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Abstract
Background: Non-Functional Requirements (NFR) have a direct impact on the architecture of the
system, thus it is essential to identify NFRs in the initial phases of software development. Aim: The
work is based on extraction of relevant keywords from NFR descriptions by employing text mining
steps and thereafter classifying these descriptions into one of the nine types of NFRs. Method:
For each NFR type, keywords are extracted from a set of pre-categorized specifications using
Information-Gain measure. Then models using 8 Machine Learning (ML) techniques are developed
for classification of NFR descriptions. A set of 15 projects (containing 326 NFR descriptions)
developed by MS students at DePaul University are used to evaluate the models.
Results: The study analyzes the performance of ML models in terms of classification and misclas-
sification rate to determine the best model for predicting each type NFR descriptions. The Naïve
Bayes model has performed best in predicting “maintainability” and “availability” type of NFRs.
Conclusion: The NFR descriptions should be analyzed and mapped into their corresponding
NFR types during the initial phases. The authors conducted cost benefit analysis to appreciate
the advantage of using the proposed models.

Keywords: requirement engineering, text mining, non-functional requirements, machine
learning, receiver operating characteristics

1. Introduction

Non-Functional Requirements (NFRs) are the
basic quality constraints which specify the oper-
ation of a system [1, 2]. NFRs go hand-in-hand
with the Functional Requirements (FRs) and
are highly essential to ensure the development
of an efficient and a reliable software system
that meets the customers needs and fulfills their
expectations [3]. Set of NFRs need to be cor-
rectly identified in the initial phases of Software
Development Lifecycle (SDLC) process as they
play a crucial role in the architecture and design
of the system which in turn affects the quality of
the system [4]. NFRs form the basis for architects

to create the technical architecture of the system.
This architecture of the system then acts a plat-
form in which the functionality of the system is
delivered [5]. Unfortunately, NFRs are discovered
in the later phases of software development. This
may be due the reason that some requirement
engineers tend to overlook NFRs failing to realize
their importance and thereby assume them to
be implicitly understood [6]. They do not elicit
NFRs in the Software Requirement Specification
(SRS) document as clearly as they state FRs, but
rather state NFRs in a very adhoc and random
fashion due to which the final SRS document is
organized by functionality with non-functional
requirements scattered throughout the document
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[7, 8]. Failure to identify and analyze NFRs in the
early phases can result in unclassified, incomplete
or conflicting NFRs, requiring costly rework in
later stages of the software development [5]. The
work in this paper focuses on mining the descrip-
tions of NFRs which are stated throughout the
requirement specification document in an adhoc
and random fashion and thereafter classify them
into one of the types of NFRs using a suitable
Machine Learning (ML) technique. In this work,
nine types of NFRs have been considered viz.
Availability (A), Look-and-Feel (LF), Legal (L),
Maintainability (MN), Operational (O), Perfor-
mance (PE), Scalability (SC), Security (SE) and
Usability (US). The work is based on extrac-
tion of relevant keywords from NFR descrip-
tions by employing a series of text mining steps.
Firstly, the NFR descriptions are pre-processed
to remove irrelevant words from the descriptions.
These are the stop words like prepositions, arti-
cles, conjunctions, verbs, pronouns, nouns, adjec-
tives and adverbs whose presence will not have
any impact on the performance of the prediction
models but will rather degrade their performance.
Once pre-processing is done, we need to find the
words which are relevant in describing the NFR
descriptions. One of the methods is to extract
the relevant words using fixed set of pre-defined
keywords available in the catalogues. These cat-
alogues contain a standardized set of keywords
specific to different types of NFRs. However, the
main problem of using this approach (standard
keyword method) is the difficulty of finding ac-
cepted and standardized catalogues for all the
types of NFR specified in the datasets [9]. Even
for the NFR types whose catalogues were avail-
able, it was observed that the keywords specified
in the catalogue for that particular NFR type
could not classify the NFR descriptions pertain-
ing to that NFR type accurately. This was ob-
served by the authors Cleland-Huang et al. [9]
who concluded that classification of NFRs based
the keywords extracted from the catalogues result
in unclassified, incomplete or conflicting NFRs.

In order to address this problem, the authors
in this paper are using a training set to discover
a set of keywords specific to each type of NFR.
Since the keywords in our study are extracted from

pre-categorized requirement specifications, there-
fore problem of finding accepted and standardized
catalogues for all the NFR types is removed.

These keywords are the weighted indicator
terms (specific to each NFR type) which are
extracted using Information-Gain (IG) measure.
IG measure extracts those keywords (also known
as indicator terms) from the specifications that
most accurately identify the target concept (NFR
type). For example, terms such as “authenticate”
and “access” represent strong indicator terms for
security NFRs as they most accurately define
security requirements as compared to other types
of requirements. IG measure works by associating
a weight to each of the word obtained after
pre-processing and then the top-N scoring words
are selected as the indicator terms. In our work,
the value of N is considered as 10 as the paper by
Cleland-Huang et al. [9] showed that good results
were achieved when top-10 words were considered
as compared to the results achieved when top-5
words or all the words were considered together.
Once the indicator terms for each NFR type
are identified, prediction models are developed
for the classification of future NFR descriptions
whose NFR type is not known. The authors in
this paper have used in total eight ML algorithms
viz. J48 decision tree (J48), Random Forest (RF),
Logitboost (LB), Adaboost (AB), Multi-Layer
Perceptron (MLP), Radial Basis Function net-
work (RBF), Bagging, Naïve Bayes (NB) for
predicting each type of NFR. The usage of large
number of ML algorithms allows the authors to
perform exhaustive comparison and evaluation.
The authors concluded the best ML model for
each NFR type which can be used by software
practitioners and researchers in classifying an
unknown NFR description into its respective
type. In addition to this, the authors have also
conducted cost benefit analysis to understand and
appreciate the advantage of using the proposed
models in contrast to not using the models in
terms of cost incurred in both the cases.

Thus, there are three main goals of this study
which we thrive to achieve:
1. To apply text mining steps to identify indica-

tor terms As discussed, top-10 indicator terms
for each NFR type are identified by following
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a series of text mining steps. This begins by
applying pre-processing steps to remove ir-
relevant words from the specifications and
thereafter applying IG measure to retrieve
significant words. IG measure works by asso-
ciating a weight to each of the word obtained
after pre-processing and then the top-N scor-
ing words are selected as the indicator terms
specific to each NFR type. These indicator
terms serve as independent variables used for
model prediction.

2. To develop machine learning models for each
type of NFR Corresponding to each NFR
type, a separate dataset was considered with
top-10 indicator terms of that particular NFR
type as independent variables and a binary
dependent variable with the value of 1 (if
NFR description belongs to that particular
NFR type) or 0 (if NFR description does be-
long to that particular NFR type). Eight ML
algorithms are applied to each dataset and
therefore eight different prediction models
were considered for each NFR type.

3. To conduct cost-benefit analysis Once the
prediction models are developed, it is very
important to analyze their benefits in terms of
the cost incurred. Thus, a cost-benefit analy-
sis is conducted to understand and appreciate
the advantage of using the proposed models
in contrast to not using the models in terms
of cost incurred in both the cases.
Empirical analysis is conducted using an open

source PROMISE dataset freely available at http:
//promisedata.org/repository. A set of 15 projects
made by MS students at DePaul University that
consisted of a total of 326 NFR descriptions cate-
gorized into nine types of NFR (“A”, “LF”, “L”,
“MN”, “O”, “PE”, “SC”, “SE”, “US”) were used
to evaluate the results. The performance of the
ML classifiers was compared and evaluated to find
out the ML classifier that best predicted the NFR
type using the measures derived from Receiver Op-
erating Characteristic (ROC) analysis viz. Area
Under the ROC Curve (AUC) and recall. The
results indicated the performance of NB classifier
has been best in predicting all the NFRs except SE.
Also from cost-benefit analysis, it was concluded
that the cost incurred without using our proposed

models is more than the cost incurred when using
the proposed models. Thus, we suggest that any
professional from the industry who would use our
models for classifying the NFRs into their types
would be in profit.

The paper includes in total eight sections. The
current literature has been provided in Section 2.
Section 3 explains the background of the research.
The methodology behind the research has been
highlighted in Section 4. The result analysis is
presented in Section 5 and Section 6 provides the
discussion of the results in terms of cost/benefit
analysis and how the work can be useful for the
industry practitioners. Section 7 provides threats
to validity. Finally, the paper is concluded in
Section 8 highlighting the future work.

2. Related work

The area of NFR classification is an emerging
area wherein a lot of research is still being
carried out. Different authors have employed
different techniques and methodologies in or-
der to classify the descriptions of NFRs into
their respective types. Table 1 summarizes the
work done in the area of NFR classification
with respect to types of NFR into which NFR
descriptions have been categorized, ML tech-
nique used to perform NFR classification, Natu-
ral Language Processing (NLP) techniques used
to pre-process the data and the dataset used
for conducting empirical validation. (The ab-
breviations and their full forms used in Ta-
ble 1 are – NB: Naïve Bayes; DT: Decision Tree;
SVM: Support Vector Machine; MNB: Multino-
mial Naïve Bayes; EM: Expectation Maximisa-
tion; DMNB: Discriminative MNB, LDA: Latent
Dirichlet Allocation; KNN: K-Nearest Neighbor;
RB: Rule-Based; HAC: Hierarchical Agglomer-
ative Clustering; ET: Extra Tree; LR: Logistic
Regression; NFR: Non-Functional Requirement;
FR: Functional Requirement; A: Availability;
LF: Look-and-Feel; L: Legal; MN: Maintainabil-
ity; O: Operational; PE: Performance; SC: Scal-
ability; SE: Security; US: Usability).

