
e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 163–184, DOI 10.37190/e-Inf210108

Multi-view learning for software defect prediction

Elife Ozturk Kiyak∗, Derya Birant∗∗, Kokten Ulas Birant∗∗

∗Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey
∗∗Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey

elife.ozturk@deu.edu.tr, derya.birant@deu.edu.tr, ulas.birant@deu.edu.tr

Abstract
Background: Traditionally, machine learning algorithms have been simply applied for software
defect prediction by considering single-view data, meaning the input data contains a single feature
vector. Nevertheless, different software engineering data sources may include multiple and partially
independent information, which makes the standard single-view approaches ineffective.
Objective: In order to overcome the single-view limitation in the current studies, this article
proposes the usage of a multi-view learning method for software defect classification problems.
Method: The Multi-View k-Nearest Neighbors (MVKNN) method was used in the software
engineering field. In this method, first, base classifiers are constructed to learn from each view,
and then classifiers are combined to create a robust multi-view model.
Results: In the experimental studies, our algorithm (MVKNN) is compared with the standard
k-nearest neighbors (KNN) algorithm on 50 datasets obtained from different software bug reposi-
tories. The experimental results demonstrate that the MVKNN method outperformed KNN on
most of the datasets in terms of accuracy. The average accuracy values of MVKNN are 86.59%,
88.09%, and 83.10% for the NASA MDP, Softlab, and OSSP datasets, respectively.
Conclusion: The results show that using multiple views (MVKNN) can usually improve classifi-
cation accuracy compared to a single-view strategy (KNN) for software defect prediction.

Keywords: Software defect prediction, multi-view learning, machine learning, k-nearest
neighbors

1. Introduction

Predicting defects (bugs) in source codes is one of
the most valuable processes of the software devel-
opment life cycle (SDLC) to achieve high quality
and reliability in software. The defects that exist
in the software lead to not only waste time and
money but also severe consequences during de-
ployment. Therefore, detecting and fixing defects
in the initial stages of SDLC are crucial require-
ments to produce robust and effective software
systems. For this purpose, so far, many studies on
software defect prediction have been conducted
by utilizing machine learning techniques. For
instance, software modules have been classified
as buggy or non-buggy, which refers to the binary
classification, or the number of bugs predicted,
which refers to the regression problem [1].

Software defect prediction (SDP) generally
includes the following stages to recognize de-
fect-prone software components. (i) First, soft-
ware modules are obtained from software reposi-
tories. (ii) After that, the features (software met-
rics) are extracted from the software modules
and each module is labeled to indicate whether
the module contains a defect or not. (iii) A clas-
sification model is constructed on the training
labeled data. (iv) Finally, the constructed model
is utilized to estimate the defect-proneness of
new unseen software modules.

The standard SDP studies have used the tra-
ditional machine learning techniques which are
basically working on single-view data. However,
the SDP problems can involve data with multiple
views (i.e., multiple feature vectors). The con-
ventional classification algorithms (i.e., k-nearest

Submitted: 22 March 2021; Revised: 10 August 2021; Accepted: 10 August 2021; Available online: 3 November 2021

https://www.e-informatyka.pl/wiki/e-Informatica
https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_15/eInformatica2021Art08.pdf

164 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

neighbors – KNN) simply concatenate all mul-
tiple views into a single view for learning. How-
ever, this simple view-concatenation approach
may produce undesirable prediction results since
each view has its own specific characteristics.
Therefore, multi-view learning (MVL) methods
are needed to individually explore diverse infor-
mation from several different feature vectors and,
hence, to increase learning performance by taking
into account the diversity of various views. For
this purpose, in this work, we propose the usage
of a multi-view learning approach for software
defect prediction problems.

The fundamental contributions of this paper
can be pointed out as follows. (i) This study uses
the Multi-View k-Nearest Neighbors (MVKNN)
algorithm in the software engineering area. (ii) It
compares the MVKNN and KNN algorithms for
software defect prediction. (iii) This study is also
original in that it investigates the effects of the
number of neighbors (the parameter k) on the
software defect prediction performance.

In the experimental studies, we demonstrated
the effectiveness of the multi-view learning ap-
proach on the SDP. Our MVKNN method was
tested on 50 datasets obtained from different
software bug repositories. The experiment re-
sults show that our MVKNN algorithm achieved
higher accuracy values than the KNN algorithm
on most of the datasets.

The remainder of this article is basically or-
ganized in the following manner. In Section 2, we
give an overview of the previous studies related
to the topic. In Section 3, we explain the meth-
ods used in this study. In Section 4, we describe
the main characteristics of the datasets, present
the experimental studies, and discuss the results.
The last part (Section 5) provides concluding
remarks and intended future works.

2. Related work

In single-view learning, a classification method
is applied to the entire feature set or the spe-
cific part of the feature set [2]. In multi-view
learning, various distinct feature sets (views) are
evaluated [3]. These views can be collected from

diverse sources, or a single raw data can be sepa-
rated into different feature sets. For example, in
web mining, the textual content can be consid-
ered as one view, and image data can be repre-
sented as another view. Similarly, a single docu-
ment can have multiple representations (views)
in different languages. Another typical example
is the music emotion recognition, in which lyrics
(view 1) and song (view 2) can be considered
as multiple views. The views can be multiple
measurement modalities such as jointly repre-
sented audio signals + video signals in television
broadcast, biological + chemical data in drug
discovery, or images from different angles.

Recently, multi-view learning (MVL) has
been combined with different machine learning
paradigms such as active learning [4], ensem-
ble learning [5, 6], multi-task learning [7], and
transfer learning [8]. In the literature, many stud-
ies on MVL have been focused on classification
and/or regression problems [4, 5, 8]; however, re-
cently, some studies have focused on a clustering
task [3, 6]. Until now, MVL has been used in
different fields such as health [5, 9], finance [6],
and transportation [7]. However, MVL studies
are considerably limited in software engineering,
especially for software defect prediction.

2.1. Related studies on single-view
learning for software engineering

Researchers have concentrated on machine learn-
ing (ML) methods in software defect prediction.
However, they have applied ML techniques on the
whole feature set or the selected feature subset.
In the literature, a massive number of existing
SDP studies have built classification models on
specific features which have been determined by
using a feature selection method. For example,
Laradji et al. [10] used an ensemble classifier and
claimed that the reduction of unimportant and
irrelevant features improves the performance of
defect prediction. They applied a greedy-forward
selection method to obtain a subset of software
metrics. Agarwal and Tomar [11] applied the
F-score feature selection method which was uti-
lized to determine the important software metric
set that was distinctly affecting the defect classifi-

Multi-view learning for software defect prediction 165

cation in software projects. The study conducted
by Wang et al. [12] used the filter-based fea-
ture ranking techniques to determine how many
metrics should be selected when constructing
a defect prediction model. First, the top 10,
15, and 20 metrics were chosen according to
their scores, and then three different classifica-
tion models were constructed. Although different
feature sets achieved high accuracy for different
classifiers, their results showed that a predic-
tor could be constructed with only three fea-
tures.

In the literature, ML methods have been usu-
ally used to perform within-project defect pre-
diction (WPDP). However, when historical data
was insufficient within a project, the cross-project
defect prediction (CPDP) approach [13] has been
applied to employ the information from other
projects. Moreover, some studies used advanced
ML paradigms in software defect prediction, such
as ensemble learning [14], semi-supervised learn-
ing [15], and transfer learning [13].

All the aforementioned studies performed ex-
periments on a single feature vector (view). How-
ever, in our study, we used several feature sets
(views) to learn diverse information obtained
from various data sources, and therefore to in-
crease learning performance by taking into ac-
count the diversity of different views.

2.2. Related studies on multi-view
learning for software engineering

Recently, lots of information about a subject have
been acquired easily, as well as various kinds of
data (i.e., image, audio, text, video) have been ob-
tained from multiple sources. As many MVL stud-
ies [3] indicated that the information acquired by
using data gathered from multiple sources can
be more valuable than the information obtained
from single-view data. Thus, multi-view learning
has been used in a variety of areas for different
purposes, such as text classification [16], image
classification [17], face identity recognition [18],
and speech recognition [19].

