRs as they most accurately define
security requirements as compared to other types
of requirements. IG measure works by associating
a weight to each of the word obtained after
pre-processing and then the top-N scoring words
are selected as the indicator terms. In our work,
the value of N is considered as 10 as the paper by
Cleland-Huang et al. [9] showed that good results
were achieved when top-10 words were considered
as compared to the results achieved when top-5
words or all the words were considered together.
Once the indicator terms for each NFR type
are identified, prediction models are developed
for the classification of future NFR descriptions
whose NFR type is not known. The authors in
this paper have used in total eight ML algorithms
viz. J48 decision tree (J48), Random Forest (RF),
Logitboost (LB), Adaboost (AB), Multi-Layer
Perceptron (MLP), Radial Basis Function net-
work (RBF), Bagging, Naïve Bayes (NB) for
predicting each type of NFR. The usage of large
number of ML algorithms allows the authors to
perform exhaustive comparison and evaluation.
The authors concluded the best ML model for
each NFR type which can be used by software
practitioners and researchers in classifying an
unknown NFR description into its respective
type. In addition to this, the authors have also
conducted cost benefit analysis to understand and
appreciate the advantage of using the proposed
models in contrast to not using the models in
terms of cost incurred in both the cases.

Thus, there are three main goals of this study
which we thrive to achieve:
1. To apply text mining steps to identify indica-

tor terms As discussed, top-10 indicator terms
for each NFR type are identified by following

Mining Non-Functional Requirements using Machine Learning Techniques 87

a series of text mining steps. This begins by
applying pre-processing steps to remove ir-
relevant words from the specifications and
thereafter applying IG measure to retrieve
significant words. IG measure works by asso-
ciating a weight to each of the word obtained
after pre-processing and then the top-N scor-
ing words are selected as the indicator terms
specific to each NFR type. These indicator
terms serve as independent variables used for
model prediction.

2. To develop machine learning models for each
type of NFR Corresponding to each NFR
type, a separate dataset was considered with
top-10 indicator terms of that particular NFR
type as independent variables and a binary
dependent variable with the value of 1 (if
NFR description belongs to that particular
NFR type) or 0 (if NFR description does be-
long to that particular NFR type). Eight ML
algorithms are applied to each dataset and
therefore eight different prediction models
were considered for each NFR type.

3. To conduct cost-benefit analysis Once the
prediction models are developed, it is very
important to analyze their benefits in terms of
the cost incurred. Thus, a cost-benefit analy-
sis is conducted to understand and appreciate
the advantage of using the proposed models
in contrast to not using the models in terms
of cost incurred in both the cases.
Empirical analysis is conducted using an open

source PROMISE dataset freely available at http:
//promisedata.org/repository. A set of 15 projects
made by MS students at DePaul University that
consisted of a total of 326 NFR descriptions cate-
gorized into nine types of NFR (“A”, “LF”, “L”,
“MN”, “O”, “PE”, “SC”, “SE”, “US”) were used
to evaluate the results. The performance of the
ML classifiers was compared and evaluated to find
out the ML classifier that best predicted the NFR
type using themeasures derived fromReceiver Op-
erating Characteristic (ROC) analysis viz. Area
Under the ROC Curve (AUC) and recall. The
results indicated the performance of NB classifier
has been best in predicting all theNFRs except SE.
Also from cost-benefit analysis, it was concluded
that the cost incurred without using our proposed

models is more than the cost incurred when using
the proposed models. Thus, we suggest that any
professional from the industry who would use our
models for classifying the NFRs into their types
would be in profit.

The paper includes in total eight sections. The
current literature has been provided in Section 2.
Section 3 explains the background of the research.
The methodology behind the research has been
highlighted in Section 4. The result analysis is
presented in Section 5, and Section 6 provides the
discussion of the results in terms of cost/benefit
analysis and how the work can be useful for the
industry practitioners. Section 7 provides threats
to validity. Finally, the paper is concluded in
Section 8 highlighting the future work.

2. Related work

The area of NFR classification is an emerging
area wherein a lot of research is still being
carried out. Different authors have employed
different techniques and methodologies in or-
der to classify the descriptions of NFRs into
their respective types. Table 1 summarizes the
work done in the area of NFR classification
with respect to types of NFR into which NFR
descriptions have been categorized, ML tech-
nique used to perform NFR classification, Natu-
ral Language Processing (NLP) techniques used
to pre-process the data and the dataset used
for conducting empirical validation. (The ab-
breviations and their full forms used in Ta-
ble 1 are – NB: Naïve Bayes; DT: Decision Tree;
SVM: Support Vector Machine; MNB: Multino-
mial Naïve Bayes; EM: Expectation Maximisa-
tion; DMNB: Discriminative MNB, LDA: Latent
Dirichlet Allocation; KNN: K-Nearest Neighbor;
RB: Rule-Based; HAC: Hierarchical Agglomer-
ative Clustering; ET: Extra Tree; LR: Logistic
Regression; NFR: Non-Functional Requirement;
FR: Functional Requirement; A: Availability;
LF: Look-and-Feel; L: Legal; MN: Maintainabil-
ity; O: Operational; PE: Performance; SC: Scal-
ability; SE: Security; US: Usability).

Till now, only a few authors have explored
this area and an efficient utilization of resources

88 Rajni Jindal et al.

and manpower is required to devise new method-
ologies and techniques for classifying the NFRs.
The primary work in this area has been doneby
the authors Cleland-Huang et al. [9]. The au-
thors have used NFR-classifier which is based
on information retrieval approach. The method
is based on characterizing the different types
of NFR using the concept of keywords. These
keywords are used to detect requirements per-
taining to a particular type of NFR. The work
by the authors Hussain et al. [10] extended the
idea of Cleland-Huang et al. and showed that
the usage of linguistic knowledge is very helpful
in the classification. The work incorporates the
usage of a part-of-speech (POS) tagger. Apart
from this, the authors Gokyer et al. [11] have
used SVM algorithm in order to relate NFRs
in a textual data to the quality determining at-
tributes. This was accomplished with the help of
a knowledge base provided by an expert. Rash-
wan et al. [12] too used SVM algorithm for auto-
matic categorization of sentences into different
classes based on the field of ontology. Similar
work was done in the paper [13] that extracted
NFRs from textual documents and used the
extracted requirements to improve the descrip-
tions of NFRs supporting other Requirement
Engineering (RE) tasks. The papers by the au-
thors Casamayor et al. [14] performed classifica-
tion using a semi-supervised learning approach
which is based on a lesser number of require-
ments in contrast to the supervised approach.
The authors proposed a recommender system
based on Multinominal Naïve Bayes classifier
in combination with Expectation-Maximization
(EM) technique. Zhang et al. [15] incorporated
a SVM classifier and repeated the experiments
of Cleland-Huang et al. [9] again in 2011. They
have reported comparatively higher results of
precision, although lower results of recall than
Cleland-Huang et al. [9]. They have shown that
a model based on the individual words outper-
formed the models based on multi-words. The
paper by Slankas et al. [16] utilized a K-nearest
neighbor (KNN) supervised learning algorithm
for performing NFR classification and compared
its performance with SVM and Naïve Bayes tech-
niques. It was observed that SVM algorithm

performed better than Multinomial Naïve Bayes
classifier and KNN classifier outperformed opti-
mal Naïve Bayes classifier with a unique distance
metric. The authors Singh et al. [17] have in-
corporated rule-based classification technique in
order to identify and classify the requirement sen-
tences into NFR sub-classes using the concept of
thematic roles. PROMISE corpus and Concordia
corpus have been used to validate the results.
The authors Kurtanovic et al. [18] studied how
accurately the classification of requirements as
FRs and NFRs can be done with supervised ML
approach incorporating meta-data, lexical, and
syntactical features. Similar work was done by
the authors in their paper [19–24] which aimed
at identifying NFRs in the informal documents
like user comments, commit messages and in-
stallation manuals. Apart from this, few authors
[25–28] have primarily worked on the extraction
and classification of only the security require-
ments as these were considered the most signifi-
cant type of NFR essential for the development
of secure and reliable software.

The work in this paper is based on extraction
of relevant keywords from NFR descriptions by
employing a series of text mining steps and there-
after classify them into one of the nine types of
NFRs (“A”, “LF”, “L”, “MN”, “O”, “PE”, “SC”,
“SE”, “US”) using a suitable ML based prediction
model. These keywords (also known as indicator
terms) are extracted for each NFR type using IG
measure. Once the indicator terms for each NFR
type are identified, prediction models are devel-
oped for the classification of future NFR descrip-
tions whose NFR type is not known. In this study,
eight different prediction models (corresponding
to eight different ML techniques) were developed
for each type of NFR. Since there were nine
types of NFR considered in this work, therefore
a total of 72 prediction models were developed.
An extensive evaluation and comparison of these
72 models was performed with the aim to identify
best prediction model for each NFR type that
could accurately classify future NFR descriptions
whose NFR type is not known. The literature
shows (Table 1) that majority of the studies
have worked on very few classifiers (maybe two
or three). Most of the studies have used SVM and

Mining Non-Functional Requirements using Machine Learning Techniques 89

NB classifiers for developing prediction models.
The usage of large number of ML techniques
allows us to provide a fair evaluation and con-
clude the best prediction model that could most
accurately classify each type of NFR description.
Once we have found the best prediction model
corresponding to each type of NFR, we have also

performed cost-benefit analysis. This analysis
was done to understand and appreciate the cost
of using the proposed models vis-à-vis the cost
of not using the models. This analysis is very
important from industry point of view when the
models are required to be used in real sense. This
analysis is also missing in majority of the studies.

Table 1: Summary of the studies pertaining to NFR classification

S. No. Paper Types of NFR used
ML tech-
niques
used

NLP
technique
used

Dataset used

1 [9] A, LF, L, MN, O,
PE, SC, SE, US

NFR-Clas-
sifier

Stemming,
Stop-words
removal,
tokenization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 684 requirements specifications
(326 NFR + 358 FR).

2 [10] Not provided DT Stemming,
POS,
tokenization

Promise NFR dataset created by students of
DePaul University. It contains 15 projects con-
sisting of a total of 765 requirements specifi-
cations (495 NFR + 270 FR).

3 [11] PE, MN, US,
Integrity,
Portability,
Deployability,
Dependability

SVM Stemming,
POS

Web-based transactional applications imple-
mented at Cybersoft.

4 [14] A, LF, L, MN, O,
PE, SC, SE, US,
Portability, Fitness,
Functionality

MNB
coupled
with EM

Stemming,
Stop-words
removal, Nor-
malization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

5 [15] SE, PE, A, SC,
MN, L, US, O, LF,
Palm Operational,
Fitness

SVM Stemming,
POS,
N -gram,
Regular
Expression

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

6 [25] Security
requirements,
security-relevant
sentences and
security-related
sentences

NB tokenization Three industrial requirements documents
viz. Common Electronic Purse Specification
(ePurse), Customer Premises Network speci-
fication (CPN) and Global Platform Specifi-
cation (GP). Total number of requirements
is 124, 210, 176 for ePurse, CPN, GP with
number of security requirements being 83, 42,
63 for ePurse, CPN, GP.

7 [19] SE, MN, PE, US,
Integrity,
Portability,
Efficiency,
Reliability,

SVM,
NB,
MNB,
DMNB,
LDA

Stop-words
removal

Three different open-source, partially-commer-
cial database systems: (1) MySQL 3.23: con-
tains 320 KLOC of C and C++ source code.
Its source control history was used from 31
July 2000–9 August 2004. (2) MaxDB 7.500:

90 Rajni Jindal et al.

Table 1 continued

S. No. Paper Types of NFR used ML tech-
niques
used

NLP
technique
used

Dataset used

Interoperability,
Testability,
Traceability,
Accuracy,
Modifiability,
Modularity,
Correctness,
Verifiability,
Functionality,
Understandability,
Flexibility

contains 940 KLOC. Its source control history
was used from 29 June 2004–19 June 2006.
(3) PostgreSQL 7.3: contains 306 KLOC of
C code. Its source control history was used
from 9 May 2002–26 August 2004.

8 [12] SE, US, Efficiency,
Functionality,
Reliability

SVM Stemming,
tokenization

(1) Promise NFR dataset (http://promisedat
a.org/repository) created by students of De-
Paul University, contains 15 projects consist-
ing of a total of 684 requirements specifications
(326 NFR + 358 FR). (2) A manually anno-
tatedcorpus containing 6 types of requirement
documents, 4 are SRSs of different products
(online shopping center, student management
system, institute of space physics, hospital pa-
tient system), 1 supplementary specification
document, and 1 use case document. These
documents contain 3064 sentences, manually
annotated in four main classes (FR, External
and Internal Quality, Constraints and other
NFRs).

9 [16] A, SE, L, LF, MN,
O, US, Access
Control, Audit,
Privacy, Capacity,
Performance,
Recoverability,
Reliability

SVM,
KNN

Stop-words
removal,
POS,
Lemmatiza-
tion,
Dependency
parsing

A series of 11 documents related to Electronic
Health Records (EHRs) (https://github.c
om/RealsearchGroup/NFRLocator). For
requirement specifications, CCHIT Ambula-
tory Requirements, iTrust, and the PROMISE
NFR Data Set (http://promisedata.googleco
de.com) were used.

10 [20] Not provided SVM,
MNB

N -gram 2 specifications from Mercedes-Benz (automo-
tive industry).

11 [26] Confidentiality,
Integrity,
Identification,
Authentication,
Accountability,
Privacy Availability

SVM,
NB, KNN

tokenization 10,963 sentences in six different documents
from healthcare domain.

12 [29] Not provided SVM N -gram Specifications from Mercedes-Benz (automo-
tive industry).

13 [13] A, LF, L, MN, O,
PE, SC, SE, US,
Portability, Fitness,
Functionality

RB Stop-words
removal,
Lemmatiza-
tion,
Dependency
parsing

Promise NFR dataset created by students of
DePaul University, contains 15 projects con-
sisting of a total of 625 requirements specifi-
cations (370 NFR + 255 FR).

Mining Non-Functional Requirements using Machine Learning Techniques 91

Table 1 continued

S. No. Paper Types of NFR used ML tech-
niques
used

NLP
technique
used

Dataset used

14 [30] SE, PE, SC, US,
Reliability

KNN Not provided 2 case studies: 1st case study utilized the
Predictor Models in Software Engineering
(PROMISE) dataset, 2nd case study utilized
the European Union eProcurement System”s
26 FRs.

15 [31] SE, PE, L, A,
Safety, Privacy,
Accuracy,
Portability,
Reliability,
Interoperability,
Accessibility

K-means
cluster-
ing, HAC

Stemming,
Stop-words
removal,
Lemmatiza-
tion

Three experimental software Java systems
from different application domains viz.
SmartTrip (an Android mobile application),
SafeDrink with a mobile application interface,
BlueWallet (subscription-based Web service)

16 [27] Security
requirements of
type
Authentication,
Authorization,
Access control,
Cryptography-En-
cryption, Data
integrity

DT Stemming,
Stop-words
removal,
tokenization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 684 requirements specifications
(326 NFR + 358 FR). Out of 326 NFR speci-
fications, the total number of security require-
ment specifications is 58.

17 [28] Security
requirements of
type
Authentication,
Authorization,
Access control,
Cryptography-En-
cryption, Data
integrity

DT Stemming,
Stop-words
removal,
tokenization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 684 requirements specifications
(326 NFR + 358 FR). Out of 326 NFR speci-
fications, the total number of security require-
ment specifications is 58.

18 [17] Efficiency (Time
behavior, Resource
Utilization),
Functionality
(Suitability,
Accuracy, SE), US
(Operability,
Understandability,
Attractiveness)

RB Stemming,
POS,
tokenization

(1) Promise NFR dataset (http://promisedata.
org/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 635 requirements specifications
(370 NFR + 265 FR). (2) A manually anno-
tated corpus containing 6 types of requirement
documents, 4 are SRSs of different products
(online shopping center, student management
system, institute of space physics, hospital
These documents contain 3064 sentences, man-
ually annotated in four main classes (FR, Ex-
ternal and Internal Quality, Constraints and
other NFRs).

19 [21] Reliability,
Portability, PE, US

NB, DT,
Bagging

Stemming,
Stop-words
removal,
Lemmatiza-
tion

Two popular Apps viz. Apple App (iBooks in
the books category) and Google Play (Whats-
App in the communication category). Total
21969 raw user reviews (6696 FRom iBooks
and 4400 FRom WhatsApp) were obtained.

92 Rajni Jindal et al.

Table 1 continued

S. No. Paper Types of NFR used ML tech-
niques
used

NLP
technique
used

Dataset used

20 [22] PE, US, Reliability,
Supportability,
Functionality

SVM,
NB, DT,
KNN

Stemming 40 Apps from the App Store falling into 10
categories (books, education, games, health,
lifestyle, navigation, news, productivity, travel
and utilities). A total of 932,388 reviews were
obtained.

21 [23] Reliability, PE,
Lifecycle,
Capability
Usability, System
Interface

SVM,
KNN

Lemmatiza-
tion

User requests of open source projects from
sourceforge.net, whose user base consists of
both software developers and ordinary soft-
ware consumers.

22 [18] PE, US, O, SE SVM Stop-words
removal,
POS,
Lemmatiza-
tion, N -gram

NFR dataset consisting of a total of 625
requirements specifications (370 NFR +
255 FR).

23 [32] A, MN, US, LF,
PE, SC,
Operability, Fault
Tolerance,
Portability, Legal
and Licensing

MNB,
LDA,
K-means,
HAC

POS,
Regular
Expression,
Entity
Tagging,
Temporal
Tagging

TERA Promise NFR dataset created by stu-
dents of DePaul University and was updated
in 2010. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

24 [24] MN, US, Reliability,
Efficiency,
Portability,
Functionality

LDA Stop-words
removal, Nor-
malization

Extracted posts (21.7 million) and comments
(32.5 million) of the Stack Overflow from
July 31, 2008 to September 14, 2014 provided
by the MSR (Mining Software Repositories)
challenge.

25 [33] A, L, LF, MN, O,
PE, SC, SE, US,
Fault tolerance,
Portability

Multi-
nomial
NB,
Bernoulli
NB,
Gaussian
NB, DT,
ET, ETs,
KNN,
Linear
LR, MLP,
SVM,
Label
Propaga-
tion,
Label
Spread

Stemming,
Stop-words
removal,
tokenization

TERA Promise NFR dataset created by stu-
dents of DePaul University and was updated
in 2010. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

Mining Non-Functional Requirements using Machine Learning Techniques 93

3. Background of the research

This section includes a brief overview of the ML
techniques used for classification along with the
description of performance evaluation measures
used for evaluating the performance of the pre-
diction models.

3.1. Overview of machine learning
techniques

From the literature survey (Table 1) it was ob-
served that majority of the authors have incorpo-
rated ML techniques for NFR classification which
fall under supervised learning approaches as com-
pared to the techniques which fall under unsu-
pervised learning approaches or semi-supervised
learning approaches. Supervised learning ML
techniques have accurately performed NFR clas-
sification producing promising results. Keeping
this in mind, we intended to work on supervised
ML techniques. The techniques under supervised
learning can be broadly categorized under the
following domains: Ensemble Learners, Neural
Networks, Bayesian Networks, and Decision Tree.
To have a fair evaluation of techniques under all
the domains, we selected 1 to 3 ML techniques
under each of the domains. In total, we compared
and contrasted eight different ML techniques, viz.
RF, LB, AB, Bagging (Ensemble learner), MLP,
RBF (Neural network), NB (Bayesian network)
and J48 (Decision tree). These techniques are
popularly used for binary classification in other
fields such medical diagnosis [34, 35] network
intrusion detection [36], credit card fraud detec-
tion [37], defect and change prediction [38, 39],
etc. and have shown promising results. Thus,
the authors want to explore them for identifying
the type of NFR description. A brief overview
of these ML techniques is presented in Table 2.
These ML classifiers are implemented using the
default control settings of an open source tool,
WEKA http://www.cs.waikato.ac.nz/ml/weka/.
The default control parameters for each of the
ML classifier are also provided in Table 2. We
have used the default settings and have not tuned
the parameters as over-fitting of the parameters
may become a threat to external validity.

3.2. Measures for evaluating models

Once the models are trained, testing is performed
to evaluate the performance of the models. The
performance of the models would be highly op-
timistic if the testing is performed on the same
dataset as the one on which training is performed.
Hence, we have used intra-validation technique
where the same dataset is partitioned into two
subsets, one of which is used for training, while
the other is used for testing. The intra-validation
technique used in this study is 10-cross validation
technique wherein the entire dataset (326 NFR
descriptions) is partitioned into 10 equally sized
parts (P1, P2,. . . , P10). As can be seen from the
Figure 1, for the first time, one part is used for
testing (P1), while remaining 9 parts (P2–P10)
are used for training the model [48]. The pro-
cedure is continued 10 times such that each in-
stance gets validated once and finally a single
estimate is produced by combining all the 10
results [49].

Figure 1. Procedure of 10-fold
cross validation technique

For evaluating the performance of the mod-
els, we need appropriate performance measures
which are suitable to be applied in the given
study. In this study, amongst a number of mea-
sures available, the authors choose to use two
performance measures, recall (also known as re-
call) and the area under the ROC curve (AUC).
The rationale behind using these performance
measures has been explained below. Recall is one
of the traditional measures which tells that out of
actual positive data, how many times the model
predicted correctly [50]. Another commonly used
traditional measure which is not used in this

94 Rajni Jindal et al.

Table 2. Description of machine learning techniques and control parameters used in the study

ML
Technique

Description Parameter Settings

J48 decision
tree [40, 41]

It is an implementation of C4.5 decision tree algorithm used to
handle the classification problems. It generates a binary tree
which could be either pruned or unpruned. The pruned tree
does not have an influence on the performance of the model
while discarding the nodes and branches. It also reduces the
risk of overfitting to the training data.

Set confidence factor
as 0.25. Set minimum
number of objects in
leaves as 2 and number of
folds as 3. Set seed as 1.

Random
forest [42]

It is used for building a number of classification trees, thereby
leading to a forest. Each object which needs to be classified
acts as an input to the tree in the forest. The process of
classification is performed by each tree, and it is said that the
tree “votes” for that particular class.

Set the classifier as Deci-
sion Tree. Set maximum
depth as 0, number of fea-
tures as 0, seed as 1 and
number of trees as 100.

Bagging [42] In this technique, a sample of data is used to generate various
sub-samples of the data which are the training sets and used
for making the required predictions by developing the desired
model.

Set the classifier as Deci-
sion Stump or REPTree.
Set number of iterations
as 10, weight threshold
as 100 and seed as 1. No
resampling is used.

Logit-boost
[43]

In this technique, the regression technique is used as the base
learner and this is followed by performing additive logistic
regression. It is the most important type of the Boosting
technique.

Set the classifier as Deci-
sion Stump. Set number of
iterations as 10, number of
runs and seeds as 1 and
weight threshold as 100.
No resampling is used.

Ada-boost
[43]

This technique is based on combining different weak learning
techniques in order to improve the process of classification,
leading to improved results. This is done by first assigning
equal weights to all the instances present in the training set and
thereafter multiple rounds are conducted and in each round
the weights of the examples which have not been correctly
classified are increased. This is how the performance of a weak
learner is improved.

Set the classifier as De-
cision Stump. Set num-
ber of iterations as 10,
number of runs and seeds
as 1 and weight threshold
as 100. No resampling is
used.

Multi-Layer
Perceptron
[44]

In this technique, a set of input values are mapped to a set of
output values wherein learning is done using back-propagation.
Firstly the inputs are given to the network. Using the weights
applied on each layer and the inputs, the desired output of
the network is calculated. Then the error is computed which is
difference of the actual value of the output and the calculated
value. Based on this computed error value, the weights are
updated and accordingly the parameters of the network are
adjusted. To achieve the desired performance, this process is
repeated again and again.

Set number of hidden lay-
ers as a wildcard value “a”
= (no. of attributes + no.
of classes)/2. Set learning
rate as 0.3 and momen-
tum as 0.2. Set sigmoid
function for transfer.

Radial Basis
Function
network [45]

An artificial neural network having a single layer is called RBF
network. The activation function used here is the radial functions
which are applied to the inputs. These inputs are combined
with the weights to produce the desired output of the network.

Set number of clusters
as 2 and clustering seed
as 1.

Naïve Bayes
[46, 47]

This is one of the simplest classifier based on probability
wherein the approach for classification is based on Bayes” the-
orem. The most probable class for a new instance is found out
using this technique. A parametric model is used to generate
the test data. The Bayes” estimates for the model parameters
are calculated using the training data.

Set kernel estimator as
false. Set supervised dis-
cretization as false.

Mining Non-Functional Requirements using Machine Learning Techniques 95

study is precision. Precision tells that when the
model predicts something positive, how many
times they were actually positive. Mathemati-
cally, recall and precision are defined as follows:

Recall = TP
TP + FN

Precision = TP
TP + FP

where, TP (True Positive): When the document
actually belongs to a category “A” (positive)
and is predicted by the model to be in category
“A” (positive), FN (False Negative): When the
document actually belongs to a category “A”
(positive) and is predicted by the model in cat-
egory “Not A” (negative), FP (False Positive):
When the document actually belongs to a cate-
gory “Not A” (negative) and is predicted by the
model to be in category “A”. We have focused
on recall and did not use precision because of
the following two reasons:
1. In this study, FN is more significant than FP

and as a result FN cannot be ignored. If we
cannot ignore FN , then we have to take into
account recall measure. Let us understand
why recall is more important than precision
in this study. FN occurs when a document is
predicted by a model to be in category “Not A”
when it actually belongs to category “A”. FP
occurs when a document is predicted by the
model to be in category “A”, when it actually
belongs to category “Not A”. Now when a FN
occurs, a document which actually belongs to
category “A” is ignored by the stakeholders
of the software because it is predicted to be in
category “Not A”. This may result in delivery
of poor quality software and may have serious
implications on the industry in terms of its
reputation in long term. However, when a FP
occurs, some extra resources of the industry
(in terms of time, money and manpower) may
be utilized as the document actually belongs
to a category “Not A” (negative) and is pre-
dicted by the model to be in category “A”.
Clearly, FN holds a more significant position
as releasing poor quality software is more dis-
astrous as compared to utilization of some

extra resources. Thus, in this study, we have
reported recall and did not consider precision.

2. Moreover, the datasets (9 datasets with bi-
nary dependent variable formed from a single
dataset) used in this work for model prediction
are imbalanced where the number of instances
belonging to negative class is more than the
number of instances belonging to the positive
class. Studies in literature have criticized the
use of precision when the models are validated
using imbalanced datasets [51, 52].

Instead, to handle the imbalance nature of
the datasets, we have used an effective perfor-
mance measure known as Area Under ROC
Curve (AUC). ROC curve is a plot of recall
(true-positive) on the y-coordinate versus its
1-specificity (false positive) on the x-coordinate.
It is used to measure the accuracy of the model
and its values lie in the range of 0 to 1, where
an AUC value of 1 indicates the best prediction.
When the data is imbalanced, the model is biased
towards the majority class while the minority
class is predicted with less accuracy. To handle
this, studies [51, 53, 54] propose the use of AUC
as it is insensitive to class distribution changes.
In other words, it is robust to imprecise class
distribution and misclassification costs [55].

4. Methodology behind the work

This section discusses the methodology incorpo-
rated to accomplish the classification of NFRs.
Figure 2 depicts three steps used to develop the
predictive models. The steps have been explained
in the following subsections.

4.1. Gathering of NFR descriptions

The dataset used in this work for empirical anal-
ysis was the same dataset which was used by the
authors Cleland-Huang et al. [9]. This dataset
consist of a set of 15 projects which were made
by MS students at DePaul University available at
the open source PROMISE software engineering
repository http://promisedata.org/repository.
These projects contained a total of 326 NFR
descriptions and 358 FR descriptions. These

96 Rajni Jindal et al.

Figure 2. Framework used for classifying NFR descriptions

Figure 3. Percentage of requirements belonging to each type of NFR

326 NFR descriptions have been categorized into
nine types of NFR viz. availability, look-and-feel,
legal, maintainability, operational, performance,

scalability, security, and usability. The percent-
age of NFRs belonging to each NFR type is
shown in Figure 3.

Mining Non-Functional Requirements using Machine Learning Techniques 97

4.2. Application of text mining
techniques

This step concerns with the analysis of NFR
descriptions to identify significant keywords (in-
dicator terms) pertaining to each type of NFR.
326 NFR descriptions were extracted from the
requirement specification documents and applied
to a series of text mining steps. Figure 2 demon-
strates the steps of text mining which has been
explained below:
1. Pre-processing: Each document is represented

using Bag of Words (BOW) representation
method in which a document is considered to
be a collection of thousands of words which
occur in it at least once. Many of these words
are not relevant for the learning task and
their usage can degrade the performance of
a classifier. Thus, a series of preprocessing
tasks like tokenization, stop-words removal
and stemming are required in order to remove
the irrelevant words from the document. Text
mining process begins by first converting the
entire document in the form of tokens, i.e.,
a set of words. This is known as tokenization.
This is followed by removing the words from
the document that do not add any meaning
to the data (stop words like prepositions, arti-
cles, conjunctions, etc.). Finally, stemming is
performed [56]. Instead of stemming, another
popular technique which could be used is
lemmatization. However, we preferred stem-
ming over lemmatization as the computation
time involved in stemming is lesser as com-
pared to lemmatization which is useful incase
of large datasets and long texts.

2. Feature-Selection: Once pre-processing is per-
formed, set of relevant words called indicator
terms need to be identified specific to each
type of NFR. In this work, Information-Gain
(IG) measure has been used as the feature
selection method. The working of IG measure
is based on finding a collection of words from
the document that best identify the target
concept (NFR type) [57]. It is based on the
concept of entropy deduction which occurs
when the dataset is split on an attribute [57].
In other words, IG is the amount of infor-

mation that is gained by evaluating the IG
value of each attribute in the dataset. It is
defined as the difference of the entropy of the
dataset before the split and the entropy of the
dataset after the split. Entropy of the entire
dataset determines the amount of uncertainty
in the information that needs to be assessed.
IG measure works by associating a weight
to each of the word obtained after pre-pro-
cessing and then the top-N scoring words are
selected as the indicator terms. In our work,
the value of N is considered as 10 as the
paper by Cleland-Huang et al [9] showed that
good results were achieved when top-10 words
were considered as compared to the results
achieved when top-5 words or all the words
were considered together. Table 3 depicts the
top-10 indicator terms in decreasing order
of IG measure, corresponding to each of the
nine NFR types.

3. Vector Space Model: Once feature selection
has been done using IG measure, we will
have total number of N indicator terms
which can be represented as t1, t2, . . . , tN .
Each ith document is then represented as
a N -dimensional vector consisting of N val-
ues written as (Xi1, Xi2, . . . , XiN). Here, Xij

is a TF-IDF (Term Frequency Inverse Docu-
ment Frequency) weight measuring the impor-
tance of the jth term tj in the ith document.
The complete set of vectors corresponding
to all the documents under consideration is
called a Vector Space Model (VSM).

4.3. Development of prediction models

Once the indicator terms for each NFR type
are identified, prediction models are developed
for the classification of future NFR descriptions
whose NFR type is not known. As depicted in
Figure 4, nine datasets are developed correspond-
ing to each NFR type from an initial dataset.

This initial dataset is the original NFR docu-
ment that consists of 326NFRdescriptions belong-
ing to one of the nine NFR types. Each dataset has
the total number of instances as 326with top-10 in-
dicator terms of that particular NFR type as inde-
pendent variables and a binary dependent variable.

98 Rajni Jindal et al.

Figure 4. Process involved in NFR classification

Table 3. Top-10 indicator terms specific to each NFR type sorted by IG measure

Rank A LF L MN O PE SC SE US
1 achiev simul regul updat environ second simultan access easi
2 hour ship compli mainten interfac respons handl author train
3 day sound disput chang window time year ensur understand
4 pm interfac legal nfl server longer capabl authent intuit
5 time appear rule season user minut support prevent instruct
6 long appeal histori releas web return number allow select
7 onlin shot requir integr establish fast expect logon realtor
8 avail color complianc code oper flow concurr secur learn
9 technic compli conform pattern second add increas polici symbol
10 year access standard offer custom prepaid launch malici natur

These top-10 indicator terms (extracted using IG
measure) specific to each NFR type are shown in
Table 3. Dependent variables will have the value of
1 or 0 depending on the type of NFR. For instance,
dataset 1 is pertaining to “A” NFR type, so it will
have the value of the dependent variable as 1 for all
the NFR descriptions pertaining to “A” NFR type
and the value of 0 for all other remaining NFR
descriptions. Corresponding to each of the nine
datasets, 8 prediction models are developed by
employing 8ML techniques (J48 decision tree, RF,
Logitboost, Adaboost, MLP, RBF network, Bag-
ging,NB) on each of the datasets. These prediction
models can be used for the classification of future
NFR descriptions whose NFR type is not known.

5. Result analysis

This section presents the results of eight different
ML techniques when applied to nine differentmod-
els developed with respect to their corresponding
NFR types. The performance measures which
have been used in evaluating the performance of
these ML techniques are AUC and recall.

In this section, we will broadly discuss the
following two Research Questions (RQs):
RQ1: Which ML technique is best for predicting
each type of NFR such as performance, security,
look-and-feel, etc.?
RQ2: Which NFR has been best predicted in
terms of classification and misclassification rate?

Mining Non-Functional Requirements using Machine Learning Techniques 99

5.1. Analysis of RQ1

To address the RQ1, the performance of the ML
classification models to predict each category of

NFR is depicted in Figure 5. Figure 5 depicts the
comparative analysis of the ML models and de-
termines how well these models have performed
in predicting different types of NFR. The data

Figure 5. Graphical representation depicting the performance of ML techniques

100 Rajni Jindal et al.

values corresponding to each figure are shown
in appendix (Tables A1–A4). We can observe
from the Figure 5 that different NFR types re-
sponded differently to each classification method.
For example, the performance of “A” NFR in
terms of AUC when predicted by different classi-
fiers is quite different, ranging from 0.65 to 0.97.
Similar observations can be seen with all other
NFR types. In other words, if a particular ML
model has given a high value of AUC in pre-
dicting a particular type of NFR, it may not be
necessary that it is also giving high accuracy in
predicting other NFR types. This may be due to
the reason that each NFR is very different from
the others and thus, the top-10 words selected
corresponding to each NFR are very different.
Since the classification models are based on these
top-10 words, the same classifier is performed
differently on different NFRs. Given this scenario,
the identification of a suitable classifier to predict
each type of NFR will be highly beneficial for
researchers and academicians. Figure 5 shows
that the NFR “A” has been best predicted by
NB giving AUC values as high as 0.97 and recall
value as 90.0%. This is followed by RF giving
AUC of 0.91 and recall as 85.0%. The graphs
show that all NFRs except “SE” are best pre-
dicted by NB classifier. NB gives the highest
AUC of 0.97, 0.83, 0.97, 0.95, 0.81, 0.86, 0.88,
and 0.77 for “A”, “LF”, “L”, “MN”, “O”, “PE”,
“SC” and “US” types of NFR, respectively. Their
corresponding recall values are also high in the
majority of the cases. The probable reason of NB
performing well could be due to its assumption
of attributes to be independent given the value
of class variable [40]. Moreover, NB does not fit
nearly as much, so there is no need to prune
or process the network. For “SE” NFR, MLP
has given the highest AUC of 0.85. After NB
technique, RF and RBF techniques have shown
the second highest AUC for the majority of the
NFRs. The AUC of RF and RBF lies in the
range of 0.67 to 0.91 and 0.72 to 0.92, respec-
tively. The performance of the bagging technique
can be considered as an average in predicting the
NFR descriptions of all types with the values of
AUC lying in the range of 0.74 to 0.85. Similar
performance has been depicted by LB and AB

techniques. The performance of these techniques
has been overall good in predicting the NFR
descriptions with the values of AUC lying in the
range of 0.73 to 0.88 corresponding to LB and
the AUC value falls in the range of 0.72 to 0.83
with respect to AB. On the contrary, J48 decision
tree technique has not performed well in classi-
fying the NFR descriptions into their respective
types as the highest value of AUC obtained is
0.75 with 66.0% recall value. J48 has shown the
lowest performance (in terms of both AUC and
recall) in predicting all types of NFRs. From
the above analysis, it is summarized that the
performance of NB has outperformed all other
classifiers and it is overall best in predicting the
NFRs. We suggest researchers and academicians
to use NB models for predicting the NFRs.

5.2. Analysis of RQ2

To address RQ2, NFRs are compared across each
other by comparing the classification and misclas-
sification ability of the best ML model for each
type of NFR found in RQ1. The classification
ability of the ML model is found by comparing
the NFRs using AUC and recall values. In this
study, the keywords form the basis for the identi-
fication of NFR documents into their respective
types of NFRs. Thus, the performance of the
ML model also depends on the values of these
keywords. The NFRs which is predicted with
high AUC and recall implies that the keywords
pertaining to that NFR type are of great signif-
icance for the particular ML model to perform
classification. It also implies that the dataset in
turn consists of a good number of these require-
ments and thus the ML models are trained well
on such datasets.

Whereas, the misclassifications by the ML
model are found by determining the number of
False Negative (FN) and False Positive (FP)
of each type of NFR. As we have discussed in
Section 3.2, FN occurs when the document actu-
ally belongs to a category “A” (positive) and is
predicted by the model in category “Not A” (neg-
ative). Whereas, FP occurs when the document
actually belongs to a category “Not A” (negative)
and is predicted by the model to be in category

Mining Non-Functional Requirements using Machine Learning Techniques 101

Figure 6. Bar graph showing comparison amongst NFRs in terms of AUC and recall

Table 4. Number of misclassifications of NFRs

NRF Type Misclassifications Misclassifications
done by ML model

False Negative False Positive Total
(FN) (FP) (FN+FP)

Availability (A) 7 (2.01%) 8 (2.30%) 15 (4.32%) NB
Legal (L) 8 (2.30%) 5 (1.44%) 13 (3.74%) NB
Look-and-Feel (LF) 8 (2.30%) 22 (6.34) 30 (8.64%) NB
Maintainability (MN) 4 (1.15%) 5 (1.44%) 9 (2.59%) NB
Operational (O) 15 (4.32%) 36 (10.37%) 55 (15.85%) NB
Performance (PE) 25 (7.20%) 7 (2.01%) 32 (9.22%) NB
Scalability (SC) 15 (4.32%) 8 (2.30%) 23 (6.62%) NB
Security (SE) 8 (2.30%) 35 (10.08%) 43 (12.39%) MLP
Usability (US) 1 (0.28%) 29 (8.35%) 30 (8.64%) NB

“A”. It is also discussed in Section 3.2 that FN is
more significant that FP and thus, a model with
lower FN is more desirable. The classification
ability of the best ML model in predicting each
type of NFR can be seen from Figure 6. On the
other hand, the number of misclassifications done
by the best ML classification model for each type
of NFR is shown in Table 4. Table 4 shows the
misclassifications for each type of NFR in terms
of number of FN and FP along with their per-
centages. It can be seen from Figure 6 that “A”,
“L” and “MN” (in this order) have shown high
AUC values, followed by “PE”, “SC” and “SE”.
High recall values are shown by “MN”, “L”, and
“A” (in this order). Thus, we can say that overall
(taking AUC and recall together) “L” has been
best predicted amongst all NFRs. This might
be due to the reason that the “L” type of NFR
is comparatively easy to understand and collect
and thus, the data consisted of a good number of

correctly elicited requirements pertaining to this
NFR. In addition to this, Table 4 shows that only
13 “L” type NFRs are misclassified by NB model
which is amongst the lowest compared to other
misclassification rates. However, amongst these
13 misclassifications, there are more number of
FN than FP, which is not desirable. Hence, such
models may not be used for future unknown pre-
dictions. In contrast, the misclassification rates
to predict “Ă” and “MN” type of NFR are also
low (4.32% and 2.59%, respectively). “MN” in
fact has been least misclassified amongst all the
NFRs. Also, the number of FN is less than FP
for both “A” and “MN”. Thus, overall, we can
say that NB model has performed best in pre-
dicting “MN” and “A” types of NFRs when both
classification and misclassification are taken to-
gether. The NFR which is predicted with lowest
AUC and recall is “US” as can be seen from
Figure 6. It can also be seen from Table 4 that

102 Rajni Jindal et al.

30 “US” type NFR have been misclassified which
is amongst the highest. NB has given the highest
misclassification rate (15.85%) for “O” type of
NFR, implying that 55 “O” types of NFRs have
been misclassified as some other NFRs. In terms
of AUC and recall also “O” has been predicted
with low values. The possible reason of misclas-
sification may be due to the ambiguities caused
by the indicator terms (keywords). These key-
words form the basis for the identification of NFR
documents into their respective types of NFRs
and hence need to be carefully analysed to avoid
misclassification. However, it has been observed
that some of the NFR specifications of different
NFR types have been described by the same
set of keywords. In other words, some keywords
tend to occur across multiple requirements of
different NFR types. This gives rise to ambigui-
ties, thus leading to false classification. Similar
observations were given by Cleland-Huang et al.
[9] and Sharma et al. [5]. Let us understand this
with the help of a suitable example. Consider the
keyword “colour” which is an indicator term of
look-and-feel NFR. Presence of the term “colour”
in the requirement sentence “The application
shall match the colour of the schema set forth by
Department of Homeland Security” clearly shows
that the requirement is about look-and-feel NFR.
However, the presence of the term “colour” in the
requirement sentence “The list of dispute cases
must be colour coded for easy identification of
dispute cases based upon the dispute case status”
does not necessarily represent any look-and-feel
NFR, but rather represent “usability” NFR. The
hint to identify look-and feel type NFR is the
presence of other terms/patterns in the require-
ment sentence. For example, in the first sentence,
the term “match” puts a constraint on “colour
of the schema”. However, in the second sentence,
no such constraint is there to guarantee that
it is a look-and-feel NFR. Thus, identification
of the NFR using keywords may lead to false
classification and a detailed analysis of semantic
patterns and structure of NFR descriptions could
be done to improve the results. Thus, future work
will therefore investigate the possibility of using
categories of indicator terms or extended training
to improve these retrieval results.

5.3. Comparison with state-of-art

In this section, we discuss the implication of
the results where we provide important insights
inferred. We have compared our results to the
state of the art [9, 12] and have qualitatively
examined the wrongly classified cases to gener-
ate some useful insights. We have also discussed
what could be done which may lead to improved
performance of the proposed models.

The comparison in terms of recall values is
shown in Table 5. For the purpose of comparison,
we have considered the highest value of recall given
by the different ML models for predicting each
type of NFR. The bar chart in Figure 6 shows the
highest recall value (given by differentMLmodels)
for each type of NFR. The authors, Rashwan et
al. (2013) [12] have used the same dataset as used
in our study and have classified the NFR descrip-
tions using SVM classifier. From Table 5, it can be
clearly seen that the prediction models proposed
in this study have classifiedNFRdescriptions of all
types with higher recall values than the model de-
velopedbyRashwan et al. [12] using SVMclassifier.
This is despite the fact that SVM classifier is one
of the most popularly used ML techniques in the
field of NFR classification as can be seen from the
literature survey (Table 1). We can even observe
from the table that for some of the NFR types, viz.
“MN” and “SC”, the model of Rashwan et al. [12]
has given extremely lowvalues of recall (below 0.5).
A recall value of 0.5 means that for every correct
prediction, the next prediction is incorrect. There
is no practical usage of such classifiers and they are
known as random classifiers. The study [12] has
shown that the SVM classifier has performed even
worse than a random classifier for “MN” and “SC”
NFR types. On the contrary, in this study, “MN”
has been predicted with the highest recall value
of 0.93 amongst all other NFRs. Similar observa-
tions are made when the recall values of NFRs
in this study are compared with the recall values
obtained in another study by Cleland-Huang et al.
[9]. Table 5 shows that the recall values of all NFRs
except “US” are higher than the recall values ob-
tained in [9]. Thus, overall we can conclude that
the results in this study are higher than the results
obtained in both the compared studies [9] and [12].

