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Abstract
Introduction: Successive code changes during the maintenance phase may cause the emergence
of bad smells and anti-patterns in code and gradually results in deterioration of the code and
difficulties in its maintainability. Continuous Quality Control (QC) is essential in this phase to
refactor the anti-patterns and bad smells.
Objectives: The objective of this research has been to present a novel component called Code
Deterioration Watch (CDW) to be integrated with existing Issue Tracking Systems (ITS) in order
to assist the QC team in locating the software modules most vulnerable to deterioration swiftly.
The important point regarding the CDW is the fact that its function has to be independent of the
code level metrics rather it is totally based on issue level metrics measured from ITS repositories.
Methods: An issue level metric that properly alerts us of bad-smell emergence was identified
by mining software repositories. To measure that metric, a Stream Clustering algorithm called
ReportChainer was proposed to spot Relatively Long Chains (RLC) of incoming issue reports as
they tell the QC team that a concentrated point of successive changes has emerged in the software.
Results: The contribution of this paper is partly creating a huge integrated code and issue
repository of twelve medium and large size open-source software products from Apache and Eclipse.
By mining this repository it was observed that there is a strong direct correlation (0.73 on average)
between the number of issues of type “New Feature” reported on a software package and the
number of bad-smells of types “design” and “error prone” emerged in that package. Besides a strong
direct correlation (0.97 on average) was observed between the length of a chain and the magnitude
of times it caused changes to a software package.
Conclusion: The existence of direct correlation between the number of issues of type “New
Feature” reported on a software package and (1) the number of bad-smells of types “design” and
“error prone” and (2) the value of “CyclomaticComplexity” metric of the package, justifies the
idea of Quality Control merely based on issue-level metrics. A stream clustering algorithm can be
effectively applied to alert the emergence of a deteriorated module.
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1. Introduction

Mining open-source software repositories and
particularly bug repositories managed by Issue
Tracking Systems (ITS) such as BugZilla [1] and
Jira [2] has recently attracted much attraction
among the software research community. Many
researchers have studied the possible correlations
among stored knowledge in bug repositories and

software quality aspects. By interpreting the
number of reported bugs on a specific software
version as quality indicator of that version, some
works have focused on the correlation among the
number of previously reported bugs (and hence
changes) and the number of bugs in future release
[3, 4]. Maintainability has been another quality
aspect of interest and some research works have
been dedicated to find meaningful correlations
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between software maintainability and defect met-
rics extracted from ITS repositories [5].

The maintainability of a software product is
usually defined as its readiness to accept suc-
cessive modification very easily and with mini-
mum effort [6]. These modifications are due to
requested new features, reported bugs, perfor-
mance difficulties or adapting the software to
a new environment and are carried out by the
maintenance team. Some studies have argued,
particularly in open-source software, neither time
lags in fixing bugs nor the distribution of bugs
can be considered as the direct representative
metrics of maintainability [7]. On the other hand,
many research works in the field of software main-
tainability have proved that the maintainability
of software after delivery is significantly depen-
dent to its original design quality [8]. As a result,
building the predictive models to assist the de-
signers to better assess the maintainability of
their future code based on the current design
quality metrics at very first stages of develop-
ment life cycle has attracted much attention in
this research field [8–10]. In addition to the orig-
inal design of the software, the quality of code
modifications during the maintenance phase also
matters and affects the maintainability of the
software and its future defects number and sever-
ity [11]. It is now widely accepted that the main-
tainability of a software product could be mea-
sured by: (1) the number of residual or emerged
faults in the maintenance phase (corrective main-
tainability), (2) the extent to which the code is
understandable (adaptive maintainability) which
is greatly affected by the degree of exploiting the
software design patterns and best practices in
development process and (3) the extent to which
it is modifiable (perfective maintenance) which
is again affected by the amount of anti-patterns
and bad-smells [12] in the code [5, 7, 8].

Successive changes made by the develop-
ers may cause the emergence of bad smells in
code and gradually result in code deterioration
and lowering the code maintainability indirectly.
Hence continuous Quality Control (QC) is essen-
tial in this phase to avoid formation of anti-pat-
terns and bad smells in code. However this QC
process could be very tedious or even ineffec-

tive task without the help of assisting tools.
Since the change requests (and issue reports)
are recorded and tracked in ITSs, we believe
that these software tools could be equipped with
a recommender component that enables the QC
team to spot software modules (packages) that
are most vulnerable to early deterioration and
to put those modules in their priority list for
code inspection and refactoring. We call this
component CDW (Code Deterioration Watch)
and it is capable of reporting the packages that
need immediate quality check by QC team to see
if the refactoring is necessary. The fundamental
requirement in designing CDW is that it should
be able to estimate the deterioration level of
software modules using issue metrics rather than
code metrics. This is the key difference between
this research and similar studies where CDW
does its function merely by relying on ITS repos-
itory data and independent of code repository.
We believe that this ability is so important due
to the fact that code QC has to be carried out
based on a priority list in specific time intervals
and this priority list is provided by CDW which
continuously analyzes incoming issue streams effi-
ciently. The high priority modules for refactoring
are those that have become deteriorated and
hence error-prone due to the successive changes
performed not in compliance with best-practices
and standard design patterns.