Multi-view learning in software engineering is
concerned with the problem of learning from data

that describe a particular SE problem and is rep-
resented by multiple distinct feature sets (called
views). Many SE problems can be expressed with
different data views. One of the most well-known
examples is that software engineering data can
consist of several views such as the module de-
pendency graph (view 1), execution logs (view2),
and the vocabulary (view 3) used in the source
code. Since all of them collectively describe a soft-
ware system, the integration of all these unique
and complementary views can be jointly used
for analysis [20]. A software system can also be
investigated from different perspectives, relating
to a variable group or representation scheme de-
picting that domain. For instance, evolutionary
information is a set of group variables describing
the co-changing frequency of software units. An-
other example in the software engineering area is
the identification of programming language from
different views. For example, source code classifi-
cation can be performed by applying multi-view
learning to the same piece of code data obtained
as text (view1) and image (view2) [21]. In the
software defect prediction area, as in this study,
the software metrics extracted from source codes
can be divided into different views, considering
that they are obtained from different perspec-
tives.

In the literature, only a limited number of
studies have focused on multi-view learning for
software defect classification. In 2017, Phan
and Nguyen [22] applied a multi-view convolu-
tional neural network to predict software defects
from assembly instruction sequences. They rep-
resented each instruction with two views: the
content (view 1) and the group (view 2). For
each view, convolutional layers were applied and
merged before feeding them to the fully-con-
nected layers. In 2019, Chen et al. [23] proposed
a multi-view NN-based heterogeneous transfer
learning model built by partitioning features into
groups for software defect prediction. However,
in the former study, source code was used as
a dataset, and in the latter study, different fea-
ture sets were evaluated. Our approach is lever-
aged by combining KNN algorithms separately
implemented to each view.

166 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

2.3. Related studies on KNN for software
defect prediction

By means of its simplicity and ease of implemen-
tation, the KNN algorithm has been implemented
in many ML applications. For defect prediction,
several studies have been developed using the
KNN algorithm in various ways, such as weighted
KNN [24], hybrid model using Naive Bayes and
KNN [25], boosting-based KNN [26], and KNN
regression [27]. Although these studies are related
to defect prediction, experiments were conducted
using single view data. Different from these pre-
vious studies, we used an improved version of
KNN for multi-view software defect data.

Until now, the KNN algorithm has been em-
ployed in various multiple learning studies in
different areas. For example, multi-label learn-
ing (ML-KNN) [28], multi-instance learning
(FuzzyKNN) [29], multi-class learning (DEMST-
-KNN) [30], and multi-task learning (ssMTTL-
-KNN) [31]. Unlike these previous studies, we
used the multi-view KNN method proposed
in [32].

3. Material and methods

In this section, the KNN and MVKNN algo-
rithms are briefly described.

3.1. K-nearest neighbors

K-nearest neighbors (KNN) is a typical super-
vised ML algorithm utilized in both classification
and regression problems. The KNN algorithm
works on labeled data samples and uses them
to classify a new sample based on its similar-
ity to the k closest neighbors. In this study,
we chose KNN as a machine learning algorithm
since it has many advantages such as simplicity,
easy implementation, efficiency, and ease of un-
derstanding the results [33]. The advantages of
KNN also include that it supports incremental
data; therefore, re-training is not required for the
newly-arrived observations. The other advantage
of KNN is that it can be successfully used for
nonlinear data. Moreover, it has the ability to

predict both categorical and discrete variables
and to deal with noisy data. Furthermore, it
can be directly used for multi-class classification,
in addition to binary classification. KNN has
been proven to be an effective method in various
studies [24–31] and thus, it has been widely used
in many applications.

Considering k as the number of nearest
neighbors and n labeled data samples, D =
{s1, s2, . . . , sn} be the training set in the form
of si = (xi, ci), where xi is the feature vector of
the sample with d-dimension, denoted by xi =
(xi1, xi2, . . . , xid) and comes from data space X,
and ci is the class label that si assigned to and
it is from a set of classes Y = {c1, c2, . . . , cm}.
A classifier is a function in the form of f : X → Y
that maps a new data sample X onto an item
of Y . The KNN algorithm starts with a new
sample s′ = (x′, ?) whose class label is unknown.
Distance dis(x′, xi) is calculated between s′ and
all si in the dataset D. The most widely-used
distance measures are Euclidean and Manhattan
distance metrics. Then, the k closest neighbors
to s′ in the training samples are selected. Fi-
nally, class label c′ is assigned to s′ based on the
majority class of neighbors.

3.2. Multi-view k-nearest neighbors

Our algorithm, called multi-view k-nearest neigh-
bors (MVKNN), was proposed in [32]. It is an
advanced version of KNN that combines individ-
ual models developed for each view.

Let Sv = (Xv, c) be a sample of a view v,
where Xv is the feature set of v such that Xv =
{xv

1, xv
2, . . . , xv

d} for v = 1, 2, . . . , V and c refers to
the class label of the sample, where V is the num-
ber of views. The dataset D consists of n samples
and denoted by D = {(X1

i , X2
i , . . . , XV

i , ci), i =
1, 2, . . . , n}, where Xi is the ith sample and ci ϵ Y
is the class label of it and Xj

i refers to the ith

instance of the jth view. Views are mutually
exclusive, so they have different feature sets such
that ∀(p,q)X

p ∩ Xq = ∅. Since views express dif-
ferent representations of the same object, each
instance in different views has the same class
label ci ϵ Y , where Y = {c1, c2, . . . , cn}. Firstly,
in the view-based classification, a set of classifiers

Multi-view learning for software defect prediction 167

are built for each view by using different k input
parameters such that fj : Xj → Y . After that,
in the multi-view-based classification, a number
of view-based classifiers fj are combined to de-
termine the final prediction.

Figure 1 shows the general overview of the
MVKNN method that can be used for soft-
ware defect classification. The MVKNN method
consists of three main steps: data preparation,
view-based classification, and multi-view-based
classification.

Step 1 – Data preparation: Raw data obtained
from a software repository may require prepara-
tion before yielding results, so it has been pre-
pared for view-based classification. To increase
data quality and to acquire more accurate out-

comes, various preprocessing techniques may be
applied such as completing missing data or re-
moving duplicate instances. Since the dataset
consists of several views, data preprocessing
should be performed for all views. It can be
noted here that each view has a different feature
set. In other words, each view is represented as
disjoint features of the same object, so distinct
features and class label of an object exist in each
view.

Step 2 – View-based classification: This clas-
sification aims at creating a model learning from
each view using an adaptive method in which
each instance is classified with a different number
of neighbors, rather than utilizing only a single
value of k. For each view, weak KNN classifiers

1-NN . . .2-NN

Voting

View 1
Classifier

Voting

Multi-View

ClassifierNew Software
Data

Prediction

View 2
Classifier

View v
Classifier

Data Preparation

View 1 View 2 … View v

...

View-Based Classification

1-NN . . .2-NN

Voting

1-NN . . .2-NN 𝒏-NN

Voting

Buggy/Clean

Multi-View-Based Classification

𝒏-NN 𝒏-NN

Data
Preparation

...

...

Multi-View Software
Defect Data

Figure 1: The general overview of the MVKNN method for software defect prediction

168 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

are constructed with different parameters (k),
where k is ranged from 1 to the square root
of the number of samples (

√
n). The classifiers

(1-NN, 2-NN, 3-NN, . . . ,
√

n-NN) are combined
to form a strong ensemble model for a specific
view. In the end, the class label of a particular
view is determined by using a voting strategy
that selects the class having the highest number
of votes, where n refers to the number of samples
in the dataset.

Step 3 – Multi-view-based classification: In
this step, a number of view-based learners are
combined to form a general model for classifi-
cation. A majority voting strategy is utilized to
combine outcomes from each view and the final
class label of a new instance is specified as buggy
or clean.

The MVKNN method can be used for soft-
ware detect prediction to provide many advan-
tages as follows:
– A single-view software data is dependent on

a single view-point, whereas multi-view soft-
ware data usually contains complementary
information since it typically includes many
view-points. In multi-view learning, the lack
of information of one view can be comple-
mented by the sufficiency of other views.
Thanks to this essential property of MVKNN,
it eliminates the weaknesses of single-view
software defect prediction.

