
2022 volume 16 issue 1

2022 volume 16 issue 1

Editor-in-Chief
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)
Editor-in-Chief Emeritus
Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)

Faculty of Information and Communication Technology, Department of Applied Informatics
Wroc law University of Science and Technology,
50-370 Wroc law, Wybrzeże Wyspiańskiego 27, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl, DOI: 10.37190/e-inf
Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the LATEX 2ε Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Wroc law University of Science and Technology Publishing House 2022

OFICYNA WYDAWNICZA POLITECHNIKI WROC LAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wroc law
www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.37190/e-inf
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl

Editorial Board
Editor-in-Chief

Lech Madeyski (Wroc law University of Science and Technology, Poland)

Editor-in-Chief Emeritus

Zbigniew Huzar (Wroc law University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Apostolos Ampatzoglou (University of Macedonia, Thessaloniki, Greece)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center Hagenberg, Austria)
Markus Borg (SICS Swedish ICT AB Lund, Sweden)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Steve Counsell (Brunel University, UK)
Maya Daneva (University of Twente, The Netherlands)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Francesca Arcelli Fontana (University of Milano-Bicocca, Italy)
Félix Garćıa (University of Castilla-La Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University of Technology, Poland)
Tracy Hall (Lancaster University, UK)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Barbara Kitchenham (Keele University, UK)
Stanis law Kozielski (Silesian University of Technology, Poland)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wroc law University of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wroc law University of Science and Technology, Poland)
Zygmunt Mazur (Wroc law University of Science and Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (University of Helsinki, Finland)
Jerzy Nawrocki (Poznan University of Technology, Poland)
Miros law Ochodek (Poznan University of Technology, Poland)
Janis Osis (Riga Technical University, Latvia)
Fabio Palomba (University of Salerno, Italy)
Mike Papadakis (Luxembourg University, Luxembourg)
Kai Petersen (Hochschule Flensburg, University of Applied Sciences, Germany)
 Lukasz Radliński (West Pomeranian University of Technology in Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)

4

Martin Shepperd (Brunel University London, UK)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Guilherme Horta Travassos (Federal University of Rio de Janeiro, Brazil)
Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznan University of Technology, Poland)
Dietmar Winkler (Technische Universität Wien, Austria)
Bogdan Wiszniewski (Gdańsk University of Technology, Poland)
Krzysztof Wnuk (Blekinge Institute of Technology, Sweden)
Marco Zanoni (University of Milano-Bicocca, Italy)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Self-Adaptation Driven by SysML and Goal Models – A Literature Review
Amal Ahmed Anda, Daniel Amyot . 220101

Analysis of Factors Influencing Developers’ Sentiments in Commit Logs: Insights from Applying
Sentiment Analysis

Rajdeep Kaur, Kuljit Kaur Chahal, Munish Saini . 220102
How good are my search strings? Reflections on using an existing review as a quasi-gold
standard

Huynh Khanh Vi Tran, Jürgen Börstler, Nauman bin Ali, Michael Unterkalmsteiner 220103
Examining the Predictive Capability of Advanced Software Fault Prediction Models – An
Experimental Investigation Using Combination Metrics

Pooja Sharma, Amrit Lal Sangal . 220104
A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction

Megha Khanna . 220105
A Comparison of Citation Sources for Reference and Citation-Based Search in Systematic
Literature Reviews

Nauman bin Ali, Binish Tanveer . 220106
Microservice-Oriented Workload Prediction Using Deep Learning

Sebastian Ştefan, Virginia Niculescu . 220107
Empirical AI Transformation Research: A Systematic Mapping Study and Future Agenda

Einav Peretz-Andersson, Richard Torkar . 220108
Reporting Consent, Anonymity and Confidentiality Procedures Adopted in Empirical Studies
Using Human Participants

Deepika Badampudi, Farnaz Fotrousi, Bruno Cartaxo, Muhammad Usman 220109
Reuse in Contemporary Software Engineering Practices – An Exploratory Case Study
in A Medium-sized Company

Xingru Chen, Deepika Badampudi, Muhammad Usman 220110

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220101, DOI: 10.37190/e-Inf220101

Self-Adaptation Driven by SysML
and Goal Models – A Literature Review

Amal Ahmed Andaa∗, Daniel Amyot∗
∗School of Electrical Engineering and Computer Science, University of Ottawa

aanda027@uottawa.ca, damyot@uottawa.ca

Abstract
Background: Socio-cyber-physical systems (SCPSs) are a type of cyber-physical systems
with social concerns. Many SCPSs, such as smart homes, must be able to adapt to reach an
optimal symbiosis with users and their contexts. The Systems Modeling Language (SysML)
is frequently used to specify ordinary CPSs, whereas goal modeling is a requirements
engineering approach used to describe and reason about social concerns.
Objective: This paper aims to assess existing modeling techniques that support adapta-
tion in SCPSs, and in particular those that integrate SysML with goal modeling.
Method: A systematic literature review presents the main contributions of 52 English
articles selected from five databases that use both SysML and goal models (17 techniques),
SysML models only (11 techniques), or goal models only (8 techniques) for analysis and
self-adaptation.
Result: Existing techniques have provided increasingly better modeling support for
adaptation in a SCPS context, but overall analysis support remains weak. The techniques
that combine SysML and goal modeling offer interesting benefits by tracing goals to SysML
(requirements) diagrams and influencing the generation of predefined adaptation strategies
for expected contexts, but few target adaptation explicitly and most still suffer from
a partial coverage of important goal modeling concepts and of traceability management
issues.
Keywords: adaptation, cyber-physical systems, goal modeling, socio-technical
systems, SysML, traceability, uncertainty

1. Introduction

Cyber-physical systems (CPSs) are systems that tightly “integrate physical, software, and
network aspects in a sometimes adverse physical environment” [1]. They are composed of
hybrid components such as hardware (e.g., sensors, devices, and networks) and software,
which can even be integrated at runtime. Horváth [2] observes that the complexity, emergent
properties, and adaptability of CPSs have increased substantially in the past decade in order
for CPSs to be compatible with different components and changes in their surrounding
environment. Moreover, CPSs are characterized by a high level of uncertainty, which is
difficult to address with current design methods [2, 3].

Socio-cyber-physical systems (SCPSs) are a type of CPSs that are also socio-technical
systems, where human concerns are considered during the development process (i.e., at
design time) and during execution (i.e., at runtime). Many SCPSs should ideally be able

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 26 Apr. 2021; Revised: 11 Aug. 2021; Accepted: 26 Sep. 2021; Available online: 15 Dec. 2021

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Figure 1. Self-adaptation activities: MAPE-cycle (adapted from [8])

to adapt to changing conditions in order to reach an optimal symbiosis with users (and
other stakeholders) and their contexts [2]. Examples include existing systems such as air
traffic control systems, and emerging ones such as smart homes/cities [4], human-oriented
services exploiting the Internet of Things (IoT) [5], adaptive Systems of Systems (SoS) [6],
and Industry 4.0 [7].

Many CPSs and SCPSs monitor their environments, which enables them to detect
contexts where the system may no longer accomplish what it was intended to do or meet
its goals. Self-adapting systems are capable of detecting such situations and change their
own behavior accordingly. Kephart and Chess [8] divided the adaptation process into four
different activities (Monitor, Analyze, Plan, and Execute), collectively called MAPE-cycle
and illustrated in Figure 1. These activities share some knowledge and interact with the
rest of the system and its environment. The general functionality of each activity is as
follows:
– Monitor: Gathers information about monitored system features and the environmental

context.
– Analyze: Analyzes the information and determines whether to activate the planning

process and what information should be passed on to it.
– Plan: Selects the most suitable adaptation strategy (some might be predefined) depend-

ing on the information provided by the analysis activity.
– Execute: Executes the selected adaptation strategy, with impact on the system and the

environment that again must be monitored.
Some challenges coming with adaptive systems were identified and addressed by Bocane-

gra et al. [9], Muńoz-Fernández et al. [10], and Horváth [2] with Model-Driven Engineering
(MDE) approaches. In particular, goal modeling, which enables the description of stakeholder
and system goals together with their relationships, is used as part of many MDE approaches
to facilitate traceability, deal with uncertainty, manage stakeholder objectives, and support
requirements engineering at design time and at runtime. Bocanegra et al. [9] further stated
that integrating MDE and goal-oriented requirements engineering is a promising way
to solve many self-adaptation challenges. In addition, Muńoz-Fernández et al. suggest
that traceability supports reasoning about system behavior and the changes or events
that triggered a specific adaptation at runtime [10]. Although traceability in SCPSs was

220101-2

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

identified by Bordeleau et al. as a challenge [11], ideally, for self-adaptive systems to be
realizable, traceability should be managed synchronously from the beginning (goals) to
the end of the system (code). Even if Bocanegra et al. cited the lack or loss of information
while transforming (goal) models to code as one weakness of many MDE approaches [9],
the benefits of goal modeling in this context tend to outweigh its drawbacks.

MDE is the basis of many Systems Engineering (SE) methods meant to deal with
complex, technological obstacles and the heterogeneous nature of multidisciplinary sys-
tems [1, 12, 13]. One opportunity here is to include stakeholder goals into targeted systems
via modeling. In the same context, the Systems Modeling Language (SysML) is a language
standardized by the Object Management Group (OMG) [14, 15] and the International
Organization for Standardization [16] to support SE methods. SysML reuses part of
the Unified Modeling Language (UML), including use case, sequence, activity, and state
machine diagrams, and modifies other types of diagrams to produce block and internal
block diagrams. Moreover, SysML adds parametric and requirements diagrams to facilitate
the connection between system components and their requirements [15]. SysML enables
the modeling of software and hardware components as well as their relationships, in a way
that simplifies their design [17] and reduces their complexity [18, 19].

SysML modelers can connect requirements to other model elements such as use cases, test
cases, and blocks using a few diagram types. Yet, SysML lacks important “social” modeling
concepts for SCPSs such as goals and stakeholders’ objectives [20]. Cross-disciplinary model
fusion and flexible model integration are known to be challenging [21], but a multi-level
modeling approach is still a promising avenue in contexts such as Systems of Systems and
adaptive SCPS [1, 22, 23]. There exist many goal modeling languages that can help here,
including KAOS [24, 25], i* [26], and the Goal-oriented Requirement Language (GRL) [27],
part of the User Requirements Notation (URN) [28]. GRL is discussed further here because
this is the only internationally standardized goal modeling language so far and one of the
few languages that supports indicators, which enable monitoring in an adaptive context.
GRL has also been used in the modeling and design of large CPSs, some with a social
aspect but without adaptation (e.g., for collaborative CPSs [29]), some that adapt but
without a social aspect (e.g., for unmanned aircraft systems [30]), and some that model
adaptive SCPSs (e.g., for smart homes [31]).

GRL helps capturing stakeholders (roles, organizations, systems, etc., collectively named
actors), their intentions (goals, softgoals, or tasks), their relationships (AND/OR decompo-
sition, positive/negative contributions, dependencies), and indicators to measure intention
satisfaction based on external evidence. Figure 2 illustrates a GRL model of a simplified
hybrid car’s engine system and its related user’s goals. The system needs to select which
engine(s) to activate so that speed and distance from other cars are properly controlled while
ensuring that the user’s concerns (comfortable driving, measured via a vibration indicator,
and costs minimized) are satisfied. GRL actors (illustrated as ellipses) are used to
capture the system itself as well as its users and other stakeholders. Their goals () should
be fulfilled, while their softgoals () point out the non-functional or quality aspects desired.
Tasks () capture the alternatives that the system has to chose from in the plan activity.
Indicators () are used to monitor internal/external conditions and convert this informa-
tion into satisfaction levels. Intentions can also be AND/OR-decomposed (), whereas an
arrow (

) with a negative/positive weight (normalized to a value between −100 and +100)
represents the contribution of some element to another one. The color coding (the greener,
the better) and the numbers above intentions (between 0 and +100) indicate the current level

220101-3

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Figure 2. Simplified goal model (in GRL) of a hybrid car’s engine

of satisfaction in a given context called a strategy, whose initial values (*) are propagated
to the other elements and actors based on an automated propagation algorithm [32].

The other goal modeling languages also support distinctive goal and quality concepts,
together with AND/OR decomposition, and assignment of goals to actors (or “agents” in
other languages). For example, Figure 3 briefly highlights the syntax of the popular KAOS
language [24, 25], also used in several adaptive SCPS approaches. Unlike GRL, KAOS
neither supports indicators nor contributions, but it includes explicit concepts for obstacles
and threats, akin to goals or tasks that would be the source of negative contributions in
GRL.

GRL was initially created to support requirements engineering activities during de-
velopment; however, it can also be used in a runtime adaptation context [33]. GRL
supports a system’s dynamic adaptation by connecting goals with requirements, feeding
indicators from external sources of information, and providing comprehensive alternative
strategies/tasks supporting trade-off analysis [20].

Figure 3. KAOS goal modeling concepts and syntax (from https://kaos.info.ucl.ac.be/)

220101-4

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Figure 4. Some SysML diagrams of a simplified hybrid car’s engine

To briefly illustrate SysML (more commonly known than goal modeling languages),
Figure 4 highlights important types of diagrams and tables for adaptive systems, with content
relevant to the simplified hybrid car’s engine example. A requirements table contains natural
language requirements (functional and non-functional) with their attributes. This information,
together with traceability and other relationships (e.g., derivation or satisfaction), can be
visualized in a requirements diagram.Ablock definition diagram shows the system components
(software and hardware) as a static structure of blocks with their attributes, operations,
constraints, interfaces, and relationships (e.g., containment or generalization). Parametric
diagrams describe mathematical functions for constraint blocks. Activity diagrams present
the dynamic flow of activities that describe behavioral aspects. SysML also supports other
diagrammatic views for use cases, sequences, state machines, internal blocks, and packages.

In order to adjust requirements engineering and modeling techniques for modeling SCPSs,
and especially adaptive ones, it is necessary to consider the integration between SysML
(which supports system specification) and a goal modeling language that supports social
concepts and comprehensive decision making [3, 20, 34, 35]. The objective of this paper is
to survey and analyze articles that relate to goal and SysML modeling and their support for
self-adaptive systems, especially SCPSs. The focus is on the techniques that combine both
SysML and goal modeling in that context (and this literature review is quite exhaustive
in that regard), but some key techniques that only use SysML or goal modeling are also
discussed in order to enable useful comparisons.

The main contributions of this literature review are its consolidation of existing work and
an outline of achievements and challenges related to existing techniques. This review is also
original in that although there exist general literature surveys and mappings about adaptive
systems [36–38], CPS modeling [39], goal modeling [40], and SysML [41, 42], none really
goes deep into the combination of goal and SysML modeling for emerging types of adaptive
socio-cyber-physical systems. This review will help academics understand what contributions
and gaps exist in that research area. It will also raise the awareness of practitioners in
the existing techniques for self-adaptation based on SysML and/or goal modeling, while
providing guidance in the selection of appropriate techniques in their development context.

220101-5

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

This paper is structured as follows. Section 2 describes the methodology used to plan,
conduct, and report on the literature review. Section 3 provides the selected resources on
Goal/SysML integration, as well as their evaluation methods, concepts, and objectives. In
addition, the methods presented for self-adaptation are classified into different categories,
and the self-adaptation concepts and dimensions are evaluated and extracted. Results are
compared in order to provide insight into their aims, achievements, and challenges. Related
literature reviews are discussed in Section 4. The limitations and threats to the validity of
this review are explained in Section 5. Finally, Section 6 concludes the paper.

2. Methodology

Based on the systematic literature review approach of Kitchenham and Charters [43], we
followed three common steps: planning, conducting, and reporting on the review.

2.1. Planning the review

This step includes setting research questions, identifying the search scope and strategy, as
well as formulating quality assessment criteria and data extraction items.

2.1.1. Setting the study goal and research questions

SCPSs combine stakeholder goals, software, and hardware components. Some SCPSs may
also be self-adaptive. In this context, the objective of this review is to investigate the possible
modeling methods that 1) integrate goal and SysML models, or 2) support self-adaption
via SysML only or via the integration of SysML and goal models. The research questions
for this objective include two main questions, each of which containing secondary questions.
RQ1. What are the existing methods that integrate goal-oriented models with SysML

models?
SQ1.1. Why have these integrations been proposed?
SQ1.2. How do the methods integrate the two types of models?

RQ2. What are the collected methods that support self-adaptation?
SQ2.1. How do the methods support self-adaptive systems?
SQ2.2. What are the roles that each model plays in this adaptation support?

2.1.2. Identifying the search scope and strategy

The search scope combines three areas: 1) the studies that are relevant to goal models and
SysML models together, independently of support for self-adaptive systems; 2) the principal
studies that use SysML models to support adaptive systems; and 3) important studies
(selected manually) that use goal models to support adaptive systems, as a comparison
point outside the SysML world.

The searches were more exhaustive for the first two areas (involving SysML) than for the
last one. The main strategy for the first two areas is based on automatic searches performed
on popular databases. As the topic of the last step (goal models for adaptive systems) is
quite wide and already well covered in the literature, a selection based on a domain expert’s
opinions and on forward citation searches (i.e., recent papers citing previously selected papers,

220101-6

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

including from the same authors) was used to highlight the main trends and contributions
without being exhaustive.
Data Sources. Five important electronic databases were used to discover scientific papers
related explicitly to the research questions: Elsevier’s Scopus and Clarivate Analytics’ Web
of Science are two wide-scope search engines, IEEE Xplore and the ACM Digital Library
are covering the two main societies publishing on systems modeling, and finally Google
Scholar is a catch-all academic search engine. Note that Google Scholar discriminates less
than the other databases in terms of paper quality, and its query language is less powerful
than the ones of the other engines. Together, these databases provide a very high coverage
of the literature related to SysML and goal-oriented modeling.
Search Queries. Many synonyms of goal models were used in order to cover the most
common goal modeling languages (i*, GRL, URN, and KAOS). Adaptive, adaptation,
socio-technical, and socio cyber were also considered as quasi-synonyms in our context. The
automatic search was conducted in two phases, first with a focus on SysML/goal integration
and second on SysML models and self-adaptation. Table 1 specifies each search conducted
with the related query. Because Google Scholar retrieved thousands of papers (with many
false positives), we eliminated adaptation/social terms from the second query to ensure
papers only integrating goal and SysML models would be included in our dataset, as we
excluded goal models from the fourth query to focus on non-goal-oriented SysML adaptation.
These abstract queries were transformed to concrete queries for the different languages used
by the databases. With Google Scholar (which retrieves thousands of papers with many false
positives), as we were mainly interested in using its results as a complement to the other
(and more reliable) databases while minimizing the effort needed to prune out irrelevant
papers, only the first 60 papers returned by each query were further inspected. The number
60 was selected based on observing an increasingly high density of false positives as we went
down the lists of results, especially after 40 results. The return on the time investment after
60 results was deemed ineffective.

Table 1. Queries used for Goal/SysML integration (1 and 2)
and self-adaptation with SysML (3 and 4)

No. Search Query

1 SysML and goal models

TITLE−ABS−KEY(SysML AND
(”goal oriented” OR
”goal model” OR ”i star” OR istar OR
KAOS OR ”user requirements notation” OR
URN OR adaptation OR adaptive OR
”Socio cyber” OR ”Socio technical”)

)

2 SysML and goal models, using
Google Scholar

(SysML AND
(”goal oriented” OR ”goal model” OR
”i star” OR istar OR KAOS OR
”user requirements notation” OR URN)

)

3 SysML models and self-adaption TITLE−ABS−KEY(SysML AND
(adaptation OR adaptive))

4 SysML models and self-adaption, us-
ing Google Scholar

(SysML adaptation OR adaptive)
−”goal model”

220101-7

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Inclusion and Exclusion Criteria. We used inclusion and exclusion criteria to select
which papers to keep. The inclusion criteria were:
1. The article is peer reviewed (no book, patent, tutorial, magazine, or gray literature).
2. The article is written in English.
3. For queries 1 and 2 in Table 1, the article provides or clarifies methods about Goal/SysML

integration.
4. For queries 3 and 4 in Table 1, the article includes methods using SysML for self-

adaptation support.
The exclusion criteria were:
1. The article duplicates (or is a subset of) another paper in terms of the Goal/SysML

integration or self-adaptation methods.
2. The article does not provide any information related to our research questions.
A paper satisfying one of the exclusion criteria or not satisfying all of the inclusion criteria
was excluded. Some papers did discuss a combination of goal modeling with SysML
modeling, but not their integration or self-adaptation. For example, Tueno Fotso et al. [44]
integrate KAOS-like AND/OR goal models with a subset of SysML for the generation of
Event-B specifications, but not for adaptive systems.

2.1.3. Quality assessment criteria

We used the checklist in Table 2 to provide a qualitative assessment of each study.

Table 2. Quality assessment criteria and possible values

Code Quality Qualitative Score

C1 Is the problem specified clearly? Yes, No, Partially
C2 Is a method provided? Yes, No, Partially
C3 Is the presented method original? Yes, No, Partially
C4 Is the method detailed? Yes, No, Partially
C5 Is the method complete? Yes, No, Partially
C6 Is a case study provided? Yes, No
C7 Does the case study clearly illustrate the method? Yes, No, Partially
C8 Is self-adaptation handled? Yes, No, Partially
C9 Is self-adaptation specified in detail? Yes, No, Partially

2.1.4. Identifying data extraction items

Table 3 details the data items extracted from each selected paper, together with their
related research questions from the planning stage.

Table 3. Data extracted from each paper

Questions Data item

Documentation Title, Year, Publisher, Authors, Database engine
RQ1 Goal model, Automation, Integrated diagrams, Method realization
RQ1, RQ2 Goal model, Goal concepts, Goal analysis, Objective, Development phase,

Environment of the method, Realization type
RQ2 Quality attribute, Realization dimension, Adapted object, Temporal features,

Modeling dimension (Goal), Why SysML model

220101-8

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

For data documentation, from each article, we collected the title, the publication year,
the publisher, the authors’ names, and the database engine used to retrieve the article. To
answer research questions RQ1 and RQ2, information was collected by posing the following
questions:
1. Are the goals integrated with SysML as a model, or as text/requirement?
2. What are the diagram types that were used in the integration?
3. Are common goal modeling concepts considered in the integration? These include goal

types, qualitative/quantitative contributions between different types of goals, and goal
dependencies.

4. Is goal analysis considered in the integration?
5. What is the purpose of the integration?
6. Is the integration fully automatic, semi-automatic, or manual?
7. What method was utilized when the integration was done?
8. What are the non-functional requirements (NFRs) that were the focus of attention?
9. For which development phase was the integration done?
10. How are the methods realized? This includes the adaptation type and approach, if any.

a) How is the adaptation type explained from these different perspectives?
i. When are the alternatives handled? (closed: at development phase; or open:

at runtime).
ii. Is the method model-based or not?

b) How is the adaptation approach realized? This is grouped into the following:
i. The decision-making process decides the adaptation and chooses between

alternatives (analysis and selection processes) [37]. Is it static and created at
development time as rules, or dynamic using an equation or algorithm?

ii. The adaptation approach is based on the phase of the system in which the
adaptation approach was included [3]. Is Making adaptation included at
development time or Achieving adaptation included at runtime using learning
approaches?

11. What is the object affected by the adaptation process? Three different sets of information
related to this object are:
a) The layer in which the object is located (application, middleware, network, hardware,

etc.);
b) The impacted object (architecture, subsystem, service, component, parameter, etc.);

and
c) The adaptation action, which could be weak or strong depending on the effect and

cost of adaptation. For example, strong adaptation includes adaptations that add
or change the system architecture or components behaviors at runtime. This result
exists because much system time and effort is consumed to achieve the adaptation
goals. A weak adaptation is related to any inexpensive change. (Cost-impact)

12. When does the adaptation happen before specific events (Proactive) or after specific
events (Reactive)? (Temporal adaptation)

13. Does the system monitor specific features or does it monitor its environment continually
using sensors? (Temporal monitoring)

14. Is human intervention involved in the adaptation process?
15. How is the adaptation done? For example, using a specific language or algorithm.
16. Goal:

a) Does the number of goals change at runtime? (Evolution)

220101-9

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

b) Do system goals remain unchanged, change within constraints, or change without
constraints? (Flexibility)

c) How many goals are considered in the adaptation process? (Multiplicity)
d) Are the goals dependent or independent of each other? (Dependency)

17. What is the reason for the adaptation? (Change)
a) Is the source of the change external (environmental) or internal (system)?
b) Is the change due to functional requirements, to non-functional requirements, or to

a technical reason?
18. Was the time spent for adaptation process guaranteed or not? (Timeliness)
19. What was the reason for using a SysML model to specify self-adaptive systems?

2.2. Conducting the review

After having identified the queries and databases engines, the study was conducted along
four steps: search, screening, data extraction, and quality assessment.

2.2.1. Search methods

The retrieval of papers to satisfy the conditions we identified included two search methods:
1) goals/ SysML integration and 2) SysML and self-adaptation support. The search method
for goals/SysML integration consisted of the following steps:
1. The first query was used to capture the papers from the Scopus, IEEE, Web of Science

and ACM database engines.
2. Because Google scholar retrieves many irrelevant articles, we used the following strategy

on this engine:
a) The first query was applied to retrieve papers first using the “anywhere” option

and second using the “in the title” option. The latter retrieved only 10 papers
while the former retrieved 4,200 papers. We considered only the first 60 papers
(which are ranked by relevance).

b) To include further relevant papers, we conducted the second query using the
“anywhere” option. This returned 660 papers, and again only the first 60 papers
were considered.

The search method for SysML and self-adaptive systems consisted of the following
steps:
1. The third query was used to capture the papers from the Scopus, IEEE, Web of Science

and ACM database engines.
2. Using Google Scholar, the fourth query was used with the two options, “anywhere”

and “in the title” separately. The first option led to 3,860 papers, and only the first
60 papers were included in our dataset. The second option retrieved only three papers.

To get a non-exhaustive overview of the role that goals have played in supporting
self-adaptation features, our dataset was supplied with 12 primary articles using goals in
self-adaptive systems by an expert and two more papers using forward search (snowballing).

2.2.2. Screening

The papers retrieved through the previous step were screened for relevance. The exclusion
and inclusion criteria were applied on each paper based on abstracts and conclusions. If the
information was insufficient to decide whether a paper was relevant or not, its introduction

220101-10

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

and method sections were read. If the information was still insufficient to decide, the
full-text of the article also was read. Discussions between both authors were required for
nine papers because it was difficult to decide whether they were relevant or not.

2.2.3. Result

Figure 5 illustrates the results of the screening process, with the numbers of results returned
for each query available in Table 4. From the goals/SysML search, out of 444 papers returned
by the search engines, 33 papers were deemed relevant whereas 411 were rejected, including
58 duplicates1. For the SysML and adaptation search, 334 papers (including 18 duplicates)
were considered but only eleven articles met our criteria. Most of the papers were found by
Scopus, with much duplication by the Web of Science, and the other engines added little
value. In addition to these 44 papers, eight papers on goal modeling for adaptive systems

Figure 5. Result of the screening process

Table 4. Results of the searches per databases

Database Goal and SysML SysML and adaptation

Scopus 70 62
IEEE Xplore 60 67
Web of Science 28 17
ACM Digital library 23 62
Google Scholar (title only) 23 6
Google Scholar (any field) 60+60 (from 4,200) 60+60 (from 3,860)
Google Scholar (with goals-SysML) 60+60 (660) -
Total (with duplicates) 444 334
Total (unique papers) 386 316

1A table with the accepted and rejected papers is available online at http://bit.ly/SysML-Goal-SLR

220101-11

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

were included at the suggestion of an expert and with a simple forward search (we did not
aim to be exhaustive here). This resulted in 52 papers that were eligible for the analysis.

2.2.4. Data extraction

For each study, we extracted the data items mentioned in Table 3. Extracting this data
was done iteratively from the selected studies to accumulate information concerning our
research questions.

2.2.5. Quality Assessment Process

The collected studies were compared against the criteria listed in Table 2. We did not
evaluate how good the articles were (beyond ensuring they were not coming from a predatory
source), but we did evaluate how useful each would be to the study. The result of the
quality assessment against the criteria explained in Table 2 is provided in Tables A1 and A2
in Appendix A.

3. Discussion

We classify and present the selected studies in a way that will enable answering our research
questions accurately. We split the discussion into five subsections: integration methods,
adaptation support methods, adaptation assessment, and challenges.

3.1. Integration methods

To answer the first research question (RQ1: What are the existing methods that integrate
goal-oriented models with SysML models?), we used the 33 articles retrieved by the
Goal/SysML search (Table A1). We classify the studies according to the applied methods
and current objectives. A total of 17 methods, named M1 to M17 in Table 5, are proposed
by these articles. The types of goal modeling languages and SysML diagrams used in each
method are also listed in Table 5, and the main papers in each collection are highlighted in
bold.

3.1.1. Languages and diagrams involved

For each method, we extracted the goal modeling language and SysML diagrams used
(Table 5). Any additional model was considered out of the scope of the study.

The most commonly used SysML diagrams in the 17 proposed methods are requirements
diagrams and block diagrams, in that order. All presented methods but three (M1, M11,
M14) connected goals or goal models with requirements diagrams, while nearly half the
methods (M1, M2, M9, M11, M12, M13, M17) used block diagrams in their integration.

From a goal model perspective, several different languages were used. The most popular
languages in these methods are KAOS [24] (M5, M7, M8) and GRL [28] (M2, M4, M17).
OMG’s Business Motivation Model [76] was also mentioned once in M6 and RELAX [77]
once in M8. Several methods only used textual goals or non-functional requirements (NFRs),
with some integrating them more formally as SysML stereotypes (M15 and M16). Instead
of integrating goal models themselves, Ingram et al. [45] (M1) used goal model analysis

220101-12

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Table 5. Selected studies and their methods used
(FG = Functional goals; NFG = Non-functional goals)

Research studies Code Goal language SysML diagrams

Ingram et al. [45] M1 Fault tolerance strategies Block (and dependency
relationships)

Amyot et al. [20] M2 GRL Requirements, block

Vanderperren and Dehaene [46] M3 NFG (no specific notation) Requirements, use case

Ozkaya [47] M4 GRL Requirements

Matoussi et al. [48], Laleau
et al. [49]

M5 KAOS (FG) Requirements

Cui and Paige [50] M6 Business Motivation
Model

Requirements

Gnaho et al. [51, 52],
Mammar and Laleau [53],
Bousse [54]

M7 KAOS (FG, NFG) Requirements

Ahmad et al. [55], Ahmad
et al. [56–58], Ahmad [59],
Ahmad and Bruel [60, 61],
Belloir et al. [62]

M8 KAOS (FG, NFG), RELAX Requirements

Apvrille and
Roudier [63, 64], Roudier
and Apvrille [65]

M9 Textual goals/NFR Requirements, block,
state machine,
parametric

Tsadimas et al. [66] M10 NFR diagram Requirements

Spyropoulos and Baras [67] M11 Textual NFRs Block, parametric

Badreddin et al. [68] M12 Textual goals
(based on GRL)

Requirements, block,
use case

Fan et al. [69] M13 Textual goals Requirements, block,
activity

Wang [70] M14 Textual goals (with
AND/OR decomposition)

Use case

Lee et al. [71] M15 Requirements diagrams
with goal stereotypes

Requirements

Maskani et al. [72] M16 Requirements diagrams
with goal stereotypes

Requirements

Anda and Amyot [73], Anda
and Amyot [74], Anda [75],
Anda and Amyot [31]

M17 GRL Requirements, block, in-
ternal block, paramet-
ric, state machine

220101-13

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

results in their integration to increase the confidence of system designers when defining the
system architecture. From another perspective, Anda and Amyot [74] (M17) used GRL
models and enabled analysis through arithmetic expressions.

3.1.2. Objectives of the integration

In our investigation, extracting information about the adaptation objective is different
from extracting information for the integration itself. To answer the secondary question
SQ1.1 (Why have these integrations been proposed?), we clustered the studies according
to their objectives to figure out which ones were most frequently used in the literature to
justify a goal/SysML integration.

Table 6 reports on seven main objectives, together with their related methods and
articles. The management of uncertainty and adaptation (which is concerned with whether
the information being monitored is reliable enough to justify adaptation decision, and
with what adaptation will help satisfy goals the best), has attracted the highest number of
studies (14), with four different methods. However, the architecture selection and modeling
objective (which is important at design time to find suitable trade-offs between various
non-functional goals such as performance, cost, and reliability of systems and adaptations)
is targeted by a more varied set of methods (6). These two important objectives are
followed by formal validation and verification (to ensure safety, liveness, security, and other
such properties), and traceability (to manage change effectively and to ensure coverage
during quality assurance). Other objectives were mentioned only by one or two papers,
namely process improvement (e.g., so goals are more explicitly considered), requirements
visualization (e.g., to see how system requirements trace to or contribute to goals), and
impact assessment of non-functional requirements on functional requirements (e.g., to
consider trade-offs involving both types of requirements).

Table 6. Objectives of Goal/SysML integration and related methods

Objectives Methods Articles

Uncertainty & adaptation M1, M2, M8, M17 [20, 45, 51, 55–62, 73–75]
Architecture selection & modeling M1, M9, M10, M11, M13,

M17
[45, 63–67, 69, 73, 74]

Formal V&V M5, M7, M8, M15 [48, 49, 53, 54, 58, 71]
Traceability M6, M12, M14, M16, M17 [31, 50, 68, 70, 72]
Development process improvement M3, M17 [46, 75]
Requirements visualization M4 [47]
Impact of NFRs on FRs M7 [52]

3.1.3. Method characteristics

Integrating goal models with SysML models has different dimensions depending on the
objective of the study and the researchers’ vision for a specific problem and its solutions.
To answer the secondary question SQ1.2 (How do the methods integrate the two types of
models?), Table 7 includes information about each main study and the related data that
explains the following:
1. Whether the method was automated;
2. Whether the method integrated goals as a model;

220101-14

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

3. Whether the main goal concepts are used in the integration;
4. Whether goal analysis was supported; and
5. The method realization (usually through a profile).

Table 7. Extracted data on the integration dimensions
(F = fully automatic, S = Semi-automatic, M = Manual, ? = Unknown)

Research method Code Auto Goal
model

Goal
concepts

Goal
analysis

Method
realization

Ingram et al. [45] M1 ? M M S Profile
Amyot et al. [20] M2 S F S S Investigating
Vanderperren and Dehaene [46] M3 ? M S M Profile
Ozkaya [47] M4 ? ? ? M Investigating
Matoussi et al. [48] M5 ? S S M Profile
Cui and Paige [50] M6 ? S S M Profile
Gnaho et al. [51, 52] M7 ? S S M Profile
Ahmad et al. [55] M8 S S S M Profile
Apvrille and Roudier [63, 64] M9 S M S S Profile
Tsadimas et al. [66] M10 S M S M Profile
Spyropoulos and Baras [67] M11 S M S S Profile
Badreddin et al. [68] M12 ? S S S Textual syntax
Fan et al. [69] M13 S M M M Profile
Wang [70] M14 M S S M Mapping
Lee et al. [71] M15 M S S M Profile
Maskani et al. [72] M16 M S S M Profile
Anda and Amyot [31, 74] M17 F F F F Math functions

and RMS

To assess how far the methods go in their integration, Table 7 includes columns that
are further explained below. Note however that some methods were still under development
or investigating alternatives. As they did not provide sufficient details about their process,
the level of automation and the method realization were difficult to assess at times. Most of
the studies did not mention how goals or requirements are transferred to extended SysML
profiles. Some of them developed specific editors for their methods but did not explain
whether the goals or requirements were translated automatically or re-entered manually.
Automation. Does the method support an MDE (automated) approach? Several stud-
ies [9] have addressed the advantages of an MDE approach, including information traceabil-
ity, holistic validation and verification, as well as code generation. These features are not
only important to support self-adaptability, but also to improve productivity and system
quality [9, 46]. As seen in Table 7, most selected methods used goals (partially) as a model
with SysML requirements diagrams. In contrast, Badreddin et al. [68] proposed the only
method (M12) that does not support a graphical MDE approach and presented a new
language that combines the models using a textual syntax. In many studies, goals have
actually been translated to a textual, hierarchical structure using a profiled SysML require-
ments diagram, (with various degrees of formalization). One method (M17) automatically
translates GRL goal models to mathematical functions that can be embedded in SysML
models. Some studies used SysML block and parametric diagrams with some goal model
analysis such as trade-off analysis.
Goal Modeling Concepts. Were important goals modeling concepts (goals, softgoals,
decompositions, actor importance, contribution weights, indicators, etc.) part of the inte-
gration with the SysML model? Anda and Amyot [31, 74] proposed the only method (M17),

220101-15

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

named CGS4Adaptation, that includes all the elements of goal models in their integration.
Goals were integrated with SysML requirements diagrams in most methods but not all
goal modeling concepts were mapped. These methods extended requirements diagrams
with goal types (functional and/or non-functional) and some goal relationships (mainly
AND/OR decomposition). However, quantitative/qualitative contributions between goals,
importance of goals to their containing actors, and indicators with parameters are seldom
covered. For example, Cui and Paige [50] integrated goals model without considering the
quantitative values of the contribution relationships between goals or indicator parameters,
whereas Ahmad et al. [55] integrated all types of goals and their relationships except
for contribution weights, importance levels, and indicators. This prevents modelers from
quantitatively 1) performing goal analysis to guide the selection of alternatives (at design
time) and 2) supporting dynamic adaptation at runtime according to user preferences [36].

When dealing with NFRs, the methods presented by Apvrille and Roudier [63, 64],
Tsadimas et al. [66], and Spyropoulos and Baras [67] focused on the important role of
goal-oriented techniques in system architecture and design selection. However, none actually
transformed or linked goals to the design phase. Instead, they broke down system goals into
non-functional requirements and linked them to design elements of SysML requirements
diagrams. In contrast to these methods, Maskani et al. [72] expanded the requirements
profile with security goals and requirements while the related stakeholders, goals, assets,
and risks were added as attributes.
Goal Analysis. Trade-off analysis can be conducted through positive and negative
contributions between goals during the decision-making process, e.g., to determine which
actors will be satisfied or dissatisfied by a particular solution or adaptation strategy. Some
methods were used to analyze fault tolerance and security mechanisms using quantitative
values in their goal/ SysML integration, but mainly to select the best architecture/design [55,
63, 64] or to include possible choices in the system implementation phase [45, 67]. However,
these analyses are limited to static decisions and adaptions, often outside of the SysML
model as well. To support goal-based design selection and runtime adaption in a way that
is integrated with SysML, Anda and Amyot [73–75, 78] generate arithmetic functions from
GRL models that can be inserted in SysML models for simulation and optimization, and
in the system code for runtime adaptations.
Method Realization. As seen in Table 7, all but four studies used some level of SysML
profiling to map goal concepts to SysML concepts (often using requirements diagrams as
a basis). Badreddin et al. [68] however proposed (in M12) integrating both views through
a new textual language (fSysML), whereas two other studies were still investigating this
aspect. In M17, in addition embedding functions generated form goal models in the
SysML models, the authors also support importing both the goal and SysML models into
a third-party traceability tool (commonly called a Requirements Management System –
RMS) to enable managing traceability links between the elements of the goal and SysML
models (blocks and requirements diagrams and their relationships), hence also enabling
impact analysis and consistency checks as models evolve [31].