The function of CDW is simply based on this
general hypothesis: “modules absorbing higher
number of issues are those with higher number of
(born) code smells and are the hot spots for refac-
toring”. We studied a variety of open-source soft-
ware repositories from Apache [13] and Eclipse
[14] to answer these research questions:

RQ1: Can the QC team evaluate the qual-
ity level of the code, which is under successive
changes during the maintenance phase, only by
observing issue-related metrics such as the num-
ber of reported issues on a software package?
Is the type of reported issues important in this
evaluation?

RQ2: Is there an effective stream cluster-
ing method to categorize incoming sequence of
issue reports such that a bloated category be
truly interpreted as the concentration of frequent
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changes on a specific software package and hence
be reported as possible point of deterioration?

The rest of this paper is organized as follows:
Section 2 explains the related works, Section 3
explains the concept of “code deterioration” and
its relation to bad-smells, Section 4 presents the
proposed continuous Quality Control model, Sec-
tion 5 reports the results of experiments, the
discussion and justification of the results are
presented in section 6, Section 7 provides the
threats to the validity of the study and finally
Section 8 concludes the paper.

2. Related works

In the field of software maintainability, there
are many research works dedicated to the main-
tainability prediction of software based on the
knowledge collected in early stages of SDLC [8].
In [9] the superiority of the dynamic metrics over
static metrics for maintainability prediction is
studied. They concluded that the dynamic met-
rics outperform the static ones regardless of the
machine learning algorithm used for prediction.

Extracting useful knowledge from bug reposi-
tories to estimate quality andmaintainability of an
open-source software has been the subject of many
studies. In [3] authors concluded that the num-
ber of bugs, as software quality indicator, in the
ith release has no significant correlation with the
change size of its previous release. In [4] a class level
quality assurance metric named Qi was defined
and the correlation of the number of defects and
Qi was analyzed but they observed no significant
correlation among them. In [7] the maintainability
of some open- source software was studied empiri-
cally and they reported that neither the time lag of
reported bugs nor the distribution of bug reports
can represent the maintainability indicator.

In [15] a recommender system to advice devel-
opers to avoid bad smells and apply quality prac-
tices during the programming is presented. They
have built a quality model which is continuously
updated based on the reported issues and the (de-
tected) bad smells that have triggered the issue.
The SZZ algorithm [16] which identifies the root
cause of an issue has been applied by this study

to track down the earliest change that has given
birth to the exception. Subsequently the bad
smells detected in code snippet identified as the
root cause of the exception is related to the issue.
Machine learning algorithm have been applied to
build the quality model. In [17] to improve the
software quality metrics and remove bad smells
a multi-objective evolutionary algorithm is pro-
posed by which the best sequence of refactoring
activities is sought in a large search space of pos-
sible solutions. To obtain this a predicting model
based on time series is applied to estimate the
impact of each sequence of refactoring actions on
the future software quality. In [10] thirty different
software quality prediction models were studied.
Using two standard datasets they concluded that
regression and LWL outperformed others.

There are some studies on the relationship
between the amount of code-smells and the bug
proneness level of the software. In [18] it was
shown that adding smell-related features (code-
-smell intensity) to the bug prediction models
could improve the accuracy of the prediction
models. The impact of presence of anti-patterns
on the change and fault-proneness of the classes
has been investigated in [19]. The results con-
firmed that the classes involving anti-patterns are
more change and fault-prone. A Systematic Lit-
erature Review has been conducted and reported
in [20] on the impact of code-smells on software
bugs. The adverse effects of bad architectural
decisions (architectural smells) on the maintain-
ability of the software in terms of number of
forthcoming issues and increased maintenance
efforts have been studied in [21].

The classification or clustering of bug reports
has also been the subject of some previous stud-
ies. The classification of bug reports are used to
predict a variety of factors regarding them. For
instance in [23] a two-phased classifier has been
proposed to predict the files likely to be fixed
using the bug report textual description. In [24]
a clustering method based on EM (Expectation
Maximization) and X-means has been proposed
to categorize bug reports according to their sub-
ject similarities. They have used topic modeling
to vectorize bug reports and subsequently applied
a labeling algorithm to characterize each cluster.
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There are also some studies on refactoring pri-
oritization. In [25] a machine learning approach
for classification of code smell severity to priori-
tizing the refactoring effort has been presented.
They have reported a relatively high correlation
between the predicted and actual severity by
modeling the problem as an ordinal classification
problem. In [26] a semi-automated refactoring
prioritization method to assist developers has
been presented. They have applied a combina-
tion of three criteria: past modifications history,
the relevance of the smell to the architecture and
the smell type to rank the refactoring activities.