– Compared to the traditional KNN algo-
rithm which is substantially developed for
single-view data, MVKNN is expected to
yield more robust outcomes in the presence
of noisy software defect data. Because noise
in one view can be reduced by a voting mech-
anism among multiple views.

– Numerous software metrics can be extracted
from software projects and so data can be
high dimensional. The MVKNN method has
the ability to handle a large number of fea-
tures since it considers high-dimensional data
as a union of multiple low-dimensional sub-
spaces, called views. Software defect data can
contain many metrics from different perspec-
tives such as Halstead’s measures and Mc-
Cabe’s measures. Therefore, considering high
dimensional data containing a group of dif-

ferent feature sets, we can separate the data
into appropriate views, each corresponding
to a disjoint feature set.
In spite of numerous benefits, the MKKNN

method considers correlations at the view level;
however, it does not take into account implicit
correlations between features in multiple views.
In addition, MVKNN is computationally more
expensive than KNN since it separately learns
from each view dataset and runs the base learner
many times to jointly learn from multiple k pa-
rameters rather than a single k parameter.

4. Experimental studies

In this section, software defect datasets are
described, and several experiments conducted
with the MVKNN method are presented. The
MVKNN and KNN methods were compared for
software defect prediction. The obtained results
were validated utilizing statistical tests to ensure
that the differences between the methods in the
datasets were significant. For this purpose, we
applied the Wilcoxon test which is a well-known
non-parametric statistical test.

The MVKNN algorithm was implemented uti-
lizing the WEKA machine learning library [34]
and C# programming language. The implemen-
tation of the MVKNN method is available at
the website https://github.com/elifeoztu
rk/MVKNN. As an evaluation method, the
10-fold cross-validation technique was used, in
which the dataset is divided into 10 parts and
then each part is used once as a test set while
the remaining parts form the training set. In
this study, four evaluation metrics (Accuracy,
Precision, Recall, and F1 Score) were used to
evaluate the classification performances. Accu-
racy is the most widely-used performance mea-
sure that calculates the ratio between the num-
ber of correctly predicted instances and all in-
stances. It is calculated as follows: Accuracy =
(TN + TP)/(TP + FP + TN + FN), where TN
(true negatives) and TP (true positives) are cor-
rectly predicted as real labels. In other words,
if the real label is “positive” and the predicted
label is “positive” or the actual label is “nega-

https://github.com/elifeozturk/MVKNN
https://github.com/elifeozturk/MVKNN

Multi-view learning for software defect prediction 169

tive” and the predicted label is “negative”, it is
TP or TN, respectively. Unlike correct estimates,
FP and FN point out that instances did not
correctly classified as actual labels. Precision
shows the ratio of correctly predicted positive in-
stances to the total predicted positive instances.
Precision is calculated as follows: Precision =
TP/(TP + FP). Recall is the number of correct
predictions divided by the number of all pre-
dictions in the actual class. It is calculated as
follows: Recall = TP/(TP + FN). F1 Score is
the harmonic mean of the precision and recall.
This evaluation measure is particularly preferred
when datasets have uneven class distribution.
F1 Score is calculated as follows: F1 Score =
2 × (Recall × Precision)/(Recall + Precision).
Precision, recall, and F1 Score are useful met-
rics for evaluating “learning from imbalanced
datasets”.

4.1. Dataset description

In this work, we conducted experiments on
50 bug datasets from three different reposito-
ries available in the software engineering area:
Tera-PROMISE Open Source Software Projects
(OSSP), NASA MDP (Metrics Data Program),
and Softlab that included 40, 5, and 5 datasets,
respectively. Table A1 lists the main characteris-
tics of the datasets, including their names, the
groups to which the datasets belong, the number
of samples in the datasets, and defect percent-
ages (%). To be able to test MVKNN on imbal-
anced data, we especially used the NASA MDP
datasets where defect percentages ranged be-
tween 7% and 23%. Furthermore, these datasets
have been widely used in many machine learning
studies [10, 14, 15]. MVKNN is designed for gen-
eral purposes; therefore, it can be further applied
to different datasets with different software en-
gineering metrics when the research community
has presented new ones.

More details about datasets are described
below, and supplemental information and tables
are included in Appendix A.
– OSSP Datasets [35]: The datasets in this

group consists of 20 independent object-ori-

ented source code metrics and one dependent
defect variable that indicates buggy or not.

– NASA MDP Datasets [36]: The datasets
(named cm1, jm1, kc1, kc2, pc1) in this group
were obtained from NASA software projects.
These datasets include 21 static code features
that were extracted from a software product
based on the McCabe metric, Basic Halstead
measures, and Derived Halstead measures.

– Softlab Datasets [37]: The datasets were de-
noted by a Software Research Laboratory
and collected from a Turkish white-goods
manufacturer. The ar1 and ar6 datasets were
collected from an embedded controller for
white goods, while the other (ar5, ar4, ar3)
datasets were obtained from a refrigerator,
dishwasher, and washing machine, respec-
tively. The datasets contain 29 static code
attributes.
Table A2 presents the fundamental charac-

teristics of datasets, containing the number of
classes (i.e., buggy or clean), the number of views,
and the number of features that belong to each
view.

Tables A3, A4 and A5 show all the soft-
ware metrics and their categories in each dataset
group for NASA, OSSP and SOFTLAB datasets,
respectively. The datasets have different views
designed based on the previous studies [38–40].
The NASA MDP datasets have three views as
given in [38]: McCabe, Basic Halstead, and De-
rived Halstead features with 4, 9, and 8 soft-
ware metrics, respectively. The OSSP datasets
contain object-oriented measures that indicate
the characteristics of inheritance, coupling, co-
hesion, complexity, and line features of software
programs [39]. The Softlab datasets consist of
four views [40], including Halstead, McCabe,
LOC, and Miscellaneous metrics. Halstead met-
rics show the program complexity obtained by
analyzing the source code. McCabe metrics quan-
tify the control flows in a program. LOC metrics
refer to the measures related to lines of code,
such as the number of executable lines and the
number of comment lines. Finally, the rest soft-
ware metrics are additionally included in the
“Miscellaneous” group.

170 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

4.2. Experimental results

Table 1 shows the comparison of the KNN and
MVKNN algorithms on the NASA MDP and
Softlab datasets in terms of accuracy. According
to the results, our MVKNN algorithm achieved
86.59% and 88.09% accuracy values on average
for the NASA MDP and Softlab datasets, re-
spectively. However, KNN reached only 86.46%
and 86.60% accuracy values on average. It is
clear that MVKNN outperformed KNN on four
datasets (jm1, kc1, kc2, pc1) from the NASA
MDP group, while only on one dataset (cm1)
both algorithms have the same classification ac-
curacy (90.16%). The results obtained from the
Softlab datasets show that our MVKNN algo-
rithm demonstrated better or equal accuracy on
all datasets compared to the KNN algorithm.

According to the results, it is possible to say
that quality assurance teams can effectively al-
locate limited resources for validating software
products since the constructed defect prediction
models provide satisfactory results (>86%) on
average when identifying bug-prone software ar-
tifacts. This result indicates that the models can
correctly predict defect-prone software modules
with a rate of 86% before defects are discovered;
thus, the predictive models can be used to pri-
oritize software quality assurance efforts. The
code areas that potentially contain defects can
be predicted to help developers allocate their
testing efforts by first checking potentially buggy
code. As the size of software projects becomes
larger, the constructed defect prediction models
play a more critical role to support developers.
Furthermore, they speed up time to market as
well as with more robust software products.

Figure 2 shows the comparison of KNN and
MVKNN on the OSSP datasets in terms of ac-
curacy. The results show that our MVKNN al-
gorithm has equal to or higher accuracy than
the KNN algorithm on 34 out of 40 datasets.
Therefore, our MVKNN algorithm is better than
KNN on 85% of the datasets. In particular, the
biggest accuracy differences between the methods
were observed on the “berek” and “velocity 1.6”
datasets, where our method increased the accu-
racy by over 6.98% and 6.37%, respectively. For

example, our method (86.05%) achieved better
performance than the existing method (79.07%)
in the “berek” dataset in terms of accuracy. In the
“velocity 1.6” dataset, accuracy of our method
(72.05%) is higher than the accuracy of the ex-
isting method (65.68%). These results show that
our method usually gives more accurate outputs
for software defect prediction by using a different
perspective.