3.2. Adaptation support methods

To answer research question RQ2 (What are the collected methods that support self-
adaptation?), we selected additional articles coming from digital libraries and provided
by experts. Sub-questions SQ2.1 and SQ2.2 are answered using adaptation concepts and
dimensions.

220101-16

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

In order to find the methods that support self-adaptation characteristics in a context
where adaptation objectives are not explicitly mentioned in some of the studies, we classified
the methods using two criteria: self-adaptation properties and adaptation type. These two
criteria are respectively based on two classifications: 1) the non-functional requirements
that guide a particular system architecture design, and 2) the phase used to realize the
adaptation.

3.2.1. Self-adaptation properties

We classified the studies based on the four common self-* properties of self-adaption [8, 35],
namely self-healing (from failures and incorrect states), self-configuration (to changing
contexts and resources), self-optimization (to best meet specific goals), and self-protection
(to avoid system harm). This classification was done with the help of related quality
attributes, as suggested by Mistrik et al. [79] and Salehie and Tahvildari [80]. We extracted
the non-functional requirements (NFRs) cited in the 52 eligible studies before we related
them to four self-* properties.

For the studies where an adaption rationale was available, we established a mapping
to self-* types via NFRs. Table 8 details the results. Sixteen methods support systems
in adapting themselves while running by responding to changes that could be external
(environmental) or internal (the system itself) [81]. Only four of them [45, 55, 67, 74]
integrate goal and SysML models for both system design and self-adaptation. SysML also
was hired by another 7 methods to support self-adaptation.

In terms of adaptation approaches that use goal models but not SysML, we find several
methods such as those from Morandini et al. [82, 83], Qian et al. [94], Ramnath et al. [95],
Baresi et al. [86], and Baresi and Pasquale [87, 88]. Additional diversity is brought by
pattern-based and case-based approaches [90, 94].

Table 8. Distribution of self-* properties and non-functional requirements among the studies

Self-* NFRs Goal/SysML Goal SysML

Self-Healing Fault diagnosing
tolerance

Ingramet al.[45] Morandini et al.
[82, 83]

Bareiß et al. [84],
Parri et al. [85]

Self-Configuration

Adaptability,
Integrity and
Availability

Ahmad [59],
Ahmad et al.
[55–58], Ahmad
and Bruel [60, 61]

Adaptability Anda and
Amyot [73, 74],
Anda [75]

Baresi et al. [86],
Baresi and
Pasquale [87, 88]

Hussein et al. [89],
Meacham [90]

Reliability Ribeiro et al. [91]

Self-Optimization
Resource
utilization

Spyropoulos and
Baras [67]

Lopes et al. [92],
Souza et al. [93]

Time behavior Qian et al. [94]

Self-Protection Security Belloir et al. [62] Ramnath et al.
[95]

220101-17

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

3.2.2. Adaptation phase and development

Support for the development of adaptive systems is provided at different levels. Some studies
provide analysis and design methods for such systems, but without explicit adaptation
support. Others that come with adaptation support do so either for design-time adaptation
or for runtime adaptation. In design-time adaptation, the situations triggering adaptation,
the adaptation mechanisms, and the strategies for decision making are already known and
applied in the system at design time. Systems that apply runtime adaptation are distinguished
by the ability to deal with unpredictable environmental changes while running [80, 90].

Table 9 shows that most of the studies that integrate goal and SysML models target the
development adaptive systems for different reasons (i.e., uncertainty reduction, complexity
simplification, system validation and verification) other than for adaptation, while most of
the methods that target self-adaptation trough SysML models or goal models separately
implement their adaption strategies, mechanisms, and decisions at design time (design-time
adaptation). Interestingly, runtime adaption in SysML is currently lacking contributions.

Table 9. Distribution of the studies related to development of adaptive systems

Study Category
Without Adaptation Support With Adaptation Support

Analysis and Design Only Design-Time
Adaptation

Runtime
Adaptation

Goal/SysML [31, 46–54, 63–66, 68–72] [20, 45, 55–62, 67] [73–75]
SysML and adaptation [18, 19, 96] [17, 84, 85, 89–93]
Goals and Adaptation [97] [82, 83, 86–88, 95] [94]

3.2.3. Adaptation approaches

Tables 10 and 11 summarize the approaches each method applies to meet its objectives.
Three methods (in four articles) used the i* goal modeling language, and one (in four
articles) used GRL, a language that originates from i*. Four methods used the KAOS
language (in 11 articles), and RELAX [77] was used in a few instances. Please note that the
methods in Tables 10 and 11 are different and independent from the integration methods
described in Table 5.

Table 10. Methods using combined Goal/SysML models to represent self-adaptive systems

Method Overview

Ingram et al. [45] Employed conditions and roles of a fault tolerance study to choose the best
strategy for managing traffic problems.

Ahmad et al. [55] Used SysML, KAOS and RELAX to manage uncertainty at runtime.
Spyropoulos and
Baras [67]

Used trade-off analysis to optimize resource distribution of an Electrical
Microgrid system using mathematical algorithms applied in a SysML model.
The last model was integrated with the Consol-Optcad optimization tool for
early cost and performance estimation.

Anda and
Amyot
[31, 73, 74],
Anda [75]

Transformed GRL and feature models into mathematical functions that can
be executed outside of goal modeling tools including SysML, simulation,
optimization, and implementation tools. Also, goal and SysML models are
imported into an RMS to manage traceability and consistency as models
evolve.

220101-18

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Table 11. Methods using SysML models or goal models separately
to represent self-adaptive systems

Method Overview Using

Morandini
et al. [82, 83]

Unified goal model (i*), failure model, and environmental model to
support self-adaptation.

Goals

Qian et al. [94] Combined strategies selection and case-based reasoning self-adapta-
tion approaches. In order to determine the embedded strategies, the
lowest level of parameterized goal models was linked with the highest
level of softgoals via weighted contribution relationships.

Goals

Ramnath et al.
[95]

Linked strategies for attack and protection at the design layers of
the proposed architecture.

Goals

Meacham [90] Combined pattern-based with case-based reasoning approaches where
repeated falls were collected and analyzed to identify their patterns,
leading to solutions as plans.

SysML

Ribeiro
et al. [91]

Modeled real time requirements and managed traceability through
extending SysML requirements diagram with relationships and prop-
erties. Synchronized relationships were used to represent parallel
real-time requirements.

SysML

Bareiß et al.
[84]

Modified the SysML meta-model to create a SysML4Pack profile that
combines SysML model, OCL [98] and the state machines of OMAC
to represent predictable faults of automatic production systems.

SysML

Lopes et al.
[92]

Integrated SysML models with trade-off analysis and techno-eco-
nomical cost-benefit analysis to optimize electricity management,
generation, and distribution among customers.

SysML

Soyler and
Sala-Diakanda
[17]

Included disaster management strategies in a SysML system archi-
tecture with continuous feedback from the last disaster data.

SysML

Akbas and
Karwowski [18]

Combined dynamic models with agent-based models that were ex-
tracted from system design using SysML models.

SysML

Souza et al.
[93]

Created a SmartCitySysML profile that extends the profiles of re-
quirement and block in SysML to represent smart city elements.

SysML

Horkoff et al.
[97]

Integrated goal models i* with the MAVO framework of [99] to iterate
over the analysis process for early uncertainty reduction.

Goals

Baresi et al.
[86]

Modified the KAOS language with fuzzy goals (i.e., non-functional
goals with uncertainty) leading to a new language called FLAGS,
which supports functional models (crisp goals) and adaptive models
(fuzzy goals). The crisp goals were formalized through Linear Tempo-
ral Logic language (LTL) [100] plus fuzzy temporal operations such
as <, >, <=, and approximately to express the fuzzy goals.

Goals

Parri et al. [85] Combined system configurations derived from SysML block definition
diagrams (BDD) metadata with a failure model derived from fault
tree via digital twins and data analysis agents.

SysML

Baresi and
Pasquale [88]

Used service composition based on the Business Process Execution
Language (BPEL) [101] to transform the FLAGS/KAOS model in
Baresi et al. [86] to membership functions and abstract processes,
semi-automatically. These functions trigger the adaptation strategies
using Boolean conditions.

Goals

Baresi and
Pasquale [87]

Added operators from RELAX Language to the FLAGS language
in Baresi and Pasquale [88] to represent the fuzzy goals. Member
functions are used in the monitoring process but the adaptation
strategies are triggered by conditions associated with the operational
model.

Goals

220101-19

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Several integrations (and, at times, extensions) were also done with goal models or
SysML models separately, hence answering the sub-question SQ2.2.
Goal Model Integrations with Languages Other than SysML
1. In order to support dynamic adaptive systems, Morandini et al. [82, 83] integrated

models of goals, failures, and the environment.
2. To deal with unpredicted changes at runtime, Qian et al. [94] integrated goal models

with case-based reasoning.
3. Horkoff et al. [97] integrated goal models with the MAVO framework to reduce uncer-

tainty early.
4. Baresi et al. [86] and Baresi and Pasquale [87, 88] described goals using a formal linear

temporal logic (LTL) language and the RELAX language for usage at runtime.
5. Anda and Amyot [31] adapted a model import method [102] to import and trace GRL

models into an RMS (IBM Rational DOORS [103]). They also generate functions from
goal and feature models that can be embedded in SysML models.

SysML Model Integrations with Non-Goal-Oriented Languages
1. Meacham [90] did an integration of SysML with UML to specify cases of presented

patterns, while Soyler and Sala-Diakanda [17] also supported an integration with
UML, but this time to represent the structure and behavior of systems in one single
environment.

2. Additional relationships and properties were added to SysML requirements diagrams
by Ribeiro et al. [91] for representing runtime requirements in a hierarchical way and
for managing requirements traceability for system validation and verification.

3. Bareiß et al. [84] used an integration with OMAC state machines, ISA-88 physical
models, and OCL constraints for transforming models to code.

4. Lopes et al. [92] provided an integration supporting trade-off analysis and techno-
economical cost-benefit analysis when modeling detailed system architectures.

5. System dynamic models and agent-based simulation were integrated by Akbas et al.
[19] and Akbas and Karwowski [18] for minimizing system complexity and specifying
system agents in a hierarchical structure.

6. Smart city elements including different types of requirements, solutions, processes,
stakeholders, problems, and dimensions have been added to a SysML profile by Souza
et al. [93] to support a domain-specific modeling process.

7. Real configuration items from SysML BDD properties and diagnostic, predictive, and
prescriptive analytics derived from fault tree are integrated by Parri et al. [85] to
discover alternative configurations when a runtime violation is detected.

8. Ginigeme and Fabregas [96] derived configuration parameters from the stakeholder’s
requirements and system design in SysML to be used by a discrete-event simulation
(Arena) tool to evaluate the design configurations.

9. SysML BDDs and requirements diagram are imported in an RMS (DOORS) by Anda
and Amyot [31] to support consistency and completeness checks (against imported GRL
models) as well as more common impact analysis and change management processes.

3.3. Adaptation assessment

In order to answer questions SQ2.1 and SQ2.2 on adaptation methods, we extracted
information that identifies terms inspired from existing adaptation taxonomies [37, 80] and
modeling dimensions of self-adaptation [81, 104]. Using these terms was helpful in inferring

220101-20

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

correct indicators that specify how each method supports self-adaptation and what roles
each model plays in this adaptation.

Among the articles collected, some were eliminated from this assessment because their
adaptation methods were redundant or not described in sufficient detail. In particular,
Akbas and Karwowski [18] and Horkoff et al. [97] designed self-adaptive systems for reducing
uncertainty and system complexity. They supported the use of self-adaptive systems but
not the use of adaptation where the system re-configures itself to become more usable. In
addition, Baresi et al. [86] and Baresi and Pasquale [87, 88] expressed the same methods
with different emphases, so we considered them as one method represented by the most
detailed paper [87]. Finally, Spyropoulos and Baras [67] provided information about their
dynamic decision-making process but not about the adaptation strategies and properties;
this paper was excluded from the adaptation properties and dimensions assessment, but
kept for the decision-making criterion. As a result, 14 methods are discussed here.

3.3.1. Adaptation terms

The selected terms were defined in Section 2.2.4 on data extraction. Table 12 illustrates
the assessment of each adaptation term against related methods and studies. The color
coding reflects how positive a result is (green = positive, yellow = neutral, red = negative,
and white = unknown or inappropriate).

3.3.2. Adaptation modeling dimensions

Three types of modeling dimensions (goal, change, and mechanisms), proposed by Andersson
et al. [81], are used to specify self-adaptive properties. Some of these properties are
overlapping with the adaptation taxonomy previously mentioned. Some of the methods,
such as those presented by Ahmad et al. [55], Anda and Amyot [74], and Baresi and
Pasquale [87], are generic and can be applied to different applications; we estimated their
values based on the provided information. We extracted the methods’ information related
to the chosen modeling dimensions, which is summarized in Table 13.

3.3.3. Assessment results

The surveyed methods handled self-adaptation from several perspectives: adaptation terms
and modeling dimensions, early management of uncertainty, the use of different languages to
deal with adaptation, frameworks for developing self-adaptive systems, adaptation strategies,
and finally decision-making and strategy selection processes. This section provides further
assessment of the methods along these six perspectives. A comparison of the methods
according to the used models is also provided to highlight the contribution of these models
to the ability of systems to self-adapt.
Adaptation Terms and Modeling Dimensions. From Tables 12 and 13, several
observations can be made:
– Most of the collected methods realized a closed approach of adaptation by including

their strategies with system design. Only three were clearly open, i.e., more amenable
to adaptation to unforeseen situations and contexts.

– All of the collected methods supported their adaptation approach at design time, and
they do not enhance or change them at runtime using a learning technique (e.g., based
on machine learning).

220101-21

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Table 12. Adaptation terms related to each selected method
(C = Closed, O = Open, ? = Not provided, Y = Yes, N = No, P = Partially, Dy = Dynamic,
Sta = Static, M = Making, A = Achieving, Md = Middleware, Ap = Application, Sr = Service,
St = Structure, W = Weak, Rt = Reactive, Pt = Proactive, Co = Continuous, Ad = Adaptive)

Goals and SysML Goals only SysML only
A
da

pt
at
io
n
te
rm

s

In
gr
am

et
al
.[
45
]

A
nd

a
an

d
A
m
yo
t
[7
4]

A
hm

ad
et

al
.[
55
]

B
ar
es
ia

nd
Pa

sq
ua

le
[8
7]

M
or
an

di
ni

et
al
.[
83
]

Q
ia
n
et

al
.[
94
]

R
am

na
th

et
al
.[
95
]

M
ea
ch
am

[9
0]

R
ib
ei
ro

et
al
.[
91
]

B
ar
ei
ß
et

al
.[
84
]

Lo
pe

s
et

al
.[
92
]

So
yl
er

an
d
Sa

la
-D

ia
ka

nd
a
[1
7]

So
uz
a
et

al
.[
93
]

Pa
rr
ie

t
al
.[
85
]

Adaptation
Type

C O ? C C O C C C C ? O C C

Model-based Y Y Y Y Y P Y Y Y Y Y Y Y Y

Decision (Ana-
lyze/Selection
process)

? Dy Sta Dy/
Sta

Sta Dy Sta Sta ? Sta ? ? ? Dy/
Sta

Adaptation
approach

M M M M M M M M M M M M M M

Layer Md Ap Ap Ap Ap Ap Ap Ap ? ? Md Ap Ap Md

Artifact Sr/StSr Sr Sr Sr Sr Sr Sr ? St Sr
/St

Sr Sr St

Cost-impact W W W W W W W W ? W W W W W

Temporal
adaptation

Rt Pt
/Rt

Rt Rt Pt/
Rt

Rt Rt Rt ? Rt Rt Rt Pt/
Rt

Pt/
Rt

Temporal
monitoring

Ad Co Co Co Co Co ? Co ? Co Co Co Co Co

Human
intervention

N N N P P N N N ? P ? ? N P

– According to their effected layers and artifacts, they supported only a weak adaptation
(i.e., no change to the architecture at runtime).

– The closed approaches affect the goals flexibility feature negatively and consequently
lead to different ways of managing adaptivity via fixed goals or flexible goals with
constraints, as shown in Table 13.

– Most methods that used goals as a model managed flexible goals with constraints
because of the conditions that were used to trigger system plans and strategies during
the strategy selection process (closed approach and design-time adaptation).

– The collected methods do not support unconstrained goals except for two methods.
Qian et al. [94] used methods to generate solutions: 1) goal-reasoning to generate
a new solution when the current cases did not match the conditions of the stored cases,
and 2) using the average of the similar cases to generate new solutions. However, the

220101-22

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Table 13. Modeling dimension of the selected methods
(Sta=Static, Dy=Dynamic, Rgd=Rigid, Cns=Constrained, Ncn = Unconstrained,

Mlti = Multiple, S = Single, E = External, I = Internal, Nfr = Non-functional requirement,
Gt = guaranteed, NGt = Not guaranteed, ? = Unknown)

Goals and SysML Goals only SysML only

A
da

pt
at
io
n
te
rm

s

In
gr
am

et
al
.[
45
]

A
nd

a
an

d
A
m
yo
t
[7
4]

A
hm

ad
et

al
.[
55
]

B
ar
es
ia

nd
Pa

sq
ua

le
[8
7]

M
or
an

di
ni

et
al
.[
83
]

Q
ia
n
et

al
.[
94
]

R
am

na
th

et
al
.[
95
]

M
ea
ch
am

[9
0]

R
ib
ei
ro

et
al
.[
91
]

B
ar
ei
ß
et

al
.[
84
]

Lo
pe

s
et

al
.[
92
]

So
yl
er

an
d
Sa

la
-D

ia
ka

nd
a
[1
7]

So
uz
a
et

al
.[
93
]

Pa
rr
ie

t
al
.[
85
]

Goal

Evolution Sta Sta Sta Dy Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta

Flexibility Rgd Ncn Cns Cns Cns Ncn Rgd Rgd Rgd Rgd Rgd Rgd Cns Rgd

Multiplicity Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti S Mlti Mlti Mlti Mlti

Dependency Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti S Mlti Mlti Mlti Mlti

Change

Source E E&
I

E E&I E&
I

I E E ? I E&
I

E E I

Type NFR NFR NFR NFR NFR NFR NFR NFR NFR NFR NFR ? NFR NFR

Mechanisms

Timeliness Gt Gt ? NGt Gt NGt Gt Gt ? Gt Gt ? Gt Gt

new solutions could be unsuitable for the current problem and consequently lead to
non-guaranteed adaptation timeliness, as shown in Table 13. On the contrary, Anda and
Amyot [73, 74] have used a goal reasoning method (without constraints or conditions
on its choices) to generate on the fly the best solutions when unforeseen circumstances
are encountered at runtime. Since the used mathematical functions include the impact
of the current environmental condition on all elements of the goal models and are
restricted by the mathematical function of feature models, the created solutions are
feasible and the best (the functionality and quality of the system satisfy its stakeholders’
objectives) for the current environmental condition.

– Baresi and Pasquale [87] presented the only method that changes the number of system
goals during adaptation by adding and deleting goals. As a consequence, the time
needed for adaptation is not guaranteed even if the conditions and related plans are
already known and embedded in the system at design time.

– Most methods (except three) included work or comments on mechanisms.
To conclude, using goal models in adaptation methods strengthens their flexibility and
ability to deal with unknown conditions at runtime. However, this can also lead to the
generation of infeasible solutions or unguaranteed adaptation timeliness due to insufficient
validity checking of the generated solutions and the new alternatives.

220101-23

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Early Management of Uncertainty. Reducing or eliminating uncertainty before having
to manage it is one way to analyze and design self-adaptive systems. To support the
decision-making process in analysis and design phases, early in the requirement engineering
process, Horkoff et al. [97] presented a formal iterative goal analysis process with a tool
that integrated i* goal models with the MAVO framework [99] to remove unnecessary
requirements alternatives. The treatment of uncertainty in general goal modeling is further
explored by Alwidian et al. [105].
Language Usage. Self-adaptive systems offer an opportunity for more relaxed language to
be used to better specify their requirements, because common patterns such as “the system
shall do this” are often too strict that context. This need was addressed in by Ahmad
et al. [55], who used the RELAX language [77] as a more formal representation of this idea
for monitoring environmental conditions and detecting violations. In addition, the formal
language called FLAGS [87, 88] formalizes the KAOS goal modeling language through
LTL. In order to represent fuzzy goals with uncertainty, LTL is accompanied by fuzzy
temporal operators based on RELAX [87]. This language was used to keep tracking and
using the goal model from requirements elicitation to the implementation phase. Anda and
Amyot [31, 73, 74] generate arithmetic functions in common languages (including C, Java,
and Python) from GRL and feature models, which enable analysis and implementation to
be done with a wide range of development tools.
Frameworks for Designing Self-Adaptive Systems. Several approaches and frame-
works were presented to design and select an appropriate architecture for self-adaptive
systems (SAS). Morandini et al. [83] extended the Tropos framework [106] for Adaptive
Systems (Tropos4AS). This framework helps analyzing requirements of SAS from early
requirements to the implementation by mapping the goal model of particular actors to
architecture agents and by mapping the plan (tasks) to activity diagrams. This framework
uses goal, failure, and environmental models. The Tropos goal modeling language, itself
based on i*, was extended to add goal types (achieve, maintain, perform), relationships
(sequence, inhibition) and conditions. Code is generated automatically from the models by
mapping Tropos4AS terms to Belief-Desire-Intention (BDI) agents, which enable SAS
validation and verification via simulation.

To support system reliability, flexibility, and runtime recoverability, Parri et al. [85]
proposed a software/hardware framework, called JARVIS, for developing CPSs and Sys-
tems of Systems. JARVIS adopts SysML BDDs and fault trees to discover configuration
alternatives using digital twins and data analytic agents.

Security strategies can also affect user privacy and cost. For this reason, Ramnath et al.
[95] proposed a non-functional framework to deal with adaptive security analysis. The goal
model is linked from and to dynamic behavior of the organization via a transaction-based
mechanism. Such goal model is used to support trade-off analysis between cost and privacy
in order to help with the definition of a secure architecture.

To reduce the complexity of SAS and manage traceability between their components,
Soyler and Sala-Diakanda [17] presented a model-based framework exploiting SysML. This
framework was selected to capture a Disaster Management System in one single environment
using feedback to adapt the embedded strategies, plans, and policies.

Finally, Akbas and Karwowski [18] proposed an agent-based framework that uses
a hybrid simulation model to support system design, validation, and verification, as well as
to provide quick feedback about the chosen design.

220101-24

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Adaptation Strategies. The collected methods dealt with possible adaptation strategies
or configurations through open and closed adaptation.
– Closed adaptation approaches: In a closed approach, possible alternatives, strategies, and

configurations are embedded in the system during the development phase. Assuming
environmental conditions and changes are well-known at design time, the closed methods
(Table 12) manage uncertainty through rigid or constrained goals. From the Goal/SysML
integration methods, Ingram et al. [45] used fault tolerance analysis and rules to deal
with errors. Without considering goal models, Ribeiro et al. [91], Parri et al. [85], Bareiß
et al. [84], Souza et al.[93], and Soyler and Sala-Diakanda [17] triggered their embedded
strategies, configuration, or plans to respond to internal or environmental changes.
Similarly, Morandini et al. [82, 83] represented the goal model in an agent structure
while embedding the environmental and failure conditions, alternatives, and plans in
agent beliefs and system design. Designing self-adaptive systems with predicted or
predictable change management is a characteristic common to these types of methods.
One issue here is that they cannot deal with unpredictable changes that could emerge
at runtime. On the other hand, they guarantee that the selected adaptation strategy is
suitable and timely for a given contextual change (see Tables 12 and 13).

– Open adaptation approaches: Open approaches do not solely rely on predetermined
adaption strategies and conditions. Feedback can be used to update the embedded
strategies, as suggested by Soyler and Sala-Diakanda [17] (although they give little
explanation on how to do so). Case-based reasoning is an approach that uses previ-
ously stored solutions in solving current similar problems. To deal with unexpected
environmental changes, case-based reasoning can be employed to update embedded
configurations and strategies. Based on such feedback loop, Qian et al. [94] create new
solutions or configurations from the average of the parameters’ values of two or more
stored cases or from goal reasoning (such as label propagation algorithms [107]). In
contrast, Meacham [90] used case-based reasoning to manage fall cases of elderly people
and infer their patterns in order to determine the related system reactions. She used
stored cases and patterns only while the feedback technique was not applied, in order to
continue enhancing the stored cases, as Qian et al. [94] did. To enhance overall system
performance, new strategies or configurations can be issued by the optimization method
of Anda and Amyot [31, 73], which deals with unexpected conditions at runtime.

Decision-Making and Strategy Selection Processes. The collected methods have not
provided much diversity in the decision-making process that triggers the adaptation and
the selection of the most suitable strategy (see Figure 1). All the decision processes were
encoded inside the system (i.e., static decision-making) and no adaptation was performed
on these processes using learning techniques. However, the decision-making process can use
different policies: action (static decision), goal and utility (dynamic decision), as well as
hybrid policies [37, 108]. These methods realized their decision-making processes as follows.
– Action policies: Apply to the process that decides when the adaptation should be done

and what the system should do based on the current state, conditions, and actions
(if-then logic) [108]. Meacham [90] used a pattern analysis algorithm to trigger the
adaptation while Morandini et al. [83] used a goal modeling approach and several types
of conditions that trigger the adaptation process. In order to select a suitable recovery
strategy, Bareiß et al. [84] used a diagnosis model that compared the current system state
with the pre- and post-conditions of each operation state. The if-condition-then-plan
technique is used here because it is a simple way for humans to express a rational

220101-25

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

logic in the systems. However, action policies become complex in real-world conditions,
and additional techniques (e.g., prioritization) are needed to solve policy conflicts in
practice [10, 108].

– Utility and goal policies: In order to select an optimal adaptation strategy, experts are
needed to identify the control variables required by the utility policy approach. Such
approach has been used in the decision-making process, providing a flexible way to
trigger the optimal adaptation’s strategy by exploiting designer knowledge at design
time and real monitored data at runtime [108].
Ramnath et al. [95] used utility functions for cost and benefit of the involved stakeholders
and trade-off analysis to select a suitable design. From there, related strategies were
connected to the security layers of this architecture to be executed at runtime. Similarly,
Spyropoulos and Baras [67] used trade-off analysis to get the optimal solution for power
allocation in their Microgrid system. In their approach, Lopes et al. [92] added an
enterprise service management plan using utility functions to select the best strategy
based on the techno-economical costs/benefits and trade-off analysis at design time.
However, none of the previous studies used these policies at runtime with the real data.
Baresi and Pasquale [87] used satisfaction equations and goal reasoning in analyzing
system state. However, they were not used in their strategy selection process triggering
the possible solutions depending on several conditions attached to the system operations
as rules. Similarly, Parri et al. [85] used Fault Tree analysis to detect and predict failures
while the suitable configurations were associated to the tree via digital twins. Also, Qian
et al. [94] used case-based reasoning in all MAPE activities (see Figure 1) except in
the planning process, the latter being supported by goal-based reasoning when it failed.
However, they applied goal-based reasoning in generating new configurations only by
increasing the weights of the violated goals to get solutions related to these specific
goals, but the new solutions could still be unsuitable for the current problem. Hence,
although using such a utility function leads to an optimal solution without strategy
conflicts, its usability is affected significantly and experts are still required [10, 108].
On the other hand, goal and feature models transformed to mathematical functions by
Anda and Amyot [73, 74, 78] are used in MAPE activities to monitor, analyze, and
select the suitable strategies at design time and during runtime adaptation.

3.3.4. Self-adaptation, goals, and SysML

The collected articles display distinguished features when classified according to the three
categories (Figure 5) initially used to search the literature: goal models (without SysML),
SysML models (without goal models), and goal models combined with SysML models.

From Section 3.2.3, goal models are used to reduce uncertainty early and provide
adaptation rationale and alternatives. Also, based on Table 9, goals are involved into all
the methods that enhance their adaptation solutions at runtime while runtime adaption is
not well supported in SysML. In Table 12, two methods used goal models to generate new
solutions/strategies when facing unknown conditions at runtime while only one SysML-based
method used feedback to create new strategies, but without much detail. Similarly, three
methods out of four that provided dynamic decisions exploited goal models while only one
method (Parri et. al. [85]) supports dynamic analysis with a strategy selection process using
SysML. From a modeling dimension perspective, SysML is involved in all the inflexible
methods that use fixed goals in their adaptation approaches. On the other hand, all the
goal-based methods manage multiple goals and their dependencies defined in goal models.

220101-26

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Also from Section 3.2.3, SysML provides a suitable environment that reduces the complex-
ity of self-adaptive systems and represents them in one single environment through profiles.
Such profiles are used to strengthen domain-specific modeling by adding new terms for new
types of systems such as smart cities [93]. However, these profiles do not represent goal
model elements and analysis together, and valuable information is lost during the mapping
of goal-related concepts to SysML concepts, which reduces the flexibility of theses methods
(and leads to rigid or constrained goals instead of goal reasoning enabling selections and
trade-offs among goals). Only one method [74] integrates goal model analysis (including goals,
softgoals, actors, tasks, indicators, contributions, relationships, and their importance) with
SysML models without using profiles. This integration involves mathematical expressions
generated from goal models, which enables a flexible method with open adaptation together
with dynamic decision in analysis and mapping mechanisms.

3.4. Challenges

The studies have faced several challenges while employing their methods, and some are
further explored below.
Usability of Integration. The integration processes are often characterized by remodeling
goals with design tools (duplication of work), which not only causes risks of information
loss and inconsistencies, but also consumes much development effort and time. One reason
is that requirements, goal models, and SysML design artifacts have different and specific
environments and tools that deal with their creation, management, and analysis needs.
Representing a goal model using another tool with a different purpose (such as s SysML
design tool) was a major obstacle faced by most methods. Furthermore, trade-off analysis
as well as runtime adaptation selection are other affected features within all these methods
because the goal model is not mapped completely and used effectively in the MAPE
activities.
Goal Models and MAPE Activities. The MAPE activities (monitor, analyze, plan,
and execute, see Figure 1) are not all supported at the same level by the collected methods.
Managing and changing system goals at runtime is one suggested solution for conducting
trade-off analysis and selecting the best adaptation strategy using real-time variables.
However, in these studies, the scalability of the proposed methods is rarely formally
assessed.
Goal-based Reasoning at Runtime. The use of goal-based reasoning at runtime differed
from one study to another, and it was affected negatively by several factors: 1) transferring only
part of a goal model to the design and/or runtime phases (e.g., not transferring contribution
linksweights) and 2) handling the reasoning process in several ways (i.e., considering softgoals
and tasks only, or violated softgoals only). As a result, the methods’ ability to use goal
reasoning at runtime for selecting the best (or even just one) suitable solution during the
analysis and strategy selection processes was limited, and unsuitable solutions could be
generated along the way. Furthermore, goal analysis and trade-off analysis cannot be done at
runtime accurately using those methods, which consequently limits the ability to self-adapt
in the developed systems by using conditions and implementing inflexible methods that
cannot deal with unpredictable contexts.
Unmanageable Traceability. High-level goals are usually more stable than low-level
ones, and they help guide the evolution of requirements from elicitation to runtime
adaptation [9, 61]. However, to truly unlock the benefits of goal-orientation (including
consistency/completeness, conflict, trade-off, and impact analyses), SysML system design
components should be linked to goals at all levels [9, 54, 55]. Yet, it is difficult to manage

220101-27

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

traceability and consistency between goal and SysML models. Embedding goal models
in SysML tools can help, but amount to redeveloping goal-based analysis in such tools,
and none of the existing methods really does this. Overall, although establishing links
between goals/requirements, system design, and the implementation was an objective of
most selected methods, most fail from providing sufficient and practical traceability support
except one [31], which uses an external RMS to do so but with low usability due the high
number of tools involved (goal modeling environment, SysML tool, and RMS). SysML tool
vendors should consider better integrating goal modeling and analysis capabilities in their
solutions.

4. Related work

Although a literature review is already about collecting and assessing related work, it is
also important to situate it among other literature reviews on related topics.

Zahid et al. [39] have recently published a systematic mapping of semi-formal and formal
methods in requirements engineering of (industrial) Cyber-Physical Systems. Although
SysML is mentioned on a few occasions, adaptive CPSs are not covered. Surprisingly, goal
modeling is not discussed in their review.

There are also generic language-oriented systematic mappings on goal-oriented modeling
(e.g., from Horkoff et al. [40]) and SysML (e.g., from Wolny [41, 42]) but they are superficial
in their treatment of (self-)adaptive systems.

In contrast, there are several literature surveys and mappings on adaptive systems,
whether they are cyber-physical or not. In particular:
– de Lemos et al. [109] provided an important roadmap for software engineering research

on self-adaptive systems, which emphasized the identification and representation of
goals, the management of the design space, and the validation of models (without
mentioning SysML or goal-oriented modeling however) as important challenges. Many
of the methods addressed in our review provide contributions in those areas.

– Macías-Escrivá et al. [36] also provided a survey with research challenges, but without
details on modeling aspects.

– Krupitzer et al. [37] reviewed software engineering approaches for self-adaptive systems
and discuss some goal-oriented methods, but no SysML-based ones, and not to the
depth of our own review.

– Yang et al.[110] provided a review of requirements modeling and analysis for self-adaptive
systems, where they identified 16 methods, some of which involving goal modeling.
No SysML-based method was identified at the time this review was published (2014).
Their main assessment was related to the coverage of important modeling and analysis
concepts by the methods and the languages they used. CPSs are not mentioned.

– More recently, Porter et al. [38] explored the types of questions that are researched in
the literature in relation to self-adaptive systems, instead of methods.
Our literature review is unique in that it is fairly exhaustive in its coverage of goal/SysML

integrations and of SysML methods targeting adaptation, with partial coverage of some of
the main goal-oriented methods for adaptive systems. It also provides a deeper analysis
of multiple research questions and facets of these methods. It finally positions these
methods in the CPS domain, with a specific emphasis on emerging types of adaptive
socio-cyber-physical systems.

220101-28

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

5. Limitations and threats to validity

As highlighted by Feldt and Magazinius [111], the validity of any study depends on the degree
of correctness of its conclusions, including threats related to bias and over-generalization.
We applied some strategies to mitigate common threats to validity, but several remain,
as discussed below.

5.1. Internal validity

The first author selected and reviewed the papers, and extracted the raw data, with
supervision and informal consultations and checks from the second author. In addition, one
of the methods studied here (M17) also comes from the authors of this literature review.
There is hence a risk of bias here. To mitigate this threat, we consulted several experts,
including the authors of some of the selected papers, to increase the level of confidence
in our assessment of their contributions. We have also used existing assessment criteria
from the literature whenever they were available (e.g., from [37, 80, 81, 104]). However,
the authors of the many papers reviewed here have not been rigorously surveyed, and
hence there is a remaining risk that some of their contributions were classified or assessed
incorrectly.

There is also a risk that important and relevant papers have been missed or incorrectly
excluded in this literature review. To mitigate this risk, we used different and recognized
scientific databases in the areas of systems modeling, with fairly permissive queries (refined
over many iterations based on previous results). We also used Google Scholar with different
queries and choices to increase our confidence that relevant studies from different sources
were included. Precise inclusion and exclusion criteria were defined and used, and both
authors were involved in the selection in cases where we were unsure about relevance. Yet,
one remaining threat here is that the selected literature was limited to the English language.

We tried to be exhaustive for papers combining goal and SysML modeling, as well
as for papers about SysML for self-adaptation. However, we manually selected primary
articles (proposed by experts based on citations and reputation, as there were too many
such papers) that support adaptation using goal models (Figure 5). One threat here is
that many papers related to goals and self-adaptation have not been considered. Yet, the
sample we have selected was useful to understand what is being done outside the SysML
world, as a comparison point and as an indication of future opportunities.

5.2. External validity

This type of validity is related to the generalization of the results outside of the study’s
scope [111, 112]. The number of studies that focus on the integration of goal models with
SysML models is rather small. If we consider the method granularity, only 17 methods
were presented and four of them were specifically targeting adaptation. This is also why
we focused on a descriptive presentation of our results, without trying to discuss statistical
significance in the answers to our research questions.

What is published in peer-reviewed venues also may not be representative of what
practitioners actually use in industry. Generalizing the results of these methods is a threat
due to the relative immaturity of the field. We tried to mitigate this threat by systematically
including papers on SysML for self-adaptive systems, and manually including primary
papers on goal models for self-adaptation, again as comparison points. Still, general

220101-29

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

conclusions about the use of goal modeling for adaption (without an integration with
SysML) or about the integration of SysML and goal models outside of a CPS context
should not be inferred from this literature review.

6. Conclusion

The number, complexity, and importance of socio-cyber-physical systems (SCPSs), which
consider the goals of their stakeholders at design time and at runtime, is increasing in
our societies [23]. In some SCPSs, the need for adaptability driven by stakeholder goals
was partially addressed in the peer-reviewed scientific literature. This paper reviewed 52
publications and assessed methods that integrate goal models with SysML models (or use
them separately) to support runtime self-adaption, with a consideration for the SCPS context.
The review answers many questions of broad interest both to researchers and to practitioners
who are considering the use of goal models, SysML models, or both in SCPSs or self-adaptive
systems contexts. The research questions were answered through this review as follows:
RQ1. What are the existing methods that integrate goal-oriented models with SysML models?

This was answered by Table 5, which presents a total of 17 methods, labeled M1 to
M17, extracted from 33 studies. KAOS and GRL are the most frequently mentioned
goal modeling languages in that context.
SQ1.1. Why have these integrations been proposed? The objective of each study was

presented in Table 6, where the common objectives are system architecture
selection and modeling, uncertainty and adaptation, as well as traceability
and formal validation and verification, in that order.

SQ1.2. How do the methods integrate the two types of models? The answer was
provided in Table 7 and its explanation in Section 3.1.3, which concluded
that mapping parts of goal models to SysML requirements diagrams via
profiles (formal or not) is by far the most often used approach through all
17 methods.

RQ2. What are the collected methods that support self-adaptation? By classifying the
collected methods using NFRs, self-* properties (Table 8), and adaptation phases
(Table 9), methods that support self-adaptation are listed and described in Table 10
(for the four approaches that integrate goals and SysML models) and Table 11 (for
a sample of 15 approaches that use either SysML or goal models).
SQ2.1. How do the methods support self-adaptive systems? This question was

answered by Tables 12 and 13, which respectively identify terms inspired
from the adaptation taxonomies and modeling dimensions of self-adaptation.
The discussion around these tables (Section 3.3) provides insight into how
the assessed methods support the activities of self-adaptive systems.