Mining Non-Functional Requirements using Machine Learning Techniques 103

Table 5. Comparison with state-of art

NRF Type Recall (State-of-Art) Recall (Our Model)Cleland, Huang et al. [9] Rashwan et al. [12]
Availability (A) 0.89 0.66 0.90
Legal (L) 0.70 0.61 0.92
Look-and-Feel (LF) 0.51 0.63 0.76
Maintainability (MN) 0.88 0.41 0.93
Operational (O) 0.72 0.66 0.75
Performance (PE) 0.62 0.70 0.83
Scalability (SC) 0.72 0.38 0.86
Security (SE) 0.81 0.70 0.81
Usability (US) 0.98 0.62 0.68

Next, we analyze the NFR type which has
been predicted with the lowest recall value in
this study. As can be seen from Table 5, “US”
NFR type has been predicted with the lowest
recall.This might be due to the reason that NFR
descriptions pertaining to “US” NFR type may
be comparatively difficult to understand and col-
lect. This is also evident from the dataset used
in this study which shows that there are only 3%
of NFR descriptions pertaining to “US” type of
NFR. This low percentage of “US” type NFR
descriptions give a low value of recall. Another
implication which can be drawn from our results
is that our models have not shown exceptional
performance with respect to few of the NFR types.
This might be because of the reason that NFR
identification was done on the basis of indicator
terms (keywords). In other words, the indicator
terms form the basis of the classification of an
unknown NFR type into its correct type. However,
it has been observed that some keywords tend
to occur across multiple requirements of different
NFR types, leading to false classification. Similar
observations were given by Cleland-Huang et al.
[9] andSharma et al. [5]. The illustration to explain
this has been given in Section 5.2 (last paragraph).

6. Discussion

This section provides a discussion of the results
in terms of cost/benefit analysis and how the re-
sults retrieved from this study can be useful for
industry practitioners. The work in this paper is
concerned with the development of nine different

classification models specific to each type of NFR
with the aim to classify NFRs into the respective
types based on their descriptions specified in the
requirement specification document. During the
elicitation process, requirements analysts may
generate large amounts of unstructured SRS doc-
uments consisting of the requirement specifica-
tions being scattered throughout the document
in a random and adhoc fashion. The descriptions
are extracted from the document and applied to
a series of text mining steps to retrieve indica-
tor terms specific to each NFR, leading to the
detection and classification of NFR in the initial
phases of SDLC process.

6.1. Analyzing returns on investment

We conducted cost-benefit analysis to evaluate
the effectiveness of prediction models used for
predicting the type of NFRs. The result section
(Section 5) concludes the best ML technique for
predicting each type of NFR amongst the various
ML techniques used. In other words, we suggest
that researchers, practitioners, and academicians
may use those ML techniques for predicting the
required NFR type. In this section, we discuss
the cost of using the proposed model and the
cost of not using the proposed model.

To calculate the cost of the model, we have
considered a cost matrix having the value of
1 unit for false positives and false negatives (in-
correct predictions), whereas 0 unit for true pos-
itives and true negatives (correct prediction).
The values of 1 unit and 0 unit for incorrect and
correct decisions, respectively, are considered as
it is well understood that one may need to pay

104 Rajni Jindal et al.

Table 6. Cost incurred with/without using proposed models

NRF Type Proposed Cost Cost Gain Profit/LossML Model of the Model without Model
Availability NB 12 41 29 Profit
Look-and-Feel NB 24 59 36 Profit
Legal NB 10 25 15 Profit
Maintainability NB 9 27 19 Profit
Operational NB 45 99 55 Profit
Performance NB 28 80 52 Profit
Scalability NB 21 28 7 Profit
Security MLP 34 103 69 Profit
Usability NB 30 85 55 Profit

Figure 7. Cost/benefit curve

the price when the model takes wrong decisions
while there is no cost involved when the model
takes correct decisions. Therefore, the cost of
using the model is calculated using the formula:
(No. offalsepositives×1)+(No. offalsenegatives×
1). To conduct the cost-benefit analysis, the mod-
els are run at different threshold values and the
performance of the models is analysed through
the confusion matrix at each threshold value.
The cost of the model, measured in terms of
false positives and false negatives changes as the
threshold changes. The minimum cost obtained is
considered as the cost of the classification model
(shown in Table 6). This cost is compared to
the cost incurred without using the model. The
cost incurred without using the model is found
by selecting the same number of instances at
random [58]. The difference between the values
of the cost function by random selection and
the value of the cost from the model is called
gain. The Gain can be interpreted as the profit
obtained by using the classification model in-
stead of random selection of the same number of
instances. We can observe from Table 6 that in

all the cases, the cost incurred without using the
model is more than the cost incurred by using the
proposed model. In other words, we suggest that
any professional from the industry who would
use our model for classifying the NFRs into their
types would be in profit from the gain as shown
in Table 6.

For the purpose of demonstration, a plot
of “cost/benefit curve” and “threshold curve”
is depicted for MLP model used for predicting
“SE” type of NFR. We have shown the plot cor-
responding to MLP model as it has given the
highest gain of 69 units. Likewise, we can draw
for all other models and infer the similar mean-
ing. The “cost/benefit curve” is a plot of sample
size (part of selected samples) on X-axis and
cost/benefit on the Y -axis [59]. The “threshold
curve” is a plot of true positive rate on Y -axis
and sample size on X-axis. Threshold curve cor-
responds to the part of the selected instances
(“Sample Size”). In other words, the threshold
curve depicts the dependence of the part of “pos-
itive” samples retrieved during virtual screening
upon the part of the samples selected from the

Mining Non-Functional Requirements using Machine Learning Techniques 105

whole dataset used for screening. It should be
noted that only those samples are selected during
virtual screening, for which the estimated prob-
ability of being “positive” exceeds the chosen
threshold. The “cost/benefit curve” in Figure 7
shows that the minimum cost is 34 which is
increasing reaching the maximum value of 283.
The cross symbol denoted by “X” denotes the
sample size retrieved during virtual screening.
This sample size is important as we take the
same number of instances to calculate the cost
incurred without using the model. Similar infer-
ences can be drawn for all other “cost/benefit
curves” and “threshold curves”.

6.2. Implications from industry viewpoint

The results of this work will be of interest to
researchers as well as practitioners from the in-
dustry, who are interested in finding the type
of NFR based on their descriptions in the early
phases of software development, thus improving
software quality. Timely identification of quality
requirements would be of great benefit to the soft-
ware developers from the industry as these quality
requirements play a critical role in the design and
architecture of the system. The architecture of the
system built acts as the scaffolding in which the
functionality of the system is delivered, thus ensur-
ing that the system deliveredmeets the customer’s
functional expectations and needs. Consider a sit-
uation where a NFR remains undiscovered or is
not elicitated properly during the early phase of
software development, and is discovered at the
later stages of development or when the software
is released. In such a situation, the entire techni-
cal architecture has to be redesigned, leading to
the wastage of limited resources in terms of time,
money, and manpower [60, 61]. Thus, to avoid this
situation, the models proposed in this study can
be used in the early phases for the identification
and classification of NFRs. When the software
is released and the customer finds that all his
requirements (both functional as well as nonfunc-
tional) are met, the customer feels satisfied and
happy. This leads to the increasing the reputation
and status of the software organization (in which
the software is developed) in the market. Thus,

customer satisfaction which is of utmost impor-
tance in today’s scenario is met. Furthermore,
practitioners from industry will be able to detect
and classify NFRs from a previously uncatego-
rized requirement specification in an automated
way, thus avoiding the need for manual evaluation
which like all human activities has a tendency to
be error prone. It will also help researchers from
the industry to extract viewpoints for different
NFR qualities of interest. For example, a security
analyst could issue a request to retrieve all descrip-
tions related to security issues, or a GUI designer
could issue a request to retrieve information about
stakeholders” usability or look-and-feel concerns.

Thus, we have seen how industries can use
the proposed models for identifying the NFRs
and predicting the unknown NFR with its NFR
type. Instead of using the proposed models, the
identification of NFRs can also be done manually
with the help of a human analyst. We have briefly
discussed the effort required to conduct the work
manually and have shown that the manual iden-
tification and prediction of NFRs is not feasible.

Human analyst can be considered as the re-
quirement engineers in this study. Since the SRS
documents are large enough and the NFRs are
scattered throughout the document, it is very dif-
ficult or not feasible for the requirement engineers
(human analyst) to perform the task of identify-
ing the NFRs manually. Thus, this motivated the
authors to automate this process with the help
of algorithms and tools. This automation is done
with the help of text mining techniques, which
are used for extracting useful information (in
the form of indicator terms specific to each NFR
type) from a large number of documents (a large
document corpus) without requiring humans to
actually read and summarize the text. The au-
tomation of identification and classification of
NFRs broadly consists of the following steps:
1. Use of text mining steps to retrieve the in-

dependent variables: A series of text min-
ing steps were applied on the NFRs descrip-
tions to retrieve the independent variables
(indicator terms). These steps begin with
pre-processing (tokenization, stop words re-
moval, stemming) followed by application of
feature selection method and finally apply-

106 Rajni Jindal et al.

ing TF-IDF weighting. Each of these steps
can be studied in detail from Section 4.2. In
this work, a dataset consisting of a total of
326 NFR descriptions which are categorized
into 9 types of NFR was considered. For each
type of NFR, indicator terms (top-10 words)
were retrieved. So, we had to run our text
mining module nine number of times and each
time the above steps of text mining were done.
An automated text mining module takes as
input all the 326 NFR descriptions at a time
which had not been the case if it was done
by human analyst. Text mining steps had to
be applied to each of the 326 NFR descrip-
tions individually if it was done manually by
human analyst. The same procedure had to
be done 9 times for each NFR type. This
is humanly impossible as each of the above
text mining steps is complex in nature, thus
consuming a lot of time. Pre-processing step
involves natural language complications as
we deal with textual requirements which are
purely written in a natural language which
is followed by feature selection and TF-IDF
weighting that involves mathematical calcula-
tions. It is therefore not possible to do manual
computation on each NFR to retrieve top-10
words and then calculate TF-IDF values for
these words.
Thus, we have automated this process with the
help of a tool developed by the authors. The
input to this tool is a set of 326 NFRs descrip-
tions and the output is top-10 words sorted
on the basis of Information-Gain measure
(feature selection method). Thus, the entire
process is automated and the time taken to
produce the output is less than approximately
1 minute. Whereas, to perform the same ac-
tivities manually, it would take us hours and
may not be even feasible for large datasets.

2. Development of prediction models using ma-
chine learning classifiers: Once indicator
terms (independent variables) for each NFR
type are retrieved, then dataset correspond-
ing to each of the 9 types of NFR is made
consisting of a binary dependent variable
(NFR type) having the value of 1 or 0 depend-
ing on the type of NFR. Corresponding to

each dataset, eight different prediction models
were developed by employing eight ML clas-
sifiers on each dataset viz. J48 decision tree,
Random Forest (RF), Logitboost, Adaboost,
Multi-Layer Perceptron (MLP), Radial Ba-
sis Function (RBF) network, Bagging, Naïve
Bayes (NB). These ML classifiers are imple-
mented through an open source tool, WEKA.
There were in total 72 models (9 datasets * 8
ML classifiers = 72 prediction models) and it
was observed that to run each model, CPU
time of approximately 30 sec to 1:30 minutes
was required.
Had the same task been done manually, the
human analyst would have to use his skills
and knowledge in classifying NFR descrip-
tion into particular type of NFR. Also, as
the number of models is quite large (72), it
would have taken a lot of time to complete the
computation. Moreover, it would have been
very difficult to achieve a high performance
as achieved by our models.
Never the less, human computation is always
prone to error. Human error is inevitable and
normal which may lead to system failure if
not handled at the right time. Thus, we con-
clude that our prediction models are highly
recommended in contrast to human analyst
(i.e., work done manually) for classification of
future NFR descriptions whose NFR type is
not known, leading to less computation time
and more accuracy.

7. Threats to validity

The empirical validation in this work has certain
limitations which may adversely affect the valid-
ity of the results. These limitations are discussed
in terms of four threats to validity, viz. construct
validity, internal validity, external validity, and
conclusion validity.
1. Construct Validity

Construct validity is one of the most impor-
tant threats to validity. It is defined as the ex-
tent to which the variables (independent and
dependent variables) and the performance pa-

Mining Non-Functional Requirements using Machine Learning Techniques 107

rameters precisely measure the concept they
intend to measure [62–64].
This threat can be due to the improper col-
lection of the dependent variable and the
independent variables. The dependent vari-
able used in the study refers to the “types
of NFRs” and the independent variables are
the top few words of the document which de-
termine how important they are within that
particular document and also across a group
of other documents. The collection of data
for the classification of NFRs into their re-
spective types has been done by mining the
descriptions of NFRs specified in SRS doc-
ument using text mining techniques. These
text mining techniques cannot ensure com-
plete correctness. This is so as this module
is based on a number of pre-processing steps
like tokenization, stop-words removal, stem-
ming, etc., before the application of IG mea-
sure and Tf-Idf weighting approach could be
done. Now, all these pre-processing steps use
a set of English vocabulary words available
online as their base, which may result in
arbitrariness. However, these pre-processing
steps were manually evaluated to reduce the
amount of randomness and uncertainty in
the accuracy and preciseness of the results so
obtained. In addition to this, we have used
a standard performance measure, viz, Area
Under the ROC Curve (AUC) to measure
the performance of the models. This measure
is widely used in related research and suffi-
ciently measures the performance of the mod-
els accurately. Thus, the proper collection
of independent and the dependent variable
and the use of a stable performance measure
minimize the threat to construct validity to
a large extent.

2. Internal Validity
“Internal validity is defined as the degree
to which conclusions can be drawn about
the causal effect of independent variable
on the dependent variable” [64]. In this
work, independent variables used are a set of
pre-processed words obtained using IG mea-
sure. These independent variables are not
related to each other in any way. All these

words together determine the value of depen-
dent variable (type of NFR). It is not possible
to determine the causal effect of each inde-
pendent variable on the dependent variable.
In other words, the goal of this study is to de-
velop prediction models for classifying NFRs
into various categories rather than discover-
ing the cause-effect relationships. Thus, the
threat to internal validity does not exist in
the study.

3. External Validity
External validity is defined as the extent to
which the results of the study can be gen-
eralized universally. It concerns itself with
finding out whether the results produced by
the study are applicable in different domains
or can be replicated in different scenarios
for which the results are not evaluated [65].
In other words, external validity could be
ensured if we could have applied the same
approach on a different dataset and produced
the same results. To ensure external validity,
more research is needed as in this work, au-
thors have not used the proposed models on
some other datasets to identify the type of
NFR. Authors have planned to take different
datasets and use the same models to identify
NFR specifications in their future work. In
the future, we will be comparing the results
of different datasets across different projects
having diverse characteristics.

4. Conclusion Validity
Conclusion validity threats include all those
threats which affect the conclusion of the
study. In other words, all the threats which
may lead to improper results or conclusions
of the study are called as conclusion validity
threats [65]. The authors in this study have
not performed the statistical evaluation of
the results using statistical tests. Thus, this
leads to a conclusion validity threat. How-
ever, to provide strong conclusions, we have
compared the performance of 8 ML classifiers
to classify 9 types of NFRs. Very few studies
in literature have used such a large number
of ML classifiers. Thus, such comparison and
evaluation may lead to fair conclusion, reduc-
ing the threat to conclusion validity.

108 Rajni Jindal et al.

In addition to this, conclusion validity threat
may also occur since we had worked on the
dataset consisting of less number of projects.
Thedatasetused in thiswork for empirical anal-
ysis was the same dataset which was used by
authors Cleland-Huang et al. [9]. This dataset
consists of a set of 15 projects which were
made by MS students at DePaul University,
containing a total of 326 NFR descriptions.
To eliminate this threat, we may include more
such projects in the future study leading to
stronger conclusions. Also, conclusion validity
threatmayoccur sincewehaveworked on a lim-
ited number of basic NFRs. There are more
fine-grained NFRs listed by ISO standards
9126 and 25010 [65]. The inclusion of such
NFRsmayaffect the results andchange theper-
formance of the models to some extent. How-
ever, the NFRs we considered covered most of
the quality constraints enforced in our exper-
imental setup. In addition to this, the dataset
we used has the requirements pertaining to
these basic NFR types. Due to these reasons,
we did not feel the requirement to include fine
grained NFRs. Inclusion of such fine grained
NFRs may also increase the complexity of the
work and thus, maybe included only when
there is a requirement of extensive analysis.

8. Conclusions and future work

Classification of NFR descriptions into their re-
spective types is very essential for software de-
velopment meeting the basic quality determining
features like security, scalability, maintainabil-
ity, etc. The NFR descriptions in the software
requirement specification document should there-
fore be analyzed carefully and mapped into their
corresponding NFR types. In this paper, text
mining steps have been incorporated to mine
the NFR descriptions and thereby identify a set
of few keywords. These keywords are the top
few words which hold the essential information
about NFR. Keywords help to classify the NFR
descriptions using different ML techniques. Eight
different ML techniques viz. J48, RF, LB, AB,
MLP, RBF, Bagging and NB have been used to

classify the NFR descriptions into nine types of
NFR. The results which have been obtained from
the study are summarized as follows:
1. With respect to each of the nine NFR types,

eight prediction models have been developed
corresponding to eight ML techniques.

2. The retrieval of the keywords specific to each
type of NFR has been done using IG measure
as the feature selection method. These key-
words hold essential information about the
NFR type and are used to develop prediction
models by employing a suitable ML technique.
Top-10 words sorted by IG measure have been
selected corresponding to each of the nine
models.

3. The study analyzes the performance of ML
models in terms of classification and misclas-
sification rate to determine the best model
for predicting each type NFR descriptions.

4. The performance of each of these nine mod-
els is evaluated using ROC analysis. The re-
sults indicated that the performance of all
the NFRs except “SE” is best predicted by
NB classifier. NB gives the highest AUC of
0.97, 0.83, 0.97, 0.95, 0.81, 0.86, 0.88, and
0.77 for “A”, “LF”, “L”, “MN”, “O”, “PE”,
“SC”, and “US” types of NFR respectively.
Their corresponding recall values are also
high in majority of the cases. This is so be-
cause this technique has a high bias and low
variance which works well for the dataset
having a small size.

5. This is followed by the performance of RBF
and RF technique. The AUC values of RF
and RBF lies in the range of 0.67 to 0.91
and 0.72 to 0.92, respectively. Average perfor-
mance has been depicted by the remaining
techniques which are LB, AB, Bagging, and
MLP.

6. On the contrary, J48 decision tree technique
has not performed well in classifying the NFR
descriptions into their respective types. This
technique has shown the lowest performance
(in terms of both AUC and recall) in predict-
ing all the types of NFRs.

7. Among all the NFRs, it has been observed
that most of the classifiers predicted “PE”
and “A” type of NFR most accurately. On

Mining Non-Functional Requirements using Machine Learning Techniques 109

the other hand, “US” NFR type has been pre-
dicted with lowest accuracy as there are only
3% (lowest percentage) of NFR descriptions
pertaining to this NFR type in the dataset,
thus giving low value of recall.

8. Overall, we concluded that the performance
of NB model has performed best in predict-
ing “MN” and “A” type of NFRs when both
classification and misclassifications are taken
together.

9. Also, cost-benefit analysis was conducted
from which it was concluded that the cost
incurred without using our proposed models
is more than the cost incurred when using
the proposed models.

As our future work, we intend to replicate our
empirical study across more datasets of similar
type, i.e., academic datasets where requirements
are written by students and researchers to ob-
tain generalized and well-formed results. Apart
from this, we also intend to conduct more exper-
iments and provide benchmarks for future per-
formance by exploring different types of datasets
like industrial datasets where requirements are
written to describe or simulate industrial prod-
ucts or informal datasets where requirements
are written by end-users as comments, reviews,
posts and requests in open source communities
(sourceforge.net) or written in different Apps
of varying categories (books, education, games,
health, lifestyle, navigation, news, productivity,
travel and utilities). Moreover, we can analyze
the effectiveness of the classification models by
incorporating more search-based or evolutionary
algorithms instead of basic ML algorithms.

References

[1] M. Glinz, “On non-functional requirements,” in
Proceedings of the 15th IEEE International Re-
quirements Engineering Conference. Delhi, India:
IEEE, 2010, pp. 21–26.

[2] M. Glinz, “Rethinking the notion of non-func-
tional requirements,” in Proceedings of the 3rd
world congress for software quality, Munich, Ger-
many, 2005, pp. 55–64.

[3] L. Chung, B. Nixon, E. Yu, and J. Mylopou-
los, Non-Functional Requirements in Software
Engineering. KluwerAcademic, 2000.

[4] S. Amasaki and P. Leelaprute, “The effects of
vectorization methods on non-functional require-
ments classification,” in 44th Euromicro Con-
ference on Software Engineering and Advanced
Applications (SEAA). Prague, Czech Republic:
IEEE, 2018, pp. 175–182.

[5] V. Sharma, R. Ramnani, and S. Sengupta,
“A framework for identifying and analysing
non-functional requirements from text,” in Pro-
ceedings of the 4th International Workshop on
Twin Peaks of Requirements and Architecture.
New York, USA: ACM, 2014, pp. 1–8.

[6] L. Hakim and S. Rochimah, “Oversampling im-
balance data: Case study on functional and non
functional requirement,” in Electrical Power,
Electronics, Communications, Controls and In-
formatics Seminar (EECCIS). Batu, East Java,
Indonesia: IEEE, 2018, pp. 315–319.

[7] D. Méndez-Fernández, S. Wagner, M. Kali-
nowski, M. Felderer, P. Mafra, A. Vetro,
T. Conte, M. Christiansson, D. Greer, C. Lasse-
nius, T. Mannisto, M. Nayebi, M. Oivo, B. Pen-
zenstadler, D. Pfahl, R. Prikladnicki, G. Ruhe,
A. Schekelmann, S. Sen, R. Spinola, A. Tuzcu,
J. de la Vara, and R.Wieringa, “Naming the pain
in requirements engineering,” Empirical software
engineering, Vol. 22, No. 5, 2017, pp. 2298–2338.

[8] R. Svensson, M. Host, and B. Regnell, “Manag-
ing quality requirements: A systematic review,”
in 36th EUROMICRO Conference on Software
Engineering and Advanced Applications. Lille,
France: IEEE, 2010, pp. 261–268.

[9] J. Cleland-Huang, R. Settimi, X. Zou, and
P. Solc, “Automated classification of non-func-
tional requirements,” Requirements Engineering,
Vol. 12, No. 2, 2007, pp. 103–120.

[10] I. Hussain, L. Kosseim, and O. Ormandjieva,
“Using linguistic knowledge to classify non-func-
tional requirements in SRS documents,” in Inter-
national Conference on Application of Natural
Language to Information Systems. London, UK:
Springer, 2008, pp. 287–298.

[11] G. Gokyer, S. Cetin, C. Sener, and M. Yon-
dem, “Non-functional requirements to architec-
tural concerns: ML and NLP at crossroads,” in
Proceedings of the 2008 the 3rd international con-
ference on software engineering advances. Sliema,
Malta: IEEE, 2008, pp. 400–406.

[12] A. Rashwan, O. Ormandjieva, and R. Witte,
“Ontology-based classification of non-functional
requirements in software specifications: A new
corpus and svm-based classifier,” in 37th Annual
Computer Software and Applications Conference.
Kyoto, Japan: IEEE, 2013, pp. 381–386.

110 Rajni Jindal et al.

[13] T. Nguyen, J. Grundy, and M. Almorsy,
“Rule-based extraction of goal-use case models
from text,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering.
Bergamo, Italy: ACM, 2015, pp. 591–601.

[14] A. Casamayor, D. Godoy, and M. Campo, “Iden-
tification of non-functional requirements in tex-
tual specifications: A semi-supervised learning
approach,” Information and Software Technol-
ogy, Vol. 52, No. 4, 2010, pp. 436–445.

[15] W. Zhang, Y. Yang, Q. Wang, and F. Shu, “An
empirical study on classification of non-func-
tional requirements,” in Twenty-Third Inter-
national Conference on Software Engineering
and Knowledge Engineering, Miami Beach, USA,
2011, pp. 444–449.

[16] J. Slankas and L. Williams, “Automated ex-
traction of non-functional requirements in avail-
able documentation,” in 1st International Work-
shop on Natural Language Analysis in Software
Engineering. San Francisco, USA: IEEE, 2013,
pp. 9–16.

[17] P. Singh, D. Singh, and A. Sharma, “Rule-based
system for automated classification of non-func-
tional requirements from requirement specifica-
tions,” in International conference on Advances
in Computing, Communications and Informatics.
Jaipur, India: IEEE, 2016, pp. 620–626.

[18] Z. Kurtanovic and W. Maalej, “Automatically
classifying functional and non-functional require-
ments using supervised machine learning,” in
25th International Requirements Engineering
Conference Workshops. Lisbon, Portugal: IEEE,
2017, pp. 490–495.

[19] A. Hindle, N.A. Ernst, M.W. Godfrey, and J. My-
lopoulos, “Automated topic naming,” Empiri-
cal Software Engineering, Vol. 18, No. 6, 2013,
pp. 1125–1155.

[20] D. Ott, “Automatic requirement categoriza-
tion of large natural language specifications at
Mercedes-Benz for review improvements,” in In-
ternational Working Conference on Requirements
Engineering: Foundation for Software Quality.
Essen, Germany: Springer, 2013, pp. 50–64.

[21] M. Lu and P. Liang, “Automatic classification
of non-functional requirements from augmented
app user reviews,” in 21st International Confer-
ence on Evaluation and Assessment in Software
Engineering (EASE). Karlskrona, Sweden: ACM,
2017, pp. 344–353.

[22] R. Deocadez, R. Harrison, and D. Rodriguez,
“Automatically classifying requirements from
app stores: A preliminary study,” in 25th In-
ternational Requirements Engineering Confer-

ence Workshops. Lisbon, Portugal: IEEE, 2017,
pp. 367–371.

[23] C. Li, L. Huang, J. Ge, B. Luo, and V. Ng, “Auto-
matically classifying user requests in crowdsourc-
ing requirements engineering,” Journal of Sys-
tems and Software, Vol. 138, 2018, pp. 108–123.

[24] J. Zou, L. Xu, M. Yang, X. Zhang, and D. Yang,
“Towards comprehending the non-functional re-
quirements through developers’ eyes: An explo-
ration of stack overflow using topic analysis,”
Information and Software Technology, Vol. 84,
2017, pp. 19–32.

[25] E. Knauss, S. Houmb, K. Schneider, S. Islam,
and J. Jürjens, “Supporting requirements engi-
neers in recognising security issues,” in Inter-
national Working Conference on Requirements
Engineering: Foundation for Software Quality.
Essen, Germany: Springer, 2011, pp. 4–18.

[26] M. Riaz, J. King, J. Slankas, and L.Williams,
“Hidden in plain sight: Automatically identify-
ing security requirements from natural language
artifacts,” in International Conference on Re-
quirements Engineering Conference. Karlskrona,
Sweden: IEEE, 2014, pp. 183–192.

[27] R. Jindal, R. Malhotra, and A. Jain, “Auto-
mated classification of security requirements,”
in 2016 International Conference on Advances
in Computing, Communications and Infor-
matics (ICACCI). Jaipur, India: IEEE, 2016,
pp. 2027–2033.

[28] R. Malhotra, A. Chug, A. Hayrapetian, and
R. Raje, “Analyzing and evaluating security fea-
tures in software requirements,” in Innovation
and Challenges in Cyber Security. Noida, India:
IEEE, 2016, pp. 26–30.

[29] E. Knauss and D. Ott, “(Semi-) automatic cat-
egorization of natural language requirements,”
in International Working Conference on Re-
quirements Engineering: Foundation for Soft-
ware Quality. Essen, Germany: Springer, 2014,
pp. 39–54.

[30] R. Maiti and F. Mitropoulos, “Capturing, elic-
iting, predicting and prioritizing (CEPP) non-
-functional requirements metadata during the
early stages of agile software development,” in
Proceedings of the SoutheastCon. Fort Laud-
erdale, USA: IEEE, 2015, pp. 1–8.

[31] A. Mahmoud and G. Williams, “Detecting, clas-
sifying, and tracing non-functional software re-
quirements,” Requirements Engineering, Vol. 21,
No. 3, 2016, pp. 357–381.

[32] Z. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe,
and K. Schneider, “What works better? A study
of classifying requirements,” in 25th International

Mining Non-Functional Requirements using Machine Learning Techniques 111

Requirements Engineering ConferenceWorkshops.
Lisbon, Portugal: IEEE, 2017, pp. 496–501.

[33] L. Toth and L. Vidacs, “Study of various clas-
sifiers for identification and classification of
non-functional requirements,” in International
Conference on Computational Science and Its
Applications. Springer, 2018, pp. 492–503.

[34] S. Uddin, A. Khan, M. Hossain, and M. Moni,
“Comparing different supervised machine learn-
ing algorithms for disease prediction,” BMC Med-
ical Informatics and Decision Making, Vol. 19,
No. 281, 2019, pp. 1–16.

[35] Y. Dengju, J. Yang, and X. Zhan, “A novel
method for disease prediction: Hybrid of ran-
dom forest and multivariate adaptive regression
splines,” Journal of Computers, Vol. 8, No. 1,
2013, pp. 170–177.

[36] C. Sinclair, L. Pierce, and S. Matzner, “An appli-
cation ofmachine learning to network intrusion de-
tection,” in Proceedings of 15th Annual Computer
Security Applications Conference (ACSAC’99).
Phoenix, AZ, USA: IEEE, 1999, pp. 371–377.

[37] E. Aleskerov, B. Freisleben, and B. Rao, “Card-
watch: A neural network based database min-
ing system for credit card fraud detection,” in
Proceedings of the IEEE/IAFE Computational
Intelligence for Financial Engineering (CIFEr).
New York, NY, USA: IEEE, 1997, pp. 220–226.

[38] S. Rathore and S. Kumar, “An empirical study of
some software fault prediction techniques for the
number of faults prediction,” Soft Computing,
Vol. 21, 2016, pp. 7417–7434.

[39] A. Okutan and O. Yildiz, “Software defect
prediction using bayesian networks,” Empiri-
cal Software Engineering, Vol. 19, No. 1, 2014,
pp. 154–181.

[40] T. Patil and S. Sherekar, “Performance analysis
of Naïve Bayes and J48 classification algorithm
for data classification,” International Journal
of Computer Science and Applications, Vol. 6,
No. 2, 2013, pp. 256–261.

[41] J. Qinlan, C4.5: Programs for machine Learn-
ing, 1st ed. San Mateo, CA: Morgan Kaufmann
Publishers, 1993.

[42] M. Danham and S. Sridhar, Data mining: Intro-
ductory Advanced Topics, 1st ed. Person Educa-
tion, 2006.

[43] Y. Freund and R. Schapire, “A short introduc-
tion to boosting,” Journal of Japanese Society
for Artificial Intelligence, Vol. 14, No. 5, 1999,
pp. 771–780.

[44] B. Widro and M. Lehr, “30 years of adaptive
neural networks: Perceptron, madaline, and back-

propagation,” Proceedings of the IEEE, Vol. 78,
No. 9, 1990, pp. 1415–1442.

[45] D. Broomhead and D. Lowe, “Multivariable
functional interpolation and adaptive networks,”
Complex Systems, Vol. 2, 1998, pp. 321–355.

[46] S. Eyheramendy, D. Lewis, and D. Madigan, “On
the Naive Bayes model for text categorization,”
in Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics, 2002.

[47] A. McCallum and K. Nigam, “A comparison of
event models for Naive Bayes text classification,”
in Learning for Text Categorization, M. Sahami,
Ed. AAAI Press, 1998, pp. 41–48.

[48] R. Malhotra, Empirical Research in Software En-
gineering – Concepts, Analysis and Applications,
1st ed. India: CRC Press, 2015.

[49] M. Stone, “Cross-validatory choice and assess-
ment of statistical predictions,” Journal of the
Royal Statistical Society, Vol. 36, No. 2, 1974,
pp. 111–147.

[50] Y. Jiang, B. Cukic, and Y. Ma, “Techniques
for evaluating fault prediction models,” Empiri-
cal Software Engineering, Vol. 13, No. 15, 2008,
pp. 561–595.

[51] H. He and E. Garcia, “Learning from imbal-
anced data,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 21, No. 9, 2009,
pp. 1263–1284.

[52] T. Menzies, A. Dekhtyar, J. Distefance, and
J. Greenwald, “Problems with precision: A re-
sponse to “comments on ‘data mining static code
attributes to learn defect predictors’”,” IEEE
Transactions on Software Engineering, Vol. 33,
No. 9, 2007, pp. 637–640.

[53] F. Provost and T. Fawcett, “Robust classification
for imprecise environments,” Machine Learning,
Vol. 42, 2001, pp. 203–231.

[54] R. Shatnawi, “Improving software fault-predic-
tion for imbalanced data,” in Proc. of Inter-
national Conf. on Innovations in Information
Technology. Abu Dhabi, United Arab Emirates:
IEEE, 2012, pp. 54–59.

[55] T. Fawcett, “An introduction to ROC analy-
sis,” Pattern Recogn. Lett., Vol. 27, No. 8, 2006,
pp. 861–874.

[56] F. Sebastiani, “Machine learning in automated
text categorization,” ACM Computing Surveys,
Vol. 34, No. 1, 2002.

[57] T. Menzies and A. Marcus, “Automated severity
assessment of software defect reports,” in IEEE
International Conference on Software Main-
tenance (ICSM). Beijing, China: IEEE, 2008,
pp. 346–355.

112 Rajni Jindal et al.

[58] E. Arisholm and L. Briand, “Predicting
fault-prone components in a Java legacy system,”
in Proceedings of ACM/IEEE international sym-
posium on empirical software engineering. IEEE,
2006, pp. 8–17.

[59] R. Malhotra and M. Khanna, “An explorato-
ry study for software change prediction in
object-oriented systems using hybridized tech-
niques,” Autom. Softw. Eng., Vol. 24, No. 3, 2017,
pp. 673–717.

[60] L. Briand, J. Wust, and J. Daly, “Exploring
the relationship between design measures and
software quality in object-oriented systems,” J.
Syst. Softw., Vol. 51, No. 3, 2000, pp. 245–273.

[61] L. Briand, J. Wust, and H. Lounis, “Replicated
case studies for investigating quality factors in
object oriented designs,” Empir. Softw. Eng. J.,
Vol. 6, No. 1, 2001, pp. 11–58.

[62] R. Malhotra and M. Khanna, “Threats to va-
lidity in search-based predictive modelling for
software engineering,” IET Software, Vol. 12,
No. 4, 2018, pp. 293–305.

[63] A. Dean, D. Voss, and D. Draguljic, Design
and analysis of experiments, 10th ed. New York:
Springer, 1999.

[64] Y. Zhou, H. Leung, and B. Xu, “Examining the
potentially confounding effect of class size on
the associations between object-oriented met-
rics and change-proneness,” IEEE Transactions
on Software Engineering, Vol. 35, No. 5, 2009,
pp. 607–623.

[65] R. Harrison, S. Counsell, and R. Nithi, “Exper-
imental assessment of the effect of inheritance
on the maintainability of object-oriented sys-
tems,” Journal of Systems and Software, Vol. 52,
No. 2–3, 2000, pp. 173–179.

Mining Non-Functional Requirements using Machine Learning Techniques 113

A. Appendix

Table A1. Performance evaluation of random forest and J48 decision tree techniques

S. No. Type of NFR Random Forest J48
AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A 0.91 85.0 0.02 0.65 60.0 0.02
2 LF 0.82 73.0 0.05 0.58 64.9 0.08
3 L 0.83 69.2 0.05 0.48 30.8 0.02
4 MN 0.80 80.0 0.00 0.42 33.3 0.04
5 O 0.79 67.2 0.12 0.58 52.5 0.12
6 PE 0.84 77.4 0.05 0.75 66.0 0.06
7 SC 0.67 66.7 0.01 0.53 57.1 0.05
8 SE 0.80 73.4 0.06 0.65 60.9 0.12
9 US 0.76 68.3 0.09 0.48 38.1 0.18

Table A2. Performance Evaluation of Bagging and Naïve Bayes techniques

S. No. Type of NFR Bagging Naïve Bayes
AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A 0.77 75.0 0.03 0.97 90.0 0.10
2 LF 0.80 75.7 0.07 0.83 75.7 0.01
3 L 0.75 69.0 0.02 0.97 92.3 0.01
4 MN 0.81 73.3 0.02 0.95 93.3 0.06
5 O 0.78 70.5 0.10 0.81 67.2 0.12
6 PE 0.80 75.5 0.07 0.86 83.0 0.01
7 SC 0.85 85.7 0.04 0.88 85.7 0.01
8 SE 0.80 71.9 0.09 0.81 73.4 0.03
9 US 0.74 68.3 0.10 0.77 68.3 0.06

Table A3. Performance Evaluation of MLP and RBF network techniques

S. No. Type of NFR MLP RBF
AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A 0.67 60.0 0.00 0.81 75.0 0.01
2 LF 0.80 73.0 0.04 0.80 67.6 0.06
3 L 0.76 76.9 0.01 0.92 92.3 0.05
4 MN 0.62 60.0 0.01 0.85 80.0 0.01
5 O 0.80 68.9 0.10 0.75 65.6 0.13
6 PE 0.84 77.4 0.06 0.81 71.7 0.06
7 SC 0.66 61.9 0.02 0.80 71.4 0.02
8 SE 0.85 79.7 0.08 0.83 81.3 0.08
9 US 0.76 66.7 0.09 0.72 61.9 0.09

114 Rajni Jindal et al.

Table A4. Performance Evaluation of Logitboost and Adaboost techniques

S. No. Type of NFR Logitboost Adaboost
AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A70.87 85.0 0.05 0.73 70.0 0.02
2 LF 0.79 70.3 0.05 0.72 64.9 0.06
3 L 0.75 76.9 0.01 0.72 69.2 0.01
4 MN 0.88 86.7 0.04 0.79 73.3 0.01
5 O 0.80 67.2 0.12 0.78 75.4 0.14
6 PE 0.82 77.4 0.09 0.83 77.4 0.06
7 SC 0.79 76.0 0.02 0.76 71.4 0.02
8 SE 0.78 70.3 0.08 0.74 68.8 0.09
9 US 0.73 61.9 0.11 0.66 57.1 0.11

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 115–132, DOI 10.37190/e-Inf210106

Software Deterioration Control
Based on Issue Reports

Omid Bushehrian∗, Mohsen Sayari∗, Pirooz Shamsinejad∗
∗Department of Computer Engineering and Information Technology, Shiraz University of Technology,

Shiraz, Iran
bushehrian@sutech.ac.ir, sayari.mohsen@gmail.com, p.shamsinejad@sutech.ac.ir

Abstract
Introduction: Successive code changes during the maintenance phase may cause the emergence
of bad smells and anti-patterns in code and gradually results in deterioration of the code and
difficulties in its maintainability. Continuous Quality Control (QC) is essential in this phase to
refactor the anti-patterns and bad smells.
Objectives: The objective of this research has been to present a novel component called Code
Deterioration Watch (CDW) to be integrated with existing Issue Tracking Systems (ITS) in order
to assist the QC team in locating the software modules most vulnerable to deterioration swiftly.
The important point regarding the CDW is the fact that its function has to be independent of the
code level metrics rather it is totally based on issue level metrics measured from ITS repositories.
Methods: An issue level metric that properly alerts us of bad-smell emergence was identified
by mining software repositories. To measure that metric, a Stream Clustering algorithm called
ReportChainer was proposed to spot Relatively Long Chains (RLC) of incoming issue reports as
they tell the QC team that a concentrated point of successive changes has emerged in the software.
Results: The contribution of this paper is partly creating a huge integrated code and issue
repository of twelve medium and large size open-source software products from Apache and Eclipse.
By mining this repository it was observed that there is a strong direct correlation (0.73 on average)
between the number of issues of type “New Feature” reported on a software package and the
number of bad-smells of types “design” and “error prone” emerged in that package. Besides a strong
direct correlation (0.97 on average) was observed between the length of a chain and the magnitude
of times it caused changes to a software package.
Conclusion: The existence of direct correlation between the number of issues of type “New
Feature” reported on a software package and (1) the number of bad-smells of types “design” and
“error prone” and (2) the value of “CyclomaticComplexity” metric of the package, justifies the
idea of Quality Control merely based on issue-level metrics. A stream clustering algorithm can be
effectively applied to alert the emergence of a deteriorated module.

Keywords: Code Smells, Issue report, maintainability, document classification

1. Introduction

Mining open-source software repositories and
particularly bug repositories managed by Issue
Tracking Systems (ITS) such as BugZilla [1] and
Jira [2] has recently attracted much attraction
among the software research community. Many
researchers have studied the possible correlations
among stored knowledge in bug repositories and

software quality aspects. By interpreting the
number of reported bugs on a specific software
version as quality indicator of that version, some
works have focused on the correlation among the
number of previously reported bugs (and hence
changes) and the number of bugs in future release
[3, 4]. Maintainability has been another quality
aspect of interest and some research works have
been dedicated to find meaningful correlations

Submitted: 27 October 2020; Revised: 12 June 2021; Accepted: 17 June 2021; Available online: 25 August 2021

116 Omid Bushehrian et al.

between software maintainability and defect met-
rics extracted from ITS repositories [5].

The maintainability of a software product is
usually defined as its readiness to accept suc-
cessive modification very easily and with mini-
mum effort [6]. These modifications are due to
requested new features, reported bugs, perfor-
mance difficulties or adapting the software to
a new environment and are carried out by the
maintenance team. Some studies have argued,
particularly in open-source software, neither time
lags in fixing bugs nor the distribution of bugs
can be considered as the direct representative
metrics of maintainability [7]. On the other hand,
many research works in the field of software main-
tainability have proved that the maintainability
of software after delivery is significantly depen-
dent to its original design quality [8]. As a result,
building the predictive models to assist the de-
signers to better assess the maintainability of
their future code based on the current design
quality metrics at very first stages of develop-
ment life cycle has attracted much attention in
this research field [8–10]. In addition to the orig-
inal design of the software, the quality of code
modifications during the maintenance phase also
matters and affects the maintainability of the
software and its future defects number and sever-
ity [11]. It is now widely accepted that the main-
tainability of a software product could be mea-
sured by: (1) the number of residual or emerged
faults in the maintenance phase (corrective main-
tainability), (2) the extent to which the code is
understandable (adaptive maintainability) which
is greatly affected by the degree of exploiting the
software design patterns and best practices in
development process and (3) the extent to which
it is modifiable (perfective maintenance) which
is again affected by the amount of anti-patterns
and bad-smells [12] in the code [5, 7, 8].

Successive changes made by the develop-
ers may cause the emergence of bad smells in
code and gradually result in code deterioration
and lowering the code maintainability indirectly.
Hence continuous Quality Control (QC) is essen-
tial in this phase to avoid formation of anti-pat-
terns and bad smells in code. However this QC
process could be very tedious or even ineffec-

tive task without the help of assisting tools.
Since the change requests (and issue reports)
are recorded and tracked in ITSs, we believe
that these software tools could be equipped with
a recommender component that enables the QC
team to spot software modules (packages) that
are most vulnerable to early deterioration and
to put those modules in their priority list for
code inspection and refactoring. We call this
component CDW (Code Deterioration Watch)
and it is capable of reporting the packages that
need immediate quality check by QC team to see
if the refactoring is necessary. The fundamental
requirement in designing CDW is that it should
be able to estimate the deterioration level of
software modules using issue metrics rather than
code metrics. This is the key difference between
this research and similar studies where CDW
does its function merely by relying on ITS repos-
itory data and independent of code repository.
We believe that this ability is so important due
to the fact that code QC has to be carried out
based on a priority list in specific time intervals
and this priority list is provided by CDW which
continuously analyzes incoming issue streams effi-
ciently. The high priority modules for refactoring
are those that have become deteriorated and
hence error-prone due to the successive changes
performed not in compliance with best-practices
and standard design patterns.

The function of CDW is simply based on this
general hypothesis: “modules absorbing higher
number of issues are those with higher number of
(born) code smells and are the hot spots for refac-
toring”. We studied a variety of open-source soft-
ware repositories from Apache [13] and Eclipse
[14] to answer these research questions:

RQ1: Can the QC team evaluate the qual-
ity level of the code, which is under successive
changes during the maintenance phase, only by
observing issue-related metrics such as the num-
ber of reported issues on a software package?
Is the type of reported issues important in this
evaluation?

RQ2: Is there an effective stream cluster-
ing method to categorize incoming sequence of
issue reports such that a bloated category be
truly interpreted as the concentration of frequent

Software Deterioration Control Based on Issue Reports 117

changes on a specific software package and hence
be reported as possible point of deterioration?

The rest of this paper is organized as follows:
Section 2 explains the related works, Section 3
explains the concept of “code deterioration” and
its relation to bad-smells, Section 4 presents the
proposed continuous Quality Control model, Sec-
tion 5 reports the results of experiments, the
discussion and justification of the results are
presented in section 6, Section 7 provides the
threats to the validity of the study and finally
Section 8 concludes the paper.

2. Related works

In the field of software maintainability, there
are many research works dedicated to the main-
tainability prediction of software based on the
knowledge collected in early stages of SDLC [8].
In [9] the superiority of the dynamic metrics over
static metrics for maintainability prediction is
studied. They concluded that the dynamic met-
rics outperform the static ones regardless of the
machine learning algorithm used for prediction.