Some datasets were obtained from different
versions of a software project, such as Jedit 4.0,
Jedit 4.1, Jedit 4.2, and Jedit 4.3. In this case,
within-project defect prediction (WPDP) can be
used to identify defect-prone modules in a forth-
coming version of a software project. However,
some datasets were obtained from a single version
of a software project, such as the “arc” dataset. In
this case, cross-project defect prediction (CPDP)
can be applied since the target project may be
a new project or does not have enough labeled
modules.

In addition to accuracy, we evaluated the
performances of the methods using the precision,
recall, and F1 Score metrics. As can be seen
in Table B1, when considering the NASA MDP
datasets, MVKNN achieved equal or higher ac-
curacy than KNN. In the Softlab datasets, it is
clearly seen that the MVKNN model has better
results than the KNN model on average. In addi-
tion, Table B2 shows the precision, recall, and F1
Score results for the OSSP datasets. According
to the results, the MVKNN algorithm achieved
the values of 0.79, 0.83, and 0.81 for the preci-
sion, recall, and F1 Score metrics, respectively;
whereas, KNN only obtained the values of 0.77,
0.81, and 0.79 on average.

Though MVKNN achieved usually higher ac-
curacy than KNN, all the results (Table 1 and
Figure 2) were also validated using statistical
tests. We utilized a well-known non-parametric
statistical test: Wilcoxon Test, also known as
Wilcoxon signed-rank test. Since it is used to
analyze matched-pair data, it can be consid-
ered a rank-based alternative to the two-sample
t-test [41]. Wilcoxon test does not rely on the
assumption of data complying with any distri-
bution. It considers the sign and magnitude of
the distribution of cumulative observations. In

Multi-view learning for software defect prediction 171

Table 1: Comparison of the KNN and MVKNN algorithms on the NASA MDP and Softlab datasets

NASA MDP Softlab

Dataset KNN MVKNN Dataset KNN MVKNN

cm1 90.16 90.16 ar1 92.56 92.56
jm1 80.98 81.08 ar3 90.08 90.48
kc1 84.97 85.30 ar4 83.88 85.98
kc2 83.14 83.33 ar5 79.86 83.33
pc1 93.03 93.06 ar6 85.15 85.15

Avg. 86.46 86.59 Avg. 86.60 88.09

60

65

70

75

80

85

90

95

100

an
t

1
.3

an
t

1
.4

an
t

1
.5

an
t

1
.6

an
t

1
.7 ar
c

b
er

ek

e-
le

ar
n

in
g

fo
rr

es
t

0
.7

fo
rr

es
t

0
.8

je
d

it
 3

.2

je
d

it
 4

.0

je
d

it
 4

.1

je
d

it
 4

.2

je
d

it
 4

.3

lo
g4

j 1
.0

lo
g4

j 1
.1

lo
g4

j 1
.2

p
b

ea
n

s
1

p
b

ea
n

s
2

p
o

i 1
.5

p
o

i 2
.0

p
o

i 2
.5

p
o

i 3
.0

p
ro

p
-6

re
d

ak
to

r

se
ra

p
io

n

sy
n

ap
se

 1
.0

sy
n

ap
se

 1
.1

sy
n

ap
se

 1
.2

to
m

ca
t

ve
lo

ci
ty

 1
.4

ve
lo

ci
ty

 1
.5

ve
lo

ci
ty

 1
.6

xa
la

n
 2

.4

xa
la

n
 2

.6

xa
la

n
 2

.7

xe
rc

es
 1

.2

xe
rc

es
 1

.3

xe
rc

es
 1

.4

A
cc

u
ra

cy
 (

%
)

OSSP Datasets

KNN
MVKNN

Figure 2: Comparison of the KNN and MVKNN algorithms on the OSSP datasets

this statistical test, the null hypothesis (H0) in-
dicates that there is no difference or relationship
between methods. The alternative hypothesis
(H1) states that there is a significant difference
or relationship between methods. A significance
level (α) is usually specified as 0.05. The p-value
is used to determine the presence of statistical
significance since it shows the level of evidence
of the difference. If the obtained p-value is lower
than the threshold level (p < 0.05), the null
hypothesis (H0) is rejected, which means that
the difference is significant. Since the p-value
obtained from the Wilcoxon test is 0.0000027
and it is smaller than the significance level, H0 is
rejected. Therefore, it implies that the obtained

results are statistically significant. As can be
seen in Figure 3, MVKNN showed the median
accuracy of 83.6%, while KNN had the median
accuracy of 82.0%.

In order to show performance comparisons
between KNN and MVKNN, supplemental ta-
bles and figures are presented in Appendix B.
Figure B1 displays individual view-based per-
formances. When each view in the datasets is
examined separately, it can be seen that MVKNN
has good performance on the view-based clas-
sification, but it does not always better than
KNN. However, the multi-view-based classifica-
tion results of MVKNN are either greater than or
equal to the KNN accuracy values for all datasets.

172 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

Figure 3: The spread of the accuracy scores for each algorithm

This is because of the complementary power of
MVKNN.

In the traditional KNN algorithm, a single
and fixed k value is used for classification. How-
ever, in a real dataset, data points may be dis-
tributed irregularly, or some of them can be noisy.
To consider the density variations in the data,
different k parameters can be used to benefit
from both more neighbors in dense regions and
less in sparse regions. Liu et al. pointed out that
a fixed k value is not suitable for many test sam-
ples in a given training set [42]. For this reason,
in our study, rather than just using a single and
fixed value of k, the algorithm is run with various
k values. MVKNN learns from k values, starting
from 1 to

√
n, where n is the number of instances.

The maximum k value was selected as
√

n on the
basis of many studies [43–45]. Choosing the max-
imum value of k as

√
n is an appropriate decision

since the probability of overfitting significantly
increases if k is selected as too small or too large.
Park and Lee [44] reported that setting k as the
square root of the data size is a good empirical
ground rule. Lall and Sharma [43] also proved

this statement theoretically using a generalized
cross-validation (GCV) score function. Mitra et
al. [45] also stated that k =

√
n is usually suitable

for test samples. If the k value is small, then the
results can be susceptible to noisy instances; oth-
erwise, if the k value is large, the neighborhood
may cover many instances from other classes.
Therefore, the square root is a reasonable choice
for the searching neighborhood. Figure B2 dis-
plays accuracy values obtained for different k val-
ues. It compares KNN and MVKNN performance
on the k values starting from 1 to the square root
of the number of samples for each dataset. For
all the datasets, MVKNN starts with greater ac-
curacy than KNN, and at the maximum k value,
it is either greater than or equal to the KNN
accuracy.

Table B3 separately shows the performances
of the KNN and MVKNN algorithms for each
view in the OSSP datasets. It is clearly observed
that MVKNN has equal to or higher accuracy
than KNN for 34 out of 40 datasets. It can be
seen that our MVKNN method (83.10%) outper-
formed the traditional KNN method (81.37%)

Multi-view learning for software defect prediction 173

in classification on average. According to the
results given in Table B3, the proposed method
(MVKNN) is more successful than the tradi-
tional KNN method in terms of accuracy. Thus,
multi-view learning can achieve more accurate
results than single-view learning in defect predic-
tion since it benefits from different perspectives
of data.