SQ2.2. What are the roles that each model plays in this adaptation support? This was
answered by exploring the reasons for using each model in each integration
in Section 3.2.3, and by discussing the adaptation assessment criteria in
Section 3.3.

Although there was much improvement in the last decade, the main results show that map-
ping goals at design time is common among the collected methods to support traceability,
architecture selection, system validation and verification, as well as self-adaptation. However,
existing mappings usually suffer from a loss of important information (e.g., contribution
links and weights) or an absence of information (e.g., indicators sensing external contexts)

220101-30

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

that play key roles in runtime goal analysis and flexible self-adaptation. Goal modeling
is actually used sparsely and differently in MAPE activities of adaptive systems. Thus,
in addition to consuming time and effort, most of the proposed methods were unable to
implement goal-based reasoning in all activities. This consequently leads to situations where
incorrect adaptation solutions are produced and used, and in time constraints that cannot
be guaranteed. In fact, although modeling goal and SysML models in a single tool could
help solve traceability problems and support adaptation, achieving this integration with
existing design and analysis tools remains a challenge, as highlighted in Section 3.4.

To address many of the challenges and limitations observed throughout this review, we
identify the following research directions.
– Developing and evolving adaption methods for SCPS where the goal models exploit

important quantitative information such as contribution weights, importance levels to
stakeholders, and indicators that measure different facets of the context. Such information
is often necessary in models for data-centric systems and is very important for non-trivial
adaptive SCPSs [113]. Such methods exist, but they are seldom integrated with SysML
design activities.

– Ensuring that methods exploit the goal models through the MAPE cycle to their fullest
extent, especially during runtime adaptation for unforeseen contexts (open approaches).
Again, several opportunities have been explored in the goal modeling community but
they are yet to be exploited in a SysML modeling and analysis context.

– As most integrated methods only support weak adaptation, there are opportunities to
investigate goal-oriented, strong adaptations of component structures and architectures
at runtime in an SysML context.

– Improving the usability and scalability of goal/SysML integrations for adaptive systems,
with proper tool support, especially as the models grow in size and are frequently modified.

– Enabling (machine) learning during adaptation in integrated goal/SysML methods. None
of the current work currently exploits this opportunity.
Despite many observed gaps and challenges, we believe the benefits of goal modeling

(potential or actual) combined with SysML for adaptive SCPSs outweigh the identified
drawbacks, and that further research will bring innovative and practical solutions in the
near future.

Acknowledgment

Amal Ahmed Anda is supported by a scholarship from the Libyan Ministry of Education. We
are thankful to the Natural Science and Engineering Research Council of Canada (Discovery
program) for their support.

References

[1] B. Tekinerdogan, D. Blouin, H. Vangheluwe, M. Goulão, P. Carreira et al., Multi-Paradigm
Modelling Approaches for Cyber-Physical Systems. Elsevier Science, 2020.

[2] I. Horváth, “What the Design Theory of Social-Cyber-Physical Systems Must Describe, Explain
and Predict?” in An Anthology of Theories and Models of Design. Springer, 2014, pp. 99–120.

[3] I.J. Jureta, A. Borgida, N.A. Ernst, and J. Mylopoulos, “The requirements problem for
adaptive systems,” ACM Transactions on Management Information Systems (TMIS), Vol. 5,
No. 3, 2015, p. 17.

220101-31

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

[4] A. Smirnov, A. Kashevnik, and A. Ponomarev, “Multi-level self-organization in cyber-physical-
-social systems: Smart home cleaning scenario,” Procedia CIRP, Vol. 30, 2015, pp. 329–334, 7th
Industrial Product-Service SystemsConference – PSS, industry transformation for sustainability
and business.

[5] F. Zambonelli, “Towards a general software engineering methodology for the internet of things,”
CoRR, Vol. abs/1601.05569, 2016. [Online]. http://arxiv.org/abs/1601.05569

[6] E. Cavalcante, T. Batista, N. Bencomo, and P. Sawyer, “Revisiting goal-oriented models
for self-aware systems-of-systems,” in 2015 IEEE International Conference on Autonomic
Computing (ICAC), July 2015, pp. 231–234.

[7] M. Sanchez, E. Exposito, and J. Aguilar, “Autonomic computing in manufacturing process co-
ordination in industry 4.0 context,” Journal of Industrial Information Integration, Vol. 19, 2020,
p. 100159. [Online]. https://www.sciencedirect.com/science/article/pii/S2452414X20300340

[8] J.O. Kephart and D.M. Chess, “The vision of autonomic computing,” Computer, Vol. 36,
No. 1, 2003, pp. 41–50.

[9] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-Ramos, “On the role of model-driven
engineering in adaptive systems,” in Computing Conference (CCC), 2016 IEEE 11th Colombian.
IEEE, 2016, pp. 1–8.

[10] J.C. Muńoz-Fernández, R. Mazo, C. Salinesi, and G. Tamura, “10 challenges for the specifica-
tion of self-adaptive software,” in 12th International Conference on Research Challenges in
Information Science (RCIS), May 2018, pp. 1–12.

[11] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and M. Wimmer, “Tool-support
of socio-technical coordination in the context of heterogeneous modeling,” in 6th Int. Workshop
on the Globalization of Modeling Languages (GEMOC), MODELS 2018 Workshops, 2018,
pp. 1–3.

[12] BKCASE Governing Board, “Guide to the Systems Engineering Body of Knowledge (SEBoK)
v. 1.9.1,” 2014, p. 945. [Online]. https://bit.ly/2PWwxFJ

[13] T. Huldt and I. Stenius, “State-of-practice survey of model-based systems engineering,” Systems
Engineering, 2018, pp. 1–12 (online first).

[14] OMG, “OMG Systems Modeling Language (SysML), Version 1.6,” Object Management Group,
2019. [Online]. https://www.omg.org/spec/SysML/

[15] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems modeling
language. Morgan Kaufmann, 2014.

[16] ISO, “ISO/IEC 19514:2017 – Information technology – Object management group systems
modeling language (OMG SysML),” International Organization for Standardization, 2017.
[Online]. https://www.omg.org/spec/SysML/

[17] A. Soyler and S. Sala-Diakanda, “A model-based systems engineering approach to capturing
disaster management systems,” in 2010 IEEE International Systems Conference, apr 2010,
pp. 283–287.

[18] A.S. Akbas and W. Karwowski, “A systems engineering approach to modeling and simulating
software training management efforts,” in 25th European Modeling and Simulation Symposium,
EMSS 2013, 2013, pp. 264–269.

[19] A.S. Akbas, K. Mykoniatis, A. Angelopoulou, and W. Karwowski, “A model-based approach
to modeling a hybrid simulation platform (work in progress),” in Proceedings of the Symposium
on Theory of Modeling & Simulation – DEVS Integrative, DEVS ’14. San Diego, CA, USA:
Society for Computer Simulation International, 2014, pp. 31:1–31:6. [Online]. http://dl.acm.
org/citation.cfm?id=2665008.2665039

[20] D. Amyot, A.A. Anda, M. Baslyman, L. Lessard, and J.M. Bruel, “Towards Improved
Requirements Engineering with SysML and the User Requirements Notation,” in 2016 IEEE
24th International Requirements Engineering Conference (RE), sep 2016, pp. 329–334.

[21] G. Mussbacher, D. Amyot, R. Breu, J.M. Bruel, B.H.C. Cheng et al., “The relevance of
model-driven engineering thirty years from now,” in Model-Driven Engineering Languages and
Systems, J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds. Cham: Springer
International Publishing, 2014, pp. 183–200.

220101-32

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

[22] J.A. Lane and T. Bohn, “Using SysML modeling to understand and evolve systems of systems,”
Systems Engineering, Vol. 16, No. 1, 2013, pp. 87–98.

[23] C. Ncube and S.L. Lim, “On systems of systems engineering: A requirements engineering
perspective and research agenda,” in 26th International Requirements Engineering Conference
(RE). IEEE CS, Aug 2018, pp. 112–123.

[24] A. Van Lamsweerde, Requirements engineering: From system goals to UML models to software.
Chichester, UK: John Wiley & Sons, 2009, Vol. 10.

[25] S. Woldeamlak, A. Diabat, and D. Svetinovic, “Goal-oriented requirements engineering for
research-intensive complex systems: A case study,” Systems Engineering, Vol. 19, No. 4, 2016,
pp. 322–333.

[26] E.S.K. Yu, “Towardsmodelling and reasoning support for early-phase requirements engineering,”
in Requirements Engineering, 1997, Proceedings of the Third IEEE International Symposium
on, 1997, pp. 226–235.

[27] D. Amyot and G. Mussbacher, “User Requirements Notation: the first ten years, the next ten
years,” JSW, Vol. 6, No. 5, 2011, pp. 747–768.

[28] ITU-T, “Recommendation Z.151 (10/18): User Requirements Notation (URN) – Language
Definition,” 2018. [Online]. http://www.itu.int/rec/T-REC-Z.151/en

[29] M. Daun, J. Brings, L. Krajinski, V. Stenkova, and T. Bandyszak, “A GRL-compliant iStar
extension for collaborative cyber-physical systems,” Requirements Engineering, Vol. 26, No. 4,
2021, pp. 325–370.

[30] K. Neace, R. Roncace, and P. Fomin, “Goal model analysis of autonomy requirements for
unmanned aircraft systems,” Requirements Engineering, Vol. 23, No. 4, 2018, pp. 509–555.

[31] A.A. Anda and D. Amyot, “Traceability management of GRL and SysML models,” in SAM’20:
12th System Analysis and Modelling Conference. ACM, 2020, pp. 117–126.

[32] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton et al., “Evaluating goal models
within the Goal-oriented Requirement Language,” International Journal of Intelligent Systems,
Vol. 25, No. 8, 2010, pp. 841–877.

[33] D. Amyot, H. Becha, R. Bræk, and J.E. Rossebø, “Next generation service engineering,” in
First ITU-T Kaleidoscope Academic Conference – Innovations in NGN: Future Network and
Services, 2008, pp. 195–202.

[34] M. Alenazi, N. Niu, W. Wang, and J. Savolainen, “Using obstacle analysis to support
SysML-based model testing for cyber physical systems,” in 8th Int. Model-Driven Requirements
Engineering Workshop (MODRE). IEEE CS, 2018, pp. 46–55.

[35] G. Blair, N. Bencomo, and R.B. France, “Models@ run time,” Computer, Vol. 42, No. 10,
2009.

[36] F.D. Macías-Escrivá, R. Haber, R. del Toro, and V. Hernandez, “Self-adaptive systems: A
survey of current approaches, research challenges and applications,” Expert Systems with
Applications, Vol. 40, No. 18, 2013, pp. 7267–7279.

[37] C. Krupitzer, F.M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A survey on engineer-
ing approaches for self-adaptive systems,” Pervasive and Mobile Computing, Vol. 17, 2015,
pp. 184–206.

[38] B. Porter, R.R. Filho, and P. Dean, “A survey of methodology in self-adaptive systems
research,” in International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS 2020). IEEE, 2020, pp. 168–177.

[39] F. Zahid, A. Tanveer, M.M. Kuo, and R. Sinha, “A systematic mapping of semi-formal and
formal methods in requirements engineering of industrial cyber-physical systems,” Journal of
Intelligent Manufacturing, 2021, pp. 1–36.

[40] J. Horkoff, F.B. Aydemir, E. Cardoso, T. Li, A. Maté et al., “Goal-oriented requirements
engineering: an extended systematic mapping study,” Requirements Engineering, Vol. 24,
No. 2, 2019, pp. 133–160.

[41] W. Wang, N. Niu, M. Alenazi, and L. Da Xu, “In-place traceability for automated production
systems: A survey of PLC and SysML tools,” IEEE Transactions on Industrial Informatics,
Vol. 15, No. 6, 2018, pp. 3155–3162.

220101-33

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

[42] S. Wolny, A. Mazak, C. Carpella, V. Geist, and M. Wimmer, “Thirteen years of SysML: a
systematic mapping study,” Software & Systems Modeling, Vol. 19, No. 1, 2020, pp. 111–169.

[43] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in
software engineering,” Keele University and Durham University Joint Report, Tech. Rep. EBSE
2007-001, 2007.

[44] S.J. Tueno Fotso, M. Frappier, R. Laleau, A. Mammar, and M. Leuschel, “Formalisation of
SysML/KAOS goal assignments with B system component decompositions,” in Integrated
Formal Methods, C.A. Furia and K. Winter, Eds. Cham: Springer International Publishing,
2018, pp. 377–397.

[45] C. Ingram, Z. Andrews, R. Payne, and N. Plat, “SysML fault modelling in a traffic management
system of systems,” in System of Systems Engineering (SOSE), 2014 9th International
Conference on. IEEE, 2014, pp. 124–129.

[46] Y. Vanderperren and W. Dehaene, “SysML and systems engineering applied to UML-based
SoC design,” in Proc. of the 2nd UML-SoC Workshop at 42nd DAC, USA, 2005.

[47] I. Ozkaya, “Representing requirement relationships,” in First International Workshop on
Visualization in Requirements Engineering, REV 2006, 2007.

[48] A. Matoussi, F. Gervais, and R. Laleau, “A goal-based approach to guide the design of an
abstract Event-B specification,” in 16th International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2011, pp. 139–148.

[49] R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad et al., “A first attempt to combine
SysML requirements diagrams and B,” Innovations in Systems and Software Engineering,
Vol. 6, No. 1, 2010, pp. 47–54.

[50] X. Cui and R. Paige, “An integrated framework for system/software requirements development
aligning with business motivations,” in Proceedings – 2012 IEEE/ACIS 11th International
Conference on Computer and Information Science, ICIS 2012, 2012, pp. 547–552.

[51] C. Gnaho, R. Laleau, F. Semmak, and J.M. Bruel, “bCMS requirements modelling using
SysML/KAOS,” 2013. [Online]. https://goo.gl/QU9Tgn

[52] C. Gnaho, F. Semmak, and R. Laleau, “An overview of a SysML extension for goal-oriented
NFR modelling: Poster paper,” in IEEE 7th International Conference on Research Challenges
in Information Science (RCIS), may 2013, pp. 1–2.

[53] A. Mammar and R. Laleau, “On the use of domain and system knowledge modeling in
goal-based Event-B specifications,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9952 LNCS,
2016, pp. 325–339.

[54] E. Bousse, “Requirements management led by formal verification,” Master’s thesis, Master’s
thesis, Computer Science, University of Rennes, France, 2012.

[55] M. Ahmad, N. Belloir, and J.M. Bruel, “Modeling and verification of functional and
non-functional requirements of ambient self-adaptive systems,” Journal of Systems and
Software, Vol. 107, 2015, pp. 50–70.

[56] M. Ahmad, J.M. Bruel, R. Laleau, and C. Gnaho, “Using RELAX, SysML and KAOS
for ambient systems requirements modeling,” in Procedia Computer Science, Vol. 10, 2012,
pp. 474–481.

[57] M. Ahmad, J. Araújo, N. Belloir, J.M. Bruel, C. Gnaho et al., “Self-adaptive systems
requirements modelling: Four related approaches comparison,” in Comparing Requirements
Modeling Approaches Workshop (CMA@ RE), 2013 International. IEEE, 2013, pp. 37–42.

[58] M. Ahmad, I. Dragomir, J.M. Bruel, I. Ober, and N. Belloir, “Early analysis of ambient
systems SysML properties using Omega2-IFX,” in SIMULTECH 2013, 2013.

[59] M. Ahmad, “First step towards a domain specific language for self-adaptive systems,” in 10th
Annual International Conference on New Technologies of Distributed Systems (NOTERE).
IEEE, 2010, pp. 285–290.

[60] M. Ahmad and J.M. Bruel, “bCMS requirements modelling using RELAX/SysML/ KAOS,”
in 3rd CMA Workshop at RE’2013, 2013.

220101-34

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

[61] M. Ahmad and J.M. Bruel, “A comparative study of RELAX and SysML/KAOS,” Institut
de Recherche en Informatique de Toulouse, University Toulouse II Le Mirail, France, Tech.
Rep., 2014.

[62] N. Belloir, V. Chiprianov, M. Ahmad, M. Munier, L. Gallon et al., “Using relax operators
into an mde security requirement elicitation process for systems of systems,” in Proceedings
of the 2014 European Conference on Software Architecture Workshops. ACM, 2014, p. 32.

[63] L. Apvrille and Y. Roudier, “SysML-Sec: A SysML environment for the design and development
of secure embedded systems,” APCOSEC, Asia-Pacific Council on Systems Engineering, 2013,
pp. 8–11.

[64] L. Apvrille and Y. Roudier, “Designing safe and secure embedded and cyber-physical systems
with SysML-Sec,” in International Conference on Model-Driven Engineering and Software
Development. Springer, 2015, pp. 293–308.

[65] Y. Roudier and L. Apvrille, “SysML-Sec: A model driven approach for designing safe and
secure systems,” in Model-Driven Engineering and Software Development (MODELSWARD),
2015 3rd International Conference on. IEEE, 2015, pp. 655–664.

[66] A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Extending SysML to explore
non-functional requirements: the case of information system design,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing. ACM, 2012, pp. 1057–1062.

[67] D. Spyropoulos and J.S. Baras, “Extending design capabilities of SysML with trade-off analysis:
Electrical microgrid case study,” Procedia Computer Science, Vol. 16, 2013, pp. 108–117.

[68] O. Badreddin, V. Abdelzad, T.C. Lethbridge, and M. Elaasar, “FSysML: Foundational
executable SysML for cyber-physical system modeling,” in CEUR Workshop Proceedings,
Vol. 1731, 2016, pp. 38–51.

[69] Z. Fan, T. Yue, and L. Zhang, “SAMM: an architecture modelingmethodology for ship command
and control systems,” Software and Systems Modeling, Vol. 15, No. 1, 2016, pp. 71–118.

[70] H. Wang, “Multi-Level Requirement Model and Its Implementation For Medical Device,”
Master’s thesis, Master’s thesis, Mechanical and Energy Engineering, Purdue University,
United States, 2018.

[71] S. Lee, S. Park, and Y.B. Park, “Self-adaptive system verification based on SysML,” in 2019
International Conference on Electronics, Information, and Communication (ICEIC). IEEE
CS, 2019, pp. 1–3.

[72] I. Maskani, J. Boutahar, and S. El Ghazi El Houssaïni, “Modeling telemedicine security
requirements using a SysML security extension,” in 2018 6th International Conference on
Multimedia Computing and Systems, 2018, pp. 1–6.

[73] A. Anda and D. Amyot, “An optimization modeling method for adaptive systems based on
goal and feature models,” in Tenth International Model-Driven Requirements Engineering
(MoDRE). IEEE, 2020, pp. 11–20.

[74] A.A. Anda and D. Amyot, “Arithmetic semantics of feature and goal models for adaptive
cyber-physical systems,” in 27th International Requirements Engineering Conference (RE).
IEEE, 2019, pp. 245–256.

[75] A.A. Anda, “Modeling adaptive socio-cyber-physical systems with goals and SysML,” in 26th
International Requirements Engineering Conference (RE). IEEE CS, 2018, pp. 442–447.

[76] OMG, “Business Motivation Model (BMM), Version 1.3,” Object Management Group, 2015.
[Online]. https://www.omg.org/spec/BMM/

[77] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, and J.M. Bruel, “RELAX: A language to
address uncertainty in self-adaptive systems requirement,” Requirements Engineering, Vol. 15,
No. 2, 2010, pp. 177–196.

[78] Y. Fan, A.A. Anda, and D. Amyot, “An arithmetic semantics for GRL goal models with function
generation,” in System Analysis and Modeling. Languages, Methods, and Tools for Systems
Engineering, F. Khendek and R. Gotzhein, Eds. Cham: Springer International Publishing,
2018, pp. 144–162.

[79] I. Mistrik, N. Ali, R. Kazman, J. Grundy, and B. Schmerl, Managing Trade-offs in Adaptable
Software Architectures. Morgan Kaufmann, 2016.

220101-35

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

[80] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research challenges,”
ACM transactions on autonomous and adaptive systems (TAAS), Vol. 4, No. 2, 2009, p. 14.

[81] J. Andersson, R. De Lemos, S. Malek, and D. Weyns, “Modeling dimensions of self-adaptive
software systems,” Software engineering for self-adaptive systems, 2009, pp. 27–47.

[82] M. Morandini, L. Penserini, and A. Perini, “Automated mapping from goal models to
self-adaptive systems,” in Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society, 2008, pp. 485–486.

[83] M. Morandini, L. Penserini, A. Perini, and A. Marchetto, “Engineering requirements for
adaptive systems,” Requirements Engineering, Vol. 22, No. 1, 2017, pp. 77–103.

[84] P. Bareiß, D. Schütz, R. Priego,M.Marcos, andB.Vogel-Heuser, “Amodel-based failure recovery
approach for automated production systems combining SysML and industrial standards,” in
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation
(ETFA), sep 2016, pp. 1–7.

[85] J. Parri, F. Patara, S. Sampietro, and E. Vicario, “A framework for model-driven engineering
of resilient software-controlled systems,” Computing, 2020, pp. 1–24.

[86] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-driven adaptation,”
in Requirements Engineering Conference (RE), 2010 18th IEEE International. IEEE, 2010,
pp. 125–134.

[87] L. Baresi and L. Pasquale, “Adaptive goals for self-adaptive service compositions,” in Web
Services (ICWS), 2010 IEEE international conference on. IEEE, 2010, pp. 353–360.

[88] L. Baresi and L. Pasquale, “Live goals for adaptive service compositions,” Proceedings of the
2010 ICSE Workshop on Software, 2010.

[89] M. Hussein, S. Li, and A. Radermacher, “Model-driven development of adaptive iot systems.”
in MODELS (Satellite Events), 2017, pp. 17–23.

[90] S. Meacham, “Towards self-adaptive IoT applications: Requirements and adaptivity patterns
for a fall-detection ambient assisting living application,” in Components and Services for IoT
Platforms. Springer, 2017, pp. 89–102.

[91] F.G.C. Ribeiro, S. Misra, and M.S. Soares, “Application of an extended SysML requirements
diagram to model real-time control systems,” in International Conference on Computational
Science and Its Applications. Springer, 2013, pp. 70–81.

[92] A.J. Lopes, R. Lezama, and R. Pineda, “Model Based Systems Engineering for Smart Grids
as systems of systems,” in Procedia Computer Science, Vol. 6, 2011, pp. 441–450.

[93] L.S. Souza, S. Misra, and M.S. Soares, “SmartCitySysML: A SysML Profile for Smart Cities
Applications,” in Computational Science and Its Applications – ICCSA 2020. LNCS 12254,
Springer, 2020, pp. 383–397.

[94] W. Qian, X. Peng, B. Chen, J. Mylopoulos, H. Wang et al., “Rationalism with a dose of
empiricism: combining goal reasoning and case-based reasoning for self-adaptive software
systems,” Requirements Engineering, Vol. 20, No. 3, 2015, pp. 233–252.

[95] R. Ramnath, V. Gupta, and J. Ramanathan, “RED-Transaction and Goal-Model Based
Analysis of Layered Security of Physical Spaces,” in Computer Software and Applications,
2008. COMPSAC’08. 32nd Annual IEEE International. IEEE, 2008, pp. 679–685.

[96] O. Ginigeme and A. Fabregas, “Model based systems engineering high level design of a sus-
tainable electric vehicle charging and swapping station using discrete event simulation,” in
2018 Annual IEEE International Systems Conference (SysCon). IEEE, 2018, pp. 1–6.

[97] J. Horkoff, R. Salay, M. Chechik, and A. Di Sandro, “Supporting early decision-making in the
presence of uncertainty,” in Requirements Engineering Conference (RE), 2014 IEEE 22nd
International. IEEE, 2014, pp. 33–42.

[98] J.B. Warmer and A.G. Kleppe, The object constraint language: Precise modeling with UML
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 1998.

[99] R. Salay, M. Famelis, and M. Chechik, “Language independent refinement using partial
modeling,” in Fundamental Approaches to Software Engineering, J. de Lara and A. Zisman,
Eds. Springer Berlin Heidelberg, 2012, pp. 224–239.

[100] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science, 1977.,
18th Annual Symposium on. IEEE, 1977, pp. 46–57.

220101-36

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

[101] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. Price, “Grid service orchestration
using the business process execution language (BPEL),” Journal of Grid Computing, Vol. 3,
No. 3-4, 2005, pp. 283–304, cited By 104.

[102] A. Rahman and D. Amyot, “A DSL for importing models in a requirements management
system,” in 4th International Model-Driven Requirements Engineering Workshop (MoDRE).
IEEE CS, 2014, pp. 37–46.

[103] IBM, “Rational DOORS v9.6.1,” 2018. [Online]. http://goo.gl/yGWpze
[104] B.H.C. Cheng, R. De Lemos, H. Giese, P. Inverardi, and J. Magee et al., “Software Engineering

for Self-Adaptive Systems: A Research Roadmap,” in Software engineering for self-adaptive
systems, Vol. LNCS 5525. Springer, 2009, pp. 1–26.

[105] S.A. Alwidian, M. Dhaouadi, and M. Famelis, “A vision towards a conceptual basis for the
systematic treatment of uncertainty in goal modelling,” in SAM’20: 12th System Analysis and
Modelling Conference, A. Gherbi, W. Hamou-Lhadj, and A. Bali, Eds. ACM, 2020, pp. 139–142.

[106] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos: An agent-
oriented software development methodology,” Autonomous Agents and Multi-Agent Systems,
Vol. 8, No. 3, 2004, pp. 203–236.

[107] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reasoning with goal models,”
in International Conference on Conceptual Modeling. Springer, 2002, pp. 167–181.

[108] J.O. Kephart and W.E. Walsh, “An artificial intelligence perspective on autonomic computing
policies,” in Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks. IEEE, 2004, pp. 3–12.

[109] R. de Lemos, H. Giese, H.A. Müller, M. Shaw, J. Andersson et al., “Software engineering for
self-adaptive systems: A second research roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1–32.

[110] Z. Yang, Z. Li, Z. Jin, and Y. Chen, “A systematic literature review of requirements modeling
and analysis for self-adaptive systems,” in Requirements Engineering: Foundation for Software
Quality, C. Salinesi and I. van de Weerd, Eds. Springer, 2014, pp. 55–71.

[111] R. Feldt and A. Magazinius, “Validity threats in empirical software engineering research – An
initial survey,” in SEKE, 2010, pp. 374–379.

[112] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou, “Identifying,
categorizing and mitigating threats to validity in software engineering secondary studies,”
Information and Software Technology, Vol. 106, 2019, pp. 201–230.

[113] B. Combemale, J.A. Kienzle, and G. Mussbacher et al., “A hitchhiker’s guide to model-driven
engineering for data-centric systems,” IEEE Software, Vol. 38, No. 4, 2021, pp. 71–84.

220101-37

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

A. Quality assessment

This appendix complements Section 2.2.4 by presenting, in Tables A1 and A2, the result of
the quality assessment against the criteria explained in Table 2. The color coding reflects
how positive a result is (green is positive, yellow is neutral, and red is negative).

Table A1. Assessment of the studies on Goal/SysML against the identified quality criteria
(Y = Yes, N = No, P = Partially, ? = Not provided)

Research study C1 C2 C3 C4 C5 C6 C7 C8 C9

Amyot et al. 2016 [20] Y Y Y N N Y Y Y N
Ahmad 2010 [59] Y Y Y Y N N ? Y P
Ahmad et al. 2012 [56] Y Y N Y Y Y Y Y Y
Ahmad et al. 2013 [57] Y ? ? ? ? Y ? P N
Ahmad et al. 2013 [58] Y Y N Y Y Y Y P P
Ahmad et al. 2015 [55] Y Y Y Y Y Y Y Y Y
Ahmad and Bruel 2013 [60] Y Y N Y Y Y Y P P
Ahmad and Bruel 2014 [61] Y ? ? ? ? N ? Y Y
Anda and Amyot 2020 [31] Y Y Y Y Y Y Y N N
Anda and Amyot 2020 [73] Y Y Y Y Y N ? Y Y
Anda 2018 [75] Y Y Y Y Y N ? Y Y
Anda and Amyot 2019 [74] Y Y Y Y Y N ? Y Y
Apvrille and Roudier 2013 [63] Y Y Y Y Y N ? N N
Apvrille and Roudier 2015 [64] Y Y N Y Y Y Y N N
Badreddin et al. 2016 [68] Y Y Y P P Y Y Y N
Belloir et al. 2014 [62] Y Y N Y Y Y Y Y P
Bousse 2012 [54] Y P P N N N ? N N
Cui and Paige 2012 [50] Y Y Y Y Y Y P N N
Fan et al. 2016 [69] Y Y Y Y Y Y Y N N
Gnaho et al. 2013 [51] Y Y N Y Y Y Y N N
Gnaho et al. 2013 [52] Y Y P Y Y N ? N N
Ingram et al. 2014 [45] Y Y Y Y Y Y Y Y Y
Laleau et al. 2014 [49] Y Y Y Y Y Y Y N N
Lee et al. 2019 [71] Y Y Y Y Y N ? N N
Mammar and Laleau 2016 [53] Y Y N Y Y Y P N N
Maskani el al. 2018 [72] Y Y Y Y Y Y Y N N
Matoussi et al. 2011 [48] Y Y N Y Y N ? N N
Ozkaya 2007 [47] Y P Y N N N ? N N
Roudier and Apvrille 2015 [65] Y Y N Y Y Y Y N N
Spyropoulos and Baras [67] Y Y Y Y Y Y Y P N
Tsadimas et al. 2012 [66] Y Y Y Y Y Y Y N N
Vanderperren and Dehaene 2005 [46] Y P Y P N N ? P N
Wang 2018 [70] Y Y Y Y Y Y Y N N

220101-38

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal, 16 (2022), 220101

Table A2. Assessment of the adaptation studies on Goal or SysML searches
against the identified quality criteria (Y = Yes, N = No, P = Partially, ? = Not provided)

Research study C1 C2 C3 C4 C5 C6 C7 C8 C9

Goals and Adaptation

Baresi et al. 2010 [86] Y Y Y P Y Y Y Y P
Baresi and Pasquale 2010 [87] Y Y P Y Y Y P Y Y
Baresi and Pasquale 2010 [88] Y Y P P Y Y Y Y P
Horkoff et al. 2014 [97] Y Y Y Y Y N ? N N
Morandini et al. 2008 [82] Y Y N N Y Y Y P N
Morandini et al. 2017 [83] Y Y Y Y Y Y Y Y Y
Qian et al. 2015 [94] Y Y Y Y Y N ? Y Y
Ramnath et al. 2008 [95] Y Y Y Y Y Y Y Y Y

SysML and Adaptation

Akbas and Karwowski 2013 [18] Y Y N Y Y Y Y N N
Akbas et al. 2014 [19] Y Y Y Y Y Y Y N N
Bareiß et al. 2016 [84] Y Y Y Y Y Y Y Y Y
Ginigeme and Fabregas 2018 [96] Y Y Y Y Y N ? N N
Hussein et al. 2017 [89] Y Y Y Y Y Y Y N N
Lopes et al. 2011 [92] Y Y Y Y Y Y P P P
Meacham 2017 [90] Y Y Y Y Y Y Y Y N
Parri et al. 2020 [85] Y Y Y Y Y Y Y Y P
Ribeiro et al. 2013 [91] Y Y Y Y Y Y Y P N
Soyler and Sala-Diakanda 2010 [17] Y Y Y P P Y Y P P
Souza et al. 2020 [93] Y Y Y P P Y P P N

220101-39

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220102, DOI: 10.37190/e-Inf220102

Analysis of Factors Influencing Developers’
Sentiments in Commit Logs:

Insights from Applying Sentiment Analysis

Rajdeep Kaur∗, Kuljit Kaur Chahal∗, Munish Saini∗∗
∗Department of Computer Science, Guru Nanak Dev University, Amritsar, India

∗∗Department of Computer Engineering and Technology, Guru Nanak Dev University,
Amritsar, India

rajdeep.rsh@gndu.ac.in, kuljitchahal.cse@gndu.ac.in, munish.cet@gndu.ac.in

Abstract
Background: In the open source software paradigm, software development depends
upon efforts of volunteer members that are geographically dispersed and collaborate with
each other over the Internet. Communication artifacts like mailing lists, forums, and
issue tracking systems are used by developers for communication. The way they express
themselves through these communication channels greatly influences their productivity,
efficiency of development activities, and survival of the project as well. Therefore, it
is essential to understand affective state of developers’ contributions to make software
engineering more effective.
Aim: This study examined commit logs of seven GitHub projects to analyze developers’
sentiments. This study also investigated the relationship of developers’ sentiments in
commit logs with team size of project, type of change activity, and contribution volume.
Method: Sentiments of developers are calculated using SentiStrength-SE tool that is
specialized in software engineering domain.
Results: Our findings revealed that the majority of sentiments conveyed by developers
in commit logs were neutral. Furthermore, we found that team size, change activity, and
commit contribution volume influenced sentiments conveyed in commit logs.
Conclusion: Our findings will help project managers to better understand developer
sentiments while performing different software development tasks/activities. It will be
beneficial in improving developer productivity and retention.

Keywords: human factors in software development teams, software developer,
developers’ sentiment, sentiment analysis, commit logs, developer activity type,
and team size

1. Introduction

Sentiments of software developers greatly influence the quality and productivity of developed
software [1]. Prior studies confirm that emotions impact task quality, productivity, creativity,
group rapport, and job satisfaction [2]. Due to advancements in Natural Language Processing
(NLP) and significance of human computer interaction, research associated with sentiments
and emotional aspects of software developers’ communication is gaining more traction in
the software engineering domain.

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 16 Jun. 2021; Revised: 10 Sep. 2021; Accepted: 23 Sep. 2021; Available online: 15 Dec. 2021

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Sentiment analysis is an opinion mining method used to identify people’s sentiments,
views, evaluations, feelings, attitudes, and appraisals about products, organizations, services,
topics, events, issues, individuals, and their attributes [3]. It is basically used to classify
opinion in written text into positive, negative, and neutral. Sentiment analysis was first
introduced by Liu et al. [3]. Originally, sentiment analysis was used to detect the polarity
of small text posted in product reviews, movie reviews, tweets, and microblogs [4]. In
recent times, this technique is widely adopted by software engineering community and
applied to various software artifacts like commit logs [4–7], mailing lists messages [8], issue
comments [9, 10], code reviews [11], bug reports [12]. In order to better support developers
during software development activities and understanding the social factors that affect
productivity and retention, it is necessary to understand their sentiment in various software
development tasks. This information may help managers of OSS software projects to better
support developers with tools during software development and resolve the issues related to
various tasks. Thus, it will help in improving developers’ productivity as well as retention.

In the present field of study, we observed significant work done by different researchers
to examine developers’ sentiments in commit messages of OSS (Open Source Software)
[4–7], etc. However to the best of our knowledge, none of them analyzed the relationship
of type of change activity performed by developers, their commit contribution, and team
size of a project (Large, Medium, and Small) with sentiments expressed by developers in
commit logs. Our work also looks into the evolution of sentiments with respect to time.
Thus lack of research in the domain motivated us to conduct this research work.

In this work, we investigated the sentiments of developers conveyed in commit logs.
Sinha et al. [5] also examined the developers’ sentiments in commit logs and relate the
sentiments in commit messages with the day of week and number of changed files but
our study has a different objective. We studied the developers’ sentiments across seven
well-known GitHub projects to examine the impact of project team size on developers’
sentiments. Furthermore, type of change activity executed by developers was considered and
then analyzed the impact of Type-1 (add + modify), Type-2 (delete + modify), and Type-3
(add+delete+modify) activity on the sentiment of developers projected in the commit logs.
The existing literature reported three types of change activity viz. addition, deletion, and
modification [4]. We grouped the individual change activity into combinations of two or three
file change activities to create our own classification scheme. Apart from this, the authors
also investigated the association between commit contribution and volume of sentiment.
Sentiment volume is percentage of sentiments (positive, negative, and neutral) conveyed
by individual developer in the commit log and commit contribution size is percentage of
commits made by individual developer. Besides, our work also examined the evolution of
sentiment in the project with respect to commits that is not taken into account by Sinha et al.
[5]. To achieve the aforementioned objective, we formulated the following research questions:
RQ1: What are the overall developers’ sentiments in the commit logs?
– Developers’ inactivity in the project is associated with their negative and positive mood

value [12]. Thus an understanding of developers sentiment attached to commit activity
might be helpful for project managers in introducing measures to manage developers’
sentiments that may ensure the stability of developers.

RQ2: Is there any relation between sentiments and team size of a project?
– The accomplishment of the large project relies on a large number of developers and

a long development period. Developers working with a large code base may lead to
negative emotions in the project due to workload and stress in managing a large code
base. Moreover, staffing and task allocation is a complex task in large projects. Thus,

220102-2

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

this makes it difficult to manage projects, and the decision of managers largely influences
the mood of developers. Thus an understanding of impact of project team size can be
used to effectively manage developers’ emotions in the project that may lead to high
productivity and improved job satisfaction [13].

RQ3: Does the type of change activity performed by a developer impact their
sentiments in commit messages?
– Developers who convey positive emotions while executing a particular development

task might be more efficient and fast in accomplishing a task [14] that will reduce cost
of software. Thus understanding developers’ sentiments attached to a particular task
can be helpful in effective task allocation. For example, making tasks (read issues in an
issue tracking system) simple to understand, and easy to solve by decomposing complex
issues into smaller ones can improve developer productivity, and sentiment in commit
logs.

RQ4: Is there any relation between developer sentiment volumes and commit
contribution size?
– Understanding emotional state of developers involved in high or low commit activity

may help project managers to effectively distribute workload among developers and
increasing development activity as well as boosting neutral or positive sentiments.

RQ5: How has sentiment in the commit logs evolved over the period of time?
– Analyzing the evolution of sentiments, we can identify trends in sentiment expression in

commit logs. Is it getting negative or positive? A particular time slot when sentiments
in commit logs are shifting direction e.g. becoming more positive, we can identify the
reasons and try to maintain that state. For example, it has been observed in this study
that reduced negativity in commit logs coincides with launch of the Github platform
in 2008. Managers can take motivational steps to boost developers that may increase
their retention in the project.
RQ1 aims to identify general developers’ sentiments conveyed in commit messages. RQ2

aims to discover the impact of team size on the sentiments expressed by developers in
commit messages. RQ3 identifies the association between three types of changes activities
(Type-1, Type-2, Type-3) performed by developers and their expressed sentiments. Type-1,
Type-2, and Type-3 are combinations of two or more individual file change types (addition,
deletion, and modification). RQ4 intends to ascertain the impact of developers commit
contribution on sentiment volume. Sentiment volume is defined as a percentage of Positive,
Negative, and Neutral sentiments conveyed by each developer in the commit log, and
commit contribution is a percentage of commits made by each contributor in the project.
RQ5 examined the evolution of sentiments with respect to the number of commits made
by developers over the period of time.