Till now, only a few authors have explored
this area and an efficient utilization of resources

http://promisedata.org/repository
http://promisedata.org/repository
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and manpower is required to devise new method-
ologies and techniques for classifying the NFRs.
The primary work in this area has been doneby
the authors Cleland-Huang et al. [9]. The au-
thors have used NFR-classifier which is based
on information retrieval approach. The method
is based on characterizing the different types
of NFR using the concept of keywords. These
keywords are used to detect requirements per-
taining to a particular type of NFR. The work
by the authors Hussain et al. [10] extended the
idea of Cleland-Huang et al. and showed that
the usage of linguistic knowledge is very helpful
in the classification. The work incorporates the
usage of a part-of-speech (POS) tagger. Apart
from this, the authors Gokyer et al. [11] have
used SVM algorithm in order to relate NFRs
in a textual data to the quality determining at-
tributes. This was accomplished with the help of
a knowledge base provided by an expert. Rash-
wan et al. [12] too used SVM algorithm for auto-
matic categorization of sentences into different
classes based on the field of ontology. Similar
work was done in the paper [13] that extracted
NFRs from textual documents and used the
extracted requirements to improve the descrip-
tions of NFRs supporting other Requirement
Engineering (RE) tasks. The papers by the au-
thors Casamayor et al. [14] performed classifica-
tion using a semi-supervised learning approach
which is based on a lesser number of require-
ments in contrast to the supervised approach.
The authors proposed a recommender system
based on Multinominal Naïve Bayes classifier
in combination with Expectation-Maximization
(EM) technique. Zhang et al. [15] incorporated
a SVM classifier and repeated the experiments
of Cleland-Huang et al. [9] again in 2011. They
have reported comparatively higher results of
precision, although lower results of recall than
Cleland-Huang et al. [9]. They have shown that
a model based on the individual words outper-
formed the models based on multi-words. The
paper by Slankas et al. [16] utilized a K-nearest
neighbor (KNN) supervised learning algorithm
for performing NFR classification and compared
its performance with SVM and Naïve Bayes tech-
niques. It was observed that SVM algorithm

performed better than Multinomial Naïve Bayes
classifier and KNN classifier outperformed opti-
mal Naïve Bayes classifier with a unique distance
metric. The authors Singh et al. [17] have in-
corporated rule-based classification technique in
order to identify and classify the requirement sen-
tences into NFR sub-classes using the concept of
thematic roles. PROMISE corpus and Concordia
corpus have been used to validate the results.
The authors Kurtanovic et al. [18] studied how
accurately the classification of requirements as
FRs and NFRs can be done with supervised ML
approach incorporating meta-data, lexical, and
syntactical features. Similar work was done by
the authors in their paper [19–24] which aimed
at identifying NFRs in the informal documents
like user comments, commit messages and in-
stallation manuals. Apart from this, few authors
[25–28] have primarily worked on the extraction
and classification of only the security require-
ments as these were considered the most signifi-
cant type of NFR essential for the development
of secure and reliable software.

The work in this paper is based on extraction
of relevant keywords from NFR descriptions by
employing a series of text mining steps and there-
after classify them into one of the nine types of
NFRs (“A”, “LF”, “L”, “MN”, “O”, “PE”, “SC”,
“SE”, “US”) using a suitable ML based prediction
model. These keywords (also known as indicator
terms) are extracted for each NFR type using IG
measure. Once the indicator terms for each NFR
type are identified, prediction models are devel-
oped for the classification of future NFR descrip-
tions whose NFR type is not known. In this study,
eight different prediction models (corresponding
to eight different ML techniques) were developed
for each type of NFR. Since there were nine
types of NFR considered in this work, therefore
a total of 72 prediction models were developed.
An extensive evaluation and comparison of these
72 models was performed with the aim to identify
best prediction model for each NFR type that
could accurately classify future NFR descriptions
whose NFR type is not known. The literature
shows (Table 1) that majority of the studies
have worked on very few classifiers (maybe two
or three). Most of the studies have used SVM and
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NB classifiers for developing prediction models.
The usage of large number of ML techniques
allows us to provide a fair evaluation and con-
clude the best prediction model that could most
accurately classify each type of NFR description.
Once we have found the best prediction model
corresponding to each type of NFR, we have also

performed cost-benefit analysis. This analysis
was done to understand and appreciate the cost
of using the proposed models vis-à-vis the cost
of not using the models. This analysis is very
important from industry point of view when the
models are required to be used in real sense. This
analysis is also missing in majority of the studies.

Table 1: Summary of the studies pertaining to NFR classification

S. No. Paper Types of NFR used
ML tech-
niques
used

NLP
technique
used

Dataset used

1 [9] A, LF, L, MN, O,
PE, SC, SE, US

NFR-Clas-
sifier

Stemming,
Stop-words
removal,
tokenization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 684 requirements specifications
(326 NFR + 358 FR).

2 [10] Not provided DT Stemming,
POS,
tokenization

Promise NFR dataset created by students of
DePaul University. It contains 15 projects con-
sisting of a total of 765 requirements specifi-
cations (495 NFR + 270 FR).

3 [11] PE, MN, US,
Integrity,
Portability,
Deployability,
Dependability

SVM Stemming,
POS

Web-based transactional applications imple-
mented at Cybersoft.

4 [14] A, LF, L, MN, O,
PE, SC, SE, US,
Portability, Fitness,
Functionality

MNB
coupled
with EM

Stemming,
Stop-words
removal, Nor-
malization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

5 [15] SE, PE, A, SC,
MN, L, US, O, LF,
Palm Operational,
Fitness

SVM Stemming,
POS,
N -gram,
Regular
Expression

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

6 [25] Security
requirements,
security-relevant
sentences and
security-related
sentences

NB tokenization Three industrial requirements documents
viz. Common Electronic Purse Specification
(ePurse), Customer Premises Network speci-
fication (CPN) and Global Platform Specifi-
cation (GP). Total number of requirements
is 124, 210, 176 for ePurse, CPN, GP with
number of security requirements being 83, 42,
63 for ePurse, CPN, GP.

7 [19] SE, MN, PE, US,
Integrity,
Portability,
Efficiency,
Reliability,

SVM,
NB,
MNB,
DMNB,
LDA

Stop-words
removal

Three different open-source, partially-commer-
cial database systems: (1) MySQL 3.23: con-
tains 320 KLOC of C and C++ source code.
Its source control history was used from 31
July 2000–9 August 2004. (2) MaxDB 7.500:

http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
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Table 1 continued

S. No. Paper Types of NFR used ML tech-
niques
used

NLP
technique
used

Dataset used

Interoperability,
Testability,
Traceability,
Accuracy,
Modifiability,
Modularity,
Correctness,
Verifiability,
Functionality,
Understandability,
Flexibility

contains 940 KLOC. Its source control history
was used from 29 June 2004–19 June 2006.
(3) PostgreSQL 7.3: contains 306 KLOC of
C code. Its source control history was used
from 9 May 2002–26 August 2004.

8 [12] SE, US, Efficiency,
Functionality,
Reliability

SVM Stemming,
tokenization

(1) Promise NFR dataset (http://promisedat
a.org/repository) created by students of De-
Paul University, contains 15 projects consist-
ing of a total of 684 requirements specifications
(326 NFR + 358 FR). (2) A manually anno-
tatedcorpus containing 6 types of requirement
documents, 4 are SRSs of different products
(online shopping center, student management
system, institute of space physics, hospital pa-
tient system), 1 supplementary specification
document, and 1 use case document. These
documents contain 3064 sentences, manually
annotated in four main classes (FR, External
and Internal Quality, Constraints and other
NFRs).

9 [16] A, SE, L, LF, MN,
O, US, Access
Control, Audit,
Privacy, Capacity,
Performance,
Recoverability,
Reliability

SVM,
KNN

Stop-words
removal,
POS,
Lemmatiza-
tion,
Dependency
parsing

A series of 11 documents related to Electronic
Health Records (EHRs) (https://github.c
om/RealsearchGroup/NFRLocator). For
requirement specifications, CCHIT Ambula-
tory Requirements, iTrust, and the PROMISE
NFR Data Set (http://promisedata.googleco
de.com) were used.

10 [20] Not provided SVM,
MNB

N -gram 2 specifications from Mercedes-Benz (automo-
tive industry).

11 [26] Confidentiality,
Integrity,
Identification,
Authentication,
Accountability,
Privacy Availability

SVM,
NB, KNN

tokenization 10,963 sentences in six different documents
from healthcare domain.

12 [29] Not provided SVM N -gram Specifications from Mercedes-Benz (automo-
tive industry).

13 [13] A, LF, L, MN, O,
PE, SC, SE, US,
Portability, Fitness,
Functionality

RB Stop-words
removal,
Lemmatiza-
tion,
Dependency
parsing

Promise NFR dataset created by students of
DePaul University, contains 15 projects con-
sisting of a total of 625 requirements specifi-
cations (370 NFR + 255 FR).

http://promisedata.org/repository
http://promisedata.org/repository
https://github.com/RealsearchGroup/NFRLocator
https://github.com/RealsearchGroup/NFRLocator
http://promisedata.googlecode.com
http://promisedata.googlecode.com
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Table 1 continued

S. No. Paper Types of NFR used ML tech-
niques
used

NLP
technique
used

Dataset used

14 [30] SE, PE, SC, US,
Reliability

KNN Not provided 2 case studies: 1st case study utilized the
Predictor Models in Software Engineering
(PROMISE) dataset, 2nd case study utilized
the European Union eProcurement System”s
26 FRs.

15 [31] SE, PE, L, A,
Safety, Privacy,
Accuracy,
Portability,
Reliability,
Interoperability,
Accessibility

K-means
cluster-
ing, HAC

Stemming,
Stop-words
removal,
Lemmatiza-
tion

Three experimental software Java systems
from different application domains viz.
SmartTrip (an Android mobile application),
SafeDrink with a mobile application interface,
BlueWallet (subscription-based Web service)

16 [27] Security
requirements of
type
Authentication,
Authorization,
Access control,
Cryptography-En-
cryption, Data
integrity

DT Stemming,
Stop-words
removal,
tokenization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 684 requirements specifications
(326 NFR + 358 FR). Out of 326 NFR speci-
fications, the total number of security require-
ment specifications is 58.

17 [28] Security
requirements of
type
Authentication,
Authorization,
Access control,
Cryptography-En-
cryption, Data
integrity

DT Stemming,
Stop-words
removal,
tokenization

Promise NFR dataset (http://promisedata.or
g/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 684 requirements specifications
(326 NFR + 358 FR). Out of 326 NFR speci-
fications, the total number of security require-
ment specifications is 58.

18 [17] Efficiency (Time
behavior, Resource
Utilization),
Functionality
(Suitability,
Accuracy, SE), US
(Operability,
Understandability,
Attractiveness)

RB Stemming,
POS,
tokenization

(1) Promise NFR dataset (http://promisedata.
org/repository) created by students of DePaul
University. It contains 15 projects consisting
of a total of 635 requirements specifications
(370 NFR + 265 FR). (2) A manually anno-
tated corpus containing 6 types of requirement
documents, 4 are SRSs of different products
(online shopping center, student management
system, institute of space physics, hospital
These documents contain 3064 sentences, man-
ually annotated in four main classes (FR, Ex-
ternal and Internal Quality, Constraints and
other NFRs).

19 [21] Reliability,
Portability, PE, US

NB, DT,
Bagging

Stemming,
Stop-words
removal,
Lemmatiza-
tion

Two popular Apps viz. Apple App (iBooks in
the books category) and Google Play (Whats-
App in the communication category). Total
21969 raw user reviews (6696 FRom iBooks
and 4400 FRom WhatsApp) were obtained.

http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
http://promisedata.org/repository
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Table 1 continued

S. No. Paper Types of NFR used ML tech-
niques
used

NLP
technique
used

Dataset used

20 [22] PE, US, Reliability,
Supportability,
Functionality

SVM,
NB, DT,
KNN

Stemming 40 Apps from the App Store falling into 10
categories (books, education, games, health,
lifestyle, navigation, news, productivity, travel
and utilities). A total of 932,388 reviews were
obtained.

21 [23] Reliability, PE,
Lifecycle,
Capability
Usability, System
Interface

SVM,
KNN

Lemmatiza-
tion

User requests of open source projects from
sourceforge.net, whose user base consists of
both software developers and ordinary soft-
ware consumers.