4.3. Validity

This section discusses the validity of the research,
the threats, and countermeasures of the context
under common guidelines given in [46].
i. Construct validity

Threats to construct validity are concerned
with establishing correct measures for the
concepts addressed in empirical analysis. The
selection of performance measures is the basic
limitation. In our study, the most commonly
used performance measure (accuracy) was
selected to overcome the threat of measure
selection. In other words, the predictive validi-
ties of the constructed models were assessed
by using the accuracy measure. According to
the results, the proposed approach achieved
86.59%, 88.09%, and 83.10% accuracy values
on average for the NASA MDP, Softlab, and
OSSP datasets, respectively. Thereby, pre-
dictive validity was proven, since all average
accuracy results are higher than the accept-
able level (>80%).

ii. Internal validity
Internal validity is related to uncontrolled
factors that can cause a difference in experi-
mental measurements. To reduce this threat,
we used the k-fold cross-validation technique
in which the validation procedure is repeated
k times until each of the k data subsets has
served as a test set. In addition, we ran all
the experiments in the same environment.
Another internal threat is related to data
collection. We tested our approach on public
and most widely-used software engineering
datasets in the literature [11, 13–15]. The in-
formation on data collection and its validity
can be found in [35–37].

iii. External validity
External validity concerns the generalizabil-
ity of a conclusion or experimental finding
reached on the sample group under experi-
mental conditions in various environments.
In this study, our approach was tested on
a total of 50 datasets from three different
data repositories to reduce the threat of this
kind of validity. In addition, since MVKNN
is designed for general-purpose, it can be ap-
plied to various domains from transportation
to medicine.

iv. Conclusion validity
Conclusion validity is concerned with the re-
lationship between the treatment in an exper-
iment and the actual outcome we observed. It
is considered as the evaluation of statistical
power, significance testing, and effect size. For
this purpose, we used the Wilcoxon statisti-
cal test to ensure the differences in KNN and
MVKNN performances are statistically sig-
nificant. Since the p-value obtained from the
statistical test (0.0000027) is smaller than the
significance level (<0.05), it is possible to say
that the results are statistically significant.

5. Conclusion and future work

The standard software defect classification stud-
ies work on single-view data. They do not uti-
lize different feature sets, called views. However,
a software defect prediction problem can involve
data with multiple views in which the feature
space includes multiple feature vectors. There-
fore, in this study, the multi-view k-nearest neigh-
bors (MVKNN) algorithm is used for software
defect classification. Here, the software defect
metrics are grouped under several views accord-
ing to their feature extractors. MVKNN consists
of two parts. First, base classifiers are constructed
to learn from each view. Second, classifiers are
combined to create a strong multi-view model.

In this study, several experiments were con-
ducted on 50 bug datasets from different repos-
itories to show the capability of the MVKNN
method. It can be concluded from the results that

174 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

the MVKNN algorithm usually achieved better
performance compared to the KNN algorithm.

As future work, the MVKNN method can
be used for other software engineering problems
such as software cost estimation, software effort
prediction, readability analysis, refactoring, soft-
ware clone detection, vulnerability prediction,
and software design pattern mining.

References

[1] R. Ozakinci and A. Tarhan, “Early software de-
fect prediction: A systematic map and review,”
The Journal of Systems and Software, Vol. 144,
Oct. 2018, pp. 216–239.

[2] K. Bashir, T. Li, and M. Yahaya, “A novel fea-
ture selection method based on maximum likeli-
hood logistic regression for imbalanced learning
in software defect prediction,” The International
Arab Journal of Information Technology, Vol. 17,
No. 5, Sep. 2020, pp. 721–730.

[3] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view
learning overview: Recent progress and new chal-
lenges,” Information Fusion, Vol. 38, No. 1, Nov.
2017, pp. 43–54.

[4] F. Liu, T. Zhang, C. Zheng, Y. Cheng, X. Liu,
M. Qi, J. Kong, and J. Wang, “An intelligent
multi-view active learning method based on a
double-branch network,” Entropy, Vol. 22, No. 8,
Aug. 2020.

[5] Y. Chen, D. Li, X. Zhang, J. Jin, and Y. Shen,
“Computer aided diagnosis of thyroid nodules
based on the devised small-datasets multi-view
ensemble learning,” Medical Image Analysis,
Vol. 67, No. 8, Jan. 2021.

[6] Y. Song, Y. Wang, X. Ye, D. Wang, Y. Yin, and
Y. Wang, “Multi-view ensemble learning based
on distance-to-model and adaptive clustering for
imbalanced credit risk assessment in p2p lend-
ing,” Information Sciences, Vol. 525, Jul. 2020,
pp. 182–204.

[7] S. Cheng, F. Lu, P. Peng, and S. Wu, “Multi-task
and multi-view learning based on particle swarm
optimization for short-term traffic forecasting,”
Knowledge-Based Systems, Vol. 180, Sep. 2019,
pp. 116–132.

[8] Y. He, Y. Tian, and D. Liu, “Multi-view trans-
fer learning with privileged learning frame-
work,” Neurocomputing, Vol. 335, Mar. 2019,
pp. 131–142.

[9] J. Li, L. Wu, G. Wen, and Z. Li, “Exclusive
feature selection and multi-view learning for
alzheimer’s disease,” Journal of Visual Commu-

nication and Image Representation, Vol. 64, Oct.
2019.

[10] I.H. Laradji, M. Alshayeb, and L. Ghouti, “Soft-
ware defect prediction using ensemble learning
on selected features,” Information and Software
Technology, Vol. 58, Feb. 2015, pp. 388–402.

[11] S. Agarwal and D. Tomar, “A feature selection
based model for software defect prediction,” In-
ternational Journal of Advanced Science and
Technology, Vol. 65, 2014, pp. 39–58.

[12] H. Wang, T.M. Khoshgoftaar, and N. Seliya,
“How many software metrics should be se-
lected for defect prediction?” in Proceedings of
the Twenty-Fourth International Florida Arti-
ficial Intelligence Research Society Conference,
R.C. Murray and P.M. McCarthy, Eds. Palm
Beach, Florida, USA: AAAI Press, May 2011.

[13] W. Wen, B. Zhang, X. Gu, and X. Ju, “An
empirical study on combining source selection
and transfer learning for cross-project defect pre-
diction,” in 2019 IEEE 1st International Work-
shop on Intelligent Bug Fixing (IBF). Hangzhou,
China: IEEE, 2019, pp. 29–38.

[14] A. Iqbal, S. Aftab, I. Ullah, M.S. Bashir, and
M.A. Saeed, “A feature selection based ensem-
ble classification framework for software defect
prediction,” International Journal of Modern
Education and Computer Science, Vol. 11, No. 9,
2019, pp. 54–64.

[15] A. Arshad, S. Riaz, L. Jiao, and A. Murthy, “The
empirical study of semi-supervised deep fuzzy
c-mean clustering for software fault prediction,”
IEEE Access, Vol. 6, 2018, pp. 47 047–47 061.

[16] M.M. Mirończuk, J. Protasiewicz, and W. Ped-
rycz, “Empirical evaluation of feature projection
algorithms for multi-view text classification,” Ex-
pert Systems with Applications, Vol. 130, 2019,
pp. 97–112.

[17] C. Zhang, J. Cheng, and Q. Tian, “Multi-view
image classification with visual, semantic and
view consistency,” IEEE Transactions on Image
Processing, Vol. 29, 2020, pp. 617–627.

[18] Z. Zhu, P. Luo, X. Wang, and X. Tang, “Multi-
-view perceptron: a deep model for learning
face identity and view representations,” in Ad-
vances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, Z. Ghahra-
mani, M. Welling, C. Cortes, N.D. Lawrence,
and K.Q. Weinberger, Eds. Montreal, Quebec,
Canada: Citeseer, Dec. 2014, pp. 217–225.

[19] S.R. Shahamiri and S.S.B. Salim, “A multi-views
multi-learners approach towards dysarthric
speech recognition using multi-nets artificial neu-

Multi-view learning for software defect prediction 175

ral networks,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, Vol. 22,
No. 5, Sep. 2014, pp. 1053–1063.

[20] A. Saeidi, J. Hage, R. Khadka, and S. Jansen, “Ap-
plications of multi-view learning approaches for
software comprehension,” The Art, Science, and
Engineering of Programming, Vol. 3, No. 3, 2019.

[21] E.O. Kiyak, A.B. Cengiz, K.U. Birant, and
D. Birant, “Comparison of image-based and
text-based source code classification using deep
learning,” SN Computer Science, Vol. 1, No. 5,
2020, pp. 1–13.

[22] A.V. Phan and M.L. Nguyen, “Convolutional
neural networks on assembly code for predict-
ing software defects,” in 2017 21st Asia Pacific
Symposium on Intelligent and Evolutionary Sys-
tems (IES). Hanoi, Vietnam: IEEE, Nov. 2017,
pp. 37–42.