Our study uses the Sentistrength-SE [15] tool to detect polarity of sentiments conveyed
in commit logs messages. This tool used lexical approach and domain dictionary and
specially designed for software engineering text.

The remainder of the paper is organized as following: Existing work related to current
study is discussed in Section 2. Description of data collection methodology along with
detail of sentiment analysis approach used to detect sentiments of developers in commit
logs is presented in Section 3. The results of study are discussed in Section 4. Discussion is
presented in Section 5. Some Threats to Validity are described in Section 6. Conclusions
along with some future directions are presented in Section 7.

220102-3

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

2. Related literature

Many studies have been conducted by researchers and practitioners in the past to analyze
the developers’ sentiments in OSS code repositories and related artifacts. They examined
developers’ sentiments in different software artifacts such as commit logs, commit comments,
mailing list messages, and GitHub security debates. A summary of the related literature is
presented in Table 1.

Some researchers evaluated the performance of SE-specific sentiment analysis tools,
compared them in terms of accuracy, and proposed techniques to improve existing sentiment
analysis tools. Novielli et al. [16] in 2021 presented a replication study to evaluate the
performance of SE-specific tools. Sun et al. [17] proposed sentence structure to improve
sentiment analysis in software engineering text. Biswas et al. [18] in 2020, investigated
the effectiveness of a customized language representation model known as BERT and
Novielli et al. [19] assessed the performance of four SE domain specific tools viz. Senti4SD,
SentiCR, SentiStrength-SE, and DEVA in cross-platform. M. R. Wrobel [20] investigated
the influence of adoption of lexicons on emotion mining in SE artifacts.

In the year 2021, Martin Obaidi and Jil Klünder [21] presented a systematic literature
review of sentiment analysis tools designed for and applied in a software engineering context.
This study explored sentiments analysis tools used in the software engineering field, utilized
data sets, application areas of sentiment analysis tools, and problems faced at the time of
developing such kinds of tools.

Some researchers explored the sentiment variation based on different factors and also
examined the association of sentiments with various factors. Huq et al. [22] in 2020 examined
the relation of sentiments with software bugs. In the same year, Kaur and Chahal presented
investigation of developers’ sentiments in commit comments [23]. In the year 2019, Paul
et al. [11] analyzed the code review data of five open source projects to investigate the
difference in expression of sentiments based on the gender of developers during various
software development tasks. In the year 2018, Bharti and Singh [24] surveyed 20 software
professionals to examine the developers’ sentiments associated with code cloning practices.
Islam and Zibran [7] studied the variance in emotion in commit messages that are related to
bug introduction and bug fixing activities. Singh et al. [5] have analyzed the 3,171 commit
messages that are related to refactoring activities to investigate the impact of 15 different
code refactoring tasks on developers’ sentiments. This study identified that the developers’
sentiments are more negative during refactoring activities. Souza and Silva [25] examined
the relationship between sentiments of developers and build breakage in a Travis CI
(continuous integration). Sinha et al. [5] investigated the developer sentiment in the commit
logs of GitHub projects and studied the association among developer sentiment and day of
the week. They also examined the correlation between developer sentiment and the number
of files changes performed by the developer in the commits. This study demonstrates
that most of the sentiments projected by developers in the commit log were neutral. The
negative sentiments are 10% higher than the positive and the majority of the negative
sentiment was detected on Tuesday.

Islam and Zibran [13] investigated sentiments variation based on different types of tasks
executed by developers, development period, in different size projects, and impact of emotions
on software artifacts (i.e., length of commit message). Garcia et al. [12] analyzed the data
of the bug tracking system and mailing list to examine the association between emotions
and contributor activity.

Guzman et al. [4] examined commit comments of GitHub projects to investigate the
relation of developer sentiment with the programming language used by the project, time

220102-4

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Table 1. Summary of related studies

Author and
year

Scenario of motivation Possible extension

Huq et al.
(2020)

Examined the correlation between sen-
timents and software bugs

The relationship between sentiments
and three types of file change activity
can be explored.

Paul et al.
(2019)

Examined the sentiments of developers
in code review comments.

Developers’ sentiments can be explored
in commit logs messages.

Sinha et al.
(2018)

Investigated the relation between the
number of file changes and developers
sentiments.

Relation between different combina-
tions of file change can be explored.

Singh et al.
(2017)

Examined the impact of software code
refactoring activities on the sentiments
of developers.

The impact of commit contribution on
developers’ sentiments can be explored.

Tourani et al.
(2014)

Explore the existence of positive and
negative emotions in user and developer
mailing lists.

Commit logs can be explored to detect
developer sentiments and various fac-
tors influencing sentiments.

Guzman
et al. (2014)

Explored the association of emotion
with team geographical location and
day and time of the week.

Relation of sentiments with team size
can be explored. The evolution of sen-
timents with respect to the number of
commits over time can be explored.

Garcia et al.
(2013)

Ascertain the association between emo-
tions and contributor activity.

The relation of commit contribution
with developers’ sentiments can be ex-
plored.

Md Rakibul
Islam and
Minhaz
F. Zibran,
(2016)

Examined the impact of project and
team size and length of commit message
on emotional states of developers.

The impact of large, medium, and small
team size projects on the sentiments of
developers can be explored.

Pletea et al.
(2014)

Explored the emotional expression in
security discussions by analyzing com-
mits and pull request comments.

Commit logs messages can be analyzed
to explore sentiment expressed in differ-
ent combinations of change activities.

Khan et al.
(2010)

Analyzed the effect of emotions on
software developers’ debugging perfor-
mance.

The impact of sentiments on commit
contribution can be investigated.

Muller and
Fritz, (2015)

Investigated developers’ emotions and
progress on change tasks by conducting
lab study.

Emotions conveyed in software artifacts
such as commit log can be explored.

Graziotin
et al. (2014)

Explored the connection between devel-
oper emotion and their ability to solve
analytical problems.

The association of sentiments with dif-
ferent file change activities can be ex-
plored.

Michal
R. Wrobel,
(2013)

Conducted a survey to investigate de-
velopers’ emotions in the software de-
velopment process and impact of emo-
tions on performance.

Software artifacts such as commit logs
can be examined to investigate devel-
opers’ conveyed emotions.

and day of the week when the comment was written, team dispersal, and project approbation.
This work revealed that java projects have more negative comments. The more positive
comments are detected in projects having distributed teams and Monday was the most
negative day for sentiments.

220102-5

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Tourani et al. [8] presented a study to investigate the presence of positive and negative
emotions in user and developer mailing lists. This study found that both types of mailing
lists have positive as well as negative sentiments and have a different focus.

Pletea et al. [26] examined sentiments associated with security discussions in commits and
pull requests. This study identified that negative emotions are higher in security debates in
comparison to non-security discussions. Khan et al. [27] have analyzed the impact of emotions
on the debugging performance of software programmers. Müller and Fritz [28] presented
a study on developers’ emotions and progress on change tasks. Graziotin et al. [29] examined
the association between developer emotion and their ability to solve analytical problems.
They found that happy software developers are better at solving analytical problems. In the
year 2013, Wrobel [30] presented a study on developers’ emotions in the software development
process by conducting a survey.

To the best of our knowledge, the work presented in the past does not explore the
impact of team size of the project, type of change activity, and commit contribution on
sentiments of developers. The work presented in this paper is motivated by Sinha et al. [5].
This study investigated the relation of the day of week and number of changed files with
developers’ sentiments. But this study does not explore the association of combinations of
change activity type and commit contribution with developers’ sentiments. One another
study presented by Guzman et al. [4] examined the sentiments expressed by developers
in commit comments and investigate their association with different factors like time and
weekday, project approval, coding language, and team geographical distribution. But this
study does not consider the team size of the project and its association with developers’
sentiments [4]. Thus lack of research in the field motivated us to conduct this research
work. Our work examined the whole commit logs of seven GitHub projects to analyze
sentiments of software developers projected in commit logs and investigate the effect of
team size, type of change activity, and commit contribution on the developers’ sentiments.
Furthermore, we also look into the evolution of sentiments to identify how these changes
across the years along with the number of commits. We utilized the SentiStrength-SE tool
to perform sentiment analysis. We selected this tool because it is the first domain-specific
tool specially designed to detect sentiments in a software engineering context and provides
better accuracy in comparison to the existing domain-independent sentiment analysis
tools/toolkits [31].

3. Analysis methodology

In this section, we provide a description of the dataset along with details of the approach
used to conduct sentiment analysis.

3.1. Data collection

GitHub is a popular version control and project management system that provides multiple
collaborative artifacts viz commits, issues, and pull requests to contributors [32]. We
extracted the data of seven GitHub projects. The projects were selected based on popularity,
size, number of commits, number of contributors involved, long project history (more than
10 years), and having a valid Git (distributed version control system) repository. The
projects have creation dates from 1972 to 2007. Table 2 describes the quantitative details
of the projects. An overview of the selected projects is given below.

220102-6

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Table 2. Detail description of projects

Sr. No. Name Project
size (in
lines of
code)

Number of
stars

Number of
commits

Number of
developers

Start date End date

1. PostgreSQL 1,113,634 8,406 66329 51 Jul. 1996 Feb. 2019
2. Glibc 1,305,634 547 49216 538 Jan. 1992 Feb. 2019
3. Eclipse-CDT 1,498,813 141 30651 260 Jun. 2002 Feb. 2019
4. GNUCash 2,361,864 1923 25372 185 Nov. 1997 Feb. 2019
5. WordPress 1,549,456 15,135 44388 96 Apr. 2003 Feb. 2019
6. Firebug 492,078 1,289 13060 47 Aug. 2007 Oct. 2017
7. Rhino 806,709 2,896 3903 82 Apr. 1999 Feb. 2019

PostgreSQL is an open source RDBMS (relational database management system). Glibc
is a GNU C library most commonly used by GNU/Linux system. Eclipse-CDT is an IDE
(integrated development environment) for developing programs in C and C++. GNUCash
is accounting software developed for individual and small businesses. WordPress is a PHP
and MySQL based content management software. Firebug is a web browser extension for
Mozilla Firefox. Rhino is an open source JavaScript implementation that is completely
written in Java. Generally, scripting for end users is implemented in java application.
We accessed the repositories of the projects from GitHub1 or git2. The Git Bash tool
was utilized to clone project repositories to the local machine. The commit logs of the
projects were retrieved using the git log command. Commit logs of all selected projects
were analyzed from their beginning to till February 2019. In case of Firebug ending period
is October 2017.

3.2. Sentiment analysis

There are a variety of sentiment analysis tools viz. SentiStrength [33], StafordNLP [34], and
NLTK [35], while most of them do not focus on technical text. As these tools are designed
for non-technical text such as movie reviews or blogs posted on social networking sites such
as twitter, their results are erroneous for technical artifacts in the Software Engineering
(SE) domain [36]. Therefore, domain-specific techniques provide better accuracy to detect
sentiments in software engineering text.

We used sentiment analysis tool SentiStrength-SE proposed by Islam and Zibran [15]
to perform sentiment analysis on commit logs. Similar choice is made by Md Rakibul Islam
and Minhaz F. Zibran in Software engineering domain to extract emotional score from
commit messages [7]. Using SentiStrength as the baseline, this tool implements a lexical
based approach and domain specific dictionary. We selected this tool because it is a first
SE specific tool specially designed for Software Engineering to conduct sentiment analysis
and it outperforms the existing domain-independent tools/toolkits [31]. SentiStrength-SE
tokenizes the text into words and assigns a score to each word that conveys the underlying
sentiment. The words with positive sentiment receive a score between +1 to +5 and
words with negative score range between −1 to −5. The neutral score of words ranges
between +1 to −1. The scoring is generated using a sentiment dictionary that includes
the predetermined polarity score of sentiment words and phrases [32]. Sentistrength-SE

1https://github.com
2https://git-scm.com

220102-7

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

provides maximum positive and maximum negative score of each sentence. The final score
of sentence is calculated by adding maximum positive and maximum negative score by
following the approach used by jongjelling et al. [37]. The methodology used for sentiment
analysis is illustrated in Figure 1.

Figure 1. Methodology used for sentiment analysis

Firstly, we extracted the commit log using the git log command available in the Git
Bash tool and saved the commit log data in CSV format. In the next step, extracted the
commit messages and pre-processed the collected data to remove stop words, white spaces,
non-alphanumeric symbols/characters, and punctuation marks from the text. In addition,
also removed code, URLs, and system generated messages, e.g., error messages. Then
sentiment analysis is performed using SentiStrength-SE tool. Finally, we get the sentiment
score of each commit message.

4. Results and analysis

In this section, we report the results of each research question formulated in Section 1.
RQ1: What is the general developer sentiment in the commit logs?

We examined a total of 86,515 commit messages of seven OSS projects to analyze
developers’ sentiments in commit logs. Commit logs of all selected projects were analyzed
from their beginning until the last observation date set by this study (Refer Table 2).
Results of sentiment analysis using SentiStrength-SE are illustrated in Figure 2. Table 3

Figure 2. Sentiments across all projects

220102-8

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Table 3. Commit messages with positive, negative, and neutral sentiment

Sentiment Commit message
Final
sentiment
score

Positive

Add test case for pthread_sg etname_np 1
some fixes to project description manager and build system to allow
EFS hosted projects to function better

2

Generic implementation of red-black binary tree It’s planned to use in
several places

2

Negative

Oops did inadvertent branch –2
Bugzilla 218654 This commit shows some files contain errors This is
because they are being compiled against M4 I will rebuild against M5
shortly I did diff of the files and changes are exactly what I wanted
They will compile against HEAD and M5 when that is resolved

–1

Oops Removing unneeded System.err.println foo –1

Neutral

Build/TestToolsMove WP_UnitTestCase_BaseassertPostConditions
to more appropriate place

0

New ScannerInfoProvider extension point allowing providers to be
associated with build commands in the project description

0

presents some examples of positive, negative, and neutral commits from GitHub dataset.
As noted in Figure 2, all projects (Eclipse-CDT, PostgreSQL, Glibc, GNUCash, Rhino,
Firebug, and WordPress) have a higher proportion of the neutral sentiment as compared to
the negative and positive ones. Eclipse-CDT has the highest neutral (79.77%) sentiments,
and lowest negative sentiments in comparison to other projects. PostgreSQL logs have
the most negative (36.03%) sentiments. The proportion of positive sentiment is the lowest
in all projects as compared to neutral and negative sentiments. WordPress logs have the
highest positive (9.77%) sentiments and Glibc has least positive sentiments (1.76%). Our
findings clearly indicate that the overall sentiments expressed in commit logs were neutral.

Our findings clearly indicate that majority of commits in commit logs are neutral in
comparison to negative and positive. There is lowest percentage of positive commits than
negative and positive ones. The main reason for high neutrality in the commits may be that
commits are different from online reviews and tweets. However, a small amount of commit
messages in commit logs have different types of affective states than review comments
posted online. People express their satisfaction and dissatisfaction about a product by
writing reviews whereas software developers write commit messages when they submit their
work output in the form of code in a repository. The submission may include some code
and URLs while writing commit messages without mentioning any affective involvement
that makes the sentiments conveyed in commits more neutral. Moreover, commit messages
include many technical terms that do not have any sentiment manifestation. Therefore,
it could be another reason for the neutral sentiments in commit logs. Moreover, commit
messages include many technical terms that do not have any sentiment manifestation.
Therefore, it could be another reason for the neutral sentiments in commit logs.
RQ2: Is there any relation between sentiments and team size of a project?

In this research question, our objective is to ascertain if size of the team in a project
has any impact on sentiments expressed by developers in commit logs. We categorize the
projects into large, medium, and small based on the number of contributors involved in
each project (see Table 4) as recommended by Becher et al. [38]. We consider participant
as developer who made at least one commit in the project. The projects having 40 to

220102-9

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Table 4. Project size boundaries

Parameters Minimum developers Maximum developers Project Name

Small 40 60 PostgreSQL, Firebug
Medium 61 200 GNUCash, WordPress, Rhino
Large 201 ∞ Glibc, Eclipse-CDT

60 developers are classified as small, projects with 61 to 200 developers as medium, and
projects comprising more than 201 developers as large projects (see Table 4). Becher et al.
present a study to analyze number of contributors in a random sample of projects included
in the GNU/Linux distribution [38]. We followed the partition proposed by Becher et al.
[38] to construct project size boundaries that are presented in Table 4 and categorize the
projects into small, medium, and large based on these size boundaries [38]. The sentiment
score of large, medium, and small projects is presented in Figure 3.

Figure 3. Sentiment in projects with Large, Medium, and Small number of contributor

As shown in Figure 3, all three categories (Large, Medium, and Small) of projects have
high count for neutral sentiments than negative and positive sentiments. The Projects with
a large number of contributors have more neutral sentiments (75.78%) as compared to
projects having medium and small number of contributors. But, we see an opposite trend in
projects having medium and small number of contributors. In projects with medium team
size, the percentage of positive sentiments (8.14%) expressed is higher and the percentage of
negative sentiments is lower than projects with small team size. Lastly, negative sentiment
is maximum in projects with small team size.

Due to the fluctuating number of team members in an OSS project over a period of time,
it is worthy to relate sentiments in commit logs with the number of active developers in
a smaller unit of time. For this, we identified active developers in the projects in each year
of their lifetimes. To identify active developers, observation period is chosen for each project
is January 2018 whereas for Firebug it is September 2016. Developers those show any
activity after January 2018 is considered active. In case of Firebug developers having any
activity after September 2016 considered active. Sentiments are mapped to number of active
developers in each year to determine the relation of sentiment with active developers (team
size). Results are presented in Figure 4. As shown in Figure 4, findings of Eclipse-CDT,
PostgreSQL, Rhino and firebug indicate that neutral sentiments are high with large or
small team. In case of negative sentiments large team indicate low negativity whereas small
team indicate high negativity in sentiments. Results of Eclipse-CDT, PostgreSQL, Glibc,

220102-10

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Figure 4. Sentiments and number of active contributors
(a) Eclipse-CDT, (b) PostgreSQL, (c) Glibc, (d) GNUCash, (e) Rhino,

(f) WordPress, and (g) Firebug

220102-11

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

WordPress, and Firebug indicate that positive sentiments are low with large team and
high with small team. When we compared these results with Figure 3, we observed similar
trend.

To confirm our results, we applied Pearson Correlation between number of active
developers in each year and sentiments. The results of Pearson Correlation are presented
in Table 5. In case of Glibc, Eclipse-CDT, GNUCash, and WordPress, we found strong
positive correlation (>0.47) between neutral sentiments and number of active developers. In
Glibc, Eclipse-CDT, and WordPress, we found strong negative correlation between number
of active developers and negative sentiments. No significant correlation is found between
number of active developers and positive sentiments. Only Wordpress shows significant
correlation between number of active developers and positive sentiments.

Table 5. Pearson co-relation between active developers and sentiment
(* means correlation is significant at the 0.05;
** means correlation is significant at 0.01 level)

Project Positive Negative Neutral

Glibc –.117 –.446* .482**
Eclipse-CDT .036 –.533* .498*
GNUCash –.218 –.366* .474*
WordPress –.737** –.634** .769**
Rhino –.186 –.296 .309
PostgreSQL –.273 –.340 .349*
Firebug .010 –.278 .228

Our findings clearly indicate that projects with large team size have more neutral
sentiments. One main reason for high neutrality in the sentiments may be that developers
in a large team are more formal and used many technical terms while writing commits that
do not have any affective state. Moreover large teams may have laid down some formal
coding guidelines. Therefore, it makes the sentiments more neutral. In small team size
setup, projects have more negative sentiments in commit logs. It may be developers are
less formal in a small team, or it could also be due to work pressure. There is need to look
at it in the future work.

Our finding confirms that projects with different team size show different trends in the
sentiments. Hence, team size of a project influences the sentiments expressed by developers
in its commit logs.
RQ3: Does the type of change activity performed by a developer impact their
sentiments in commit messages?

In this research question, we intended to recognize the relation between type of change
activity performed by developers and sentiments expressed by them in the commit messages.
There are three types of code change activities, i.e., addition, deletion, and modification
[4], which can be combined in various ways to change a program. For example, some
change may require adding new code along with modification of the existing lines of code.
Based on these three types of file changes, we create our own classification by making the
following combinations of file change types: add + modify, delete + modify, add + delete +
modify. The motivation for these combinations is the evidence in the Software Engineering
literature that modification of existing code is more difficult than adding new or deleting
existing code. Creating new code is fun, but changing the existing one is hard.

220102-12

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

We select five projects (PostgreSQL, Eclipse-CDT, Firebug, GNUCash, and WordPress)
out of seven projects based on three types of activities performed by developers. For our
analysis, we classify developers according to three types of change activities such as Type-1
(add + modify), Type-2 (delete + modify), and Type-3 (add + delete + modify) and
analyze developers’ sentiments based on the type of change performed by them.

The results of sentiment analysis based on three types of change activities are presented
in the Figure 5. From these results, we observed that neutral sentiments have minimum
occurrences for Type-3 activity. Also this is the activity which involves the most negative
sentiments. Type-2 activity indicates high neutral sentiments (see results of PostgreSQL,

Figure 5. Sentiment and type of change activity:
(a) PostgreSQL, (b) Eclipse-CDT, (c) Firebug, (d) GNUCash, and (e) Wordpres

220102-13

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

GNUCash, and WordPress indicated in Figure 5) in comparison to Type-1 and Type-3
activity.

To conclude, RQ3 results, the sentiments conveyed by developers in commit messages
are influenced by the type of change activity performed by them. It shows that more
negative and less neutral expression is put with Type-3 (add + delete + modify) activity.
The reason for this could be that in Type-1 and Type-2 activities developers perform two
operations in each while in Type-3 activity they perform 3 operations that means more
complex work and it may make the sentiments more negative in comparison to Type-1 and
Type-2. From these results, we inferred that when developers are involved in more than
two activities, they express more negative expressions in the commit messages.
RQ4: Is there any relation between developer sentiment volume and commit
contribution?

In this research question, we want to determine the association between sentiment
volume and commit contribution. In order to achieve this goal, we analyzed developers’
sentiments in commit logs and calculate the commit contribution of the top ten contributors.
Commit contribution is the percentage of commits made by each individual contributor
in a project. We calculate the commit contribution by dividing the total commits of
each individual contributor by total number of commits made in the project. Sentiment
volume, formulized in the same way as commit contribution size, is percentage of sentiments
(Positive, Negative, and Neutral) conveyed by each individual developer in the commit
log. We also compute the sentiment volume of each contributor by dividing individual
contributor total sentiment (Positive, Negative, and Neutral) by total sentiments of the
project. The formulas used for calculation of commit contribution and sentiment volume
are as mentioned below:

Commit Contribution = Total Commits of Individual Contributors
Total Number of Commits in the Project

Sentiment Volume = Contributor Sentiment
Total Sentimentin the Project

Positive Sentiment Volume = Contributor Total Positive Sentiment
Total Positive Sentiments of Project

Negative Sentiment Volume = Contributor Total Negative Sentiment
Total Negative Sentiments of Project

Neutral Sentiment Volume = Contributor Total Neutral Sentiment
Total Neutral Sentiments of Project

We map sentiment volume to the commit contribution. The sentiment volume (positive,
negative, and neutral) of top ten contributors along with their commit contribution is
presented in Figure 6. Negative sentiment can be attributed to lead contributors in almost
every project. It may be due to the project deadlines or other challenges such as quality
evaluation that core contributors evoke more negative sentiment. It could also be due to
the status in the team or control over the project that invites negative sentiments. For some
projects such as PostgreSQL, and Firebug, neutral sentiment is clearly higher for developers
with least contributions. But there is no such clear pattern for other sentiments and for

220102-14

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

other projects. Rather, the sentiment is negative irrespective of the contribution size. So
there is no trend that indicates any relation between contribution size and sentiment volume
except that large contributors elicit more negative sentiment.

To conclude RQ4 results, we observed that the commit contribution of the developer
influences their sentiments in the commit log. We noticed different trends in sentiments
with respect to commit contribution. In most of the projects, the developers have more
negativity in sentiment when their contribution is large and contributors with small commit
contributions have a more positive sentiment. This implies that high commit activity causes
negative sentiments in the project.

We applied Pearson Correlation to identify the correlation between commit contribution
and sentiments (positive, negative, and neutral). In WordPress and firebug, we found
a strong positive correlation (Pearson’s correlation test above 0.70) between commit
contributions and the positive sentiments whereas Eclipse-CDT has a strong negative
correlation (>–0.70). The GNUcash and Rhino have a strong correlation (>0.70) and
WordPress, Glibc, PostgreSQL, and Firebug have a very strong correlation (Pearson’s
correlation test >0.90) between commit contribution and negative sentiments. We do not
find a strong correlation between commit contribution and neutral sentiments.
RQ5: How has sentiment in the commit logs evolved over the period of time?

In this research question, our aim is to analyze the evolution of sentiments across time
along with the number of commits made by developers. To achieve this goal all selected
projects are considered. We group the sentiments (Positive, Negative, and Neutral) by
each individual year to show how sentiments change across years along with the number of
commits made by developers. Figure 7 shows the evolution of sentiments along with the
number of commits across the years.

There is an increase in the neutral sentiment over the period of time in all the projects,
which is a good sign for technical communication. Also, negative sentiment has decreased.
Positive sentiment has stayed at the bottom throughout with small variations. Looking
at the commit activity along with the sentiment evolution, it is evident that there is no
relation between change in commit activity and sentiment evolution. One can observe
a high percentage of negative sentiment irrespective of whether commit activity is high
or low (as throughout in PostgreSQL and GNUCash, or Glibc from 1994 to 2009). On
the other hand, negative sentiment remains low when commit activity is high in case of
Eclipse, WordPress, Firebug, and Rhino.

Positive sentiment is the least kind of expression in the commit logs. There is more or
less interplay between negative and neutral sentiments in all the projects. When neutral
sentiment decreases, negative sentiment replaces it. So we can say developers are either
negative or neutral while expressing themselves in commit logs. It is good to see a trend of
improvement in neutral sentiment over the period of time.

Moreover, we also perceive that in most of the projects (PostgreSQL, WordPress,
Eclipse-CDT, Firebug, and Rhino) the sentiments seem to be more positive in the starting
years as compared to the ending years of observation. The reason for it could be that when
the project is in its initial stage, it is less complex, having few issues. But as the project
progresses it becomes more complex, more developers join the project with time and more
issues need to be resolved.

220102-15

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Figure 6. Commit contribution and sentiment volume:
(a) Glibc, (b) Eclipse-CDT, (c) GNUcash, (d) WordPress,

(e) PostgreSQL, (f) Rhino, and (g) Firebug

220102-16

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

Figure 7. Evolution of sentiments by year:
(a) PostgreSQL, (b) Glibc, (c) GNUcash, (d) WordPress, (e) Eclipse-CDT, (f) Firebug, (g) Rhino

220102-17

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

5. Discussion

In this work, we have examined 86,515 commit messages of seven well known GitHub
projects to analyze the sentiments expressed by developers in the commit logs. Our main
objective was to investigate the relation of team size, type of change activity, and commit
contribution with sentiments in the commit logs. In addition to this, we also look into
the evolution of sentiment in these projects. We found that most of the projects had high
neutral sentiments in comparison to negative and positive ones. PostgreSQL indicates more
negativity (36.03%) in sentiments and most of the negativity in the commit logs can be
attributed to leading code contributors.

The majority of the commits in the commit logs are neutral. Our findings revealed that
the team size of a project, type of change activity, and developers’ commit contribution
have an impact on the sentiment expressed in the commit logs. Furthermore, during the
evolution of the project sentiments have different trends. We noticed that the commit logs
have more positive/negative and less neutral sentiments in the initial years of the project
in comparison to later years. The main reason behind it may be that in the starting years,
a project is less complex and have a small number of issues but as the project progresses,
more issues need to be resolved and large size of a team makes it a more formal platform and
developers express themselves in a neutral way. Noticing the trend in Figure 7(b) indicates
that expression in the glibc project, prior to 1990, was positive. It started getting negative
after that. Age or maturity of a project does not influence developer sentiment expression
in commit logs. But taking 2008 as the reference point, when Github was launched and
most of the projects might have shifted to Github then, negative sentiment has decreased
over the period of time. So it may be due to availability of the commit logs in the public
domain, that sentiment expression has become more positive.

The study presented by Sinha [5] also examined the developers’ sentiments in the
commit logs. They identified that the majority of GitHub commits (74.74%) have neutral
sentiments. As we compare our findings of RQ1, with results presented by Sinha [5], we
noticed that our work found similar results. We observed that most of the commits in the
commit log had a neutral sentiment. To compare our results with Sinha [5], we combined
the sentiment results of all observed projects and found that in our analysis percentage
of positive, negative, and neutral sentiments are 4.73%, 26.98%, 68.29%, respectively. In
the case of our analysis positive sentiments are 2.47% and neutral sentiments are 6.45%
less than Sinha’s study. Negative sentiments are 8.93% higher than Sinha’s study. This
analysis shows that this result is very similar for a dataset different from the one studied
in this research. They started with 28,466 OSS projects but considered only 5 projects
for an in-depth sentiment analysis. So far detailed analysis, more work in this direction
is required to confirm the findings for OSS projects of different domains and different sizes.

After this analysis, some actionable advice for the OSS community can be as follows:
– A project, large or small, should have a code of conduct mentioning the desired

contribution quality in commit logs.
– In the issue tracking system, issues involving complex changes should be decomposed

into multiple simple issues involving only two activities i.e. modify activity should be
clubbed with either add or delete activity.

– Lead developers need to be aware of their sentiment expressions.
– Developers, looking for projects to contribute, can expect better commit logs, from

sentiments point of view, in mature projects.

220102-18

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

6. Threat to validity

The authors examined developers’ sentiments in subject line of commit message but body
of commit message may have different sentiments. For example, subject line may be neutral,
but message body may be negative or vice versa. This aspect is missing in this study.

Same developer may have registered with multiple names. Multiple aliases related to
same developers is not resolved that may influence the findings.

Moreover, the selection of the projects is biased as we included the projects having
a valid Git repository while projects hosted on other platforms like Gitlab and Bitbucket
are not taken into consideration. A subset of the research questions explored on a large
Github dataset in [5] also gives results similar to the ones obtained here. In the future,
we will extend our dataset to include more projects that are hosted on other software
repositories. Furthermore, the result presented in this study only applies to OSS projects.
In RQ4, the authors included the data of the top ten developers with very high commit
activity while developers with very low commit (commit activity less than 1%) activities are
not included in our analysis. In the future, we will extend our study to include developers
with low levels of contribution.

Also combinations of file change viz. add + modify file, delete + modify file and add +
delete + modify file are considered by authors to conduct analysis whereas impact of
individual file change (add, delete, and modify) is not explored. Further research is required
to examine the impact of individual file change like addition, deletion, and modification on
sentiments.

Another limitation of our study is that we considered only a few factors to study the
impact of developers’ sentiments while there are many other factors such as code quality,
gender, project age, and popularity that may influence sentiments expressed in the commit
logs.

7. Conclusions

In this paper, the authors have analyzed the developers’ sentiments in the commit logs
of OSS projects. We examined 86,515 commit messages of the seven most popular OSS
projects to analyze the sentiments expressed by developers in the commit logs. The authors
investigated the impact of team size of the project, type of change activity (Type-1, Type-2,
and Type-3) performed by developers, and code contribution volume to the sentiments
expressed in the commit logs. Moreover, we analyzed the evolution of sentiments across
years with respect to the number of commits made in each year.

Our study reveals that the majority of projects have neutral sentiments. This indicates
that while creating commit log messages developers are more neutral. But when we compared
negative with positive sentiments, we found that in case of three projects, percentage of
negative sentiment is more than 10% greater than positive in all the projects, and negative
sentiment is more than 23% higher than positive in four projects. In this study, we perceived
that sentiments in the commit logs are influenced by team size. Neutral expressions are
high with large team size and negative expressions are high with small team size. The
type of change activity performed by developers also influences their sentiments expressed
in the commit logs. Type-3 activity involving all the three change actions of addition,
deletion, and modification, indicates more negative sentiments and low neutral sentiments.
Furthermore, we also noticed that contribution size also impacts the volume of sentiment.

220102-19

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

The developers with large commit contributions have more negativity in sentiments and
developers having small commit contributions express more positive sentiments in commit
logs. Besides, sentiments show different trend across years with respect to the number of
commits made by developers. The developers have more positive sentiment in the initial
years in comparison to the ending years. The neutral expression has increased over the
period of time.

Our study results provide an understanding regarding developers’ sentiments related to
various software development team and project related concerns such as team size, contributor
role, task complexity, and project evolution that will be helpful for OSS community in
developing strategies to improve developer productivity and retention.

In the future, we intend to expand our research work by including more projects hosted
on other platforms such as GitLab and Bitbucket. Large data sets and the complex interplay
of various variables in this context demand to employ machine learning or deep learning
techniques to identify the association.

We also want to look into why expression in small teams is negative and explore it
from the perspectives of informal interactions as well as work pressure. This study can also
be extended to include specific type of developers, e.g., lead or occasional, to study the
difference in their sentiment expressions in the commit logs.

Acknowledgments

The research work presented in this paper is sponsored by UGC, Government of India.
The authors are appreciative of UGC to provide funding under Rajiv Gandhi National
Fellowship scheme to the first author. The authors are also grateful to the Department of
Computer Science, Guru Nanak Dev University Amritsar, and Punjab for infrastructure
and scholastic aid towards the ongoing research.

References

[1] D. Graziotin and F. Fagerholm, “Happiness and the productivity of software engineers,” in
Rethinking Productivity in Software Engineering. Springer, 2019, pp. 109–124.

[2] M. De Choudhury and S. Counts, “Understanding affect in the workplace via social media,” in
Proceedings of the Conference on Computer Supported Cooperative Work, 2013, pp. 303–316.

[3] B. Liu et al., “Sentiment analysis and subjectivity,” Handbook of Natural Language Processing,
Vol. 2, No. 2010, 2010, pp. 627–666.

[4] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments in GitHub:
An empirical study,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, 2014, pp. 352–355.

[5] V. Sinha, A. Lazar, and B. Sharif, “Analyzing developer sentiment in commit logs,” in
Proceedings of the 13th International Conference on Mining Software Repositories, 2016,
pp. 520–523.

[6] N. Singh and P. Singh, “How do code refactoring activities impact software developers’
sentiments? – An empirical investigation into GitHub commits,” in 24th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2017, pp. 648–653.

[7] M.R. Islam and M.F. Zibran, “Sentiment analysis of software bug related commit messages,”
Network, Vol. 740, 2018, p. 740.

[8] P. Tourani, Y. Jiang, and B. Adams, “Monitoring sentiment in open source mailing lists:
exploratory study on the apache ecosystem,” in Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering, Vol. 14, 2014, pp. 34–44.

220102-20

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

[9] J. Ding, H. Sun, X. Wang, and X. Liu, “Entity-level sentiment analysis of issue comments,” in
Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering,
2018, pp. 7–13.

[10] F. Jurado and P. Rodriguez, “Sentiment analysis in monitoring software development processes:
An exploratory case study on GitHub’s project issues,” Journal of Systems and Software,
Vol. 104, 2015, pp. 82–89.

[11] R. Paul, A. Bosu, and K.Z. Sultana, “Expressions of sentiments during code reviews: Male vs.
female,” in 26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 26–37.

[12] D. Garcia, M.S. Zanetti, and F. Schweitzer, “The role of emotions in contributors activity:
A case study on the gentoo community,” in International Conference on Cloud and Green
Computing. IEEE, 2013, pp. 410–417.

[13] M.R. Islam and M.F. Zibran, “Exploration and exploitation of developers’ sentimental variations
in software engineering,” in Research Anthology on Recent Trends, Tools, and Implications of
Computer Programming. IGI Global, 2021, pp. 1889–1910.

[14] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel emotions? An exploratory
analysis of emotions in software artifacts,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, 2014, pp. 262–271.

[15] M.R. Islam and M.F. Zibran, “Leveraging automated sentiment analysis in software engineer-
ing,” in 14th International Conference on Mining Software Repositories (MSR). IEEE, 2017,
pp. 203–214.

[16] N. Novielli, F. Calefato, F. Lanubile, and A. Serebrenik, “Assessment of off-the-shelf SE-specific
sentiment analysis tools: An extended replication study,” Empirical Software Engineering,
Vol. 26, No. 4, 2021, pp. 1–29.

[17] K. Sun, H. Gao, H. Kuang, X. Ma, G. Rong et al., “Exploiting the unique expression for
improved sentiment analysis in software engineering text,” arXiv preprint arXiv:2103.13154,
2021.

[18] E. Biswas, M.E. Karabulut, L. Pollock, and K. Vijay-Shanker, “Achieving reliable sentiment
analysis in the software engineering domain using BERT,” in International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2020, pp. 162–173.

[19] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile, “Can we use SE-specific
sentiment analysis tools in a cross-platform setting?” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 158–168.

[20] M.R. Wrobel, “The impact of lexicon adaptation on the emotion mining from software
engineering artifacts,” IEEE Access, Vol. 8, 2020, pp. 48 742–48 751.

[21] M. Obaidi and J. Klünder, “Development and application of sentiment analysis tools in
software engineering: A systematic literature review,” Evaluation and Assessment in Software
Engineering, 2021, pp. 80–89.

[22] S.F. Huq, A.Z. Sadiq, and K. Sakib, “Is developer sentiment related to software bugs: An
exploratory study on GitHub commits,” in 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2020, pp. 527–531.

[23] R. Kaur and K.K. Chahal, “Analysis of developers’ sentiments in commit comments,” in
International Conference on Advanced Informatics for Computing Research. Springer, 2020,
pp. 3–12.

[24] S. Bharti and H. Singh, “Investigating developers’ sentiments associated with software cloning
practices,” in International Conference on Advanced Informatics for Computing Research.
Springer, 2018, pp. 397–406.

[25] R. Souza and B. Silva, “Sentiment analysis of Travis CI builds,” in 14th International Conference
on Mining Software Repositories (MSR). IEEE, 2017, pp. 459–462.

[26] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion: sentiment analysis of
security discussions on GitHub,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 348–351.

[27] I.A. Khan, W.P. Brinkman, and R.M. Hierons, “Do moods affect programmers’ debug perfor-
mance?” Cognition, Technology and Work, Vol. 13, No. 4, 2011, pp. 245–258.

220102-21

Rajdeep Kaur et al. e-Informatica Software Engineering Journal, 16 (2022), 220102

[28] S.C. Müller and T. Fritz, “Stuck and frustrated or in flow and happy: Sensing developers’
emotions and progress,” in 37th International Conference on Software Engineering, Vol. 1.
IEEE, 2015, pp. 688–699.