22 [18] PE, US, O, SE SVM Stop-words
removal,
POS,
Lemmatiza-
tion, N -gram

NFR dataset consisting of a total of 625
requirements specifications (370 NFR +
255 FR).

23 [32] A, MN, US, LF,
PE, SC,
Operability, Fault
Tolerance,
Portability, Legal
and Licensing

MNB,
LDA,
K-means,
HAC

POS,
Regular
Expression,
Entity
Tagging,
Temporal
Tagging

TERA Promise NFR dataset created by stu-
dents of DePaul University and was updated
in 2010. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

24 [24] MN, US, Reliability,
Efficiency,
Portability,
Functionality

LDA Stop-words
removal, Nor-
malization

Extracted posts (21.7 million) and comments
(32.5 million) of the Stack Overflow from
July 31, 2008 to September 14, 2014 provided
by the MSR (Mining Software Repositories)
challenge.

25 [33] A, L, LF, MN, O,
PE, SC, SE, US,
Fault tolerance,
Portability

Multi-
nomial
NB,
Bernoulli
NB,
Gaussian
NB, DT,
ET, ETs,
KNN,
Linear
LR, MLP,
SVM,
Label
Propaga-
tion,
Label
Spread

Stemming,
Stop-words
removal,
tokenization

TERA Promise NFR dataset created by stu-
dents of DePaul University and was updated
in 2010. It contains 15 projects consisting
of a total of 625 requirements specifications
(370 NFR + 255 FR).

sourceforge.net
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3. Background of the research

This section includes a brief overview of the ML
techniques used for classification along with the
description of performance evaluation measures
used for evaluating the performance of the pre-
diction models.

3.1. Overview of machine learning
techniques

From the literature survey (Table 1) it was ob-
served that majority of the authors have incorpo-
rated ML techniques for NFR classification which
fall under supervised learning approaches as com-
pared to the techniques which fall under unsu-
pervised learning approaches or semi-supervised
learning approaches. Supervised learning ML
techniques have accurately performed NFR clas-
sification producing promising results. Keeping
this in mind, we intended to work on supervised
ML techniques. The techniques under supervised
learning can be broadly categorized under the
following domains: Ensemble Learners, Neural
Networks, Bayesian Networks, and Decision Tree.
To have a fair evaluation of techniques under all
the domains, we selected 1 to 3 ML techniques
under each of the domains. In total, we compared
and contrasted eight different ML techniques, viz.
RF, LB, AB, Bagging (Ensemble learner), MLP,
RBF (Neural network), NB (Bayesian network)
and J48 (Decision tree). These techniques are
popularly used for binary classification in other
fields such medical diagnosis [34, 35] network
intrusion detection [36], credit card fraud detec-
tion [37], defect and change prediction [38, 39],
etc. and have shown promising results. Thus,
the authors want to explore them for identifying
the type of NFR description. A brief overview
of these ML techniques is presented in Table 2.
These ML classifiers are implemented using the
default control settings of an open source tool,
WEKA http://www.cs.waikato.ac.nz/ml/weka/.
The default control parameters for each of the
ML classifier are also provided in Table 2. We
have used the default settings and have not tuned
the parameters as over-fitting of the parameters
may become a threat to external validity.

3.2. Measures for evaluating models

Once the models are trained, testing is performed
to evaluate the performance of the models. The
performance of the models would be highly op-
timistic if the testing is performed on the same
dataset as the one on which training is performed.
Hence, we have used intra-validation technique
where the same dataset is partitioned into two
subsets, one of which is used for training, while
the other is used for testing. The intra-validation
technique used in this study is 10-cross validation
technique wherein the entire dataset (326 NFR
descriptions) is partitioned into 10 equally sized
parts (P1, P2,. . . , P10). As can be seen from the
Figure 1, for the first time, one part is used for
testing (P1), while remaining 9 parts (P2–P10)
are used for training the model [48]. The pro-
cedure is continued 10 times such that each in-
stance gets validated once and finally a single
estimate is produced by combining all the 10
results [49].

Figure 1. Procedure of 10-fold cross validation
technique

For evaluating the performance of the mod-
els, we need appropriate performance measures
which are suitable to be applied in the given
study. In this study, amongst a number of mea-
sures available, the authors choose to use two
performance measures, recall (also known as re-
call) and the area under the ROC curve (AUC).
The rationale behind using these performance
measures has been explained below. Recall is one
of the traditional measures which tells that out of
actual positive data, how many times the model
predicted correctly [50]. Another commonly used
traditional measure which is not used in this

http://www.cs.waikato.ac.nz/ml/weka/
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Table 2. Description of machine learning techniques and control parameters used in the study

ML
Technique

Description Parameter Settings

J48 decision
tree [40, 41]

It is an implementation of C4.5 decision tree algorithm used to
handle the classification problems. It generates a binary tree
which could be either pruned or unpruned. The pruned tree
does not have an influence on the performance of the model
while discarding the nodes and branches. It also reduces the
risk of overfitting to the training data.

Set confidence factor
as 0.25. Set minimum
number of objects in
leaves as 2 and number of
folds as 3. Set seed as 1.

Random
forest [42]

It is used for building a number of classification trees, thereby
leading to a forest. Each object which needs to be classified
acts as an input to the tree in the forest. The process of
classification is performed by each tree, and it is said that the
tree “votes” for that particular class.

Set the classifier as Deci-
sion Tree. Set maximum
depth as 0, number of fea-
tures as 0, seed as 1 and
number of trees as 100.

Bagging [42] In this technique, a sample of data is used to generate various
sub-samples of the data which are the training sets and used
for making the required predictions by developing the desired
model.

Set the classifier as Deci-
sion Stump or REPTree.
Set number of iterations
as 10, weight threshold
as 100 and seed as 1. No
resampling is used.

Logit-boost
[43]

In this technique, the regression technique is used as the base
learner and this is followed by performing additive logistic
regression. It is the most important type of the Boosting
technique.

Set the classifier as Deci-
sion Stump. Set number of
iterations as 10, number of
runs and seeds as 1 and
weight threshold as 100.
No resampling is used.

Ada-boost
[43]

This technique is based on combining different weak learning
techniques in order to improve the process of classification,
leading to improved results. This is done by first assigning
equal weights to all the instances present in the training set and
thereafter multiple rounds are conducted and in each round
the weights of the examples which have not been correctly
classified are increased. This is how the performance of a weak
learner is improved.

Set the classifier as De-
cision Stump. Set num-
ber of iterations as 10,
number of runs and seeds
as 1 and weight threshold
as 100. No resampling is
used.

Multi-Layer
Perceptron
[44]

In this technique, a set of input values are mapped to a set of
output values wherein learning is done using back-propagation.
Firstly the inputs are given to the network. Using the weights
applied on each layer and the inputs, the desired output of
the network is calculated. Then the error is computed which is
difference of the actual value of the output and the calculated
value. Based on this computed error value, the weights are
updated and accordingly the parameters of the network are
adjusted. To achieve the desired performance, this process is
repeated again and again.

Set number of hidden lay-
ers as a wildcard value “a”
= (no. of attributes + no.
of classes)/2. Set learning
rate as 0.3 and momen-
tum as 0.2. Set sigmoid
function for transfer.

Radial Basis
Function
network [45]

An artificial neural network having a single layer is called RBF
network. The activation function used here is the radial functions
which are applied to the inputs. These inputs are combined
with the weights to produce the desired output of the network.

Set number of clusters
as 2 and clustering seed
as 1.

Naïve Bayes
[46, 47]

This is one of the simplest classifier based on probability
wherein the approach for classification is based on Bayes” the-
orem. The most probable class for a new instance is found out
using this technique. A parametric model is used to generate
the test data. The Bayes” estimates for the model parameters
are calculated using the training data.

Set kernel estimator as
false. Set supervised dis-
cretization as false.
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study is precision. Precision tells that when the
model predicts something positive, how many
times they were actually positive. Mathemati-
cally, recall and precision are defined as follows:

Recall = TP
TP + FN

Precision = TP
TP + FP

where, TP (True Positive): When the document
actually belongs to a category “A” (positive)
and is predicted by the model to be in category
“A” (positive), FN (False Negative): When the
document actually belongs to a category “A”
(positive) and is predicted by the model in cat-
egory “Not A” (negative), FP (False Positive):
When the document actually belongs to a cate-
gory “Not A” (negative) and is predicted by the
model to be in category “A”. We have focused
on recall and did not use precision because of
the following two reasons:
1. In this study, FN is more significant than FP

and as a result FN cannot be ignored. If we
cannot ignore FN , then we have to take into
account recall measure. Let us understand
why recall is more important than precision
in this study. FN occurs when a document is
predicted by a model to be in category “Not A”
when it actually belongs to category “A”. FP
occurs when a document is predicted by the
model to be in category “A”, when it actually
belongs to category “Not A”. Now when a FN
occurs, a document which actually belongs to
category “A” is ignored by the stakeholders
of the software because it is predicted to be in
category “Not A”. This may result in delivery
of poor quality software and may have serious
implications on the industry in terms of its
reputation in long term. However, when a FP
occurs, some extra resources of the industry
(in terms of time, money and manpower) may
be utilized as the document actually belongs
to a category “Not A” (negative) and is pre-
dicted by the model to be in category “A”.
Clearly, FN holds a more significant position
as releasing poor quality software is more dis-
astrous as compared to utilization of some

extra resources. Thus, in this study, we have
reported recall and did not consider precision.

2. Moreover, the datasets (9 datasets with bi-
nary dependent variable formed from a single
dataset) used in this work for model prediction
are imbalanced where the number of instances
belonging to negative class is more than the
number of instances belonging to the positive
class. Studies in literature have criticized the
use of precision when the models are validated
using imbalanced datasets [51, 52].

Instead, to handle the imbalance nature of
the datasets, we have used an effective perfor-
mance measure known as Area Under ROC
Curve (AUC). ROC curve is a plot of recall
(true-positive) on the y-coordinate versus its
1-specificity (false positive) on the x-coordinate.
It is used to measure the accuracy of the model
and its values lie in the range of 0 to 1, where
an AUC value of 1 indicates the best prediction.
When the data is imbalanced, the model is biased
towards the majority class while the minority
class is predicted with less accuracy. To handle
this, studies [51, 53, 54] propose the use of AUC
as it is insensitive to class distribution changes.
In other words, it is robust to imprecise class
distribution and misclassification costs [55].

4. Methodology behind the work

This section discusses the methodology incorpo-
rated to accomplish the classification of NFRs.
Figure 2 depicts three steps used to develop the
predictive models. The steps have been explained
in the following subsections.