[23] J. Chen, Y. Yang, K. Hu, Q. Xuan, Y. Liu, and
C. Yang, “Multiview transfer learning for soft-
ware defect prediction,” IEEE Access, Vol. 7,
Jan. 2019, pp. 8901–8916.

[24] D. Ulumi and D. Siahaan, “Weighted k-NN using
grey relational analysis for cross-project defect
prediction,” Journal of Physics: Conference Se-
ries, Vol. 1230, Jul. 2019, p. 012062.

[25] R. Sathyaraj and S. Prabu, “A hybrid approach
to improve the quality of software fault pre-
diction using naïve bayes and k-nn classifica-
tion algorithm with ensemble method,” Interna-
tional Journal of Intelligent Systems Technolo-
gies and Applications, Vol. 17, No. 4, Oct. 2018,
pp. 483–496.

[26] L. He, Q.B. Song, and J.Y. SHEN, “Boost-
ing-based k-NN learning for software defect pre-
diction,” Pattern Recognition and Artificial In-
telligence, Vol. 25, No. 5, 2012, pp. 792–802.

[27] R. Goyal, P. Chandra, and Y. Singh, “Suitability
of k-NN regression in the development of inter-
action based software fault prediction models,”
IERI Procedia, Vol. 6, No. 1, 2014, pp. 15–21.

[28] S.K. Srivastava and S.K. Singh, “Multi-label
classification of twitter data using modified
ML-kNN,” in Advances in Data and Information
Sciences, Lecture Notes in Networks and Sys-
tems, K. M., T. M., T. S., and S. V., Eds., Vol. 39.
Singapore: Springer, Jun. 2019, pp. 31–41.

[29] P. Villar, R. Montes, A.M. Sánchez, and F. Her-
rera, “Fuzzy-citation-k-NN: A fuzzy nearest
neighbor approach for multi-instance classifica-
tion,” in 2016 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). Vancouver, BC,
Canada: IEEE, Jul. 2016, pp. 946–952.

[30] Y. Xia, Y. Peng, X. Zhang, and H.Y. Bae,
“DEMST-KNN: A novel classification frame-
work to solve imbalanced multi-class prob-
lem,” in Artificial Intelligence Trends in In-
telligent Systems, Advances in Intelligent Sys-
tems and Computing, R. Silhavy, R. Senkerik,
Z.K. Oplatková, Z. Prokopova, and P. Silhavy,
Eds., Vol. 573. Cham, Germany: Springer, Apr.
2017, pp. 291–301.

[31] S. Gupta, S. Rana, B. Saha, D. Phung, and
S. Venkatesh, “A new transfer learning frame-
work with application to model-agnostic multi-
-task learning,” Knowledge and Information Sys-
tems, Vol. 49, No. 3, Feb. 2016, pp. 933–973.

[32] E.O. Kiyak, D. Birant, and K.U. Birant, “An im-
proved version of multi-view k-nearest neighbors
(MVKNN) for multiple view learning,” Turkish
Journal of Electrical Engineering and Computer
Sciences, Vol. 29, No. 3, 2021, pp. 1401–1428.

[33] S. Li, E.J. Harner, and D.A. Adjeroh, “Random
KNN feature selection – A fast and stable alter-
native to random forests,” BMC bioinformatics,
Vol. 12, No. 1, 2011, pp. 1–11.

[34] I.H. Witten, E. Frank, M.A. Hall, and C.J. Pal,
Data Mining: Practical Machine Learning Tools
and Techniques, 4th ed., The Morgan Kaufmann
Series in Data Management Systems. Cambridge,
MA, USA: Elsevier Science, 2016.

[35] “Tera-promise data,” accessed: 10.05.2020. [On-
line]. https://github.com/klainfo/DefectData/
tree/master/inst/extdata/terapromise

[36] “NASA MDP data,” accessed: 07.05.2020. [On-
line]. https://github.com/klainfo/NASADefec
tDataset/tree/master/OriginalData/MDP

[37] B. Turhan, T. Menzies, A.B. Bener, and J.D. Ste-
fano, “On the relative value of cross-company
and within-company data for defect prediction,”
Empirical Software Engineering, Vol. 14, No. 5,
Jan. 2009, pp. 540–578.

[38] E. Borandag, A. Ozcift, D. Kilinc, and F. Yu-
calar, “Majority vote feature selection algorithm
in software fault prediction,” Computer Science
and Information Systems, Vol. 16, No. 2, 2019,
pp. 515–539.

[39] Z. Yao, J. Song, Y. Liu, T. Zhang, and J. Wang,
“Research on cross-version software defect pre-
diction based on evolutionary information,” IOP
Conference Series: Materials Science and Engi-
neering, Vol. 563, Aug. 2019, p. 052092.

[40] T. Menzies, J. Greenwald, and A. Frank, “Data
mining static code attributes to learn defect pre-
dictors,” IEEE transactions on software engi-
neering, Vol. 33, No. 1, Dec. 2006, pp. 2–13.

https://github.com/klainfo/DefectData/tree/master/inst/extdata/terapromise
https://github.com/klainfo/DefectData/tree/master/inst/extdata/terapromise
https://github.com/klainfo/NASADefectDataset/tree/master/OriginalData/MDP
https://github.com/klainfo/NASADefectDataset/tree/master/OriginalData/MDP

176 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

[41] R.F. Woolson, Wilcoxon Signed-Rank Test. Wi-
ley Encyclopedia of Clinical Trials, 2008, pp. 1–3.

[42] H. Liu, S. Zhang, J. Zhao, X. Zhao, and Y. Mo,
“A new classification algorithm using mutual
nearest neighbors,” in 2010 Ninth International
Conference on Grid and Cloud Computing. Nan-
jing, China: IEEE, Nov. 2010, pp. 52–57.

[43] U. Lall and A. Sharma, “A nearest neighbor
bootstrap for resampling hydrologic time series,”
Water Resources Research, Vol. 32, No. 3, Mar.
1996, pp. 679–693.

[44] J. Park and D.H. Lee, “Parallelly running
k-nearest neighbor classification over seman-

tically secure encrypted data in outsourced
environments,” IEEE Access, Vol. 8, 2020,
pp. 64 617–64 633.

[45] P. Mitra, C. Murthy, and S. Pal, “Unsupervised
feature selection using feature similarity,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 24, No. 3, 2002, pp. 301–312.

[46] P. Runeson and M. Höst, “Guidelines for con-
ducting and reporting case study research in
software engineering,” Empirical Software Engi-
neering, Vol. 14, No. 2, 2009, pp. 131–164.

A. Description of datasets

Table A1: The main characteristics of the datasets

Group Dataset Release Number of Instances Defect (%)

O
pe

n
So

ur
ce

So
ftw

ar
e

Pr
oj

ec
ts

(O
SS

P)

ant

1.3 125 16.00
1.4 178 22.47
1.5 293 10.92
1.6 351 26.21
1.7 745 22.28

arc – 234 11.54
berek – 43 37.21

e-learning – 64 7.81
forrest 0.7 29 17.24

0.8 32 6.25

jedit

3.2 272 3.31
4.0 306 24.51
4.1 312 25.32
4.2 367 13.08
4.3 492 2.24

log4j
1.0 135 25.19
1.1 109 33.95
1.2 205 92.20

pbeans 1.0 26 76.92
2.0 51 19.61

poi
1.5 237 59.49
2.0 314 11.78
2.5 385 64.41
3.0 442 63.57

prop 6 661 9.98
redactor – 176 15.34
serapion – 45 20.00

synapse
1.0 157 10.19
1.1 222 27.03
1.2 256 33.59

tomcat – 858 8.97

Multi-view learning for software defect prediction 177

Table A1 continued
Group Dataset Release Number of Instances Defect (%)