[29] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software developers solve problems
better: Psychological measurements in empirical software engineering,” PeerJ, Vol. 2, 2014,
p. e289.

[30] M.R. Wrobel, “Emotions in the software development process,” in 6th International Conference
on Human System Interactions (HSI). IEEE, 2013, pp. 518–523.

[31] M.R. Islam and M.F. Zibran, “SentiStrength-SE: Exploiting domain specificity for improved
sentiment analysis in software engineering text,” Journal of Systems and Software, Vol. 145,
2018, pp. 125–146.

[32] S.F. Huq, A.Z. Sadiq, and K. Sakib, “Understanding the effect of developer sentiment on
fix-inducing changes: an exploratory study on GitHub pull requests,” in 26th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2019, pp. 514–521.

[33] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli et al., “The emotional side of
software developers in JIRA,” in 13th Working Conference on Mining Software Repositories
(MSR). IEEE, 2016, pp. 480–483.

[34] M.M. Rahman, C.K. Roy, and I. Keivanloo, “Recommending insightful comments for source
code using crowdsourced knowledge,” in 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 2015, pp. 81–90.

[35] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results when using sentiment
analysis tools for software engineering research,” Empirical Software Engineering, Vol. 22,
No. 5, 2017, pp. 2543–2584.

[36] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection for
software development,” Empirical Software Engineering, Vol. 23, No. 3, 2018, pp. 1352–1382.

[37] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons: On sentiment analysis
tools for software engineering research,” in International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2015, pp. 531–535.

[38] K. Beecher, C. Boldyreff, A. Capiluppi, and S. Rank, “Evolutionary success of open source
software: An investigation into exogenous drivers,” Electronic Communications of the EASST,
2008.

220102-22

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220103, DOI: 10.37190/e-Inf220103

How Good Are My Search Strings?
Reflections on Using an Existing Review

As a Quasi-Gold Standard

Huynh Khanh Vi Tran∗, Jürgen Börstler∗, Nauman bin Ali∗,
Michael Unterkalmsteiner∗

∗Department of Software Engineering, SE-37179, Karlskrona, Sweden,
Blekinge Institute of Technology

huynh.khanh.vi.tran@bth.se, jurgen.borstler@bth.se, nauman.ali@bth.se,
michael.unterkalmsteiner@bth.se

Abstract
Background: Systematic literature studies (SLS) have become a core research methodol-
ogy in Evidence-based Software Engineering (EBSE). Search completeness, i.e., finding all
relevant papers on the topic of interest, has been recognized as one of the most commonly
discussed validity issues of SLSs.
Aim: This study aims at raising awareness on the issues related to search string construc-
tion and on search validation using a quasi-gold standard (QGS). Furthermore, we aim at
providing guidelines for search string validation.
Method: We use a recently completed tertiary study as a case and complement our
findings with the observations from other researchers studying and advancing EBSE.
Results: We found that the issue of assessing QGS quality has not seen much attention
in the literature, and the validation of automated searches in SLSs could be improved.
Hence, we propose to extend the current search validation approach by the additional
analysis step of the automated search validation results and provide recommendations for
the QGS construction.
Conclusion: In this paper, we report on new issues which could affect search completeness
in SLSs. Furthermore, the proposed guideline and recommendations could help researchers
implement a more reliable search strategy in their SLSs.

Keywords: search string construction, automated search validation, quasi-gold
standard, systematic literature review, systematic mapping study

1. Introduction

Systematic literature studies (SLS), including systematic literature reviews, systematic
mapping studies and tertiary studies, have become core methods for identifying, assessing,
and aggregating research on a topic of interest [1]. The need for completeness of search
is evident from the quality assessment tools for SLS with questions like: “was the search
adequate?”, “did the review authors use a comprehensive literature search strategy?” or “is
the literature search likely to have covered all relevant studies?” [2–4]. Several guidelines
and recommendations have been proposed to improve the coverage of search strategies
employed in SLS, e.g., using multiple databases [1], or using an evaluation checklist for

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 12 Sep. 2021; Revised: 20 Nov. 2021; Accepted: 07 Dec. 2021; Available online: 15 Dec. 2021

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

assessing the reliability of an automated search strategy [3]. While these guidelines and
assessment checklists can be used to design a search string with a higher likelihood of good
coverage, these are mostly subjective assessments.

During the design phase of an SLS, the main instrument researchers have for assessing
the likely coverage of their search strings is using a known set of relevant papers that
a keyword-based search ought to find [5, 6]. Such a set of known relevant papers is referred
to as the quasi-gold standard (QGS) for an SLS. Thus, a QGS is a subset of a hypothetical
gold standard, the complete set of all relevant papers on the topic.

Ali and Usman [3] suggest the following for identifying a known set of relevant papers:
a) the researchers’ background knowledge and awareness of the topic, b) general reading
about the topic, c) papers included in related secondary studies, d) using a manual search
of selected publication venues. Kitchenham et al. [1] suggest guidelines regarding the size
of a QGS for a typical systematic review or a mapping study. The quality of QGS, as
a representative sample of the actual population, is critical for deciding how good is a search
string. Nevertheless, the QGS size alone is not sufficient for assessing the QGS quality.
The diversity of studies in a QGS is also an important quality criterion as it increases the
likelihood of being a representative subset of actual related papers. However, to the best of
our knowledge, we have not found any related work on validating QGS quality or specific
issues relating to using an existing SLS as a source for a QGS.

In a recent tertiary study [7] on test artifact quality, as suggested by Kitchenham et
al. [1], we constructed a QGS by collecting relevant papers from an earlier tertiary study
with a related broader topic [8] (software testing). Our assumption was that a tertiary
review of software testing research, in general, would also cover secondary studies on the
relatively narrower topic of test artifact quality.

While validating the search in this tertiary study, we have identified issues with the
subject area filter in Scopus, the usage of the generic search term “software” as a limiting
keyword in search, and issues with the search validation approach using a QGS. Based on
our experience from constructing and validating search strings using a QGS, we have derived
recommendations on validating automated search and constructing the QGS. Together
with the existing guidelines in the literature for the search process, our recommendations
help researchers construct a more reliable search strategy in an SLS.

The remainder of the paper is structured as follows: Section 2 provides an overview of
guidelines for search validation. Section 3 presents the related work and our contribution.
Section 4 summarizes the search process and search validation in our tertiary study [7].
Section 5 presents our findings when comparing the search results between the two tertiary
studies [7, 8]. Section 6 details the found issues related to search string construction and
search validation using QGS. Section 7 presents our proposed guidelines for validating the
automated search and constructing the QGS for researchers undertaking large scale SLSs.
Lastly, Section 8 concludes the paper.

2. Guidelines for search validation

Several guidelines exist for implementing SLSs with instructions on how to perform the
search process [1, 2, 9]. Kitchenham et al. [1] provided detailed instructions on each step of
a systematic review procedure. In particular, regarding the study search process, Kitchen-
ham et al. [1] discussed the search completeness concept and different strategies to validate
search results. Accordingly, a search strategy should aim to achieve an acceptable level of

220103-2

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

search completeness while considering the time constraint and limit in human resources.
Ultimately, the level of completeness depends on the type of the review (qualitative or
quantitative) [1]. The completeness could be assessed subjectively based on expert opinion
or objectively based on precision and recall [5, 6]. The recall of a search string, also called
sensitivity, is the proportion of all the relevant papers found by the search. The precision
is the proportion of the papers found by the search which are relevant to the study. By
calculating the precision of a search, researchers could estimate the effort required to
analyze the search result.

To compute recall and precision, ideally, researchers need to know the number of all
relevant papers on the review topic, which is also called the gold standard. However, it is not
easy to acquire the gold standard [1, 5], especially when the review domain is not limited.
Hence, a quasi-gold standard, a subset of the gold standard, could be used instead. There
are several approaches listed by Kitchenham et al. [1] to acquire a quasi-gold standard.
They include asking experts in the review topic, using a literature review in the same
or overlapping topic, conducting an informal automated search, or performing a manual
search in specific publication venues within a certain period. Proposed by Zhang et al. [5],
the last approach is claimed to be more objective and systematic in assessing automated
search results than building the quasi-gold standard based solely on researchers’ knowledge.
In general, Zhang et al. proposed search strategy could be summarized as follows:
1. Identify publication venues (conferences, journals), databases and search engines. The

venues are for manual search to establish a quasi-gold standard. The databases and
search engines are for the automated search for relevant papers to answer the research
question(s). It is worth noting that the selection of venues is still based on the researchers’
domain knowledge; hence, this approach could potentially introduce as much bias as
the approach of building a QGS by asking domain experts.

2. Establish the QGS. The QGS is built by conducting a manual search on the selected
publication venues. All papers published in the given venues within a predefined time
frame should be assessed based on the defined inclusion/exclusion criteria.

3. Construct search strings for the automated search. There are two ways to construct the
search strings: (1) based on researchers’ domain knowledge and experience; (2) based
on word/phrase frequency analysis of the papers in the QGS.

4. Conduct automated search. The automated search is conducted using the search strings
on the selected search engines/databases identified in the previous steps.

5. Evaluate search performance. The search performance is evaluated based on two criteria,
quasi-sensitivity (recall) and precision. Depending on the predefined threshold (70%–80%
as suggested by Zhang et al.), the search result could be either accepted and merged with
the QGS or search strings should be revised until the automated search performance
reaches the threshold.

3. Related work

Besides the general guidelines for the search process and search validation described in
Section 2, various issues related to search strategies that could affect the search completeness
have been discussed in the literature [6, 10–13]. We organized the reported issues into three
groups.

The most common issue is the inadequacy of a search strategy in finding relevant
publications [6, 10–13], which directly affects the search completeness. Ampatzoglou et

220103-3

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

al. [10, 11] discussed the issue via one of their proposed validity categories, namely study
selection validity. In this category, the threat “adequacy of relevant publication” [10, 11],
which the authors quote, is about “has your search process adequately identified all relevant
primary studies?”. The authors did not provide further explanation or description of
this threat. Still, they presented a list of mitigation actions such as conducting snowball
sampling, conducting pilot searches, selecting known venues, comparing to gold standards.
Based on these mitigation actions, we could see that this validity threat is about whether
a search process has identified a representative set of relevant studies. It is noteworthy that
our tertiary study [7] has applied all their proposed mitigation actions related to this threat
except having an external expert review our search process. Bailey et al. [12] conducted
three searches on three different topics to analyze the overlaps between search engines in
the domain of software engineering. They reported that the selection of search engines
and search terms could influence the number of found papers. One relevant finding is that
for the topic Software Design Patterns, their general search terms (“software patterns
empirical” and “software design patterns study”) offered the highest recall, especially in
Google Scholar. It is worth noting that they define the recall as a percentage of included
papers found by a search engine out of the total number of included papers. To cope with
the adequacy of relevant publication in the domain of software engineering experiment,
Dieste et al. [6] discussed the trade-off between high recall and high precision in search.
They proposed criteria for selecting databases and also reported lessons learned when
building search terms. They also noted that using any synonyms of experiment alone would
omit a huge set of relevant papers when searching articles reporting software engineering
experiments. Imitiaz et al. [13], in their tertiary study, discussed different issues which
could affect the adequacy of relevant publication in SLRs. These issues are search terms
with many synonyms and unknown alternatives, the trade-off between generic and specific
search string, search approaches (automated, manual, snowball sampling) selection, search
level (title, abstract, keywords) and abstract quality.

The second most common issues which could impact the search completeness are
inconsistencies and limitations of search engines and databases [3, 12, 14, 15]. Bailey et
al. [12] identified two main issues with search engines: inconsistent user interfaces and
limitations of search result display. They concluded that search engines do not provide good
support for conducting SLRs due to these two issues. The inconsistencies in databases and
search engines’ internal search procedures and their output are also reported by Ali and
Usman [3] and by Krüger et al. [14]. As reported in Krüger et al.’s study [14], API search
results in databases could vary even within the same day. On top of that, databases and
search engines evolve over time, which could lead to changes in their search API [3, 14]. Due
to the identified limitations, the selection of search engines and databases becomes essential
as it could impact search completeness. Chen et al. [15] proposed three metrics (overall
contribution, overlap, exclusive contribution) to characterize search engines and databases
which they called electronic data sources (EDS). These metrics could help researchers to
choose EDS for their literature reviews. According to the authors, the overall contribution,
which is about the percentage of relevant papers returned by an EDS, is the dominant
factor in selecting EDS. Meanwhile, the exclusive contribution is about papers that could
be found by one EDS only. This information helps researchers to decide which EDS could
be omitted. The overlap metric (the papers returned by multiples EDS) could be used to
determine the order of EDS in the search process.

The third most common issue is search terms standardization in software engineering [12,
16]. Bailey et al. [12] pointed out that there is a lack of standardization of terms used in

220103-4

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

software engineering, which could influence the search result adequacy. They raised the
need to have up-to-date keywords and synonyms to mitigate the risk of missing relevant
papers. This standardization issue has also been reported by Zhou et al. [16] as one of the
main validity threats in SLRs.

In summary, we have found several studies that reported issues with the search process
and the importance of adequate search string construction and validation to achieve search
completeness. In a tertiary study [7], we have encountered all of these issues and applied
different strategies to mitigate validity threats related to the search process. These include
systematically constructing search strings, piloting searches, selecting well-known digital
search engines and databases, and using a relevant tertiary study’s search results to build
a QGS for search validation. Nevertheless, we have not identified any related work discussing
the quality assessment of QGSs or issues related to the construction of QGSs from existing
SLSs. Hence, based on our experience with evaluating the searches using the QGS, we
propose guidelines for automated search and QGS validation, which could help researchers
construct a more reliable search strategy in SLSs.

4. Analysis of using another SLS as QGS

This study is based on two recent tertiary studies [7, 8] conducted independently. Both
articles were published in the Journal of Information and Software Technology. The first
study [8] on software testing was undertaken by Garousi and Mäntylä, while the second
one [7] with a narrower topic, test artifact quality, was published five years later by the
authors of this study. A high-level overview of both tertiary studies can be found in Table 1.

Table 1. Overview of Tran et al.’s [7] and Garousi and Mäntylä’s [8] tertiary studies

Tran et al. [7] (TAQ study) Garousi and Mäntylä [8] (ST study)

Title Assessing test artifact quality – A ter-
tiary study

systematic literature review of litera-
ture reviews in software testing

Publication year 2021 2016
Focus Quality attributes of test artifacts

and their measurement.
Mapping of research in software test-
ing.

Research goals To investigate how test artifact qual-
ity has been reported in secondary
studies in the following aspects: (1)
quality attributes of test artifacts;
(2) quality measurements of test ar-
tifacts; (3) testing-specific context
where the quality attributes and qual-
ity measurements have been studied.

To provide a systematic mapping of
secondary studies in software engi-
neering to investigate the following
aspects: (1) different areas in software
testing; (2) research questions types;
(3) demographics of secondary stud-
ies; (4) citation of secondary studies.

Automated search Yes Yes
Snowballing No Yes
Search String Iterative, see Figure 2 for details See Figure 2 for details
Include SLRs &
SMS

Yes Yes

Include other re-
views/surveys

No Yes

220103-5

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

Search string
construction

Source
Selection

Search
observation

Search
results

1st search

2nd search
(pilot search)

3rd search

(Search terms for test
artifacts) AND (Search terms

for secondary studies)

Additional search terms for test
artifacts (”test” and ”testing”)

Scopus,
Google

Scholar, IEEE,
Science

Direct, ACM

Scopus

of found
papers =
181

of found
papers =
131

potentially excluded
relevant papers using
only “test” and/or
“testing” in their
titles, abstracts or

keywords

Search
evaluation
(using QGS)

found more relevant
papers thanks to “test”

and “testing”

found more relevant
papers thanks to the
additional search

terms

Recall =
61.54

Precision =
6.61

Recall =
92.31

Precision =
2.11

Recall = 76.92
Precision =

7.63

Based on 1st search with extra
search terms for test artifacts
(”test” and ”testing”) and an

extra search term for
secondary studies

(”systematic literature
survey”)

Scopus
of found
papers =
572

Additional search terms for test
artifacts (”test” and ”testing”) Scopus

of found
papers =
131

Figure 1. Overview of the search steps in the tertiary study on test artifact quality (TAQ study) [7]

For convenience, we refer to the tertiary study [8] on software testing as the ST study and
the tertiary study on test artifact quality [7] as the TAQ study in this paper.

In the TAQ study [7], to evaluate the search performance, we constructed a QGS by
extracting relevant papers from the ST study [8]. A summary of the resulting search strategy
and search evaluation outcomes is illustrated in Figure 1. More details about the search
process and the search evaluation using QGS are presented in Section 4.1 and Section 4.2
respectively. To better understand the result of the search performance evaluation, we also
analyzed the differences in search results between the two tertiary studies. The analysis of
these differences is described in Section 5.

4.1. Search process

In the TAQ study, test artifact refers to test case, test suite, test script, test code, test
specification, and natural language test. The overview of the study’s three searches is
illustrated in Figure 1, and the search results are presented in Table 2. We used a visual
analysis tool [17] called InteractiVenn1 to analyze the overlaps in the search results. The
TAQ study’s search terms and their differences with the ST study’s search terms are shown
in Figure 2.

Since the TAQ study’s search goal was to identify systematic secondary studies discussing
test artifact quality, the search strings needed to capture two aspects: (A) systematic
secondary studies and (B) test artifact quality. Hence, the search strings were constructed
as (A AND B). To address aspect B (test artifact quality), we included search terms to
describe test artifact such as “test case”, “test script” while excluding the search term
“quality” as this latter search term is too common to be useful as a separate component of
a search string.

The first search was conducted in April 2019 and returned 181 papers (see Table 2). The
initial set of 58 SLRs/SMSs found by the ST study was used to validate the completeness

1http://www.interactivenn.net/

220103-6

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

Table 2. Search Results of the tertiary study on test artifact quality (TAQ study) [7]

Search Database/ Search Engine # of papers Search Level

1st

Scopus 100 Title, abstract, keywords
Google Scholar 27 Title
IEEE 16 Title, abstract, keywords
Science Direct 23 Title, abstract, keywords
ACM 15 Title, abstract

Total 181
Excl. duplicates 121
Excl. duplicates & clearly irrelevant
studies

82

2nd
Scopus 131 Title
Excl. duplicates 131
Excl. duplicates & clearly irrelevant
studies

114

3rd
Scopus 572 Title, abstract, keywords
Excl. duplicates 569
Excl. duplicates & clearly irrelevant
studies

340

“test case” “test suite” “test code” “test script” “test specification” “natural language test”

“test” “testing”

Testing Validation Verification

"systematic review" "systematic literature review" "systematic mapping" "systematic map" "systematic scoping" "systematic literature survey"

“literature review" survey review

Software

"systematic review" "systematic literature review" "systematic mapping" mapping

{systematic review} {systematic literature review} {systematic mapping} {systematic scoping}

{systematic review} {systematic literature review} {systematic map} {systematic scoping}

“test case” “test suite” “test code”

“test case” “test suite” “test code” “test script” “test specification” “natural language test” “test” “testing”

OR

OR

AND

AND

1st search 2nd search 3rd search Garousi & Mäntylä

Figure 2. Comparison of the search terms used in the search strings of the two tertiary studies,
the TAQ study [7] and the ST study [8]

of the searches (explanation on how these 58 papers were collected is in Section 4.2). Hence,
to verify if the first search was adequate, we screened the titles and abstracts of the 39
SLRs/SMSs, which were not found by the first search but by the ST study only.

Among the 39 SLRs/SMSs, several are on different topics such as software product
line testing, testing of web services, mutation testing techniques, etc. These papers used
“test” and “testing” but no term for test artifact in titles and abstracts. Since these papers
could potentially discuss test artifact quality but were not found by the first search, we
considered it as a potential issue of the first search. In other words, the first search might

220103-7

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

exclude relevant papers having “test” or “testing” but no term for test artifact in their
titles, abstracts or keywords.

To verify the above hypothesis, we conducted a second search, which is a pilot search
in Scopus in October 2019, including the additional search terms “test” and “testing”.
As a result, the second search returned 131 papers (see Table 2), which contained more
relevant papers than the first search. Hence, we added the additional search terms “test”
and “testing” in the third search to reduce the risk of missing relevant papers. Also,
the third search included another search term, “systematic literature survey”, which was
inspired by the ST study’s search terms. In other words, the third search was built based
on the first search and the confirmed hypothesis from the second search (pilot search). The
third search was conducted in Scopus in October 2019 and restricted to one subject area,
“Computer Science”, to reduce the search noise. The third search returned 572 papers, as
shown in Table 2.

The overlaps between the search results are presented in Figure 3. All the numbers in
the figure refer to papers after deletion of duplicates and obviously irrelevant papers, i.e.,
papers that are not about software engineering or computer science based on their titles,
abstracts and keywords. The red box shows the distribution of 48 out of the complete set
of 49 selected papers among the searches. One of the 49 selected papers was extracted from
the ST study’ search result (the decision on selecting papers from the ST study’ search
result is explained in Section 4.2); hence, it is not shown in the figure.

As shown in Figure 3, out of the 82 papers returned by the first search, 8 (1 + 7)
papers were included in the QGS, and 26 (3 + 7 + 16) eventually turned out relevant.
By considering the first search and the third search only (since the second search result
is a subset of the third search result), the third search returned 276 (8 + 14 + 55 + 199)
additional papers, of which a further 4 (1 + 3) were included in the QGS, and a further
22 (8 + 14) turned out as relevant. Based on the above observation, we could see that
most of the QGS papers were found by the first and third search (in total, 12 out of 13
QGS papers). It also turned out that we almost doubled the number of relevant papers
with the third search. Therefore, we consider including the first and third search as a fair
trade-off for this study in terms of the effort required to read papers and the returned
benefit (identified relevant papers plus QGS papers). Nevertheless, the trade-off between

1st search
(82)

3rd search (340)

15

199

2nd search (114)

29

12

55

3 (0) 7 (1) 8 (1)

16 (7) 14 (3)

Figure 3. Overlaps between three searches in the tertiary study on test artifact quality
(TAQ study) [7]. The red box illustrates the distribution of the selected papers among searches,

and the numbers in parentheses show the number of papers belonging to the QGS

220103-8

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

Table 3. Recall and Precision of searches in the tertiary study on test artifact quality
(TAQ study) [7]

Considering all 58 SLRs and SMSs from the ST study’s initial set as the QGS

1st search 3rd search
Recall 32.76 75.86
Precision 15.70 7.73

Considering only the 13 relevant SLRs and SMSs from the ST study’s initial set as the
QGS (see also the last column in Figure 1)

1st search 3rd search
Recall 61.54 92.31
Precision 6.61 2.11

Considering the 20 relevant SLRs and SMSs found by the 1st search but not by the ST
study as the QGS

First-step forward snowballing
Recall 50.00
Precision 1.20

recall and precision could be different depending on the goal of the targeting SLS. For
example, if researchers aim to compare different techniques in software engineering, a high
recall might be more desired than a high precision [1].

4.2. Search performance evaluation using a QGS

In this section, we describe how a QGS was constructed in the TAQ study. We then explain
how the recall and precision of the first and third searches in this tertiary study were
computed based on the QGS. In this evaluation process, we focused on the first search and
third search only as the second search was actually a pilot search, and its result is a subset
of the third search’s (more details in Section 4.1).

It is worth emphasizing that we did not follow the instructions for constructing the QGS
given by Zhang et al. [5] (more details on their instructions could be found in Section 2).
Overall, the key difference is that we extracted relevant papers from the ST study [8] to
build the QGS, while Zhang et al. suggested constructing a QGS by conducting a manual
search in some publication venues with a specific time span. Our decision on how to
construct the QGS is motivated by the fact that the ST study is a peer-reviewed tertiary
study conducted by the domain experts and its topic (software testing) is related to and
broader than the TAQ study’s topic (test artifact quality). Using another literature review
to collect known relevant papers for search validation is also one of the suggestions by
Kitchenham et al. [1].

It is also necessary to mention that, although there is no information regarding the
complete set of found papers, the ST study has provided access to its initial set of 123
papers which is the result of the ST study’s authors removing clearly irrelevant papers from
their search result [8]. By analyzing the 123 papers, we found two duplicate papers (having
the same title, authors and abstract). Of the remaining 121 papers, 63 are informal/regular
surveys, i.e., reviews without research questions as stated in the ST study. Hence, we
focused on the remaining 58 (121 − 63) papers, which are SLRs/SMSs as the TAQ study
considered systematic reviews and mappings only.

220103-9

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

1st search (82)
Garousi & Mäntylä (58)

3rd search (340)

249

2

9 23

11

47

16

QGS
8 4

1

Figure 4. Overlaps between the first and third searches and the 58 SLRs/SMSs papers
from the initial set of papers in the ST study [8]. The red box illustrates the distribution

of the papers of the QGS

When considering all the 58 SLRs/SMSs papers from the initial set of papers in the ST
study [8] as the QGS, the first and third searches found 18 and 44 papers from the QGS,
respectively. The recall and precision of the two searches are relatively low, as shown in
Table 3. Since these 58 papers might contain irrelevant papers to the scope of the TAQ
study, we updated the QGS with the 13 relevant papers from the set of 58 SLRs/SMSs
papers. The 13 papers were selected according to the TAQ study’s study selection criteria
(explained in Appendix A).

The distribution of the updated QGS over the first and third searches is shown in
Figure 4. We need to note that all numbers in Figure 4 refer to papers after deletion of
duplicates, obviously irrelevant papers and informal reviews. On the one hand, the two
searches’ precision decreased as the number of QGS papers found by the searches decreased
(from 18 and 44 to 8 and 12 papers by the first and third search respectively). On the other
hand, with this more accurate QGS, the recall of the two searches increased by a significant
margin. Also, as shown in Table 3, even though the third search returns a higher reading
load than the first search, it is still superior to the first one in terms of identifying relevant
papers.

We considered two directions at this point: (1) select relevant papers from the first and
third search for data extraction; or (2) do forward snowball sampling on the 13 relevant
papers found by the ST study then select relevant papers from there. To pick an appropriate
direction, we first conducted a first-step forward snowball sampling in Scopus on the
13 papers and calculated its recall and precision using the relevant papers found by the
first search only as the QGS. We found 946 papers citing the 13 papers. The set reduced
to 832 papers after removing duplicates (same title, abstracts, and authors). This set of
832 papers includes the ST study itself. Among these 832 papers, 10 of them met the
TAQ study’s study selection criteria (explained in Appendix A). Since the 13 papers were
published between 2009 and 2015, our assumption was that forward snowball sampling on
these 13 papers should help us identify relevant papers published from 2009 onward. Hence,
we selected the 20 relevant papers published from 2009 found by the first search but not
by the ST study as the QGS. As shown in Table 3, the recall and precision of the forward
snowball sample were much lower than the ones of the third search. We might have found
more relevant papers and improved the recall if conducting a more extended snowball

220103-10

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

sampling on the 13 papers. However, considering the low possibility of getting a higher
recall than the third search and yet much more effort required for the more extended
snowball sampling, we decided to use the results of the first and third search and the initial
set of 58 SLRs/SMSs papers from the ST study for the paper selection.

5. Findings

While evaluating the performance of the first and third searches in the TAQ study (described
in Section 4.2), we also analyzed the differences in search results between the evaluated
searches and the ST study’s search. The purpose of the search result comparison is to
understand better why the searches in the TAQ study achieve certain recall and precision
and if these searches have any issues that we could fix or mitigate to improve their recall
and precision. In this section, we report our findings from this search results comparison.
The overlaps in search results between the two tertiary studies are shown in Figure 4.

Regarding the ST study’s search result, there are two things we need to remark. First,
in this search result comparison, the ST study’s search result refers to its initial set of 58
SLRs/SMSs. These 58 papers do not contain informal/regular surveys, duplicate or clearly
irrelevant papers to their study’s topic (software testing) (more details on how these 58
papers were collected are in Section 4.2). Hence, before comparing the search results, we
also removed duplicate and clearly irrelevant papers found in the first and third searches.
As a result, there were 82 and 340 remaining papers, respectively, from the first and third
search. Second, there is no information regarding when the ST study concluded its search.
As the latest publication date of the papers found by the ST study’s search is October
2015, we assume that the search found papers published until October 2015.

5.1. The first search and the ST study’s search

As shown in Figure 4, the first search found 63 (16 + 47) papers not included in the ST
study’s search result. Among those 63 papers, 26 papers were published before October
2015, which are within their assumed search period. The first possible explanation is that
the first search included five search engines and databases (see Table 2), while the ST study
searched on Scopus and Google Scholar. Indeed, six out of those 26 papers are from ACM
and Science Direct. Second, the first search did not include the search term “software”,
which was mandatory in the ST study’s search. Due to this difference in the search string
construction, out of the 26 papers, the first search found 11 more papers. One interesting
note is that the remaining nine papers (26 − 6 − 11) could be found when applying the ST
study’s search string on Scopus and Google Scholar. It is possible that those papers were
not indexed by Scopus or Google Scholar by the time the ST study’s search was conducted.

The ST study found 39 papers (4 + 23 + 1 + 11) (as shown in Figure 4) that were not
included in the first search’s result. Among these 39 papers, 33 of them did not have any
terms for test artifact in title, abstract and keywords which is required by the first search.
The remaining six papers (39 − 33) did not use the term “systematic” in title, abstract
and keywords; hence, they were also excluded by the first search, which only looked for
systematic reviews.

220103-11

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

5.2. The third search and the ST study’s search

As shown in Figure 4, the third search found 296 (249 + 47) papers that were not in
the ST study’s search result. Among these 296 papers, the first search found 47 of them.
The possible reasons for the ST study’s search result not containing those 47 papers are
explained in Section 5.1. For the remaining 249 (297 − 47) papers, 84 were published before
October 2015, which meets their assumed search period. Out of these 84 papers, 31 did not
use the term software in their titles, abstracts or keywords, which is one of the required
search terms of the ST study. However, the other 53 papers (84 − 31) meet the ST study’s
search string. We suspect that Scopus did not index these 53 papers by the time the ST
study conducted its search.

The ST study found 14 papers (2 + 1 + 11) (as shown in Figure 4) which the third
search’s result did not include. Six out of the 14 papers were not peer-reviewed; hence, they
are out of the scope of this comparison. Among the other eight papers (14 − 6) which were
peer-reviewed, three of them did not use “systematic” in their titles, abstracts or keywords,
and two of them [18, 19] were included under the subject area “Engineering” in Scopus.
The third search did not find these five papers as the search accepted only systematic
reviews and was limited to the subject area “Computer Science” in Scopus. The other three
papers (8 − 3 − 2) are not indexed in Scopus but other search engines/databases (Google
Scholar, INSPEC, ACM), and two of them were found by the first search, which included
those databases and search engines. We discuss the differences between the two searches
next.

5.3. The first search and the third search

The first search found 18 papers (16 + 2 as shown in Figure 4) which the third search’s
result did not contain. Among those 18 papers, five of them were not categorized under the
subject area “Computer Science” but different subject areas (three papers [20–22] under
“Engineering”; one paper [23] under “Business, Management and Accounting/Decision
Sciences/Social Sciences”; and one paper [24] under “Multidisciplinary”). The other 13
papers (18 − 5) were found in other databases/search engines by the first search (six
papers in Google Scholar, four papers in ACM, one paper each in IEEE, Wiley, and Web
of Science). Hence, the main reasons are the databases/search engines selection and the
subject area(s) selection in Scopus.

The third search found 276 papers (249 + 23 + 4) (as shown in Figure 4) which the first
search missed. It could be due to the more inclusive search strategy of the third search as
it had extra search terms (“test”, “testing”, and “systematic literature survey”, as shown
in Figure 2).

6. Discussion

In this section, we first discuss issues relating to search string construction, then issues
relating to using a QGS for search evaluation that we have discovered while evaluating the
searches’ performance in the TAQ study [7].

220103-12

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

6.1. Issues in search string construction

Based on our findings described in Section 5, we identified the following issues with search
string construction in SLSs.

The first issue is about using generic search terms in SLSs. Based on the differences
in search results between the TAQ study [7] and the ST study [8], we found that adding
generic terms (software in the case of the TAQ study) with the Boolean operator AND to
a search string increases the risk of missing relevant papers. The problem is that in research
areas where certain contexts are assumed, some keywords might not be explicitly stated
since they are implied. It is the term software in the case of research in software develop-
ment/quality/engineering. Hence, “AND software” just narrows down the search result as
not all papers in software engineering use the term software in title-abstract-keywords. This
also supports our decision of not including “AND quality” to the search strings. Oppositely,
if generic terms are added to search strings with the Boolean operator OR, researchers
likely have more noise in their search results. We, therefore, regard “AND software” and
“AND quality” as unnecessary excluders due to their threat of excluding relevant papers,
while we consider “OR software” an unnecessary includer due to its risk of retrieving
non-relevant material.

The second issue we have identified is about search filters in Scopus. Search filters
can be applied to various meta-data of a publication, such as language, document type,
publication year, etc. By using search filters, researchers can limit their search results, for
example, to papers written in English and published in the year 2021 only. In the case of
the TAQ study case, we focus on the subject area filter in Scopus. We found that some
papers were not categorized correctly according to their subject areas. For example, the ST
study found two papers [18, 19] that could not be found by the third search (as discussed
in Section 5.2). These papers were classified under the subject area Engineering instead of
Computer Science. Likewise, the first search found five papers [20–24] that were not found
by the third search. These five papers were classified wrongly in different subject areas
(see Section 5.3) instead of Computer Science. This misclassification could be origin in the
algorithm for detecting papers’ subject areas in Scopus, inappropriate classification and
keywording by the papers’ authors, or a combination of both.

The third issue is search repeatability. We could not replicate the search result by the
ST study in Scopus using their search string. The search repeatability issue has been well
discussed in the literature [3, 11, 14, 16, 25]. We referred to the checklist proposed by Ali
and Usman [3] for evaluating the search reliability of the ST study’s search process. As
a result, we found that some details the ST study could have reported to increase their
search repeatability. Those details include search period, database-specific search strings,
additional filters, deviation from the general search string, and database-specific search
hits. The missing information and the potential inconsistencies in the API search of the
search engine (Scopus in this case) could be the reasons for issues in search repeatability.

6.2. Issues related to using Quasi-gold standards

We have identified two issues related to using a quasi-gold standard (QGS) for search
validation.

The first issue is about the QGS characteristics. To the best of our knowledge, several
aspects have not been discussed sufficiently in the literature [1, 5]. Kitchenham et al. [1]
described different approaches to constructing a QGS followed by a discussion on QGS size.

220103-13

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

Zhang et al. [5] proposed a detailed guideline on building a QGS using a manual search
on specific publication venues for a certain time span. We argue that QGS size is not the
only aspect on which researchers should focus. We discuss this further and propose some
suggestions to overcome this issue in Section 7.1.

The second issue with using the QGS for search validation is about the quality of the
QGS itself. By its nature, the QGS is only an approximation of a complete set of relevant
papers. However, by conducting more than one search, we could triangulate issues in the
QGS and make informed decisions about modifying our search string. Comparing our
search results to the ST study’s search result (the basis for our QGS), we could identify
the root causes for not finding certain relevant papers included in the QGS. This helped us
establish whether our searches were simply not good enough with respect to the QGS or
whether there were acceptable reasons for missing a paper. Additionally, the search result
comparisons helped us to understand why the QGS did not contain certain relevant papers
found by our searches. Thus, it allows us to identify shortcomings of the QGS and have
more confidence in the quality of the QGS than relying solely on the recall and precision
results.

7. Recommendations for QGS construction and search validation

As discussed in Section 6.2, we argue that recall and precision are important for assessing
a search result but that they should not be the only criteria. It is also critical to analyze
the root causes for not finding papers that the search should have found by looking into
those papers of the QGS that the search missed. It might turn out that these papers
did not use any of the search terms in the title, abstract or keywords or that they used
different terminologies. The search can then be modified to ensure that one or more of
those papers can be found. However, which root causes are addressed (and how) depends
on the potential return on investment, i.e., the number of additional relevant papers that
may potentially be found in relation to the total increase in the size of the search result.
We recommend playing through various scenarios and assessing their potential return on
investment with the help of precision and recall.

To address the root causes originating in the QGS, we first describe the desirable
characteristics of a good QGS in Section 7.1 and then propose recommendations for
constructing a QGS in Section 7.2. For root causes originating in the obtained search
results, we propose an additional analysis step in Section 7.3. These suggestions are
based on our findings (reported in Section 5 and Section 6) when evaluating the searches’
performance in the TAQ study [7].

7.1. QGS desirable characteristics

Fundamentally, a QGS needs to be a good “representative” of the gold standard, and
having a good QGS is vital for search validation in SLSs. In this section, we describe
desirable characteristics of a good QGS. The characteristics are based on our experience
from using QGS [7, 26] and Wohlin et al. [27] discussion on search as a sampling activity
when the entire population (i.e., the set of all relevant papers) is unknown. Moreover, we
draw inspiration from the snowball sampling guidelines for a good initial set to propose
recommendations for arriving at a good QGS [28].

220103-14

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

The main characteristics of a QGS discussed in the SE literature are relevance and
size [1, 5]. For example, Kitchenham et al. [1] suggest indications for acceptable QGS sizes
for various SLS types. However, as it is impossible to have true gold standards for most
SLSs in SE [5] and the overall population of relevant papers is unknown [27], we argue that
size alone is insufficient as an indicator of the quality of a QGS. We, therefore, introduce
a third desirable characteristic, diversity, and present the complete list of QGS desirable
characteristics as follows:
1. Relevance

Each paper in the QGS should be relevant to the targeted topic. Any paper added to
the QGS should meet the inclusion criteria of the ongoing SLS. In the TAQ study [7],
we used the selected papers from a related SLS as a QGS after confirming that those
papers met the selection criteria of the study.

2. Size
Unlike relevance and diversity, where general suggestions have been provided, giving
a recommendation for the size for a QGS is difficult since the “target population” is
unknown. The number of relevant papers for an SLS can vary widely. The SLSs in
Kitchenham et al. SLR of SLRs in software engineering [29] included 6–1485 relevant
papers with a median of 30.5 papers. The tertiary study by da Silva et al. [30] lists
a range from 4–691 (median: 46). Since the focus of an SLS can be general or narrow,
depending on the topic of interest and the type of research questions, providing a general
recommendation for the minimal size of a QGS seems impossible.

3. Diversity
Diversity entails that a good QGS should comprise papers extracted from independent
clusters representing different research communities, publishers, publication years and
authors. This is important as even a large, and relevant QGS will be ineffective to
objectively assess a search strategy if it is limited in its coverage.