4.1. Gathering of NFR descriptions

The dataset used in this work for empirical anal-
ysis was the same dataset which was used by the
authors Cleland-Huang et al. [9]. This dataset
consist of a set of 15 projects which were made
by MS students at DePaul University available at
the open source PROMISE software engineering
repository http://promisedata.org/repository.
These projects contained a total of 326 NFR
descriptions and 358 FR descriptions. These

http://promisedata.org/repository
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Figure 2. Framework used for classifying NFR descriptions

Figure 3. Percentage of requirements belonging to each type of NFR

326 NFR descriptions have been categorized into
nine types of NFR viz. availability, look-and-feel,
legal, maintainability, operational, performance,

scalability, security, and usability. The percent-
age of NFRs belonging to each NFR type is
shown in Figure 3.
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4.2. Application of text mining
techniques

This step concerns with the analysis of NFR
descriptions to identify significant keywords (in-
dicator terms) pertaining to each type of NFR.
326 NFR descriptions were extracted from the
requirement specification documents and applied
to a series of text mining steps. Figure 2 demon-
strates the steps of text mining which has been
explained below:
1. Pre-processing: Each document is represented

using Bag of Words (BOW) representation
method in which a document is considered to
be a collection of thousands of words which
occur in it at least once. Many of these words
are not relevant for the learning task and
their usage can degrade the performance of
a classifier. Thus, a series of preprocessing
tasks like tokenization, stop-words removal
and stemming are required in order to remove
the irrelevant words from the document. Text
mining process begins by first converting the
entire document in the form of tokens, i.e.,
a set of words. This is known as tokenization.
This is followed by removing the words from
the document that do not add any meaning
to the data (stop words like prepositions, arti-
cles, conjunctions, etc.). Finally, stemming is
performed [56]. Instead of stemming, another
popular technique which could be used is
lemmatization. However, we preferred stem-
ming over lemmatization as the computation
time involved in stemming is lesser as com-
pared to lemmatization which is useful incase
of large datasets and long texts.

2. Feature-Selection: Once pre-processing is per-
formed, set of relevant words called indicator
terms need to be identified specific to each
type of NFR. In this work, Information-Gain
(IG) measure has been used as the feature
selection method. The working of IG measure
is based on finding a collection of words from
the document that best identify the target
concept (NFR type) [57]. It is based on the
concept of entropy deduction which occurs
when the dataset is split on an attribute [57].
In other words, IG is the amount of infor-

mation that is gained by evaluating the IG
value of each attribute in the dataset. It is
defined as the difference of the entropy of the
dataset before the split and the entropy of the
dataset after the split. Entropy of the entire
dataset determines the amount of uncertainty
in the information that needs to be assessed.
IG measure works by associating a weight
to each of the word obtained after pre-pro-
cessing and then the top-N scoring words are
selected as the indicator terms. In our work,
the value of N is considered as 10 as the
paper by Cleland-Huang et al [9] showed that
good results were achieved when top-10 words
were considered as compared to the results
achieved when top-5 words or all the words
were considered together. Table 3 depicts the
top-10 indicator terms in decreasing order
of IG measure, corresponding to each of the
nine NFR types.

3. Vector Space Model: Once feature selection
has been done using IG measure, we will
have total number of N indicator terms
which can be represented as t1, t2, . . . , tN .
Each ith document is then represented as
a N -dimensional vector consisting of N val-
ues written as (Xi1, Xi2, . . . , XiN ). Here, Xij

is a TF-IDF (Term Frequency Inverse Docu-
ment Frequency) weight measuring the impor-
tance of the jth term tj in the ith document.
The complete set of vectors corresponding
to all the documents under consideration is
called a Vector Space Model (VSM).

4.3. Development of prediction models

Once the indicator terms for each NFR type
are identified, prediction models are developed
for the classification of future NFR descriptions
whose NFR type is not known. As depicted in
Figure 4, nine datasets are developed correspond-
ing to each NFR type from an initial dataset.

This initial dataset is the original NFR docu-
ment that consists of 326 NFR descriptions belong-
ing to one of the nine NFR types. Each dataset has
the total number of instances as 326 with top-10 in-
dicator terms of that particular NFR type as inde-
pendent variables and a binary dependent variable.
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Table 3. Top-10 indicator terms specific to each NFR type sorted by IG measure

Rank A LF L MN O PE SC SE US

1 achiev simul regul updat environ second simultan access easi
2 hour ship compli mainten interfac respons handl author train
3 day sound disput chang window time year ensur understand
4 pm interfac legal nfl server longer capabl authent intuit
5 time appear rule season user minut support prevent instruct
6 long appeal histori releas web return number allow select
7 onlin shot requir integr establish fast expect logon realtor
8 avail color complianc code oper flow concurr secur learn
9 technic compli conform pattern second add increas polici symbol
10 year access standard offer custom prepaid launch malici natur

These top-10 indicator terms (extracted using IG
measure) specific to each NFR type are shown in
Table 3. Dependent variables will have the value of
1 or 0 depending on the type of NFR. For instance,
dataset 1 is pertaining to “A” NFR type, so it will
have the value of the dependent variable as 1 for all
the NFR descriptions pertaining to “A” NFR type
and the value of 0 for all other remaining NFR
descriptions. Corresponding to each of the nine
datasets, 8 prediction models are developed by
employing 8 ML techniques (J48 decision tree, RF,
Logitboost, Adaboost, MLP, RBF network, Bag-
ging, NB) on each of the datasets. These prediction
models can be used for the classification of future
NFR descriptions whose NFR type is not known.

5. Result analysis

This section presents the results of eight different
ML techniques when applied to nine different mod-
els developed with respect to their corresponding
NFR types. The performance measures which
have been used in evaluating the performance of
these ML techniques are AUC and recall.

In this section, we will broadly discuss the
following two Research Questions (RQs):
RQ1: Which ML technique is best for predicting
each type of NFR such as performance, security,
look-and-feel, etc.?
RQ2: Which NFR has been best predicted in
terms of classification and misclassification rate?

Figure 4. Process involved in NFR classification
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Figure 5. Graphical representation depicting the performance of ML techniques
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5.1. Analysis of RQ1

To address the RQ1, the performance of the ML
classification models to predict each category of
NFR is depicted in Figure 5. Figure 5 depicts the
comparative analysis of the ML models and de-
termines how well these models have performed
in predicting different types of NFR. The data
values corresponding to each figure are shown
in appendix (Tables A1–A4). We can observe
from the Figure 5 that different NFR types re-
sponded differently to each classification method.
For example, the performance of “A” NFR in
terms of AUC when predicted by different classi-
fiers is quite different, ranging from 0.65 to 0.97.
Similar observations can be seen with all other
NFR types. In other words, if a particular ML
model has given a high value of AUC in pre-
dicting a particular type of NFR, it may not be
necessary that it is also giving high accuracy in
predicting other NFR types. This may be due to
the reason that each NFR is very different from
the others and thus, the top-10 words selected
corresponding to each NFR are very different.
Since the classification models are based on these
top-10 words, the same classifier is performed
differently on different NFRs. Given this scenario,
the identification of a suitable classifier to predict
each type of NFR will be highly beneficial for
researchers and academicians. Figure 5 shows
that the NFR “A” has been best predicted by
NB giving AUC values as high as 0.97 and recall
value as 90.0%. This is followed by RF giving
AUC of 0.91 and recall as 85.0%. The graphs
show that all NFRs except “SE” are best pre-

dicted by NB classifier. NB gives the highest
AUC of 0.97, 0.83, 0.97, 0.95, 0.81, 0.86, 0.88,
and 0.77 for “A”, “LF”, “L”, “MN”, “O”, “PE”,
“SC” and “US” types of NFR, respectively. Their
corresponding recall values are also high in the
majority of the cases. The probable reason of NB
performing well could be due to its assumption
of attributes to be independent given the value
of class variable [40]. Moreover, NB does not fit
nearly as much, so there is no need to prune
or process the network. For “SE” NFR, MLP
has given the highest AUC of 0.85. After NB
technique, RF and RBF techniques have shown
the second highest AUC for the majority of the
NFRs. The AUC of RF and RBF lies in the
range of 0.67 to 0.91 and 0.72 to 0.92, respec-
tively. The performance of the bagging technique
can be considered as an average in predicting the
NFR descriptions of all types with the values of
AUC lying in the range of 0.74 to 0.85. Similar
performance has been depicted by LB and AB
techniques. The performance of these techniques
has been overall good in predicting the NFR
descriptions with the values of AUC lying in the
range of 0.73 to 0.88 corresponding to LB and
the AUC value falls in the range of 0.72 to 0.83
with respect to AB. On the contrary, J48 decision
tree technique has not performed well in classi-
fying the NFR descriptions into their respective
types as the highest value of AUC obtained is
0.75 with 66.0% recall value. J48 has shown the
lowest performance (in terms of both AUC and
recall) in predicting all types of NFRs. From
the above analysis, it is summarized that the
performance of NB has outperformed all other

Figure 6. Bar graph showing comparison amongst NFRs in terms of AUC and recall
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Table 4. Number of misclassifications of NFRs

NRF Type Misclassifications Misclassifications
done by ML model

False Negative False Positive Total
(FN ) (FP) (FN+FP)

Availability (A) 7 (2.01%) 8 (2.30%) 15 (4.32%) NB
Legal (L) 8 (2.30%) 5 (1.44%) 13 (3.74%) NB
Look-and-Feel (LF) 8 (2.30%) 22 (6.34) 30 (8.64%) NB
Maintainability (MN) 4 (1.15%) 5 (1.44%) 9 (2.59%) NB
Operational (O) 15 (4.32%) 36 (10.37%) 55 (15.85%) NB
Performance (PE) 25 (7.20%) 7 (2.01%) 32 (9.22%) NB
Scalability (SC) 15 (4.32%) 8 (2.30%) 23 (6.62%) NB
Security (SE) 8 (2.30%) 35 (10.08%) 43 (12.39%) MLP
Usability (US) 1 (0.28%) 29 (8.35%) 30 (8.64%) NB

classifiers and it is overall best in predicting the
NFRs. We suggest researchers and academicians
to use NB models for predicting the NFRs.

5.2. Analysis of RQ2

To address RQ2, NFRs are compared across each
other by comparing the classification and misclas-
sification ability of the best ML model for each
type of NFR found in RQ1. The classification
ability of the ML model is found by comparing
the NFRs using AUC and recall values. In this
study, the keywords form the basis for the identi-
fication of NFR documents into their respective
types of NFRs. Thus, the performance of the
ML model also depends on the values of these
keywords. The NFRs which is predicted with
high AUC and recall implies that the keywords
pertaining to that NFR type are of great signif-
icance for the particular ML model to perform
classification. It also implies that the dataset in
turn consists of a good number of these require-
ments and thus the ML models are trained well
on such datasets.