Extracting useful knowledge from bug reposi-
tories to estimate quality andmaintainability of an
open-source software has been the subject of many
studies. In [3] authors concluded that the num-
ber of bugs, as software quality indicator, in the
ith release has no significant correlation with the
change size of its previous release. In [4] a class level
quality assurance metric named Qi was defined
and the correlation of the number of defects and
Qi was analyzed but they observed no significant
correlation among them. In [7] the maintainability
of some open- source software was studied empiri-
cally and they reported that neither the time lag of
reported bugs nor the distribution of bug reports
can represent the maintainability indicator.

In [15] a recommender system to advice devel-
opers to avoid bad smells and apply quality prac-
tices during the programming is presented. They
have built a quality model which is continuously
updated based on the reported issues and the (de-
tected) bad smells that have triggered the issue.
The SZZ algorithm [16] which identifies the root
cause of an issue has been applied by this study

to track down the earliest change that has given
birth to the exception. Subsequently the bad
smells detected in code snippet identified as the
root cause of the exception is related to the issue.
Machine learning algorithm have been applied to
build the quality model. In [17] to improve the
software quality metrics and remove bad smells
a multi-objective evolutionary algorithm is pro-
posed by which the best sequence of refactoring
activities is sought in a large search space of pos-
sible solutions. To obtain this a predicting model
based on time series is applied to estimate the
impact of each sequence of refactoring actions on
the future software quality. In [10] thirty different
software quality prediction models were studied.
Using two standard datasets they concluded that
regression and LWL outperformed others.

There are some studies on the relationship
between the amount of code-smells and the bug
proneness level of the software. In [18] it was
shown that adding smell-related features (code-
-smell intensity) to the bug prediction models
could improve the accuracy of the prediction
models. The impact of presence of anti-patterns
on the change and fault-proneness of the classes
has been investigated in [19]. The results con-
firmed that the classes involving anti-patterns are
more change and fault-prone. A Systematic Lit-
erature Review has been conducted and reported
in [20] on the impact of code-smells on software
bugs. The adverse effects of bad architectural
decisions (architectural smells) on the maintain-
ability of the software in terms of number of
forthcoming issues and increased maintenance
efforts have been studied in [21].

The classification or clustering of bug reports
has also been the subject of some previous stud-
ies. The classification of bug reports are used to
predict a variety of factors regarding them. For
instance in [23] a two-phased classifier has been
proposed to predict the files likely to be fixed
using the bug report textual description. In [24]
a clustering method based on EM (Expectation
Maximization) and X-means has been proposed
to categorize bug reports according to their sub-
ject similarities. They have used topic modeling
to vectorize bug reports and subsequently applied
a labeling algorithm to characterize each cluster.

118 Omid Bushehrian et al.

There are also some studies on refactoring pri-
oritization. In [25] a machine learning approach
for classification of code smell severity to priori-
tizing the refactoring effort has been presented.
They have reported a relatively high correlation
between the predicted and actual severity by
modeling the problem as an ordinal classification
problem. In [26] a semi-automated refactoring
prioritization method to assist developers has
been presented. They have applied a combina-
tion of three criteria: past modifications history,
the relevance of the smell to the architecture and
the smell type to rank the refactoring activities.

The contribution of this paper is to propose
a novel model of Software Quality Control which
enables the QC team to judge about the internal
quality of software, constantly changed by devel-
opers, without the need of source code analysis
and merely by monitoring the incoming issue
reports and their sequence. To this end first,
a thorough correlation analysis between the code
quality metrics (the number of bad-smells) and

issue-level metrics (issue absorption rate) has
been conducted. Subsequently a new stream clus-
tering method is presented to effectively catego-
rize incoming sequence of issue reports such that
a bloated category truly indicates the existence
of a software package with high issue absorption
rate. It is important to note that in contrast to
the previous studies on refactoring prioritization,
the proposed method uses the issue-level met-
rics to find the top-module to refactor without
needing to analyze or access the source code.

3. Code deterioration and bad-smells

There are a variety of bad-smell and anti-patterns
introduced in the literature that may emerge in
the code gradually due to the subsequent changes
made by the development team [12]. The PMD
static source analyzer [22] has presented a very
good categorization of bad-smells in its documen-
tations (Code Style, Design, Error-prone, Doc-

Table 1. Bad-smells according to the categorization presented in [22]

Category Some Bad smells in this category Example

Design
(46 bad-smells)

AbstractClassWithoutAnyMethod,
ClassWithOnlyPrivateConstructorsShouldBeFinal,
CouplingBetweenObjects, CyclomaticComplexity
DataClass, ExceptionAsFlowControl
ExcessiveClassLength, GodClass,
ImmutableField, LawOfDemeter,
LogicInversion, LoosePackageCoupling,
NPathComplexity,. . .

DataClass:

public class DataClass {
public int bar = 0;
public int na = 0;
private int bee = 0;
public void setBee(int n) {
bee = n;
}
}

Error Prone
(98 bad-smells)

AssignmentInOperand,
AssignmentToNonFinalStatic,
AccessibilityAlteration,
AssertAsIdentifier,
BranchingStatementAsLastInLoop,
CallingFinalize,
CatchingNPE, CatchingThrowable,
DecimalLiteralsInBigDecimalConstructor,
DuplicateLiterals, EnumAsIdentifier,
FieldNameMatchingMethodName,
FieldNameMatchingTypeName,
InstanceofChecksInCatchClause,
LiteralsInIfCondition,
LosingExceptionInformation,. . .

AssignmentInOperand:

public void bar() {
int x = 2;
if ((x = getX()) == 3) {
System.out.println("3!");
}

}

Software Deterioration Control Based on Issue Reports 119

S s=Facory.getInstance();
s.m();

Class S { int type;
….}

S s=new S();
….
Switch (s.type){
case A: statements1 ;
case B: statements2;
….
}

Figure 1. Replacing switch/case statements with polymorphism to reduce the “CyclomaticComplexity” value

Table 2. Issue categories [2]

Issue Type Example Issue Ref. Studied in
this paper

Bug New version of Java 11 seems does not work well NETBEANS-5636 Yes
New Feature Have python-archives also take tar.gz FLINK-22519 Yes
Improvement Upgrade Kotlin version in Kotlin example to 1.4.x BEAM-12252 No

Task Remove landmark directories from web and shim YUNIKORN-662 No
Sub-Task Optional removal of fields with UpdateRecord NIFI-8243 No

Test Remove some Freon integration tests HDDS-5160 No
Umbrella Add SQL Server functions TRAFODION-3146 No

Documentation SQL DataFrameReader unescapedQuoteHandling
parameter is misdocumented SPARK-35250 No

umentation, Multithreading, Performance and
Security) and among thosewehave focused on “De-
sign” and “Error-Prone” categories since they refer
to much more general forms of anti-patterns com-
pared to other categories that contain more partic-
ular subjects. Some bad-smells in either categories
along with examples are presented in Table 1.

Apart from these bad-smells we have also
analyzed the method-level complexity using two
well-known metrics: “Cyclomatic Complexity”
and “NpathComplexity” as their high values are
very good indicators of missing fundamental de-
sign patterns such as strategy, composite, proxy,
adapter and many others that are based on poly-
morphism rather than conditional logics. The for-
mer is the number of decision points in the code
and the latter is the number of full paths from
the beginning to the end of the block of a method
[27]. The refactoring practice corresponding to
the high method complexity (measured using
“CyclomaticComplexity” and “NpathComplex-
ity”) is illustrated in Figure 1.

These aforementioned bad-smells are code-
-level structures (or measures) that alert us of

deteriorated code. However the aim of this re-
search is to investigate issue-level metrics that
does the same without relying on the code repos-
itory and hence make the QC activity possible
by merely watching the issue repository. In the
Analysis section (Section 5) it will be argued
that the number of issues of type “New Feature”
reported on a software package is an effective
issue-level metric to inform the QC team of the
code deterioration extent. See Table 2 for differ-
ent issue categories and those that are involved
in this study.

4. Code deterioration assessment
model

The proposed model which incorporates the QC
component, called CDW (Code Deterioration
Watch) into the ITS, is illustrated in Figure 2.
This component keeps track of the reported issues
and categorizes them incrementally to detect rel-
atively long sequences of related reports as a sign
of possible code deterioration. By analyzing the

120 Omid Bushehrian et al.

Figure 2. The code quality control based on issue monitoring

Figure 3. The CDW sub-components

long sequences of reports, CDW prioritizes the
software modules to be scrutinized by the QC
team for refactoring activities. There are two
main sub-components of CDW working together
to produce the final refactoring recommendation
as shown in Figure 3. The Stream Clustering
that splits the incoming sequence of issue re-
ports into a set of chains and the Refactoring
Recommender.

Ideally CDW should have the capability of
notifying the QC team of the packages that are
being changed frequently far more than others
as they are code segments very likely to get de-
teriorated soon and need immediate attention
for refactoring (this hypothesis will be verified
in Section 6). Even if CDW be able to alert the
QC team of existence of such packages without
identifying them, it would be very helpful yet.
Note that identifying these packages accurately is
possible by analyzing the code repository at the
later time, however CDW is part of the ITS (and
not the version control) and it is supposed to give
us insights about the evolution of the software
merely by monitoring the incoming sequence of
issue reports (issue metrics rather than code
metrics).

As the Stream Clustering sub-component
clusters the incoming issue reports into chains the
idea is to spot Relatively Long Chains (RLC) of
incoming issue reports as they tell the QC team
that a concentrated point of successive changes
has emerged in the software (this correlation will
be discussed in Section 6). RLCs are those that
their lengths (the number of issue reports in the
chain) exceed the average chain length signifi-
cantly (as much as threshold ß). Note that that if
all chains are long, none of them is considered as
RLC due to the fact that RLC concept is based
on significant size difference in a group and not
the absolute size itself.

We define the “target” of each chain as the
package which is expected to incur majority of
the changes as the issue reports in that chain
are being resolved. The “target hit number” of
a chain is also defined as the expected change
frequency of the chain target. For instance in
a chain of three reports: R1, R2 and R3 labeled
with {P1, P2, P3}, {P1, P3} and {P1}, respec-
tively, as the packages to be changed, the chain
target is P1 and its hit number is three.

Obviously a chain with a relatively high tar-
get hit number is telling us that a package (the

Software Deterioration Control Based on Issue Reports 121

target) is being changed frequently far more than
others. In Section 5 it will be verified that the
chain size is a good metric to identify chains with
a relatively high target hit number.

4.1. Stream Clustering

A simple stream clustering called “Report-
Chainer” is presented here that splits the se-
quence of issue reports into chains based on their
similarity to the previously formed chains. A split
threshold controls formation of a new chain. First
all documents are vectorized using Tf-Idf method
[28] and cosine similarity is applied to compute
the similarity of the current issue report with
previous ones. If the similarity values are less
than the split threshold then it is added to new
chain otherwise it is added to the most similar
chain (see Algorithm 1).

Vectorizing document d in a collection of N
documents using Tf-idf method consists of two
steps: first, the frequency of each term t in d
is counted (denoted tf t,d and then the value of
tf t,d is scaled using the idf t (inverse document
frequency) value:

idf t = N

dft
(1)

Where df t is the number of documents in
the collection containing term t. The value of
Tf-idf corresponding to term t in document d is
calculated using the following formula [28]:

Tfidf t,d = tf t,d × idf t (2)

In fact the Tf-idf method assigns lower
weights to the terms with no or very little discrim-
inating power in a document. To compute the
similarity of two documents d1 and d2, vectorized
using the Tf-idf method, the cosine similarity has
been applied [28]:

sim(d1, d2) = (V (d1).V (d2))
(|V (d1)| × |V (d2)|) (3)

Where V (d1) and V (d2) denote the vector
representation of d1 and d2, respectively, ob-
tained using the Tf-idf method. The advantage
of using the cosine similarity method over the or-
dinary method of computing the vector distances
is that the cosine similarity formula is insensitive
to the documents’ length.

In the next section it will be shown that there
is a significant linear correlation between the
length of a chain and the magnitude of times
that the chain target has been changed. Accord-
ingly the longer chains are good candidates for
QC attention. We will also show that, at least for
10 cases studies, not only can a split threshold
be found to result a high correlation value but
also this value is bounded.

4.2. Refactoring Recommender

The Refactoring Recommender component takes
a set of chains C as its input and produces the
recommendation by selecting, from the candidate
list, those chains whose size differences with the
average chain size are greater than threshold β
(line 13 in Algorithm 2). These chains are consid-

Algorithm 1. Sequence Clustering Algorithm
maxSim = 0
chainNum = –1
thisVec = TF_IDF(r)
for Each vec in C do

Sim = cosineSim(thisVec, vec)
if Sim > maxSim then

maxSim = sim
chainNum = vec.chainNum

end if
end for
if maxSim < t then

chainNum = C.newChain()
end if
C.add(thisVec, chainNum)

122 Omid Bushehrian et al.

Algorithm 2. Refactoring recommender algorithm
1: Algorithm RefactoringRecommender(Chains C): List
2: List r = ∅
3: Package p
4: int issueCnt = 0
5: int chainCnt = 0
6: for Each chain c in C do
7: if c. numberOfNotVisitedIssues()> α then
8: issueCnt += c.numberOfNotVisitedIssues()
9: chainCnt += 1

10: end if
11: end for
12: for Each chain c in C do
13: if c.numberOfNotVisitedIssues() – (issueCnt / chainCnt)) > β then
14: p = targetAnalyze(c)
15: r.add(p)
16: end if
17: end for
18: return r
19:
20: Algorithm On_RefactoringCompleted(chain c)
21: for Each Issue s in C do
22: s.visited = True
23: r.add(p)
24: end for

Figure 4. Issues have been categorized in four chains; In round n of recommendation,
candidate set is {C1, C2, C3, C4} and C4 is detected as RLC; during next k rounds C4

is excluded from the candidate set and no RLC is reported by the algorithm

ered as RLCs. Subsequently the targetAnalyze()
function determines the target package of each
RLC (line 14). This function can be carried out
using supervisedmachine learningmethods as pre-
sented in [23] or be done manually by experts. As
soon as a recommended refactoring is performed
by the QC team, all issues in the corresponding
chain are excluded from the subsequent rounds
of process by labeling them as “Visited” (line
20–24). Moreover the chain is excluded from the
candidate list in the subsequent rounds of process
until the number of “Not-Visited” issues reaches
threshold α (line 7). This prevents the algorithm

to falsely identify most of the candidate chains
as RLCs since recently recommended chain has
a few number of “Not Visited” issues and hence
moves down the average chain size significantly
(see Figure 4). A reasonable value for a could be
the average chain size of the current candidate list.

5. Analysis

The objective of our experiments was first to
study the correlation between the issue-level met-
rics and code-level metrics and second to evaluate

Software Deterioration Control Based on Issue Reports 123

the proposed RepChainer algorithm. There are
two issue-level metrics to study: Bug Absorption
Degree (BAD) and Feature Absorption Degree
(FAD) defined as the number of bugs and the
number of new features reported on a software
module in a period of time respectively. The
code-level metrics are “CyclomaticComplexity”,
“NpathComplexity” and the number of detected
“Design+ErrorProne” bad-smells as explained in
Section 3. The software module granularity was
chosen to be the package (a set of related classes).
The rationale behind choosing the package granu-
larity is to have more specialized task assignment
(i.e. refactoring tasks) to developers. Since pack-
ages are often focused on specific subjects they
can easily be assigned to developers who are spe-
cialized in the respective area to refactor all the
classes of them. Moreover another set of experi-
ments were conducted to evaluate the accuracy
and usefulness of the stream clustering algorithm
used in detecting bloated categories(RLCs) of
issue reports.

5.1. Dataset

To do the experiments, a dataset with the schema
shown in Figure 5 of medium and large scale
open-source software repositories from Apache
and Eclipse were created. Table 3 summarizes

class

commit

commitRep

change

product

report

metric

Figure 5. Dataset schema

the products metadata. For each product, its
Git [29] repository was cloned and analyzed us-
ing a program written with Node.Js. This pro-
gram extracted all the commits and their as-
sociated objects from the repository using the
isoMorphic-Git [30] library. During the analysis
phase the code metrics: “CyclomaticComplexity”,
“NpathComplexity” and the number of detected
“Design+ErrorProne” bad-smells were also mea-
sured using the PMD source code analyzer [22].

The Javascript code snippet to invoke PMD
program is shown in Listing 1. A custom or
built-in rule set has to be passed to PMD to
analyze the source code accordingly. For detect-
ing “Design+ErrorProne” bad-smells the built-in
rule sets: category/java/design.xml and cate-

Table 3. Products metadata

Product License Language No. of
Classes

No. of
packages

No. of
reported
issues

No. of
analyzed
commits

ITS

Cloudstack Apache Java,
Python 16100 639 3451 5565 JIRA

Geode Apache Java 27277 961 3805 6565 JIRA

Spark Apache
Java,
Python,
Scala

8494 490 13289 15044 JIRA

Camel Apache Java 37702 2393 9655 18299 JIRA
Geronimo Apache Java 13163 846 2127 3115 JIRA
Hadoop Apache Java 27045 1168 3671 15902 JIRA
Hbase Apache Java 8255 261 9445 11164 JIRA
Myfaces Apache Java 2805 219 1594 2640 Bugzilla
4diac.ide Eclipse Java 1598 255 1126 504 Bugzilla
Acceleo Eclipse Java 896 210 969 520 Bugzilla
Common Eclipse Java 1496 177 105 287 Bugzilla
App4mc Eclipse Java 1370 68 131 186 Bugzilla

124 Omid Bushehrian et al.

const cp = require(’child_process’);
cp.execSync("e:\\pmd\\bin\\pmd.bat
−dir e:\\pmd\\input_cloudstack
−format xml −R e:\\pmd\\ru.xml >
e:\\pmd\\output_cloudstack\\out.xml");
cp.execSync("e:\\pmd\\bin\\pmd.bat
−dir e:\\pmd\\input_cloudstack
−format xml −R category/java/design.xml,
category/java/errorprone.xml,>
e:\\pmd\\output_cloudstack\\out.xml");

Listing 1. Javascript code snippet to invoke PMD
program using a custom ruleset: ru.xml (top) and
the predefined “design” and “error prone” rule sets

(bottom)
gory/java/errorprone.xml were used. To measure
“CyclomaticComplexity” and “NPathComplex-
ity” metrics a custom rule set ru.xml was used
as listed in Listing 2.

Due to the size of repositories the analysis
took over a week to complete on a cluster of
core-i7 PCs during which the analyzer program
was running round the clock. To the best of
our knowledge such an integrated dataset of is-
sues, measured code metrics and bad-smells and
metadata of all commits on Eclipse and Apache

products has not been published elsewhere and
we are working to make it online soon.

The issues reported on products were im-
ported into “report” table from the respective
ITS. Apache-Jira and Eclipse-Bugzilla ITSs are
accessible at [31] and [32] respectively.

5.2. Correlation Analysis

Assume that Ni and Bi are the number of re-
solved issues of type “New Feature” and “Bug”
on package Pi, respectively, (issues for which Pi

was not modified are excluded) and Ii = Ni
⋃
Bi

denotes the number of all resolved issue types
on Pi. Moreover ∆bi,m denotes the variation of
code metricm during the successive changes of Pi:

∆bi,m = mmax,i −minit,i

m ∈

”CyclomaticComplexity”,
”NpathComplexity”,
”Design + ErrorPron”

(4)

where mmax,i and minit,i are the maximum and
initial values of code metric m measured over all

<?xml version="1.0"?>
<ruleset name="Custom␣Rules"
xmlns="http://pmd.sourceforge.net/ruleset/2.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi:schemaLocation="http://pmd.sourceforge.net/ruleset/2.0.0
␣␣␣https://pmd.sourceforge.io/ruleset_2_0_0.xsd">
<description>
My custom rules
</description>
<rule ref="category/java/design.xml/CyclomaticComplexity">
<properties>
<property name="classReportLevel" value="1" />
<property name="methodReportLevel" value="1" />
<property name="cycloOptions" value="" />
</properties>
</rule>
<rule ref="category/java/design.xml/NPathComplexity">
<properties>
<property name="reportLevel" value="1" />
</properties>
</rule>
</ruleset>

Listing 2. PMD custom rule-set applied to measure “CyclomaticComplexity”
and “NPathComplexity” metrics

Software Deterioration Control Based on Issue Reports 125

Figure 6. The Pearson correlation analysis on 12 products: (top left): “Design+errorProne” bad smells,
(top right) “CyclomaticComplexity” metric and (bottom) “NpathComplexity” metric

variations of classes in Pi:

mmax,i =
C∈Pi∑

Maxversions(c){val(mC)} (5)

where versions(c) is the set of all successive ver-
sions of class C stored in the Git repository due
to subsequent changes made by committers and
val(mC) denotes the measured value of metric m
on class C. Likewise:

minit,i =
C∈Pi∑
{val(mC0)} (6)

where C0 denotes the initial version of class C in
Git repository. The objective of the correlation
analysis is to examine the random variable pairs:
(∆bi, Ni), (∆bi, Ii) and (∆bi, Bi) for existence of

significant linear correlation. The correlation was
analyzed using the Pearson test and the results
are illustrated in Figure 6. The main reason that
we considered the difference between the max
and the initial metric values has been to obtain
the added number of smells to the base value
during the successive commits. In other words the
increase in the number of smells matters most in
our study.

For the Eclipse products the separate corre-
lation analysis for BAD and FAD metrics was
not possible as the classification of issue reports
into “Bug” and “New Feature” is not provided
by the Bugzilla ITS. The highest correlation was
observed between the “Design+ErrorProne” code
metric and the FAD issue metric. With respect to

126 Omid Bushehrian et al.

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

C
o

rr
e

la
ti

o
n

percentage of the reports

Correlation variations

hadoop cloudstack

geode camel

geronimo spark

myfaces hbase

org.eclipse.app4mc org.eclipse.acceleo

org.eclipse.actf.common org.eclipse.4diac.ide

Figure 7. The correction between the number of reports of type “New Feature” and the number of
bad-smells of type: “Design+ErrorProne” computed for different dataset sizes

the “CyclomaticComplexity” and “NpathCom-
plexity” metrics, as the indicators of the extent
to which polymorphism is missing in the design,
good correlation is observed between the “Cyclo-
maticComplexity” metric and the FAD metric.
The variation of the correlation values (between
the FAD and “Design+ErrorProne” metrics) over
the maintenance period has also been studied
by stepwise correlation analysis using different
repository sizes. As shown in Figure 7 the frac-
tional correlation analysis has been performed
on data set sizes ranging from 10% to 100% of
the issue reports in the repository. The results of
the above analysis will be discussed in Section 6.

5.3. Stream Clustering Analysis

To evaluate the proposed RepChainer algorithm,
issue reports from 10 Apache products were
analyzed. Each report is associated with a set of
commits and the set of packages changed by the
respective commits is used as the report label.
A sample report and its label is shown in Figure 8.

For each product three streams of reports:
small, medium and large size were prepared to
evaluate the ReportChainer algorithm. The small
size stream was used for finding the best value for
split threshold (learning set) and the two other
streams used for evaluation. A Python program
iterates through threshold values in the range
[0.1 0.8] and for each threshold the chains are
created and the “chain lengths” and their corre-
sponding “target hit numbers” are extracted to
compute the correlation value. The “target hit
number” of each chain is determined based on
the labels of reports in the chain; for instance
for the following chain: (R1, {P1, P2, P3}) →
(R2, {P1, P3}) → (R3, {P1}) consisting of three
reports R1, R2 and R3 and labels {P1, P2, P3},
{P1, P3} and {P1} the chain target is package
P1 and its hit number is three. The objective of
this experiment is to show that the longer the
chain is the higher the target hit number will be.
Note that opposed to many previous studies (for
example [23]) that aimed at finding the target
package which is a more difficult problem to solve

Software Deterioration Control Based on Issue Reports 127

Weights assigned to terms using the Tf-idf method:

({'unifi': 0.29447407686889265, 'reflectutil': 0.33919324980824395, 'classutil':

0.33539379704513483, 'class': 0.29411422057139275, 'current': 0.07138622368723736,

'histor': 0.16959662490412197, 'grown': 0.16959662490412197, 'differ': 0.0953196864204431,

'respons': 0.08685632305052403,'load': 0.09871841273198587, 'one': 0.16448033360810138,

'origin': 0.12487745196477068, 'facelet': 0.07820264606359888, 'codebas':

0.16959662490412197, 'homegrown': 0.16959662490412197, 'advantag':

0.16959662490412197, 'disadvantag': 0.16959662490412197, 'probabl':

0.14723703843444633, 'share': 0.09224516449127132, 'long': 0.12487745196477068, 'run':

0.07820264606359888,'post': 0.11767927289011874},

Label: {'org.apache.myfaces.view.facelets.compiler',

'org.apache.myfaces.view.facelets.tag.jsf.core',

'org.apache.myfaces.view.facelets.util', 'org.apache.myfaces.shared.util',

'org.apache.myfaces.view.facelets.el'}

)

Figure 8. A sample vectorized issue report and its label

Table 4. Pearson test results for random variables: (chainLen, hitNumber).

Product Learning set size
(number of reports) Learned Threshold Pearson

coefficient value
Best

Threshold
Best Pearson

coefficient value
Cloudstack 26 0.35 1 0.35 1
Geode 507 0.1 0.98 0.1 0.98
Spark 1243 0.7 0.84 0.1 0.97
Camel 796 0.1 0.94 0.1 0.94
Geronimo 673 0.7 0.85 0.1 0.94
Hadoop 550 0.25 0.80 0.1 0.97
Myfaces 192 0.1 0.95 0.1 0.95
Hive 3070 0.1 0.99 0.1 0.99
Hbase 783 0.15 0.95 0.1 0.98
Cassandra 70 0.35 0.93 0.1 0.99

even with supervised machine learning methods,
the intent of the ReportChainer is merely form-
ing the chains correctly. The correlation value
was computed using the Pearson method imple-
mented in NumPy [33]. The results are listed in
Table 4. The samples of (chainLen, hitNumber)
pairs are plotted in Figure 9.

According to the observed results, for almost
all of the products, the threshold value 0.1 resulted
in chains with the highest correlation value. It
was observed that for fairly long sequences of

reports this threshold value worked fine across
Apache products. There were products for which
the learned threshold value differed from the best
value (for instance CloudStack and Cassandra)
due to the relatively few number of samples in
the learning sequence: 26 and 70 respectively.
Generally it can be argued that the shorter
the sequence of reports, the higher threshold
value will result in the best set of chains (in
terms of the Pearson correlation metric). On
the other hand, a lower threshold value creates

128 Omid Bushehrian et al.

Figure 9. Plot of pairs: (chainLen, hitNumber) for six Apache products: Camel, Cassandra, CloudStack,
Geode, Geronimo and Hadoop. The x and y axes are chain length and target hit numbers, respectively.

The chains were created with split threshold = 0.1

fewer equal (short) length of chains due to their
less join rejection rate. Many equal short size
chains prevent the recommender module from
working properly. For instance in CloudStack
the best threshold learned 0.35, however by ex-
amining the resulted chains, many short equal
length chains were observed. By choosing the
threshold value less (= 0.1) this problem was
overcome.

6. Discussion

The results confirmed strong linear direct corre-
lation (0.73 on average) between the FAD metric
and the “Design+ErrorProne” deterioration met-
ric. Moreover the FAD metric is correlated with
the “CyclomaticComplexity” deterioration met-
ric well. Hence the FAD metric could be applied
as a good indicator of the code deterioration level

Software Deterioration Control Based on Issue Reports 129

in terms of the number of emerged bad-smells
and the extent to which the polymorphism is re-
placed wrongly by the complex conditional logics
in the design. The statistical analysis using the
Student”s T distribution showed that the mean
value of the correlations (between FAD and “De-
sign+ErrorProne”) falls within [0.32, 1.14] with
confidence 95%. Moreover as shown in Figure 7,
the correlation value is almost independent of the
number of received issue-reports on the product
and at any time, as the product changes, the
FAD metric can be used to measure the relative
deterioration level.

To justify the relatively lower correlation val-
ues between FAD and “NpathComplexity” met-
rics, it should be noted that though both “Npath-
Complexity” and “CyclomaticComplexity” met-
rics measure the amount of complex conditional
logics in the code, the former is very sensitive to
the composition of the conditional statements in
the code while the latter only counts the number
of decision points.

Furthermore to explain why the FAD metric
is superior to the BAD metric in terms of the cor-
relation strength to the deterioration code-level
metrics, we argue that:

(1) Usually adding a feature involves more
(re-)design activities than fixing a bug and it is
more likely to incorporate bad- structures into
the code compared to fixing bugs.

(2) A good design suppresses the subsequent
“New Feature” requests whereas a bad design
produces forthcoming related “New Feature” re-
quests: It is easy to see (as we have seen in our
industrial experiences) that if a “New Feature”
request is designed properly using well-defined
design patterns (mostly based on polymorphism),
the resulted code will involve the abstract con-
cepts rather than concrete classes and hence
the subsequent requests are likely to be vari-
ants and special cases of the initially requested
feature and could be easily addressed by adding
new classes rather than modifying the existing
code (Open-Close principle [34]). Hence in this

Figure 10. Classes with more anti-pattern constructs absorb more subsequent New Features.
Three related New Feature requests: NF1,NF2 and NF3. Using strategy design pattern (top),

using conditional constructs (bottom)

130 Omid Bushehrian et al.

case less forthcoming requests of type “New Fea-
ture” is expected to be received. In contrast,
the more polymorphism and design pattern con-
structs are replaced with conditional logics (and
anti-patterns) in the code, the higher number of
subsequent New Feature requests will be gener-
ated and absorbed by the module. This concept
is illustrated in Figure 10.

To our best knowledge, there has been no
study on the impact of different change types
on the deterioration level of the code so far. Ac-
cording to the literature [34, 35]. This is widely
accepted in the software engineering community
that successive changes in the maintenance phase
of software gradually causes the software to rot
and the symptoms of deterioration to emerge:
rigidity, fragility, needless complexity, opacity,
immobility and these are due to bad smells in
the code. Hence the more changes to the code the
more deteriorated the code becomes. The results
obtained in our study also corroborates the liter-
ature in the sense that “New Features” are sub
types of “Change” and hence we could expect
to see a good correlation between the number
of “New Features” and the deterioration level.
Now we can answer to our mentioned research
questions:

RQ1: Can the QC team evaluate the qual-
ity level of the code, which is under successive
changes during the maintenance phase, only by
observing issue-related metrics such as the num-
ber of reported issues on a software package?
Is the type of reported issues important in this
evaluation?

Answer: According to the analysis presented
in Section 5, yes. Issue reports are clustered using
the stream clustering algorithm and the target
package of the longest chain is recommended as
the package with a high change rate. Due to the
strong correlation between the value of FAD met-
ric and the number of bad-smells, this package
is presumed to be a priority for refactoring.

RQ2: Is there an effective stream cluster-
ing method to categorize incoming sequence of
issue reports such that a bloated category be
truly interpreted as the concentration of frequent
changes on a specific software package and hence
be reported as possible point of deterioration?

Answer: According to the correlation anal-
ysis results presented in Table 4, the proposed
stream clustering algorithm could successfully
create sequences of related issue reports such
that the issue reports in each sequence are mostly
focused on a specific package called target.

7. Threats to validity

As the most important threat to validity of the
proposed QC approach to mention is the ac-
curacy of the presented stream clustering algo-
rithm, the parameters of this algorithm has to
be fine-tuned according to the issue-report pecu-
liarities and the product characteristics. Another
threat to validity is the accuracy of the PMD bad
smell detection tool. In [36] a comparative study
of bad smell detection tools has been presented.
In this study a detailed comparative study of four
tools including PMD showed that this tool was
able to reach up to 100% precision and 50% recall
on particular test-cases and could outperform
other tools in precision while rival in the recall
value. Another limitation is that the study is de-
limited in the Object Oriented programming field
though the strength of the proposed approach is
independent of the used programming language.

8. Conclusions and future works

The continuous modifications of software mod-
ules lead to emergence of bad-smells and it is
desirable to equip ITSs with assisting tools to
notify the QC team about parts of the code
that need immediate refactoring attentions. In
this paper by creating a dataset of issue reports
and their corresponding change information ex-
tracted from Apache and Eclipse open-source
software repositories, a thorough study was con-
ducted. The results confirmed a significant linear
direct correlation between the FAD issue-level
metric measured on a software package and the
“Design+ErrorProne” and “CyclomaticComplex-
ity” code-level metrics. Hence the packages with
higher measured values for FAD can be consid-
ered as good candidates of parts highly exposed

Software Deterioration Control Based on Issue Reports 131

to deterioration, they need immediate attention
of the QC team. A challenging part of the pro-
posed model was to design a stream clustering to
be able to split the sequence of reports into chains
in a way that the length of the chains be a valid
indicator of its target hit number. According to
the observed results, for most of the products,
the threshold value 0.1 resulted in chains with
the highest Pearson correlation between chain
lengths and their target hit numbers. As the
future work we aim at studying other bad-smell
types as well as other latent bug level metrics to
predict the deterioration trend of the software
during the maintenance phase. Another future
work could be studying the same dataset with
other smell detection tools apart from PMD.

References

[1] Bugzilla. [Online]. http://www.bugzilla.org (Ac-
cessed on 2018-06-06).

[2] Atlassian. [Online]. https://www.atlassian.com/
software/jira (Accessed on 2018-06-06).

[3] L. Yu, S. Ramaswamy, and A. Nair, “Using bug
reports as a software quality measure,” 2013.

[4] M. Badri, N. Drouin, and F. Touré, “On under-
standing software quality evolution from a defect
perspective: A case study on an open source soft-
ware system,” in International Conference on
Computer Systems and Industrial Informatics.
IEEE, 2012, pp. 1–6.

[5] C. Chen, S. Lin, M. Shoga, Q. Wang, and
B. Boehm, “How do defects hurt qualities? An
empirical study on characterizing a software
maintainability ontology in open source soft-
ware,” in International Conference on Software
Quality, Reliability and Security (QRS), 2018,
pp. 226–237.

[6] Standard for Software Maintenance, IEEE Std.
1219-1998, 1998.

[7] L. Yu, S. Schach, and K. Chen, “Measuring the
maintainability of open-source software,” in In-
ternational Symposium on Empirical Software
Engineering, 2005, p. 7.

[8] R. Malhotra and A. Chug, “Software maintain-
ability: Systematic literature review and current
trends,” International Journal of Software En-
gineering and Knowledge Engineering, Vol. 26,
No. 8, 2016, pp. 1221–1253.

[9] H. Sharma and A. Chug, “Dynamic metrics are
superior than static metrics in maintainability
prediction: An empirical case study,” in 4th Inter-

national Conference on Reliability, Infocom Tech-
nologies and Optimization (ICRITO) (Trends
and Future Directions). IEEE, 2015, pp. 1–6.

[10] S. Shafi, S.M. Hassan, A. Arshaq, M.J. Khan,
and S. Shamail, “Software quality prediction
techniques: A comparative analysis,” in 4th In-
ternational Conference on Emerging Technolo-
gies. IEEE, 2008, pp. 242–246.

[11] P. Piotrowski and L. Madeyski, “Software defect
prediction using bad code smells: A systematic
literature review,” Data-Centric Business and
Applications, 2020, pp. 77–99.

[12] M. Fowler, Refactoring: improving the design of
existing code. Addison-Wesley Professional, 2018.

[13] Apache. [Online]. https://projects.apache.org/
projects.html (Accessed on 2018-06-06).

[14] Eclipse. [Online]. https://www.eclipse.org/ (Ac-
cessed on 2018-06-06).

[15] V. Lenarduzzi, A.C. Stan, D. Taibi, D. Tosi,
and G. Venters, “A dynamical quality model to
continuously monitor software maintenance,” in
The European Conference on Information Sys-
tems Management. Academic Conferences Inter-
national Limited, 2017, pp. 168–178.

[16] S. Kim, T. Zimmermann, K. Pan, and
E.J. Whitehead, Jr., “Automatic identification
of bug-introducing changes,” in 21st IEEE/ACM
International Conference on Automated Software
Engineering (ASE ’06), 2006, pp. 81–90.

[17] H. Wang, M. Kessentini, W. Grosky, and H. Med-
deb, “On the use of time series and search based
software engineering for refactoring recommen-
dation,” in Proceedings of the 7th International
Conference on Management of computational
and collective intElligence in Digital EcoSystems,
2015, pp. 35–42.

[18] F. Palomba, M. Zanoni, F.A. Fontana, A. De Lu-
cia, and R. Oliveto, “Smells like teen spirit: Im-
proving bug prediction performance using the
intensity of code smells,” in International Con-
ference on Software Maintenance and Evolution
(ICSME). IEEE, 2016, pp. 244–255.

[19] F. Khomh, M. Di Penta, Y.G. Guéhéneuc, and
G. Antoniol, “An exploratory study of the
impact of antipatterns on class change-and
fault-proneness,” Empirical Software Engineer-
ing, Vol. 17, No. 3, 2012, pp. 243–275.

[20] A.S. Cairo, G. de F. Carneiro, and M.P. Mon-
teiro, “The impact of code smells on software
bugs: A systematic literature review,” Informa-
tion, Vol. 9, No. 11, 2018, p. 273.

[21] D.M. Le, D. Link, A. Shahbazian, and N. Medvi-
dovic, “An empirical study of architectural decay
in open-source software,” in International con-

132 Omid Bushehrian et al.

ference on software architecture (ICSA). IEEE,
2018, pp. 176–17 609.

[22] PMD static code analyzer. [Online]. https://pm
d.github.io/latest/pmd_rules_java.html (Ac-
cessed on 2018-06-06).

[23] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where
should we fix this bug? A two-phase rec-
ommendation model,” IEEE transactions on
software Engineering, Vol. 39, No. 11, 2013,
pp. 1597–1610.

[24] N. Limsettho, H. Hata, A. Monden, and K. Mat-
sumoto, “Unsupervised bug report categoriza-
tion using clustering and labeling algorithm,”
International Journal of Software Engineering
and Knowledge Engineering, Vol. 26, No. 7, 2016,
pp. 1027–1053.

[25] F.A. Fontana and M. Zanoni, “Code smell sever-
ity classification using machine learning tech-
niques,” Knowledge-Based Systems, Vol. 128,
2017, pp. 43–58.

[26] S.A. Vidal, C. Marcos, and J.A. Díaz-Pace, “An
approach to prioritize code smells for refactor-
ing,” Automated Software Engineering, Vol. 23,
No. 3, 2016, pp. 501–532.

[27] T.J. McCabe, “A complexity measure,” IEEE
Transactions on software Engineering, No. 4,
1976, pp. 308–320.

[28] C.D. Manning, P. Raghavan, and H. Schütze, In-
troduction to Information Retrieval. Cambridge
University Press, 2008.

[29] GitHub. [Online]. https://github.com/ (Accessed
on 2018-06-06).

[30] isomorphic-git. [Online]. https://isomorphic-
git.org/ (Accessed on 2018-06-06).

[31] Apache’s JIRA issue tracker! [Online]. https://
issues.apache.org/jira/secure/Dashboard.jspa
(Accessed on 2018-06-06).

[32] bugs.eclipse.org. [Online]. https://bugs.eclipse.o
rg/bugs/ (Accessed on 2018-06-06).

[33] NumPy. [Online]. https://numpy.org/
[34] R.C. Martin, Clean code: A handbook of ag-

ile software craftsmanship. Pearson Education,
2009.

[35] R.C. Martin, M. Martin, and M. Martin, Agile
principles, patterns, and practices in C#. Pren-
tice Hall, 2007.

[36] E. Fernandes, J. Oliveira, G. Vale, T. Paiva,
and E. Figueiredo, “A review-based comparative
study of bad smell detection tools,” in Proceed-
ings of the 20th International Conference on
Evaluation and Assessment in Software Engi-
neering, EASE ’16. ACM, 2016.

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 133–162, DOI 10.37190/e-Inf210107

A Systematic Reuse Process for Automated
Acceptance Tests:

Construction and Elementary Evaluation

Mohsin Irshad∗, Kai Petersen∗∗
∗Ericsson Sweden AB, Karlskrona, Sweden

∗∗Blekinge Institute of Technology, Karlskrona, Sweden and University of Applied Sciences Flensburg,
Germany

mohsin.irshad@bth.se, Kai.Petersen@bth.se

Abstract
Context: Automated acceptance testing validates a product’s functionality from the customer’s
perspective. Text-based automated acceptance tests (AATs) have gained popularity because they
link requirements and testing.
Objective: To propose and evaluate a cost-effective systematic reuse process for automated
acceptance tests.
Method: A systematic approach, method engineering, is used to construct a systematic reuse
process for automated acceptance tests. The techniques to support searching, assessing, adapting the
reusable tests are proposed and evaluated. The constructed process is evaluated using (i) qualitative
feedback from software practitioners and (ii) a demonstration of the process in an industry setting.
The process was evaluated for three constraints: performance expectancy, effort expectancy, and
facilitating conditions.
Results: The process consists of eleven activities that support development for reuse, development
with reuse, and assessment of the costs and benefits of reuse. During the evaluation, practitioners
found the process a useful method to support reuse. In the industrial demonstration, it was noted
that the activities in the solution helped in developing an automated acceptance test with reuse
faster than creating a test from scratch i.e., searching, assessment and adaptation parts.
Conclusion: The process is found to be useful and relevant to the industry during the preliminary
investigation.

Keywords: Software components and reuse, software testing, analysis and verification,
agile software development methodologies and practices, software quality

1. Introduction

Software testing provides information on the
quality of the software product [1]. An essential
aspect of software testing is to verify that newly
developed features of a product work according
to the agreed requirements, and existing func-
tionality is still working correctly (i.e., regression
testing) [2]. With the advent of new technologies
and processes, software testing’s importance has
increased as well. Existing testing approaches,
such as unit testing and test-driven development,

verify that software is working and developed
according to the requirements. However, these
approaches do not take into account the test-
ing of business requirements. Acceptance testing
verifies the business-critical aspects of software
product [3]. The business requirements of a prod-
uct and the user needs are the focus of acceptance
testing [4]. The objective is to validate these busi-
ness requirements before accepting the software
product [3]. These business requirements, in the
form of acceptance tests, are automated so that
these are tested repeatedly and frequently similar

Submitted: 01 February 2021; Revised: 07 August 2021; Accepted: 09 August 2021; Available online: 25 October 2021

134 Mohsin Irshad, Kai Petersen

to unit tests [5]. Such automated tests are called
automated acceptance tests (AATs) [5]. Studies
in AAT have identified that AATs are responsi-
ble for high development and maintenance costs
when the product is still changing frequently [5].

In agile development methodologies (such as
Extreme Programming), the acceptance tests
are scripted (using any programming language
source code) by the development teams to get
continuous feedback on the product’s quality, and
completeness [6]. Such scripted testing is referred
to as “automated acceptance testing”, and the
tests are known as “automated acceptance tests”
(abbreviated as AAT in this study). In agile de-
velopment methodologies development of AATs
starts much early and these AATs are executed
frequently [6]. Empirical studies on AATs have
established that AATs facilitate the organiza-
tion’s knowledge transfer by describing business
requirements as test cases [7].

Software reuse improves productivity and
quality during software development [8]. Stud-
ies have suggested that software reuse is most
beneficial when organizations have a “system-
atic reuse process” [9]. In a systematic reuse
process, the reusable artifacts are developed to
support “development for reuse” [10], and these
reusable artifacts are easy to find and adapt for
reuse purposes [9]. The new development uti-
lizes these reusable artifacts, and this is called
“development with reuse” in which the identi-
fication, evaluation, and adaptation effort and
costs are considerably reduced [10, 11]. A reuse
process starts with “reuse assessment”, which is
a two-step activity, i.e., identification and evalu-
ation of software components for reuse [12]. The
evaluation of components for reuse involves the
evaluation of the technical aspects (i.e., how to
reuse) and the economic aspects (cost of reuse
vs. benefits of reuse) of the component [12].

Almeida et al. suggested that the systematic
reuse process’s decisions should be financially jus-
tified (i.e., costs vs. benefits of reuse) before the
actual reuse takes place [13]. Studies in literature
have suggested that in “development for reuse”,
the costs of developing the reusable artifacts are
high because the artifact should have high qual-
ity and artifact reused easily [9]. However, after

multiple reuse instances, the benefits become
more than the costs [14]. To calculate the reuse
costs and reuse benefits, several cost models and
metrics exist in the literature. However, many of
these metrics and models only capture the costs
and benefits of artifacts consisting of source code
[15].

In scientific literature, solutions/processes
that are constructed to solve a specific business
problem can be developed using various existing
practices [16]. An integrated solution (or a pro-
cess) combines multiple activities that were not
previously related to each other to address a criti-
cal business problem, e.g., finding a defect, fixing
the defective code, and verifying the new code
change [17]. Method engineering is a discipline
of engineering that helps construct new solu-
tions/processes from existing methods [18]. In
this study, we have utilized method engineering
to support the systematic reuse process of AATs.