7.2. QGS construction

There are neither fixed thresholds for quality indicators nor a deterministic way of arriving
at a good QGS. However, the following recommendations2 for identifying and selecting
suitable papers for inclusion in a QGS provide heuristics that will increase the likelihood
of creating a diverse QGS that can help determining ‘is my search good enough’ more
objectively.
1. Identification: There are several approaches researchers could consider to locate

relevant papers for their QGS construction:
– Conduct manual search. Researchers first manually identify relevant venues (confer-

ences, workshops, and journals) and researchers. After that, researchers can manually
search for relevant papers by reading titles of papers in the selected venues (most
common sources are Google Scholar, Scopus, DBLP) and of the selected authors.

– Conduct informal search in electronic data sources. We recommend that persons
conducting the informal search should be independent researchers. An independent
researcher here is not involved in the study and has not participated in the design
of the search strategy for the study. We recommend these additional considerations
because the search terms used in the informal search might compromise the effec-
tiveness of the QGS as a validation mechanism. For example, if the same search

2The recommendations in Section 7.2 are a synthesis of existing guidelines [1, 3, 11, 28] and our own
experience as reported in this study and from using QGS in other systematic literature reviews [26].

220103-15

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

terms are used for the informal search and the actual systematic search, then the
recall is likely 100% since the actual search will probably find the same relevant
papers as the informal search but not more than that. Hence, the 100% recall cannot
guarantee that researchers achieve an acceptable level of search completeness. We
further recommend that researchers should use citation databases like Scopus and
Google Scholar in this step to avoid publisher bias.

– Use expert’s recommendation. Researchers could have an expert in the field (not
involved in the search strategy design) recommend papers for a QGS for the current
study. The experts should have access to the research questions and the selection
criteria of the study.

– Use an existing SLS. An existing SLS could be selected as a source of papers for
the QGS. Since existing SLSs have been peer-reviewed, and their study selections
typically have been validated, researchers will save time using this approach compared
to the above approaches. However, the topics of existing SLSs will usually differ at
least slightly from the topic of the new SLS (otherwise, a new SLS would not be
necessary). The QGS might, therefore, not cover the research questions in the new
SLS sufficiently. Hence, researchers should critically review the search and selection
strategy of the selected SLS. We recommend using the checklist provided by Ali and
Usman [3] to assist this evaluation. If the SLS had major weaknesses in search, we
suggest supplementing the construction of the QGS with the above approaches.

2. Selection: The researchers should evaluate the potentially relevant papers identified
through the above sources for relevance. We suggest using the selection criteria of the
targeted SLS to select papers that should comprise the QGS.

3. When to stop: An exhaustive search of the potential sources listed above is impractical.
After all, this is not the actual search but rather an attempt to create a good validation
set for the search strategy. We, therefore, recommend that consulting a combination
of sources and selection should be done iteratively until a sufficiently large, relevant
and diverse QGS is obtained. What is sufficiently large will depend on the research
questions and the breadth of the target research area. Due to the reasons discussed
above (in Section 7.1), we do not recommend any range here and leave it to the
subjective judgment of the researchers. Nevertheless, we argue that the more diverse
a research area is, the larger a QGS is needed. As an indication of size, researchers
should investigate the numbers of selected studies in existing SLSs in the area or the
sizes of QGSs in related SLSs. Furthermore, if the QGS will be split for both search
string formation and validation, a larger QGS will be required. Overall, a good QGS
should be diverse, not too small, and relevant for answering the research questions.
Primarily, the resulting QGS should have papers from different research communities,
publishers, publication years, and authors.

7.3. Additional recommendation for search validation using QGSs

Kitchenham et al. [1] have discussed two approaches to validate a search strategy via search
completeness (more details in Section 3). Researchers could use the personal judgment
of experienced researchers to evaluate the search completeness. Since this approach is
subjective, it might be challenging to quantify the search completeness level. The other
approach is to measure the completeness level by calculating the precision and recall of
searches based on a pre-established QGS. With the second approach, the completeness
assessment becomes objective within the limits of the quality of the QGS. This means that

220103-16

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

the quality assessment of the search string is connected with the quality assessment of the
QGS. In other words, if the QGS was not constructed properly, even a high recall cannot
guarantee that the search result is good.

Following the above guidelines will increase our confidence in the precision and recall
values. While meeting certain search recall and precision thresholds (see [1, 5]) are necessary,
it is also essential to understand how the search achieves these recall and precision scores.
Hence, we suggest researchers perform the additional step of analyzing the differences
between the search results and the QGS. This allows researchers to identify reasons for
missing relevant papers with the automated search that are included in the connected QGS,
and consequently improve their search strategy or document the limitations. For example,
we found that it is necessary to be aware that subject areas categorization in some search
engines might not categorize papers adequately. When comparing the search results with
the QGS, we noticed that we could not find several papers as they were assigned to the
wrong categories.

To facilitate this additional step, we suggest that researchers should use tools to analyse
the search overlap. The metadata in search results is not consistently formatted across
various data sources and often has minor differences like inconsistent capitalization and
differences in encoding of special characters. Therefore, care must be taken to clean the
data. Reference management tools like Zotero3 or EndNote4 can be used to compare the
search results. Furthermore, the use of visualizations like Figures 3 and 4 helps to get
a better understanding of comparative performance of various search strings. There are
tools that can assist researchers in analyzing and visualizing lists intersections, such as one
developed by the Bioinformatics and Evolutionary Genomics Group5 or InteractiVenn6 by
Heberle et al. [17] that we used in this study.

7.4. Potential limitations

The recommendations and additional search validation steps proposed in this study are
closely based on our experience while performing automated database searches in a tertiary
study on test artifact quality [7]. In this tertiary study, we used another related tertiary
study [8] to construct a QGS for the search validation. There could be other issues if we
had used another search strategy or a different QGS construction approach. Therefore, the
list of issues is not exhaustive, and the recommendations in this paper may need to be
supplemented further.

For example, our recommendations for search validation using QGSs might not apply
for SLSs with the traditional snowball sampling approach, i.e., all known relevant papers
are used as the initial set. In other words, the QGS and the initial set are the same. Hence,
the recall will always be 100% but not useful to validate the search completeness. However,
the recommendations could become applicable if researchers split the whole set of known
relevant papers into two subsets. In this case, one subset of known relevant papers will be
used as the initial set for snowballing search, while the other will be used to validate the
snowballing search results as the QGS.

3Zotero, a free and open-source reference management tool https://www.zotero.org/
4EndNote, a commercial reference management tool https://endnote.com/
5http://bioinformatics.psb.ugent.be/webtools/Venn/
6http://www.interactivenn.net/

220103-17

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

8. Conclusions and lessons learned

Search incompleteness, i.e., the absence of relevant papers in the results produced by the
employed search strategy, has been recognized as one of the most commonly discussed
validity threats of systematic literature studies (SLSs). This study reports our experience
with mitigating this validity threat while performing searches in a tertiary study on test
artifact quality [7]. We constructed a quasi-gold standard (QGS) by extracting relevant
papers from another relevant tertiary study [8] published several years before ours. While
evaluating the tertiary study’s searches using the QGS, we have found new issues with the
search string construction and the search validation approach using a QGS. The issues
could affect search completeness in SLSs. They relate to using generic search terms with
the Boolean operator AND, the subject area filter in Scopus, and the QGS quality.

Consequently, we proposed extending the current search validation approach by the
analysis step of the automated search validation results as well as recommendations on the
QGS construction. The main argument of the analysis step of the search validation results
is that recall and precision is not enough to validate an automated search. Researchers
should analyze reasons for the automated search to miss relevant papers included in the
QGS. Likewise, addressing the concern of QGS quality that has not been well studied in the
literature, our recommendations on the QGS construction step helps researchers construct
a high-quality QGS, i.e., a good “representative” of the gold standard. Ultimately, the
extended guideline and recommendations can support researchers achieve a more reliable
search process. To validate and improve the extended guidelines for search validation, we
will collect feedback from the software engineering research community via interviews and
surveys.

Acknowledgment

This work has been supported by ELLIIT, a Strategic Area within IT and Mobile Com-
munications, funded by the Swedish Government. The work has also been supported by
research grant for the VITS project (reference number 20180127) from the Knowledge
Foundation in Sweden.

References

[1] B.A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based Software Engineering and
Systematic Reviews. Chapman and Hall/CRC, 2015.

[2] N.B. Ali and M. Usman, “A critical appraisal tool for systematic literature reviews in software
engineering,” Information and Software Technology, Vol. 112, 2019, pp. 48–50.

[3] N.B. Ali and M. Usman, “Reliability of search in systematic reviews: Towards a quality
assessment framework for the automated-search strategy,” Information and Software Technol-
ogy, Vol. 99, Jul. 2018, pp. 133–147. [Online]. https://linkinghub.elsevier.com/retrieve/pii/
S0950584917304263

[4] M. Usman, N.B. Ali, and C. Wohlin, “A quality assessment instrument for systematic literature
reviews in software engineering,” CoRR, Vol. abs/2109.10134, 2021.

[5] H. Zhang, M. Babar, and P. Tell, “Identifying relevant studies in software engineering,”
Information and Software Technology, Vol. 53, No. 6, 2011, pp. 625–637.

[6] O. Dieste and A.G. Padau, “Developing search strategies for detecting relevant experiments for
systematic reviews,” in Proceedings of the 1st International Symposium on Empirical Software
Engineering and Measurement, 2007, pp. 215–224.

220103-18

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

[7] H.K.V. Tran, M. Unterkalmsteiner, J. Börstler, and N. bin Ali, “Assessing test artifact quality
– A tertiary study,” Information and Software Technology, Vol. 139, 2021.

[8] V. Garousi and M. Mäntylä, “A systematic literature review of literature reviews in software
testing,” Information and Software Technology, Vol. 80, 2016, pp. 195–216.

[9] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping
studies in software engineering: An update,” Information and Software Technology, Vol. 64,
2015, pp. 1–18.

[10] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou, “Identifying,
categorizing and mitigating threats to validity in software engineering secondary studies,”
Information and Software Technology, Vol. 106, 2019, pp. 201–230.

[11] A. Ampatzoglou, S. Bibi, P. Avgeriou, and A. Chatzigeorgiou, “Guidelines for managing threats
to validity of secondary studies in software engineering,” in Contemporary Empirical Methods
in Software Engineering, M. Felderer and G.H. Travassos, Eds. Springer, 2020, pp. 415–441.

[12] J. Bailey, C. Zhang, D. Budgen, M. Turner, and S. Charters, “Search Engine Overlaps: Do
they agree or disagree?” in Proceedings of the 2nd International Workshop on Realising
Evidence-Based Software Engineering, May 2007, p. 2.

[13] S. Imtiaz, M. Bano, N. Ikram, and M. Niazi, “A tertiary study: experiences of conducting
systematic literature reviews in software engineering,” in Proceedings of the 17th International
Conference on Evaluation and Assessment in Software Engineering, 2013, pp. 177–182.

[14] J. Krüger, C. Lausberger, I. von Nostitz-Wallwitz, G. Saake, and T. Leich, “Search. review.
repeat? an empirical study of threats to replicating SLR searches,” Empirical Software Engi-
neering, Vol. 25, No. 1, 2020, pp. 627–677.

[15] L. Chen, M.A. Babar, and H. Zhang, “Towards an evidence-based understanding of electronic
data sources,” in Proceedings of the 14th International Conference on Evaluation and Assessment
in Software Engineering. BCS, 2010, pp. 1–4.

[16] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats to validity of systematic
literature reviews in software engineering,” in Proceedings of the 23rd Asia-Pacific Software
Engineering Conference, 2016, pp. 153–160.

[17] H. Heberle, G.V. Meirelles, F.R. da Silva, G.P. Telles, and R. Minghim, “Interactivenn:
A web-based tool for the analysis of sets through venn diagrams,” BMC bioinformatics, Vol. 16,
No. 1, 2015, pp. 1–7.

[18] J.R. Barbosa, A.M.R. Vincenzi, M.E. Delamaro, and J.C. Maldonado, “Software testing in
critical embedded systems: A systematic review of adherence to the do-178b standard,” in
Proceedings of the 3rd International Conference on Advances in System Testing and Validation
Lifecycle, 2011, pp. 126–130.

[19] A. Sharma, T.D. Hellmann, and F. Maurer, “Testing of web services – A systematic mapping,”
in Proceedings of the 8th IEEE World Congress on Services, 2012, pp. 346–352.

[20] T.K. Paul and M.F. Lau, “Redefinition of fault classes in logic expressions,” in Proceedings of
the 12th International Conference on Quality Software, 2012, pp. 144–153.

[21] I.U. Munasinghe and T.D. Rupasinghe, “A supply chain network design optimization model
from the perspective of a retail distribution supply chain,” in Proceedings of the Manufacturing
and Industrial Engineering Symposium: Innovative Applications for Industry, 2016.

[22] J. Ahmad and S. Baharom, “A systematic literature review of the test case prioritization
technique for sequence of events,” International Journal of Applied Engineering Research,
Vol. 12, No. 7, 2017, pp. 1389–1395.

[23] S. Pradhan, M. Ray, and S. Patnaik, “Coverage criteria for state-based testing: A systematic
review,” International Journal of Information Technology Project Management, Vol. 10, No. 1,
2019, pp. 1–20.

[24] P.K. Arora and R. Bhatia, “A systematic review of agent-based test case generation for regres-
sion testing,” Arabian Journal for Science and Engineering, Vol. 43, No. 2, 2018, pp. 447–470.

[25] B. Kitchenham, P. Brereton, Z. Li, D. Budgen, and A. Burn, “Repeatability of systematic
literature reviews,” in Proceedings of the 15th Annual Conference on Evaluation and Assessment
in Software Engineering, 2011, pp. 46–55.

220103-19

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

[26] N.B. Ali, E. Engström, M. Taromirad, M.R. Mousavi, N.M. Minhas et al., “On the search
for industry-relevant regression testing research,” Empir. Softw. Eng., Vol. 24, No. 4, 2019,
pp. 2020–2055.

[27] C. Wohlin, P. Runeson, P. Da Mota Silveira Neto, E. Engström, I. Do Carmo Machado
et al., “On the reliability of mapping studies in software engineering,” Journal of Systems and
Software, Vol. 86, No. 10, 2013, pp. 2594–2610.

[28] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in
software engineering,” in Proceedings of the 18th international conference on evaluation and
assessment in software engineering, 2014, pp. 1–10.

[29] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey et al., “Systematic
literature reviews in software engineering – A systematic literature review,” Information and
Software Technology, Vol. 51, No. 1, 2009, pp. 7–15.

[30] F. Da Silva, A. Santos, S. Soares, A. Frana, C. Monteiro et al., “Six years of systematic
literature reviews in software engineering: An updated tertiary study,” Information and
Software Technology, Vol. 53, No. 9, 2011, pp. 899–913.

220103-20

Huynh Khanh Vi Tran et al. e-Informatica Software Engineering Journal, 16 (2022), 220103

A. Study Selection Criteria

Our study selection inclusion/exclusion criteria are described as follows:
1. Phase 1: applied on authors, title and abstract

– Exclude papers that:
(E1) are duplicate papers;
(E2) are not systematic studies7;
(E3) are not peer reviewed;
(E4) are outside computer science or software engineering.

2. Phase 2: applied on title and abstract
– Exclude papers that:

(E5) are not about software testing.
– Include papers that fulfil all of the following:

(I1) are systematic literature reviews (SLR), quasi-SLRs, Multi-vocal literature
reviews, or systematic mappings;

(I2) discussed or potentially discussed quality of test artifacts
3. Phase 3: applied on full text

– Exclude studies that:
(E6) Are duplicate studies (two different studies using the same data)

– Include studies which discussed any of the following:
(I3) definition of the quality of test artifacts;
(I4) quality characteristics of test artifacts;
(I5) quality attributes of test artifacts;
(I6) quality metrics of test artifacts;
(I7) tools, methods, approaches, frameworks to assess test artifacts’ quality;
(I8) guidelines, checklists to write test artifacts.

7Garousi and Mäntylä’s [8] initial set of 121 papers contained 63 informal surveys without research
questions. Since we only were targeting systematic studies, these were excluded.

220103-21

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220104, DOI: 10.37190/e-Inf220104

Examining the Predictive Capability of
Advanced Software Fault Prediction Models

An Experimental Investigation Using
Combination Metrics

Pooja Sharma∗, Amrit Lal Sangal∗
∗Dr. B R Ambedkar National Institute of Technology, Jalandhar, India

poojanitjal@gmail.com, sangalal@nitj.ac.in

Abstract
Background: Fault prediction is a key problem in software engineering domain. In recent
years, an increasing interest in exploiting machine learning techniques to make informed
decisions to improve software quality based on available data has been observed.
Aim: The study aims to build and examine the predictive capability of advanced fault
prediction models based on product and process metrics by using machine learning
classifiers and ensemble design.
Method: Authors developed a methodological framework, consisting of three phases,
i.e., (i) metrics identification (ii) experimentation using base ML classifiers and ensemble
design (iii) evaluating performance and cost sensitiveness. The study has been conducted
on 32 projects from the PROMISE, BUG, and JIRA repositories.
Result: The results shows that advanced fault prediction models built using ensemble
methods show an overall median of F -score ranging between 76.50% and 87.34% and the
ROC(AUC) between 77.09% and 84.05% with better predictive capability and cost sensi-
tiveness. Also, non-parametric tests have been applied to test the statistical significance
of the classifiers.
Conclusion: The proposed advanced models have performed impressively well for inter
project fault prediction for projects from PROMISE, BUG, and JIRA repositories.

Keywords: product and process metrics, classifiers, ensemble design, software
fault prediction, software quality

1. Introduction

Software fault prediction has been an important research topic in the software engineering
field for more than three decades, increasingly catching the interest of researchers [1, 2].
According to IEEE terminology [3] the term fault is used to indicate an incorrect step,
process, or data definition in a computer program (i.e., a BUG). In the literature, authors
have addressed the software fault prediction (SFP) problem with two viewpoints, i.e.,
in the first viewpoint, they proposed new method or method combinations to increase
fault prediction performance. In the second viewpoint, they used new parameters to
present the most influential metrics for fault prediction. Based on first perspective many
fault prediction approaches have been proposed in literature and most of these papers

© 2022 The Authors. Published by Wrocaw University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 27 Oct. 2020; Revised: 02 Dec. 2021; Accepted: 07 Dec. 2021; Available online: 14 Feb. 2022

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

categorize a software module faulty or non-faulty. Unfortunately, fault-proneness of software
components classification remains a largely unsolved problem [2]. In order to address this
issue, researchers have been increasingly using sophisticated techniques and we can say
that the fault prediction is going towards novel and more attractive directions, like the
use of machine learning, deep learning or unsupervised techniques [4–6]. The usage of
machine learning algorithms has increased in the last decade and is still one of the most
popular methods for defect prediction [4, 6–10]. According to Lessmann et al. [11] there is
a need to develop more reliable research procedures before we can have confidence in the
conclusion of comparative studies of software prediction models. Thus, in the present study
we aim to consider and evaluate the performance of different classifier models and not any
particular classifier. Further, application of ensemble techniques has been reported by the
researchers [4, 8, 12] for improving the accuracy of fault prediction. Moreover, the diversity
of classifiers, while building the ensemble model, should also be investigated to improve
the effectiveness of the ensemble designs [9]. This motivated us to design ensembles for
improving predictive capability of classifiers.

As regards to the second viewpoint, considerable amount of the research has been
undertaken in which authors have used software metrics extracted from the code to unveil
whether a software component is fault prone or not. It has been observed that fault
estimation models are designed mainly based on product metrics in literature [13–16], but
the models which are build using a combination of product and process metrics are little
known [17, 18]. Though some authors [19, 20] has emphasized about the usage of both
product and process metrics in their works. Madeyski and Jureczko [18], in their research,
determined that process metrics provide information for fault proneness. The usage of
process metrics to ascertain the faults possibly results in superior outcomes than only with
the product metrics. They emphasized the need to conduct further studies and establish
evidence for developing such advanced models. Radjenovic et al. [19] in their SLR, stressed
finding ways to measure and evaluate process-related information for fault proneness. Wan
et al. [19] in their study on perceptions, expectations, and challenges in defect prediction,
concluded that software practitioners prefer rational, interpretable, and actionable metrics
for defect prediction. It is also observed from the literature studies that not only process
metrics have been shown to be superior to product metrics, but also alternative features
have been proposed on the basis of developer-related factors, code smells, etc. [21–24]. This
calls for further studies to examine the association between metrics and fault proneness to
provide meaningful insights for making informed decisions. To this effect, the authors in
the present study aimed to develop advanced models for software fault prediction, which
utilises combination metrics. After finding a suitable set of product metrics, advanced fault
prediction models are created using process metrics one at a time approach.

Thus, to motivate the need for development of advanced models for fault prediction
authors in the present study developed a research framework which consists of three
phases. In Phase-I, the metrics were identified after performing pre-processing and feature
extraction on the datasets. In phase-II, experimentation is carried out by training and
testing various models using machine learning classifiers, i.e., Naive Bayes (NB), Decision
Tree (DT), Multilayer Perceptron (MLP), Random Tree (RT), and Support Vector Machine
(SVM). To estimate the performance of the advanced models, an assessment criterion
based upon accuracy, root mean square error (RMSE), F -score, and the area under curve
AUC(ROC) has been applied. In phase-III, rather than relying on the outcome of base
classifiers, authors used the ensemble approach to combine multiple classifiers to further
improve the performance, particularly fault-detection abilities. Also, the cost sensitiveness

220104-2

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

of the proposed best models is examined. The comparison of results confirms the predictive
capability of proposed classifiers for developing advanced fault prediction models.

Thus, the significant contributions of the work are as follows:
1. Development of learning scheme consisting of both base and ensemble learning classifiers.
2. Building and examining the predictive capability of advanced fault prediction models.
3. Evaluating the cost sensitiveness of the proposed ensemble-based classifier using a cost

evaluation framework.
The work presented in the study is reported as follows. Section 2 offers related research.

Section 3 presents a description of the proposed framework, research questions, dataset
selection, feature extraction, selection, normalization procedure, classifier selection, and
performance measurement indices. Section 4 presents the experimental design and Section 5
presents the results. Section 6 presents threats to validity, and Section 7 presents the
conclusions.

2. Related Work

Over the preceding two decades, software researchers have shown great prominence in fault
prediction studies, as evident from work dealing with the development of fault prediction
models. Table 1 presents the state of the art and proposed benchmark solutions. The
contributions provided by the researchers in recent years are summarised based on the
software metrics (product, process, change) and techniques used to tackle the software
fault prediction problem. Malhotra and Jain [8] provided empirical comparison of software
defect prediction models developed by using various boosting based ensemble methods on
three open source JAVA projects. Ghotra et al. [25] studied the impact of classification
techniques on the performance of defect prediction models. Yucalar et al. [26] conducted
experiments using 15 software projects from the PROMISE repository to demonstrate that
ensemble predictors might improve fault detection performance to some extent. Qiao et al.
[16] proposed deep learning techniques to predict defects in a software system. The study
by Malhotra [15] uses a logistic regression-based classifier on object-oriented metrics data
set to predict the software fault proneness. Laradji et al. [27] demonstrated the positive
effects of combining feature selection and ensemble learning on the performance of defect
classification.

Comprehensive surveys on fault prediction were presented by Catal and Diri [28], Li
Zhiqiang et al. [1]; Matloob et al. [9] and Radjenovic et al. [19] in the context of prediction
models, modelling techniques and the metrics used. According to Radjenovic et al. [19],
in the literature on fault prediction studies, process metrics account for 24%, source code
accounts for 27%, and object-oriented accounts for 49%. Future studies shall apply the ways
to measure and evaluate process-related information for fault proneness along with product
metrics. Madeyski and Jureczko [17] performed an empirical study using industrial and
open-source software datasets to ascertain the process metrics, which noticeably improved
results. At the same time, they stressed upon replicating the study using machine learning
approaches, as it is unclear whether the features that work fine in one method will also be
useful in other approaches. Hence, experimentation can be conducted to investigate the
usage of the product and process-related metrics. Khoshgoftaar et al. [29] build software
quality models with majority voting using multiple training datasets. The work can be
extended using data from various software project repositories and analyse the predictive
capability of ensembles as compared to base classifiers for advanced models. Chen et al.

220104-3

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

[30] in work investigated whether different crossproject defect prediction methods identify
the same defective modules? The result can be extended by using learning approaches
based on ensemble design to further improve crossproject defect prediction performance.
In the study Zhang et al. [31], investigated the use of various algorithms that integrate
ML predictors for cross-project defect prediction. However, for examining the predictive
capability of advanced algorithms, additional experimentation is required.

Studying the presented works above, it is clear that using a pre-processing technique
on the dataset significantly affected the performance of learning algorithm. Most of the
studies lack the processing on a larger dataset so that the generalized model will be
formed. Also, class imbalance problem, needs to be addressed to improve the performance
of fault prediction [9]. The parameter combinations are often less investigated in literature
studies. Hence, it is observed that the work can be replicated by including more datasets
with focus on product and process software metrics and experimenting different scenarios
or combinations of models (simple and advanced models) to achieve the reliability and
robustness.

Further investigations shall include the use of more classifiers or classifier ensembles and
the development of advanced defect prediction models with datasets from various projects
written in different programming languages, and commercial projects from industry can
also be considered for experimentation. In the proposed work, authors presented a three
phase framework consisting of dataset pre-processing, feature extraction and selection;
learning classifiers along with cost evaluation to predict the fault-prone components.

Table 1. Literature review

Authors Metrics
considered

Study outcomes and proposed benchmark solutions

Song et al.
[2]

Product
metrics

Authors proposed and evaluated a general framework for software
defect prediction using different learning schemes for different data
sets. The future work shall include process attributes for fault
estimation. Experiments with the various available techniques can
be undertaken for generalization.

Yang et al.
[5]

Product
metrics

Authors proposed a deep learning technique to predict defect-prone
changes. The experiments can be replicated on more datasets using
other classifiers to reduce the threats to external validity.

Yibiao et al.
[6]

Change
metrics

Authors investigated the predictive power of simple unsupervised
models in effort-aware JIT defect prediction using commonly used
change metrics. The work can be checked with closed-source soft-
ware systems.

Yang et al.
[4]

– Authors hybridized various ensemble learning methods to examine
performance of just-in-time defect prediction. Experiments on more
datasets can be performed to reduce the threats due to external
validity.

Matloob
et al. [9]

– This research provides a systematic literature review on the use of
the ensemble learning approach for software defect prediction and
stressed for further analysis and comparison of results.

Pascarella
et al. [10]

Change
metrics

Authors proposed a novel fine-grained just-in-time defect prediction
model to predict the specific files, contained in a commit, that are
defective. Future work can replicate the results on a larger set of
systems in an industrial context by including other independent
variables too.

220104-4

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 1 continued
Malhotra,
Jain [8]

Product
metrics

Authors provided empirical comparison of software defect predic-
tion models developed by using various boosting based ensemble
methods on three open source JAVA projects. The future work
shall investigate more attributes for fault estimation with more
datasets for replication.

Li et al. [14] Code metrics Authors summarised the defect prediction studies focusing on
emerging topics, e.g., ML-based algorithms, data manipulation,
and effort-aware prediction. They stressed overcoming the class
imbalance problem and the development of models in defect pre-
diction.

Ghotra et al.
[25]

Product
metrics

Authors studied the impact of classification techniques on the
performance of defect prediction models using NASA dataset and
the Promise dataset. Further experiments with the various available
techniques can be undertaken for generalization.

Yucalar et al.
[26]

Product
metrics

The authors conducted experiments using 15 software projects from
the Promise repository to demonstrate that ensemble predictors
might improve fault detection performance to some extent. The
future work shall investigate more attributes for fault estimation
to provide help in successive releases.

Rathore and
Kumar [12]

Product
metrics

Authors performed an investigation on ensemble techniques for
SFP by using 21 object-oriented software metrics. Future work can
assess the ensemble techniques for the fault datasets from other
software systems and shall include additional software metrics for
generalization.

Qiao et al.
[16]

Product
metrics

The authors proposed deep learning techniques to predict defects in
a software system. In future work, more investigations by including
more projects are written in different programming languages, and
commercial projects from industry can be carried out.

Malhotra
[15]

Product
metrics

The study uses a logistic regression-based classifier on object-ori-
ented metrics data set to predict the software fault proneness.
Future investigations shall include the use of more classifiers or
classifier ensembles and the development of advanced defect pre-
diction models with cross project defect prediction datasets from
various projects.

Madeyski
and Jureczko
[18]

Product and
Process

They performed an empirical study using industrial and open source
software datasets to ascertain the process metrics, which noticeably
improved results. At the same time, they stressed upon replicating
the study using ML approaches, as it is unclear whether the features
that work fine in one method will also be useful in other approaches.
Hence, experimentation can be conducted to investigate the usage
of the product and process-related metrics.

Radjenovic
et al. [19]

Process and
Product

According to the authors, in the literature on fault prediction
studies, process metrics account for 24%, source code accounts for
27%, and object-oriented accounts for 49%. Future studies shall
apply the ways to measure and evaluate process-related information
for fault proneness along with product metrics.

Rahman,
and Devanbu
[24]

Product and
process

Authors analysed the applicability and efficiency of process and
code metrics. The future work shall replicate the findings with more
data sets from several different perspectives.

Bird,
Christian
et al. [21]

Change
metrics

Authors examined the relationship between different ownership mea-
sures and software failures in two large software projects: Windows
Vista and Windows 7.

220104-5

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 1 continued
Nucci et al.
[22]

Product and
change
metrics

Provided a developer centred bug prediction model. Work can be
extended to analyse the role of developer related factors along with
product metrics in the bug prediction field using different base line
predictors.

Palomba
et al. [23]

Process and
Product

Authors evaluated the code smell intensity by adding it to existing
bug prediction models based on both product and process metrics.
Future work shall be devoted to the analysis of the contribution
of smell-related information in the context of local-learning bug
prediction models.

Laradji et al.
[27]

Product
metrics

Authors demonstrated the positive effects of combining feature
selection and ensemble learning on the performance of defect clas-
sification. The work can be replicated by including more datasets
with focus on product and process software metrics.

Lee et al.
[32]

Process and
Product

They proposed micro-interaction metrics to study developers inter-
action by experimenting with Mylyn dataset. More experiments
need to be conducted to show that MIMs considerably improve
software defect prediction.

Juneja [33] Product Authors proposed Neuro-fuzzy framework to predict the fault in
software system based on feature based evaluation of inter-project
and intra-project modules. The effectiveness of models can be
compared using process metrics.

Wang et al.
[34]

Product
metrics

The authors performed a study using seven classifiers ensemble
methods on MDP datasets from real software projects of NASA. The
use of classifiers ensemble on multiple datasets can be experimented.

Petric et al.
[35]

Product
metrics

They used explicit diversity technique with stacking ensemble to
investigate improvement in defect prediction. The work can be
extended and the experiments should be conducted using more
classifiers and applying full parameter search in order to build
models with superior performances.

Pecorelli and
Nucci [36]

Product
metrics

Authors compared the performance of seven ensemble techniques
on 21 open-source software projects to verify how ensemble tech-
niques perform in cross and local project settings. The work can
be replicated using cross-project and within-project strategies in
larger contexts, using a richer set of independent variables.

Nucci et al.
[37]

Product
metrics

An empirical study conducted on 30 software systems indicates that
ASCI exhibits higher performances than five different classifiers used
independently and combined with the majority voting ensemble
method. Work can be extended to analyse how the proposed model
works in the context of cross-project bug prediction.

Bowles et al.
[38]

Product
metrics

Authors investigated difference in the individual defects and predic-
tion stability using RPart, SVM, Naive Bayes, and Random Forest
classifiers. They used NASA, open-source, and commercial datasets.
The work can be extended by developing advanced models using
ensemble-based classifiers.

Abaei and
Selamat [39]

Product
metrics

They proposed fuzzy clustering and probabilistic neural network to
study defect prediction accuracy. The use of machine learning ap-
proaches can be investigated to analyze advanced defect prediction
models.

Erturk and
Sezer [40]

CK Product
metrics

In their work, the authors concluded that ANFIS outperforms NN
and SVM approaches for predicting faults. The future work may
include the process metrics or develop advanced defect prediction
models.

220104-6

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 1 continued
Zhang et al.
[31]

Process and
Product
metrics

In the study authors, investigated the use of various algorithms that
integrate ML predictors for cross-project defect prediction. However,
for examining the predictive capability of advanced algorithms,
additional experimentation is required.

Khoshgof-
taar et al.
[29]

Product and
Process

Authors build software quality models using majority voting using
multiple training datasets. The work be extended using data from
various software project repositories and analyze the predictive
capability of ensembles as compared to base classifiers for advanced
models.

Yong Hu
et al. [41]

Product (all
CK metrics)

This study provides a research framework that combines cost-
sensitive learning with the ensemble method. Future work can
examine the use of ensembles trained on different datasets. Such
solutions may not only enhance the prediction accuracy but also
address the defect prediction problems.

Elish et al.
[42]

product
metrics

The authors used product metrics to investigate and empirically
validate ensemble methods for software maintenance effort and
change proneness. However, future studies shall use the proposed
ensemble approaches to investigate defect prediction using combi-
nation metrics.

Chen et al.
[30]

Process and
Product

The authors in work investigated whether different cross project
defect prediction methods identify the same defective modules.
The result can be extended by using learning approaches based on
ensemble design to further improve cross project defect prediction
performance.

Peng He
et al. [43]

Static code
metrics

The authors provided guidelines for the selection of training data,
classifier, and metric subset. They conducted an empirical study
on software defect prediction with a simplified metric set. The
guidelines can further be used to develop advanced models for
defect prediction in different scenarios.

Wasiur R
et al. [44]

Change
metrics

Authors conducted an empirical study for defect prediction using
software change metrics. The application of hybrid algorithms used
in the task can be used to develop advanced models.

Kaur and
Kaur [45]

Product
metrics

Authors used statistical and machine learning techniques for pre-
dicting the quality of the software. For experimentation, they used
five open source software projects. Further experiments can be
conducted using product-process or combination metrics using
cross project defect data.

3. Research Framework

The proposed framework consists of three phases, as shown in Figure 1. Phase-I deals with
dataset pre-processing, feature extraction and experimental setup; Phase-II is classification
methods, ensemble design and performance measurement and Phase-III is cost evaluation
framework. Briefly, the phases shown in Figure 1 are discussed as:
Phase-I deals with identifying the metrics suite from metric datasets available in PROMISE,
BUG, and JIRA dataset repository. Further, various pre-processing methods such as feature
ranking methods and feature subset selection methods and normalization have been applied
to select a minimal subset of features from the original dataset so that the features are
reduced based on a specific evaluation criterion. It also reduces the dimensionality of feature

220104-7

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Figure 1. A framework of Proposed ensemble model with cost analysis

space, removes redundant, irrelevant information and improves the data quality, thereby
improving the algorithm performance. An experimental design with N -fold cross-validation
is used to train, test and replicate the experiment using various datasets.
Phase-II deals with the evaluation of simplified dataset representing different scenarios, i.e.,
scenario-1: simple model (product metrics); scenario-2: Advanced model-1 (Product metrics
+ NR process metric); scenario-3: Advanced model-2 (Product metrics + NDC process
metric); scenario-4: Advanced model-3 (Product metrics + NML process metric); scenario-4:
Advanced model-4 (Product metrics + NDPV process metric) using various base ML
classifiers. The performances of proposed models are evaluated using performance indices,
i.e., accuracy, AUC (ROC), RMSE, and F -score. Further, to improve base ML classifiers
performance, the classifier ensembles were designed by following Bagging, AdaBoostM1
(which is the most popular version of boosting), and Voting algorithms.
Phase-III deals with examining the cost sensitiveness of the proposed ensemble classifiers.
It is achieved by developing a cost analysis framework to compare the best ensembles cost
with the best base classifier by finding normalized fault removal cost.
Research Questions
Based on the literature studies and potential research gaps, the research questions framed
are as follows:
RQ1: How does the advanced defect prediction models proposed in the study perform using
various machine learning classifiers?
RQ2: How does the ensemble design improve classification performance when compared to
individual machine learning classifiers?
RQ3: Whether there exist any statistically significant performance difference among the
base classifiers and ensemble classifiers?

220104-8

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

RQ4: For a given software system, whether the proposed ensembles are cost sensitive?
The rationale behind the selection of the research questions RQ1 and RQ2 is to investigate
the effectiveness of advanced models representing different scenarios of combination of
software product and process metrics. These models are trained using base learning
and ensemble based classifiers. The model performances are tested with measures such as
accuracy, RMSE, ROC(AUC) and F -score. The rationale behind the usage of statistical test
was to find the empirical evidence regarding the performance of predictors, i.e., to answer
RQ3. Cost-based evaluation framework has been adopted to examine the cost-sensitiveness
of proposed predictors in RQ4.

3.1. Selection of Dataset

In software engineering, Tera-Promise [46], Bug Prediction Dataset [47], Promise [48] and
NASA and repositories contain versioned datasets of different software projects that can
be assessed for fault prediction. In the present study, authors examined versioned datasets
of (i) Ant, Camel, J-edit, Lucene, Synapse, Xalan, Xerces projects from the Promise
repository, (ii) Equinox, Eclipse-JDT, Eclipse-PDE, MYLYN projects from the Bug dataset
and (iii) ActiveMQ 5.0.0, Derby-10.5.1.1, Groovy1_6_BETA_1, Hbase-0.94.0, Hive-0.9.0,
Jruby-1.1, Wicket-1.3.0beta2 from Jira repository, respectively. Table 2 presents the data
related to versions, total modules, faulty modules, and defect rates of different projects
with their interpretations. To improve the quality of software datasets, we performed data
pre-processing following the guidelines provided by Shepperd et al. [49] in order to remove
noisy data. To make the training set uniform for the fault-prone and non-fault prone
classes to handle data imbalance, in the study, we have applied the synthetic minority
over-sampling technique proposed by Chawla et al. [50]. In literature, researchers too have
considered class imbalance learning techniques to improve the predictors performance
[8, 29, 51].