O
SS

P

velocity
1.4 196 75.00
1.5 214 66.36
1.6 229 34.06

xalan
2.4 723 15.21
2.6 885 46.44
2.7 909 98.79

xerces
1.2 440 16.14
1.3 453 15.23
1.4 588 74.32

So
ft

la
b

ar1 – 121 7.44
ar3 – 63 12.70
ar4 – 107 18.69
ar5 – 36 22.22
ar6 – 101 14.85

N
A

SA
M

D
P cm1 – 498 9.83

jm1 – 10885 19.00
kc1 – 2109 15.45
kc2 – 522 20.49
pc1 – 1109 6.94

Table A2: The number of classes, views, and features of each dataset group

Dataset Group #Classes #Views #Features

NASA MDP 2 3 McCabe Basic Halstead Derived Halstead
4 9 8

OSSP 2 5 Coupling Complexity Cohesion Inheritance Scale
5 3 3 3 6

SOFTLAB 2 4 Halstead McCabe LOC Miscellaneous
12 3 5 9

Table A3: Categories of software metrics in the NASA datasets

NASA MDP

View Symbol Metric Full Name

M
C

C
A

B
E v(g) Cyclomatic complexity

ev(g) Essential complexity
Iv(g) Design complexity

D
ER

IV
ED

H
A

LS
T

EA
D

N Total operators+ operands
V Volume
L Program length
D Difficulty
I Intelligence
E Effort to write code

178 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

Table A3 continued
NASA MDP

View Symbol Metric Full Name

B Effort estimate
T Time estimator

B
A

SI
C

H
A

LS
T

EA
D

IOCode Line count
IOComment Comment count
IOBlank Blank line count
IOCodeAnd
Comment # of code and comment lines

Uniq_Op # of unique operators
UniqOpnd #of unique operands
Total_Op #of total operators
Total_Opnd # of total operands
branch_count # of branch counts

Table A4: Categories of software metrics in the OSSP datasets

OSSP
View Symbol Metric Full Name

C
O

U
PL

IN
G ca Afferent couplings

cbm Coupling between methods
cbo Coupling between object classes
ce Efferent couplings
ic Inheritance coupling

C
O

H
ES

IO
N

lcom Lack of cohesion in methods
lcom3 Lack of cohesion in methods
cam Cohesion among methods of class

C
O

M
PL

EX
IT

Y

amc Average method complexity
avg_cc Average McCabe
max_cc Maximum McCabe

IN
H

ER
IT

A
N

C
E

dit Depth of inheritance
moa Measure of aggregation
mfa Measure of function abstraction

SC
A

LE

loc Lines of code
noc Number of children
rfc Response for a class
npm Number of public methods
wmc Weighted methods per class
dam Data access metric

Multi-view learning for software defect prediction 179

Table A5: Categories of software metrics in the Softlab datasets

SOFTLAB

View Symbol Metric Full Name

M
C

C
A

B
E v(g) Cyclomatic complexity

iv(G) Cyclomatic density
Iv(G) Design complexity

LO
C

loc_total Total lines of code
loc_blank number of blank lines
loc_comments number of comment lines
loc_code_and_comment number of code and comment lines
loc_executable number of lines of executable code

H
A

LS
T

EA
D

N1 number of operators
N2 number of operands
µ1 number of unique operators
µ2 number of unique operands
N program length
V volume (program size)
L program level
D difficulty level
I content c
E effort to implement
B estimated number of bugs
T implementation time

M
IS

C
EL

LA
N

EO
U

S

branch_count number of branch counts
call_pairs number of calls to other functions
condition_count number of conditionals in a given module
decision_count number of decision points
decision_density Condition count / Decision count
design_density iv(G) / v(G)
multiple condition count number of multiple conditions
normalized_cyclomatic_complexity v(G) / number of lines
formal parameters Identifiers used in a method

180 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

B. Appendix B: Experimental Results

Table B1: Comparison of the KNN and MVKNN algorithms on the NASA MDP and Softlab datasets
in terms of precision, recall, and F1 Score

NASA MDP

Precision Recall F1 Score

Dataset KNN MVKNN KNN MVKNN KNN MVKNN
cm1 0.81 0.81 0.90 0.90 0.85 0.85
jm1 0.77 0.77 0.81 0.81 0.79 0.79
kc1 0.81 0.82 0.85 0.85 0.83 0.83
kc2 0.81 0.82 0.83 0.83 0.82 0.82
pc1 0.87 0.87 0.93 0.93 0.90 0.90
Avg. 0.81 0.82 0.86 0.86 0.84 0.84

Softlab

Precision Recall F1 Score

Dataset KNN MVKNN KNN MVKNN KNN MVKNN
ar1 0.86 0.86 0.93 0.93 0.89 0.89
ar3 0.89 0.89 0.90 0.90 0.89 0.89
ar4 0.82 0.85 0.84 0.86 0.83 0.85
ar5 0.76 0.85 0.80 0.83 0.78 0.84
ar6 0.73 0.73 0.85 0.85 0.79 0.79
Avg. 0.81 0.84 0.86 0.87 0.84 0.85

Table B2: Comparison of the KNN and MVKNN algorithms on the OSSP datasets in terms of
precision, recall, and F1 Score

OSSP

Precision Recall F1 Score

Dataset Release KNN MVKNN KNN MVKNN KNN MVKNN

ant

1.3 0.73 0.70 0.83 0.84 0.78 0.76
1.4 0.62 0.60 0.77 0.77 0.69 0.67
1.5 0.81 0.79 0.89 0.89 0.85 0.84
1.6 0.74 0.78 0.76 0.79 0.75 0.78
1.7 0.78 0.78 0.8 0.8 0.79 0.79

arc – 0.81 0.78 0.88 0.88 0.84 0.83

berek – 0.80 0.86 0.79 0.86 0.79 0.86

e-learning – 0.85 0.85 0.92 0.92 0.88 0.88

forrest 0.7 0.71 0.85 0.78 0.83 0.74 0.84
0.8 0.88 0.88 0.94 0.94 0.91 0.91

jedit

3.2 0.72 0.77 0.73 0.78 0.72 0.77
4.0 0.78 0.82 0.79 0.82 0.78 0.82
4.1 0.77 0.83 0.78 0.82 0.77 0.82
4.2 0.85 0.88 0.87 0.88 0.86 0.88

Multi-view learning for software defect prediction 181

Table B2 continued
OSSP

Precision Recall F1 Score

Dataset Release KNN MVKNN KNN MVKNN KNN MVKNN

jedit 4.3 0.96 0.96 0.98 0.98 0.97 0.97

log4j
1.0 0.73 0.75 0.76 0.77 0.74 0.76
1.1 0.76 0.82 0.76 0.81 0.76 0.81
1.2 0.85 0.85 0.92 0.92 0.88 0.88

pbeans 1.0 0.63 0.58 0.71 0.73 0.67 0.65
2.0 0.69 0.64 0.8 0.78 0.74 0.70

poi

1.5 0.67 0.7 0.67 0.7 0.67 0.70
2.0 0.8 0.78 0.88 0.88 0.84 0.83
2.5 0.75 0.78 0.75 0.78 0.75 0.78
3.0 0.77 0.81 0.76 0.81 0.76 0.81

prop 6 – 0.81 0.81 0.9 0.9 0.85 0.85

redactor – 0.85 0.88 0.87 0.89 0.86 0.88

serapion – 0.74 0.85 0.8 0.82 0.77 0.83

synapse
1.0 0.81 0.81 0.9 0.9 0.85 0.85
1.1 0.68 0.73 0.73 0.75 0.70 0.74
1.2 0.7 0.7 0.71 0.71 0.70 0.70

tomcat – 0.83 0.83 0.91 0.91 0.87 0.87

velocity
1.4 0.8 0.84 0.81 0.82 0.80 0.83
1.5 0.7 0.77 0.72 0.74 0.71 0.75
1.6 0.63 0.72 0.66 0.72 0.64 0.72

xalan
2.4 0.77 0.72 0.85 0.85 0.81 0.78
2.6 0.69 0.75 0.68 0.74 0.68 0.74
2.7 0.98 0.98 0.99 0.99 0.98 0.98

xerces
1.2 0.7 0.87 0.84 0.84 0.76 0.85
1.3 0.81 0.89 0.86 0.89 0.83 0.89
1.4 0.74 0.78 0.77 0.79 0.75 0.78

Avg. 0.77 0.79 0.81 0.83 0.79 0.81

182 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

Table B3: Comparison of single-view and multi-view accuracy values of the KNN and MVKNN
algorithms on the OSSP datasets