This idea of a systematic reuse process can
be applied to AATs to address the high develop-
ment and maintenance costs of AATs. Reusable
AATs can be developed to support the develop-
ment of several new AATs, thus reducing the
time to develop, increasing maintainability (by
decreasing redundancy) and increasing quality of
the automated acceptance tests [19]. Reusability
(what to reuse, how to reuse, how to calculate
reuse costs, and when to reuse) of AATs is a new
area, and very few studies have addressed the
reuse in AATs. To the best of our knowledge,
there is a lack of suitable methods that support
the reusability of AATs. The contribution of this
investigation are:
– to provide a systematic reuse process that

supports economically justified “development
with reuse” and “development for reuse” of
text-based AATs.

– to evaluate the proposed systematic reuse pro-
cess for AATs with the help of experienced
practitioners.

– to evaluate the proposed process using an
industrial scale example.
Section 2 describes the background and re-

lated work, Section 3 contains research approach
and the results are described in Section 4. Sec-
tion 5 contains a discussion on the results of this

Systematic Reuse Process for Automated Acceptance Tests . . . 135

investigation and Section 6 describes threats to
the validity of this study. Important conclusions
are described in Section 7.

2. Background and related work

This section describes the background and re-
lated work on AATs.

2.1. Automated acceptance tests (AATs)

An acceptance test is used to verify that the
requirements are developed according to the con-
tract/agreed specification [20][21]. The accep-
tance tests are derived from the customer re-
quirements, and their focus is to verify the com-
pleteness of the implementation of requirements
[22]. It was proposed that customers specify these
acceptance tests, and these tests can be used as
a form of requirements [7]. In a literature review
[5], Haugset and Hanssen found the following
benefits associated with AATs:
– AATs improve the understanding of the do-

main and product.
– AATs improve the communication with the

customer by involving the customer in the
test documentation process.

– AATs improve the system’s quality by making
it safe to make a code change in the product.
Several AAT formats (to write AATs) ex-

ist in literature such as source code, text-based
domain-specific languages (DSL) and FIT tables
[19, 23, 24]. From the existing literature, we have
identified four types of AAT formats used by
practitioners and researchers. These four formats
are described below:

GUI-based formats.GUI-based acceptance
tests are written to verify the functionality of
GUI-based applications such as websites and mo-
bile applications [25]. These tests emulate the
user’s actions (e.g., clicks, inputs) and validate
the GUI-based application’s output. These GUI
actions are based on the scenarios described by
the software requirements [25].

Code-based format. In the code-based
AATs, programming language (e.g., Java, Python)
is utilized to develop test execution logic. The test
code implements and executes the scenarios in
a programming language. The code-based AAT
is triggered by a test framework such as JUnit1.
These types of acceptance tests can be written
using the existing practices and tools used for
product development [26]. However, a drawback
with this format is the difficulty for a customer to
be part of the development of the acceptance test
process [7].

Data-driven formats. In the data-driven
formats, the acceptance tests are written so that
input and output values are written in tabu-
lar form [27]. These input and corresponding
output values are used with the same test ex-
ecution logic. FitNesse2 is the most commonly
used framework for data-driven acceptance test-
ing. A literature review on AATs identified that
most of the studies present in literature are on
the FitNesse (21 out of 26 identified studies) [7].
The data-driven formats are also useful when
performing regression testing on systems with
varying input and output values [28].

Text-based formats. Software practitioners
prefer to write requirements in natural language
text [29] and the text-based AAT frameworks
(such as Cucumber3, Robot Framework4) support
the use of these requirements as the test-cases
for software products, i.e., acceptance tests. Be-
havior-driven format, Keyword-driven format,
Scenario by example, are popular text-based for-
mats. The text-based AATs are gaining popular-
ity because they help to promote a common un-
derstanding of requirements in the organization
and increase collaboration among practitioners
[30]. An experiment on comparing text-based
AATs and FIT tables revealed that text-based
AATs are easier to understand. These tests are
developed in shorter duration as compared to
FIT tables [31].

In behavior-driven format, the tests are writ-
ten in template of Given, When and Then parts.
Each behavior-driven test case validates a busi-

1https://junit.org
2http://fitnesse.org/
3https://cucumber.io/
4https://robotframework.org

136 Mohsin Irshad, Kai Petersen

ness requirement described by the customer [32].
Keyword-driven acceptance tests describe an exe-
cutable requirementwritten using domain-specific
keywords [33]. In specification by example, exam-
ple scenarios are described in natural language
by the stakeholders. These example scenarios
are used to execute automated acceptance tests
[34]. Each of these formats requires different tools
and development frameworks. These formats
allow the developers to write the tests in various
styles and do not enforce any control over the
vocabulary used in the AATs. Each statement of
AAT (e.g., “the mobile is sent to customer” in the
Scenario 1 below) is connected with a method in
code called fixture/glue-code/hook that perform
the actions associated with each statement. This
method is written in any programming language
(Python, Java, etc.) or a library publishes it (e.g.,
Selenium5).

Existing studies on AATs have discussed code-
-based and FIT tables (as an AAT format); little
work is done on the text-based automated ac-
ceptance tests [7]. An example of a text-based
automated acceptance test (a customer buying
a mobile phone) is shown below using behav-
ior-driven development format:
Scenario 1: A customer buys a mobile phone.

Given the customer accesses the web shop
And he enters his name and id-card num-

ber
When he selects a mobile phone
And customer pays the money using debit

card
Then the mobile is sent to customers ad-

dress
Another automated acceptance test in key-

word-driven format is shown below verifying a use
case of a customer buying a mobile phone.
Scenario 2: A customer buys a mobile phone.

Open Browser To Page example.com/shop
Input name Sam
Input id 939393
Submit information
Click button Buy to purchase mobile
Close Browser

Existing literature has described several ap-
proaches to generate automated test cases from

manual acceptance tests automatically. Paiva et
al. proposed a process where requirements are
transformed into manual acceptance tests using
a domain-specific language called Requirements
Specification Language (RSL) [35]. Later, these
RSL-based test cases are transformed into an
automated test-scripts executable using Robot
Framework. Later, their proposed process is eval-
uated using an example application. Soeken et
al. provided a semi-automated approach to gen-
erate automated acceptance tests from natural
language requirements [36]. The phrases from
requirements are used to extract stubs executing
the test scenarios. Later, the proposed approach
was evaluated using an example case. Research
studies have also utilized IDE-plugins and tools
to generate automated acceptance tests from the
use cases such as Fitclipse by Deng et al. [37] and
Test-Duo by Hsieh et al. [38]. Such tools are often
limited to a specific framework or acceptance test
formats.

2.2. Systematic software reuse

Software reuse describes the practice of reusing
existing software artifacts for developing a new
product or maintaining an old product [39]. The
field has been the subject of research for several
years, and different aspects of software reuse
such as costs, testing, artifacts, the level of reuse,
stakeholders, and reuse processes have been in-
vestigated thoroughly by the researchers [40–44].
Software reuse can take place at any time during
a project’s life-cycle, starting from the require-
ments analysis phase to the maintenance phase
[43, 45].

Organizations apply systematic software
reuse to improve the quality, and productivity
[41]. Various software development artifacts (re-
quirements, test cases, code) can be systemati-
cally reused across the entire development pro-
cess [46]. Lam et al. described a 10-step process
to support the systematic reuse of software re-
quirements [47]. The study suggested that a sys-
tematic reuse process can be successful when the
organization produces and consumes reusable
software artifacts. Research studies have identi-

5https://www.selenium.dev/

Systematic Reuse Process for Automated Acceptance Tests . . . 137

fied the following characteristics of a systematic
software reuse process [12, 48]:
– Development for reuse: reusable artifacts are

produced to support the organization’s future
software development needs.

– Development with reuse: new development
occurs using reusable artifacts whenever pos-
sible.

– Guidelines (or techniques) to produce reusable
artifacts exist and are practiced in the organi-
zation.

– Guidelines (or techniques) on reusing an arti-
fact exist and are used in the organization.

– Development teams consider the extra costs
and risks associated with the reuse of arti-
facts.

2.3. Related work: reuse in automated
acceptance tests

The concept of text-based AATs is new, and their
textual nature differentiates these tests from the
conventional code-based test-cases, thus requir-
ing a different approach for reuse.

In a study on reuse of AATs, Landhaußer and
Genaid suggested an ontology-based approach
(F-TRec) that enables reusing tests written in
natural language. They found that approach
lacked precision when retrieving test steps for
reuse [49]. Crispin and House provided a tool to
create AATs that can be reused across different
modules [50]. They suggested that before reusing
any AATs to develop a new AAT, practition-
ers should evaluate the effort spent writing and
maintaining the new AATs. They also claimed
that their proposed method could quickly create
new test cases from the existing reusable tests,
thus reducing development time and increasing
quality. Rahman and Gao recommended an archi-
tecture that enables the reuse of Behavior-driven
acceptance tests across multiple repositories [19].
They claim that their proposed approach can
reduce maintenance costs, which are considered
one of the pain points of AATs. Binamungu et al.,
in their study on the maintenance of BDD tests,
found duplication as a critical challenge facing
the practitioners [51]. Irshad et al. also found du-

plication among AATs in their study refactoring
BBD specifications [52]. This duplication can be
decreased with the help of an increase in reuse.

Liebel et al. identified costs related to writing
the automated acceptance tests as one of themajor
problems of these acceptance tests [25]. In their
industrial case study, Hanssen et al. suggested
that the benefits of automated acceptance tests
should be weighed against the costs associated
with these tests [23]. They found that automated
acceptance tests verifying the graphical user
interface (GUI) are often hard to develop and
maintain.GUI-tests are unstable and requiremore
maintenance. Angmo and Sharma evaluated AAT
tools and proposed that cost-benefits analysis
should be done when considering a tool for au-
tomated acceptance tests [53]. Shelly and Frank
conducted a literature review on story test-driven
development. They found that cost of writing
AATs is high, and many organizations do not
have a budget to account for this high-cost [54].

Xie describes time as the measure of cost in de-
velopment andmaintenance of AATs [55]. Haugset
and Stalhane claim that AAT can benefit organi-
zations in two ways (i) increasing the correctness
of requirements and (ii) automated test-ability of
requirements. Borg and Kropp described a tool
that helps maintain and refactor automated ac-
ceptance tests, reducing their maintenance costs
[56]. To support reuse and reduce costs, Schwarz
et al. introduced and evaluated a plugin (Eclipse6
IDE plugin) that rapidly develops AATs. They
claim that using this plugin can quickly develop
automated acceptance tests quickly [57].

In short, we identified the following gaps in
the literature, and our investigation attempts to
provide a solution to these research gaps.
– Lack of support to systematic reuse of

AATs: Only one study is identified that pro-
vides methods for “developing with reuse”,
and “developing for reuse”. However, the
study’s approach is limited to the use of
a specific tool provided by the authors of
the study [50].

– Lack of generic reuse practices support-
ing diverse AAT formats: There is a need
for a generic practice supporting the reuse of

6https://www.eclipse.org/

138 Mohsin Irshad, Kai Petersen

all types of AAT formats. Several formats to
write text-based AATs exist in research and
practice (BDD, keyword-drive, specification
by example).

– Lack of means to calculate benefits of
reusing AATs: AATs are costly to write
and reuse, and costs should be considered
when reusing AATs [7, 23]. An instrument to
calculate the reuse costs of AATs may help
perform cost vs. benefits analysis of reuse
instances.
This study complements the existing work by

providing a systematic reuse process that sup-
ports economically justifiable “development for
reuse”, and “development with reuse” of AATs,
independent of any particular text-based AAT
formats, independent of any particular tools and
frameworks.

3. Research approach

This section describes the research questions,
study execution, data collection, and data analy-
sis performed during this investigation.

3.1. Research questions

In order to achieve the objectives of this study,
we have devised the following research questions:
– RQ 1: How can the cost-effective systematic

reuse of text-based AATs be achieved?
This research question details the establish-
ment of a systematic reuse process for AATs
along with suitable activities and techniques
used in the process. The proposed process
incorporates the cost-benefit aspects of AATs
when evaluating reuse opportunities.

– RQ 2: How does the systematic reuse process,
from RQ 1, perform concerning performance
expectancy, effort expectancy, and facilitating
conditions in the industrial context?
RQ 2 addresses the preliminary industrial
evaluation of the systematic reuse process of
AATs with the help of industry professionals
and practical demonstration.

3.2. Study execution

The study is executed using method engineering
that is a research framework to develop new
tools and methods. Method engineering consists
of individual method fragments that can combine
to form a project-specific (or product-specific)
customized method [58]. Method engineering is
applied using the following phases (defined by
Mayer [18]):
– Document motivation: the motivation to de-

velop a new process is identified and docu-
mented.

– Search for existing methods: the existing
methods are identified that may help in the
new process.

– Tailor existing methods: the identified meth-
ods are adapted to suit the needs of the pro-
cess.

– Design method application technique: a new
process is formed using the modified existing
methods.

– Test candidate design elements: the process
(and its components) are evaluated to identify
potential shortcomings and modifications.

– Refine method design: The process is modi-
fied/refined based on the evaluation.
The first four phases help in constructing

a new process, i.e., see Figure 1. Later, the last
two phases (see Figure 1) evaluates and improve
the new process. The study approach and the
research questions are described in Figure 1. The
first step (construction of process) identifies the
motivation, requirements and develops a new
systematic reuse process for text-based AATs.
The second step (Evaluation and refining of the
process) evaluates the new process by assessing
the performance expectancy, effort expectancy,
and facilitating conditions of the process, as sug-
gested by [61]. The evaluation consists of:
– qualitative feedback on the process from ex-

perienced software practitioners (also referred
to as static validation in [62]),

– by demonstrating the usage of the proposed
process in an industrial application by an
author.

Systematic Reuse Process for Automated Acceptance Tests . . . 139

Figure 1. Research approach inspired by method engineering [18]

The sections below provide the details of the
construction of the process and its evaluation
(i.e., research method, the data collection, and
analysis). The final version of the method is re-
leased after incorporating the feedback from the
evaluation.

3.2.1. Construction of process – using method
engineering

This step is used to construct a process support-
ing “development with reuse”, and “development
for reuse” of AATs also considering the costs vs.
benefits of AATs, i.e., a systematic reuse process.
The details of the four phases of this step are
described below.
Phase 1: Documentmotivation. The existing
studies that report the problems related to the
reuse of AATs were identified and examined. The
authors read the literature reviews and mapping
studies on AATs to identify supporting methods
for reusing AATs. We have focused on text-based
(non-code) AATs only as the reuse of other types
of AATs (code, FIT Tables) is already discussed
in existing [7]. One of the authors conducted the
following step using Google Scholar7.
– Find and examine the literature reviews/

mapping studies on AATs. Table 1 describes
keywords and identified studies.

– Examine the reference/citations in identified
literature reviews.

– Manually analyzes the identified studies to
find issues linked with AATs.

– Manually analyze the identified studies to find
details on the reuse of AATs.
The identified literature reviews/mapping

studies on the AATs [5, 7, 54, 59, 60] do not
explicitly discuss the reuse of AATs. However, we
identified studies using citations and references
to review studies. The analysis (documented Sec-
tion 2) concludes that a supporting process is
needed that should address the three require-
ments/needs: AAT format, AAT reuse process,
and AAT reuse costs. These three requirements/
needs are described below.

AAT format: The process should be indepen-
dent of the AAT format. Different AAT frame-
works support other formats, e.g., in Cucumber,
BDD format is used, and the Robot Framework
supports keyword-driven and BDD formats. The
reuse process of AATs should be independent of
formats dictated by different AAT frameworks.

AAT reuse process: The reuse process of AAT
should support “develop for reuse” and “develop
with reuse”. The process should contain activities
to search for a reusable AAT, assessment of AAT
for reuse, and adaption for reusing AATs.

Table 1. Keywords and identified studies

Keywords Identified review studies
Automated Acceptance Testing review [5], [7]
Acceptance Testing review [5], [59]
Story-driven review [54]
BDD Review [60]

7https://scholar.google.com/

140 Mohsin Irshad, Kai Petersen

AAT reuse costs: The process should incor-
porate activities for assessment of reuse costs of
an AAT. Previous research has shown the high
cost of writing and reusing AATs [53, 63].
Phase 2: Search for existing methods. In
this phase, the existing methods are identified
to match the needs/requirements of an AATs
reuse process identified in the previous phase,
i.e., AAT format, AAT reuse process, and AAT
reuse costs.

AAT format: The following AAT formats are
identified Behavior-driven tests, story-based test
format, specification by example format, and key-
word-driven tests. These formats were identified
using the existing literature reviews on AATs
([7, 23, 59, 64]).

AAT reuse process: Mili et al. [65] suggested
three stages for a reuse process: (i) finding the
reusable artifact, (ii) assessing the relevance of
reusable artifact, and (iii) adaptation of the ar-
tifact for reuse. For the first and second stage
(finding and assessing relevance), techniques suit-
able for text-based artifacts were identified that
could help in these stages. The two suggested
approaches are (i) normalized compression dis-
tance (NCD) [66], and text classification using
machine learning [67]. For the third stage (an
adaptation of AATs for reuse), no existing study
provides guidelines on adapting AATs for reuse.
Since software requirements and AATs are text-
-based artifacts; therefore, we propose that the
reuse methods used in software requirements can
support reuse of text-based AATs [68].

AAT reuse costs: Software reuse cost models
are categorized into three categories (by [14]):
1. Return-on-investment models (ROI) that

measure benefits after an organization has
invested in developing reusable artifacts.

2. Cost-benefit models that are used for making
better decisions on reuse investments.

3. Cost-avoidance models that help in calcu-
lating costs avoided through reuse of arti-
facts [14].
We believe that cost-avoidance models are

best suited for reusability assessment since these
do not assume that an upfront reuse related
investment was made, as required by ROI and
cost-benefit methods [14]. The methods provided

in the review study on cost-avoidance through
reuse were identified for capturing reuse costs of
AATs [15].
Phase 3: Tailor existing method. The identi-
fied methods from the previous phase are tailored
to address the needs of a systematic reuse process
of AATs.

AAT format: For AAT formats, no tailoring
is needed.

AAT reuse process: In the AAT reuse pro-
cess, to find and assess the AAT candidates for
reuse, two techniques (Normalized compression
distance and text classification using machine
learning) are tailored to be used for AATs. The
AATs are text-based, and the AAT content is
structured so that each line acts as a single inde-
pendent, reusable test statement (see examples in
Section 2). The two techniques were implemented
using scripts (available at [69]) to apply them on
the AAT suite. Section 4 described the working
of these two techniques.

For the AAT adaption template (to support
“develop for reuse”), four templates (Structuring,
Matching, Analogy, Parametrization) from the
identified review study [68] were selected for their
applicability over AATs. The reuse of software
requirements inspires these templates. Section 4
describes the details of these templates.

AAT reuse costs: The study on reuse cost
avoidance methods described four approaches to
calculate reuse cost-avoidance [15]. Only two of
the reuse cost methods ([70] and [15]) are appli-
cable over non-code artifacts such as text-based
AATs. These two methods and their correspond-
ing metrics do not require any tailoring for AATs.
Phase 4: Design method application tech-
nique: In this phase, the identified activities
concerning the components of the process are
assembled to form a process.

The three identified requirements/needs (AAT
format, reuse process, and reuse costs) and their
identified methods are converted into activities
of a process. As discussed in Section 2.3, AATs
can be costly to write and maintain; therefore,
a check is introduced in the process that lets
practitioners decide when to write a new AAT
and when to reuse an existing AAT. Furthermore,
it was decided among the authors to divide the

Systematic Reuse Process for Automated Acceptance Tests . . . 141

activities into two levels, i.e., organizational level
activities and test developer-level activities. These
activities are described below:

Organizational/Team level activities and de-
cisions: The organization-level activities are de-
cided when setting up the reuse related process,
and these are rarely changed. Some examples of
these activities are the format used in the orga-
nization (e.g., BDD, keywords files), the support
for the reuse approach, and the test framework
used in the organization. The actor in these ac-
tivities is the test architect.

Test developer-level activities and decisions:
The activities performed during this level are the
primary activities relevant to developing a new
AAT. An example of such activities is selecting
an ATT for reusing purposes. Test developers
perform these activities. The activities are guided
by the choices made during the organizational
activities, e.g., which artifact to reuse, how to
modify an artifact for reuse.

The constructed systematic reuse process is
documented in Section 4.1.

3.2.2. Evaluation and refining of process

After developing a reuse process, the next step
involves the evaluation and refinement of the
process. The sections below describe the types
of evaluation and refinement steps.
Phase 5: Test candidate design elements.
After designing the process and its activities, the
next step evaluates the process for its usefulness
concerning the reuse of AATs. [62] has suggested
that validation with practitioners helps assess the
industrial usage of the process before applying
it in the industry.

Petersen and Wohlin described six context
facets for explaining the context of the evaluation
[71]. The evaluation in this study is conducted in
the context of large-scale software development.
The complexity concerning the reuse of AATs is
considered high for large-scale organizations with
a considerably large test base. The development
process is assumed to be an agile development
method where new requirements, development,
and testing are conducted in each iteration.

This survey questionnaire’s participants be-
long to two large telecommunication organiza-
tions, and the industrial demonstration is con-
ducted in one organization’s product verification
unit. The details of the evaluation are described
below.

Qualitative feedback of software practi-
tioners. In this evaluation, software practition-
ers provided feedback on the proposed systematic
reuse process.

Objective: The objective of this evaluation
was to identify generic findings on the applicabil-
ity of the process and sanity-check the process
for performance expectancy, effort expectancy
and facilitating conditions as suggested in uni-
fied theory of acceptance and use of technology
(UTAUT) by [61].

Wohlin et al. describe “exploratory surveys”
as a way to validate the proposals before a thor-
ough investigation is conducted [72]. As the first
step, the proposed systematic reuse process in
this study was evaluated using an exploratory sur-
vey to improve the process before implementing
and evaluating it in the industry, which requires
a longitudinal study. This longitudinal study is
planned as the next step after this study because
it requires resources, budget, and changes in the
organization’s current ways of working. Wohlin
et al. suggested questionnaires and interviews as
two data collection methods during the surveys.
We developed a questionnaire and asked the sub-
jects to fill the questionnaire during an online
session (for direct interaction like an interview).

Questionnaire design: In this evaluation,
a questionnaire (available at [73]) is developed
that contained four parts: (a) description of reuse
in automated acceptance testing, (b) description
of our proposed process, (c) an example of ex-
plaining the usage of our proposed process, and
(d) practitioners feedback on the proposed pro-
cess. The questionnaire’s design, as per Molléri
et al. can be classified as “self-administrated”,
i.e., online form [74]. This questionnaire is used
to execute the industrial evaluation. The details
on designing the questionnaire, selecting partic-
ipants, data collection, and data analysis are
provided below.

142 Mohsin Irshad, Kai Petersen

The following questions (under each UTAUT
construct) were part of the questionnaire.

Performance expectancy. This construct
describes “the degree to which technology will
benefit users” [61].
– Question 1: In your opinion, what are the

benefits of using the proposed process?
– Question 2: What are the drawbacks/limita-

tions of the process? How can we improve/
revise the process?
Effort expectancy. This construct describes

“the degree to which technology is easy to use” [61].
– Question 3: In your opinion, how easy is it to

use this process?
– Question 4: Do you have any recommendations

to improve the ease of use?
Facilitating Condition. This construct de-

scribes “the degree to which technology helps in
performing a task” [61].
– Question 5: Are there any other steps that

should be added to the process?
– Question 6: Are their steps that should be

removed from the process? If yes, then kindly
list those items here and also state why do
you recommend removing them?
Subjects: Initially, two academic researchers

(not authors) working on AATs were invited
to review the questionnaire and process for
sanity-check. They suggested improvement in
the questionnaire (i.e., text, process flow). After
incorporating the input of the researchers, we
conducted an industrial evaluation.

During the industrial evaluation, five industry
participants with knowledge of AATs in large-
-scale products and considerable working expe-
rience are considered. As the reuse of AATs is
a relatively new area, it is difficult to find partici-
pants with relevant experience. Five participants
evaluated the process and provided their feed-
back on the process. These participants were

selected from two large-scale organizations with
more than five years of experience with devel-
opment. The background of the participants is
provided in Table 2.

Study execution: The authors have presented
the study’s purpose, the working of the process,
and its activities to the participants in an on-
line meeting. The participating subjects asked
questions about things they do not understand
during the presentation of the process. The de-
tails were provided to the inquiring participants.
This step was conducted to overcome the sur-
vey questionnaires’ critique that subjects might
not understand the concepts and processes by
reading the questionnaire.

In the next step, the participants were pro-
vided the link to the survey questionnaire, and
they were asked to fill in the information. The
author remained online while the respondents
filled out the form to have direct interaction
and allow participants to ask follow-up questions.
These sessions lasted between 45–65 minutes, as
shown in Table 2. These online sessions helped
improve the qualitative feedback and relevance
of the feedback for the reuse of AATs.

All five participants responded to the survey
questionnaire in the presence of an author. In
the form of responses to the questionnaire, the
feedback is evaluated using the “Constant com-
parison” method [75]. This method can help in
the identification of common themes present in
the qualitative data. During the analysis, the
responses are divided into themes related to the
process’s benefits, usefulness, and completeness.
Later, the final process is improved based on
identified themes corresponding to performance
expectancy, effort expectancy, and facilitating
conditions.

Demonstrating industrial application of
the proposed process – an example. Stous-

Table 2. Background of the software practitioners (P1–P5) participating in the evaluation

Work experience Experience in AAT Role Product type Online session
P1 12 years 5+ years Developer Large-scale 60 minutes
P2 17 years 5+ years Architect Large-scale 45 minutes
P3 12 years 4 years Test developer Large-scale 55 minutes
P4 5 years 3 years Test developer Large-scale 65 minutes
P5 13 years 2 years Developer Large-scale 50 minutes

Systematic Reuse Process for Automated Acceptance Tests . . . 143

trup identified that lack of practicality or an
excessive level of complexity results in the failure
of seemingly successful research projects when
these projects are applied in the industry [76].
A demonstration is conducted in an industrial
setting using the proposed systematic reuse pro-
cess to address this concern.

Objective: The purpose of this evaluation is to
check the feasibility of implementing the process
in the context of a real software development
environment using the existing tools and knowl-
edge present in the organization (e.g., metrics to
identify reuse costs). This evaluation will help
identify lessons regarding each activity before the
process is applied and evaluated in the industry
without authors’ involvement.

The author (working in the organization) eval-
uated details related to:
– the effort to create an AAT using the pro-

posed process,

– the number of tasks performed in each activ-
ity of the proposed process,

– details of tasks performed in each activity of
the proposed process.
This demonstration took place in one of the

system verification units of an organization that
develops a large-scale product consisting of 28
micro-services. The unit of analysis is the AAT
suite used by the end-to-end verification team.
Four experienced test developers manage the
AAT test suite. The AAT suite was introduced
in the year 2016 and contained 87 system-level
AATs. Each system level AAT is based on a com-
plete use-case. The AATs are written in key-
word-driven format (text-based), with fixtures
written in Java. The AAT suite is extended when
the test developers find a stable product no longer
modified by the development teams. The AATs
are executed each night using Jenkins to build,
execute the AAT, and generate AAT reports.

Table 3. Activities in a systematic reuse process for automated acceptance tests (AATs)

Activity Input Output Actor Type

A1: Select keywords Requirements in natural
language

Keywords extracted
from requirements to
find reusable AAT

. Test
developer Manual

A2: Select AAT format

AAT formats (an organi-
zation can seek help from
literature if it does not
have a pre-decided for-
mat)

Selected AAT type, e.g.,
BDD

Test
Architect Manual

A3: Select artifact adap-
tation template

List of adaptation ap-
proaches to support “de-
velop for reuse”. See 4.1.3

Selected approach to
adapt AAT for reuse
and to help in search

Test
Architect Manual

A4: Search for reusable
AATs

Keywords from A1 and
a search technique. De-
tails in 4.1.4

The list of AATs
matching keywords

Test
developer Automated

A5: Assess relevance of
AATs

The AATs matching key-
words from output of A4

The potentially reusable
AATs

Test
developer Manual

A6: Select reuse cost
method and metrics

The available metrics,
the reuse cost calculation
method. Details in 4.1.6

A selected reuse cost
method

Test
developer Manual

A7: Calculate cost of
reuse

The value of metrics and
the reuse cost method

Evaluation if reuse is
beneficial or not

Test
developer Automated

A8: Develop new AAT by
reuse

The selected reusable
AATandadaptation tech-
nique from activity A3

A new AAT supporting
“development for reuse”

Test
developer Manual

A9: Develop a new AAT
Software requirements,
adaptation technique
from activity A3

A new AAT supporting
“development for reuse”

Test
developer Manual

A10: Add new AAT to
repository

A new (or reused) AAT
test-case

A new AAT is added to
the repository

Test
developer Manual

144 Mohsin Irshad, Kai Petersen

IntellJ8 was used as an IDE for developing the
AAT. The AATs are stored in a Git9 repository.
The system under test (SUT) is hosted on a re-
mote server, and the development takes place on
the local machine. The AAT is executed against
SUT from the local machine, but after finalizing
the AAT, the AAT execution is automated as
part of the AAT suite that is executed frequently
using a continuous integration server.

One of the authors (who is not a developer
of the existing AATs) applied the process’s ac-
tivities to develop a new AAT with reuse. The
new AAT is to verify that a REST interface’s
performance is within limits decided by the re-
quirements engineers. The activities described
in Table 3 are followed to evaluate the proposed
process’s flow.

According to the classification provided by
Lethbridge et al. [77], third-degree data collection
was utilized in this study (i.e., historical data on
the case or using the compiled information). For
the searching and assessment activities, a script
(described in 4.1.4) is used to search in the repos-
itory and identify the relevant AATs. The search
and assessment data is available at [78]. The cost
model used in this demonstration needed histori-
cal information on the person-hours previously
spent on similar AAT [15]. This information was
extracted from the Git repository using the “git
history <AAT-File-Name>” command. The time
taken was noted for each activity by one of the
authors.

The data analysis was performed on the col-
lected quantitative and qualitative data. The
quantitative data is the time taken during activ-
ity, the number of steps performed in each activ-
ity (ease of use), and qualitative data involves
the test developer’s observations (i.e., author).
The results from the data analysis are described
in Section 4.2.2.
Phase 6: Refine method design. In this
phase, the proposed method is modified based on
the feedback from the evaluation. The identified
themes related to the method’s improvement are
considered, and the method is modified. The
feedback from the evaluation and the changes

suggested during the evaluation are described in
Section 4.2. The final version of the proposed
process is present in Section 4.3.

4. Results

This section describes the outcome of the two
research questions and the final systematic reuse
process. The first research question described
a cost-effective systematic reuse process, its activ-
ities, and techniques applicable to the activities.
The second research question describes the indus-
trial evaluation of the systematic reuse process.
Later, the final version of the systematic reuse
process is described.

4.1. Constructed solution: A systematic
reuse process for AATs

The systematic reuse process for AATs supports
activities and techniques to (i) develop for reuse,
(ii) develop with reuse, and (iii) methods and
metrics to calculate the reuse costs of AATs. Fig-
ure 2 shows the constructed process to support
systematic reuse of AATs and the details of each
activity is described in Table 3.

In the first activity, the practitioner analyzes
the requirements and identifies keywords relevant
to the new AAT. Next, an AAT artifact format is
selected, e.g., BDD. After selecting the artifact,
an approach to facilitate “development for reuse”
is selected. The next two activities search and
assess the relevance of AAT artifacts for reuse. If
no suitable artifact is found, then a new AAT is
developed from scratch. If existing relevant AATs
are found, then the next activity is to calculate
the cost of reuse. If the reuse is presumed cheaper,
a new AAT is developed by adapting the existing
artifact according to the approach selected for
development for reuse. In the last activity, a new
reusable AAT is added to the repository. Table
3 provides the inputs, outputs and actor of each
activity.

In the sections below, each activity in the
process is described below with an example.

8https://www.jetbrains.com/idea/
9https://git-scm.com/

Systematic Reuse Process for Automated Acceptance Tests . . . 145

Figure 2. A systematic reuse process for automated acceptance tests (AATs)

4.1.1. A1: Select keywords

Software requirements are often written in nat-
ural language [29], and in this activity, relevant
keywords are selected that represent the require-
ments. These keywords will help in searching for
reusable AATs in the existing test-base. This is
a manual activity performed by a test developer.
This activity may be performed in several itera-
tions before finalizing the keywords; e.g., an ini-
tial selection of keywords may not provide good
search results; therefore, it needs several revisions
(or discussion with experts) before reaching the
concluding choices.

Example: The test developer has the require-
ments: (i) “As a user I should be able to register
my new account”, and (ii) “As a user, I am able
to view the products using my account”. In this
example, the relevant keywords selected from
the requirements are “register account”, “view
products”.

4.1.2. A2: Select AAT format

The text-based AATs are written in a variety
of formats. Each of these formats has a unique
way of writing AATs, e.g., stories, specifications,
behaviors, features. Therefore, it is necessary to
select the format in which the new AATs are
written or reused, e.g., a selection from Behav-
ior-driven tests, story-based tests, feature files,
keyword-driven tests. This activity is performed
manually.

Example: As an example, we can assume that
the organization writes AAT in a Behavior-driven
format; therefore, BDD is selected as the format
of AAT.

4.1.3. A3: Select artifact adaptation template

In this activity, a reuse adaptation template is
selected for writing a new AAT from existing
artifacts. The objective of this activity is to sup-
port “development for reuse”. The new AAT will
be modified and saved according to the artifact
adaptation template. The four templates sup-
porting development for the reuse of AATs are
structuring, matching, analogy, and parameteri-
zation as described in Table 4. This selection of
artifact adaptation template is a manual activity.
A detailed discussion on the reuse adaptation
approaches for text-based software requirements
is provided by Irshad et al. [68].

Example: In this case, “Structuring” (from
Table 4) is selected as reuse adaptation template
because BDD test cases are written in structured
format of “Given, When, and Then” [32].

4.1.4. A4: Search for reusable AATs

A vital activity of the constructed process is to
search for reusable AATs in the repository. This
search is conducted using the keywords from
activity A1. The search operation can be imple-
mented using an automated script that searches
for AATs matching the keywords.

146 Mohsin Irshad, Kai Petersen

Table 4. Templates supporting “development for reuse”. Inspired by [68]

Approach Description
Structuring Reusable AATs are saved in specific/pre-defined format to reuse, e.g., directory struc-

ture.
Matching Reusable AATs are saved in formats such AATs are retrieved using matching, e.g.,

supports search using lexical or semantic matching.
Analogy Reusable AATs can be storied in languages/formats that support retrieval using

analogy-based approaches, e.g., special languages supporting analogical matching of
AATs.

Parameterization AATs can support parameterization for reuse, e.g., the use of variables in keywords.
Many AAT frameworks (Robot, Cucumber) support this adaptation approach.

We have identified two techniques that are
useful for searching for text-based reusable AATs.
These techniques are applicable over the text con-
tent of AATs only and do not consider the fixture/
hooks/glue-code of AAT. We have provided an
automated script for each of these techniques as
part of the reuse process. These techniques are
described below.

Normalized compression distance (NCD)
With this technique, the similarity between an
AAT and keywords is calculated using a compres-
sion algorithm [79]. In this study’s context, NCD
helps calculate the pair-wise distance between
all the AATs present in the test base against
the keywords identified. Later, this compression
distance helps in the assessment of similar and
dissimilar AATs. NCD can be defined by the
following equation [79]:

NCD(s1, s2) = Z(s1s2)−min{Z(s1), Z(s2)}
max{Z(s1), Z(s2)} ,

(1)
Here, s1 is an automated acceptance test

present in the test suite, and s2 is a keyword
used to search and assess reusable automated
acceptance tests. Z represents the compressor
used for the calculation of NCD. Z(s1) represents
the compressed size of AAT s1, Z(s2) represents
the compressed size of AAT s2 and Z(s1s2) rep-
resents the compressed size of the concatenation
of s1 and s2. NCD values lie between 0 and 1,
where 0 means that the BDD specifications are
similar, while 1 represents that they are entirely
different. A script implementing NCD is provided
as part of the proposed process [69].

Text-classification using machine learning
text-classification can help in identifying reusable
AATs by training a classifier using a super-
vised machine-learning algorithm [67]. For text-
-classification commonly used machine learn-
ing-based algorithms are Naive Bayes and Sup-
port Vector Machines [80]. A machine learn-
ing-based algorithm improves the classification
process because it considers the domain-spe-
cific language used in the AAT instead of using
Wikipedia or large-text databases present over
the internet [67]. The existing AAT suite is used
to train the text classifier using each AATs title
as a category. Later, this text classifier helps in
suggesting the closest matching reusable AAT
cases to the selected keywords. The following
sequence of steps is followed when using ma-
chine-learning based text classification to search
for and assess a reusable AAT.
Step 1: Place each AAT in a separate file

where each file’s name is unique. This is
needed to allow ML-algorithm to assign a cat-
egory to each AAT in the training set.

Step 2: Load the training AAT files into mem-
ory.

Step 3: Extract features from AAT files using
Bag of Words.

Step 4: Train a classifier from these features.
Step 5: Use the search keywords to query the

classifier to identify the reusable AAT.
It is important to note that Step 1 to Step 5

are executed only if new changes are introduced
in the AAT suite. A script providing the imple-
mentation from Step 1 to Step 5 is provided as
part of this proposed process (available at [69]).

Systematic Reuse Process for Automated Acceptance Tests . . . 147

Table 5. NCD values generated by the automated-script

Selected keyword Scenario 1 NCD value Scenario 2 NCD value
view products 0.620 0.290
register account 0.720 0.850

Example: For the sake of simplicity, we as-
sume that there are only two AAT scenarios
in the repository and a test-developer wants to
use the keywords (from A1) to search for the
closest matching scenario to the keywords. The
test-developer uses the automated-script (See
[69]) to perform this activity.
Scenario 1: A user deletes a product in the

system
Given A product is configured in the system
When User sends a Delete request to delete

the products
Then User is able to delete the product
Scenario 2: A user view a product in the sys-

tem
Given A product is configured in the system
When User sends a Get request to fetch the

products
Then User is able to view the product

The distance measures (such as NCD) repre-
sent a mathematical concept of similarity [81, 82].
The similarity is high when the distance between
objects (in comparison) is low, i.e., a value closer
to “0”. An advantage of distance measure is that
they can classify the similarity and dissimilar-
ity of two objects on a numerical rating scale
by suggesting how closely similar or how dif-
ferent objects are from each other, i.e., 0.90
means very dissimilar, 0.75 means dissimilar,
0.248 means similar, 0.05 means very similar.
The text-classification approaches often classify
in the binary format, i.e., two objects are alike
or different.

The test developer selects “Normalized
Compression Distance (NCD)” to retrieve the
reusable AATs with help of keywords “register
account”, “view products”. The search activ-
ity is performed using the script implementing
NCD, and a pairwise comparison of each keyword
and scenario is conducted. For each comparison,
a value between “0” and “1” is produced. The
values are shown in Table 5, e.g., Scenario 2 and
keyword “view product” has lower NCD value

(0.290), showing higher similarity because key-
words “view”, “products” are found in Scenario 2
but not in Scenario 1.

4.1.5. A5: Assess relevance of AATs

In this activity, an assessment is made on the rel-
evance of the identified reusable AATs from the
searching activity. This assessment involves how
closely the identified AATs are related to the re-
quirements. This activity requires domain knowl-
edge and understanding of the existing AATs;
therefore, it is a manual activity, e.g., if several
closely matching reusable AATs are identified,
a manual assessment to select the most suitable
reusable AAT.

Example: The search results of activity A4 (in
Table 5) contains results from the search opera-
tion. Table 5 shows that the NCD values between
the keywords and two scenarios. As stated earlier,
an NCD value closer to 0 means higher similarity,
and a value closer to 1 means lower similarity.
Scenario 2 and keyword “view product” has value
0.290, showing higher similarity and relevance as
a candidate for reuse.

4.1.6. A6: Select reuse cost method and metrics

In this activity, a method is selected to calculate
and compare costs of developing a new AAT
by reusing an existing AAT and costs of cre-
ating a new AAT from scratch. The metrics
required to apply the method are selected in
this activity. This activity is necessary because
the development of text-based AATs is known
for higher costs, and in some cases developing
a new AAT from scratch can provide more sav-
ings than reusing an AAT. The reuse cost calcula-
tion methods and metrics used in the code-based
artifacts are not applicable over the text-based
AATs because they use “lines of source code” (or
indirect metrics such as complexity and function
points) as an essential metric to calculate the

148 Mohsin Irshad, Kai Petersen

cost. The selection of the cost model depends on
the following factors:
1. Maturity of the existing reuse process in the

organization, i.e., ad-hoc or systematic reuse.
2. Easiness to collect the required metrics:

Each model uses various metrics to calculate
reuse-related costs. Therefore, a key consider-
ation when selecting a model is the availabil-
ity of the required metrics in the organization.
Manual estimation can be used if the needed

metrics are not available or time-consuming to
collect these metrics. The manual estimate can be
based on (i) the size of a similar task completed
previously, (ii) the complexity of the task, and
(iii) the experience level of the software practi-
tioners.

We identified two methods and their metrics
that could help in calculating the reuse related
costs of AATs. These methods are described be-
low.

Amar and Coffey’s reuse cost calculation
method [70] Amar and Coffey attempted to pro-
vide a unified unit of measure capable of cal-
culating the costs that occurred during a reuse
instance [70]. They claim that the reuse-related
expenses are directly related to the time spent
on reuse activities. They claim that the time
spent during each of these activities should be
considered. The method and metrics proposed
by Amar and Coffey are described below.

% of reuse cost avoided per AAT =

=

S − (T + U)×

N

i
B
− S × M

B

× 100 (2)

where S is the search hit rate (i.e., the number
of attempted searches yielding a reuse instance
is divided by the number of total searches), T
is time to locate a reusable AAT, U is time to
understand the AAT, N is a number of AATs
analyzed, i is a number of reuse instances of
AAT, M is time to integrate (reuse) the (e.g.,
after adapting a reusable artifact), and B is time
to develop an AAT from scratch. Further details
on the working and evaluation of this method
are found in study [70].

Irshad et al.’s reuse cost calculation method
[15] According to Irshad et al., their proposed
metric can calculate cost avoidance by reusing
any software artifact [15]. Their provided instru-
ment considers the effort spent reusing an artifact
vs. effort spent on developing it from scratch. The
basic formula is described below in the context
of this study.

Reuse Costs = (O − I)×H (3)

where O is the personnel hours when an AAT is
developed from scratch, I is the personnel hours
spent on the adaptation of reusable AAT (i.e.,
changing an artifact to match the needs) and, H
is the cost of one personnel hour. According to
Irshad et al., historical data or expert opinion
can estimate the personal hours when AAT is
developed from scratch. Further details on the
instrument and its evaluation can be found in
the study [15].

Example: For the sake of this example, we
can assume that the test developer selects a reuse
cost model [15] i.e., Equation 3.

4.1.7. A7: Calculate cost of reuse

In this activity, the selected cost-avoidance
method and its metrics are applied to calculate
the cost of reusing the identified AATs. The reuse
costs are only calculated for the artifact that is
deemed relevant. The activity can help in de-
cisions like should a new test be developed or
existing ones are modified. This activity can be
performed with the help of automated scripts or
manually.

Example: Using the metrics and method, the
test developer calculates that the new develop-
ment cost is 40 person-hours, and the cost of
Reusing by Adaptation Scenario 2 is 30 per-
son-hours. Therefore, it makes sense to reuse
Scenario 2 to develop a new AAT as it saves ten
person-hours.

4.1.8. A8: Develop new AAT by reuse

In this activity, a new AAT is developed by
reusing the reusable AAT. This activity takes
place if the reuse is deemed as cost-effective in

Systematic Reuse Process for Automated Acceptance Tests . . . 149

activity A7. During this activity, one of the adap-
tation templates is applied to develop the new
AAT that supports future reuse opportunities
(present in Section 4.1.3).

Test developer performs this activity manu-
ally. When developing a new AAT by reuse (using
the proposed process), the following pre-requi-
sites are needed:
– The format in which the new AAT will be

written so that it becomes a reusable asset
for the future.