Table 2. Project dataset versions

Project Total
mod-
ules

Faulty
mod-
ules

Defect
rate

ant 1.4 178 40 22.47
ant 1.5 293 32 10.92
ant 1.6 351 92 26.21
ant 1.7 745 166 22.28
camel 1.2 608 216 35.53
camel 1.4 872 145 16.63
camel 1.6 965 188 19.48
jedit 4.0 306 75 24.51

Promise jedit 4.1 312 79 25.32
dataset jedit 4.2 367 48 13.07

jedit 4.3 492 11 2.24
Lucene 2.2 247 144 58.3
Lucene 2.4 340 203 59.7
synapse 1.1 222 60 27.03
synapse 1.2 256 86 33.59
xalan 2.5 803 387 48.19
xalan 2.6 885 411 46.44

220104-9

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 2 continued
xalan 2.7 909 897 98.79

Promise xerecs 1.2 440 71 16.14
dataset xerecs 1.3 453 69 15.23

xerecs 1.4 588 437 74.32
Equinox 324 129 39.81

Projects Eclipse-JDT 997 206 20.06
from Bug Eclipse-PDE 1497 209 13.96
repository MYLYN 1862 245 13.15

ActiveMQ 5.0.0 1884 293 15.55
Derby-10.5.1.1 2705 383 14.15

Projects Groovy1_6_BETA_1 821 70 8.52
from Jira Hbase-0.94.0 1059 218 20.58
repository Hive-0.9.0 1416 283 19.98

Jruby-1.1 731 87 11.9
Wicket-1.3.0beta2 1763 130 7.5

3.2. Feature Extraction, Selection and Normalization

Feature selection is categorised as feature ranking and feature subset selection, or be
classified as filters and wrappers. In filter based algorithms, a subset of features is selected
without involving any learning algorithm and in wrapper based algorithms feedback from
a classification learning algorithm is used to determine the feature(s) to be included in
development of a classification model. The more refined a feature subset becomes, the
more stable a feature selection algorithm is [42]. It reduces the dimensionality of feature
space, removes redundant, irrelevant information and improves the quality of the data
thereby improving the performance of the algorithm. In the literature [42, 52, 53] numerous
methods have been proposed to discard features which are least important to improve
defect prediction.

3.2.1. Feature Ranking Methods

It is the process of ordering the features based upon the value of some scoring function,
which generally measures feature relevance. In this study, authors have used Information
Gain (IG) attribute estimation which is the frequency driven observation in which the
information explicit to a particular metric is considered on the class value. The available
information is corresponding to the fault proneness of specific modules. Similar feature
ranking methods has been applied by various authors in their work on software fault
prediction [7, 19, 26, 31]. Gain Ratio (GR) attribute estimation is an alternative of IG
and is used to rank the attributes present in the datasets to reduce its bias [19, 54]. Gain
Ratio is used for the proliferation of nodes when data is evenly distributed and small while
choosing an attribute when all data belong to one branch.

3.2.2. Feature Subset Selection Methods

Instead of using all metrics of the dataset, a subset of features is used as input in the
study. These methods are used to generate a subset of attributes that jointly have excellent
predictive ability. The classifier subset evaluation method uses a classifier method to

220104-10

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

estimate the merit of the possible subsets of features in the project. It evaluates the worth
of a subset of attributes by considering the individual predictive ability of each feature
along with the degree of redundancy between them [50, 53]. Correlation-based feature
selection (CFS) evaluates values of the subset of attributes according to correlation with
the class label and individual features along with the degree of redundancy between them
[55]. Filtered subset evaluation is a random subset of the evaluator made to run on a class
through an arbitrary filter using data [50, 56]. These filters do not change the order, and
the numbers of attributes entirely depend on training data. In literature CFS based feature
selection technique has been applied by various authors [7, 45, 57].

3.2.3. Feature extraction and selection

In the study, feature ranking and feature subset selection techniques such as IG, GR
attribute evaluation, Classifier subset evaluation, CFS subset evaluation and Filtered
subset evaluation were used in the experiments. The common sets of features extracted
are shown in Table 3, respectively. A total of 15 features are selected and used in the
experiments. The simple defect prediction model is constructed using the 15 product
metrics, and advanced defect prediction models are built using 15 product metrics and
single process metric with one at a time approach, as discussed in Section 3. Table A1 in
appendix provides the definitions for the selected features based on product and process
metrics.

Table 3. Selection of metrics

Feature Ranking Methods Selected Metrics
Information Gain (IG) AMC, LOC, CAM, LCOM3, LOC, AVG-CC, RFC, MFA, WMC,

CBO, DAM, NPM, CE, MAX-CC, MOA, CA, NOC, CBM, IC,
DIT

Gain Ratio (GR) AMC, LCOM3, LOC, LCOM, CAM, AVG-CC, DAM, MFA, MOA,
RFC, WMC, MAX-CC, CE, CBO, NPM, NOC, CA, CBM, IC,
DIT

Feature Subset Methods Selected Metrics
Subset evaluation Classifier AMC, LCOM3, LOC, LCOM, CAM, AVG-CC, DAM, MFA, MOA,

RFC, WMC, MAX-CC, CE, CBO, NPM, NOC, CA, CBM, IC,
DIT

CFS subset evaluation MOA, DAM, MAX-CC, LCOM, NOC, LCOM3, CE, IC, NPM,
CBO, WMC, DIT, CA, RFC, MFA, AMC, LOC

Filtered subset evaluation WMC, DIT, NOC, LCOM, NPM, MOA, CA, RFC, CE, LOC,
DAM, AMC, CBO, AVG-CC, MAX-CC

Common Selected Features LCOM, CA, LOC, AMC, CBO, RFC, DAM, WMC, DIT, NOC,
MOA, CAM, MAX-CC, CE, NPM

Process Metrics NR, NDC/NAUTH, NML/NREF, NDPV

3.2.4. Normalization of selected features

The performance of prediction models can also be affected by the different levels of design
complexity metrics [58–60]. Various software metrics values which are obtained from the
dataset have different ranges or magnitude; to make the data in a similar series or format,

220104-11

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

we have applied data normalization. For the data normalization process, a simple min-max
normalization method is used [61]. After the data is normalized, the values are transformed
between intervals of 0–1.

3.3. Selection of classifiers

The main aim of the study is to demonstrate the predictive capability of advanced software
defect perdition models. The well-known ML classifiers, i.e., Naive Bayes (NB); Decision
tree (DT); Random tree (RT); Support Vector Machine (SVM) and Multilayer Perceptron
(MLP) are used in the study to build defect prediction models. We used Catal et al. [28]
review to determine frequency of base predictors in the software fault prediction literature.
Authors performed comparative experimentation by taking one classifier from each category
to achieve the balance between different classification models (statistical approaches, neural
networks and tree-based methods) as proposed by various researchers [42–44, 61]. Also, to
get an enhanced learning algorithm, classifiers ensembles have been designed. The names of
the classifiers, classifiers ensembles and their references with brief description are presented
in Table A2 in Appendix.

3.4. Performance measurement indices

For the assessment of defect predictors performance, various measures have been used in
literature by researchers [11, 19, 27, 62, 63]. In the study, the performance indices, i.e.,
accuracy, RMSE, ROC (AUC) and F -score are used to measure the performance of fault
prediction models. The brief details are presented in Table A3 in Appendix. Table A4
in Appendix presents the confusion matrix for fault prediction models, which is used to
compute all the parameters. It contains actual and predicted classification information
using various prediction techniques.

3.5. Framework for cost evaluation

Cost-based evaluation framework is necessary to assess the usability of designed fault
prediction models. The analysis of cost evaluation is very important because misclassification
of faulty prone (fp) modules is more costly as compared to the misclassification of non-faulty
prone (nfp) modules. Some researchers [14, 41, 53] have adopted a cost evaluation criterion
in their study. In this section, we discussed the cost evaluation framework, proposed
by Wagner [64]. He has designed the cost-based evaluation framework based on certain
constraints, as mentioned below:
(i) Different phases (unit, integration and testing phases) of testing account for different
fault removal cost.
(ii) None of testing phase can detect 100% faults.
(iii) It is not practically feasible to perform unit testing on all modules, so a limited number
of important logical paths should be selected to ensure proper working of the delivered
software.
Since different projects are developed on varying platforms and in varying organization
standards, the cost varies. The normalized fault removal cost for test techniques, i.e., unit,
integration, system and field are presented in Table 4 with min, max and median values.
The fault detection efficiency values for different test phases are taken from study by Jones
[65]are summarized in Table 5. Wilde and Huitt [66] stated that more than fifty percent of

220104-12

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

modules are usually very small in size; hence performing unit testing on these modules is
not fruitful.

3.5.1. Estimated fault removal cost (Ecost)

The estimated fault removal cost (Ecost)is the sum of cost of unit testing, cost for integration
test system test and the cost for field test. The number of faulty modules recognized by
the predictor is the sum of true positive and false positive values. Hence, it is important to
calculate testing and verification cost at the module level, which means that this cost is
equal to the cost of unit testing (Costunit). Equation (1) shows the total unit testing cost.

Costunit = (TP + FP) ∗ Costu (1)
The fault removal cost for integration test (Cost integration) is obtained as

Cost integration = δi ∗ Ci ∗ (FN + TP(1 − δu)) (2)
The left out faulty modules which are not predicted by integration testing are predicted by
system test. Equation (3) gives the fault removal cost for system test

Costsystem = δs ∗ Cs ∗ (1 − δi) ∗ (TP(1 − δu) + FN) (3)
For the left out faulty modules which were not predicted in system testing, field-testing is
done. The fault removal cost for field test (Costfield) is given by Eq. (4) as

Costfield = (1 − δs) ∗ Cf ∗ (1 − δi)(TP(1 − δu) + FN) (4)
So, the value of the overall estimated fault removal cost can be determined by adding Eq.
(1) to (4), as shown by Eq. (5)

Ecost = Costunit + Cost integration + Costsystem + Costfield (5)

3.5.2. Estimated testing cost (T cost)

The steps followed to calculate estimated testing cost are:
The cost of unit testing on all the modules is given by Eq. (6)

Costunit = Mp ∗ Cu ∗ TM (6)
The testing cost for faulty modules that are not detected during unit testing and may be
detected in integration, system, and field testing are calculated as follows.

Cost integration = δi ∗ Ci ∗ (1 − δu) ∗ FM (7)
Costsystem = δs ∗ Cs ∗ (1 − δi) ∗ (1 − δu) ∗ FM (8)

Costfield = (1 − δs) ∗ (1 − δi) ∗ (1 − δu) ∗ FM (9)
The overall value of estimated testing cost (Tcost) is given by adding the Eq. (6)) to (9), as
represented by Eq. (10)

T cost = ({Mp ∗ Cu ∗ TM} + {δi ∗ C i ∗ (1 − δu) ∗ FM}+
{δs ∗ Cs ∗ (1 − δi) ∗ (1 − δu) ∗ FM} + {(1 − δs) ∗ (1 − δi) ∗ (1 − δu) ∗ FM} (10)

220104-13

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

3.5.3. Normalized fault removal cost (NEcost)

The normalized fault removal cost is obtained as ratio of estimated fault removal cost to
estimated testing cost, as shown by Eq. 11

NEcost = Ecost
Tcost

=
{

< 1 application of proposed fault prediction is useful
≥ 1 application of testing methods is useful

(11)

Where: Ecost and T cost is the estimated fault removal cost of the software with and
without using the fault prediction approach.

Table 4. Removal cost for test techniques (staff hours per defect)

Testing Type Min Max Median
Unit (Cu) 1.5 6 2.5
Integration (C i) 3.06 9.5 4.55
System (Cs) 2.82 20 6.2
Field (Cf) 3.9 66.6 27

Table 5. Fault identification efficiencies for different test phases

Testing Type Min Max Median
Unit(δu) 0.1 0.5 0.25
Integration(δi) 0.25 0.60 0.45
System(δs) 0.25 0.65 0.5

4. Experiment design

For conducting the experiments, we designed five scenarios, based on the research questions.
In scenario1, we collected all the product metrics after data-processing and normalization.
This is called Simple model. The detail of selected metrics is shown in Table 3. In scenario-2:
the Advanced model-1 is constructed by using product metrics and one process metric,
i.e., Product + NR metric. Similarly, in scenario-3: Advanced model-2 is formed by using
Product + NDC metric, scenario-4 is constructed by using Advanced model-3 using Product
+ NML metric and in scenario-5 Advanced model-4 is built by using with Product + NDPV
metric. All the designed models are tested on various project datasets repositories, i.e.,
Promise, Bug, and Jira using different classifiers such as DT, MLP, SVM, RT, NB and
classifiers ensembles, as discussed in Section 3.3, respectively. The performance of various
models Simple model; Advanced model-1; Advanced model-2; Advanced model-3, and
Advanced model-4 are measured using accuracy, RMSE, ROC(AUC), and F -score.

The metrics used in the base classifiers are obtained after performing feature selection
and feature ranking. N -fold cross-validation technique [51, 52] is used to evaluate the perfor-
mance of the base classifiers, which makes use of both training and testing. Cross-validation
technique splits the dataset into N parts each of which contains an equivalent number
of samples in the dataset. While conducting the experiments algorithm is made to run

220104-14

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

N times; and in each run, training is achieved through (N − 1) parts, and the testing is
performed with the leftover part. N fold are usually selected as 10, 20, 30, 40, 50, 60, 70,
80, and 90. Authors tried with 10 fold for the cross-validation. This approach is carried
out on different versions of datasets for different base classifiers.

To answer RQ2, i.e., to evaluate and compare the performance of various ensemble
methods presented in Section 3, the library of the said algorithms was installed using the pip
Python installer, e.g., (sudo pip install xgboost) to conduct the experiments. The algorithm
packets used in the study are Bagging, AdaBoostM1 (which is the most popular version of
boosting), and Voting [67]. Heterogeneous classifier ensembles applied the majority voting
method, whereas the homogenous ones applied both bagging and boosting methods. For
ensembles with boosting and bootstrap aggregating, the weak learners selected in the
study are Decision Stump and REPTree, as these are widely used in literature studies
[67–70]. In AdaBoosting, a training set is modified by repeatedly applying a basic learning
device, i.e., classifier, under a pre-specified number of iterations. Initially, the training
samples are equal in weight, and the first base classifier is trained to test the training
set. Thus, at each iteration, a weight is assigned to each instance of the training set, and
the weights of misclassified instances are increased so that their chances to be correctly
predicted by the new models get increased. The adjusted training set trains the second
basic classifier, and this process is repeated until a good learning device is obtained. During
bootstrap aggregating, in the training phase, m data sets of the same size are extracted by
performing sampling with replacement (bootstrap) from the training set. Therefore, for
each data set, a model is trained using a weak classifier. For each instance, the multiple
classifiers utilize a majority voting to obtain the classification result in the test phase.
Ensembles are designed using voting works by constructing two or more sub-models. Each
sub-model gives a prediction, which is pooled either by taking the mean or the mode of
the predictions, permitting each sub-model to vote on the possible outcome. The final
output is the class label that attains the maximum number of votes from the predictors.
Otherwise, the input is rejected, and the classifier ensembles make no prediction. In our
case, the base learners for ensemble design chosen are the four best classifiers. From
the pool of four base classifiers, all sets of classifiers of size three were chosen to design
ensembles committee. This meant that there were a total of four classifier ensembles. The
various constituent combinations, so obtained are defined as: VOT-E1 (DT + MLP + RT),
VOT-E2 (DT + MLP + SVM), VOT-E3 (MLP + RT + SVM), and VOT-E4 (DT + RT
+ SVM). The ensembles performance is measured using the same metrics as used for base
classifiers discussed in Section 4. Also, to check whether the ensemble design improves
the classification performance compared to individual machine learning classifiers, the
comparison of the best ensemble, i.e., VOT-E2, is made with other base classifiers in terms
of AUC(ROC) values.

To answer RQ3, i.e., whether there exist any statistically significant performance
difference among the base classifiers and ensemble classifiers? Authors tested the following
hypothesis using Friedmans tests and Wilcoxon signed rank tests [71].
H0: There is no significant difference between base classifier performance and ensemble
classifier performance.
To answer RQ4, i.e., cost sensitiveness of proposed ensembles, the normalized fault removal
cost approach has been used as discussed in Section 3.5. Further, to evaluate the cost
sensitiveness of the best ensemble classifier for the misclassification of faults, we predicted
the fault removal cost of the best ensemble, i.e., VOT-E2 strategy, and compared its
performance with the best base classifier, i.e., MLP.

220104-15

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

5. Results and discussions

The section presents the experimental results and discussions to all the research questions.
Results related to examining the predictive capability of advanced models are discussed
in Section 5.1 followed by discussion on results based on ensemble design in Section 5.2.
Section 5.3 discusses the results related to statistical difference among the base classifiers
and ensemble classifiers and Section 5.4 discusses the results related to the cost sensitiveness
of the proposed ensembles.

5.1. Results for predictive capability of advanced models

For examining the predictive capability of proposed advanced models, we evaluated the
performance of simple model, advanced model-1, advanced model-2, advanced model-3
and advanced model-4 using various base classifiers. For the simple model, the values of
accuracy so obtained are presented in Table 6 for all the datasets. Also, the results are

Table 6. Simple model accuracy with ten-fold for various classifiers

Projects DT DT [33] MLP MLP [33] RT RT [33] NB NB [33] SVM
ant 1.4 77.53% 76.40% 77.99% 77.52% 75.45% 73.3% 67.97% 67.1% 73.23%
ant 1.5 93.88% 94.88% 94.93% 95.90% 90.88% 100 80.54% 80.45% 90.98%
ant 1.6 73.79% 72.93% 78.89% 73.21% 71.11% 69.76% 59.50% 58.4% 70.43%
ant 1.7 77.72% 75.83% 81.02% 75.97% 76.65% 74.56% 61.98% 61.07% 73.69%
camel 1.2 64.30% 64.30% 68.87% 64.43% 66.60% 65.65% 63.99% 62.7% 65.95%
camel 1.4 82.45% 82.45% 87.76% 87.02% 76.43% 79.85% 79.84% 79.9% 79.41%
camel 1.6 79.68% 79.66% 81.05% 80.51% 80.01% 76.70% 74.66% 74.65% 78.56%
jedit 4.0 74.67% 74.12% 74.67% 74.78% 70.00% 73.1% 67.00% 67.3% 73.89%
jedit 4.1 75.32% 75.33% 75.99% 75.85% 69.95% 69% 69.00% 69.5% 71.87%
jedit 4.2 86.10% 86.10% 87.93% 85.98% 81.90% 80% 74.00% 73.3% 81.14%
jedit 4.3 95.12% 95.12% 96.13% 95.73% 89.95% 95.5% 80.00% 80.1% 89.44%
Lucene 2.2 66.98% 69.77% 68.42% 55.00% 67.87%
Lucene 2.4 69.04% 73.27% 70.27% 78.92% 65.63%
synapse 1.1 72.52% 72.53% 72.87% 72.07% 66.12% 66.8% 69.98% 69.8% 64.98%
synapse 1.2 66.40% 66.1% 66.63% 65.62% 64.92% 66.5% 65.89% 66% 68.04%
xalan 2.5 51.43% 51.42% 54.76% 51.76% 48.89% 51% 54.00% 54.87% 50.98%
xalan 2.6 53.89% 53.9% 60.43% 62.43% 53.34% 53% 61.00% 60.09% 50.76%
xalan 2.7 71.29% 71% 71.24% 70% 62.14% 64.2% 55.00% 57% 58.42%
xerecs 1.2 82.41% 83.40% 83.41% 83.4% 79.41% 80.21% 73.45% 73.14% 78.34%
xerecs 1.3 84.55% 84.54% 84.59% 84.5% 82.98% 83% 76.99% 77% 80.88%
xerecs 1.4 57.36% 28.84% 61.52% 61.12% 90.01% 94% 78.92% 78.5% 91.91%
Equinox 74.07% 73.15% 71.91% 71.60% 73.46%
Eclipse-JDT 82.65% 84.35% 81.44% 83.95% 85.06%
Eclipse-PDE 89.3% 85.64% 79.89% 82.77% 84.05%
MYLYN 84.91% 86.36% 81.68% 83.94% 86.84%
ActiveMQ 5.0.0 86.46% 88.09% 82.95% 85.03% 85.56%
derby-10.5.1.1 85.80% 87.88% 83.25% 83.84% 84.02%
Groovy-1 91.47% 91.01% 92.73% 86.84% 91.59%
Hbase-0.94.0 82.43% 88.35% 77.71% 80.07% 81.11%
Hive-0.9.0 80.01% 86.81% 80.15% 82.52% 81.64%
Jruby-1.1 85.49% 90.02% 88.46% 89.09% 84.95%
Wicket-1 95.03% 95.98% 93.12% 93.42% 83.55%

220104-16

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

compared with [33] for classifiers DT, MLP, RT and NB classifiers for the projects from
Promise data set. Similarly, for all models, the values of accuracy are obtained. Table 7
shows the average accuracies of all the base classifiers for simple model, advanced model-1,
advanced model-2, advanced model-3, and advanced model-4 with the standard deviation
values after ten executions of the classifiers for all the datasets.

Table 7. Average accuracy for various models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 74 ± 0.67% 75 ± 0.99% 71 ± 0.11% 60 ± 0.01% 71 ± 0.72%
Advanced
model-1 81 ± 0.09% 80 ± 0.74% 75 ± 0.37% 73 ± 0.07% 76 ± 0.94%

Advanced
model-2 87 ± 0.01% 87 ± 0.08% 82 ± 0.06% 81 ± 0.30% 76 ± 0.45%

Advanced
model-3 83 ± 0.03% 85 ± 0.16% 79 ± 0.08% 72 ± 0.42% 74 ± 0.36%

Advanced
model-4 77 ± 0.04% 79 ± 0.18% 77 ± 0.05% 73 ± 0.55% 72 ± 0.16%

BUG
Dataset

Simple 82 ± 0.28% 82 ± 0.66% 79 ± 0.18% 79 ± 0.86% 82 ± 0.76%
Advanced
model-1 83 ± 0.90% 84 ± 0.70% 80 ± 0.66% 80 ± 0.85% 83 ± 0.59%

Advanced
model-2 85 ± 0.63% 86 ± 0.92% 81 ± 0.95% 80 ± 0.19% 85 ± 0.27%

Advanced
model-3 84 ± 0.14% 84 ± 0.36% 81 ± 0.04% 79 ± 0.59% 84 ± 0.38%

Advanced
model-4 81 ± 0.96% 82 ± 0.76% 79 ± 0.73% 79 ± 0.47% 82 ± 0.96%

JIRA

Simple 86 ± 0.53% 89 ± 0.59% 85 ± 0.34% 85 ± 0.69% 84 ± 0.54%
Advanced
model-1 88 ± 0.15% 91 ± 0.07% 87 ± 0.39% 87 ± 0.64% 85 ± 0.45%

Advanced
model-2 89 ± 0.76% 91 ± 0.85% 87 ± 0.32% 88 ± 0.32% 86 ± 0.18%

Advanced
model-3 88 ± 0.75% 90 ± 0.65% 87 ± 0.44% 87 ± 0.72% 86 ± 0.05%

Advanced
model-4 86 ± 0.89% 89 ± 0.72% 85 ± 0.97% 86 ± 0.30% 84 ± 0.81%

For promise dataset the average accuracy for the simple model in MLP is 75%, for
Advanced model-1 is 80%, Advanced model-2 is 87%, Advanced model-3 is 85%, and
Advanced model-4 is 79%. It is clear from the bar graph that average accuracy for MLP is
higher for Advanced model-2, than for Advanced model-3, Advanced model-1 and simple
model. From the bar graph Figure 2a it is observed that average accuracy is behaving
well with advanced models as compared to simple models. The average accuracy for
the DTs simple model is 74%, for advanced model-1 is 81%, advanced model-2 is 87%,
advanced model-3 is 83%, and advanced model-4 is 77%. So, it is clear from the bar
graph that the average accuracy for DT is higher for advanced model-2 then for advanced
model-3, advanced model-1, and simple model. The average accuracy results achieved
for all projects from Promise data set by Decision tree, Random Tree, Naive Bayes and
Multilevel Perceptron classifiers for advanced models is 82.4%, 78.25%, 74.75% and 81.75%

220104-17

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Figure 2. Average Accuracy for MLP, DT, SVM, RT, and NB using PROMISE data

as compared to 64.58%, 63.83%, 61.17% and 64.54%, reported by Juneja [33]. This shows
that advanced models performed better.

As shown in the graph Figure 2b, the average accuracy is behaving well with advanced
models compared to a simple model. The average accuracy is high in Camel projects and
low for Xerces projects. The average accuracies for various classifiers like SVM, RT, and
NB are calculated as shown in Figure 2c to e. The results show that in the advanced
model-2, average accuracy for SVM, RT, and NB is 76%, 82%, and 81%, respectively. The
model is behaving significantly good as the average accuracy is higher than 0.5. So, from
Table 7 and Figures 2a–e, it is clear that the advanced model-2 (Product + NDC metric)
is performing better as compared to other models.

For the projects from Bug repository, the results of average accuracy in the case of
advanced model-2, for MLP is 86%, for DT is 85% , for SVM is 85%, for RT is 81%and
for NB is 80%, respectively. The model is behaving significantly well as average accuracy
is higher than 0.5. So, it is clear that the advanced model-2 (Product + NDC metric)
performs better than other models.

For the projects from Jira repository, the results of average accuracy for advanced
model-2, for MLP is 91%, for DT is 89% , for SVM is 86%, for RT is 87%, NB is 88%,

220104-18

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

respectively. The model is behaving significantly well as average accuracy is higher than
0.5. So, it is clear that the Advance model-2 (Product + NDC metric) performs better
than other models for Jira projects.

After presenting the accuracy-based evaluation, further analysis is conducted to examine
the root mean square error for Promise, Bug and Jira dataset repositories. The average
RMSE values for the Promise dataset in proposed advanced model-1, advanced model-2,
advanced model-3 and advanced model-4 is low as compared to the simple model. Table 8
presents the details of the average RMSE with standard deviation. The Advanced model-2
has the error ratio 0.13, 0.12, 0.18, 0.19, and 0.16 for DT, MLP, RT, NB and SVM which
is significantly lower than the simple model.

Table 8. Average RMSE for various models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 0.21±0.0057 0.19 ± 0.006 0.21±0.0101 0.20±0.0059 0.17±0.0089
Advanced
model-1 0.16±0.0067 0.14 ± 0.007 0.19±0.0090 0.18 ± 0.006 0.17±0.0067

Advanced
model-2 0.13 ± 0.007 0.12 ± 0.005 0.18±0.0398 0.19 ± 0.046 0.16 ± 0.009

Advanced
model-3 0.15 ± 0.007 0.14 ± 0.008 0.19±0.0256 0.18 ± 0.025 0.15 ± 0.011

Advanced
model-4 0.16 ± 0.006 0.16 ± 0.005 0.19±0.0006 0.19 ± 0.005 0.17 ± 0.012

BUG
Dataset

Simple 0.22 ± 0.084 0.20±0.0127 0.21±0.0317 0.21±0.0997 0.17 ± 0.038
Advanced
model-1 0.21 ± 0.067 0.18 ± 0.055 0.19±0.0672 0.21±0.0302 0.15 ± 0.037

Advanced
model-2 0.18 ± 0.09 0.15±0.0545 0.16±0.0995 0.17±0.0997 0.13 ± 0.035

Advanced
model-3 0.18 ± 0.075 0.16±0.0902 0.19±0.0215 0.19±0.0615 0.13 ± 0.068

Advanced
model-4 0.20±0.0387 0.18±0.0857 0.20±0.0727 0.20±0.0382 0.16 ± 0.052

JIRA

Simple 0.20 ± 0.099 0.15±0.0395 0.19±0.0265 0.18±0.0951 0.17 ± 0.048
Advanced
model-1 0.19 ± 0.088 0.13±0.0757 0.17±0.0742 0.17 ± 0.048 0.15 ± 0.097

Advanced
model-2 0.18 ± 0.037 0.12±0.0108 0.15 ± 0.085 0.15 ± 0.085 0.14 ± 0.019

Advanced
model-3 0.19 ± 0.014 0.13±0.0982 0.16±0.0334 0.16 ± 0.095 0.15 ± 0.067

Advanced
model-4 0.20 ± 0.038 0.14±0.0721 0.18±0.0295 0.17±0.0938 0.16±0.0308

For Bug dataset the average RMSE values for proposed advanced model-2, and advanced
model-3 are significantly lower than the advanced model-4, Advance model-1 and simple
model. The average RMSE values for DT, MLP, RT, NB and SVM are 0.18, 0.15, 0.16,
0.17 and 0.13, respectively for advanced model-2.

For Jira dataset the average RMSE values for proposed advance model-2 are significantly
lower than the advanced model-3, advanced model-4, advanced model-1 and simple model.
The RMSE values for advanced model-1 and advanced model-3 are almost similar for DT,

220104-19

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

MLP and SVM. The average RMSE values for DT, MLP, RT, NB and SVM are 0.18, 0.12,
0.15, 0.15 and 0.14, respectively for advanced model-2.

AUC is the other performance measure considered in the study. Greater the AUC value
better is the model performance [7, 20]. The ROC curves provide the trade-off between
the TPR and FPR for a predictive model using different probability thresholds. These
measures are good performance indicator for the classification of an imbalanced dataset.

Table 9 shows the aggregative AUC of all the base classifiers for simple, advanced
model-1, advanced model-2, advanced model-3 and advanced model-4 with the standard
deviation values after ten executions of the classifiers. The aggregative average AUC for
Promise dataset achieved in advanced model-2 are 76%, 79%, 70%, 65% and 75% for DT,
MLP, RT, NB and SVM respectively. As evident from literature studies [7] that the AUC
value lying between 0.7 and 1 is considered significantly high and the accuracy value lying
between 0.6 and 0.7 is considered significantly good. It is evident from the Table 9 that
the advanced model-2 achieves and maintains high accuracy with respect to all classifiers.
The advanced model-3 is followed by advanced model-1and advanced model-4.

For the Bug dataset the average ROC values for the advanced model-2 and advanced
model-3 are significantly higher and for advanced model-1and advanced model-4 the average
ROC values are good as compared to simple model as shown in Table 9. The average
accuracy of advanced model-2 for DT, MLP, RT, NB, and SVM are 79%, 83%, 74%,

Table 9. Average ROC(AUC) for various Models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 71 ± 0.009 74 ± 0.006 63 ± 0.014 61 ± 0.02 70 ± 0.014
Advanced
model-1 75 ± 0.001 78 ± 0.006 67 ± 0.017 63 ± 0.09 74 ± 0.004

Advanced
model-2 76 ± 0.002 79 ± 0.008 70 ± 0.001 65 ± 0.98 75 ± 0.009

Advanced
model-3 77 ± 0.012 78 ± 0.012 69 ± 0.019 62 ± 0.06 73 ± 0.009

Advanced
model-4 70 ± 0.013 77 ± 0.002 65 ± 0.016 60 ± 0.07 69 ± 0.008

BUG
Dataset

Simple 73 ± 0.09025 77 ± 0.5775 66 ± 0.05 63 ± 0.955 74 ± 0.2425
Advanced
model-1 76 ± 0.058 81 ± 0.04 71 ± 0.37 67 ± 0.845 77 ± 0.0725

Advanced
model-2 79 ± 0.03375 83 ± 0.14 74 ± 0.7375 70 ± 0.5325 78 ± 0.1825

Advanced
model-3 78 ± 0.069 81 ± 0.0785 73 ± 0.515 72 ± 0.4375 76 ± 0.7725

Advanced
model-4 74 ± 0.079 77 ± 0.0665 67 ± 0.2975 66 ± 0.2475 75 ± 0.2325

JIRA

Simple 76 ± 0.0628 82 ± 0.11 72 ± 0.62857 81 ± 0.181 74 ± 0.7142
Advanced
model-1 78 ± 0.0732 83±0.051571 74 ± 0.39429 83 ± 0.11 76 ± 0.5485

Advanced
model-2 79 ± 0.01429 84 ± 0.046 76 ± 0.27143 83 ± 0.82 77 ± 0.9171

Advanced
model-3 78 ± 0.0986 83 ± 0.0351 74 ± 0.92429 82 ± 0.75571 76 ± 0.8457

Advanced
model-4 77 ± 0.06 82 ± 0.0514 73 ± 0.88571 81 ± 0.97143 75 ± 0.7271

220104-20

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

70%, and 78%, respectively. It shows that the proposed advanced models has performed
impressively well for inter project fault prediction.

We also calculated the performance of simple and advanced models in terms of F -score.
F -score values can range from (0–1) and accepted to be better as it approaches to one
[41, 60]. Table 10 presents the average F -score for simple and advanced models for Promise,
Bug, and Jira datasets on various classifiers. It is observed from Table 10; in the Promise
dataset the advanced model-2 for MLP classifier has the highest F1-score value, i.e., 0.83
as compared to the advanced model-3 (0.82), advanced model-2 (0.80), and the simple
model (0.79). The F -score value for DT in simple model (0.76), advanced model-1 (0.77),
advanced model-2 (0.81), the advanced model-3 (0.80) and the advanced model-4 is (0.76).
It is observed from the table that the advanced model-2 is behaving significantly well in all
the classifiers. The MLP is behaving well than DT, DT is better than RT, RT is better
than SVM, and SVM is better than NB.

Similarly, for the Bug dataset the advanced model-2 and the advanced model-3 have
almost similar values for MLP and NB classifiers. The advanced model-2 having F -score
MLP (0.88), DT (0.84), RT (0.84), NB (0.81) and SVM (0.85). For the simple model the
F -score values are 0.82, 0.86, 0.81, 0.79, 0.78 for DT, MLP, RT, NB, and SVM classifiers,
respectively. Similarly, for advanced model-1 the DT, MLP, RT, NB and SVM the values
for F -score are 0.82, 0.87, 0.82, 0.80 and 0.82, respectively and; for the advanced model-3

Table 10. Average F -score for various models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 0.76±0.012 0.79±0.012 0.79 ± 0.03 0.73 ± 0.06 0.75 ± 0.05
Advanced
model-1 0.77 ± 0.04 0.80 ± 0.18 0.77 ± 0.16 0.74±0.017 0.76 ± 0.04

Advanced
model-2 0.81 ± 0.05 0.83 ± 0.05 0.79 ± 0.07 0.78 ± 0.09 0.79 ± 0.09

Advanced
model-3 0.80 ± 0.03 0.82 ± 0.16 0.78±0.078 0.79 ± 0.02 0.78 ± 0.06

Advanced
model-4 0.76 ± 0.05 0.79 ± 0.06 0.75 ± 0.04 0.74±0.053 0.74 ± 0.08

BUG
Dataset

Simple 0.82 ± 0.13 0.86 ± 0.07 0.81±0.024 0.79 ± 0.01 0.78 ± 0.05
Advanced
model-1 0.82±0.045 0.87 ± 0.1 0.82 ± 0.05 0.80±0.023 0.82 ± 0.09

Advanced
model-2 0.84±0.063 0.88 ± 0.12 0.84±0.063 0.81 ± 0.05 0.85 ± 0.02

Advanced
model-3 0.83 ± 0.05 0.88 ± 0.05 0.83±0.045 0.82 ± 0.06 0.85 ± 0.07

Advanced
model-4 0.81 ± 0.09 0.87 ± 0.03 0.81±0.098 0.79 ± 0.07 0.79 ± 0.04

JIRA

Simple 0.81±0.045 0.83±0.061 0.79 ± 0.07 0.79 ± 0.09 0.79 ± 0.06
Advanced
model-1 0.82 ± 0.08 0.84 ± 0.07 0.80±0.023 0.79 ± 0.06 0.80±0.078

Advanced
model-2 0.83±0.045 0.89 ± 0.01 0.82 ± 0.06 0.80 ± 0.05 0.83±0.087

Advanced
model-3 0.83±0.063 0.88 ± 0.08 0.81 ± 0.05 0.80 ± 0.16 0.83 ± 0.04

Advanced
model-4 0.81±0.092 0.78±0.065 0.79 ± 0.07 0.76 ± 0.01 0.81±0.045

220104-21

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

and for the advanced model-4 the F -score values are 0.83, 0.88, 0.84, 0.81, 0.85 and 0.81,
0.87, 0.81, 0.79, 0.79, respectively.

For the Jira dataset, the average F -score has the highest values for advanced model-2
compared to advanced model-1, advanced model-3, advanced model-4, and simple model.
The advanced model-2 has F -score values for MLP (0.89), DT (0.83), RT (0.82), NB
(0.80) and SVM (0.83), respectively. The advanced model-2 with MLP has the highest
F -score values as compared to other classifiers. Thus, it is observed that MLP performs
best with values 0.83, 0.88, and 0.89 with advanced model-2 for Promise, Bug, and Jira
datasets. Comparing the overall performance, the advanced model-2 with MLP performs
best followed by advanced model-3.

So, it is concluded for the RQ1 that Advanced model-2 with MLP classifier having high
predictive capability as compared to other models and classifiers. The advanced model-2
with MLP has high accuracy, ROC (AUC) and F -score, and small RMSE values.

5.2. Experiment results based on ensemble design

In this section, we have summarised the results and discussed the main findings of various
ensemble methods. Table 11 presents the results for average Accuracy, average RMSE,
average ROC(AUC), and average F -score. Diagrammatically, the results of the performance
measures are shown with the help of Box plots. Figures 3a–l shows the box plot analysis
results for proposed ensembles with respect to the average Accuracy, average AUC(ROC),
average F -score, and average RMSE. The different regions of box plots in the figures
present the maximum, median minimum, first quartile, and third quartile values of the
dataset. The middle line of the box indicates the median value of the dataset. With
respect to average accuracy, average AUC(ROC), average F -score, and average RMSE, the
proposed ensembles VOT-E1 and VOT-E2 have high median value and high maximum
value followed by AdaBoost and Random Forest with features based on Product + NDC

Table 11. Ensemble results for average Accuracy, average RMSE, average ROC(AUC), and F -score

Datasets Bag ADA RF VOT-E1 VOT-E2 VOT-E3 VOT-E4
Average accuracy
PROMISE Dataset 87.35% 88.07% 87.41% 89.22% 88.14% 86.30% 82.94%
BUG Dataset 87.69% 88.02% 86.79% 89.15% 88.70% 87.37% 85.08%
JIRA Dataset 90.19% 90.26% 88.89% 91.25% 90.47% 89.15% 88.45%
Average ROC (AUC)
PROMISE Dataset 78.51% 77.81% 79.32% 80.11% 83.92% 79.58% 77.17%
BUG Dataset 77.09% 79.23% 80.07% 80.53% 81.64% 79.25% 78.97%
JIRA Dataset 78.18% 79.01% 78.19% 81.60% 84.05% 79.82% 78.19%
Average F1 score
PROMISE Dataset 77.91% 80.68% 78.64% 80.37% 83.29% 82.01% 78.54%
BUG Dataset 78.62% 81.12% 78.86% 85.09% 87.34% 84.10% 78.72%
JIRA Dataset 76.50% 80.09% 76.94% 85.26% 87.24% 81.06% 79.80%
Average RMSE
PROMISE Dataset 0.1845 0.1785 0.1966 0.1693 0.1724 0.1843 0.199
BUG Dataset 0.1855 0.1765 0.20195 0.181615 0.18525 0.2036 0.2014
JIRA Dataset 0.170 0.1785 0.1966 0.1601 0.1679 0.1748 0.1992

220104-22

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Figure 3. Box plots for Ensemble Results for average accuracy, average RMSE,
average ROC(AUC) and average F -score

metric data set for projects not only from Promise repository but also from Bug and Jira
dataset repositories, which validates the results and makes the approach more reliable.
From Figure 3a, it is observed that projects from Promise repository, VOT-E1 have the
highest accuracy, i.e., 0.8922, and high median value, i.e., 0.8906.