The contribution of this paper is to propose
a novel model of Software Quality Control which
enables the QC team to judge about the internal
quality of software, constantly changed by devel-
opers, without the need of source code analysis
and merely by monitoring the incoming issue
reports and their sequence. To this end first,
a thorough correlation analysis between the code
quality metrics (the number of bad-smells) and

issue-level metrics (issue absorption rate) has
been conducted. Subsequently a new stream clus-
tering method is presented to effectively catego-
rize incoming sequence of issue reports such that
a bloated category truly indicates the existence
of a software package with high issue absorption
rate. It is important to note that in contrast to
the previous studies on refactoring prioritization,
the proposed method uses the issue-level met-
rics to find the top-module to refactor without
needing to analyze or access the source code.

3. Code deterioration and bad-smells

There are a variety of bad-smell and anti-patterns
introduced in the literature that may emerge in
the code gradually due to the subsequent changes
made by the development team [12]. The PMD
static source analyzer [22] has presented a very
good categorization of bad-smells in its documen-
tations (Code Style, Design, Error-prone, Doc-

Table 1. Bad-smells according to the categorization presented in [22]

Category Some Bad smells in this category Example

Design
(46 bad-smells)

AbstractClassWithoutAnyMethod,
ClassWithOnlyPrivateConstructorsShouldBeFinal,
CouplingBetweenObjects, CyclomaticComplexity
DataClass, ExceptionAsFlowControl
ExcessiveClassLength, GodClass,
ImmutableField, LawOfDemeter,
LogicInversion, LoosePackageCoupling,
NPathComplexity,. . .

DataClass:

public class DataClass {
public int bar = 0;
public int na = 0;
private int bee = 0;
public void setBee(int n) {
bee = n;
}
}

Error Prone
(98 bad-smells)

AssignmentInOperand,
AssignmentToNonFinalStatic,
AccessibilityAlteration,
AssertAsIdentifier,
BranchingStatementAsLastInLoop,
CallingFinalize,
CatchingNPE, CatchingThrowable,
DecimalLiteralsInBigDecimalConstructor,
DuplicateLiterals, EnumAsIdentifier,
FieldNameMatchingMethodName,
FieldNameMatchingTypeName,
InstanceofChecksInCatchClause,
LiteralsInIfCondition,
LosingExceptionInformation,. . .

AssignmentInOperand:

public void bar() {
int x = 2;
if ((x = getX()) == 3) {
System.out.println("3!");
}

}
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S s=Facory.getInstance();
s.m();

Class S { int type; 
….}

S s=new S();
….
Switch (s.type){
case A: statements1 ;
case B: statements2;
….
}

Figure 1. Replacing switch/case statements with polymorphism to reduce the “CyclomaticComplexity” value

Table 2. Issue categories [2]

Issue Type Example Issue Ref. Studied in
this paper

Bug New version of Java 11 seems does not work well NETBEANS-5636 Yes
New Feature Have python-archives also take tar.gz FLINK-22519 Yes
Improvement Upgrade Kotlin version in Kotlin example to 1.4.x BEAM-12252 No

Task Remove landmark directories from web and shim YUNIKORN-662 No
Sub-Task Optional removal of fields with UpdateRecord NIFI-8243 No

Test Remove some Freon integration tests HDDS-5160 No
Umbrella Add SQL Server functions TRAFODION-3146 No

Documentation SQL DataFrameReader unescapedQuoteHandling
parameter is misdocumented SPARK-35250 No

umentation, Multithreading, Performance and
Security) and among thosewehave focused on “De-
sign” and “Error-Prone” categories since they refer
to much more general forms of anti-patterns com-
pared to other categories that contain more partic-
ular subjects. Some bad-smells in either categories
along with examples are presented in Table 1.

Apart from these bad-smells we have also
analyzed the method-level complexity using two
well-known metrics: “Cyclomatic Complexity”
and “NpathComplexity” as their high values are
very good indicators of missing fundamental de-
sign patterns such as strategy, composite, proxy,
adapter and many others that are based on poly-
morphism rather than conditional logics. The for-
mer is the number of decision points in the code
and the latter is the number of full paths from
the beginning to the end of the block of a method
[27]. The refactoring practice corresponding to
the high method complexity (measured using
“CyclomaticComplexity” and “NpathComplex-
ity”) is illustrated in Figure 1.

These aforementioned bad-smells are code-
-level structures (or measures) that alert us of

deteriorated code. However the aim of this re-
search is to investigate issue-level metrics that
does the same without relying on the code repos-
itory and hence make the QC activity possible
by merely watching the issue repository. In the
Analysis section (Section 5) it will be argued
that the number of issues of type “New Feature”
reported on a software package is an effective
issue-level metric to inform the QC team of the
code deterioration extent. See Table 2 for differ-
ent issue categories and those that are involved
in this study.

4. Code deterioration assessment
model

The proposed model which incorporates the QC
component, called CDW (Code Deterioration
Watch) into the ITS, is illustrated in Figure 2.
This component keeps track of the reported issues
and categorizes them incrementally to detect rel-
atively long sequences of related reports as a sign
of possible code deterioration. By analyzing the
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Figure 2. The code quality control based on issue monitoring

Figure 3. The CDW sub-components

long sequences of reports, CDW prioritizes the
software modules to be scrutinized by the QC
team for refactoring activities. There are two
main sub-components of CDW working together
to produce the final refactoring recommendation
as shown in Figure 3. The Stream Clustering
that splits the incoming sequence of issue re-
ports into a set of chains and the Refactoring
Recommender.