– The cost-efficient reusable test case(or test
cases) which will be used to develop a new
AAT (or parts of a new AAT).
Example: When the reuse is considered ben-

eficial, we assume that the test developer uses
“Structuring” as a reuse approach to developing
a new AAT scenario that test registration of
a user account and viewing products below. The
grey colored lines show the reuse from the exist-
ing scenario (Scenario 2 described in activity A4).
Scenario 3: As a user I should be able to create

account and view product
Given A product is configured in the sys-

tem
AND A login system is present for the product
AND A user is able to access the GUI Regis-

tration system
When User Registration is successful
AND User sends a Get request to fetch

the products
Then User is able to view the product
AND a new user account is created

4.1.9. A9: Develop a new AAT

In this activity, the development of a new AAT
from scratch takes place. This activity happens
if the reuse from existing AATs is not possible,
i.e., no relevant reusable AAT or reuse has unfa-
vorable cost vs. benefits. While developing the
new AATs, the vocabulary and existing rules of
writing an AAT are considered. An adaptation
templates is selected to develop the new AAT
that supports future reuse opportunities (present
in Section 4.1.3). A test developer performs this
activity manually.

The example from activity A8 (Scenario 3)
shows a new AAT if developed from scratch.

4.1.10. A10: Add new AAT to repository

The final activity is to add the newly developed
(or reused) AAT into the existing test repository.
These steps help in improving and developing
test-base. This activity is performed manually.

An example of the repository is a Git reposi-
tory10, which is used by the majority of the soft-
ware development organization to version-control
the software artifacts.

4.2. Evaluation and refining
of systematic reuse process

We first evaluated the proposed process with
experienced practitioners who have first-hand ex-
perience working with AATs. Later, the authors
assessed the process using it in an AAT suite
from a large-scale software product.

4.2.1. Qualitative feedback
of software practitioners

The industrial evaluation with five participants
is conducted with the help of a questionnaire.
The results from each section, based on UTAUT
[61], are described below:
Performance expectancy: According to prac-
titioner one, combining the reuse process and the
reuse cost is very beneficial. Other participants
also found this solution beneficial for the reuse
of AATs. The quotes below describe the specific
statements from the respondent of the survey
questionnaire.

“It guides a systematic approach, and it will
help in optimizing the AAT process. Provided
if it does not involve additional execution cost
and the process is automated.” (P1)
“The possible benefit of the process is the
reduction in the effort to write the new test
case.” (P2)
“In my point of view, this process will really
help the software practitioner to select the
test cases and use it for automated acceptance

10https://git-scm.com/

150 Mohsin Irshad, Kai Petersen

tests. The use of this process can be cost ef-
fective in sense of saving time by selecting the
test cases with respect to the score of each
test.” (P3)
“In case of low assess relevance and less cost
of reuse, it will improve the quality of the
tests by having already reliable tests. Also,
it’ll reduce the time to test a functionality
that is closer to already existing and selected
TC.” (P3)

Effort expectancy. The participants, overall,
seems happy with respect to the effort expectancy
of the proposed process. They suggested that ac-
tivities in the process are easy to follow. However,
they posed a few interesting questions (in quotes
below) that we have attempted to resolve in the
final design of the proposed process. Some of the
quotes from the practitioners are given below:

“The process seems to be simple and easy to
use, provided if process tasks are automated.”
(P3)
“The only thing I have found its hard to
implement this process in the existing project
because it takes time to change the process
and this process has involved many steps but
this one time cost of implementation can save
a lot in future.” (P4)
“The relevance and cost estimation should
be automated. The increasing number of
reusable artifacts will affect the efficiency of
search. So some mechanisms should be intro-
duced to speed up the search, e.g., indexing
etc.” (P3)
When asked about ease of use, four practi-

tioners marked the process as easy or very easy
to use. One practitioner suggested it as “Normal”
to use. The results are shown in Table 6.
Facilitating Condition. The participants
stated that the solution is right to have, but
the organization-level activities should be recon-

sidered because they add an over-head in the
process. The respondents of the survey suggested
the following improvements with respect to facil-
itating conditions.

“Organizational level activities should not be
the part of the process, rather these should
be the pre-requisites of the process.” (P1)
“Steps A2 and A3 can cause possible delay, so
they should be a pre-requisite to the process,
and not a part of the process.” (P3)
“Reassessment after cost evaluation with
other closely related test cases.” (P4)
From the evaluation, we found that:

– The systematic reuse process saves the time
to write new AATs.

– The organizational level activities are
one-time activities, and test developers
should skip these activities.

– There can be more reuse candidates than one.
A new AAT can use parts of multiple existing
reusable AAT.

– The scripts implementing search and assess-
ment activities should be part of the system-
atic reuse process. In the future, the focus
should be to automate many of these activi-
ties.

4.2.2. Demonstrating industrial application
of the proposed process

An industrial AAT was implemented using the
activities of the proposed process. A summary of
quantitative data captured during the evaluation
is shown in Table 7 and qualitative information
mentioned in the sections below. The context
and details of the industrial demonstration are
discussed in the research approach (Section 3.2.2
Phase 5: Test candidate design elements).
Details of tasks in each activity. Each activ-
ity inside the proposed process consists of one

Table 6. How easy it is to use the process

Participant Very Easy Easy Normal Difficult Very difficult
Participant 1 X
Participant 2 X
Participant 3 X
Participant 4 X
Participant 5 X

Systematic Reuse Process for Automated Acceptance Tests . . . 151

or more tasks that are performed in the activity.
The tasks performed in each activity are assessed,
and important lessons are documented. It was
noted that A4, A5, A6, and A8 activities take
more time and contain multiple tasks per activity.
The tasks under each activity are described in
Table 7 and in the sub-sections below:

A1: Select Keywords: The test developer (au-
thor) selected 3 keywords (a) REST (b) <In-
terface Name> (c) a description of performance
requirement.

Select AAT format: From the available
choices (BDD or keyword-driven), the test devel-
oper selected keyword-driven as AAT format.
The existing AATs were also written in key-
word-driven format.

Select artifact adaptation template: “Param-
etrization” is selected as artifact adaptation tem-
plate because parameterization is by default sup-
ported by the keyword-driven frameworks, and ex-
isting AAT is also based on keyword-driven tests.

Search for reusable AATs: The searching of
AATs was executed using the script provided
as part of the proposed process (See [69]). Be-
fore the search is executed, libraries required
for the script are installed. The existing AATs
are checked-out from the repository. Three files,
each containing one keyword, are created in the
same directory. The NCD script is executed to
identify the AATs closely matching the keywords.
The first search did not yield AATs that were
closely matching with keywords. Later, keywords
were changed (mentioned in the activity “select
keywords” above) that produced better results.
The output of this activity is available online [78].

Assess Relevance of AATs: The output of
search activity is sorted in ascending order. The
output of the five pairs with lowest NCD val-
ues (i.e., similar) is shown in Table 8. The pairs
with the lowest NCD values are selected for the
analysis. After manually analyzing the content of
selected AATs (from pairs with the lowest NCD),
two AATs (testcase27, testcase26) are selected
for reuse purposes.

Select reuse cost method and metrics: The ver-
ification team keeps track of tasks in a ticketing
system. The time spent on each task in each phase
(in backlog, in development, in Done) is present

in the system. Therefore, it was decided to use
a person-hour based metric and model. The reuse
cost calculation method proposed by Irshad et al.
[15] was selected to calculate reuse costs.

Calculate cost of reuse: The development
time of testcase27 and testcase26 was four weeks
for each test case. We estimated that by reusing
(without change) some parts of the testcase26
(related to SUT configuration and test data gen-
eration and cleaning), we could save three weeks
of development effort. Other parts of testcase27
(related to validation) support parametrization.
These parametrization supporting parts were also
reused using different values for the parameters.
An example of parametrization is found on a link
here [83].

Develop new AAT by reuse: The new AAT
was developed using the parameterization ap-
proach (See example of parametrization [83]. The
reusable lines from the testcase27 already sup-
ported parametrization. Seven out of twenty-five
new AAT lines were reused (by using different
parameter values) from the testcase27.

Add new AAT to repository: Once the AAT
is ready and approved by the reviewers, the AAT
is pushed to the central repository. This task
triggers the build on the build server, executing
the AAT.
Number of tasks performed in each activity.
The number of tasks in an activity may show the
effort required to perform the activity. An activity
with a large number of tasks may require more
effort from the practitioners. The test developer
(one of the authors) kept a record of the number
of tasks performed in each activity, e.g., searching,
changing code. The tasks varied from 1 task to 3
tasks in activity. The number of tasks performed
in each activity is described in Table 7.
Effort to create an AAT. To capture this
construct, we measured the time taken during
each activity. The time taken by each activity is
shown in Table 7. The development (writing, test-
ing, refactoring) of the AAT took the most time
(1 week). Other activities in the process took less
than 30 minutes each. The practitioner tracked
the time spent on the task, and the practitioner
used minutes to track the precise time. In the
work management tool used by the organization,

152 Mohsin Irshad, Kai Petersen

Table 7. Evaluation: Time spent, no of tasks, the tasks performed during each activity of the process,
description of the tasks and comparison with existing (manual) activity

Activity Time
spent

No. of
tasks Description of tasks in the activity

Comparison with
existing (manual)
activity

A1: Select
Keywords

5 minutes 2 (a) Reading requirements description. (b)
Deciding suitable keyword.

Not needed in man-
ual process

A2: Select AAT
format*

1 minute 1 Selecting “Keyword-driven” as AAT for-
mat.

No such activity ex-
ists, a practitioner
decides the format
he has previous ex-
perience with.

A3: Select
artifact
adaptation
template

1 minute 1 Selecting “Parametrization” as adapta-
tion template to support develop with
reuse.

No such activity ex-
ists.

A4: Search
reusable AATs*

27 minutes 3 (a) Configuring libraries for NCD script,
a one-time task (20 minutes). (b) Writing
keywords from activity A1 in separate
files (5 minutes). (c) Executing script in
the repository (takes 2 minutes).

A practitioner uses
his/her experience
from test suite.

A5: Assess
relevance of
AATs*

30 minutes 3 (a) Sort and analyse the output of NCD
script (excel file) 10 minutes. (b) Select
top relevant AATs and analyse for rele-
vance (10 minutes). (c) Select one AAT
most suitable for a new AAT (10 min-
utes).

A practitioner uses
his/her experience
of domain.

A6: Select reuse
cost method and
metrics

11 minutes 2 (a) Analysis of the metric present in the
organization/unit (10 minutes). (b) Select
suitable cost model (1 minute).

No such activity ex-
ists.

A7: Calculate
cost of reuse

15 minutes 1 Apply cost model to AAT (15 minutes). No such activity ex-
ists.

A8: Develop new
AAT by reuse*

1 week 4 (a) Selecting reusable parts of AAT from
task “C” in activity A5 (20 minutes). (b)
Adapting reusable parts to fit the newly
developed AAT (24 hours). (c) Testing
the new AAT (10 hour). (d) Refactoring
the new AAT (6 hours).

A test case by reuse
is developed using
activities, A1–A7.

A9: Develop
a new AAT*

0 0 Not performed. A test case from
scratch is developed
using activities, A2
and A3.

A10: Add new
AAT to
repository*

1 minute 3 Using commands: git add <filename>
and git commit -m “<Message>” andgit
push

Similar to manual
process.

* shows activity exists in manual and automated process.

the development of the new AAT took nearly
5-working days.

The time spent on a similar existing AAT
was identified from the organization’s archived
data (using Git history, we found the develop-

ment task and determined the time spent in the
task development phase). A similar AAT was
developed in four weeks, as per the development
phase of the task. This difference is because, in
the newly developed AAT, the test data setup,

Systematic Reuse Process for Automated Acceptance Tests . . . 153

Table 8. NCD values of comparison between Keywords and existing AATs

AAT 1 Keywords NCD value
testcase27 keywords.txt 0.169
testcase26 keywords.txt 0.174
testcase84 keywords.txt 0.294
testcase25 keywords.txt 0.299
testcase83 keywords.txt 0.307

the SUTs state configuration, and the test data
deletion parts were reused from an existing AAT.
Magnitude of reused statement. Utilizing
the reuse cost calculation activity is essential to
recognize benefits before reusing any AATs. The
cost savings through AAT’s reuse depends on
(i) the number of reusable AAT statements and
(ii) the functionality corresponding to the reused
statement. For example, only seven out of 25
lines were reused in the demonstration. However,
these seven reused lines perform functionality
that is time-consuming to develop, so the cost
savings were almost 75% (1 week when reusing
vs. 4-weeks of development time from scratch).
Another example can be a case where many state-
ments are reused, but these statements require
a small amount of development time when de-
veloping from scratch; in that case, cost savings
may not be a lot.

The evaluation from the industrial assessment
identified the following lessons:
– Finding suitable keywords may require multi-

ple iterations before finding the most useful
reusable AAT.

– There were more than one AATs identified
as reusable during the assessment of reusable
AAT. There should be a guideline on how to
select the best out of the possible reusable
artifacts.

– The automated scripts provide a mechanism
to search and assess the existing AATs.

4.3. Final version of systematic
reuse process

Following changes were introduced in the pro-
posed process, based on the feedback from prac-
titioners and application in an industrial setting:
– A condition is introduced to skip organiza-

tional-level activities if these are already de-
fined, as per the participants’ suggestions.

– A condition is modified to select multiple can-
didates and perform reuse cost calculations
on each of these candidates.

– A new activity is introduced to evaluate the
most suitable candidate from a list of candi-
dates having lower costs and requiring fewer
changes. The activity takes input on a list of

Figure 3. Final Version: A systematic reuse process for automated acceptance tests (AATs)

154 Mohsin Irshad, Kai Petersen

AATs with high relevance and low costs and
lists the most feasible reusable AAT.

– A new activity, Associate Keywords with
AAT, is introduced that stores the selected
keywords when storing the new test case in
the repository. These keywords help in catego-
rizing the test cases and optimize the search
functionality.

– The activities that can be automated with
a script’s help are mentioned in Table 3.
The final version of the process is shown in

Figure 3.

5. Discussion

This section provides a discussion on the analysis
of the evaluation, characteristics and benefits of
the proposed process.

5.1. Analysis of industrial evaluation

This section describes the findings and analysis
of industrial evaluation.
Analysis on performance expectancy. Per-
formance expectancy has implications on using
the proposed reuse process if the process is ad-
vantageous for the software practitioners [12]. If
the process is perceived as advantageous, then it
is likely that other software practitioners and the
software industry embrace the proposed process.
In the evaluation, practitioners provided positive
feedback with regards to performance expectancy.
The practitioners listed the following advantages
regarding performance expectancy of the process:
– A systematic process to support reuse of au-

tomated acceptance tests.
– The activities of searching and assessment of

a reusable test case can help software practi-
tioners.

– New tests can be developed with less effort.
This feedback was re-confirmed during the

industrial demonstration of the process where the
test developer (an author) followed the activities
and techniques proposed in the systematic reuse
process and successfully developed the test case.
Analysis on effort expectancy. Effort ex-
pectancy identifies the level of ease to use the

proposed reuse process. The easiness of using the
process has direct implications on the adaptabil-
ity of the process in the industry. Software prac-
titioners found the process easy to use. However,
to increase the effort expectancy, practitioners
suggested that the majority of the process ac-
tivities should be automated with the help of
scripts. Practitioners also suggested that there
are many activities involved in the process, and
implementing these activities in their existing
process can be challenging. They suggested au-
tomating these activities to reduce the impact of
a large number of activities.

During the industrial demonstration, it was
noted that the time spent on the activities of the
process and the number of tasks in each activity
are low in numbers. The activity with the highest
number of tasks (4) and time is taken (1 week) is
developing the new AAT. Overall the activities in
the process were easy to use for the test developer
well familiar with the process (an author).

Analysis on facilitating conditions. The
process’s impact on the development of AATs
is evaluated using the facilitating condition con-
struct. The practitioners, during the evaluation,
suggested changes that can help improve the
construct of facilitating conditions. Practitioners
believed that the proposed process could become
better by:
– making few activities pre-requisite to execute

(only once) when the process is applied in any
organization,

– allowing assessment of more than one
reusable AATs before selecting the final
reusable AAT.

The tool support and the competence needed to
use the process was evaluated in the industrial
demonstration. It was noted that tools and li-
braries need to be installed before running the
provided scripts for searching and assessment.
The calculation of reuse cost required metrics
that were already available in the organization,
i.e., better-facilitating conditions.

5.2. Guidelines for AATs reuse

The activities of proposed process act as guide-
lines for reusing the AAT. In the existing litera-

Systematic Reuse Process for Automated Acceptance Tests . . . 155

ture, limited studies have discussed the reuse of
AAT, and this study provides step-by-step guid-
ance for developing with reuse and developing for
reuse. The input, the output, the actor and tech-
niques relevant for each activity are described
in Table 3 and Section 4. Practitioners and re-
searchers can use this information as guidelines
for supporting the reuse of AATs.

5.3. Compare reuse opportunities

The two activities (i.e., assess the relevance of
AAT and reuse cost analysis) in the process can
help the practitioners evaluate a reuse oppor-
tunity’s effectiveness. With these two activities,
the practitioners have an instrument to evaluate
and compare the value of reusing different AATs.
Based on their comparison, they can select the
AAT, which is more suitable for their purpose.

5.4. Flexible techniques

Section 4 provides different techniques that apply
to the activities of reuse process. The implemen-
tation of some of these techniques is also provided
to support the practitioners. However, an orga-
nization can add its own techniques to search,
assess, or calculate reuse costs if it wants to use
customized techniques. The reuse process is not
bound to fix a set of searching and calculation
techniques.

5.5. Support for automation

Several steps in the proposed process are either
automated already or have the potential (e.g.,
selecting keywords) to be automated. This can
result in cost savings for the practitioners by
(i) reducing time to develop an AAT and (ii) re-
ducing the time to analyze, search, and assess
the AATs. In future work, we want to provide
automated scripts for activities A1, A6, and A7
from Table 3.

5.6. Verdict on the diversity of AAT-suite

The activities of the process can also be used
to assess the diversity in an organization’s AAT

suite. A higher diversity means that the test
suite has more test coverage. The search and
assessment using NCD provides pair-wise com-
parison values of all the AATs. These values
can be a good indicator of diversity in the AAT
suite. A suite with low diversity could have many
pairs with low NCD values (i.e., very similar
to each other), indicating that refactoring is
needed to diversify the AATs or remove the
duplicates.

5.7. Tool support for reuse of AATs:

AATs are text-based artifacts different from tra-
ditional code-based test cases. IDE features often
support the code-based reuse process to detect
duplicates, detect similar usage, provide modu-
larization of code snippets, etc. These basic reuse
features are not yet mature enough for non-code
artifacts. Therefore, we have provided easy to
use techniques and scripts that can be applied
to support the reuse of text-based AATs.

5.8. Increased coupling

Existing research literature has described the is-
sue with decreased maintainability among AATs
[7]. A key concern when developing by reusing
parts of different reusable AATs is an increase in
coupling (dependency between test cases) in the
test base [84]. This increase in coupling decreases
the maintainability of the test cases. Therefore,
during the activity A5 (Assessing the relevance
of reusable AATs), it is vital to consider the
increase in coupling between the reused and
reusable AATs.

5.9. Comparison with existing literature

Park and Maurer proposed three strategies that
can be used to develop reusable assets in soft-
ware product lines [85]. These three strategies are
(i) proactive mode in which organization makes
upfront investment in developing reusable assets,
(ii) reactive mode in which reusable assets are de-
veloped when needed, and (iii) extractive mode
in which existing product is reused [85]. Our
proposed process can be classified as a reactive

156 Mohsin Irshad, Kai Petersen

model, in which we develop new reusable assets
when there is a need for writing a new test.

In their study on variability management
in software product lines, Kiani et al. proposed
amethod inwhich reusable assets are developed on
demand when the need arises [86]. This is similar
to our proposed approach in which reusable AATs
are createdwhen there is a need towrite a new test,
i.e., no upfront costs are required. In addition, de
Silva proposed a software product line approach
that uses automated acceptance tests to link
scoping of requirements, implementation, and
testing [87]. Our proposed process compliments
this SPL-based study by suggesting a reuse-based
approach to derive the reusable AATs along with
requirements, implementation, and testing.

In a study by Mink et al., software practition-
ers suggested that specifying the granular details
of automated acceptance tests, i.e., format and
details of AATs is cumbersome and requires more
time from them [3]. In another study, Mink et
al. investigated executable acceptance testing.
They found that AATs help in (i) preserving the
domain knowledge and (ii) improve the commu-
nication among the developers [3]. Our study
identified similar findings during the evaluation
of the proposed process using experienced soft-
ware practitioners. Thus, our approach may help
the software practitioner specify the details of
the automated acceptance tests by providing
a specific AAT format and suggesting existing
reusable AATs.

5.10. Scalability of Approach

Searching for reusable software artifacts is known
as a time-consuming process (with high costs)
during software reuse [43]. The cost of searching
and retrieving a reusable software artifact grows
when new artifacts are added to the repository
[43]. Therefore, the scalability of the searching
techniques is a vital characteristic to support fu-
ture reuse opportunities. We evaluated performed
an evaluation of the search approach. In an exam-
ination (by the authors) with a specification base
of 500 AATs, reusable candidates were identified
in less than 5 minutes using the scripts provided
as part of the proposed process (See script [69].)

6. Threats to validity

Runeson et al. [88] classified the validity threats
into four types (reliability, construct validity,
internal validity, and external validity). These
threats to the study’s validity and the measures
to address these validity threats are discussed in
this section.

Internal validity deals with the case when
the factors studied by the researchers are affected
by any other factors unknown to the researchers.
This threat applies to the design and develop-
ment of the questionnaire for industrial evalua-
tion. The questionnaire design can be classified
as “self-administrated,” i.e., online form. As the
proposed process is developed for software orga-
nization, we evaluated the process using the con-
structs suggested by the unified theory of accep-
tance and technology use (UTAUT) [61]. These
three constructs (performance expectancy, effort
expectancy, and facilitating condition) help the
authors to develop evaluation questions related
to the proposed process systematically. Each
question in the questionnaire is mapped to a con-
struct that it addresses. The details are provided
in Section 3. We believe that we have addressed
this threat to this investigation’s internal validity
by following a systematic method to design and
develop the questionnaire.

External validity concerns with the gen-
eralization of results. The proposed process de-
veloped in this study is considered useful for
large-scale software organizations. Hence, we eval-
uated the proposed process using an industrial
use-case for large-scale systems. During the evalu-
ation, the process’s completeness and usability for
large-scale product organizations are evaluated.
Furthermore, we involved five experienced practi-
tioners from two large-scale organizations to eval-
uate the proposed process and provide feedback.

The experienced practitioners involved in this
study worked in different roles in large-scale or-
ganizations. They were selected because they
have a prior understanding of automated accep-
tance testing and reuse. As reuse of AATs is still
a new area, it is difficult to find practitioners
who understand these concepts. Furthermore,
we involved practitioners from two large-scale

Systematic Reuse Process for Automated Acceptance Tests . . . 157

organizations to improve the generalizability of
the proposed process. However, the authors be-
lieve that a reuse process should be applied and
evaluated in the industry before the results of
this study are considered generalizable, which is
part of our future work.

Reliability deals with how the data collec-
tion and analysis are dependent on the researcher.
The researcher independently conducted the first
evaluation to validate a process in the industry
setting. This practice is called lab validation by
Gorscheck et al. [62]. Since this evaluation was
conducted by a software practitioner (an author),
the threat to the validity of data collection and
analysis exists. To mitigate this threat to the
evaluation’s validity, in the second part of the
evaluation (using experienced practitioners), the
data collection was done in an online form with-
out the author’s active involvement in filling the
form. A critical threat to the reliability of the
study is related to the response bias of survey re-
spondents. The responses from the practitioners
reflect the belief of those practitioners, and these
beliefs may be contrary to real-world contexts.
We believe that this threat is relevant to this
study, and in future evaluations of the proposed
process, work is needed to address this concern.
The usage of online form reduces the chance of
losing any valuable feedback from practitioners.
For data analysis, we used a systematic method
called constant comparison to interpret the on-
line questionnaire’s feedback.

Construct validity deals with how well the
study captures the intended constructs. During
the evaluation, each subject involved presented
the motivation, background, and walk-through
of the proposed process during online sessions.
The subjects asked questions about the study,
the process, and the questionnaire during these
presentations. Furthermore, one of the study au-
thors has considerable experience working in the
same domain and industry. Hence, he was able
to explain the concepts in the language/terms
understood by the subjects. This step helps in
reducing confusion or ambiguities related to the
reuse process.

Furthermore, the questionnaire (available at
[73]) provides a detailed description of concepts,

the activities used in the process, techniques used
in these activities, and a working example of the
proposed process. These details were provided to
the respondents to make sure the study captures
the intended constructs.

7. Conclusion

The reuse of automated acceptance tests help
develop new tests cheaply, quickly, and with high
quality. However, the textual nature of these tests
makes the reuse of these tests different from
code-based tests. In this investigation, we de-
scribe a systematic reuse process for text-based
automated acceptance tests. We constructed this
reuse process using the method engineering and
performed an initial evaluation of the reuse pro-
cess before applying it to the industry.

RQ 1: How can the cost-effective systematic
reuse of text-based AATs be achieved? The con-
struction of systematic reuse process starts with
the identification of the motivation and require-
ments of the new process. The identified require-
ments are (i) the process should consider devel-
opment with reuse and development for reuse,
(ii) the process should be independent of several
text-based formats (e.g., BDD, keywords) and
frameworks of automated acceptance tests (e.g.,
Cucumber, Robot Framework), and (iii) the cost
of reuse should be calculated before developing
a new test by reusing existing tests. For these
three requirements, we identified and tailored
existing methods present in the literature. The
final outcome is a systematic reuse process that
supports the reuse of various types of text-based
automated acceptance tests. The process activi-
ties are divided into two types, i.e., organizational
level activities and test developer-level activities.
We provided expected input, expected output, ac-
tor, examples, and techniques (automated using
scripts) suitable for the process’s activities.

RQ 2: How does the systematic reuse process,
from RQ 1, perform concerning performance ex-
pectancy, effort expectancy, and facilitating con-
ditions in the industrial context? After construct-
ing the process, an elementary industrial evalua-
tion assesses the performance expectancy, effort

158 Mohsin Irshad, Kai Petersen

expectancy, and facilitating conditions concern-
ing the process. This evaluation is performed
to sanity-check and improves the process before
it is ready for a long and detailed industrial
evaluation. Initially, five participants with con-
siderable experience in automated acceptance
testing provided qualitative feedback on the sys-
tematic reuse process. They found that the pro-
cess can save time and reduce the effort to write
and maintain automated acceptance tests. The
practitioners suggested that activities are easy
to use, and the reuse cost metrics are easy to
find and apply using the proposed techniques.
They suggested changes in the process, and these
changes were incorporated in the final version
of the process. This evaluation shows promising
results concerning the processes’ performance
expectancy, effort expectancy, and facilitating
conditions.

Later an illustration of the usage of a process
in the industry is conducted. During the evalu-
ation, a new test case is developed by reusing
existing automated acceptance tests. This evalu-
ation’s objective was to identify and sanity-check
the tasks in the process’s activities and evaluate
their complexity. One of the authors, from the
same organization, conducted this demonstration.
The evaluation helped identify several different
granular tasks required to perform in each activ-
ity of the process. The number of tasks varies
from 1 to 4 between different activities. These
identified tasks can act as guidelines when using
the process in the industry. The evaluation also
recorded the time spent in each activity. It was
noted that most of the time is spent developing
the new test by reusing existing automated ac-
ceptance tests. The development time with the
reuse process was 4-times quicker than develop-
ing a new artifact from scratch.

In the future, we want to have a longitudi-
nal investigation on the process’s transfer and
usage in the industry, as application and evalu-
ation of the process may take a long duration
and resources. The current study enables the
researchers to sanity-check the process before
evaluating it in industrial settings. Secondly, in
the next study, we want to automate most of
the proposed process activities and evaluate the

process using automated activities. Furthermore,
we want to evaluate the precision and recall of
the search and assessment functionality proposed
in this process.

References
[1] M.J. Harrold, “Testing: A roadmap,” in Proceed-

ings of the Conference on the Future of Software
Engineering, 2000, pp. 61–72.

[2] W.E. Wong, J.R. Horgan, S. London, and
H. Agrawal, “A study of effective regression
testing in practice,” in Proceedings., The Eighth
International Symposium on Software Reliability
Engineering. IEEE, 1997, pp. 264–274.

[3] G. Melnik and F. Maurer, “Multiple perspectives
on executable acceptance test-driven develop-
ment,” in International Conference on Extreme
Programming and Agile Processes in Software
Engineering. Springer, 2007, pp. 245–249.

[4] “Standard glossary of terms used in software test-
ing,” International Software Testing Qualifica-
tions Board, Standard 3.5, 2020. [Online]. https:
//www.istqb.org/downloads/glossary.html

[5] B. Haugset and G.K. Hanssen, “Automated ac-
ceptance testing: A literature review and an in-
dustrial case study,” in Agile Conference. IEEE,
2008, pp. 27–38.

[6] M. Huo, J. Verner, L. Zhu, and M.A. Babar,
“Software quality and agile methods,” in Proceed-
ings of the 28th Annual International Computer
Software and Applications Conference, 2004.
COMPSAC 2004. IEEE, 2004, pp. 520–525.

[7] J. Weiss, A. Schill, I. Richter, and P. Mandl,
“Literature review of empirical research studies
within the domain of acceptance testing,” in 42th
Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 2016,
pp. 181–188.

[8] W.B. Frakes and K. Kang, “Software reuse re-
search: Status and future,” IEEE Transactions
on Software Engineering, Vol. 31, No. 7, 2005,
pp. 529–536.

[9] R. Capilla, B. Gallina, C. Cetina, and J. Favaro,
“Opportunities for software reuse in an uncertain
world: From past to emerging trends,” Journal of
Software: Evolution and Process, Vol. 31, No. 8,
2019, p. e2217.

[10] W.B. Frakes and S. Isoda, “Success factors of
systematic reuse,” IEEE software, Vol. 11, No. 5,
1994, pp. 14–19.

[11] D. Rombach, “Integrated software process and
product lines,” in Software Process Workshop.
Springer, 2005, pp. 83–90.

Systematic Reuse Process for Automated Acceptance Tests . . . 159

[12] M. Ramachandran, “Software re-use assessment
for quality,” WIT Transactions on Information
and Communication Technologies, Vol. 9, 1970.

[13] E.S. de Almeida, A. Alvaro, D. Lucrédio,
V.C. Garcia, and S.R. de Lemos Meira, “Rise
project: Towards a robust framework for software
reuse,” in Proceedings of the International Con-
ference on Information Reuse and Integration.
IEEE, 2004, pp. 48–53.

[14] J.S. Poulin, Measuring software reuse: principles,
practices, and economic models. Addison-Wesley
Reading, MA, 1997.

[15] M. Irshad, R. Torkar, K. Petersen, and W. Afzal,
“Capturing cost avoidance through reuse: system-
atic literature review and industrial evaluation,”
in Proceedings of the 20th International Confer-
ence on Evaluation and Assessment in Software
Engineering. ACM, 2016, p. 35.

[16] A. Davies, T. Brady, and M. Hobday, “Charting
a path toward integrated solutions,” MIT Sloan
management review, Vol. 47, No. 3, 2006, p. 39.

[17] W.E. Wong, “An integrated solution for creat-
ing dependable software,” in Proceedings 24th
Annual International Computer Software and
Applications Conference. COMPSAC2000. IEEE,
2000, pp. 269–270.

[18] R.J. Mayer, J.W. Crump, R. Fernandes, A. Keen,
and M.K. Painter, “Information integration for
concurrent engineering (IICE) compendium of
methods report,” Knowledge Based Systems Inc.,
Tech. Rep., 1995.

[19] M. Rahman and J. Gao, “A reusable automated
acceptance testing architecture for microservices
in behavior-driven development,” in Symposium
on Service-Oriented System Engineering (SOSE).
IEEE, 2015, pp. 321–325.

[20] G. Meszaros, “Agile regression testing using
record and playback,” in Companion of the
18th Annual ACM SIGPLAN Conference on Ob-
ject-Oriented Programming, Systems, Languages,
and Applications. ACM, 2003, pp. 353–360.

[21] A.K. Onoma, W.T. Tsai, M. Poonawala, and
H. Suganuma, “Regression testing in an in-
dustrial environment,” Communications of the
ACM, Vol. 41, No. 5, 1998, pp. 81–86.

[22] P. Hsia, D. Kung, and C. Sell, “Software re-
quirements and acceptance testing,” Annals
of Software Engineering, Vol. 3, No. 1, 1997,
pp. 291–317.

[23] G.K. Hanssen and B. Haugset, “Automated ac-
ceptance testing using fit,” in 42nd Hawaii Inter-
national Conference on System Sciences. IEEE,
2009, pp. 1–8.

[24] E. Pyshkin, M. Mozgovoy, and M. Glukhikh, “On
requirements for acceptance testing automation
tools in behavior driven software development,”
in Proceedings of the 8th Software Engineering
Conference in Russia (CEE-SECR), 2012.

[25] G. Liebel, E. Alégroth, and R. Feldt, “State-of-
-practice in GUI-based system and acceptance
testing: An industrial multiple-case study,” in
39th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA).
IEEE, 2013, pp. 17–24.

[26] H. Munir and P. Runeson, “Software testing
in open innovation: An exploratory case study
of the acceptance test harness for Jenkins,” in
Proceedings of the International Conference on
Software and System Process, 2015, pp. 187–191.

[27] G. Melnik and F. Maurer, “The practice of spec-
ifying requirements using executable acceptance
tests in computer science courses,” in Companion
to the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2005, pp. 365–370.

[28] M. Hayek, P. Farhat, Y. Yamout, C. Ghorra,
and R.A. Haraty, “Web 2.0 testing tools: A com-
pendium,” in International Conference on In-
novation and Intelligence for Informatics, Com-
puting, and Technologies (3ICT). IEEE, 2019,
pp. 1–6.

[29] P. Gandhi, N.C. Haugen, M. Hill, and R. Watt,
“Creating a living specification using FIT doc-
uments,” in Agile Development Conference
(ADC’05). IEEE, 2005, pp. 253–258.

[30] D. North, “Introducing behaviour driven devel-
opment,” Better Software Magazine, 2006.

[31] E.C. dos Santos and P. Vilain, “Automated
acceptance tests as software requirements: An
experiment to compare the applicability of
fit tables and gherkin language,” in Interna-
tional Conference on Agile Software Develop-
ment. Springer, 2018, pp. 104–119.

[32] C. Solis and X. Wang, “A study of the charac-
teristics of behaviour driven development,” in
37th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA).
IEEE, 2011, pp. 383–387.

[33] R. Hametner, D. Winkler, and A. Zoitl, “Ag-
ile testing concepts based on keyword-driven
testing for industrial automation systems,”
in IECON 2012-38th Annual Conference on
IEEE Industrial Electronics Society. IEEE, 2012,
pp. 3727–3732.

[34] E. Bache and G. Bache, “Specification by ex-
ample with gui tests-how could that work?” in

160 Mohsin Irshad, Kai Petersen

International Conference on Agile Software De-
velopment. Springer, 2014, pp. 320–326.

[35] A.C. Paiva, D. Maciel, and A.R. da Silva, “From
requirements to automated acceptance tests with
the RSL language,” in International Conference
on Evaluation of Novel Approaches to Software
Engineering. Springer, 2019, pp. 39–57.

[36] M. Soeken, R. Wille, and R. Drechsler, “Assisted
behavior driven development using natural lan-
guage processing,” in International Conference
on Modelling Techniques and Tools for Com-
puter Performance Evaluation. Springer, 2012,
pp. 269–287.

[37] C. Deng, P. Wilson, and F. Maurer, “Fitclipse:
A fit-based eclipse plug-in for executable accep-
tance test driven development,” in International
Conference on Extreme Programming and Ag-
ile Processes in Software Engineering. Springer,
2007, pp. 93–100.

[38] C.Y. Hsieh, C.H. Tsai, and Y.C. Cheng, “Test-
-Duo: A framework for generating and executing
automated acceptance tests from use cases,” in
8th International Workshop on Automation of
Software Test (AST). IEEE, 2013, pp. 89–92.

[39] C.W. Krueger, “Software reuse,” ACM Com-
puting Surveys (CSUR), Vol. 24, No. 2, 1992,
pp. 131–183.

[40] D.M. Rafi, K.R.K. Moses, K. Petersen, and
M.V. Mäntylä, “Benefits and limitations of auto-
mated software testing: Systematic literature re-
view and practitioner survey,” in Proceedings of
the 7th International Workshop on Automation
of Software Test. IEEE Press, 2012, pp. 36–42.

[41] W. Frakes and C. Terry, “Software reuse: metrics
and models,” ACM Computing Surveys (CSUR),
Vol. 28, No. 2, 1996, pp. 415–435.

[42] W. Tracz, “Where does reuse start?” ACM
SIGSOFT Software Engineering Notes, Vol. 15,
No. 2, 1990, pp. 42–46.

[43] T. Ravichandran and M.A. Rothenberger, “Soft-
ware reuse strategies and component markets,”
Communications of the ACM, Vol. 46, No. 8,
2003, pp. 109–114.

[44] P. Mohagheghi and R. Conradi, “Quality, pro-
ductivity and economic benefits of software
reuse: A review of industrial studies,” Empir-
ical Software Engineering, Vol. 12, No. 5, 2007,
pp. 471–516.

[45] V. Karakostas, “Requirements for CASE tools
in early software reuse,” ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 14, No. 2, 1989,
pp. 39–41.

[46] J.L. Cybulski, “Introduction to software reuse,”
Department of Information Systems, The Univer-

sity of Melbourne, Parkville, Australia, Vol. 11,
1996, p. 12.

[47] W. Lam, J.A. McDermid, and A. Vickers, “Ten
steps towards systematic requirements reuse,”
Requirements Engineering, Vol. 2, No. 2, 1997,
pp. 102–113.

[48] R.G. Fichman and C.F. Kemerer, “Incentive
compatibility and systematic software reuse,”
Journal of Systems and Software, Vol. 57, No. 1,
2001, pp. 45–60.

[49] A. Genaid et al., “Connecting user stories and
code for test development,” in Third Interna-
tional Workshop on Recommendation Systems
for Software Engineering (RSSE). IEEE, 2012,
pp. 33–37.

[50] L. Crispin and T. House, “Testing in the fast
lane: Automating acceptance testing in an ex-
treme programming environment,” in XP Uni-
verse Conference. Citeseer, 2001.

[51] L.P. Binamungu, S.M. Embury, and N. Kon-
stantinou, “Maintaining behaviour driven de-
velopment specifications: Challenges and oppor-
tunities,” in 25th International Conference on
Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 175–184.

[52] M. Irshad, J. Börster, and K. Petersen, “Support-
ing refactoring of BDD specifications – An em-
pirical study,” Information and Software Tech-
nology, 2022.

[53] R. Angmo and M. Sharma, “Performance eval-
uation of web based automation testing tools,”
in 5th International Conference – Confluence
The Next Generation Information Technology
Summit (Confluence). IEEE, 2014, pp. 731–735.

[54] S. Park and F. Maurer, “A literature review
on story test driven development,” in Interna-
tional Conference on Agile Software Develop-
ment. Springer, 2010, pp. 208–213.

[55] Q. Xie, “Developing cost-effective model-based
techniques for GUI testing,” in Proceedings of
the 28th International Conference on Software
Engineering. ACM, 2006, pp. 997–1000.

[56] R. Borg and M. Kropp, “Automated acceptance
test refactoring,” in Proceedings of the 4th Work-
shop on Refactoring Tools. ACM, 2011, pp. 15–21.

[57] C. Schwarz, S.K. Skytteren, and T.M. Ovste-
tun, “AutAT: An eclipse plugin for automatic
acceptance testing of web applications,” in Com-
panion to the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Sys-
tems, Languages, and Applications. ACM, 2005,
pp. 182–183.

[58] B. Fitzgerald, N.L. Russo, and T. O’Kane, “Soft-
ware development method tailoring at motorola,”

Systematic Reuse Process for Automated Acceptance Tests . . . 161

Communications of the ACM, Vol. 46, No. 4,
2003, pp. 64–70.

[59] P. Raulamo-Jurvanen, M. Mäntylä, and
V. Garousi, “Choosing the right test automation
tool: a grey literature review of practitioner
sources,” in Proceedings of the 21st International
Conference on Evaluation and Assessment in
Software Engineering, 2017, pp. 21–30.

[60] A. Egbreghts, “A literature review of behavior
driven development using grounded theory,” in
27th Twente Student Conference on IT., 2017.

[61] V. Venkatesh, J.Y. Thong, and X. Xu, “Con-
sumer acceptance and use of information tech-
nology: Extending the Unified Theory of Accep-
tance and Use of Technology,” MIS quarterly,
2012, pp. 157–178.

[62] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin,
“A model for technology transfer in practice,”
IEEE software, Vol. 23, No. 6, 2006, pp. 88–95.

[63] M. Finsterwalder, “Automating acceptance tests
for GUI applications in an extreme programming
environment,” in Proceedings of the 2nd Inter-
national Conference on eXtreme Programming
and Flexible Processes in Software Engineering.
Addison-Wesley Boston MA, 2001, pp. 114–117.

[64] S. Park and F. Maurer, “An extended review
on story test driven development,” University of
Calgary, Tech. Rep., 2010.

[65] H. Mili, F. Mili, and A. Mili, “Reusing software:
Issues and research directions,” IEEE Transac-
tions on Software Engineering, Vol. 21, No. 6,
1995, pp. 528–562.

[66] R. Feldt, S. Poulding, D. Clark, and S. Yoo,
“Test set diameter: Quantifying the diversity of
sets of test cases,” in International Conference
on Software Testing, Verification and Validation
(ICST). IEEE, 2016, pp. 223–233.

[67] W.H. Gomaa, A.A. Fahmy et al., “A survey of
text similarity approaches,” International Jour-
nal of Computer Applications, Vol. 68, No. 13,
2013, pp. 13–18.

[68] M. Irshad, K. Petersen, and S. Poulding, “A sys-
tematic literature review of software require-
ments reuse approaches,” Information and Soft-
ware Technology, Vol. 93, 2018, pp. 223–245.

[69] M. Irshad, Source Code for Scripts, 2021. [On-
line]. https://zenodo.org/record/4765079

[70] L. Amar and J. Coffey, “Measuring the benefits
of software reuse-examining three different ap-
proaches to software reuse,” Dr Dobbs Journal,
Vol. 30, No. 6, 2005, pp. 73–76.

[71] K. Petersen and C. Wohlin, “Context in in-
dustrial software engineering research,” in 3rd
International Symposium on Empirical Soft-

ware Engineering and Measurement. IEEE, 2009,
pp. 401–404.

[72] C. Wohlin, M. Höst, and K. Henningsson, “Em-
pirical research methods in software engineering,”
in Empirical methods and studies in software
engineering. Springer, 2003, pp. 7–23.

[73] M. Irshad, “Questionnaire: The reusability of
automated acceptance tests,” 2021. [Online].
https://zenodo.org/record/4765102

[74] J.S. Molléri, K. Petersen, and E. Mendes, “An
empirically evaluated checklist for surveys in
software engineering,” Information and Software
Technology, Vol. 119, 2020, p. 106240.

[75] B.G. Glaser, A.L. Strauss, and E. Strutzel, “The
discovery of grounded theory; strategies for quali-
tative research,” Nursing research, Vol. 17, No. 4,
1968, p. 364.

[76] J. Stoustrup, “Successful industry/academia co-
operation: From simple via complex to lucid
solutions,” European Journal of Control, Vol. 19,
No. 5, 2013, pp. 358–368.

[77] T.C. Lethbridge, S.E. Sim, and J. Singer, “Study-
ing software engineers: Data collection tech-
niques for software field studies,” Empirical
software engineering, Vol. 10, No. 3, 2005,
pp. 311–341.

[78] M. Irshad, “Search and assessment data,” 01
2021. [Online]. http://shorturl.at/juIZ6

[79] P.M. Vitányi, F.J. Balbach, R.L. Cilibrasi, and
M. Li, “Normalized information distance,” in
Information theory and statistical learning.
Springer, 2009, pp. 45–82.

[80] B.Y. Pratama and R. Sarno, “Personality classi-
fication based on Twitter text using Naive Bayes,
KNN and SVM,” in Proceedings of the Interna-
tional Conference on Data and Software Engi-
neering, 2015, pp. 170–174.

[81] J.C. Corrales, Behavioral matchmaking for ser-
vice retrieval, Ph.D. dissertation, Université de
Versailles-Saint Quentin en Yvelines, 2008.

[82] S.S. Choi, S.H. Cha, and C.C. Tappert, “A sur-
vey of binary similarity and distance measures,”
Journal of Systemics, Cybernetics and Informat-
ics, Vol. 8, No. 1, 2010, pp. 43–48.