Whereas, the misclassifications by the ML
model are found by determining the number of
False Negative (FN ) and False Positive (FP)
of each type of NFR. As we have discussed in
Section 3.2, FN occurs when the document actu-
ally belongs to a category “A” (positive) and is
predicted by the model in category “Not A” (neg-
ative). Whereas, FP occurs when the document
actually belongs to a category “Not A” (negative)

and is predicted by the model to be in category
“A”. It is also discussed in Section 3.2 that FN is
more significant that FP and thus, a model with
lower FN is more desirable. The classification
ability of the best ML model in predicting each
type of NFR can be seen from Figure 6. On the
other hand, the number of misclassifications done
by the best ML classification model for each type
of NFR is shown in Table 4. Table 4 shows the
misclassifications for each type of NFR in terms
of number of FN and FP along with their per-
centages. It can be seen from Figure 6 that “A”,
“L” and “MN” (in this order) have shown high
AUC values, followed by “PE”, “SC” and “SE”.
High recall values are shown by “MN”, “L”, and
“A” (in this order). Thus, we can say that overall
(taking AUC and recall together) “L” has been
best predicted amongst all NFRs. This might
be due to the reason that the “L” type of NFR
is comparatively easy to understand and collect
and thus, the data consisted of a good number of
correctly elicited requirements pertaining to this
NFR. In addition to this, Table 4 shows that only
13 “L” type NFRs are misclassified by NB model
which is amongst the lowest compared to other
misclassification rates. However, amongst these
13 misclassifications, there are more number of
FN than FP, which is not desirable. Hence, such
models may not be used for future unknown pre-
dictions. In contrast, the misclassification rates
to predict “Ă” and “MN” type of NFR are also
low (4.32% and 2.59%, respectively). “MN” in
fact has been least misclassified amongst all the
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NFRs. Also, the number of FN is less than FP
for both “A” and “MN”. Thus, overall, we can
say that NB model has performed best in pre-
dicting “MN” and “A” types of NFRs when both
classification and misclassification are taken to-
gether. The NFR which is predicted with lowest
AUC and recall is “US” as can be seen from
Figure 6. It can also be seen from Table 4 that
30 “US” type NFR have been misclassified which
is amongst the highest. NB has given the highest
misclassification rate (15.85%) for “O” type of
NFR, implying that 55 “O” types of NFRs have
been misclassified as some other NFRs. In terms
of AUC and recall also “O” has been predicted
with low values. The possible reason of misclas-
sification may be due to the ambiguities caused
by the indicator terms (keywords). These key-
words form the basis for the identification of NFR
documents into their respective types of NFRs
and hence need to be carefully analysed to avoid
misclassification. However, it has been observed
that some of the NFR specifications of different
NFR types have been described by the same
set of keywords. In other words, some keywords
tend to occur across multiple requirements of
different NFR types. This gives rise to ambigui-
ties, thus leading to false classification. Similar
observations were given by Cleland-Huang et al.
[9] and Sharma et al. [5]. Let us understand this
with the help of a suitable example. Consider the
keyword “colour” which is an indicator term of
look-and-feel NFR. Presence of the term “colour”
in the requirement sentence “The application
shall match the colour of the schema set forth by
Department of Homeland Security” clearly shows
that the requirement is about look-and-feel NFR.
However, the presence of the term “colour” in the
requirement sentence “The list of dispute cases
must be colour coded for easy identification of
dispute cases based upon the dispute case status”
does not necessarily represent any look-and-feel
NFR, but rather represent “usability” NFR. The
hint to identify look-and feel type NFR is the
presence of other terms/patterns in the require-
ment sentence. For example, in the first sentence,
the term “match” puts a constraint on “colour
of the schema”. However, in the second sentence,
no such constraint is there to guarantee that

it is a look-and-feel NFR. Thus, identification
of the NFR using keywords may lead to false
classification and a detailed analysis of semantic
patterns and structure of NFR descriptions could
be done to improve the results. Thus, future work
will therefore investigate the possibility of using
categories of indicator terms or extended training
to improve these retrieval results.

5.3. Comparison with state-of-art

In this section, we discuss the implication of
the results where we provide important insights
inferred. We have compared our results to the
state of the art [9, 12] and have qualitatively
examined the wrongly classified cases to gener-
ate some useful insights. We have also discussed
what could be done which may lead to improved
performance of the proposed models.

The comparison in terms of recall values is
shown in Table 5. For the purpose of comparison,
we have considered the highest value of recall given
by the different ML models for predicting each
type of NFR. The bar chart in Figure 6 shows the
highest recall value (given by different ML models)
for each type of NFR. The authors, Rashwan et
al. (2013) [12] have used the same dataset as used
in our study and have classified the NFR descrip-
tions using SVM classifier. From Table 5, it can be
clearly seen that the prediction models proposed
in this study have classified NFR descriptions of all
types with higher recall values than the model de-
veloped by Rashwan et al. [12] using SVM classifier.
This is despite the fact that SVM classifier is one
of the most popularly used ML techniques in the
field of NFR classification as can be seen from the
literature survey (Table 1). We can even observe
from the table that for some of the NFR types, viz.
“MN” and “SC”, the model of Rashwan et al. [12]
has given extremely low values of recall (below 0.5).
A recall value of 0.5 means that for every correct
prediction, the next prediction is incorrect. There
is no practical usage of such classifiers and they are
known as random classifiers. The study [12] has
shown that the SVM classifier has performed even
worse than a random classifier for “MN” and “SC”
NFR types. On the contrary, in this study, “MN”
has been predicted with the highest recall value
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Table 5. Comparison with state-of art

NRF Type Recall (State-of-Art) Recall (Our Model)Cleland, Huang et al. [9] Rashwan et al. [12]

Availability (A) 0.89 0.66 0.90
Legal (L) 0.70 0.61 0.92
Look-and-Feel (LF) 0.51 0.63 0.76
Maintainability (MN) 0.88 0.41 0.93
Operational (O) 0.72 0.66 0.75
Performance (PE) 0.62 0.70 0.83
Scalability (SC) 0.72 0.38 0.86
Security (SE) 0.81 0.70 0.81
Usability (US) 0.98 0.62 0.68

of 0.93 amongst all other NFRs. Similar observa-
tions are made when the recall values of NFRs
in this study are compared with the recall values
obtained in another study by Cleland-Huang et al.
[9]. Table 5 shows that the recall values of all NFRs
except “US” are higher than the recall values ob-
tained in [9]. Thus, overall we can conclude that
the results in this study are higher than the results
obtained in both the compared studies [9] and [12].

Next, we analyze the NFR type which has
been predicted with the lowest recall value in
this study. As can be seen from Table 5, “US”
NFR type has been predicted with the lowest
recall.This might be due to the reason that NFR
descriptions pertaining to “US” NFR type may
be comparatively difficult to understand and col-
lect. This is also evident from the dataset used
in this study which shows that there are only 3%
of NFR descriptions pertaining to “US” type of
NFR. This low percentage of “US” type NFR
descriptions give a low value of recall. Another
implication which can be drawn from our results
is that our models have not shown exceptional
performance with respect to few of the NFR types.
This might be because of the reason that NFR
identification was done on the basis of indicator
terms (keywords). In other words, the indicator
terms form the basis of the classification of an
unknown NFR type into its correct type. However,
it has been observed that some keywords tend
to occur across multiple requirements of different
NFR types, leading to false classification. Similar
observations were given by Cleland-Huang et al.
[9] and Sharma et al. [5]. The illustration to explain
this has been given in Section 5.2 (last paragraph).

6. Discussion

This section provides a discussion of the results
in terms of cost/benefit analysis and how the re-
sults retrieved from this study can be useful for
industry practitioners. The work in this paper is
concerned with the development of nine different
classification models specific to each type of NFR
with the aim to classify NFRs into the respective
types based on their descriptions specified in the
requirement specification document. During the
elicitation process, requirements analysts may
generate large amounts of unstructured SRS doc-
uments consisting of the requirement specifica-
tions being scattered throughout the document
in a random and adhoc fashion. The descriptions
are extracted from the document and applied to
a series of text mining steps to retrieve indica-
tor terms specific to each NFR, leading to the
detection and classification of NFR in the initial
phases of SDLC process.

6.1. Analyzing returns on investment

We conducted cost-benefit analysis to evaluate
the effectiveness of prediction models used for
predicting the type of NFRs. The result section
(Section 5) concludes the best ML technique for
predicting each type of NFR amongst the various
ML techniques used. In other words, we suggest
that researchers, practitioners, and academicians
may use those ML techniques for predicting the
required NFR type. In this section, we discuss
the cost of using the proposed model and the
cost of not using the proposed model.
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To calculate the cost of the model, we have
considered a cost matrix having the value of 1
unit for false positives and false negatives (in-
correct predictions), whereas 0 unit for true pos-
itives and true negatives (correct prediction).
The values of 1 unit and 0 unit for incorrect and
correct decisions, respectively, are considered as
it is well understood that one may need to pay
the price when the model takes wrong decisions
while there is no cost involved when the model
takes correct decisions. Therefore, the cost of
using the model is calculated using the formula:
(No. offalsepositives×1)+(No. offalsenegatives×
1). To conduct the cost-benefit analysis, the mod-
els are run at different threshold values and the
performance of the models is analysed through
the confusion matrix at each threshold value.
The cost of the model, measured in terms of
false positives and false negatives changes as the
threshold changes. The minimum cost obtained is
considered as the cost of the classification model
(shown in Table 6). This cost is compared to
the cost incurred without using the model. The
cost incurred without using the model is found
by selecting the same number of instances at
random [58]. The difference between the values
of the cost function by random selection and
the value of the cost from the model is called
gain. The Gain can be interpreted as the profit
obtained by using the classification model in-
stead of random selection of the same number of
instances. We can observe from Table 6 that in
all the cases, the cost incurred without using the
model is more than the cost incurred by using the
proposed model. In other words, we suggest that
any professional from the industry who would
use our model for classifying the NFRs into their
types would be in profit from the gain as shown
in Table 6.

For the purpose of demonstration, a plot
of “cost/benefit curve” and “threshold curve”
is depicted for MLP model used for predicting
“SE” type of NFR. We have shown the plot cor-
responding to MLP model as it has given the
highest gain of 69 units. Likewise, we can draw
for all other models and infer the similar mean-
ing. The “cost/benefit curve” is a plot of sample
size (part of selected samples) on X-axis and

cost/benefit on the Y -axis [59]. The “threshold
curve” is a plot of true positive rate on Y -axis
and sample size on X-axis. Threshold curve cor-
responds to the part of the selected instances
(“Sample Size”). In other words, the threshold
curve depicts the dependence of the part of “pos-
itive” samples retrieved during virtual screening
upon the part of the samples selected from the
whole dataset used for screening. It should be
noted that only those samples are selected during
virtual screening, for which the estimated prob-
ability of being “positive” exceeds the chosen
threshold. The “cost/benefit curve” in Figure 7
shows that the minimum cost is 34 which is
increasing reaching the maximum value of 283.
The cross symbol denoted by “X” denotes the
sample size retrieved during virtual screening.
This sample size is important as we take the
same number of instances to calculate the cost
incurred without using the model. Similar infer-
ences can be drawn for all other “cost/benefit
curves” and “threshold curves”.