Ideally CDW should have the capability of
notifying the QC team of the packages that are
being changed frequently far more than others
as they are code segments very likely to get de-
teriorated soon and need immediate attention
for refactoring (this hypothesis will be verified
in Section 6). Even if CDW be able to alert the
QC team of existence of such packages without
identifying them, it would be very helpful yet.
Note that identifying these packages accurately is
possible by analyzing the code repository at the
later time, however CDW is part of the ITS (and
not the version control) and it is supposed to give
us insights about the evolution of the software
merely by monitoring the incoming sequence of
issue reports ( issue metrics rather than code
metrics).

As the Stream Clustering sub-component
clusters the incoming issue reports into chains the
idea is to spot Relatively Long Chains (RLC) of
incoming issue reports as they tell the QC team
that a concentrated point of successive changes
has emerged in the software (this correlation will
be discussed in Section 6). RLCs are those that
their lengths (the number of issue reports in the
chain) exceed the average chain length signifi-
cantly (as much as threshold ß). Note that that if
all chains are long, none of them is considered as
RLC due to the fact that RLC concept is based
on significant size difference in a group and not
the absolute size itself.

We define the “target” of each chain as the
package which is expected to incur majority of
the changes as the issue reports in that chain
are being resolved. The “target hit number” of
a chain is also defined as the expected change
frequency of the chain target. For instance in
a chain of three reports: R1, R2 and R3 labeled
with {P1, P2, P3}, {P1, P3} and {P1}, respec-
tively, as the packages to be changed, the chain
target is P1 and its hit number is three.

Obviously a chain with a relatively high tar-
get hit number is telling us that a package (the
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target) is being changed frequently far more than
others. In Section 5 it will be verified that the
chain size is a good metric to identify chains with
a relatively high target hit number.

4.1. Stream Clustering

A simple stream clustering called “Report-
Chainer” is presented here that splits the se-
quence of issue reports into chains based on their
similarity to the previously formed chains. A split
threshold controls formation of a new chain. First
all documents are vectorized using Tf-Idf method
[28] and cosine similarity is applied to compute
the similarity of the current issue report with
previous ones. If the similarity values are less
than the split threshold then it is added to new
chain otherwise it is added to the most similar
chain (see Algorithm 1).

Vectorizing document d in a collection of N
documents using Tf-idf method consists of two
steps: first, the frequency of each term t in d
is counted (denoted tf t,d and then the value of
tf t,d is scaled using the idf t (inverse document
frequency) value:

idf t = N

dft
(1)

Where df t is the number of documents in
the collection containing term t. The value of
Tf-idf corresponding to term t in document d is
calculated using the following formula [28]:

Tfidf t,d = tf t,d × idf t (2)

In fact the Tf-idf method assigns lower
weights to the terms with no or very little discrim-
inating power in a document. To compute the
similarity of two documents d1 and d2, vectorized
using the Tf-idf method, the cosine similarity has
been applied [28]:

sim(d1, d2) = (V (d1).V (d2))
(|V (d1)| × |V (d2)|) (3)

Where V (d1) and V (d2) denote the vector
representation of d1 and d2, respectively, ob-
tained using the Tf-idf method. The advantage
of using the cosine similarity method over the or-
dinary method of computing the vector distances
is that the cosine similarity formula is insensitive
to the documents’ length.

In the next section it will be shown that there
is a significant linear correlation between the
length of a chain and the magnitude of times
that the chain target has been changed. Accord-
ingly the longer chains are good candidates for
QC attention. We will also show that, at least for
10 cases studies, not only can a split threshold
be found to result a high correlation value but
also this value is bounded.

4.2. Refactoring Recommender

The Refactoring Recommender component takes
a set of chains C as its input and produces the
recommendation by selecting, from the candidate
list, those chains whose size differences with the
average chain size are greater than threshold β
(line 13 in Algorithm 2). These chains are consid-

Algorithm 1. Sequence Clustering Algorithm
maxSim = 0
chainNum = –1
thisVec = TF_IDF(r)
for Each vec in C do

Sim = cosineSim(thisVec, vec)
if Sim > maxSim then

maxSim = sim
chainNum = vec.chainNum

end if
end for
if maxSim < t then

chainNum = C.newChain()
end if
C.add(thisVec, chainNum)
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Algorithm 2. Refactoring recommender algorithm
1: Algorithm RefactoringRecommender(Chains C): List
2: List r = ∅
3: Package p
4: int issueCnt = 0
5: int chainCnt = 0
6: for Each chain c in C do
7: if c. numberOfNotVisitedIssues()> α then
8: issueCnt += c.numberOfNotVisitedIssues()
9: chainCnt += 1