[83] “Parameterize BDD tests,” 2021. [Online].
https://support.smartbear.com/testcomplete
/docs/bdd/parameterize.html

[84] G. Gui and P.D. Scott, “Coupling and cohesion
measures for evaluation of component reusabil-
ity,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories, 2006,
pp. 18–21.

[85] S. Park and F. Maurer, “Communicating domain
knowledge in executable acceptance test driven

162 Mohsin Irshad, Kai Petersen

development,” in International Conference on
Agile Processes and Extreme Programming in
Software Engineering. Springer, 2009, pp. 23–32.

[86] A.A. Kiani, Y. Hafeez, M. Imran, and S. Ali,
“A dynamic variability management approach
working with agile product line engineering prac-
tices for reusing features,” The Journal of Su-
percomputing, 2021, pp. 1–42.

[87] I.F. Da Silva, “An agile approach for software
product lines scoping,” in Proceedings of the 16th
International Software Product Line Conference
Volume 2, 2012, pp. 225–228.

[88] P. Runeson, M. Host, A. Rainer, and B. Reg-
nell, Case study research in software engineering:
Guidelines and examples. John Wiley and Sons,
2012.

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 163–184, DOI 10.37190/e-Inf210108

Multi-view learning for software defect prediction

Elife Ozturk Kiyak∗, Derya Birant∗∗, Kokten Ulas Birant∗∗
∗Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey

∗∗Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey
elife.ozturk@deu.edu.tr, derya.birant@deu.edu.tr, ulas.birant@deu.edu.tr

Abstract
Background: Traditionally, machine learning algorithms have been simply applied for software
defect prediction by considering single-view data, meaning the input data contains a single feature
vector. Nevertheless, different software engineering data sources may include multiple and partially
independent information, which makes the standard single-view approaches ineffective.
Objective: In order to overcome the single-view limitation in the current studies, this article
proposes the usage of a multi-view learning method for software defect classification problems.
Method: The Multi-View k-Nearest Neighbors (MVKNN) method was used in the software
engineering field. In this method, first, base classifiers are constructed to learn from each view,
and then classifiers are combined to create a robust multi-view model.
Results: In the experimental studies, our algorithm (MVKNN) is compared with the standard
k-nearest neighbors (KNN) algorithm on 50 datasets obtained from different software bug reposi-
tories. The experimental results demonstrate that the MVKNN method outperformed KNN on
most of the datasets in terms of accuracy. The average accuracy values of MVKNN are 86.59%,
88.09%, and 83.10% for the NASA MDP, Softlab, and OSSP datasets, respectively.
Conclusion: The results show that using multiple views (MVKNN) can usually improve classifi-
cation accuracy compared to a single-view strategy (KNN) for software defect prediction.

Keywords: Software defect prediction, multi-view learning, machine learning, k-nearest
neighbors

1. Introduction

Predicting defects (bugs) in source codes is one of
the most valuable processes of the software devel-
opment life cycle (SDLC) to achieve high quality
and reliability in software. The defects that exist
in the software lead to not only waste time and
money but also severe consequences during de-
ployment. Therefore, detecting and fixing defects
in the initial stages of SDLC are crucial require-
ments to produce robust and effective software
systems. For this purpose, so far, many studies on
software defect prediction have been conducted
by utilizing machine learning techniques. For
instance, software modules have been classified
as buggy or non-buggy, which refers to the binary
classification, or the number of bugs predicted,
which refers to the regression problem [1].

Software defect prediction (SDP) generally
includes the following stages to recognize de-
fect-prone software components. (i) First, soft-
ware modules are obtained from software reposi-
tories. (ii) After that, the features (software met-
rics) are extracted from the software modules
and each module is labeled to indicate whether
the module contains a defect or not. (iii) A clas-
sification model is constructed on the training
labeled data. (iv) Finally, the constructed model
is utilized to estimate the defect-proneness of
new unseen software modules.

The standard SDP studies have used the tra-
ditional machine learning techniques which are
basically working on single-view data. However,
the SDP problems can involve data with multiple
views (i.e., multiple feature vectors). The con-
ventional classification algorithms (i.e., k-nearest

Submitted: 22 March 2021; Revised: 10 August 2021; Accepted: 10 August 2021; Available online: 3 November 2021

164 Elife Ozturk Kiyak et al.

neighbors – KNN) simply concatenate all mul-
tiple views into a single view for learning. How-
ever, this simple view-concatenation approach
may produce undesirable prediction results since
each view has its own specific characteristics.
Therefore, multi-view learning (MVL) methods
are needed to individually explore diverse infor-
mation from several different feature vectors and,
hence, to increase learning performance by taking
into account the diversity of various views. For
this purpose, in this work, we propose the usage
of a multi-view learning approach for software
defect prediction problems.

The fundamental contributions of this paper
can be pointed out as follows. (i) This study uses
the Multi-View k-Nearest Neighbors (MVKNN)
algorithm in the software engineering area. (ii) It
compares the MVKNN and KNN algorithms for
software defect prediction. (iii) This study is also
original in that it investigates the effects of the
number of neighbors (the parameter k) on the
software defect prediction performance.

In the experimental studies, we demonstrated
the effectiveness of the multi-view learning ap-
proach on the SDP. Our MVKNN method was
tested on 50 datasets obtained from different
software bug repositories. The experiment re-
sults show that our MVKNN algorithm achieved
higher accuracy values than the KNN algorithm
on most of the datasets.

The remainder of this article is basically or-
ganized in the following manner. In Section 2, we
give an overview of the previous studies related
to the topic. In Section 3, we explain the meth-
ods used in this study. In Section 4, we describe
the main characteristics of the datasets, present
the experimental studies, and discuss the results.
The last part (Section 5) provides concluding
remarks and intended future works.

2. Related work

In single-view learning, a classification method
is applied to the entire feature set or the spe-
cific part of the feature set [2]. In multi-view
learning, various distinct feature sets (views) are
evaluated [3]. These views can be collected from

diverse sources, or a single raw data can be sepa-
rated into different feature sets. For example, in
web mining, the textual content can be consid-
ered as one view, and image data can be repre-
sented as another view. Similarly, a single docu-
ment can have multiple representations (views)
in different languages. Another typical example
is the music emotion recognition, in which lyrics
(view 1) and song (view 2) can be considered
as multiple views. The views can be multiple
measurement modalities such as jointly repre-
sented audio signals + video signals in television
broadcast, biological + chemical data in drug
discovery, or images from different angles.

Recently, multi-view learning (MVL) has
been combined with different machine learning
paradigms such as active learning [4], ensem-
ble learning [5, 6], multi-task learning [7], and
transfer learning [8]. In the literature, many stud-
ies on MVL have been focused on classification
and/or regression problems [4, 5, 8]; however, re-
cently, some studies have focused on a clustering
task [3, 6]. Until now, MVL has been used in
different fields such as health [5, 9], finance [6],
and transportation [7]. However, MVL studies
are considerably limited in software engineering,
especially for software defect prediction.

2.1. Related studies on single-view
learning for software engineering

Researchers have concentrated on machine learn-
ing (ML) methods in software defect prediction.
However, they have applied ML techniques on the
whole feature set or the selected feature subset.
In the literature, a massive number of existing
SDP studies have built classification models on
specific features which have been determined by
using a feature selection method. For example,
Laradji et al. [10] used an ensemble classifier and
claimed that the reduction of unimportant and
irrelevant features improves the performance of
defect prediction. They applied a greedy-forward
selection method to obtain a subset of software
metrics. Agarwal and Tomar [11] applied the
F-score feature selection method which was uti-
lized to determine the important software metric
set that was distinctly affecting the defect classifi-

Multi-view learning for software defect prediction 165

cation in software projects. The study conducted
by Wang et al. [12] used the filter-based fea-
ture ranking techniques to determine how many
metrics should be selected when constructing
a defect prediction model. First, the top 10,
15, and 20 metrics were chosen according to
their scores, and then three different classifica-
tion models were constructed. Although different
feature sets achieved high accuracy for different
classifiers, their results showed that a predic-
tor could be constructed with only three fea-
tures.

In the literature, ML methods have been usu-
ally used to perform within-project defect pre-
diction (WPDP). However, when historical data
was insufficient within a project, the cross-project
defect prediction (CPDP) approach [13] has been
applied to employ the information from other
projects. Moreover, some studies used advanced
ML paradigms in software defect prediction, such
as ensemble learning [14], semi-supervised learn-
ing [15], and transfer learning [13].

All the aforementioned studies performed ex-
periments on a single feature vector (view). How-
ever, in our study, we used several feature sets
(views) to learn diverse information obtained
from various data sources, and therefore to in-
crease learning performance by taking into ac-
count the diversity of different views.

2.2. Related studies on multi-view
learning for software engineering

Recently, lots of information about a subject have
been acquired easily, as well as various kinds of
data (i.e., image, audio, text, video) have been ob-
tained from multiple sources. As many MVL stud-
ies [3] indicated that the information acquired by
using data gathered from multiple sources can
be more valuable than the information obtained
from single-view data. Thus, multi-view learning
has been used in a variety of areas for different
purposes, such as text classification [16], image
classification [17], face identity recognition [18],
and speech recognition [19].

Multi-view learning in software engineering is
concerned with the problem of learning from data

that describe a particular SE problem and is rep-
resented by multiple distinct feature sets (called
views). Many SE problems can be expressed with
different data views. One of the most well-known
examples is that software engineering data can
consist of several views such as the module de-
pendency graph (view 1), execution logs (view2),
and the vocabulary (view 3) used in the source
code. Since all of them collectively describe a soft-
ware system, the integration of all these unique
and complementary views can be jointly used
for analysis [20]. A software system can also be
investigated from different perspectives, relating
to a variable group or representation scheme de-
picting that domain. For instance, evolutionary
information is a set of group variables describing
the co-changing frequency of software units. An-
other example in the software engineering area is
the identification of programming language from
different views. For example, source code classifi-
cation can be performed by applying multi-view
learning to the same piece of code data obtained
as text (view1) and image (view2) [21]. In the
software defect prediction area, as in this study,
the software metrics extracted from source codes
can be divided into different views, considering
that they are obtained from different perspec-
tives.

In the literature, only a limited number
of studies have focused on multi-view learn-
ing for software defect classification. In 2017,
Phan and Nguyen [22] applied a multi-view con-
volutional neural network to predict software de-
fects from assembly instruction sequences. They
represented each instruction with two views: the
content (view 1) and the group (view 2). For
each view, convolutional layers were applied and
merged before feeding them to the fully-con-
nected layers. In 2019, Chen et al. [23] proposed
a multi-view NN-based heterogeneous transfer
learning model built by partitioning features into
groups for software defect prediction. However,
in the former study, source code was used as
a dataset, and in the latter study, different fea-
ture sets were evaluated. Our approach is lever-
aged by combining KNN algorithms separately
implemented to each view.

166 Elife Ozturk Kiyak et al.

2.3. Related studies on KNN for software
defect prediction

By means of its simplicity and ease of implemen-
tation, the KNN algorithm has been implemented
in many ML applications. For defect prediction,
several studies have been developed using the
KNN algorithm in various ways, such as weighted
KNN [24], hybrid model using Naive Bayes and
KNN [25], boosting-based KNN [26], and KNN
regression [27]. Although these studies are related
to defect prediction, experiments were conducted
using single view data. Different from these pre-
vious studies, we used an improved version of
KNN for multi-view software defect data.

Until now, the KNN algorithm has been em-
ployed in various multiple learning studies in
different areas. For example, multi-label learn-
ing (ML-KNN) [28], multi-instance learning
(FuzzyKNN) [29], multi-class learning (DEMST-
-KNN) [30], and multi-task learning (ssMTTL-
-KNN) [31]. Unlike these previous studies, we
used the multi-view KNN method proposed
in [32].

3. Material and methods

In this section, the KNN and MVKNN algo-
rithms are briefly described.

3.1. K-nearest neighbors

K-nearest neighbors (KNN) is a typical super-
vised ML algorithm utilized in both classification
and regression problems. The KNN algorithm
works on labeled data samples and uses them
to classify a new sample based on its similar-
ity to the k closest neighbors. In this study,
we chose KNN as a machine learning algorithm
since it has many advantages such as simplicity,
easy implementation, efficiency, and ease of un-
derstanding the results [33]. The advantages of
KNN also include that it supports incremental
data; therefore, re-training is not required for the
newly-arrived observations. The other advantage
of KNN is that it can be successfully used for
nonlinear data. Moreover, it has the ability to

predict both categorical and discrete variables
and to deal with noisy data. Furthermore, it
can be directly used for multi-class classification,
in addition to binary classification. KNN has
been proven to be an effective method in various
studies [24–31] and thus, it has been widely used
in many applications.

Considering k as the number of nearest
neighbors and n labeled data samples, D =
{s1, s2, . . . , sn} be the training set in the form
of si = (xi, ci), where xi is the feature vector of
the sample with d-dimension, denoted by xi =
(xi1, xi2, . . . , xid) and comes from data space X,
and ci is the class label that si assigned to and
it is from a set of classes Y = {c1, c2, . . . , cm}.
A classifier is a function in the form of f : X → Y
that maps a new data sample X onto an item
of Y . The KNN algorithm starts with a new
sample s′ = (x′, ?) whose class label is unknown.
Distance dis(x′, xi) is calculated between s′ and
all si in the dataset D. The most widely-used
distance measures are Euclidean and Manhattan
distance metrics. Then, the k closest neighbors
to s′ in the training samples are selected. Fi-
nally, class label c′ is assigned to s′ based on the
majority class of neighbors.

3.2. Multi-view k-nearest neighbors

Our algorithm, called multi-view k-nearest neigh-
bors (MVKNN), was proposed in [32]. It is an
advanced version of KNN that combines individ-
ual models developed for each view.

Let Sv = (Xv, c) be a sample of a view v,
where Xv is the feature set of v such that Xv =
{xv

1, x
v
2, . . . , x

v
d} for v = 1, 2, . . . , V and c refers to

the class label of the sample, where V is the num-
ber of views. The dataset D consists of n samples
and denoted by D = {(X1

i , X
2
i , . . . , X

V
i , ci), i =

1, 2, . . . , n}, where Xi is the ith sample and ci ε Y
is the class label of it and Xj

i refers to the ith
instance of the jth view. Views are mutually
exclusive, so they have different feature sets such
that ∀(p,q)X

p ∩Xq = ∅. Since views express dif-
ferent representations of the same object, each
instance in different views has the same class
label ci ε Y , where Y = {c1, c2, . . . , cn}. Firstly,
in the view-based classification, a set of classifiers

Multi-view learning for software defect prediction 167

are built for each view by using different k input
parameters such that fj : Xj → Y . After that,
in the multi-view-based classification, a number
of view-based classifiers fj are combined to de-
termine the final prediction.

Figure 1 shows the general overview of the
MVKNN method that can be used for soft-
ware defect classification. The MVKNN method
consists of three main steps: data preparation,
view-based classification, and multi-view-based
classification.

Step 1 – Data preparation: Raw data obtained
from a software repository may require prepara-
tion before yielding results, so it has been pre-
pared for view-based classification. To increase
data quality and to acquire more accurate out-

comes, various preprocessing techniques may be
applied such as completing missing data or re-
moving duplicate instances. Since the dataset
consists of several views, data preprocessing
should be performed for all views. It can be
noted here that each view has a different feature
set. In other words, each view is represented as
disjoint features of the same object, so distinct
features and class label of an object exist in each
view.

Step 2 – View-based classification: This clas-
sification aims at creating a model learning from
each view using an adaptive method in which
each instance is classified with a different number
of neighbors, rather than utilizing only a single
value of k. For each view, weak KNN classifiers

1-NN . . .2-NN

Voting

View 1
Classifier

Voting

Multi-View

ClassifierNew Software
Data

Prediction

View 2
Classifier

View v
Classifier

Data Preparation

View 1 View 2 … View v

...

View-Based Classification

1-NN . . .2-NN

Voting

1-NN . . .2-NN 𝒏-NN

Voting

Buggy/Clean

Multi-View-Based Classification

𝒏-NN 𝒏-NN

Data
Preparation

...

...

Multi-View Software
Defect Data

Figure 1: The general overview of the MVKNN method for software defect prediction

168 Elife Ozturk Kiyak et al.

are constructed with different parameters (k),
where k is ranged from 1 to the square root
of the number of samples (

√
n). The classifiers

(1-NN, 2-NN, 3-NN, . . . ,
√
n-NN) are combined

to form a strong ensemble model for a specific
view. In the end, the class label of a particular
view is determined by using a voting strategy
that selects the class having the highest number
of votes, where n refers to the number of samples
in the dataset.

Step 3 – Multi-view-based classification: In
this step, a number of view-based learners are
combined to form a general model for classifi-
cation. A majority voting strategy is utilized to
combine outcomes from each view and the final
class label of a new instance is specified as buggy
or clean.

The MVKNN method can be used for soft-
ware detect prediction to provide many advan-
tages as follows:
– A single-view software data is dependent on

a single view-point, whereas multi-view soft-
ware data usually contains complementary
information since it typically includes many
view-points. In multi-view learning, the lack
of information of one view can be comple-
mented by the sufficiency of other views.
Thanks to this essential property of MVKNN,
it eliminates the weaknesses of single-view
software defect prediction.

– Compared to the traditional KNN algo-
rithm which is substantially developed for
single-view data, MVKNN is expected to
yield more robust outcomes in the presence
of noisy software defect data. Because noise
in one view can be reduced by a voting mech-
anism among multiple views.

– Numerous software metrics can be extracted
from software projects and so data can be
high dimensional. The MVKNN method has
the ability to handle a large number of fea-
tures since it considers high-dimensional data
as a union of multiple low-dimensional sub-
spaces, called views. Software defect data can
contain many metrics from different perspec-
tives such as Halstead’s measures and Mc-
Cabe’s measures. Therefore, considering high
dimensional data containing a group of dif-

ferent feature sets, we can separate the data
into appropriate views, each corresponding
to a disjoint feature set.
In spite of numerous benefits, the MKKNN

method considers correlations at the view level;
however, it does not take into account implicit
correlations between features in multiple views.
In addition, MVKNN is computationally more
expensive than KNN since it separately learns
from each view dataset and runs the base learner
many times to jointly learn from multiple k pa-
rameters rather than a single k parameter.

4. Experimental studies

In this section, software defect datasets are
described, and several experiments conducted
with the MVKNN method are presented. The
MVKNN and KNN methods were compared for
software defect prediction. The obtained results
were validated utilizing statistical tests to ensure
that the differences between the methods in the
datasets were significant. For this purpose, we
applied the Wilcoxon test which is a well-known
non-parametric statistical test.

The MVKNN algorithm was implemented uti-
lizing the WEKA machine learning library [34]
and C# programming language. The implemen-
tation of the MVKNN method is available at
the website https://github.com/elifeoztu
rk/MVKNN. As an evaluation method, the
10-fold cross-validation technique was used, in
which the dataset is divided into 10 parts and
then each part is used once as a test set while
the remaining parts form the training set. In
this study, four evaluation metrics (Accuracy,
Precision, Recall, and F1 Score) were used to
evaluate the classification performances. Accu-
racy is the most widely-used performance mea-
sure that calculates the ratio between the num-
ber of correctly predicted instances and all in-
stances. It is calculated as follows: Accuracy =
(TN + TP)/(TP +FP + TN +FN), where TN
(true negatives) and TP (true positives) are cor-
rectly predicted as real labels. In other words,
if the real label is “positive” and the predicted
label is “positive” or the actual label is “nega-

Multi-view learning for software defect prediction 169

tive” and the predicted label is “negative”, it is
TP or TN, respectively. Unlike correct estimates,
FP and FN point out that instances did not
correctly classified as actual labels. Precision
shows the ratio of correctly predicted positive in-
stances to the total predicted positive instances.
Precision is calculated as follows: Precision =
TP/(TP + FP). Recall is the number of correct
predictions divided by the number of all pre-
dictions in the actual class. It is calculated as
follows: Recall = TP/(TP + FN). F1 Score is
the harmonic mean of the precision and recall.
This evaluation measure is particularly preferred
when datasets have uneven class distribution.
F1 Score is calculated as follows: F1 Score =
2 × (Recall × Precision)/(Recall + Precision).
Precision, Recall, and F1 Score are useful met-
rics for evaluating “learning from imbalanced
datasets”.

4.1. Dataset description

In this work, we conducted experiments on
50 bug datasets from three different reposito-
ries available in the software engineering area:
Tera-PROMISE Open Source Software Projects
(OSSP), NASA MDP (Metrics Data Program),
and Softlab that included 40, 5, and 5 datasets,
respectively. Table A2 lists the main characteris-
tics of the datasets, including their names, the
groups to which the datasets belong, the number
of samples in the datasets, and defect percent-
ages (%). To be able to test MVKNN on imbal-
anced data, we especially used the NASA MDP
datasets where defect percentages ranged be-
tween 7% and 23%. Furthermore, these datasets
have been widely used in many machine learning
studies [10, 14, 15]. MVKNN is designed for gen-
eral purposes; therefore, it can be further applied
to different datasets with different software en-
gineering metrics when the research community
has presented new ones.

More details about datasets are described
below, and supplemental information and tables
are included in Appendix A.
– OSSP Datasets [35]: The datasets in this

group consists of 20 independent object-ori-

ented source code metrics and one dependent
defect variable that indicates buggy or not.

– NASA MDP Datasets [36]: The datasets
(named cm1, jm1, kc1, kc2, pc1) in this group
were obtained from NASA software projects.
These datasets include 21 static code features
that were extracted from a software product
based on the McCabe metric, Basic Halstead
measures, and Derived Halstead measures.

– Softlab Datasets [37]: The datasets were de-
noted by a Software Research Laboratory
and collected from a Turkish white-goods
manufacturer. The ar1 and ar6 datasets were
collected from an embedded controller for
white goods, while the other (ar5, ar4, ar3)
datasets were obtained from a refrigerator,
dishwasher, and washing machine, respec-
tively. The datasets contain 29 static code
attributes.
Table A3 presents the fundamental charac-

teristics of datasets, containing the number of
classes (i.e., buggy or clean), the number of views,
and the number of features that belong to each
view.

Tables A4, A5 and A6 show all the soft-
ware metrics and their categories in each dataset
group for NASA, OSSP and SOFTLAB datasets,
respectively. The datasets have different views
designed based on the previous studies [38–40].
The NASA MDP datasets have three views as
given in [38]: McCabe, Basic Halstead, and De-
rived Halstead features with 4, 9, and 8 soft-
ware metrics, respectively. The OSSP datasets
contain object-oriented measures that indicate
the characteristics of inheritance, coupling, co-
hesion, complexity, and line features of software
programs [39]. The Softlab datasets consist of
four views [40], including Halstead, McCabe,
LOC, and Miscellaneous metrics. Halstead met-
rics show the program complexity obtained by
analyzing the source code. McCabe metrics quan-
tify the control flows in a program. LOC metrics
refer to the measures related to lines of code,
such as the number of executable lines and the
number of comment lines. Finally, the rest soft-
ware metrics are additionally included in the
“Miscellaneous” group.

170 Elife Ozturk Kiyak et al.

4.2. Experimental results

Table 1 shows the comparison of the KNN and
MVKNN algorithms on the NASA MDP and
Softlab datasets in terms of accuracy. According
to the results, our MVKNN algorithm achieved
86.59% and 88.09% accuracy values on average
for the NASA MDP and Softlab datasets, re-
spectively. However, KNN reached only 86.46%
and 86.60% accuracy values on average. It is
clear that MVKNN outperformed KNN on four
datasets (jm1, kc1, kc2, pc1) from the NASA
MDP group, while only on one dataset (cm1)
both algorithms have the same classification ac-
curacy (90.16%). The results obtained from the
Softlab datasets show that our MVKNN algo-
rithm demonstrated better or equal accuracy on
all datasets compared to the KNN algorithm.

According to the results, it is possible to say
that quality assurance teams can effectively al-
locate limited resources for validating software
products since the constructed defect prediction
models provide satisfactory results (>86%) on
average when identifying bug-prone software ar-
tifacts. This result indicates that the models can
correctly predict defect-prone software modules
with a rate of 86% before defects are discovered;
thus, the predictive models can be used to pri-
oritize software quality assurance efforts. The
code areas that potentially contain defects can
be predicted to help developers allocate their
testing efforts by first checking potentially buggy
code. As the size of software projects becomes
larger, the constructed defect prediction models
play a more critical role to support developers.
Furthermore, they speed up time to market as
well as with more robust software products.

Figure 2 shows the comparison of KNN and
MVKNN on the OSSP datasets in terms of ac-
curacy. The results show that our MVKNN al-
gorithm has equal to or higher accuracy than
the KNN algorithm on 34 out of 40 datasets.
Therefore, our MVKNN algorithm is better than
KNN on 85% of the datasets. In particular, the
biggest accuracy differences between the methods
were observed on the “berek” and “velocity 1.6”
datasets, where our method increased the accu-
racy by over 6.98% and 6.37%, respectively. For

example, our method (86.05%) achieved better
performance than the existing method (79.07%)
in the “berek” dataset in terms of accuracy. In the
“velocity 1.6” dataset, accuracy of our method
(72.05%) is higher than the accuracy of the ex-
isting method (65.68%). These results show that
our method usually gives more accurate outputs
for software defect prediction by using a different
perspective.

Some datasets were obtained from different
versions of a software project, such as Jedit 4.0,
Jedit 4.1, Jedit 4.2, and Jedit 4.3. In this case,
within-project defect prediction (WPDP) can be
used to identify defect-prone modules in a forth-
coming version of a software project. However,
some datasets were obtained from a single version
of a software project, such as the “arc” dataset. In
this case, cross-project defect prediction (CPDP)
can be applied since the target project may be
a new project or does not have enough labeled
modules.

In addition to accuracy, we evaluated the
performances of the methods using the Precision,
Recall, and F1 Score metrics. As can be seen
in Table B1, when considering the NASA MDP
datasets, MVKNN achieved equal or higher ac-
curacy than KNN. In the Softlab datasets, it is
clearly seen that the MVKNN model has bet-
ter results than the KNN model on average. In
addition, Table B2 shows the Precision, Recall,
and F1 Score results for the OSSP datasets. Ac-
cording to the results, the MVKNN algorithm
achieved the values of 0.79, 0.83, and 0.81 for the
precision, recall, and F1 Score metrics, respec-
tively; whereas, KNN only obtained the values
of 0.77, 0.81, and 0.79 on average.

Though MVKNN achieved usually higher ac-
curacy than KNN, all the results (Table 1 and
Figure 2) were also validated using statistical
tests. We utilized a well-known non-parametric
statistical test: Wilcoxon Test, also known as
Wilcoxon signed-rank test. Since it is used to
analyze matched-pair data, it can be consid-
ered a rank-based alternative to the two-sample
t-test [41]. Wilcoxon test does not rely on the
assumption of data complying with any distri-
bution. It considers the sign and magnitude of
the distribution of cumulative observations. In

Multi-view learning for software defect prediction 171

Table 1: Comparison of the KNN and MVKNN algorithms on the NASA MDP and Softlab datasets

NASA MDP Softlab
Dataset KNN MVKNN Dataset KNN MVKNN
cm1 90.16 90.16 ar1 92.56 92.56
jm1 80.98 81.08 ar3 90.08 90.48
kc1 84.97 85.30 ar4 83.88 85.98
kc2 83.14 83.33 ar5 79.86 83.33
pc1 93.03 93.06 ar6 85.15 85.15

Avg. 86.46 86.59 Avg. 86.60 88.09

60

65

70

75

80

85

90

95

100

an
t

1
.3

an
t

1
.4

an
t

1
.5

an
t

1
.6

an
t

1
.7 ar
c

b
er

ek

e-
le

ar
n

in
g

fo
rr

es
t

0
.7

fo
rr

es
t

0
.8

je
d

it
 3

.2

je
d

it
 4

.0

je
d

it
 4

.1

je
d

it
 4

.2

je
d

it
 4

.3

lo
g4

j 1
.0

lo
g4

j 1
.1

lo
g4

j 1
.2

p
b

ea
n

s
1

p
b

ea
n

s
2

p
o

i 1
.5

p
o

i 2
.0

p
o

i 2
.5

p
o

i 3
.0

p
ro

p
-6

re
d

ak
to

r

se
ra

p
io

n

sy
n

ap
se

 1
.0

sy
n

ap
se

 1
.1

sy
n

ap
se

 1
.2

to
m

ca
t

ve
lo

ci
ty

 1
.4

ve
lo

ci
ty

 1
.5

ve
lo

ci
ty

 1
.6

xa
la

n
 2

.4

xa
la

n
 2

.6

xa
la

n
 2

.7

xe
rc

es
 1

.2

xe
rc

es
 1

.3

xe
rc

es
 1

.4

A
cc

u
ra

cy
 (

%
)

OSSP Datasets

KNN
MVKNN

Figure 2: Comparison of the KNN and MVKNN algorithms on the OSSP datasets

this statistical test, the null hypothesis (H0) in-
dicates that there is no difference or relationship
between methods. The alternative hypothesis
(H1) states that there is a significant difference
or relationship between methods. A significance
level (α) is usually specified as 0.05. The p-value
is used to determine the presence of statistical
significance since it shows the level of evidence
of the difference. If the obtained p-value is lower
than the threshold level (p < 0.05), the null
hypothesis (H0) is rejected, which means that
the difference is significant. Since the p-value
obtained from the Wilcoxon test is 0.0000027
and it is smaller than the significance level, H0 is
rejected. Therefore, it implies that the obtained

results are statistically significant. As can be
seen in Figure 3, MVKNN showed the median
accuracy of 83.6%, while KNN had the median
accuracy of 82.0%.

In order to show performance comparisons
between KNN and MVKNN, supplemental ta-
bles and figures are presented in Appendix B.
Figure B1 displays individual view-based per-
formances. When each view in the datasets is
examined separately, it can be seen that MVKNN
has good performance on the view-based clas-
sification, but it does not always better than
KNN. However, the multi-view-based classifica-
tion results of MVKNN are either greater than or
equal to the KNN accuracy values for all datasets.

172 Elife Ozturk Kiyak et al.

Figure 3: The spread of the accuracy scores for each algorithm

This is because of the complementary power of
MVKNN.

In the traditional KNN algorithm, a single
and fixed k value is used for classification. How-
ever, in a real dataset, data points may be dis-
tributed irregularly, or some of them can be noisy.
To consider the density variations in the data,
different k parameters can be used to benefit
from both more neighbors in dense regions and
less in sparse regions. Liu et al. pointed out that
a fixed k value is not suitable for many test sam-
ples in a given training set [42]. For this reason,
in our study, rather than just using a single and
fixed value of k, the algorithm is run with various
k values. MVKNN learns from k values, starting
from 1 to

√
n, where n is the number of instances.

The maximum k value was selected as
√
n on the

basis of many studies [43–45]. Choosing the max-
imum value of k as

√
n is an appropriate decision

since the probability of overfitting significantly
increases if k is selected as too small or too large.
Park and Lee [44] reported that setting k as the
square root of the data size is a good empirical
ground rule. Lall and Sharma [43] also proved

this statement theoretically using a generalized
cross-validation (GCV) score function. Mitra et
al. [45] also stated that k =

√
n is usually suitable

for test samples. If the k value is small, then the
results can be susceptible to noisy instances; oth-
erwise, if the k value is large, the neighborhood
may cover many instances from other classes.
Therefore, the square root is a reasonable choice
for the searching neighborhood. Figure B2 dis-
plays accuracy values obtained for different k val-
ues. It compares KNN and MVKNN performance
on the k values starting from 1 to the square root
of the number of samples for each dataset. For
all the datasets, MVKNN starts with greater ac-
curacy than KNN, and at the maximum k value,
it is either greater than or equal to the KNN
accuracy.

Table B3 separately shows the performances
of the KNN and MVKNN algorithms for each
view in the OSSP datasets. It is clearly observed
that MVKNN has equal to or higher accuracy
than KNN for 34 out of 40 datasets. It can be
seen that our MVKNN method (83.10%) outper-
formed the traditional KNN method (81.37%)

Multi-view learning for software defect prediction 173

in classification on average. According to the
results given in Table B3, the proposed method
(MVKNN) is more successful than the tradi-
tional KNN method in terms of accuracy. Thus,
multi-view learning can achieve more accurate
results than single-view learning in defect predic-
tion since it benefits from different perspectives
of data.

4.3. Validity

This section discusses the validity of the research,
the threats, and countermeasures of the context
under common guidelines given in [46].
i. Construct validity
Threats to construct validity are concerned
with establishing correct measures for the
concepts addressed in empirical analysis. The
selection of performance measures is the basic
limitation. In our study, the most commonly
used performance measure (accuracy) was
selected to overcome the threat of measure
selection. In other words, the predictive validi-
ties of the constructed models were assessed
by using the accuracy measure. According to
the results, the proposed approach achieved
86.59%, 88.09%, and 83.10% accuracy values
on average for the NASA MDP, Softlab, and
OSSP datasets, respectively. Thereby, pre-
dictive validity was proven, since all average
accuracy results are higher than the accept-
able level (>80%).

ii. Internal validity
Internal validity is related to uncontrolled
factors that can cause a difference in experi-
mental measurements. To reduce this threat,
we used the k-fold cross-validation technique
in which the validation procedure is repeated
k times until each of the k data subsets has
served as a test set. In addition, we ran all
the experiments in the same environment.
Another internal threat is related to data
collection. We tested our approach on public
and most widely-used software engineering
datasets in the literature [11, 13–15]. The in-
formation on data collection and its validity
can be found in [35–37].

iii. External validity
External validity concerns the generalizabil-
ity of a conclusion or experimental finding
reached on the sample group under experi-
mental conditions in various environments.
In this study, our approach was tested on
a total of 50 datasets from three different
data repositories to reduce the threat of this
kind of validity. In addition, since MVKNN
is designed for general-purpose, it can be ap-
plied to various domains from transportation
to medicine.

iv. Conclusion validity
Conclusion validity is concerned with the re-
lationship between the treatment in an exper-
iment and the actual outcome we observed. It
is considered as the evaluation of statistical
power, significance testing, and effect size. For
this purpose, we used the Wilcoxon statisti-
cal test to ensure the differences in KNN and
MVKNN performances are statistically sig-
nificant. Since the p-value obtained from the
statistical test (0.0000027) is smaller than the
significance level (<0.05), it is possible to say
that the results are statistically significant.

5. Conclusion and future work

The standard software defect classification stud-
ies work on single-view data. They do not uti-
lize different feature sets, called views. However,
a software defect prediction problem can involve
data with multiple views in which the feature
space includes multiple feature vectors. There-
fore, in this study, the multi-view k-nearest neigh-
bors (MVKNN) algorithm is used for software
defect classification. Here, the software defect
metrics are grouped under several views accord-
ing to their feature extractors. MVKNN consists
of two parts. First, base classifiers are constructed
to learn from each view. Second, classifiers are
combined to create a strong multi-view model.

In this study, several experiments were con-
ducted on 50 bug datasets from different repos-
itories to show the capability of the MVKNN
method. It can be concluded from the results that

174 Elife Ozturk Kiyak et al.

the MVKNN algorithm usually achieved better
performance compared to the KNN algorithm.

As future work, the MVKNN method can
be used for other software engineering problems
such as software cost estimation, software effort
prediction, readability analysis, refactoring, soft-
ware clone detection, vulnerability prediction,
and software design pattern mining.

References

[1] R. Ozakinci and A. Tarhan, “Early software de-
fect prediction: A systematic map and review,”
The Journal of Systems and Software, Vol. 144,
Oct. 2018, pp. 216–239.

[2] K. Bashir, T. Li, and M. Yahaya, “A novel fea-
ture selection method based on maximum likeli-
hood logistic regression for imbalanced learning
in software defect prediction,” The International
Arab Journal of Information Technology, Vol. 17,
No. 5, Sep. 2020, pp. 721–730.

[3] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view
learning overview: Recent progress and new chal-
lenges,” Information Fusion, Vol. 38, No. 1, Nov.
2017, pp. 43–54.

[4] F. Liu, T. Zhang, C. Zheng, Y. Cheng, X. Liu,
M. Qi, J. Kong, and J. Wang, “An intelligent
multi-view active learning method based on a
double-branch network,” Entropy, Vol. 22, No. 8,
Aug. 2020.

[5] Y. Chen, D. Li, X. Zhang, J. Jin, and Y. Shen,
“Computer aided diagnosis of thyroid nodules
based on the devised small-datasets multi-view
ensemble learning,” Medical Image Analysis,
Vol. 67, No. 8, Jan. 2021.

[6] Y. Song, Y. Wang, X. Ye, D. Wang, Y. Yin, and
Y. Wang, “Multi-view ensemble learning based
on distance-to-model and adaptive clustering for
imbalanced credit risk assessment in p2p lend-
ing,” Information Sciences, Vol. 525, Jul. 2020,
pp. 182–204.

[7] S. Cheng, F. Lu, P. Peng, and S. Wu, “Multi-task
and multi-view learning based on particle swarm
optimization for short-term traffic forecasting,”
Knowledge-Based Systems, Vol. 180, Sep. 2019,
pp. 116–132.

[8] Y. He, Y. Tian, and D. Liu, “Multi-view trans-
fer learning with privileged learning frame-
work,” Neurocomputing, Vol. 335, Mar. 2019,
pp. 131–142.

[9] J. Li, L. Wu, G. Wen, and Z. Li, “Exclusive
feature selection and multi-view learning for
alzheimer’s disease,” Journal of Visual Commu-

nication and Image Representation, Vol. 64, Oct.
2019.

[10] I.H. Laradji, M. Alshayeb, and L. Ghouti, “Soft-
ware defect prediction using ensemble learning
on selected features,” Information and Software
Technology, Vol. 58, Feb. 2015, pp. 388–402.

[11] S. Agarwal and D. Tomar, “A feature selection
based model for software defect prediction,” In-
ternational Journal of Advanced Science and
Technology, Vol. 65, 2014, pp. 39–58.

[12] H. Wang, T.M. Khoshgoftaar, and N. Seliya,
“How many software metrics should be se-
lected for defect prediction?” in Proceedings of
the Twenty-Fourth International Florida Arti-
ficial Intelligence Research Society Conference,
R.C. Murray and P.M. McCarthy, Eds. Palm
Beach, Florida, USA: AAAI Press, May 2011.

[13] W. Wen, B. Zhang, X. Gu, and X. Ju, “An
empirical study on combining source selection
and transfer learning for cross-project defect pre-
diction,” in 2019 IEEE 1st International Work-
shop on Intelligent Bug Fixing (IBF). Hangzhou,
China: IEEE, 2019, pp. 29–38.

[14] A. Iqbal, S. Aftab, I. Ullah, M.S. Bashir, and
M.A. Saeed, “A feature selection based ensem-
ble classification framework for software defect
prediction,” International Journal of Modern
Education and Computer Science, Vol. 11, No. 9,
2019, pp. 54–64.

[15] A. Arshad, S. Riaz, L. Jiao, and A. Murthy, “The
empirical study of semi-supervised deep fuzzy
c-mean clustering for software fault prediction,”
IEEE Access, Vol. 6, 2018, pp. 47 047–47 061.

[16] M.M. Mirończuk, J. Protasiewicz, and W. Ped-
rycz, “Empirical evaluation of feature projection
algorithms for multi-view text classification,” Ex-
pert Systems with Applications, Vol. 130, 2019,
pp. 97–112.

[17] C. Zhang, J. Cheng, and Q. Tian, “Multi-view
image classification with visual, semantic and
view consistency,” IEEE Transactions on Image
Processing, Vol. 29, 2020, pp. 617–627.

[18] Z. Zhu, P. Luo, X. Wang, and X. Tang, “Multi-
-view perceptron: a deep model for learning
face identity and view representations,” in Ad-
vances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, Z. Ghahra-
mani, M. Welling, C. Cortes, N.D. Lawrence,
and K.Q. Weinberger, Eds. Montreal, Quebec,
Canada: Citeseer, Dec. 2014, pp. 217–225.

[19] S.R. Shahamiri and S.S.B. Salim, “A multi-views
multi-learners approach towards dysarthric
speech recognition using multi-nets artificial neu-

Multi-view learning for software defect prediction 175

ral networks,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, Vol. 22,
No. 5, Sep. 2014, pp. 1053–1063.

[20] A. Saeidi, J. Hage, R.Khadka, and S. Jansen, “Ap-
plications of multi-view learning approaches for
software comprehension,” The Art, Science, and
Engineering of Programming, Vol. 3, No. 3, 2019.

[21] E.O. Kiyak, A.B. Cengiz, K.U. Birant, and
D. Birant, “Comparison of image-based and
text-based source code classification using deep
learning,” SN Computer Science, Vol. 1, No. 5,
2020, pp. 1–13.

[22] A.V. Phan and M.L. Nguyen, “Convolutional
neural networks on assembly code for predict-
ing software defects,” in 2017 21st Asia Pacific
Symposium on Intelligent and Evolutionary Sys-
tems (IES). Hanoi, Vietnam: IEEE, Nov. 2017,
pp. 37–42.

[23] J. Chen, Y. Yang, K. Hu, Q. Xuan, Y. Liu, and
C. Yang, “Multiview transfer learning for soft-
ware defect prediction,” IEEE Access, Vol. 7,
Jan. 2019, pp. 8901–8916.

[24] D. Ulumi and D. Siahaan, “Weighted k-NN using
grey relational analysis for cross-project defect
prediction,” Journal of Physics: Conference Se-
ries, Vol. 1230, Jul. 2019, p. 012062.

[25] R. Sathyaraj and S. Prabu, “A hybrid approach
to improve the quality of software fault pre-
diction using naïve bayes and k-nn classifica-
tion algorithm with ensemble method,” Interna-
tional Journal of Intelligent Systems Technolo-
gies and Applications, Vol. 17, No. 4, Oct. 2018,
pp. 483–496.

[26] L. He, Q.B. Song, and J.Y. SHEN, “Boost-
ing-based k-NN learning for software defect pre-
diction,” Pattern Recognition and Artificial In-
telligence, Vol. 25, No. 5, 2012, pp. 792–802.

[27] R. Goyal, P. Chandra, and Y. Singh, “Suitability
of k-NN regression in the development of inter-
action based software fault prediction models,”
IERI Procedia, Vol. 6, No. 1, 2014, pp. 15–21.

[28] S.K. Srivastava and S.K. Singh, “Multi-label
classification of twitter data using modified
ML-kNN,” in Advances in Data and Information
Sciences, Lecture Notes in Networks and Sys-
tems, K. M., T. M., T. S., and S. V., Eds., Vol. 39.
Singapore: Springer, Jun. 2019, pp. 31–41.

[29] P. Villar, R. Montes, A.M. Sánchez, and F. Her-
rera, “Fuzzy-citation-k-NN: A fuzzy nearest
neighbor approach for multi-instance classifica-
tion,” in 2016 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). Vancouver, BC,
Canada: IEEE, Jul. 2016, pp. 946–952.

[30] Y. Xia, Y. Peng, X. Zhang, and H.Y. Bae,
“DEMST-KNN: A novel classification frame-
work to solve imbalanced multi-class prob-
lem,” in Artificial Intelligence Trends in In-
telligent Systems, Advances in Intelligent Sys-
tems and Computing, R. Silhavy, R. Senkerik,
Z.K. Oplatková, Z. Prokopova, and P. Silhavy,
Eds., Vol. 573. Cham, Germany: Springer, Apr.
2017, pp. 291–301.

[31] S. Gupta, S. Rana, B. Saha, D. Phung, and
S. Venkatesh, “A new transfer learning frame-
work with application to model-agnostic multi-
-task learning,” Knowledge and Information Sys-
tems, Vol. 49, No. 3, Feb. 2016, pp. 933–973.

[32] E.O. Kiyak, D. Birant, and K.U. Birant, “An im-
proved version of multi-view k-nearest neighbors
(MVKNN) for multiple view learning,” Turkish
Journal of Electrical Engineering and Computer
Sciences, Vol. 29, No. 3, 2021, pp. 1401–1428.

[33] S. Li, E.J. Harner, and D.A. Adjeroh, “Random
KNN feature selection – A fast and stable alter-
native to random forests,” BMC bioinformatics,
Vol. 12, No. 1, 2011, pp. 1–11.

[34] I.H. Witten, E. Frank, M.A. Hall, and C.J. Pal,
Data Mining: Practical Machine Learning Tools
and Techniques, 4th ed., The Morgan Kaufmann
Series in Data Management Systems. Cambridge,
MA, USA: Elsevier Science, 2016.

[35] “Tera-promise data,” accessed: 10.05.2020. [On-
line]. https://github.com/klainfo/DefectData/
tree/master/inst/extdata/terapromise

[36] “NASA MDP data,” accessed: 07.05.2020. [On-
line]. https://github.com/klainfo/NASADefec
tDataset/tree/master/OriginalData/MDP

[37] B. Turhan, T. Menzies, A.B. Bener, and J.D. Ste-
fano, “On the relative value of cross-company
and within-company data for defect prediction,”
Empirical Software Engineering, Vol. 14, No. 5,
Jan. 2009, pp. 540–578.