ID Dataset
Name

KNN MVKNN

view1 view2 view3 view4 view5 All
views view1 view2 view3 view4 view5 All

views

1 ant 1.3 80.80 84.00 84.00 84.00 82.40 83.04 80.80 83.20 83.20 83.20 82.40 84.00
2 ant 1.4 77.53 76.40 76.40 76.97 76.97 76.85 75.84 74.72 74.16 72.47 74.16 76.97
3 ant 1.5 88.74 89.08 88.74 89.08 90.10 89.15 89.08 89.08 88.40 88.4 91.13 89.08
4 ant 1.6 78.06 76.92 73.79 73.22 80.06 76.41 77.49 76.35 75.21 75.78 78.92 79.20
5 ant 1.7 80.67 80.94 79.60 78.52 81.48 80.24 80.81 80.94 79.46 78.93 80.27 80.00
6 arc 88.46 88.46 87.18 88.46 88.89 88.29 88.03 88.03 88.03 87.61 87.61 88.03
7 berek 81.40 83.72 76.74 72.09 81.40 79.07 72.09 90.70 86.05 72.09 88.37 86.05
8 e-learning 92.19 92.19 92.19 92.19 92.19 92.19 90.62 92.19 92.19 92.19 90.62 92.19
9 forrest 0.7 86.21 75.86 75.86 82.76 68.97 77.93 82.76 75.86 75.86 89.66 72.41 82.76
10 forrest 0.8 93.75 93.75 93.75 93.75 93.75 93.75 93.75 90.62 90.62 93.75 93.75 93.75
11 jedit 3.2 70.59 66.54 73.90 75.74 76.47 72.65 68.38 65.44 73.53 75.00 76.10 77.57
12 jedit 4.0 78.10 79.74 76.80 79.41 81.70 79.15 74.51 80.07 75.49 80.39 81.37 82.03
13 jedit 4.1 81.41 77.24 77.56 76.92 78.53 78.33 80.45 78.21 78.85 78.21 80.13 81.73
14 jedit 4.2 87.74 86.65 87.19 86.92 88.01 87.30 88.56 86.92 88.01 87.19 87.47 88.28
15 jedit 4.3 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76 97.76
16 log4j 1.0 77.04 71.11 78.52 77.04 77.78 76.30 76.30 72.59 80.00 80.00 80.00 77.04
17 log4j 1.1 77.06 74.31 70.64 77.06 79.82 75.78 75.23 71.56 76.15 80.73 79.82 80.73
18 log4j 1.2 92.20 92.20 92.20 92.20 92.20 92.20 92.20 92.20 92.20 92.20 90.73 92.20
19 pbeans 1 73.08 69.23 69.23 76.92 69.23 71.54 76.92 65.38 80.77 76.92 73.08 73.08
20 pbeans 2 80.39 78.43 84.31 80.39 80.39 80.78 80.39 74.51 82.35 78.43 74.51 78.43
21 poi 1.5 72.15 57.38 65.82 69.2 70.04 66.92 70.04 65.82 64.98 68.78 69.62 70.04
22 poi 2.0 88.22 88.85 88.22 88.22 88.22 88.35 88.22 88.85 86.94 88.22 88.22 88.22
23 poi 2.5 78.96 67.27 76.36 73.51 79.74 75.17 76.36 71.69 77.92 72.21 81.30 77.92
24 poi 3.0 76.70 78.05 75.34 73.98 75.79 75.97 76.24 77.15 76.70 73.98 78.28 80.77
25 prop-6 90.00 90.00 90.00 90.00 90.00 90.00 89.85 90.00 90.00 90.00 90.00 90.00
26 redaktor 88.07 84.09 90.34 86.36 87.50 87.27 85.23 85.80 90.34 87.50 87.50 89.2
27 serapion 80.00 80.00 77.78 80.00 82.22 80.00 77.78 71.11 77.78 80.00 86.67 82.22
28 synapse 1.0 89.17 89.17 89.81 89.81 89.81 89.55 89.17 89.17 88.54 89.81 88.54 89.81
29 synapse 1.1 72.52 70.27 75.68 71.17 76.13 73.15 72.07 72.07 73.87 72.07 77.03 74.77
30 synapse 1.2 71.09 71.88 73.44 67.58 72.27 71.25 69.53 70.70 72.27 67.19 70.70 71.48
31 tomcat 91.03 91.03 91.03 91.03 91.03 91.03 91.14 90.91 90.91 90.79 91.49 91.03
32 velocity 1.4 80.10 75.51 84.69 83.67 80.10 80.81 81.63 74.49 84.69 84.69 77.04 82.14
33 velocity 1.5 73.83 73.36 70.09 66.82 74.30 71.68 70.56 71.50 72.90 69.63 72.90 74.30
34 velocity 1.6 64.19 62.01 71.18 64.19 66.81 65.68 64.19 68.12 69.87 67.25 67.25 72.05
35 xalan 2.4 84.79 84.79 84.79 84.79 84.92 84.82 84.09 84.09 84.65 84.92 84.65 84.79
36 xalan 2.6 72.43 71.30 65.88 61.13 71.64 68.48 70.17 71.86 69.27 69.49 74.12 73.67
37 xalan 2.7 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79 98.79
38 xerces 1.2 83.86 83.86 83.86 83.86 83.86 83.86 83.86 83.64 83.86 83.86 83.64 83.86
39 xerces 1.3 86.75 84.55 86.75 83.44 87.64 85.83 86.53 84.33 88.52 85.65 87.64 88.52
40 xerces 1.4 71.94 77.89 92.18 72.45 71.94 77.28 72.45 77.89 92.52 72.45 71.60 79.42

Average 81.94 80.36 81.71 80.79 82.02 81.37 81.00 80.36 82.34 81.45 82.19 83.10

Multi-view learning for software defect prediction 183

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

cm1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar1Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

jm1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar3Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

kc1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar4Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

kc2Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar5Accuracy(%)

50

60

70

80

90

v1 v2 v3 All v1 v2 v3 All

KNN MVKNN

pc1Accuracy(%)

50

60

70

80

90

v1 v2 v3 v4 All v1 v2 v3 v4 All

KNN MVKNN

ar6Accuracy(%)

Figure B1: View-based comparison of the KNN and MVKNN algorithms

184 Elife Ozturk Kiyak, Derya Birant, Kokten Ulas Birant

80

82

84

86

88

90

92

1 3 5 7 9 11 13 15 17 19 21

A
cc

u
ra

cy
(%

)

k

cm1

KNN MVKNN

86

87

88

89

90

91

92

93

1 2 3 4 5 6 7 8 9 10 11

A
cc

u
ra

cy
(%

)

k

ar1

KNN MVKNN

75

76

77

78

79

80

81

82

1 11 21 31 41 51 61 71 81 91 101

A
cc

u
ra

cy
(%

)

k

jm1

KNN MVKNN

83

84

85

86

87

88

89

90

91

92

93

1 2 3 4 5 6 7 8

A
cc

u
ra

cy
(%

)

k

ar3

KNN MVKNN

81

82

83

84

85

86

87

1 6 11 16 21 26 31 36 41 46

A
cc

u
ra

cy
(%

)

k

kc1

KNN MVKNN

76

78

80

82

84

86

88

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%

)

k

ar4

KNN MVKNN

78

79

80

81

82

83

84

85

1 3 5 7 9 11 13 15 17 19 21 23

A
cc

u
ra

cy
(%

)

k

kc2

KNN MVKNN

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6

A
cc

u
ra

cy
(%

)

k

ar5

KNN MVKNN

89

90

91

92

93

94

1 4 7 10 13 16 19 22 25 28 31

A
cc

u
ra

cy
(%

)

k

pc1

KNN MVKNN

70

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%

)

k

ar6

KNN MVKNN

Figure B2: Comparison of single-view and multi-view versions of the KNN algorithm on various
k values

	Introduction
	Related work
	Related studies on single-view learning for software engineering
	Related studies on multi-view learning for software engineering
	Related studies on KNN for software defect prediction

	Material and methods
	K-nearest neighbors
	Multi-view k-nearest neighbors

	Experimental studies
	Dataset description
	Experimental results
	Validity

	Conclusion and future work
	References

	Description of datasets
	Appendix B: Experimental Results