10: end if
11: end for
12: for Each chain c in C do
13: if c.numberOfNotVisitedIssues() – (issueCnt / chainCnt)) > β then
14: p = targetAnalyze(c)
15: r.add(p)
16: end if
17: end for
18: return r
19:
20: Algorithm On_RefactoringCompleted(chain c)
21: for Each Issue s in C do
22: s.visited = True
23: r.add(p)
24: end for

Figure 4. Issues have been categorized in four chains; In round n of recommendation,
candidate set is {C1, C2, C3, C4} and C4 is detected as RLC; during next k rounds C4

is excluded from the candidate set and no RLC is reported by the algorithm

ered as RLCs. Subsequently the targetAnalyze()
function determines the target package of each
RLC (line 14). This function can be carried out
using supervisedmachine learningmethods as pre-
sented in [23] or be done manually by experts. As
soon as a recommended refactoring is performed
by the QC team, all issues in the corresponding
chain are excluded from the subsequent rounds
of process by labeling them as “Visited” (line
20–24). Moreover the chain is excluded from the
candidate list in the subsequent rounds of process
until the number of “Not-Visited” issues reaches
threshold α (line 7). This prevents the algorithm

to falsely identify most of the candidate chains
as RLCs since recently recommended chain has
a few number of “Not Visited” issues and hence
moves down the average chain size significantly
(see Figure 4). A reasonable value for a could be
the average chain size of the current candidate list.

5. Analysis

The objective of our experiments was first to
study the correlation between the issue-level met-
rics and code-level metrics and second to evaluate
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the proposed RepChainer algorithm. There are
two issue-level metrics to study: Bug Absorption
Degree (BAD) and Feature Absorption Degree
(FAD) defined as the number of bugs and the
number of new features reported on a software
module in a period of time respectively. The
code-level metrics are “CyclomaticComplexity”,
“NpathComplexity” and the number of detected
“Design+ErrorProne” bad-smells as explained in
Section 3. The software module granularity was
chosen to be the package (a set of related classes).
The rationale behind choosing the package granu-
larity is to have more specialized task assignment
(i.e. refactoring tasks) to developers. Since pack-
ages are often focused on specific subjects they
can easily be assigned to developers who are spe-
cialized in the respective area to refactor all the
classes of them. Moreover another set of experi-
ments were conducted to evaluate the accuracy
and usefulness of the stream clustering algorithm
used in detecting bloated categories(RLCs) of
issue reports.

5.1. Dataset

To do the experiments, a dataset with the schema
shown in Figure 5 of medium and large scale
open-source software repositories from Apache
and Eclipse were created. Table 3 summarizes
the products metadata. For each product, its
Git [29] repository was cloned and analyzed us-
ing a program written with Node.Js. This pro-
gram extracted all the commits and their as-
sociated objects from the repository using the
isoMorphic-Git [30] library. During the analysis
phase the code metrics: “CyclomaticComplexity”,
“NpathComplexity” and the number of detected
“Design+ErrorProne” bad-smells were also mea-
sured using the PMD source code analyzer [22].

const cp = require(’child_process’ );
cp.execSync("e:\\pmd\\bin\\pmd.bat
−dir e:\\pmd\\input_cloudstack
−format xml −R e:\\pmd\\ru.xml >
e:\\pmd\\output_cloudstack\\out.xml");
cp.execSync("e:\\pmd\\bin\\pmd.bat
−dir e:\\pmd\\input_cloudstack
−format xml −R category/java/design.xml,
category/java/errorprone.xml,>

e:\\pmd\\output_cloudstack\\out.xml");
Listing 1. Javascript code snippet to invoke PMD
program using a custom ruleset: ru.xml (top) and
the predefined “design” and “error prone” rule sets

(bottom)
The Javascript code snippet to invoke PMD

program is shown in Listing 1. A custom or
built-in rule set has to be passed to PMD to
analyze the source code accordingly. For detect-
ing “Design+ErrorProne” bad-smells the built-in
rule sets: category/java/design.xml and catego-
ry/java/errorprone.xml were used. To measure
“CyclomaticComplexity” and “NPathComplex-
ity” metrics a custom rule set ru.xml was used
as listed in Listing 2.

Due to the size of repositories the analysis
took over a week to complete on a cluster of
core-i7 PCs during which the analyzer program
was running round the clock. To the best of
our knowledge such an integrated dataset of is-
sues, measured code metrics and bad-smells and
metadata of all commits on Eclipse and Apache
products has not been published elsewhere and
we are working to make it online soon.

class

commit

commitRep

change

product

report

metric

Figure 5. Dataset schema

The issues reported on products were im-
ported into “report” table from the respective
ITS. Apache-Jira and Eclipse-Bugzilla ITSs are
accessible at [31] and [32] respectively.