6.2. Implications from industry viewpoint

The results of this work will be of interest to
researchers as well as practitioners from the in-
dustry, who are interested in finding the type
of NFR based on their descriptions in the early
phases of software development, thus improving
software quality. Timely identification of quality
requirements would be of great benefit to the soft-
ware developers from the industry as these quality
requirements play a critical role in the design and
architecture of the system. The architecture of the
system built acts as the scaffolding in which the
functionality of the system is delivered, thus ensur-
ing that the system delivered meets the customer’s
functional expectations and needs. Consider a sit-
uation where a NFR remains undiscovered or is
not elicitated properly during the early phase of
software development, and is discovered at the
later stages of development or when the software
is released. In such a situation, the entire techni-
cal architecture has to be redesigned, leading to
the wastage of limited resources in terms of time,
money, and manpower [60, 61]. Thus, to avoid this
situation, the models proposed in this study can
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Table 6. Cost incurred with/without using proposed models

NRF Type Proposed Cost Cost Gain Profit/LossML Model of the Model without Model

Availability NB 12 41 29 Profit
Look-and-Feel NB 24 59 36 Profit
Legal NB 10 25 15 Profit
Maintainability NB 9 27 19 Profit
Operational NB 45 99 55 Profit
Performance NB 28 80 52 Profit
Scalability NB 21 28 7 Profit
Security MLP 34 103 69 Profit
Usability NB 30 85 55 Profit

Figure 7. Cost/benefit curve

be used in the early phases for the identification
and classification of NFRs. When the software
is released and the customer finds that all his
requirements (both functional as well as nonfunc-
tional) are met, the customer feels satisfied and
happy. This leads to the increasing the reputation
and status of the software organization (in which
the software is developed) in the market. Thus,
customer satisfaction which is of utmost impor-
tance in today’s scenario is met. Furthermore,
practitioners from industry will be able to detect
and classify NFRs from a previously uncatego-
rized requirement specification in an automated
way, thus avoiding the need for manual evaluation
which like all human activities has a tendency to
be error prone. It will also help researchers from
the industry to extract viewpoints for different
NFR qualities of interest. For example, a security
analyst could issue a request to retrieve all descrip-
tions related to security issues, or a GUI designer
could issue a request to retrieve information about
stakeholders” usability or look-and-feel concerns.

Thus, we have seen how industries can use
the proposed models for identifying the NFRs

and predicting the unknown NFR with its NFR
type. Instead of using the proposed models, the
identification of NFRs can also be done manually
with the help of a human analyst. We have briefly
discussed the effort required to conduct the work
manually and have shown that the manual iden-
tification and prediction of NFRs is not feasible.

Human analyst can be considered as the re-
quirement engineers in this study. Since the SRS
documents are large enough and the NFRs are
scattered throughout the document, it is very dif-
ficult or not feasible for the requirement engineers
(human analyst) to perform the task of identify-
ing the NFRs manually. Thus, this motivated the
authors to automate this process with the help
of algorithms and tools. This automation is done
with the help of text mining techniques, which
are used for extracting useful information (in
the form of indicator terms specific to each NFR
type) from a large number of documents (a large
document corpus) without requiring humans to
actually read and summarize the text. The au-
tomation of identification and classification of
NFRs broadly consists of the following steps:
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1. Use of text mining steps to retrieve the in-
dependent variables: A series of text min-
ing steps were applied on the NFRs descrip-
tions to retrieve the independent variables
(indicator terms). These steps begin with
pre-processing (tokenization, stop words re-
moval, stemming) followed by application of
feature selection method and finally apply-
ing TF-IDF weighting. Each of these steps
can be studied in detail from Section 4.2. In
this work, a dataset consisting of a total of
326 NFR descriptions which are categorized
into 9 types of NFR was considered. For each
type of NFR, indicator terms (top-10 words)
were retrieved. So, we had to run our text
mining module nine number of times and each
time the above steps of text mining were done.
An automated text mining module takes as
input all the 326 NFR descriptions at a time
which had not been the case if it was done
by human analyst. Text mining steps had to
be applied to each of the 326 NFR descrip-
tions individually if it was done manually by
human analyst. The same procedure had to
be done 9 times for each NFR type. This
is humanly impossible as each of the above
text mining steps is complex in nature, thus
consuming a lot of time. Pre-processing step
involves natural language complications as
we deal with textual requirements which are
purely written in a natural language which
is followed by feature selection and TF-IDF
weighting that involves mathematical calcula-
tions. It is therefore not possible to do manual
computation on each NFR to retrieve top-10
words and then calculate TF-IDF values for
these words.
Thus, we have automated this process with the
help of a tool developed by the authors. The
input to this tool is a set of 326 NFRs descrip-
tions and the output is top-10 words sorted
on the basis of Information-Gain measure
(feature selection method). Thus, the entire
process is automated and the time taken to
produce the output is less than approximately
1 minute. Whereas, to perform the same ac-
tivities manually, it would take us hours and
may not be even feasible for large datasets.

2. Development of prediction models using ma-
chine learning classifiers: Once indicator
terms (independent variables) for each NFR
type are retrieved, then dataset correspond-
ing to each of the 9 types of NFR is made
consisting of a binary dependent variable
(NFR type) having the value of 1 or 0 depend-
ing on the type of NFR. Corresponding to
each dataset, eight different prediction models
were developed by employing eight ML clas-
sifiers on each dataset viz. J48 decision tree,
Random Forest (RF), Logitboost, Adaboost,
Multi-Layer Perceptron (MLP), Radial Ba-
sis Function (RBF) network, Bagging, Naïve
Bayes (NB). These ML classifiers are imple-
mented through an open source tool, WEKA.
There were in total 72 models (9 datasets * 8
ML classifiers= 72 prediction models) and it
was observed that to run each model, CPU
time of approximately 30 sec to 1:30 minutes
was required.
Had the same task been done manually, the
human analyst would have to use his skills
and knowledge in classifying NFR descrip-
tion into particular type of NFR. Also, as
the number of models is quite large (72), it
would have taken a lot of time to complete the
computation. Moreover, it would have been
very difficult to achieve a high performance
as achieved by our models.
Never the less, human computation is always
prone to error. Human error is inevitable and
normal which may lead to system failure if
not handled at the right time. Thus, we con-
clude that our prediction models are highly
recommended in contrast to human analyst
(i.e., work done manually) for classification of
future NFR descriptions whose NFR type is
not known, leading to less computation time
and more accuracy.

7. Threats to validity

The empirical validation in this work has certain
limitations which may adversely affect the valid-
ity of the results. These limitations are discussed
in terms of four threats to validity, viz. construct
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validity, internal validity, external validity, and
conclusion validity.
1. Construct Validity

Construct validity is one of the most impor-
tant threats to validity. It is defined as the ex-
tent to which the variables (independent and
dependent variables) and the performance pa-
rameters precisely measure the concept they
intend to measure [62–64].
This threat can be due to the improper col-
lection of the dependent variable and the
independent variables. The dependent vari-
able used in the study refers to the “types
of NFRs” and the independent variables are
the top few words of the document which de-
termine how important they are within that
particular document and also across a group
of other documents. The collection of data
for the classification of NFRs into their re-
spective types has been done by mining the
descriptions of NFRs specified in SRS doc-
ument using text mining techniques. These
text mining techniques cannot ensure com-
plete correctness. This is so as this module
is based on a number of pre-processing steps
like tokenization, stop-words removal, stem-
ming, etc., before the application of IG mea-
sure and Tf-Idf weighting approach could be
done. Now, all these pre-processing steps use
a set of English vocabulary words available
online as their base, which may result in
arbitrariness. However, these pre-processing
steps were manually evaluated to reduce the
amount of randomness and uncertainty in
the accuracy and preciseness of the results so
obtained. In addition to this, we have used
a standard performance measure, viz, Area
Under the ROC Curve (AUC) to measure
the performance of the models. This measure
is widely used in related research and suffi-
ciently measures the performance of the mod-
els accurately. Thus, the proper collection
of independent and the dependent variable
and the use of a stable performance measure
minimize the threat to construct validity to
a large extent.

2. Internal Validity
“Internal validity is defined as the degree

to which conclusions can be drawn about
the causal effect of independent variable
on the dependent variable” [64]. In this
work, independent variables used are a set of
pre-processed words obtained using IG mea-
sure. These independent variables are not
related to each other in any way. All these
words together determine the value of depen-
dent variable (type of NFR). It is not possible
to determine the causal effect of each inde-
pendent variable on the dependent variable.
In other words, the goal of this study is to de-
velop prediction models for classifying NFRs
into various categories rather than discover-
ing the cause-effect relationships. Thus, the
threat to internal validity does not exist in
the study.

3. External Validity
External validity is defined as the extent to
which the results of the study can be gen-
eralized universally. It concerns itself with
finding out whether the results produced by
the study are applicable in different domains
or can be replicated in different scenarios
for which the results are not evaluated [65].
In other words, external validity could be
ensured if we could have applied the same
approach on a different dataset and produced
the same results. To ensure external validity,
more research is needed as in this work, au-
thors have not used the proposed models on
some other datasets to identify the type of
NFR. Authors have planned to take different
datasets and use the same models to identify
NFR specifications in their future work. In
the future, we will be comparing the results
of different datasets across different projects
having diverse characteristics.

4. Conclusion Validity
Conclusion validity threats include all those
threats which affect the conclusion of the
study. In other words, all the threats which
may lead to improper results or conclusions
of the study are called as conclusion validity
threats [65]. The authors in this study have
not performed the statistical evaluation of
the results using statistical tests. Thus, this
leads to a conclusion validity threat. How-
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ever, to provide strong conclusions, we have
compared the performance of 8 ML classifiers
to classify 9 types of NFRs. Very few studies
in literature have used such a large number
of ML classifiers. Thus, such comparison and
evaluation may lead to fair conclusion, reduc-
ing the threat to conclusion validity.
In addition to this, conclusion validity threat
may also occur since we had worked on the
dataset consisting of less number of projects.
Thedatasetused in thiswork for empirical anal-
ysis was the same dataset which was used by
authors Cleland-Huang et al. [9]. This dataset
consists of a set of 15 projects which were
made by MS students at DePaul University,
containing a total of 326 NFR descriptions.
To eliminate this threat, we may include more
such projects in the future study leading to
stronger conclusions. Also, conclusion validity
threat may occur since we have worked on a lim-
ited number of basic NFRs. There are more
fine-grained NFRs listed by ISO standards
9126 and 25010 [65]. The inclusion of such
NFRs may affect the results and change the per-
formance of the models to some extent. How-
ever, the NFRs we considered covered most of
the quality constraints enforced in our exper-
imental setup. In addition to this, the dataset
we used has the requirements pertaining to
these basic NFR types. Due to these reasons,
we did not feel the requirement to include fine
grained NFRs. Inclusion of such fine grained
NFRs may also increase the complexity of the
work and thus, maybe included only when
there is a requirement of extensive analysis.