[38] E. Borandag, A. Ozcift, D. Kilinc, and F. Yu-
calar, “Majority vote feature selection algorithm
in software fault prediction,” Computer Science
and Information Systems, Vol. 16, No. 2, 2019,
pp. 515–539.

[39] Z. Yao, J. Song, Y. Liu, T. Zhang, and J. Wang,
“Research on cross-version software defect pre-
diction based on evolutionary information,” IOP
Conference Series: Materials Science and Engi-
neering, Vol. 563, Aug. 2019, p. 052092.

[40] T. Menzies, J. Greenwald, and A. Frank, “Data
mining static code attributes to learn defect pre-
dictors,” IEEE transactions on software engi-
neering, Vol. 33, No. 1, Dec. 2006, pp. 2–13.

176 Elife Ozturk Kiyak et al.

[41] R.F. Woolson, Wilcoxon Signed-Rank Test. Wi-
ley Encyclopedia of Clinical Trials, 2008, pp. 1–3.

[42] H. Liu, S. Zhang, J. Zhao, X. Zhao, and Y. Mo,
“A new classification algorithm using mutual
nearest neighbors,” in 2010 Ninth International
Conference on Grid and Cloud Computing. Nan-
jing, China: IEEE, Nov. 2010, pp. 52–57.

[43] U. Lall and A. Sharma, “A nearest neighbor
bootstrap for resampling hydrologic time series,”
Water Resources Research, Vol. 32, No. 3, Mar.
1996, pp. 679–693.

[44] J. Park and D.H. Lee, “Parallelly running
k-nearest neighbor classification over seman-

tically secure encrypted data in outsourced
environments,” IEEE Access, Vol. 8, 2020,
pp. 64 617–64 633.

[45] P. Mitra, C. Murthy, and S. Pal, “Unsuper-
vised feature selection using feature similar-
ity,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 24, No. 3, 2002,
pp. 301–312.

[46] P. Runeson and M. Höst, “Guidelines for
conducting and reporting case study re-
search in software engineering,” Empirical
Software Engineering, Vol. 14, No. 2, 2009,
pp. 131–164.

Appendix A. Description of datasets

Table A2. The main characteristics of the datasets

Group Dataset Release Number of Instances Defect (%)

O
pe

n
So

ur
ce

So
ftw

ar
e
Pr

oj
ec
ts

(O
SS

P)

ant

1.3 125 16.00
1.4 178 22.47
1.5 293 10.92
1.6 351 26.21
1.7 745 22.28

arc – 234 11.54
berek – 43 37.21

e-learning – 64 7.81
forrest 0.7 29 17.24

0.8 32 6.25

jedit

3.2 272 3.31
4.0 306 24.51
4.1 312 25.32
4.2 367 13.08
4.3 492 2.24

log4j
1.0 135 25.19
1.1 109 33.95
1.2 205 92.20

pbeans 1.0 26 76.92
2.0 51 19.61

poi
1.5 237 59.49
2.0 314 11.78
2.5 385 64.41
3.0 442 63.57

prop 6 661 9.98
redactor – 176 15.34
serapion – 45 20.00

synapse
1.0 157 10.19
1.1 222 27.03
1.2 256 33.59

tomcat – 858 8.97

Multi-view learning for software defect prediction 177

Table A2 continued
Group Dataset Release Number of Instances Defect (%)

O
SS

P

velocity
1.4 196 75.00
1.5 214 66.36
1.6 229 34.06

xalan
2.4 723 15.21
2.6 885 46.44
2.7 909 98.79

xerces
1.2 440 16.14
1.3 453 15.23
1.4 588 74.32

So
ftl
ab

ar1 – 121 7.44
ar3 – 63 12.70
ar4 – 107 18.69
ar5 – 36 22.22
ar6 – 101 14.85

N
A
SA

M
D
P cm1 – 498 9.83

jm1 – 10885 19.00
kc1 – 2109 15.45
kc2 – 522 20.49
pc1 – 1109 6.94

Table A3: The number of classes, views, and features of each dataset group

Dataset Group #Classes #Views #Features

NASA MDP 2 3 McCabe Basic Halstead Derived Halstead
4 9 8

OSSP 2 5 Coupling Complexity Cohesion Inheritance Scale
5 3 3 3 6

SOFTLAB 2 4 Halstead McCabe LOC Miscellaneous
12 3 5 9

Table A4. Categories of software metrics in the NASA datasets

NASA MDP
View Symbol Metric Full Name

M
C
C
A
BE v(g) Cyclomatic complexity

ev(g) Essential complexity
Iv(g) Design complexity

D
ER

IV
ED

H
A
LS

T
EA

D

N Total operators + operands
V Volume
L Program length
D Difficulty
I Intelligence
E Effort to write code
B Effort estimate

178 Elife Ozturk Kiyak et al.

Table A4 continued
NASA MDP

View Symbol Metric Full Name
T Time estimator

BA
SI
C

H
A
LS

T
EA

D

IOCode Line count
IOComment Comment count
IOBlank Blank line count
IOCodeAnd
Comment # of code and comment lines

Uniq_Op # of unique operators
UniqOpnd #of unique operands
Total_Op #of total operators
Total_Opnd # of total operands
branch_count # of branch counts

Table A5: Categories of software metrics in the OSSP datasets

OSSP
View Symbol Metric Full Name

C
O
U
PL

IN
G ca Afferent couplings

cbm Coupling between methods
cbo Coupling between object classes
ce Efferent couplings
ic Inheritance coupling

C
O
H
ES

IO
N

lcom Lack of cohesion in methods
lcom3 Lack of cohesion in methods
cam Cohesion among methods of class

C
O
M
PL

EX
IT

Y

amc Average method complexity
avg_cc Average McCabe
max_cc Maximum McCabe

IN
H
ER

IT
A
N
C
E

dit Depth of inheritance
moa Measure of aggregation
mfa Measure of function abstraction

SC
A
LE

loc Lines of code
noc Number of children
rfc Response for a class
npm Number of public methods
wmc Weighted methods per class
dam Data access metric

Multi-view learning for software defect prediction 179

Table A6: Categories of software metrics in the Softlab datasets

SOFTLAB

View Symbol Metric Full Name

M
C
C
A
BE v(g) Cyclomatic complexity

iv(G) Cyclomatic density
Iv(G) Design complexity

LO
C

loc_total Total lines of code
loc_blank number of blank lines
loc_comments number of comment lines
loc_code_and_comment number of code and comment lines
loc_executable number of lines of executable code

H
A
LS

T
EA

D

N1 number of operators
N2 number of operands
µ1 number of unique operators
µ2 number of unique operands
N program length
V volume (program size)
L program level
D difficulty level
I content c
E effort to implement
B estimated number of bugs
T implementation time

M
IS
C
EL

LA
N
EO

U
S

branch_count number of branch counts
call_pairs number of calls to other functions
condition_count number of conditionals in a given module
decision_count number of decision points
decision_density Condition count / Decision count
design_density iv(G) / v(G)
multiple condition count number of multiple conditions
normalized_cyclomatic_complexity v(G) / number of lines
formal parameters Identifiers used in a method

180 Elife Ozturk Kiyak et al.

Appendix B. Experimental Results

Table B1: Comparison of the KNN and MVKNN algorithms on the NASA MDP
and Softlab datasets in terms of precision, recall, and F1 Score

NASA MDP
Precision Recall F1 Score

Dataset KNN MVKNN KNN MVKNN KNN MVKNN
cm1 0.81 0.81 0.90 0.90 0.85 0.85
jm1 0.77 0.77 0.81 0.81 0.79 0.79
kc1 0.81 0.82 0.85 0.85 0.83 0.83
kc2 0.81 0.82 0.83 0.83 0.82 0.82
pc1 0.87 0.87 0.93 0.93 0.90 0.90
Avg. 0.81 0.82 0.86 0.86 0.84 0.84

Softlab
Precision Recall F1 Score

Dataset KNN MVKNN KNN MVKNN KNN MVKNN
ar1 0.86 0.86 0.93 0.93 0.89 0.89
ar3 0.89 0.89 0.90 0.90 0.89 0.89
ar4 0.82 0.85 0.84 0.86 0.83 0.85
ar5 0.76 0.85 0.80 0.83 0.78 0.84
ar6 0.73 0.73 0.85 0.85 0.79 0.79
Avg. 0.81 0.84 0.86 0.87 0.84 0.85

Table B2. Comparison of the KNN and MVKNN algorithms on the
OSSP datasets in terms of precision, recall, and F1 Score

OSSP
Precision Recall F1 Score

Dataset Release KNN MVKNN KNN MVKNN KNN MVKNN

ant

1.3 0.73 0.70 0.83 0.84 0.78 0.76
1.4 0.62 0.60 0.77 0.77 0.69 0.67
1.5 0.81 0.79 0.89 0.89 0.85 0.84
1.6 0.74 0.78 0.76 0.79 0.75 0.78
1.7 0.78 0.78 0.8 0.8 0.79 0.79

arc – 0.81 0.78 0.88 0.88 0.84 0.83
berek – 0.80 0.86 0.79 0.86 0.79 0.86

e-learning – 0.85 0.85 0.92 0.92 0.88 0.88

forrest 0.7 0.71 0.85 0.78 0.83 0.74 0.84
0.8 0.88 0.88 0.94 0.94 0.91 0.91

jedit

3.2 0.72 0.77 0.73 0.78 0.72 0.77
4.0 0.78 0.82 0.79 0.82 0.78 0.82
4.1 0.77 0.83 0.78 0.82 0.77 0.82
4.2 0.85 0.88 0.87 0.88 0.86 0.88
4.3 0.96 0.96 0.98 0.98 0.97 0.97

Multi-view learning for software defect prediction 181

Table B2 continued
OSSP

Precision Recall F1 Score
Dataset Release KNN MVKNN KNN MVKNN KNN MVKNN

log4j
1.0 0.73 0.75 0.76 0.77 0.74 0.76
1.1 0.76 0.82 0.76 0.81 0.76 0.81
1.2 0.85 0.85 0.92 0.92 0.88 0.88

pbeans 1.0 0.63 0.58 0.71 0.73 0.67 0.65
2.0 0.69 0.64 0.8 0.78 0.74 0.70

poi

1.5 0.67 0.7 0.67 0.7 0.67 0.70
2.0 0.8 0.78 0.88 0.88 0.84 0.83
2.5 0.75 0.78 0.75 0.78 0.75 0.78
3.0 0.77 0.81 0.76 0.81 0.76 0.81

prop 6 – 0.81 0.81 0.9 0.9 0.85 0.85
redactor – 0.85 0.88 0.87 0.89 0.86 0.88
serapion – 0.74 0.85 0.8 0.82 0.77 0.83

synapse
1.0 0.81 0.81 0.9 0.9 0.85 0.85
1.1 0.68 0.73 0.73 0.75 0.70 0.74
1.2 0.7 0.7 0.71 0.71 0.70 0.70

tomcat – 0.83 0.83 0.91 0.91 0.87 0.87

velocity
1.4 0.8 0.84 0.81 0.82 0.80 0.83
1.5 0.7 0.77 0.72 0.74 0.71 0.75
1.6 0.63 0.72 0.66 0.72 0.64 0.72

xalan
2.4 0.77 0.72 0.85 0.85 0.81 0.78
2.6 0.69 0.75 0.68 0.74 0.68 0.74
2.7 0.98 0.98 0.99 0.99 0.98 0.98

xerces
1.2 0.7 0.87 0.84 0.84 0.76 0.85
1.3 0.81 0.89 0.86 0.89 0.83 0.89
1.4 0.74 0.78 0.77 0.79 0.75 0.78

Avg. 0.77 0.79 0.81 0.83 0.79 0.81

182 Elife Ozturk Kiyak et al.

Table B3: Comparison of single-view and multi-view accuracy values of the KNN and MVKNN
algorithms on the OSSP datasets

ID Dataset
Name

KNN MVKNN

view1 view2 view3 view4 view5 All
views view1 view2 view3 view4 view5 All

views
1 ant 1.3 80.80 84.00 84.00 84.00 82.40 83.04 80.80 83.20 83.20 83.20 82.40 84.00
2 ant 1.4 77.53 76.40 76.40 76.97 76.97 76.85 75.84 74.72 74.16 72.47 74.16 76.97
3 ant 1.5 88.74 89.08 88.74 89.08 90.10 89.15 89.08 89.08 88.40 88.4 91.13 89.08
4 ant 1.6 78.06 76.92 73.79 73.22 80.06 76.41 77.49 76.35 75.21 75.78 78.92 79.20
5 ant 1.7 80.67 80.94 79.60 78.52 81.48 80.24 80.81 80.94 79.46 78.93 80.27 80.00
6 arc 88.46 88.46 87.18 88.46 88.89 88.29 88.03 88.03 88.03 87.61 87.61 88.03
7 berek 81.40 83.72 76.74 72.09 81.40 79.07 72.09 90.70 86.05 72.09 88.37 86.05
8 e-learning 92.19 92.19 92.19 92.19 92.19 92.19 90.62 92.19 92.19 92.19 90.62 92.19
9 forrest 0.7 86.21 75.86 75.86 82.76 68.97 77.93 82.76 75.86 75.86 89.66 72.41 82.76
10 forrest 0.8 93.75 93.75 93.75 93.75 93.75 93.75 93.75 90.62 90.62 93.75 93.75 93.75
11 jedit 3.2 70.59 66.54 73.90 75.74 76.47 72.65 68.38 65.44 73.53 75.00 76.10 77.57
12 jedit 4.0 78.10 79.74 76.80 79.41 81.70 79.15 74.51 80.07 75.49 80.39 81.37 82.03
13 jedit 4.1 81.41 77.24 77.56 76.92 78.53 78.33 80.45 78.21 78.85 78.21 80.13 81.73
14 jedit 4.2 87.74 86.65 87.19 86.92 88.01 87.30 88.56 86.92 88.01 87.19 87.47 88.28
15 jedit 4.3 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76
16 log4j 1.0 77.04 71.11 78.52 77.04 77.78 76.30 76.30 72.59 80.00 80.00 80.00 77.04
17 log4j 1.1 77.06 74.31 70.64 77.06 79.82 75.78 75.23 71.56 76.15 80.73 79.82 80.73
18 log4j 1.2 92.20 92.20 92.20 92.20 92.20 92.20 92.20 92.20 92.20 92.20 90.73 92.20
19 pbeans 1 73.08 69.23 69.23 76.92 69.23 71.54 76.92 65.38 80.77 76.92 73.08 73.08
20 pbeans 2 80.39 78.43 84.31 80.39 80.39 80.78 80.39 74.51 82.35 78.43 74.51 78.43
21 poi 1.5 72.15 57.38 65.82 69.2 70.04 66.92 70.04 65.82 64.98 68.78 69.62 70.04
22 poi 2.0 88.22 88.85 88.22 88.22 88.22 88.35 88.22 88.85 86.94 88.22 88.22 88.22
23 poi 2.5 78.96 67.27 76.36 73.51 79.74 75.17 76.36 71.69 77.92 72.21 81.30 77.92
24 poi 3.0 76.70 78.05 75.34 73.98 75.79 75.97 76.24 77.15 76.70 73.98 78.28 80.77
25 prop-6 90.00 90.00 90.00 90.00 90.00 90.00 89.85 90.00 90.00 90.00 90.00 90.00
26 redaktor 88.07 84.09 90.34 86.36 87.50 87.27 85.23 85.80 90.34 87.50 87.50 89.2
27 serapion 80.00 80.00 77.78 80.00 82.22 80.00 77.78 71.11 77.78 80.00 86.67 82.22
28 synapse 1.0 89.17 89.17 89.81 89.81 89.81 89.55 89.17 89.17 88.54 89.81 88.54 89.81
29 synapse 1.1 72.52 70.27 75.68 71.17 76.13 73.15 72.07 72.07 73.87 72.07 77.03 74.77
30 synapse 1.2 71.09 71.88 73.44 67.58 72.27 71.25 69.53 70.70 72.27 67.19 70.70 71.48
31 tomcat 91.03 91.03 91.03 91.03 91.03 91.03 91.14 90.91 90.91 90.79 91.49 91.03
32 velocity 1.4 80.10 75.51 84.69 83.67 80.10 80.81 81.63 74.49 84.69 84.69 77.04 82.14
33 velocity 1.5 73.83 73.36 70.09 66.82 74.30 71.68 70.56 71.50 72.90 69.63 72.90 74.30
34 velocity 1.6 64.19 62.01 71.18 64.19 66.81 65.68 64.19 68.12 69.87 67.25 67.25 72.05
35 xalan 2.4 84.79 84.79 84.79 84.79 84.92 84.82 84.09 84.09 84.65 84.92 84.65 84.79
36 xalan 2.6 72.43 71.30 65.88 61.13 71.64 68.48 70.17 71.86 69.27 69.49 74.12 73.67
37 xalan 2.7 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79
38 xerces 1.2 83.86 83.86 83.86 83.86 83.86 83.86 83.86 83.64 83.86 83.86 83.64 83.86
39 xerces 1.3 86.75 84.55 86.75 83.44 87.64 85.83 86.53 84.33 88.52 85.65 87.64 88.52
40 xerces 1.4 71.94 77.89 92.18 72.45 71.94 77.28 72.45 77.89 92.52 72.45 71.60 79.42

Average 81.94 80.36 81.71 80.79 82.02 81.37 81.00 80.36 82.34 81.45 82.19 83.10

Multi-view learning for software defect prediction 183

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

cm1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar1Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

jm1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar3Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

kc1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar4Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

kc2Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar5Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

pc1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar6Accuracy(%)

Figure B1: View-based comparison of the KNN and MVKNN algorithms

184 Elife Ozturk Kiyak et al.

80

82

84

86

88

90

92

1 3 5 7 9 11 13 15 17 19 21

A
cc

u
ra

cy
(%

)

k

cm1

KNN MVKNN

86

87

88

89

90

91

92

93

1 2 3 4 5 6 7 8 9 10 11

A
cc

u
ra

cy
(%

)

k

ar1

KNN MVKNN

75

76

77

78

79

80

81

82

1 11 21 31 41 51 61 71 81 91 101

A
cc

u
ra

cy
(%

)

k

jm1

KNN MVKNN

83

84

85

86

87

88

89

90

91

92

93

1 2 3 4 5 6 7 8

A
cc

u
ra

cy
(%

)

k

ar3

KNN MVKNN

81

82

83

84

85

86

87

1 6 11 16 21 26 31 36 41 46

A
cc

u
ra

cy
(%

)

k

kc1

KNN MVKNN

76

78

80

82

84

86

88

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%

)

k

ar4

KNN MVKNN

78

79

80

81

82

83

84

85

1 3 5 7 9 11 13 15 17 19 21 23

A
cc

u
ra

cy
(%

)

k

kc2

KNN MVKNN

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6

A
cc

u
ra

cy
(%

)

k

ar5

KNN MVKNN

89

90

91

92

93

94

1 4 7 10 13 16 19 22 25 28 31

A
cc

u
ra

cy
(%

)

k

pc1

KNN MVKNN

70

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%

)

k

ar6

KNN MVKNN

Figure B2: Comparison of single-view and multi-view versions of the KNN algorithm on various
k values

e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 185–204, DOI 10.37190/e-Inf210109

Business Model Flexibility and Software-intensive
Companies: Opportunities and Challenges

Magnus Wilson∗, Krzysztof Wnuk∗∗, Lars Bengtsson∗∗∗
∗Ericsson, Karlskrona, Ericsson, Sweden

∗∗Department of Software Engineering, Blekinge Institute of Technology, Sweden
∗∗∗Industrial Engineering and Management, LTH, Lund University, Sweden

magnus.wilson@ericsson.com, krw@bth.se, lars.bengtsson@design.lth.se

Abstract
Background: Software plays an essential role in enabling digital transformation via digital services
added to traditional products or fully digital business offerings. This calls for a better understanding
of the relationships between the dynamic nature of business models and their realization using
software engineering practices. Aim: In this paper, we synthesize the implications of digitalization on
business model flexibility for software-intensive companies based on an extensive literature survey
and a longitudinal case study at Ericsson AB. We analyze how software-intensive companies can
better synchronize business model changes with software development processes and organizations.
Method: We synthesize six propositions based on the literature review and extensive industrial
experience with a large software-intensive company working in the telecommunication domain.
Conclusions: Our work is designed to facilitate the cross-disciplinary analysis of business model
dynamics and business model flexibility by linking value, transaction, and organizational learning to
business model change. We believe that software engineering tools and methods can play a crucial
role in enabling more automated synchronization between technology and business model changes.
Keywords: business flexibility, digital business modeling, equivocality, learning organiza-
tion

1. Introduction

Digitalization brings new opportunities and in-
creased connectivity is the primary fuel for dig-
italization. Ericsson, as a major player in the
telecommunications market, is an actor deeply
involved in this process1. The advent of the 5G
network stands as a prominent example of oppor-
tunities and challenges associated with massive
connectivity when all value-chain members and
partners must rethink or reorganize their posi-
tions if necessary. For many companies, 5G will
force them to redefine their business offerings
and create new business opportunities. However,
with this speed of technological changes, the busi-
ness models can not remain static or re-actively
respond to changes.

Digitalization drives significant changes to
the process level, organization level, business
level of any company and its customers [1]. Dig-
italization offers a significantly shorter trans-
action turnaround time. Consequently, the in-
creased transaction speed drives new challenges
for the alignment between business and technology
changes. Companies that used to sell traditional
products enter new markets and ecosystems where
digital products and services dominate. The logic
of creating these products, monetizing their core
value, and maintaining them is significantly differ-
ent and often counterintuitive at first glance. Thus,
software engineers and managers often need to
rethink their strategies and operational processes
to better align with the nature of the digital
business. An example here could be data-driven

1https://www.ericsson.com/en/reports-and-papers/networked-society-insights [last visited 23.06.2021].

Submitted: 20 November 2020; Revised: 30 June 2021; Accepted: 03 August 2021; Available online: 05 November 2021

186 Magnus Wilson et al.

experimentation and feature discovery via A/B
testing that significantly changes requirements
engineering practice and demands great changes
to software architecture [2].

This paper discusses the implications of digi-
talization for software-intensive companies based
on an extensive literature survey and a longi-
tudinal case study at Ericsson. We synthesize
six propositions for improved handling of busi-
ness model change and discuss each proposition’s
implications on software engineering practices
and principles. This paper presents a cross-dis-
ciplinary synthesis of digitalization’s impact on
the alignment between business and technology
change (including software engineering methods
and tools). We also discuss new ways of handling
business model flexibility in software-intensive
product development.

Companies are undergoing significant trans-
formations and are struggling with the alignment
of business and technology changes [3]. Until re-
cently, companies handled increasing size and
complexity by 1) clearly distinguishing between
the planning and realization layers for company
strategy, product portfolios, and individual prod-
ucts; and 2) handling change mainly in the re-
alization layer and ensuring that the planning
layer remains reasonably stable.

Digitalization increases the speed of change in
the planning layer, which in many cases, reaches
the speed of changes in the realization layer. As
a result, negotiation and risk management can
no longer only rely on the sales and engineering
departments, as the business models shift focus
to the ecosystem and collaboration [4, 5], and
companies choose operating multi-business-mod-
els [6]. Business modeling literature also recog-
nizes the need for efficiently handling change
as several authors discuss the dynamic nature
of business models and change in the business
environment, e.g., [5, 7, 8], just to name a few.

The paper is structured as follows: In Sec-
tion 2, we present our synthesis based on back-
ground and related work. In Section 3, we present
how the business environment changes for our
industry case and our findings from the longitudi-
nal study. In Section 4, we summarize and discuss
our results using the derived value membrane

concept and develop one additional proposition.
In Section 5, we conclude our paper.

2. Background and related work

The synthesis provided in this section is based on
an extensive systematic literature review about
efficiency, effectiveness [9], and flexibility of busi-
ness modeling [10], published in our previous
work and updated using the snowballing liter-
ature review method. It is also derived from
our design science study on capturing chang-
ing business intents using context frames [11].
Our synthesis responds to multiple requests for
cross-disciplinary research agenda [12–15]. The
focal point of this study is the misalignment
between the planning (define) and the realiza-
tion (execute) of the software business in the
fast-changing environment that a software-inten-
sive company operates. A change to either the
strategy or the realization has the potential to
trigger an escalating misalignment. Formulating
and executing a digitalization strategy [16] has
the goal of reducing such misalignment by man-
aging the change. The term digital transforma-
tion strategy implies a business-centric context
when coordinating strategies for products, ser-
vices, and business models as a whole.

Inspired by Ritter and Littl’s focus on broader
implications for business-model research, we take
the analogy for the business model as a membrane
between theories [12]. By analyzing uncertainty
and equivocality [17] with value within a trans-
action, as the membrane between two actors in
an activity system [13], we propose the business
model can also act as the “contextual agent” in
what we call the value membrane (VaM). This
helps identify the cause of the misalignment and
minimize gaps between needed change, planned
change, and implemented change.

Most scholars focus on detecting or prepar-
ing change at one level (strategy, portfolio, or
product) or analyzing the organization’s broader
external aspects, without integrating the activi-
ties [9]. Many scholars call for further research on
change realization, e.g., [14, 18, 19]. Meier and
Bosslau argue that there is almost no attention in

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 187

research to the dynamic aspects, flexibility, vali-
dation, and implementation of business models
[20], while Richter et al. emphasize the impor-
tance of understanding the degree of flexibility
needed to realize change [21]. Seeing business
models as activity systems helps organizations
(as responsible for the business) adapt to change
and generate value [15]. Therefore, our focus is
primarily on the dynamics aspects of the busi-
ness model change and business flexibility and
its implications on software engineering.

3. Research method

We utilized the snowballing literature review
method to collect relevant articles [22]. The start
set was the articles identified in our two previous
literature reviews [9, 10]. These two studies used
the following search string on the Google Scholar
database:

SS1: (business modelling OR business model
OR business ecosystem) AND value creation
AND strategy,
SS2: (“business modelling” OR “business model-
ing” OR “business ecosystem”) AND “business
strategy” AND “value creation” AND (“effective-
ness” OR “efficiency” OR “business flexibility”
OR modularity OR “variability in realization”
OR “governance” OR “multi-business”).

Executing SS1 and SS2 (limited to title-ab-
stract-keywords) and screening candidates left
us with ten papers in the start set. After 4 snow-
balling iterations, we included 58 studies [9, 10].
These 58 articles were screened to find new cita-
tions after 2018.

3.1. Updates for new papers after 2018

The previously selected 58 papers now became
the start set for one snowballing iteration. As we
are looking for new evidence, we only analyzed
citations since references to these 58 papers were
analyzed in our previous work [9, 10].

16833 new iterations were identified since
2018 and screened. From these citations, 60 ar-

ticles were identified from the title and abstract
screening. These 60 articles were carefully read
and further evaluated. We excluded 40 papers
because they were focusing on business model
innovation by creating new business models. Six
papers were excluded after the full read since
they focused on a general notion of a business
model. Fourteen papers were finally accepted and
included in the synthesis. Next, we revisited the
previously selected 58 papers from the previous
literature review [9, 10]. Each of these 58 papers
was carefully screened and evaluated focusing
on the implications of digitalization on business
model change. We included seven papers from the
58 evaluated. The total set of papers used for the
synthesis included 24 papers, detailed in Table 1.

3.2. Data analysis and synthesis

The 24 papers included in the data analysis and
synthesis were carefully investigated. We focused
on analyzing patterns within the identified pa-
pers, according to the steps recommended by
Cruzes [44]. Two authors read all 24 papers
and identified relevant segments of text asso-
ciated with digitalization and business model
change. Next, these segments were discussed in
a meeting, and 25 codes were identified using
the open coding technique. Next, differences and
similarities between these codes were discovered,
and codes were merged into higher order state-
ments. We focused on associating the 25 codes
with the following categories: digitalization, value
transformation, business model change, business
flexibility, abstraction layers in business model
change. Next, we constructed interpretations in
each area and explored the relationships between
the five themes (areas). Our high-order factors
became the propositions presented in this paper.
We provide the list of the most relevant articles
from the set of 24 articles included in this work
for each proposition. Our theory (frame of ref-
erence) was that digitalization has an impact
on software engineering practices and product
offering at Ericsson and also changes the current
business models.

188 Magnus Wilson et al.

Table 1. Selected papers including a short summary of the main contributions
in these papers and the most associated propositions

Paper Authors Comments Associated
Proposition(s)

P1 Woodard et al. [23] Digital business strategy and component architec-
tures

3, 6

P2 Chew [24] Linking servitization and business model design 4
P3 Romero and Molina [5] Engineering dynamic business models with the help

of network organizations and customer communi-
ties

1

P4 Meier et al. [20] Dynamic business models for product-service sys-
tems

3, 4

P5 Richter et al. [21] Flexibility in product-service systems via use-ori-
ented business models

1, 4

P6 Eurich et al. [25] Business Model innovation process with network
thinking and holistic approach

5

P7 Mason and Mouzas [26] Flexible business models and their architectures 1, 4
P8 Gul [27] Changes in business models and digital strategy 4, 6
P9 Sjödin et al. [28] Value creation and value capture in business model

innovation
4

P10 Antikainen [29] Business Model Experimentation 2, 3
P11 Trapp et al. [30] Business model innovation tools 5
P12 Chritofi et al. [31] How agility and flexibility is discussed in business

research
4

P13 Teece [32] Business Model and Dynamic Capabilities 2
P14 Linde et al. [33] Value capture model for digital servitization 2, 5
P15 Hacklin et al. [34] Migrating value in business model innovation 2, 6
P16 Vendrell-Herrero et al. [35] Business model experimentation in dynamic con-

texts
3, 4

P17 Szopinski et al. [36] Software tools for business model innovation 5
P18 Wirtz [37] Drivers that trigger business model change 2
P19 Gebauer et al. [38] Digitalization and servitization 4
P20 Moellers [39] System dynamics in business model innovation 3
P21 Nailler et al. [40] Business model evolution and value anticipation 4
P22 Clauss et al. [41] Strategic agility and business model innovation 2, 5
P23 Schaffer et al. [42] Dynamic business models 3, 4, 5
P24 Pratama and Iijima [43] Linking value and business models 2

3.3. The longitudinal study,
industrializing services at Ericsson

3.3.1. Case study research design
and data collection methods

We report the case study objectives and other
design aspects following guidelines suggested by
Runeson and Höst [45] The objective of the
case study was exploratory and focuses on digi-
talization and the resulting increased flexibility
in offering of software-intensive products and
services at Ericsson. Digitaliation is a contempo-

rary complex phenomenon; therefore the best
approach is to study it in a real world con-
text. We opted for a holistic case study [46]
with one unit of analysis (service organiza-
tion). We decided to conduct a longitudinal case
study at Ericsson, following the development
and growth of the service organization and its
impact on software engineering practices. Obser-
vations and participation took place for 4 years,
giving us the opportunity to explore and under-
stand the implications and impact of digitaliza-
tion on business models and software engineering
practices.

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 189

Our goal was to explore the impact of service
transformation on the business models that Eric-
sson offers and on software engineering practices
utilized to execute these business models. Erics-
son had a strong division between the research
and development teams. The research organi-
zation mostly develops new solutions while the
development organizations focus on deployment
and customer adaptations for various global re-
gions.

The theory associated with this case study
assumes that the introduction of digital services
impacts the ways of working and handling busi-
ness operations. Since the offered products are
mostly digital, their deployment could be con-
tinuous and remote, and their update time is
drastically reduced. This has also impact on busi-
ness models. Back in 2012, the Ericssons’ service
organization was mainly working in two types of
business models:
– Managed Services – running the operator’s

network for them with large, long-term con-
tracts.

– Service consultancy and Delivery model – fo-
cused on project deliveries and learning ser-
vices.
As part of a corporate strategy, the service

organization devised their strategic program
“Global Scale – Local Reach”, involving 75000+
resources (global, regional, and contractors) in
nine regions, working in three segments of the
service portfolio (Managed Services, Product Re-
lated Services, and Consulting and System Inte-
gration). The goal of the program was to improve
customer responsiveness, improve productivity,
and improve internal evaluation. The part of this
transformation included either offering current
products as services or creating services on top of
the current software-intensive products. In many
aspects, Ericsson followed the servitization trans-
formation of the business environment[47].
Data Collection and Analysis Methods.
We combined observations, document analysis,
and interviews [48]. We also actively participated
alongside program managers, the steering group,
and requirements analysts. The research team
has analyzed the collected empirical data and
synthesized it in Section 5.2. Between 2012–2016,

we actively worked alongside teams responsible
for:
– supporting the program manager and his

steering group with a business and enterprise
architecture analysis,

– responsible for the business level requirements
towards tools and IT development, and

– consultants for the deployment (business pro-
cesses and training) into the sales and delivery
organization (global plus nine regions).
At the beginning of the program (2012–2013),

we participated in eleven extensive workshops
interviewing practitioners from affected areas:
finance; product management (services and soft-
ware products); key account managers; Ericsson
IT (master data, business processes, and sys-
tem responsible); sales; delivery (project); and
support processes (planning, development, and
pricing, of services). The 3–4 hours workshops
were based on a short introduction to the work-
shop and the program, followed by practitioners
presenting their current business processes and
ways of working. Practitioners were then inter-
viewed on current issues, and potential opportu-
nities were discussed under the frame of the new
program, providing us with great insights into
the scope plus the strategical and operational
issues facing the program. The workshops also
provided a deeper understanding of uncertainty,
equivocality, and rivalry between the different
roles and organizations. We were also given con-
tinuous access to all program-related information,
monthly reports, and steering group protocols.
We also conducted two sets of individual, 60+
minutes interviews with a delivery project man-
ager and a solution architect, to identify any
misalignment against the program’s goals and
the actual outcome.

3.4. Validity threats

We adopted the validity guidelines suggested by
Runeson [45]. We mitigated the industrial expe-
rience bias of the leading author by involving the
other two authors as reviewers of the work. We
have also followed the thematic analysis approach
steps [44]. The selected 24 papers are highly het-
erogeneous and therefore minimize the bias on

190 Magnus Wilson et al.

specific author or terminology. To minimize the
data synthesis bias, two researchers performed
the initial read and coding, and these codes were
later discussed and merged.

We minimized potential internal validity
threats by following the snowballing literature
review guidelines [22]. Because of the interdisci-
plinary nature of this study, the risk remains that
some aspects are underrepresented and other as-
pects are over-represented. In particular, business
model innovation or business process modeling
seems to be heavily researched in the business
management and the computer science commu-
nity. However, we decided to focus on the inter-
play between business model change and digi-
talization and excluded papers that primarily
focus on business model innovation realized by
the creation of new business models.

Finally, we are aware that a single case study
presented in this paper may not offer sufficient
external validity. However, we opt for analytical
generalization rather than statistical one as sug-
gested by Flyvbjerg [49]. We provide an extensive
description of the analyzed case and contrast it
with the findings from the literature review.

4. Results

We have synthesized five propositions based on
the literature review results and one based on the
case study. We applied thematic synthesis to the
papers presented in Table 1. The propositions
are detailed in the subsections that follow.

4.1. The impact of digital transformation
on the nature of negotiating
a business deal and equivocality

Negotiating a business deal was traditionally
a discussion focused on the functionality, price,
and any potential project risks. The surround-
ing business environment (legislation, platforms
and technology, partners and competition, etc.)
gave little uncertainty related to the lifespan
of the contract and the contractual obligations.
Therefore, the negotiations could focus on the
scope and usage of the underlying technical (soft-

ware-based) solution. The business environment,
including actors, business processes, and infras-
tructure, was predominately “stable within rea-
sonable risks” throughout the lifespan of the
contract and could be tracked by strategic plan-
ning, competitor and market analysis, monitoring
standardization, and other regular management
initiatives.

For example, the negotiations in the GSM and
3G telecommunication standardization included
a well-defined business environment and inter-
faces between the components. Suppliers could
concentrate their risk management to monitor
and participate in the standards development
while mainly focusing on optimal technology so-
lutions for each component. Negotiating a new
business deal was fundamentally about under-
standing what components, the quantity, and
any potential customer-specific features needed
to sweeten the deal. This kind of contractual
flexibility could be implemented by the product
and solution engineers under the strict coordi-
nation and risk management of sales, product
management, and top management.

Software Engineering has developed several
concepts to support contractual flexibility, e.g.,
implementing Software Product Lines (SPL), it-
erative, lean, and agile software development
with daily code deliveries enabling increased cus-
tomization. The ways of working need to be syn-
chronized with other core business processes like
sales and delivery, and hence into the business
model. Product Service Systems (PSS) [50, 51],
Industrial PSS [20, 52], and service-based busi-
ness models [53, 54] are examples of how this
fusion of engineering and business processes is
continuously evolving.

With the digital transformation of the busi-
ness environment [3, 55], negotiation and risk
management can no longer rely on the sales
and engineering departments but need to en-
act business model changes towards ecosystem
and collaboration [4], [5]. Romero and Molina
advocate collaborative networked organization
and customer communities for supporting value
co-creation and innovation [5]. These experi-
ence-centric networks help for co-creating value
not only for the customers (like the previous sup-

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 191

plier relationships) but also formulating alliances
between the companies offering digital (software)
products to its customers. The key enabler for
these type of partnerships is openness in not only
in shared source code but also Open Innovation
initiatives [56]. This also means sharing software
development tools and environments and openly
discussing future plans and requirements.

Richter et al. suggest focusing on user-ori-
ented business models that capture the necessary
flexibility for product-service systems [21]. He
includes agility as one of the aspects of changeabil-
ity. Considering software development as a capital
investment that should bring value to the cus-
tomers is critical since software products need
maintenance and operational support. This part
is often neglected by Agile software development
that focuses primarily on delivering new function-
ality rather than maintaining existing systems.
Efficient maintenance improves long-term perfor-
mance and changes the risk profile to asymmetric
by introducing more flexibility early in the process.

Mason and Mouzas introduce the concept of
“flexible business models” to capture and realize
the necessary flexibility [26]. They include trans-
action relationships and ownership as the most
critical aspects of flexibility. This has implica-
tions for software engineering since companies
do not need to own the entire codebase and
often co-create value in a software ecosystem.
Gul describes what new strategies companies
should realize in the digital environment, such
as software [27].

The negotiating power, coming from knowing
what business flexibility (BF) can be offered and
how this business flexibility is translated into
contractual flexibility that can be absorbed by
the business model realization. The realization
should be done without jeopardizing the under-
lying effectiveness and efficiency of products and
technical solutions (promised contractual char-
acteristics); emerges as a critical competitive
advantage. However, with more roles participat-
ing in the negotiation [11, Figure 7 p. 1182],
uncertainty and equivocality (multiple and con-
flicting interpretations of a goal, situation, or
task) can negatively impact the quality, cost, and

lead-time of both the planning and realization
phases [17, 57, 58].

Companies undergoing the digitalization
transformation should detect if the previously
used realization strategy (the combination of the
business model, products, and services) still will
adhere to the changed contractual terms and
conditions. This involves checking if the current
business model will accommodate the new terms
and conditions and the associated risks to deliver
the changed contractual terms. The distance be-
tween strategizing, innovating, and planning for
Business Model Change (BMCh) is significantly
reduced. We argue that such risk management
should be done before signing any contract, and
therefore propose that,

Proposition 1: A mechanism for early
detection of business model change is
a critical factor in maintaining a company’s
negotiating power to ensure business suc-
cess via improved risk management de-
rived from the business flexibility.
The impact on software engineering. Soft-
ware engineering should more clearly focus on
risk management and negotiation. Risk manage-
ment has traditionally been assigned to project
management activities. Risk management in soft-
ware engineering was performed assuming that
the business model remains stable and the iden-
tified risks are most of technical nature [59]. We
postulate that more effort should be dedicated
to risk management on the requirements level.
Some work was already done in the uniREPM
model, where risk management is divided into
project risk management and requirements risk
management [60]. We believe that requirements
risk analysis should be extended on the impact on
business models and revenue strategies. Software
managers should also consider software develop-
ment as a capital investment that is long-term.
This means taking care of software platforms and
architectures and minimizing technical debt as
much as delivering functionality and responding
to ever-changing customer needs. Test automa-
tion is also a necessary component for keeping
the negotiating power and understanding the
limitations of the current codebase.

192 Magnus Wilson et al.

4.2. The gap between business model
planning and execution

Business model experimentation is gaining more
importance for software companies as a response
to a growing need for business model innovation
[61] and digitalization [3]. Experimentation is
an approach to achieve effective change to the
business, driven by the rationale that in “highly
uncertain environments, strategies are about in-
sight, rapid experimentation, and evolutionary
learning as much as the traditional skills of plan-
ning and rock-ribbed execution” [62]. Many com-
panies that offer software products invest in
product decision support based on experimen-
tation and A/B testing [63]. Despite the un-
questionable potential of online experimentation,
they often provide very incremental improve-
ments and are not suitable for radical strategic
changes. Business model associated changes are
often more radical than incremental. This con-
tributes to a gap between business model planning
and execution.

To analyze the gap between planning and
execution, we complement Höfflinger’s top-down
definition of the business model with Rohrbeck
et al. bottom-up definition of business modeling,
“to be a creative and inventive activity that in-
volves experimenting with content, structure, and
governance of transactions that are designed to
create and capture value” [64].

Rohrbeck et al. focus on experimenting as
a “round-trip” process of “translating an idea
into execution, test, evaluate, and change until
satisfied” (similar to the agile method of develop-
ing software products followed up by proper ret-
rospectives). Secondly, they also focus on trans-
actions, connecting the business model to human
behavior and value in execution and planning
activities. Thirdly, they make a clear distinc-
tion between value created and captured, as two
(role-dependent) views of a transaction, imply-
ing an information representation suitable for
maintaining (observe, analyze, decide, change)
many relationships to support effective and ef-
ficient collaborations (through all the stages of
the business model lifecycle, e.g., plan, design,
deployment, execution, phase out).

Antikainen et al. [29] suggest the business
model experimentation method that supports
companies in innovating their B2B business mod-
els by benefiting from the shared economy oppor-
tunities. The ownership principle is replaced by
temporary access and reusing (the two embedded
characteristics of software as one piece of software
can be reused forever and shared with as many
partners as required).

Linde et al. [33] suggest a framework for cap-
turing value while designing, developing or scal-
ing digital services. They highlight agile devel-
opment and value co-creation (risk and reward
sharing) as the two main elements of value and
revenue creation for digital services. This moves
the main responsibility for a service offering from
primarily the software company to the ecosystem
of partners that share the risks and benefits.

Teece [32] highlight the role of dynamic capa-
bilities in responding to changing business needs
and customer requirements. Software and soft-
ware engineering capabilities should be consid-
ered as such dynamic capabilities that constitute
the strength of business agility of digital organiza-
tions. As dynamic capabilities are underpinned in
organizational routines, selecting the appropriate
software development processes and caring about
team values and culture becomes important for
software organizations. Software companies of-
ten experience pivots or other radical changes.
In these cases, organizations with high absorp-
tive capability respond and often succeed in this
transformation.

Hacklin et al. [34] describe how value is mi-
grated during business model innovation in com-
puter and telecommunication industries where
value migrated to value-added service providers
from device manufacturers, network providers,
and infrastructure companies. This example
shows clearly that software as the primary carrier
of value not only can penetrate many industries
but also disrupt value creation and capture in
highly established and often regulated industries.
This has deep implications for software engineer-
ing principles used by these companies.

Clauss et al. [41] describe how value creation
and value capture relate to strategic agility in
turbulent business environments. Wirtz [37] out-

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 193

lines markets, technology, and deregulation as
the main drivers for business model change. Soft-
ware plays a key role in the deregulation of many
industries, and the Open Source Movement re-
moves monetary incentives in selling software
as source code. Software products and services
disrupt many “traditional” industries, such as
for example finance or automotive. Therefore,
software engineers have to remember that the
potential of software innovation stretches greatly
beyond the software industry.

Pratama and Iijma [43] describe how to trans-
late the value proposition components from the
existing business model to a new business model
without losing the content. This approach has
important implications for software engineering
since the software is almost never fully disposed
or destroyed, rather reused or reshaped with the
new business idea in mind.

Inspired by Fjeldstad and Snow, we adopt the
idea of value as the contingency variable affecting
all other elements of the business model [15], and
to understand the transaction- and role-depen-
dent Direction of Value (DoV), we build on the
value concept proposed in the Value Delivery
Metamodel (VDML) [65]. Neither Höfflinger [8],
Fjeldstad and Snow [15], nor VDML [65] makes
a clear separation between value creation and
value capture. Therefore, we postulate that:

Proposition 2: Value translation and
value transformation capabilities are essen-
tial for business modeling. By exploring
value, in an interaction on the individual
level as the unit of analysis, we can resolve
ambiguities in relation to the different ar-
eas of the business model (e.g., product de-
livery, product development, finance, cus-
tomer relationships, partner management)
stemming from: (1) the direction of value;
(2) inter-level relationships of source and
target for value; and (3) aggregation is-
sues for value creation and value capture
(scalability and value slippage).