5.2. Correlation Analysis

Assume that Ni and Bi are the number of re-
solved issues of type “New Feature” and “Bug”
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Table 3. Products metadata

Product License Language No. of
Classes

No. of
packages

No. of
reported
issues

No. of
analyzed
commits

ITS

Cloudstack Apache Java,
Python 16100 639 3451 5565 JIRA

Geode Apache Java 27277 961 3805 6565 JIRA

Spark Apache
Java,
Python,
Scala

8494 490 13289 15044 JIRA

Camel Apache Java 37702 2393 9655 18299 JIRA
Geronimo Apache Java 13163 846 2127 3115 JIRA
Hadoop Apache Java 27045 1168 3671 15902 JIRA
Hbase Apache Java 8255 261 9445 11164 JIRA
Myfaces Apache Java 2805 219 1594 2640 Bugzilla
4diac.ide Eclipse Java 1598 255 1126 504 Bugzilla
Acceleo Eclipse Java 896 210 969 520 Bugzilla
Common Eclipse Java 1496 177 105 287 Bugzilla
App4mc Eclipse Java 1370 68 131 186 Bugzilla

<?xml version="1.0"?>
<ruleset name="Custom␣Rules"
xmlns="http://pmd.sourceforge.net/ruleset/2.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi:schemaLocation="http://pmd.sourceforge.net/ruleset/2.0.0
␣␣␣https://pmd.sourceforge.io/ruleset_2_0_0.xsd">
<description>
My custom rules
</description>
<rule ref="category/java/design.xml/CyclomaticComplexity">
<properties>
<property name="classReportLevel" value="1" />
<property name="methodReportLevel" value="1" />
<property name="cycloOptions" value="" />
</properties>
</rule>
<rule ref="category/java/design.xml/NPathComplexity">
<properties>
<property name="reportLevel" value="1" />
</properties>
</rule>
</ruleset>

Listing 2. PMD custom rule-set applied to measure “CyclomaticComplexity”
and “NPathComplexity” metrics

on package Pi, respectively, (issues for which Pi

was not modified are excluded) and Ii = Ni
⋃
Bi

denotes the number of all resolved issue types
on Pi. Moreover ∆bi,m denotes the variation of
code metric m during the successive changes of Pi:

∆bi,m = mmax,i −minit,i

m ∈


”CyclomaticComplexity”,
”NpathComplexity”,
”Design + ErrorPron”


(4)
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Figure 6. The Pearson correlation analysis on 12 products: (top left): “Design+errorProne” bad smells,
(top right) “CyclomaticComplexity” metric and (bottom) “NpathComplexity” metric

Where mmax,i and minit,i are the maximum
and initial values of code metric m measured
over all variations of classes in Pi:

mmax,i =
C∈Pi∑

Maxversions(c){val(mC)} (5)

Where versions(c) is the set of all successive
versions of class C stored in the Git repository
due to subsequent changes made by committers
and val(mC) denotes the measured value of met-
ric m on class C. Likewise:

minit,i =
C∈Pi∑
{val(mC0)} (6)

WhereC0 denotes the initial version of classC
in Git repository. The objective of the correlation

analysis is to examine the random variable pairs:
(∆bi, Ni), (∆bi, Ii) and (∆bi, Bi) for existence of
significant linear correlation. The correlation was
analyzed using the Pearson test and the results
are illustrated in Figure 6. The main reason that
we considered the difference between the max
and the initial metric values has been to obtain
the added number of smells to the base value
during the successive commits. In other words the
increase in the number of smells matters most in
our study.

For the Eclipse products the separate corre-
lation analysis for BAD and FAD metrics was
not possible as the classification of issue reports
into “Bug” and “New Feature” is not provided
by the Bugzilla ITS. The highest correlation was
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Figure 7. The correction between the number of reports of type “New Feature” and the number of
bad-smells of type: “Design+ErrorProne” computed for different dataset sizes

observed between the “Design+ErrorProne” code
metric and the FAD issue metric. With respect to
the “CyclomaticComplexity” and “NpathCom-
plexity” metrics, as the indicators of the extent
to which polymorphism is missing in the design,
good correlation is observed between the “Cyclo-
maticComplexity” metric and the FAD metric.
The variation of the correlation values (between
the FAD and “Design+ErrorProne” metrics) over
the maintenance period has also been studied
by stepwise correlation analysis using different
repository sizes. As shown in Figure 7 the frac-
tional correlation analysis has been performed
on data set sizes ranging from 10% to 100% of
the issue reports in the repository. The results of
the above analysis will be discussed in Section 6.

5.3. Stream Clustering Analysis

To evaluate the proposed RepChainer algorithm,
issue reports from 10 Apache products were
analyzed. Each report is associated with a set of
commits and the set of packages changed by the

respective commits is used as the report label.
A sample report and its label is shown in Figure 8.