8. Conclusions and future work

Classification of NFR descriptions into their re-
spective types is very essential for software de-
velopment meeting the basic quality determining
features like security, scalability, maintainabil-
ity, etc. The NFR descriptions in the software
requirement specification document should there-
fore be analyzed carefully and mapped into their
corresponding NFR types. In this paper, text
mining steps have been incorporated to mine

the NFR descriptions and thereby identify a set
of few keywords. These keywords are the top
few words which hold the essential information
about NFR. Keywords help to classify the NFR
descriptions using different ML techniques. Eight
different ML techniques viz. J48, RF, LB, AB,
MLP, RBF, Bagging and NB have been used to
classify the NFR descriptions into nine types of
NFR. The results which have been obtained from
the study are summarized as follows:
1. With respect to each of the nine NFR types,

eight prediction models have been developed
corresponding to eight ML techniques.

2. The retrieval of the keywords specific to each
type of NFR has been done using IG measure
as the feature selection method. These key-
words hold essential information about the
NFR type and are used to develop prediction
models by employing a suitable ML technique.
Top-10 words sorted by IG measure have been
selected corresponding to each of the nine
models.

3. The study analyzes the performance of ML
models in terms of classification and misclas-
sification rate to determine the best model
for predicting each type NFR descriptions.

4. The performance of each of these nine mod-
els is evaluated using ROC analysis. The re-
sults indicated that the performance of all
the NFRs except “SE” is best predicted by
NB classifier. NB gives the highest AUC of
0.97, 0.83, 0.97, 0.95, 0.81, 0.86, 0.88, and
0.77 for “A”, “LF”, “L”, “MN”, “O”, “PE”,
“SC”, and “US” types of NFR respectively.
Their corresponding recall values are also
high in majority of the cases. This is so be-
cause this technique has a high bias and low
variance which works well for the dataset
having a small size.

5. This is followed by the performance of RBF
and RF technique. The AUC values of RF
and RBF lies in the range of 0.67 to 0.91
and 0.72 to 0.92, respectively. Average perfor-
mance has been depicted by the remaining
techniques which are LB, AB, Bagging, and
MLP.

6. On the contrary, J48 decision tree technique
has not performed well in classifying the NFR
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descriptions into their respective types. This
technique has shown the lowest performance
(in terms of both AUC and recall) in predict-
ing all the types of NFRs.

7. Among all the NFRs, it has been observed
that most of the classifiers predicted “PE”
and “A” type of NFR most accurately. On
the other hand, “US” NFR type has been pre-
dicted with lowest accuracy as there are only
3% (lowest percentage) of NFR descriptions
pertaining to this NFR type in the dataset,
thus giving low value of recall.

8. Overall, we concluded that the performance
of NB model has performed best in predict-
ing “MN” and “A” type of NFRs when both
classification and misclassifications are taken
together.

9. Also, cost-benefit analysis was conducted
from which it was concluded that the cost
incurred without using our proposed models
is more than the cost incurred when using
the proposed models.

As our future work, we intend to replicate our
empirical study across more datasets of similar
type, i.e., academic datasets where requirements
are written by students and researchers to ob-
tain generalized and well-formed results. Apart
from this, we also intend to conduct more exper-
iments and provide benchmarks for future per-
formance by exploring different types of datasets
like industrial datasets where requirements are
written to describe or simulate industrial prod-
ucts or informal datasets where requirements
are written by end-users as comments, reviews,
posts and requests in open source communities
(sourceforge.net) or written in different Apps
of varying categories (books, education, games,
health, lifestyle, navigation, news, productivity,
travel and utilities). Moreover, we can analyze
the effectiveness of the classification models by
incorporating more search-based or evolutionary
algorithms instead of basic ML algorithms.

References

[1] M. Glinz, “On non-functional requirements,” in
Proceedings of the 15th IEEE International Re-

quirements Engineering Conference. Delhi, India:
IEEE, 2010, pp. 21–26.

[2] M. Glinz, “Rethinking the notion of non-func-
tional requirements,” in Proceedings of the 3rd
world congress for software quality, Munich, Ger-
many, 2005, pp. 55–64.

[3] L. Chung, B. Nixon, E. Yu, and J. Mylopou-
los, Non-Functional Requirements in Software
Engineering. KluwerAcademic, 2000.

[4] S. Amasaki and P. Leelaprute, “The effects of
vectorization methods on non-functional require-
ments classification,” in 44th Euromicro Con-
ference on Software Engineering and Advanced
Applications (SEAA). Prague, Czech Republic:
IEEE, 2018, pp. 175–182.

[5] V. Sharma, R. Ramnani, and S. Sengupta,
“A framework for identifying and analysing
non-functional requirements from text,” in Pro-
ceedings of the 4th International Workshop on
Twin Peaks of Requirements and Architecture.
New York, USA: ACM, 2014, pp. 1–8.

[6] L. Hakim and S. Rochimah, “Oversampling im-
balance data: Case study on functional and non
functional requirement,” in Electrical Power,
Electronics, Communications, Controls and In-
formatics Seminar (EECCIS). Batu, East Java,
Indonesia: IEEE, 2018, pp. 315–319.

[7] D. Méndez-Fernández, S. Wagner, M. Kali-
nowski, M. Felderer, P. Mafra, A. Vetro,
T. Conte, M. Christiansson, D. Greer, C. Lasse-
nius, T. Mannisto, M. Nayebi, M. Oivo, B. Pen-
zenstadler, D. Pfahl, R. Prikladnicki, G. Ruhe,
A. Schekelmann, S. Sen, R. Spinola, A. Tuzcu,
J. de la Vara, and R.Wieringa, “Naming the pain
in requirements engineering,” Empirical software
engineering, Vol. 22, No. 5, 2017, pp. 2298–2338.

[8] R. Svensson, M. Host, and B. Regnell, “Manag-
ing quality requirements: A systematic review,”
in 36th EUROMICRO Conference on Software
Engineering and Advanced Applications. Lille,
France: IEEE, 2010, pp. 261–268.

[9] J. Cleland-Huang, R. Settimi, X. Zou, and
P. Solc, “Automated classification of non-func-
tional requirements,” Requirements Engineering,
Vol. 12, No. 2, 2007, pp. 103–120.

[10] I. Hussain, L. Kosseim, and O. Ormandjieva,
“Using linguistic knowledge to classify non-func-
tional requirements in SRS documents,” in Inter-
national Conference on Application of Natural
Language to Information Systems. London, UK:
Springer, 2008, pp. 287–298.

[11] G. Gokyer, S. Cetin, C. Sener, and M. Yon-
dem, “Non-functional requirements to architec-
tural concerns: ML and NLP at crossroads,” in



110 Rajni Jindal et al.

Proceedings of the 2008 the 3rd international con-
ference on software engineering advances. Sliema,
Malta: IEEE, 2008, pp. 400–406.

[12] A. Rashwan, O. Ormandjieva, and R. Witte,
“Ontology-based classification of non-functional
requirements in software specifications: A new
corpus and svm-based classifier,” in 37th Annual
Computer Software and Applications Conference.
Kyoto, Japan: IEEE, 2013, pp. 381–386.

[13] T. Nguyen, J. Grundy, and M. Almorsy,
“Rule-based extraction of goal-use case models
from text,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering.
Bergamo, Italy: ACM, 2015, pp. 591–601.

[14] A. Casamayor, D. Godoy, and M. Campo, “Iden-
tification of non-functional requirements in tex-
tual specifications: A semi-supervised learning
approach,” Information and Software Technol-
ogy, Vol. 52, No. 4, 2010, pp. 436–445.

[15] W. Zhang, Y. Yang, Q. Wang, and F. Shu, “An
empirical study on classification of non-func-
tional requirements,” in Twenty-Third Inter-
national Conference on Software Engineering
and Knowledge Engineering, Miami Beach, USA,
2011, pp. 444–449.

[16] J. Slankas and L. Williams, “Automated ex-
traction of non-functional requirements in avail-
able documentation,” in 1st International Work-
shop on Natural Language Analysis in Software
Engineering. San Francisco, USA: IEEE, 2013,
pp. 9–16.

[17] P. Singh, D. Singh, and A. Sharma, “Rule-based
system for automated classification of non-func-
tional requirements from requirement specifica-
tions,” in International conference on Advances
in Computing, Communications and Informatics.
Jaipur, India: IEEE, 2016, pp. 620–626.

[18] Z. Kurtanovic and W. Maalej, “Automatically
classifying functional and non-functional require-
ments using supervised machine learning,” in
25th International Requirements Engineering
Conference Workshops. Lisbon, Portugal: IEEE,
2017, pp. 490–495.

[19] A. Hindle, N.A. Ernst, M.W. Godfrey, and J. My-
lopoulos, “Automated topic naming,” Empiri-
cal Software Engineering, Vol. 18, No. 6, 2013,
pp. 1125–1155.

[20] D. Ott, “Automatic requirement categoriza-
tion of large natural language specifications at
Mercedes-Benz for review improvements,” in In-
ternational Working Conference on Requirements
Engineering: Foundation for Software Quality.
Essen, Germany: Springer, 2013, pp. 50–64.

[21] M. Lu and P. Liang, “Automatic classification
of non-functional requirements from augmented
app user reviews,” in 21st International Confer-
ence on Evaluation and Assessment in Software
Engineering (EASE). Karlskrona, Sweden: ACM,
2017, pp. 344–353.

[22] R. Deocadez, R. Harrison, and D. Rodriguez,
“Automatically classifying requirements from
app stores: A preliminary study,” in 25th In-
ternational Requirements Engineering Confer-
ence Workshops. Lisbon, Portugal: IEEE, 2017,
pp. 367–371.

[23] C. Li, L. Huang, J. Ge, B. Luo, and V. Ng, “Auto-
matically classifying user requests in crowdsourc-
ing requirements engineering,” Journal of Sys-
tems and Software, Vol. 138, 2018, pp. 108–123.

[24] J. Zou, L. Xu, M. Yang, X. Zhang, and D. Yang,
“Towards comprehending the non-functional re-
quirements through developers’ eyes: An explo-
ration of stack overflow using topic analysis,”
Information and Software Technology, Vol. 84,
2017, pp. 19–32.

[25] E. Knauss, S. Houmb, K. Schneider, S. Islam,
and J. Jürjens, “Supporting requirements engi-
neers in recognising security issues,” in Inter-
national Working Conference on Requirements
Engineering: Foundation for Software Quality.
Essen, Germany: Springer, 2011, pp. 4–18.

[26] M. Riaz, J. King, J. Slankas, and L.Williams,
“Hidden in plain sight: Automatically identify-
ing security requirements from natural language
artifacts,” in International Conference on Re-
quirements Engineering Conference. Karlskrona,
Sweden: IEEE, 2014, pp. 183–192.

[27] R. Jindal, R. Malhotra, and A. Jain, “Auto-
mated classification of security requirements,”
in 2016 International Conference on Advances
in Computing, Communications and Infor-
matics (ICACCI). Jaipur, India: IEEE, 2016,
pp. 2027–2033.

[28] R. Malhotra, A. Chug, A. Hayrapetian, and
R. Raje, “Analyzing and evaluating security fea-
tures in software requirements,” in Innovation
and Challenges in Cyber Security. Noida, India:
IEEE, 2016, pp. 26–30.