Impact on Software Engineering. We
postulate that business model experimentation
should be integrated with data-driven continu-
ous experimentation [66, 67]. For example, The
RIGHT model for continuous experimentation

is a good start as it has the business model and
strategy element in the build-measure-learn pro-
cess [66]. We believe that this integration should
support the transformation into a “data-driven
organization at scale” [67], where continuous
experimentation is synchronized with business
model evolution. We also postulate that software
engineers need to consider two aspects when
starting the development of new features or prod-
ucts: 1) what is the business viability of these fea-
tures or products, and 2) how can we co-develop
or co-create value.

4.3. Handling business model change

Both radical or incremental business model
changes need to be addressed both at the plan-
ning and the realization levels [7]. Cavalcante
et al. [68] divided BMCh into four types of
change: business model creation, extension, re-
vision, and termination. They further argued
there is a “pre-stage” of “potential of BMCh”
before the actual change occurs, often including
analysis, experimentation, and other activities to
build insights, learning, and commitment. In soft-
ware engineering, this phase would include exten-
sive prototyping or building the minimum viable
product. Therefore, Cavalcante proposes to de-
velop a detailed guide for analyzing BMCh, both
at the level of cognition as well as action, where
he sees continuous experimentation and learning
as fundamental pillars for effective BMCh, trans-
forming the company into a “permanent learning
laboratory”.

To address change on the planning level,
a company needs to understand the As-Is sit-
uation (which capabilities exist) and the effects
on the To-Be situation (needed abilities). Such in-
sights require understanding how strategy relates
to a business model [23], tactics, and residual
choices [69], in combination with what strategic
agility [70] and level of strategic flexibility [27, 71]
the organization has. This could be achieved by
business model experimentation as pointed out
by Antikainen [29] and highlighted in proposi-
tion 2. Flexible business models and their archi-
tecture appears to be the central concept here
[26]. Dynamic business models and their depen-

194 Magnus Wilson et al.

dencies in the complex software-intensive systems
emerge as an area with increasing importance
for further research [42].

To facilitate such insights, we propose to rep-
resent a business model by combining the work
by Ghezzi’s on value networks (VN) and resource
management (RM) [72], with Osterwalder’s busi-
ness model canvas (BMC) [73]. Therefore, a com-
pany’s need for business model change can be
derived from having profound knowledge and
a sound understanding of the three dimensions:
(1) the customer(s) and related relationships;
(2) the value proposition (revenue streams, what
values to create, how to deliver it to the cus-
tomer); and (3) the company’s assets (products,
resources, activities, cost structures, and partner
relationships).

Woodard et al. [23] divide digital business
strategy into design capital and design moves.
The important but often invisible aspects of de-
sign capital are technical debt and option value.
Both have a fundamental impact on the business
agility of software development organizations. An
organization holding significant technical debt
loses a lot of flexibility in realization and has
limited options for creating and delivering value.

Meyer and Boßlau [20] suggest developing
both products and services at the same time and
therefore capturing more customer value and
building long-term relationships with the cus-
tomers. This helps to integrate business model
design and engineering activities. For software
services, it appears to be very beneficial due
to the possibility of dynamically deploying and
updating software services for the customers.

Vendrell-Herrero [35] study the economic
value of business model experimentation in many
sectors and industries. Experimentation helps to
strengthen the network effects and also capture
value from various customer needs. Therefore,
establishing software-driven experimentation is
a way forward for many companies that are be-
coming software-intensive as it allows for explor-
ing and understanding previously unknown ex-
ternalities that could in the future become the
core value proposition elements.

Moellers [39] utilized system dynamics dur-
ing different phases of business model innovation.

Among the positive results is an improved un-
derstanding of how to accommodate a business
model from a different context. This is important
for software-intensive companies as they often
operate in many domains and contexts and thus
can reuse the business models between them.

Schaffer et al. [42] highlight understanding
complex interactions of the sub-components
within dynamic business models and their evolu-
tion and important emerging future topics.

To address change on the realization level, i.e.,
solutions implemented in products, processes,
and organizations, literature discuss concepts
like business model operationalization (BMO),
implying reconfiguration, and tuning of the com-
pany’s assets depending on the system dynam-
ics [39], business model experimentation [61],
[62], collaborative business modeling [5], busi-
ness model experimentation [29, 35], Dynamic
Software Product lines [74], R&D as innovation
experiment systems [75], just to name a few.
With the advent of the digital business strategy
[23], we propose that,

Proposition 3: Software companies pos-
sess a unique advantage for detecting and
implementing business model change. Us-
ing their software development process to
integrate their business model innovation
with their product innovation, they can ef-
ficiently develop “native” product support
for managing the linkage of contractual
flexibility to the configuration of software
products to achieve richer levels of busi-
ness model experimentation and collabo-
rative business modeling.
Impact on Software Engineering. We pos-
tulate that too much effort is dedicated to the
creation and extension phases and too little ef-
fort on revision and termination. For example,
requirements engineering focuses primarily on
adding new features rather than reducing the
complexity of the product (e.g., feature reduction
[76]) or understanding stakeholder inertia and re-
sistance to revolutionary change [77]. We believe
that strategic planning of software platforms, e.g.,
SPL [78] should also include possible revisions
or discontinuation of this platform, not forever
extensions and growth. Moreover, software prod-

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 195

ucts also end their life and get replaced by new
products or new businesses [79]. We believe many
business model changes should result in ending
a product and replacing it with a new one rather
than extensively changing or evolving it.

4.4. Increasing business flexibility

Flexibility helps organizations to “adapt when
confronted with new circumstances...and pro-
vides the organization with the ability to respond
quickly to market forces and uncertainty in the
environment.“ [80]. Richter et al. point out that
embedding flexibility into system design can opti-
mize stakeholders’ incentives, turning incomplete
contracts into opportunities [21]. They discuss
changeability as a term to better understand invest-
ments in flexibility related to value, cost, and risk.
Changeability is defined by options under internal
(“robustness” and “adaptability”) respectively
external control (“flexibility” and “agility”).

In the business and management literature,
flexibility is discussed in many different contexts,
as related to business models and as ways to
manage change, e.g., strategic flexibility [26, 71],
resource and organizational flexibility versus dy-
namic capabilities [81], [82], [83], flexible business
models and their architectures [26], dynamic busi-
ness models in product-service systems [20, 21],
linking servitization and business model design
[24], and business model flexibility [26, 84].

Chritofi et al. provide a comprehensive liter-
ature summary of how agility and flexibility are
described in the business literature [31]. They
point out several organizational aspects that are
relevant for software engineering research and
practice, e.g. organizational process alignment,
investments in intangible assets, and resource
complementarity.

Gul [27] looks at how companies can gain
a competitive advantage by executing digital
strategies where production and storage are
cheaper, deployment is faster, and organizations
are collaborative and flexible. Software organi-
zations need to become more collaborative (e.g.,
work in software ecosystems) and flexible in
reusing OSS or previous software components
to compete in this new business reality.

Sjödin et al. [28] advocate integrating value-
-creation and value-capture during value proposi-
tion definition, value provision design, and value-
-in-use delivery. They suggest a process for busi-
ness model innovation that software-intensive
companies can easily apply when designing and
experimenting new products with the customers.

Nailler et al. [40] outline six processes by which
business models evolve, motivated by the causal
mechanism of value anticipation/realization.
Gebauer et al. [38] discuss how to increase flexi-
bility by introducing digital servitization.

We define Business Flexibility (BF), as the
“negotiable options in: 1) Relationship; 2) Finan-
cial; and 3) the Value proposition between two
parties trying to reach an agreement”. These
options enable effective negotiation to lever-
age a company’s ability to compromise without
breaking the promise in the final contractual
agreement. The terms Relationship, Financial,
and Value proposition refer to the context of
Osterwalder’s right side of the BMC [73]. Using
the BMC, a company visualizes the strategic
decisions and critical business options that char-
acterize the rationale of the business idea and
how it strategy-wise will be turned into a suc-
cessful business (model) realization.

A change (on planning or realization level)
is triggered by a gap (misalignment) in expecta-
tions and what is delivered. Closing these gaps
(transforming a capability into an efficient ability)
requires significant investments in time and effort,
involving many collaborations. Closing this gap
may also require changes in the digital strategy
[27], extensive business model experimentation
[35], the evolution of the current business model
to anticipate more value [40], or a better un-
derstanding of the dynamics of current business
models [42]. Therefore, we propose the following.

Proposition 4: Software companies have
a unique opportunity for implementing
business flexibility and efficiently creat-
ing value propositions. Software companies
should develop software architectures and
software functionality to enable a synchro-
nized change in their business model.
Impact on Software Engineering. We be-
lieve that the recent development in micro-

196 Magnus Wilson et al.

-services [85] is a step towards greater flexibil-
ity in business model experimentation [29], and
a better understanding of the system dynam-
ics [39]. Many software companies offer services
instead of products. This means they need to
take a large part of the operational cost and
also provide frequent updates and new releases.
Understanding the product usage data helps to
adapt the business models and the offering and
therefore optimize the constant operational costs.
This helps subscription-based software offerings
to stay price competitive. Finally, data-driven
experimentation for software products helps to
combine value-creation and value-capture during
product definition and evolution.

4.5. Supporting dynamic business model
change with the help of software
tools

Casadesus-Masanell and Ricart argued a clear
distinction between strategy and the business
model, where the business model “is a reflection of
the firm’s realized strategy” and that the strategy
is the plan and process to reach the desired goal
via the business model and onto tactics [69]. Strat-
egy refers to the choice of the business model,
while tactics refer to the possible realization
choices.

Eurich et al. [25] suggest using network think-
ing as a tool for designing a business model. De-
pendencies and alternatives are discussed early
in this process; this fits very well for software-
-intensive products as they can be composed of
multiple components originating from various
sources. Trapp et al. [30] develop a business
model innovation identification tool that offers
straightforward criteria and indicators to assist
practitioners at accelerating BMI in established
firms. They tested their tool in four large Euro-
pean corporations.

Bosch suggested a three-layer product model
for managing growth and organizes product archi-
tecture into a commoditized functionality layer,
a differentiating functionality layer, and an inno-
vative and experimental functionality layer [86].

The creation of the business model design alter-
natives and the analysis of the interdependencies
between the business models and the technolog-
ical capabilities seems to be a promising way
forward here [25].

Software tools can provide valuable support
in this process by helping to automatically iden-
tify criteria and indicators to assist in acceler-
ating business model change [30]. However, the
problem remains as most software tools designed
to support business modeling focus mainly on
business model development rather than evolu-
tion [36]. However, most software systems are
created once every 10–20 years and later up-
dated, reused, and evolved [87]. This means that
the support for this evolution is not covered by
most business modeling tools, and the inherited
powerful flexibility of software is not considered.
Given this long-time perspective understanding
strategic agility points [41] and supporting the
dynamics aspect of the business models appears
to be critical [42].

Proposition 5: Software development
tools can provide valuable and mostly au-
tomated support for understanding the
gap between the capabilities (what soft-
ware does today) and the planned business
model changes and adaptations.
Impact on Software Engineering. Software
engineers can use many tools to support collabo-
rative software development and automate many
time-consuming tasks. We postulate that a large
part of the data generated during the software
development process can be used as input for
understanding business flexibility and possible
business opportunities from the developed soft-
ware. An example here can be mutation testing
that helps to understand the boundaries of soft-
ware and its limitations beyond the specified or
anticipated behavior [88]. Another example could
be the data-driven extraction of features from
the source code and understanding the offered
quality aspects (e.g., security or performance).
These aspects can provide valuable indicators for
the directions of the business model change, not
only for improving engineering activities.

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 197

5. Case study: adapting to the digital
transformation in the
telecommunication industry

For Ericsson AB2, one critical aspect of achieving
the business and technology transformation and
managing change has been a long-term focus on
industrialization and automation of the prod-
uct development and the delivery (via process
innovation). Digitalization requires additional
strategies for handling the fast-paced business
environment than driving technology standards.
The technology innovation must be in concert
with an equally dramatic and accelerating busi-
ness model innovation. Ericsson’s business model
has evolved from the resource-centric, standard
product-sales model, via several service models,
over into different use models, where software-in-
tensive products and services are now sold and
delivered as-a-service and on-demand. Today,
Ericsson is running multi-business-model opera-
tions, and with that, facing additional challenges
to keep up with the pace of change. A majority
of these challenges can be structured according
to Ritter and Lettl’s framework [12].

5.1. Business model change at Ericsson

Digitalization shifted the business risks to new
dimensions, e.g., business ecosystem (sharing and
collaborating in fierce competition), rather than
optimizing its assets as a part of a value-delivery
chain (e.g., traditionally mitigating risks with
long-term business agreements and interna-
tional standards). Such Business Model Change
(BMCh), profoundly impacts the financial steer-
ing and control, as much of the investments
need to be taken up-front, while the majority
of revenues shift to on-demand usage rather than
sales of products [20, 21]. The transition from
business models based on selling products or
hourly-rated services (with a strong focus on
add-on sales), into value-based, knowledge-inten-
sive, customer-unique use-models has affected
many of Ericsson’s dynamic and strategic capa-
bilities and most of the core business processes.

For Ericsson, this also impacted the organiza-
tional design, requiring extended focus on organi-
zational learning and incentives, governance, and
management structures suited for the inherent
dynamics, as well as collaborating with strategic
and operational information. It also required en-
hanced clarity in responsibility and authority for
the business model activities.

As a pilot, Ericsson applied the industrial-
izing of the sales and delivery processes in 30+
deliveries to customers in three regions during
2013. These pilot projects delivered contract scop-
ing efficiency and accuracy improvement by 88%
. The ordering process was considered simpli-
fied, while delivery lead time and project costs
were reduced by 12–35%. However, the program
complexity and program duration were signif-
icantly underestimated (duration exceeded by
150%). We identified three main reasons for the
increased complexity:
– the scalability of the piloted solution turned

out a bigger issue than anticipated.
– the inherent complexity (flexibility and

re-usability) of the services to be industri-
alized and the services’ dependency on the
skills and knowledge of the service delivery
staff.

– frequent re-organizations – this could be
traced back to a substantial business model
change together with insufficient support for
fast and cross-organizational learning, nega-
tively impacting the transformation program.
The program struggled with two major chal-

lenges: 1) to decide what services to industrialize
and which should remain “customer-specific”, 2)
to find the best balance for the new and updated
IT tools to minimize disruptions to operations
while concurrently updating the business pro-
cesses.

The technical solution to the first challenge
was basically divided into five parts, with a need
for completely new tools to be integrated with
existing tools and processes.
– Defining the granularity and scope of each

service’s content (covering all the different
products and roles the services are related to).

2https://www.ericsson.com/en [last visited 26.06.2021].

198 Magnus Wilson et al.

– Defining the structure and content of the
service catalog and the structure and repre-
sentation of a service.

– The IT tools needed to plan, develop and
deploy a service (so it’s available in the prod-
uct and service catalog ready for marketing,
ordering, and sales).

– The IT tools needed in a delivery project
to sell, order, plan, and deliver instances of
services, plus the benchmark of projects and
the outcome of each individual service and
it’s delivered instances.

– Non-industrialized services were managed
manually with little or no automation.
The challenge of the dependency of the indus-

trialized services from the skills and knowledge
of the service delivery staff proved to be complex
mainly due to the volume of implicit and ex-
plicit information in various forms of knowledge
representations, and realizations with efficient
knowledge management systems.

The decisions between investing in tool sup-
port versus investing in business process flex-
ibility turned out to be very challenging for
decision-makers and top management. As a con-
sequence, the “traditional” IT update and in-
tegration process of new and existing tools to
match the evolving business processes was af-
fected by misunderstandings and delays leading
to temporary solutions in the sales and delivery
organization. Under customer pressure to deliver
on signed contracts, this led to decreased trust
between organizations, affecting the efficiency of
the collaboration.

It also proved difficult to synchronize the
business process development (sales and delivery
processes to use industrialized services) with the
agile Ericsson product development (the new
generation of products to be delivered using the
updated business processes). We identified the
following four root causes of the misalignment:
– temporal effects due to different life cycles of

these two core business processes,
– organizational steering, coordination, and in-

centives,
– expected capabilities that did not deliver on

the requested abilities in customer projects,
and

– the differences between the old and new prod-
uct generations, the needed training of the
service delivery staff, and their valuable cus-
tomer experience feedback to the R&D orga-
nization.

5.1.1. Temporal effects of organizational
learning

The temporal effects of organizational learning
created a gap between different organizations
(R&D, sales, delivery, and Ericsson IT) were occu-
pied with their life-cycles of change as committed
in earlier plans, see [11, Figure 5]. The symptoms
of this were observed in areas of communication,
coordination, training, and reporting, resulting in
uncertainty, equivocality, and sub-optimization
at best, and a lack of abilities at worst.

Scaling the solution was affected since
planned capabilities needed by different orga-
nizations were not translated (in time) into re-
quired abilities, i.e., integrated tools and staff ad-
equately trained in relation to the new or changed
business processes (so they could perform the
tasks demanded by the evolving business model).
The scale of the industrialization problem was
among the most significant factors since it af-
fected the amount of information and the re-
lationships between the affected organizations
involved in the change processes. The rippling
change-reaction escalated and started to violate
existing goals, commitment, and reporting, lead-
ing to more efforts spent on temporary, local
solutions to assure customer contracts could be
honored.

5.2. Case study results
summary and synthesis

Ericsson’s traditional, engineering-centered in-
dustrialization approach would have benefited
by categorizing the strategic program’s require-
ments and associated risks into the five ar-
eas (strategic decisions, business logic, business
model artifacts, misalignment, and BMa) and
highlighting that the program was actually fac-
ing a business model change. By addressing the
misalignment between the effectiveness (“do the

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 199

right thing” as a top-down strategic planning
process) and the efficiency (as the bottom-up
change of existing business models, business pro-
cesses, organizations, and tools), we believe the
scale of the program, as well as the temporal
effects, could have been predicted and managed
in a better way by proposing a set of different
tactics, thereby invoking a higher degree of top
management commitment and attention.

This study confirms opportunities and chal-
lenges for digitalization reported by scholars, for
example, [6, 21, 24, 52]. Our interviews revealed
that in practice, the scalability, the complexity
of roles and (changing) business intents, and the
size of the solution were perceived as the most
significant challenges. Given the global, wide
scope of the program and frequent organizational
changes, establishing a reporting structure for
how the different tactics supported each other
(and executed by the different parts of the or-
ganization) , turned out to be slow and ineffi-
cient, causing mistrust and unnecessary tensions.
We believe this program would have benefited
from a BMCh-centered approach, rather than
a engineering-focused servitization approach, by
achieving over-arching clarity and consensus be-
tween top-management, middle management,
and the affected organizations, highlighting it
was not just “business as usual”.

The case study also highlights the added com-
plexity of BMCh for large software companies
that operate with contracts spawning years to
complete. This calls for a combination of BMCh
and organizational design. What appears to be
inevitable is that the business environment will
change during the execution of the underlying
agreements. Our interview respondents believed
that governance mechanisms should facilitate the
exploration phase (Knowledge Creation process),
transforming tacit knowledge into explicit knowl-
edge fast enough and made it available through
the Knowledge Management process.

We believe it requires fast, efficient feedback
loops between R&D, sales, and service delivery
organizations, illustrating the continuous interac-
tion between knowledge creation and knowledge
management processes. Support for these loops
should preferably be implemented both in the

products as well as in the business processes. We,
therefore, propose that,

Proposition 6: The practice of Digi-
tal Business Modeling (DBM) should be
coined as a fusion between current prac-
tices of business modeling and requirement
engineering, and become a key practice
in facilitating business model innovation
through experimentation.

6. Conclusion

Many distinguished scholars have highlighted
the cross-disciplinary complexity stemming from
the ongoing digitalization and transformation of
the business environment [3, 13, 14, 89], just to
name a few. This paper highlights three criti-
cal aspects of business modeling in the analysis
of the misalignment between planning and ex-
ecution. Firstly, focus on experimenting [64] as
a “round-trip” process of “translating an idea
into execution, test, evaluate, and change un-
til satisfied” (similar to the agile method of de-
veloping software products). Secondly, focus on
transactions, thereby connecting the business
model to human behavior and value in execu-
tion and planning activities. Thirdly, the anal-
ysis is direction-sensitive, with minimum two
(role-dependent) views of the transaction, imply-
ing an information representation suitable for
maintaining (observe, analyze, decide, change)
many relationships (through all the stages of the
business model lifecycle) [11]. FInally, we analyze
how software engineering methods and tools can
support business model flexibility and promptly
realizing business model changes.

This paper is an initial step for such a de-
tailed, cross-disciplinary guide for handing busi-
ness model change. Synthesizing from the two
previous two literature reviews [9, 10], a design
science study [11], and the case study presented
in this paper, we present six propositions for ad-
dressing the challenges of aligning the planning
and execution layers for software-intensive prod-
uct development. We also highlight four critical
aspects that software-intensive companies need
to address:

200 Magnus Wilson et al.

– Business model innovation for the business
ecosystem, e.g., driven by markets and con-
textual changes, co-creation of value, collab-
oration within and between organizations,
partners, communities, and customers, new
streams of revenue while sharing of risks, rev-
enues, and costs [5, 64].

– Software tools that focus on automation and
integration of business and software architec-
ture. These tools should support the shared
economy aspect of new business models and
the service-driven economy [90–92].

– Organizations prepared for experimentation
and collaboration in a digital business world,
affecting both the product development as
well as the value delivery, e.g., agreement
structures, incentives, processes, knowledge
management and organizational learning,
measurements of effectiveness and efficiency,
revenues, cost, decision-making based on
multifaceted optimization and transparency
[93, 94].

– The level of integration and automation be-
tween the four processes of value creation,
value capture, knowledge creation, and knowl-
edge management [95, 96]. This is the founda-
tion for an innovative enterprise and should
be nurtured as a key competitive advantage.

Acknowledgment

We would like to acknowledge that this work was
supported by the KKS foundation through the
S.E.R.T. Research Profile project at Blekinge
Institute of Technology.

References

[1] P. Parviainen, M. Tihinen, J. Kääriäinen, and
S. Teppola, “Tackling the digitalization chal-
lenge: how to benefit from digitalization in prac-
tice,” International Journal of Information Sys-
tems and Project Management, Vol. 5, No. 1,
2017, pp. 63–77.

[2] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev,
P. Raff, and A. Fabijan, “The anatomy of a large-
-scale experimentation platform,” in International

Conference on Software Architecture (ICSA).
IEEE, 2018, pp. 1–109.

[3] C. Legner, T. Eymann, T. Hess, C. Matt,
T. Böhmann, P. Drews, A. Mädche, N. Urbach,
and F. Ahlemann, “Digitalization: Opportunity
and challenge for the business and information
systems engineering community,” Business and
Information Systems Engineering, Vol. 59, 2017,
pp. 301–308.

[4] J. Moore, “The rise of a new corporate form,”
Washington Quarterly, Vol. 21, 1998, pp. 167–181.

[5] D. Romero and A. Molina, “Collaborative net-
worked organisations and customer communities:
value co-creation and co-innovation in the net-
working era,” Production Planning and Control:
The Management of Operations, Vol. 22, No. 5–6,
2011, pp. 447–472.

[6] Y. Snihur and J. Tarzijan, “Managing complexity
in a multi-business-model organization,” Long
Range Planning, Vol. 51, No. 1, 2017, pp. 50–63.

[7] S.A. Cavalcante, “Preparing for business model
change: The ‘pre-stage’ finding,” Journal of
Management and Governance, Vol. 18, 2014,
pp. 449–469.

[8] N.F. Höflinger, “The business model concept
and its antecedents and consequences – Towards
a common understanding,” Academy of Man-
agement Proceedings: Organization Development
and Change, Vol. 2014:1, 2014.

[9] M. Wilson, K. Wnuk, J. Silvander, and T. Gors-
chek, “A literature review on the effective-
ness and efficiency of business modeling,”
e-Informatica Software Engineering Journal,
Vol. 12, No. 1, 2018, pp. 265–302. [Online].
http://www.e-informatyka.pl/attach/e-Inform
atica - Volume 12/eInformatica2018Art11.pdf

[10] M. Wilson and K. Wnuk, “Business model-
ing and flexibility in software-intensive product
development – a systematic literature review,”
in Challenges and Opportunities in the Digi-
tal Era. Springer International Publishing, 2018,
pp. 292–304.

[11] J. Silvander, M. Wilson, K. Wnuk, and M. Svahn-
berg, “Supporting continuous changes to busi-
ness intents,” International Journal of Software
Engineering and Knowledge Engineering, Vol. 27,
2017, pp. 1167–1198.

[12] T. Ritter and C. Lettl, “The wider implications
of business-model research,” Long Range Plan-
ning, 2017, pp. 1–8.

[13] C. Zott and R. Amit, “The business model: A the-
oretically anchored robust construct for strategic
analysis,” Strategic Organization, Vol. 11, No. 4,
2013, pp. 403–411.

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 201

[14] D. Veit, E. Clemons, A. Benlian, P. Buxmann,
T. Hess, D. Kundisch, J.M. Leimeister, P. Loos,
and M. Spann, “Business models: An informa-
tion systems research agenda,” Business and
Information Systems Engineering, Vol. 6, 2014,
pp. 45–53.

[15] O.D. Fjeldstad and C.C. Snow, “Business models
and organization design,” Long Range Planning,
Vol. 51, No. 1, 2018, pp. 32–39.

[16] C. Matt, T. Hess, and A. Benlian, “Digital trans-
formation strategies,” Business and Information
Systems Engineering, Vol. 57, 2015, pp. 339–343.

[17] P.E. Eriksson, P.C. Patel, D.R. Sjödin, J. Frisham-
mar, and V. Parida, “Managing interorganiza-
tional innovation projects: Mitigating the neg-
ative effects of equivocality through knowledge
search strategies,” Long Range Planning, Vol. 49,
No. 6, 2016, pp. 691–705.

[18] A. Osterwalder, Y. Pigneur, and C. Tucci, “Clar-
ifying business models: Origins, present, and
future of the concept,” Communications of the
Association for Information Systems, Vol. 15,
No. 1, 2005, pp. 1–25.

[19] P. Ballon, “Business modelling revisited: the con-
figuration of control and value,” Info, Vol. 9,
No. 5, 2007, pp. 6–19.

[20] H. Meier and M. Boßlau, “Design and engi-
neering of dynamic business models for indus-
trial product-service systems,” in The Philoso-
phers Stone for Sustainability. Springer, 2013,
pp. 179–184.

[21] A. Richter, T. Sadek, and M. Steven, “Flexi-
bility in industrial product-service systems and
use-oriented business models,” CIRP Journal of
Manufacturing Science and Technology, Vol. 3,
No. 2, 2010, pp. 128–134.

[22] C. Wohlin, “Guidelines for snowballing in sys-
tematic literature studies and a replication in
software engineering,” in Proceedings of the
18th International Conference on Evaluation
and Assessment in Software Engineering, 2014,
pp. 1–10.

[23] C.J. Woodard, N. Ramasubbu, F.T. Tschang,
and V. Sambamurthy, “Design capital and de-
sign moves: The logic of digital business strategy,”
MIS Quarterly: Management Information Sys-
tems, Vol. 37, No. 2, 2013, pp. 537–564.

[24] E.K. Chew, “Linking a service innovation-based
framework to business model design,” in 16th
Conference on Business Informatics, Vol. 1.
IEEE, 2014, pp. 191–198.

[25] M. Eurich, T. Weiblen, and P. Breitenmoser,
“A six-step approach to business model innova-
tion,” International Journal of Entrepreneur-

ship and Innovation Management, Vol. 18, No. 4,
2014, pp. 330–348.

[26] K. Mason and S. Mouzas, “Flexible business
models,” European Journal of Marketing, Vol. 46,
No. 10, 2012, pp. 1340–1367.

[27] M. Gul, “Digital business strategies and com-
petitive superiority,” International Journal of
Business Ecosystem, Vol. 2, No. 1, Feb. 2020,
p. 17–31. [Online]. https://www.bussecon.com
/ojs/index.php/ijbes/article/view/106

[28] D. Sjödin, V. Parida, M. Jovanovic, and I. Vis-
njic, “Value creation and value capture alignment
in business model innovation: A process view
on outcome-based business models,” Journal of
Product Innovation Management, Vol. 37, No. 2,
2020, pp. 158–183.

[29] M. Antikainen, A. Aminoff, and J. Heikkilä,
“Business model experimentations in advancing
b2b sharing economy research,” in ISPIM Inno-
vation Symposium. The International Society for
Professional Innovation Management (ISPIM),
2018, pp. 1–12.

[30] M. Trapp, K.I. Voigt, and A. Brem, “Business
models for corporate innovation management:
Introduction of a business model innovation tool
for established firms,” International Journal of
Innovation Management, Vol. 22, No. 01, 2018,
pp. 18–40.

[31] M. Christofi, V. Pereira, D. Vrontis, S. Tarba,
and A. Thrassou, “Agility and flexibility in in-
ternational business research: A comprehensive
review and future research directions,” Journal
of World Business, Vol. 56, No. 3, 2021, p. 101194.
[Online]. https://www.sciencedirect.com/scienc
e/article/pii/S1090951621000067

[32] D.J. Teece, “Business models and dynamic ca-
pabilities,” Long Range Planning, Vol. 51, No. 1,
2018, pp. 40–49. [Online]. https://www.scienced
irect.com/science/article/pii/S0024630117302
868

[33] L. Linde, J. Frishammar, and V. Parida, “Rev-
enue models for digital servitization: A value
capture framework for designing, developing, and
scaling digital services,” IEEE Transactions on
Engineering Management, Vol. 5, No. 22, 2021,
pp. 1–16.

[34] F. Hacklin, J. Björkdahl, and M.W. Wallin,
“Strategies for business model innovation: How
firms reel in migrating value,” Long Range Plan-
ning, Vol. 51, No. 1, 2018, pp. 82–110. [Online].
https://www.sciencedirect.com/science/article/
pii/S0024630117302881

[35] F. Vendrell-Herrero, G. Parry, M. Opazo-Basáez,
and F.J. Sanchez-Montesinos, “Does business

202 Magnus Wilson et al.

model experimentation in dynamic contexts en-
hance value capture?” International Journal of
Business Environment, Vol. 10, No. 1, 2018,
pp. 14–34.

[36] D. Szopinski, T. Schoormann, T. John, R. Knack-
stedt, and D. Kundisch, “Software tools for busi-
ness model innovation: Current state and future
challenges,” Electronic Markets, Vol. 30, No. 3,
2020, pp. 469–494.

[37] B.W. Wirtz, Adaptation and Modification of
Business Models. Cham: Springer International
Publishing, 2020, pp. 227–238.

[38] H. Gebauer, M. Paiola, N. Saccani, and M. Ra-
paccini, “Digital servitization: Crossing the per-
spectives of digitization and servitization,” In-
dustrial Marketing Management, Vol. 93, 2021,
pp. 382–388. [Online]. https://www.sciencedirec
t.com/science/article/pii/S0019850120304855

[39] T. Moellers, L. von der Burg, B. Bansemir,
M. Pretzl, and O. Gassmann, “System dynamics
for corporate business model innovation,” Elec-
tronic Markets, Vol. 29, No. 3, 2019, pp. 387–406.

[40] C. Nailer and G. Buttriss, “Processes of business
model evolution through the mechanism of antic-
ipation and realisation of value,” Industrial Mar-
keting Management, Vol. 91, 2020, pp. 671–685.
[Online]. https://www.sciencedirect.com/scienc
e/article/pii/S0019850116302735

[41] T. Clauss, M. Abebe, C. Tangpong, and M. Hock,
“Strategic agility, business model innovation, and
firm performance: An empirical investigation,”
IEEE Transactions on Engineering Management,
2019, pp. 1–18.

[42] N. Schaffer, M. Pfaff, and H. Krcmar, “Dynamic
business models: A comprehensive classification
of literature,” in Thirteenth Mediterranean Con-
ference on Information Systems (MCIS 2019),
2019.

[43] N. Pratama and J. Iijima, “Value operation:
Linking value in new business model creation pro-
cess,” in 23rd Pacific Asia Conference on Infor-
mation Systems: Secure ICT Platform for the 4th
Industrial Revolution, PACIS, 2019, pp. 12–32.

[44] D.S. Cruzes and T. Dyba, “Recommended steps
for thematic synthesis in software engineering,”
in 2011 International Symposium on Empirical
Software Engineering and Measurement, 2011,
pp. 275–284.

[45] P. Runeson and M. Höst, “Guidelines for con-
ducting and reporting case study research in
software engineering,” Empirical Software Engi-
neering, Vol. 14, 2009, pp. 131–164.

[46] R.K. Yin, Applications of case study research.
Sage Publications, 2011.

[47] F. Adrodegari and N. Saccani, “A maturity
model for the servitization of product-centric
companies,” Journal of Manufacturing Technol-
ogy Management, 2020.

[48] T.C. Lethbridge, S.E. Sim, and J. Singer, “Study-
ing software engineers: Data collection tech-
niques for software field studies,” Empirical
software engineering, Vol. 10, No. 3, 2005,
pp. 311–341.

[49] B. Flyvbjerg, “Five misunderstandings about
case-study research,” Qualitative inquiry, Vol. 12,
No. 2, 2006, pp. 219–245.

[50] W. Reim, V. Parida, and D. Örtqvist, “Strategy,
business models or tactics – What is product-ser-
vice systems (PSS) literature talking about?” in
Proceedings of the International Conference on
Engineering Design, ICED, 2013, pp. 309–318.

[51] W. Reim, V. Parida, and D. Örtqvist, “Prod-
uct-service systems (PSS) business models and
tactics – a systematic literature review,” Journal
of Cleaner Production, 2014.

[52] H. Meier, R. Roy, and G. Seliger, “Industrial
Product-Service systems – IPS2,” CIRP Annals

– Manufacturing Technology, Vol. 59, No. 2, 2010,
pp. 607–627.

[53] D. Kindström, “Towards a service-based busi-
ness model – Key aspects for future competi-
tive advantage,” European Management Journal,
Vol. 28, No. 6, 2010, pp. 479–490.

[54] A. Zolnowski and T. Böhmann, “Business mod-
eling for services: Current state and research
perspectives,” in AMCIS 2011 Proceedings, 2011,
pp. 1–8.

[55] A. Bharadwaj, O.A. El Sawey, P.A. Pavlou,
N. Venkatraman, O.a. El Sawy, P.A. Pavlou,
and N. Venkatraman, “Digital business strat-
egy: Toward a next generation of insights,” MIS
Quarterly, Vol. 37, No. 2, 2013, pp. 471–482.

[56] H. Munir, K. Wnuk, and P. Runeson, “Open
innovation in software engineering: a systematic
mapping study,” Empirical Software Engineer-
ing, Vol. 21, No. 2, 2016, pp. 684–723.

[57] X. Koufteros, M. Vonderembse, and J. Jayaram,
“Internal and external integration for product
development: The contingency effects of uncer-
tainty, equivocality, and platform strategy,” De-
cision sciences, Vol. 36, No. 1, 2005, pp. 97–133.

[58] A. Chang and C.C. Tien, “Quantifying uncer-
tainty and equivocality in engineering projects,”
Construction Management and Economics,
Vol. 24, 2006, pp. 171–184.

[59] B.W. Boehm, “Software risk management: prin-
ciples and practices,” IEEE Software, Vol. 8,
No. 1, 1991, pp. 32–41.

Business Model Flexibility and Software-intensive Companies: Opportunities and Challenges 203

[60] M. Svahnberg, T. Gorschek, T.T.L. Nguyen, and
M. Nguyen, “Uni-repm: validated and improved,”
Requirements Engineering, Vol. 18, No. 1, 2013,
pp. 85–103.

[61] H. Chesbrough, “Business Model Innovation: Op-
portunities and Barriers,” Long Range Planning,
Vol. 43, No. 2–3, 2010, pp. 354–363.

[62] R.G. McGrath, “Business models: A discovery
driven approach,” Long Range Planning, Vol. 43,
No. 2–3, apr 2010, pp. 247–261.

[63] R. Kohavi, D. Tang, and Y. Xu, Trustworthy
online controlled experiments: A practical guide
to a/b testing. Cambridge University Press, 2020.

[64] R. Rohrbeck, L. Konnertz, and S. Knab, “Col-
laborative business modelling for systemic and
sustainability innovations,” International Jour-
nal of Technology Management, Vol. 63, No. 1/2,
2013, p. 4.

[65] OMG, Value Delivery Modeling Language Spec-
ification, v1.0. Object Management Group,
OMG.org, 2015, [Online; accessed 2018-08-08]
http://www.omg.org/spec/VDML/About-
VDML/.

[66] F. Fagerholm, A. Sanchez Guinea, H. Mäenpää,
and J. Münch, “The right model for continu-
ous experimentation,” Journal of Systems and
Software, Vol. 123, 2017, pp. 292–305.

[67] A. Fabijan, P. Dmitriev, H.H. Olsson, and
J. Bosch, “The evolution of continuous exper-
imentation in software product development:
From data to a data-driven organization at scale,”
in 39th International Conference on Software
Engineering (ICSE), 2017, pp. 770–780.

[68] S. Cavalcante, P. Kesting, and J. Ulhøi,
“Business model dynamics and innovation:
(re)establishing the missing linkages,” Manage-
ment Decision, Vol. 49, 2011, pp. 1327–1342.

[69] R. Casadesus-Masanell and J.E. Ricart, “From
Strategy to Business Models and onto Tactics,”
Long Range Planning, Vol. 43, No. 2–3, 2010,
pp. 195–215.

[70] Y.L. Doz and M. Kosonen, “Embedding strate-
gic agility: A leadership agenda for accelerating
business model renewal,” Long Range Planning,
Vol. 43, No. 2–3, 2010, pp. 370–382.

[71] S. Schneider and P.A.T. Spieth, “Business model
innovation and strategic flexibility: insights from
an experimental research design,” International
Journal of Innovation Management, Vol. 18,
No. 6, 2014, pp. 1–22.

[72] A. Ghezzi, “Revisiting business strategy under
discontinuity,” Management Decision, Vol. 51,
No. 7, 2013, pp. 1326–1358.

[73] A. Osterwalder and Y. Pigneur, Business model
generation: A handbook for visionaries, game
changers, and challengers. Hoboken, NJ: Wiley,
2010.

[74] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés,
and M. Hinchey, “An overview of dynamic soft-
ware product line architectures and techniques:
Observations from research and industry,” Jour-
nal of Systems and Software, Vol. 91, 2014,
pp. 3–23.

[75] H. Holmström Olsson, J. Bosch, and H. Alahyari,
“Towards R&D as innovation experiment systems:
A framework for moving beyond agile software
development,” in Proceedings of the IASTED In-
ternational Conference on Software Engineering,
2013, pp. 798–805.

[76] S. Marciuska, C. Gencel, X. Wang, and P. Abra-
hamsson, “Feature usage diagram for feature
reduction,” in International Conference on
Agile Software Development. Springer, 2013,
pp. 223–237.

[77] K. Wnuk, R.B. Svensson, and D. Callele, “The ef-
fect of stakeholder inertia on product line require-
ments,” in Second IEEE International Workshop
on Requirements Engineering for Systems, Ser-
vices, and Systems-of-Systems (RESS). IEEE,
2012, pp. 34–37.

[78] K. Pohl, G. Böckle, and F.J. van Der Linden,
Software product line engineering: foundations,
principles and techniques. Springer Science and
Business Media, 2005.

[79] S. Jansen, K.M. Popp, and P. Buxmann, “The
sun also sets: Ending the life of a software prod-
uct,” in Software Business, B. Regnell, I. van de
Weerd, and O. De Troyer, Eds. Berlin, Heidel-
berg: Springer, 2011, pp. 154–167.

[80] H.C. Lucas and M. Olson, “The impact of infor-
mation technology on organizational flexibility,”
Journal of Organizational Computing, Vol. 4,
1994, pp. 155–176.

[81] J. Barney, “Firm resources and sustained com-
petitive advantage,” Journal of management,
Vol. 17, No. 1, 1991, pp. 99–120.

[82] R. Sanchez and J.T. Mahoney, “Modularity, flex-
ibility, and knowledge management in product
and organization design,” Strategic Management
Journal, Vol. 17, 1996, pp. 63–76.

[83] D.J. Teece, G. Pisano, and A. Shuen, “Dy-
namic capabilities and strategic management,”
Strategic Management Journal, Vol. 18, 1997,
pp. 509–533.

[84] K.J.K. Mason and S. Leek, “Learning to Build
a Supply Network: An Exploration of Dynamic

204 Magnus Wilson et al.

Business Models,” Journal of Management Stud-
ies, Vol. 45, No. 4, 2008, pp. 774–799.

[85] D. Namiot and M. Sneps-Sneppe, “On micro-ser-
vices architecture,” International Journal of
Open Information Technologies, Vol. 2, No. 9,
2014, pp. 24–27.

[86] J. Bosch, “Achieving simplicity with the three-
-layer product model,” Computer, Vol. 46, No. 11,
Nov. 2013, pp. 34–39.

[87] J.C. Munson, “Software lives too long,” IEEE
Software, Vol. 15, No. 4, Jul. 1998, pp. 18, 20.

[88] Y. Jia and M. Harman, “An analysis and survey
of the development of mutation testing,” IEEE
Transactions on Software Engineering, Vol. 37,
No. 5, 2010, pp. 649–678.

[89] D. Romero and F. Vernadat, “Enterprise infor-
mation systems state of the art: Past, present
and future trends,” Computers in Industry,
Vol. 79, 2016, pp. 3–13.

[90] D. Olausson and C. Berggren, “Managing uncer-
tain, complex product development in high-tech
firms: In search of controlled flexibility,” R&D
Management, Vol. 15, 2010, p. 383–399.

[91] R. Capilla, J. Bosch, and K.C. Kang, Sys-
tems and Software Variability Management Con-
cepts, Tools and Experiences. Berlin, Heidelberg:
Springer, 2013.

[92] T. Magnusson and N. Lakemond, “Evolving
schemes of interpretation: investigating the dual
role of architectures in new product devel-
opment,” R&D Management, Vol. 47, 2017,
pp. 36–46.

[93] F. Laloux and K. Wilber, Reinventing Organi-
zations. Laloux, Frederic, 2014. [Online]. http:
//www.reinventingorganizations.com/pay-
what-feels-right.html

[94] D. Kahneman, Thinking, Fast and Slow. Farrar,
Straus and Giroux, 2011.

[95] D.P. Lepak, K.G. Smith, and M.S. Taylor, “In-
troduction to special topic forum value creation
and value capture: A multilevel perspective,”
Academy of Management Review, Vol. 32, 2007,
pp. 180–194.

[96] C. Curado, “Organisational learning and organ-
isational design,” The Learning Organization,
Vol. 13, No. 1, 2006, pp. 25–48.

e-Informatica Software Engineering Journal (eISEJ) is an international, open access, no authorship fees, blind peer-reviewed
journal that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and machine learning in software engineering.
The journal is published under the auspices of the Software Engineering Section of the Committee on Informatics of the
Polish Academy of Sciences and Wrocław University of Science and Technology.
Aims and Scope:
The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all areas of
software engineering research.
The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress is laid on empirical evaluation.
e-Informatica Software Engineering Journal is published online and in hard copy form. The on-line version is from the
beginning published as a gratis, no authorship fees, open access journal, which means it is available at no charge to the
public. The printed version of the journal is the primary (reference) one.
Topics of interest include, but are not restricted to:
— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Mining software repositories
— Search-based software engineering
— Multiobjective evolutionary algorithms
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
Important information: Papers can be rejected administratively without undergoing review for a variety reasons, such as
being out of scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods via
a structured abstract or the evaluation of the proposed solution (empirical evaluation is strongly suggested).
Funding acknowledgements: Authors are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the
collection, analysis and interpretation of data; in the writing of the paper. If the funding source(s) had no such involvement
then this should be stated as well.
The submissions will be accepted for publication on the base of positive reviews done by international Editorial Board
(https://www.e-informatyka.pl/index.php/einformatica/editorial-board/) and external reviewers. English is
the only accepted publication language. To submit an article please enter our online paper submission site (https:
//mc.manuscriptcentral.com/e-InformaticaSEJ).
Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

https://www.e-informatyka.pl/index.php/einformatica/editorial-board/
https://mc.manuscriptcentral.com/e-InformaticaSEJ
https://mc.manuscriptcentral.com/e-InformaticaSEJ