For each product three streams of reports:
small, medium and large size were prepared to
evaluate the ReportChainer algorithm. The small
size stream was used for finding the best value for
split threshold (learning set) and the two other
streams used for evaluation. A Python program
iterates through threshold values in the range
[0.1 0.8] and for each threshold the chains are
created and the “chain lengths” and their corre-
sponding “target hit numbers” are extracted to
compute the correlation value. The “target hit
number” of each chain is determined based on
the labels of reports in the chain; for instance
for the following chain: (R1, {P1, P2, P3}) →
(R2, {P1, P3}) → (R3, {P1}) consisting of three
reports R1, R2 and R3 and labels {P1, P2, P3},
{P1, P3} and {P1} the chain target is package
P1 and its hit number is three. The objective of
this experiment is to show that the longer the
chain is the higher the target hit number will be.
Note that opposed to many previous studies (for
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Weights assigned to terms using the Tf-idf method:

({'unifi': 0.29447407686889265, 'reflectutil': 0.33919324980824395, 'classutil': 

0.33539379704513483, 'class': 0.29411422057139275, 'current': 0.07138622368723736, 

'histor': 0.16959662490412197, 'grown': 0.16959662490412197, 'differ': 0.0953196864204431, 

'respons': 0.08685632305052403,'load': 0.09871841273198587, 'one': 0.16448033360810138, 

'origin': 0.12487745196477068, 'facelet': 0.07820264606359888, 'codebas': 

0.16959662490412197, 'homegrown': 0.16959662490412197, 'advantag': 

0.16959662490412197, 'disadvantag': 0.16959662490412197, 'probabl': 

0.14723703843444633, 'share': 0.09224516449127132, 'long': 0.12487745196477068, 'run': 

0.07820264606359888,'post': 0.11767927289011874}, 

Label: {'org.apache.myfaces.view.facelets.compiler', 

'org.apache.myfaces.view.facelets.tag.jsf.core',

'org.apache.myfaces.view.facelets.util', 'org.apache.myfaces.shared.util', 

'org.apache.myfaces.view.facelets.el'}

)

Figure 8. A sample vectorized issue report and its label

Table 4. Pearson test results for random variables: (chainLen, hitNumber).

Product Learning set size
(number of reports) Learned Threshold Pearson

coefficient value
Best

Threshold
Best Pearson

coefficient value
Cloudstack 26 0.35 1 0.35 1
Geode 507 0.1 0.98 0.1 0.98
Spark 1243 0.7 0.84 0.1 0.97
Camel 796 0.1 0.94 0.1 0.94
Geronimo 673 0.7 0.85 0.1 0.94
Hadoop 550 0.25 0.80 0.1 0.97
Myfaces 192 0.1 0.95 0.1 0.95
Hive 3070 0.1 0.99 0.1 0.99
Hbase 783 0.15 0.95 0.1 0.98
Cassandra 70 0.35 0.93 0.1 0.99

example [23]) that aimed at finding the target
package which is a more difficult problem to solve
even with supervised machine learning methods,
the intent of the ReportChainer is merely form-
ing the chains correctly. The correlation value
was computed using the Pearson method imple-
mented in NumPy [33]. The results are listed in
Table 4. The samples of (chainLen, hitNumber)
pairs are plotted in Figure 9.

According to the observed results, for almost
all of the products, the threshold value 0.1 re-

sulted in chains with the highest correlation value.
It was observed that for fairly long sequences of
reports this threshold value worked fine across
Apache products. There were products for which
the learned threshold value differed from the best
value (for instance CloudStack and Cassandra)
due to the relatively few number of samples in
the learning sequence: 26 and 70 respectively.
Generally it can be argued that the shorter the
sequence of reports, the higher threshold value
will result in the best set of chains (in terms of
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Figure 9. Plot of pairs: (chainLen, hitNumber) for six Apache products: Camel, Cassandra, CloudStack,
Geode, Geronimo and Hadoop. The x and y axes are chain length and target hit numbers respectively.

The chains were created with split threshold = 0.1

the Pearson correlation metric). On the other
hand, a lower threshold value creates fewer equal
(short) length of chains due to their less join re-
jection rate. Many equal short size chains prevent
the recommender module from working properly.
For instance in CloudStack the best threshold
learned 0.35, however by examining the resulted
chains, many short equal length chains were ob-
served. By choosing the threshold value less (=
0.1) this problem was overcome.

6. Discussion

The results confirmed strong linear direct corre-
lation (0.73 on average) between the FAD metric
and the “Design+ErrorProne” deterioration met-
ric. Moreover the FAD metric is correlated with
the “CyclomaticComplexity” deterioration met-
ric well. Hence the FAD metric could be applied
as a good indicator of the code deterioration level
in terms of the number of emerged bad-smells
and the extent to which the polymorphism is re-



Software Deterioration Control Based on Issue Reports 129

placed wrongly by the complex conditional logics
in the design. The statistical analysis using the
Student”s T distribution showed that the mean
value of the correlations (between FAD and “De-
sign+ErrorProne”) falls within [0.32, 1.14] with
confidence 95%. Moreover as shown in Figure 7,
the correlation value is almost independent of the
number of received issue-reports on the product
and at any time, as the product changes, the
FAD metric can be used to measure the relative
deterioration level.

To justify the relatively lower correlation val-
ues between FAD and “NpathComplexity” met-
rics, it should be noted that though both “Npath-
Complexity” and “CyclomaticComplexity” met-
rics measure the amount of complex conditional
logics in the code, the former is very sensitive to
the composition of the conditional statements in
the code while the latter only counts the number
of decision points.