[29] E. Knauss and D. Ott, “(semi-) automatic catego-
rization of natural language requirements,” in In-
ternational Working Conference on Requirements
Engineering: Foundation for Software Quality.
Essen, Germany: Springer, 2014, pp. 39–54.

[30] R. Maiti and F. Mitropoulos, “Capturing,
eliciting, predicting and prioritizing (CEPP)
non-functional requirements metadata during



Mining Non-Functional Requirements using Machine Learning Techniques 111

the early stages of agile software development,”
in Proceedings of the SoutheastCon. Fort Laud-
erdale, USA: IEEE, 2015, pp. 1–8.

[31] A. Mahmoud and G. Williams, “Detecting, clas-
sifying, and tracing non-functional software re-
quirements,” Requirements Engineering, Vol. 21,
No. 3, 2016, pp. 357–381.

[32] Z. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe,
and K. Schneider, “What works better? A study
of classifying requirements,” in 25th International
Requirements Engineering Conference Workshops.
Lisbon, Portugal: IEEE, 2017, pp. 496–501.

[33] L. Toth and L. Vidacs, “Study of various clas-
sifiers for identification and classification of
non-functional requirements,” in International
Conference on Computational Science and Its
Applications. Springer, 2018, pp. 492–503.

[34] S. Uddin, A. Khan, M. Hossain, and M. Moni,
“Comparing different supervised machine learn-
ing algorithms for disease prediction,” BMC Med-
ical Informatics and Decision Making, Vol. 19,
No. 281, 2019, pp. 1–16.

[35] Y. Dengju, J. Yang, and X. Zhan, “A novel
method for disease prediction: Hybrid of ran-
dom forest and multivariate adaptive regression
splines,” Journal of Computers, Vol. 8, No. 1,
2013, pp. 170–177.

[36] C. Sinclair, L. Pierce, and S. Matzner, “An appli-
cation of machine learning to network intrusion de-
tection,” in Proceedings of 15th Annual Computer
Security Applications Conference (ACSAC’99).
Phoenix, AZ, USA: IEEE, 1999, pp. 371–377.

[37] E. Aleskerov, B. Freisleben, and B. Rao, “Card-
watch: A neural network based database min-
ing system for credit card fraud detection,” in
Proceedings of the IEEE/IAFE Computational
Intelligence for Financial Engineering (CIFEr).
New York, NY, USA: IEEE, 1997, pp. 220–226.

[38] S. Rathore and S. Kumar, “An empirical study of
some software fault prediction techniques for the
number of faults prediction,” Soft Computing,
Vol. 21, 2016, pp. 7417–7434.

[39] A. Okutan and O. Yildiz, “Software defect
prediction using bayesian networks,” Empiri-
cal Software Engineering, Vol. 19, No. 1, 2014,
pp. 154–181.

[40] T. Patil and S. Sherekar, “Performance analysis
of Naïve Bayes and J48 classification algorithm
for data classification,” International Journal
of Computer Science and Applications, Vol. 6,
No. 2, 2013, pp. 256–261.

[41] J. Qinlan, C4.5: Programs for machine Learn-
ing, 1st ed. San Mateo, CA: Morgan Kaufmann
Publishers, 1993.

[42] M. Danham and S. Sridhar, Data mining: Intro-
ductory Advanced Topics, 1st ed. Person Educa-
tion, 2006.

[43] Y. Freund and R. Schapire, “A short introduc-
tion to boosting,” Journal of Japanese Society
for Artificial Intelligence, Vol. 14, No. 5, 1999,
pp. 771–780.

[44] B. Widro and M. Lehr, “30 years of adaptive
neural networks: Perceptron, madaline, and back-
propagation,” Proceedings of the IEEE, Vol. 78,
No. 9, 1990, pp. 1415–1442.

[45] D. Broomhead and D. Lowe, “Multivariable
functional interpolation and adaptive networks,”
Complex Systems, Vol. 2, 1998, pp. 321–355.

[46] S. Eyheramendy, D. Lewis, and D. Madigan, “On
the Naive Bayes model for text categorization,”
in Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics, 2002.

[47] A. McCallum and K. Nigam, “A comparison of
event models for Naive Bayes text classification,”
in Learning for Text Categorization, M. Sahami,
Ed. AAAI Press, 1998, pp. 41–48.

[48] R. Malhotra, Empirical Research in Software En-
gineering – Concepts, Analysis and Applications,
1st ed. India: CRC Press, 2015.

[49] M. Stone, “Cross-validatory choice and assess-
ment of statistical predictions,” Journal of the
Royal Statistical Society, Vol. 36, No. 2, 1974,
pp. 111–147.

[50] Y. Jiang, B. Cukic, and Y. Ma, “Techniques
for evaluating fault prediction models,” Empiri-
cal Software Engineering, Vol. 13, No. 15, 2008,
pp. 561–595.

[51] H. He and E. Garcia, “Learning from imbal-
anced data,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 21, No. 9, 2009,
pp. 1263–1284.

[52] T. Menzies, A. Dekhtyar, J. Distefance, and
J. Greenwald, “Problems with precision: A re-
sponse to “comments on ‘data mining static code
attributes to learn defect predictors’”,” IEEE
Transactions on Software Engineering, Vol. 33,
No. 9, 2007, pp. 637–640.

[53] F. Provost and T. Fawcett, “Robust classification
for imprecise environments,” Machine Learning,
Vol. 42, 2001, pp. 203–231.

[54] R. Shatnawi, “Improving software fault-predic-
tion for imbalanced data,” in Proc. of Inter-
national Conf. on Innovations in Information
Technology. Abu Dhabi, United Arab Emirates:
IEEE, 2012, pp. 54–59.

[55] T. Fawcett, “An introduction to ROC analy-
sis,” Pattern Recogn Lett, Vol. 27, No. 8, 2006,
pp. 861–874.



112 Rajni Jindal et al.

[56] F. Sebastiani, “Machine learning in automated
text categorization,” ACM Computing Surveys,
Vol. 34, No. 1, 2002.

[57] T. Menzies and A. Marcus, “Automated severity
assessment of software defect reports,” in IEEE
International Conference on Software Main-
tenance (ICSM). Beijing, China: IEEE, 2008,
pp. 346–355.

[58] E. Arisholm and L. Briand, “Predicting
fault-prone components in a Java legacy system,”
in Proceedings of ACM/IEEE international sym-
posium on empirical software engineering. IEEE,
2006, pp. 8–17.

[59] R. Malhotra and M. Khanna, “An ex-
ploratory study for software change prediction
in object-oriented systems using hybridized tech-
niques,” Autom Softw Eng, Vol. 24, No. 3, 2017,
pp. 673–717.

[60] L. Briand, J. Wust, and J. Daly, “Exploring
the relationship between design measures and
software quality in object-oriented systems,” J
Syst Softw, Vol. 51, No. 3, 2000, pp. 245–273.

[61] L. Briand, J. Wust, and H. Lounis, “Replicated
case studies for investigating quality factors in
object oriented designs,” Empir Softw Eng J,
Vol. 6, No. 1, 2001, pp. 11–58.

[62] R. Malhotra and M. Khanna, “Threats to va-
lidity in search-based predictive modelling for
software engineering,” IET Software, Vol. 12,
No. 4, 2018, pp. 293–305.

[63] A. Dean, D. Voss, and D. Draguljic, Design
and analysis of experiments, 10th ed. New York:
Springer, 1999.

[64] Y. Zhou, H. Leung, and B. Xu, “Examining the
potentially confounding effect of class size on
the associations between object-oriented met-
rics and change-proneness,” IEEE Transactions
on Software Engineering, Vol. 35, No. 5, 2009,
pp. 607–623.

[65] R. Harrison, S. Counsell, and R. Nithi, “Exper-
imental assessment of the effect of inheritance
on the maintainability of object-oriented sys-
tems,” Journal of Systems and Software, Vol. 52,
No. 2–3, 2000, pp. 173–179.



Mining Non-Functional Requirements using Machine Learning Techniques 113

A. Appendix

Table A1. Performance evaluation of random forest and J48 decision tree techniques

S. No. Type of NFR Random Forest J48

AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A 0.91 85.0 0.02 0.65 60.0 0.02
2 LF 0.82 73.0 0.05 0.58 64.9 0.08
3 L 0.83 69.2 0.05 0.48 30.8 0.02
4 MN 0.80 80.0 0.00 0.42 33.3 0.04
5 O 0.79 67.2 0.12 0.58 52.5 0.12
6 PE 0.84 77.4 0.05 0.75 66.0 0.06
7 SC 0.67 66.7 0.01 0.53 57.1 0.05
8 SE 0.80 73.4 0.06 0.65 60.9 0.12
9 US 0.76 68.3 0.09 0.48 38.1 0.18

Table A2. Performance Evaluation of Bagging and Naïve Bayes techniques

S. No. Type of NFR Bagging Naïve Bayes

AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A 0.77 75.0 0.03 0.97 90.0 0.10
2 LF 0.80 75.7 0.07 0.83 75.7 0.01
3 L 0.75 69.0 0.02 0.97 92.3 0.01
4 MN 0.81 73.3 0.02 0.95 93.3 0.06
5 O 0.78 70.5 0.10 0.81 67.2 0.12
6 PE 0.80 75.5 0.07 0.86 83.0 0.01
7 SC 0.85 85.7 0.04 0.88 85.7 0.01
8 SE 0.80 71.9 0.09 0.81 73.4 0.03
9 US 0.74 68.3 0.10 0.77 68.3 0.06

Table A3. Performance Evaluation of MLP and RBF network techniques

S. No. Type of NFR MLP RBF

AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A 0.67 60.0 0.00 0.81 75.0 0.01
2 LF 0.80 73.0 0.04 0.80 67.6 0.06
3 L 0.76 76.9 0.01 0.92 92.3 0.05
4 MN 0.62 60.0 0.01 0.85 80.0 0.01
5 O 0.80 68.9 0.10 0.75 65.6 0.13
6 PE 0.84 77.4 0.06 0.81 71.7 0.06
7 SC 0.66 61.9 0.02 0.80 71.4 0.02
8 SE 0.85 79.7 0.08 0.83 81.3 0.08
9 US 0.76 66.7 0.09 0.72 61.9 0.09
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Table A4. Performance Evaluation of Logitboost and Adaboost techniques

S. No. Type of NFR Logitboost Adaboost

AUC Sens (%) CutOff AUC Sens (%) CutOff

1 A70.87 85.0 0.05 0.73 70.0 0.02
2 LF 0.79 70.3 0.05 0.72 64.9 0.06
3 L 0.75 76.9 0.01 0.72 69.2 0.01
4 MN 0.88 86.7 0.04 0.79 73.3 0.01
5 O 0.80 67.2 0.12 0.78 75.4 0.14
6 PE 0.82 77.4 0.09 0.83 77.4 0.06
7 SC 0.79 76.0 0.02 0.76 71.4 0.02
8 SE 0.78 70.3 0.08 0.74 68.8 0.09
9 US 0.73 61.9 0.11 0.66 57.1 0.11
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