Furthermore to explain why the FAD metric
is superior to the BAD metric in terms of the cor-

relation strength to the deterioration code-level
metrics, we argue that:

(1) Usually adding a feature involves more
(re-)design activities than fixing a bug and it is
more likely to incorporate bad- structures into
the code compared to fixing bugs.

(2) A good design suppresses the subsequent
“New Feature” requests whereas a bad design
produces forthcoming related “New Feature” re-
quests: It is easy to see (as we have seen in our
industrial experiences) that if a “New Feature”
request is designed properly using well-defined
design patterns (mostly based on polymorphism),
the resulted code will involve the abstract con-
cepts rather than concrete classes and hence
the subsequent requests are likely to be vari-
ants and special cases of the initially requested
feature and could be easily addressed by adding
new classes rather than modifying the existing
code (Open-Close principle [34]). Hence in this
case less forthcoming requests of type “New Fea-
ture” is expected to be received. In contrast,

Figure 10. Classes with more anti-pattern constructs absorb more subsequent New Features.
Three related New Feature requests: NF1,NF2 and NF3. Using strategy design pattern (top),

using conditional constructs (bottom)
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the more polymorphism and design pattern con-
structs are replaced with conditional logics (and
anti-patterns) in the code, the higher number of
subsequent New Feature requests will be gener-
ated and absorbed by the module. This concept
is illustrated in Figure 10.

To our best knowledge, there has been no
study on the impact of different change types
on the deterioration level of the code so far.
According to the literature [34, 35]. This is widely
accepted in the software engineering community
that successive changes in the maintenance phase
of software gradually causes the software to rot
and the symptoms of deterioration to emerge:
rigidity, fragility, needless complexity, opacity,
immobility and these are due to bad smells in
the code. Hence the more changes to the code
the more deteriorated the code becomes. The
results obtained in our study also corroborates the
literature in the sense that “NewFeatures” are sub
types of “Change” and hence we could expect to
see a good correlation between the number of “New
Features” and the deterioration level. Now we
can answer to our mentioned research questions:

RQ1: Can the QC team evaluate the qual-
ity level of the code, which is under successive
changes during the maintenance phase, only by
observing issue-related metrics such as the num-
ber of reported issues on a software package?
Is the type of reported issues important in this
evaluation?

Answer: According to the analysis presented
in Section 5, yes. Issue reports are clustered using
the stream clustering algorithm and the target
package of the longest chain is recommended as
the package with a high change rate. Due to the
strong correlation between the value of FAD met-
ric and the number of bad-smells, this package
is presumed to be a priority for refactoring.

RQ2: Is there an effective stream cluster-
ing method to categorize incoming sequence of
issue reports such that a bloated category be
truly interpreted as the concentration of frequent
changes on a specific software package and hence
be reported as possible point of deterioration?

Answer: According to the correlation anal-
ysis results presented in Table 4, the proposed
stream clustering algorithm could successfully

create sequences of related issue reports such
that the issue reports in each sequence are mostly
focused on a specific package called target.

7. Threats to validity

As the most important threat to validity of the
proposed QC approach to mention is the ac-
curacy of the presented stream clustering algo-
rithm, the parameters of this algorithm has to
be fine-tuned according to the issue-report pecu-
liarities and the product characteristics. Another
threat to validity is the accuracy of the PMD bad
smell detection tool. In [36] a comparative study
of bad smell detection tools has been presented.
In this study a detailed comparative study of four
tools including PMD showed that this tool was
able to reach up to 100% precision and 50% recall
on particular test-cases and could outperform
other tools in precision while rival in the recall
value. Another limitation is that the study is de-
limited in the Object Oriented programming field
though the strength of the proposed approach is
independent of the used programming language.

8. Conclusions and future works

The continuous modifications of software mod-
ules lead to emergence of bad-smells and it is
desirable to equip ITSs with assisting tools to
notify the QC team about parts of the code
that need immediate refactoring attentions. In
this paper by creating a dataset of issue reports
and their corresponding change information ex-
tracted from Apache and Eclipse open-source
software repositories, a thorough study was con-
ducted. The results confirmed a significant linear
direct correlation between the FAD issue-level
metric measured on a software package and the
“Design+ErrorProne” and “CyclomaticComplex-
ity” code-level metrics. Hence the packages with
higher measured values for FAD can be consid-
ered as good candidates of parts highly exposed
to deterioration, they need immediate attention
of the QC team. A challenging part of the pro-
posed model was to design a stream clustering to
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be able to split the sequence of reports into chains
in a way that the length of the chains be a valid
indicator of its target hit number. According to
the observed results, for most of the products,
the threshold value 0.1 resulted in chains with
the highest Pearson correlation between chain
lengths and their target hit numbers. As the
future work we aim at studying other bad-smell
types as well as other latent bug level metrics to
predict the deterioration trend of the software
during the maintenance phase. Another future
work could be studying the same dataset with
other smell detection tools apart from PMD.
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