Similarly, the box plot for VOT-E2 shows the median value of 0.8797 and a maximum
value of 0.8814. Similar trends are observed for projects from Bug and Jira repositories, as

220104-23

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

shown in Figure 3b and Figure 3c, respectively. Thus, VOT-E1 performs better in terms of
accuracy as compared to other ensembles.

The average AUC(ROC) values are shown in Figures 3d–f. From Figure 3d, it is observed
that for projects from Promise repository, VOT-E2 have the highest AUC(ROC), i.e.,
0.8392, and high median value, i.e., 0. 8402 followed by VOT-E1 with median value 0.7972
and a maximum value 0.8011. The values of ensembles constructed with Boosting and
Bagging are 0.7851 and 0.7781, respectively. Similar trends are observed for Bug and Jira
repositories projects as shown in Figures 3e and 3f. VOT-E2 performs better in terms of
accuracy as compared to other ensembles. We also found that the difference in AUC(ROC)
for the best performing ensembles, i.e., VOT-E1 and VOT-E2 is very minimal, ranging
from 1% to 3%. Moreover, the shape of the box-plot for the projects is nipped, which
signifies that the performance of the ensemble method is the same among all the releases
of different projects from Promise, Jira and Bug repositories.

The performance for the average F -score is shown in Figure 3g–i, respectively. From
Figure 3g, it is observed that for projects from Promise repository, VOT-E2 have the highest
F -score, i.e., 0.8329 followed by VOT-E3 0.8201, AdaBoost 0.8068, and Random Forest
0.7864. The box plot for VOT-E3 shows the median value of 0.8134 and the maximum
value of 0.8201. Similar tendency is observed for F -score values for projects from Bug and
Jira repositories as shown in Figures 3h and 3i, where VOT-E2 has the highest F -score
value followed by VOT-E1. The overall median of F -score ranges between 85% (VOT-E2)
and 77.71% (Bagging). So, VOT-E2 performs better in terms of F -score as compared to
other ensembles.

The average root mean square error values are shown in Figure 3j–l. From Figure 3j,
it is observed that for the projects from Promise repository, the average RMSE is least
for the ensembles VOT-E1, i.e., 0.1693 and VOT-E2, i.e., 0.1724 and high for VOT-E4
0.199, AdaBoost 0.1785, and Random Forest 0.1966. The VOT-E1 and VOT-E2 performed
better, and it has the narrow box compared to the ensembles with bagging, adaboost, and
RF, respectively. The overall difference of RMSE ranges between 0.1703 (VOT- E1) and
0.1998 (VOT- E4).

5.3. Results for examining the performance difference
among the base classifiers and ensemble classifiers

The results shown in Table 12 in bold indicate the best performance. The proposed VOT-E2
produced the best results with advanced model-2, advanced model-3 and advanced model-1,
while it gave second best results for advanced model-4 and simple model datasets. The
values of ROC(AUC) for base classifiers were taken from Table 9. For comparison of
classifiers, the average ranks were computed. The ranks for each classifier for each dataset
were ascertained and later on summed up to get average ranks by dividing the average
values by the number of datasets. The lower the average ranking value; the better is
the performance of the model. The proposed ensemble-1 has a lower average rank of 1.2,
followed by the classifier MLP with a rank 1.6. All other classifiers have ranks between 1.2
and 5.8 as shown in Table 13.

Thus, based upon the results, we can say that ensemble learning (i.e., AdaBoosting,
Bagging, Random Forests, and Voting) works best as compared to base predictors. The
ensemble algorithms combine signals from base classifiers in the committee to produce an
enhanced fault prediction algorithm. While experimenting, we have noticed that ensemble
techniques performed better among all the advanced models. With respect to average

220104-24

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 12. Comparisons of different classifiers in terms of ROC(AUC)

Classifiers Simple Advanced Advanced Advanced Advanced Avg Rankmodel-1 model-2 model-3 model-4
DT 0.7338 0.7637 0.7801 0.7772 0.7371 3
MLP 0.7789 0.8069 0.8206 0.8071 0.7871 1.8
SVM 0.7029 0.7587 0.7703 0.7554 0.7332 4.0
RT 0.6723 0.7092 0.7366 0.7248 0.6873 5.8
NB 0.6871 0.7135 0.740 0.7241 0.6942 5.2
VOT-E2 0.7801 0.8182 0.8320 0.8156 0.7780 1.2

Table 13. Friedman test comparison

J (base classifiers) Pair wise differences
VOT- E2 DT 1.6 (P < 0.01)

MLP 0.4
SVM 2.6 (P < 0.001)
RT 3.5 (P < 0.001)
NB 4.6 (P < 0.001)

accuracy, average AUC(ROC), average F -score, and average RMSE, the proposed ensembles
VOT-E1 and VOT-E2 have high median value and high maximum value followed by
AdaBoost and Random Forest with features based on (Product + NDC metric data set) for
projects not only from Promise repository but also from Bug and Jira dataset repositories,
which validates the results and makes the approach more reliable. In general, the ensemble
methods show an overall median of F1 score ranging between 76.50% and 87.34% and the
ROC (AUC) between 77.09% and 84.05%. Base classifiers instead, reach an overall average
F -score ranging between 73% (simple model) and 83% (Advanced model-2) for Promise
data set and the ROC(AUC) between 60% (Advanced model-4) and 79% (Advanced
model-2). Thus, we can say that the ensemble design enhances the strengths of multiple
predictors and supplements to state of art in fault prediction problem [35, 72].

Furthermore, to examine whether the measured average ranks are significantly different
from the mean rank 3.5, the Friedman test has been applied. The results of the test
show below the significance level (p < 0.01), which means that at least two of the
predictors are significantly different from each other. When the scores differ significantly,
the researchers in the literature recommended follow-up pair-wise comparisons [68, 70].
For pair-wise comparisons, Wilcoxon signed ranks test had been applied. The results of
pair-wise comparisons are presented in Table 13. It is observed that the performance of
ensemble classifier is considerably dissimilar than other classifiers, apart from the MLP
based classifier. Thus, the null hypothesis is rejected, which states that there is no significant
difference between base classifiers performance and ensemble classifier performance. The
results of Friedmans tests and Wilcoxon signed rank tests illustrate that the ensemble
method exhibits statistically significant performance differences.

5.4. Results for examining the cost sensitiveness

Table 14 presents the predicted values of estimated fault removal cost (Ecost) for various
projects for both the best ensemble and the best base classifier. The unit, integration,
system, and field-testing values are used to obtain estimated values for fault removal cost

220104-25

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

using Equations (1) to (4) presented in Section 3.5.1. Table 15 shows the estimated testing
cost (T cost) values for various projects. These cost values are obtained using equations
(6) to (9) presented in Section 3.5.1. The values of fault removal cost (staff hours per
defect) for test techniques are shown in Table 4, and values of testing phase efficiencies
are presented in Table 5 in Section 3.5. Further, normalized cost values (N cost) of VOT-
E1 ensemble and best base classifier for projects from datasets (Promise, Bug and Jira)
are obtained using Equation (11). The values so obtained are presented in Table 16. The

Table 14. Estimated Fault Removal cost (Ecost) for best base classifier and best ensemble classifier

Projects Best base classifier (MLP) VOT-E2 ensemble classifier
Min Max Median Min Max Median

ant 1042 3862 1852 935 3712 2320
camel 534 2144 1167 654 2356 1367
Jedit 102 147 276 69 155 287
lucene 854 2393 3000 844 2382 2976
synapse 400 1018 1650 444 968 1601
xalan 3506 9803 11653 3498 9800 11650
xerecs 777 3912 1821 662 2461 1641
Equinox 596.06 2296.8 1502.42 562 2283.43 1407.7
Eclipse-JDT 921.753 4037.02 2419.48 918.45 4041.12 2389.04
Eclipse-PDE 1726.65 6565.25 3711.75 1710.12 6500.98 3645
MYLYN 2124.93 7548.55 4361.03 2023.34 7481.16 4243.03
ActiveMQ 5.0.0 1390.19 6510.64 3776.14 1390 6511 3768
derby-10.5.1.1 2041.09 9432.96 5607.88 2100 9456 5704
Groovy1_6_BETA_1 336.57 1309.85 857.90 321.34 1296 823
Hbase-0.94.0 1039.84 4907.87 2835.09 1109 4987 2965
Hive-0.9.0 1286.61 5661.904 3392.029 1261 5673 3753
Jruby-1.1 376.61 1547.42 962.66 376 1654 997
Wicket-1.3.0-beta2 1129.77 5998.59 3519.73 1127 5974 3678

Table 15. Estimated Testing cost (T cost) for various projects

Projects from PROMISE repository
Unit Integ. System Ant Camel Jedit Lucene Synapse Xalan Xerecs

Min 0.1 0.25 0.25 1079.78 1313.84 403.53 892.17 461.93 3500.35 1812.63
Max 0.5 0.6 0.65 3913.59 4796.06 1587.23 3072.74 1637.63 11807.5 6128.94
Median 0.25 0.45 0.5 2322.85 2782.28 707.21 2126.17 1040.95 8664.3 4398.43
Projects from BUG repository

Unit Integ. System Equinox Eclipse-JDT Eclipse-PDE MYLYN
Min 0.1 0.25 0.25 647.89 1394.33 1778.74 2165.49
Max 0.5 0.6 0.65 2276.44 5074.07 6604.41 8063.44
Median 0.25 0.45 0.5 1486.42 2973.17 3623.32 4381.36
Projects from Zira repository

Unit Integ. System ActiveMQ derby Groovy1 Hbase Hive Jruby Wicket

Min 0.1 0.25 0.25 2332.65 3230.89 835.46 1478.49 1950.26 821.32 1730.28
Max 0.5 0.6 0.65 8614.81 11987.9 3170.84 5381.41 7109.69 3072.74 6603.56
Median 0.25 0.45 0.5 4811.25 6591.98 1613.06 3151.27 4142.42 1643.08 3293.55

220104-26

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 16. Normalized fault removal cost (NEcost)

Projects Best base classifier (MLP) VOT-E2 ensemble classifier
Min Max Median Min Max Median

ant 0.96 0.98 0.79 0.86 0.84 0.99
camel 0.40 0.44 0.42 0.49 0.50 0.49
jedit 0.25 0.21 0.17 0.17 0.21 0.18
lucene 0.95 1.12 0.97 0.94 1.12 0.97
synapse 0.87 0.98 1.0 0.96 0.93 0.98
xalan 1.0 1.13 0.98 0.99 1.13 0.98
xerecs 0.72 0.99 0.78 0.61 0.62 0.70
Equinox 0.75 0.82 0.79 0.86 1.00 0.94
Eclipse-JDT 0.66 0.79 0.81 0.65 0.79 0.80
Eclipse-PDE 0.56 0.60 0.71 0.96 0.98 1.0
MYLYN 0.62 0.72 0.83 0.93 0.92 0.96
ActiveMQ 5.0.0 0.59 0.75 0.78 0.59 0.75 0.78
derby-10.5.1.1 0.63 0.78 0.85 0.64 0.78 0.86
Groovy-1_6_BETA_1 0.40 0.41 0.53 0.38 0.40 0.51
Hbase-0.94.0 0.70 0.91 0.89 0.75 0.92 0.94
Hive-0.9.0 0.65 0.79 0.81 0.64 0.79 0.90
Jruby-1.1 0.45 0.50 0.58 0.45 0.53 0.60
Wicket-1.3.0beta2 0.65 0.90 1.06 0.65 0.90 1.11

values > 1.0 show that the proposed best ensemble, i.e., VOT-E1 is cost-effective. It entails
that if the results of fault prediction are used with software testing, then overall testing
cost and effort can be saved. At the same time, values greater than 1.0 demonstrate that
the results of fault prediction do not help save overall testing cost and effort, and thus, it
is suggested not to use fault prediction models in such cases. From the results presented in
Table 16, it can be observed that for almost all projects, i.e., Ant, Camel, Jedit, Synapse,
Xerecs, Equinox, Eclipse JDT, EclipsePDE, MYLYN, ActiveMQ 5.0.0, derby 10.5.1.1,
Groovy-1_6_BETA1, Hbase-0.94.0, Hive-0.9.0 and Jruby-1.1 from the Promise, Bug and
Jira repositories, N cost values are lower or equal to the threshold value, i.e., 1.0 for both
the proposed ensemble VOT-E2 and best base classifier MLP except in few cases, i.e.,
Xalan, Lucene and Wicket-1.3.0beta2 the normalized cost values are more than threshold
value. Therefore, as observed from the results, it may not be beneficial to make use of SFP
based on the suggested best ensemble and best base classifier. Thus, it is advisable to test
all the modules at the unit level in place of using predictor for defect prediction for such
projects. For all other datasets, the values of N cost are lower than the threshold value, i.e.,
1 and thus it is advantageous to utilize fault prediction approaches proposed in the study.

Table 17 presents the summary of research questions. Also, comparison of few related
studies in literature with the proposed study is provided in Table 18.

6. Threats to validity

The section presents discussion on possible validity threats of the work presented in the
paper along with possible measures how we mitigated them.

Construct validity: These types of threats are concerned with the relationship between
theory and observations. In this work, we built advanced models for defect prediction
using product and process metrics. To improve the quality of software datasets, we applied

220104-27

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 17. Summary of research questions

Research question Discussion
RQ1: How does the
advanced defect predic-
tion models proposed in
the study perform using
various machine learn-
ing classifiers?

For conducting the experiments, we designed five scenarios, i.e., Simple
model; Advanced model-1 (Product + NR metric); Advanced model-2
(Product + NDC metric); Advanced model-3 (Product + NML metric);
and Advanced model-4 (Product + NDPV metric), respectively. All the
designed models are tested on various project datasets repositories, i.e.,
PROMISE, BUG and JIRA using different classifiers such as DT, MLP,
SVM, RT, NB. The advanced model-2 with MLP classifier having high
predictive capability followed by advanced model-3. Results discussed
in Section 5.1 shows that the proposed advanced models have performed
impressively well for inter project fault prediction.

RQ2: How does the
ensemble design im-
prove classification per-
formance when com-
pared to individual ma-
chine learning classi-
fiers?

In general, the ensemble methods show an overall median of F -score
ranging between 76.50% and 87.34% and the ROC (AUC) between
77.09% and84.05%. Base classifiers instead, reach an overall average
F -score ranging between 73% (simple model) and 83% (Advanced
model-2) for PROMISE data set and the ROC (AUC) between 60%
(Advanced model-4) and 79% (Advanced model-2). Thus, we can say
that the ensemble design enhances the strengths of multiple predictors
and supplements to state of art in fault prediction problem. While exper-
imenting, we have noticed that ensemble techniques (i.e., AdaBoosting,
Bagging, Random Forests, and Voting) performed better among all the
advanced models as discussed in Section 5.2. With respect to average
accuracy, average AUC (ROC), average F -score, and average RMSE,
the proposed ensembles VOT-E1 and VOT-E2 have high median value
and high maximum value followed by AdaBoost and Random Forest
with features based on (Product + NDC) metric data set for projects
not only from PROMISE repository but also from BUG and JIRA
dataset repositories, which validates the results and makes the approach
more reliable.

RQ3: Whether there
exist any statistically
significant performance
difference among the
base classifiers and en-
semble classifiers?

For pair-wise comparisons, Wilcoxon signed ranks test had been applied.
It is observed from the results (Table 13 in Section 5.3) that the
performance of ensemble classifier is considerably dissimilar than other
classifiers, apart from the MLP based classifier. The results of Friedmans
tests and Wilcoxon signed rank tests illustrate that the ensemble
method exhibits statistically significant performance differences.

RQ4: For a given soft-
ware system, whether
the proposed ensembles
are cost sensitive?

From the results presented in Table 16 Section 5.4, it is observed that for
almost all projects, i.e., Ant, Camel, Jedit, Synapse, Xerecs, Equinox,
Eclipse JDT, Eclipse PDE, MYLYN, ActiveMQ5.0.0, derby 10.5.1.1,
Groovy-1 _6 _BETA _1, Hbase-0.94.0, Hive-0.9.0 and Jruby-1.1 from
the PROMISE, BUG and Zira repositories, Ncost values are lower or
equal to the threshold value, i.e. 1.0 for both the proposed ensemble
VOT-E2 and best base classifier MLP except in few cases, i.e. Xalan,
Lucene and Wicket-1.3.0beta2 the normalized cost values are more
than threshold value. Thus, for a given software system, the proposed
ensembles are cost sensitive.

220104-28

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table 18. Comparision summary of research techniques

Authors Study objective Software
fault data
sets used/
repository

Fault prediction techniques Results

Song et al.
[2]

Proposed and evalu-
ated a general frame-
work for software de-
fect prediction

NASA,
MDP and
AR Data
Sets

Three learning algorithms.
Naive Bayes (NB), J48, one R
and 12 learning schemes

Naive Bayes performs much bet-
ter than J48, and J48 is better
than OneR No learning scheme
dominates, i.e., always outper-
forms the others for all 17 data
sets.

Rathore
and
Kumar
[26]

Empirical study of
ensemble techniques
for software fault pre-
diction

28
software
fault
datasets
(PROMISE
reposi-
tory)

7 ensemble techniques, i.e., Dag-
ging, Decorate, Grading, Multi-
BoostAB, RealAdaBoost, Rota-
tion Forest, and Ensemble Se-
lection

Precision = 0.995 (Rotation For-
est) Recall = 0.994 (Rotation
Forest) AUC = 0.986 (Decorate)
Cost-sensitiveness: proposed en-
semble techniques saved soft-
ware testing cost and effort for
20 out of 28 fault datasets.

Laradji et
al. [27]

To demonstrate the
positive effects of
combining feature se-
lection and ensemble
learning on the per-
formance of defect
classification.

06
datasets:
Ant-1.7,
Camel-1.6,
KC3, MC1,
PC2, and
PC4

Average probability ensemble
(APE) consisting of 7 classifiers,
i.e., random forests, gradient
boosting, stochastic gradient de-
scent, W-SVMs, logistic regres-
sion, multinomial naive Bayes,
and Bernoulli naive Bayes

Higher AUC measures for each
dataset, which were close to 1.0
in the case of PC2, PC4 and
MC1 datasets.

Proposed
approach

Study aims to de-
velop advanced mod-
els for software de-
fect prediction which
uses both product
and process metrics.

32
projects
from
PROMISE,
BUG, and
JIRA
dataset
repository.

5 Base learners and ensem-
ble methods (i.e., AdaBoosting,
Bagging, Random Forests, and
Voting)

Ensemble methods: F -score
(76.50% −87.34%) and the
ROC (AUC) (77.09% −84.05%)
for Product + NDC met-
ric data for all data sets.
Cost-sensitiveness: VOT-E2 en-
semble saved software testing
cost and effort for 29 out of 32
fault datasets.

dimensional reduction, which is achieved by using feature ranking and feature subset
selection techniques [7]. In this way, we obtained a reduced set of 15 features for defect
prediction. Thus, data preprocessing helps to avoid the creation of an unstable model
[30]. The study results are replicated with various datasets from Promise, Bug and Jira
repositories which makes the study reliable. We have used N fold cross-validation while
conducting experiments to avoid bias due to sampling. To obtain the experimentation
results, authors in the study used F -score and ROC(AUC) metrics which are considered to
be more consistent measures for evaluation of classification algorithms [26].

Conclusion validity: It denotes the relation between treatment and outcome. During
the study, our objective was to examine the overall predictive capability of proposed
advanced models using various machine learning classifiers. We also examined whether
the ensemble design improves classification performance as compared to base machine
learning classifiers. For this, we designed ensembles using bagging, boosting and voting to
examine the improvement in the performance of proposed defect prediction models. The

220104-29

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

performance of ensembles is measured by constructing box plots for accuracy, precision and
AUC(ROC). From the results, it is observed that fault prediction capability is increased
using ensemble-based learning [29, 63]. Furthermore, we validated the statistical significance
of performance differences among the base classifiers and the best ensemble classifier, using
the non-parametric Friedman test and performed pair wise comparisons using the Wilcoxon
Rank-Sum test to test the worst-performing classifiers.

External validity: It deals with the generalization of the results of our study to other
settings. In this study, we considered thirty two releases from various datasets used for
different application domains. To minimize the effect of a particular tool/technology, in our
normalized dataset we have taken applications developed using different version control
systems (CVS and SVN) and diverse bug tracking tools (Ckjm, Bug Info, Quality Spy)
[17, 63]. We preprocessed the data related to the metrics and obtained a reduced set of
thirteen features for defect prediction so that the generalized prediction models are formed.
The comparative assessment performed using base and ensemble classifiers verified the
significance of proposed advanced models in fault prediction and helps to minimize the
threat due to external validity.

7. Conclusions

The work presents advanced models for software fault prediction, in which authors have
used information related to product and process metrics. The models for investigation
were built based on five different scenarios as discussed in Section 4. Scenario-1: simple
model (consists of product metrics only); scenario-2: advanced model-1 (product metrics
+ NR process metric); scenario-3: advanced model-2 (product metrics + NDC process
metric); scenario-4: advanced model-3 (product metrics + NML process metric); scenario-4:
advanced model-4 (product metrics + NDPV process metric). The various base classifiers
used to predict the performance of proposed models are DT, MLP, RT, SVM and NB.
The study has been conducted on thirty-two open-source code projects extracted from the
Promise, Jira and Bug repositories. The results show that among base classifiers the MLP
based base classifier captures high average accuracy (87%), average ROC(AUC) (79%),
average F -score (83%) and least RMSE error (0.12) for advanced model-2 constructed
using (product + NDC metrics) from Promise repository as compared to other advanced
models, i.e., advanced model-1, advanced model-3 and advanced model-4, respectively.
Similar trend is observed for projects from Jira and Bug repositories too.

Furthermore, to examine whether the ensemble design improves classification perfor-
mance as compared to individual machine learning classifiers we used the ensemble approach
based on bagging, boosting and voting to combine multiple classifiers and conducted repli-
cation experiments. The comparison of results using average accuracy, average RMSE,
average ROC(AUC) and average F -score confirms the predictive capability of proposed
classifiers for developing advanced defect prediction models. The VOT-E2 (DT + MLP
+ SVM) ensemble produced the best results with advanced model-2, advanced model-3
and advanced model-1 followed by VOT-E1 classifiers (DT + MLP + RT), in terms of
ROC(AUC) and F -measure. Further to validate the statistical significance of performance
differences among the base classifiers and classifier ensemble, we also tested the hypothesis
H0, that there is no significant difference between base classifier performance and ensemble
classifier performance using a non-parametric test. We also evaluated the fault removal
estimation cost for the proposed ensemble and best base classifier. The normalized fault

220104-30

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

removal cost is obtained for different projects from Promise, Jira and Bug repositories by
calculating the ratio of estimated fault removal cost to estimated testing cost, which is
below the threshold value, i.e., less than one.

Our results shows that the advanced fault estimation models constructed with a nor-
malized and minimum subset of software metrics, which includes product metrics and one
process metric at a time, provide satisfactory performance as compared to simple models
constructed using product metrics alone. The proposed approach based on combination
models may prove useful to software engineers for their new projects. Though in the study,
authors have conducted experiments using projects from Promise, Jira and Bug repositories,
still, to establish evidence and improve generalization of results, the investigations shall be
replicated using more open-source and cross-project data sets. Several defect prediction
models have been developed which use heterogeneous metric data from other projects
[31, 63]. The investigation using more number projects would not only increase the variety
of examined data but also helps to improve the external validity of the research outcomes.

References

[1] Z. Li, X.Y. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” Iet
Software, Vol. 12, No. 3, 2018, pp. 161–175.

[2] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software defect-proneness
prediction framework,” IEEE transactions on software engineering, Vol. 37, No. 3, 2010,
pp. 356–370.

[3] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610.12-1990, 1990.
[Online]. https://ieeexplore.ieee.org/document/159342

[4] X. Yang, D. Lo, X. Xia, and J. Sun, “TLEL: A two-layer ensemble learning approach
for just-in-time defect prediction,” Information and Software Technology, Vol. 87, 2017,
pp. 206–220.

[5] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-in-time defect predic-
tion,” in International Conference on Software Quality, Reliability and Security. IEEE, 2015,
pp. 17–26.

[6] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu et al., “Effort-aware just-in-time defect prediction:
simple unsupervised models could be better than supervised models,” in Proceedings of the
24th ACM SIGSOFT international symposium on foundations of software engineering, 2016,
pp. 157–168.

[7] Ö.F. Arar and K. Ayan, “Deriving thresholds of software metrics to predict faults on open
source software: Replicated case studies,” Expert Systems with Applications, Vol. 61, 2016,
pp. 106–121.

[8] R. Malhotra and J. Jain, “Handling imbalanced data using ensemble learning in software
defect prediction,” in 10th International Conference on Cloud Computing, Data Science and
Engineering (Confluence). IEEE, 2020, pp. 300–304.

[9] F. Matloob, T.M. Ghazal, N. Taleb, S. Aftab, M. Ahmad et al., “Software defect prediction
using ensemble learning: A systematic literature review,” IEEE Access, 2021.

[10] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-time defect prediction,”
Journal of Systems and Software, Vol. 150, 2019, pp. 22–36.

[11] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for
software defect prediction: A proposed framework and novel findings,” IEEE Transactions on
Software Engineering, Vol. 34, No. 4, 2008, pp. 485–496.

[12] S.S. Rathore and S. Kumar, “An empirical study of ensemble techniques for software fault
prediction,” Applied Intelligence, Vol. 51, No. 6, 2021, pp. 3615–3644.

[13] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, “Empirical evidence on the link between
object-oriented measures and external quality attributes: A systematic literature review,”
Empirical Software Engineering, Vol. 20, No. 3, 2015, pp. 640–693.

220104-31

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

[14] Z. Li, X.Y. Jing, and X. Zhu, “Heterogeneous fault prediction with cost-sensitive domain
adaptation,” Software Testing, Verification and Reliability, Vol. 28, No. 2, 2018, p. e1658.

[15] R. Malhotra, “An empirical framework for defect prediction using machine learning techniques
with Android software,” Applied Soft Computing, Vol. 49, 2016, pp. 1034–1050.

[16] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,”
Neurocomputing, Vol. 385, 2020, pp. 100–110.

[17] I. Kiris, S. Kapan, A. Kılbas, N. Yılmaz, I. Altuntaş et al., “The protective effect of erythro-
poietin on renal injury induced by abdominal aortic-ischemia-reperfusion in rats,” Journal of
Surgical Research, Vol. 149, No. 2, 2008, pp. 206–213.

[18] L. Madeyski and M. Jureczko, “Which process metrics can significantly improve defect predic-
tion models? An empirical study,” Software Quality Journal, Vol. 23, No. 3, 2015, pp. 393–422.

[19] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault prediction metrics:
A systematic literature review,” Information and software technology, Vol. 55, No. 8, 2013,
pp. 1397–1418.

[20] Y. Wu, Y. Yang, Y. Zhao, H. Lu, Y. Zhou et al., “The influence of developer quality on
software fault-proneness prediction,” in EIghth International Conference on Software Security
and Reliability (SERE). IEEE, 2014, pp. 11–19.

[21] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my code! Examining
the effects of ownership on software quality,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering, 2011,
pp. 4–14.

[22] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto et al., “A developer centered bug
prediction model,” IEEE Transactions on Software Engineering, Vol. 44, No. 1, 2017, pp. 5–24.

[23] F. Palomba, M. Zanoni, F.A. Fontana, A. De Lucia, and R. Oliveto, “Toward a smell-aware
bug prediction model,” IEEE Transactions on Software Engineering, Vol. 45, No. 2, 2017,
pp. 194–218.

[24] F. Rahman and P. Devanbu, “How, and why, process metrics are better,” in 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 432–441.

[25] B. Ghotra, S. McIntosh, and A.E. Hassan, “Revisiting the impact of classification techniques
on the performance of defect prediction models,” in 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 2015, pp. 789–800.

[26] F. Yucalar, A. Ozcift, E. Borandag, and D. Kilinc, “Multiple-classifiers in software quality
engineering: Combining predictors to improve software fault prediction ability,” Engineering
Science and Technology, an International Journal, Vol. 23, No. 4, 2020, pp. 938–950.

[27] I.H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning
on selected features,” Information and Software Technology, Vol. 58, 2015, pp. 388–402.

[28] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets, and feature selection
techniques on software fault prediction problem,” Information Sciences, Vol. 179, No. 8, 2009,
pp. 1040–1058.

[29] T.M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and imbalanced data: Problems
in software defect prediction,” in 22nd IEEE International conference on tools with artificial
intelligence, Vol. 1. IEEE, 2010, pp. 137–144.

[30] X. Chen, Y. Mu, Y. Qu, C. Ni, M. Liu et al., “Do different cross-project defect prediction
methods identify the same defective modules?” Journal of Software: Evolution and Process,
Vol. 32, No. 5, 2020, p. e2234.

[31] Y. Zhang, D. Lo, X. Xia, and J. Sun, “Combined classifier for cross-project defect prediction:
An extended empirical study,” Frontiers of Computer Science, Vol. 12, No. 2, 2018, p. 280.

[32] T. Lee, J. Nam, D. Han, S. Kim, and H.P. In, “Micro interaction metrics for defect prediction,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, 2011, pp. 311–321.

[33] K. Juneja, “A fuzzy-filtered neuro-fuzzy framework for software fault prediction for inter-version
and inter-project evaluation,” Applied Soft Computing, Vol. 77, 2019, pp. 696–713.

220104-32

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

[34] H. Wang, T.M. Khoshgoftaar, and A. Napolitano, “A comparative study of ensemble feature
selection techniques for software defect prediction,” in Ninth International Conference on
Machine Learning and Applications. IEEE, 2010, pp. 135–140.

[35] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “Building an ensemble for
software defect prediction based on diversity selection,” in Proceedings of the 10th ACM/IEEE
International symposium on empirical software engineering and measurement, 2016, pp. 1–10.

[36] F. Pecorelli and D. Di Nucci, “Adaptive selection of classifiers for bug prediction: A large-scale
empirical analysis of its performances and a benchmark study,” Science of Computer Program-
ming, Vol. 205, 2021, p. 102611.

[37] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia, “Dynamic selection of classifiers in bug
prediction: An adaptive method,” IEEE Transactions on Emerging Topics in Computational
Intelligence, Vol. 1, No. 3, 2017, pp. 202–212.

[38] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different classifiers find the
same defects?” Software Quality Journal, Vol. 26, No. 2, 2018, pp. 525–552.

[39] G. Abaei, A. Selamat, and H. Fujita, “An empirical study based on semi-supervised hybrid
self-organizing map for software fault prediction,” Knowledge-Based Systems, Vol. 74, 2015,
pp. 28–39.

[40] E. Erturk and E.A. Sezer, “A comparison of some soft computing methods for software fault
prediction,” Expert systems with applications, Vol. 42, No. 4, 2015, pp. 1872–1879.

[41] Y. Hu, B. Feng, X. Mo, X. Zhang, E. Ngai et al., “Cost-sensitive and ensemble-based prediction
model for outsourced software project risk prediction,” Decision Support Systems, Vol. 72,
2015, pp. 11–23.

[42] M.O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on predicting software
maintainability using ensemble methods,” Soft Computing, Vol. 19, No. 9, 2015, pp. 2511–2524.

[43] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software defect prediction
with a simplified metric set,” Information and Software Technology, Vol. 59, 2015, pp. 170–190.

[44] W. Rhmann, B. Pandey, G. Ansari, and D.K. Pandey, “Software fault prediction based
on change metrics using hybrid algorithms: An empirical study,” Journal of King Saud
University-Computer and Information Sciences, Vol. 32, No. 4, 2020, pp. 419–424.

[45] A. Kaur and I. Kaur, “An empirical evaluation of classification algorithms for fault prediction
in open source projects,” Journal of King Saud University-Computer and Information Sciences,
Vol. 30, No. 1, 2018, pp. 2–17.

[46] D. Cotroneo, A.K. Iannillo, R. Natella, R. Pietrantuono, and S. Russo, “The software aging and
rejuvenation repository: http://openscience.us/repo/software-aging,” in International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW). IEEE, 2015, pp. 108–113.

[47] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug prediction ap-
proaches,” in Proceedings of MSR 2010 (7th IEEE Working Conference on Mining Software
Repositories). IEEE CS Press, 2010, pp. 31 – 41.

[48] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters et al., “The promise repository
of empirical software engineering data,” West Virginia University, Department of Computer
Science, 2012.

[49] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA
software defect datasets,” IEEE Transactions on Software Engineering, Vol. 39, No. 9, 2013,
pp. 1208–1215.

[50] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer, “SMOTE: synthetic minority
over-sampling technique,” Journal of artificial intelligence research, Vol. 16, 2002, pp. 321–357.

[51] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,” IEEE
Transactions on Reliability, Vol. 62, No. 2, 2013, pp. 434–443.

[52] K. Gao, T.M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software metrics for defect
prediction: an investigation on feature selection techniques,” Software: Practice and Experience,
Vol. 41, No. 5, 2011, pp. 579–606.

[53] Z.H. Zhou and X.Y. Liu, “Training cost-sensitive neural networks with methods addressing
the class imbalance problem,” IEEE Transactions on knowledge and data engineering, Vol. 18,
No. 1, 2005, pp. 63–77.

220104-33

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

[54] L. Kumar, S. Misra, and S.K. Rath, “An empirical analysis of the effectiveness of software
metrics and fault prediction model for identifying faulty classes,” Computer Standards and
Interfaces, Vol. 53, 2017, pp. 1–32.

[55] M. Dash and H. Liu, “Consistency-based search in feature selection,” Artificial intelligence,
Vol. 151, No. 1-2, 2003, pp. 155–176.

[56] S.S. Rathore and S. Kumar, “Linear and non-linear heterogeneous ensemble methods to
predict the number of faults in software systems,” Knowledge-Based Systems, Vol. 119, 2017,
pp. 232–256.

[57] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect
predictors,” IEEE transactions on software engineering, Vol. 33, No. 1, 2006, pp. 2–13.

[58] A.E.C. Cruz and K. Ochimizu, “Towards logistic regression models for predicting fault-prone
code across software projects,” in 3rd international symposium on empirical software engineering
and measurement. IEEE, 2009, pp. 460–463.

[59] J. Li, D.M. Witten, I.M. Johnstone, and R. Tibshirani, “Normalization, testing, and false
discovery rate estimation for RNA-sequencing data,” Biostatistics, Vol. 13, No. 3, 2012,
pp. 523–538.

[60] J. Nam, S.J. Pan, and S. Kim, “Transfer defect learning,” in 35th international conference on
software engineering (ICSE). IEEE, 2013, pp. 382–391.

[61] S. Matsumoto, Y. Kamei, A. Monden, K.i. Matsumoto, and M. Nakamura, “An analysis of
developer metrics for fault prediction,” in Proceedings of the 6th International Conference on
Predictive Models in Software Engineering, 2010, pp. 1–9.

[62] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault prediction models,” Empirical
Software Engineering, Vol. 13, No. 5, 2008, pp. 561–595.

[63] X. Xuan, D. Lo, X. Xia, and Y. Tian, “Evaluating defect prediction approaches using a massive
set of metrics: An empirical study,” in Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015, pp. 1644–1647.

[64] S. Wagner, “A literature survey of the quality economics of defect-detection techniques,” in
Proceedings of the ACM/IEEE international symposium on Empirical software engineering,
2006, pp. 194–203.

[65] C. Jones and O. Bonsignour, The economics of software quality. Addison-Wesley Professional,
2011.

[66] N. Wilde and R. Huitt, “Maintenance support for object-oriented programs,” IEEE Transactions
on Software Engineering, Vol. 18, No. 12, 1992, p. 1038.

[67] T. Wang, W. Li, H. Shi, and Z. Liu, “Software defect prediction based on classifiers ensemble,”
Journal of Information and Computational Science, Vol. 8, No. 16, 2011, pp. 4241–4254.

[68] K. Bańczyk, O. Kempa, T. Lasota, and B. Trawiński, “Empirical comparison of bagging
ensembles created using weak learners for a regression problem,” in Asian Conference on
Intelligent Information and Database Systems. Springer, 2011, pp. 312–322.

[69] G. Catolino and F. Ferrucci, “An extensive evaluation of ensemble techniques for software
change prediction,” Journal of Software: Evolution and Process, Vol. 31, No. 9, 2019, p. e2156.

[70] L. Reyzin and R.E. Schapire, “How boosting the margin can also boost classifier complexity,”
in Proceedings of the 23rd international conference on Machine learning, 2006, pp. 753–760.

[71] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “Building an ensemble for
software defect prediction based on diversity selection,” in Proceedings of the 10th ACM/IEEE
International symposium on empirical software engineering and measurement, 2016, pp. 1–10.

[72] A.T. Mısırlı, A.B. Bener, and B. Turhan, “An industrial case study of classifier ensembles for
locating software defects,” Software Quality Journal, Vol. 19, No. 3, 2011, pp. 515–536.

[73] J. Bansiya and C.G. Davis, “A hierarchical model for object-oriented design quality assessment,”
IEEE Transactions on software engineering, Vol. 28, No. 1, 2002, pp. 4–17.

[74] E. Shihab, Z.M. Jiang, W.M. Ibrahim, B. Adams, and A.E. Hassan, “Understanding the impact
of code and process metrics on post-release defects: a case study on the eclipse project,” in
Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, 2010, pp. 1–10.

220104-34

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

[75] R. Martin, “OO design quality metrics,” An analysis of dependencies, Vol. 12, No. 1, 1994,
pp. 151–170.

220104-35

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

A. Appendix

Table A1. Description of selected features

Product metrics Description References
WMC It is the weighted sum of methods implemented within

a class.
[73]

NOC It is defined as the number of instant sub classes (children)
subordinated to a class (parent) in the class hierarchy.

[73]

CBO It defines the number of other classes that are tied to a given
class during method call or function call, abstraction etc.

[73]

RFC It is a count of methods in a class or methods directly called
by these.

[73]

LCOM It is a number of private methods in a class which dont
connect the class fields.

[73]

Ca It is used to measure the number of classes that depends on
a given class.

[74]

Ce It is used to measure the number of classes on which a given
class depends.

[74]

NPM It is a number of public methods in a given class. [58]
LOC It is a number of lines of code in a given class. [59]
DAM It is the ratio of the number of private/protected attributes

to the total number of attributes in a given class.
[65]

MOA It is a number of classes whose declaration is user defined. [65]
AMC It is the average size of methods in a given class. [75]
Max−CC It is the maximum McCabes CC score for methods in a given

class.
[75]

Avg−CC It is the arithmetic mean of McCabes CC score for methods
in a given class.

[75]

Process metrics Description References
NR It represents the number of revisions of a given class because

of bug/or some enhancements in a specific revision or version
of a software system.

[17, 24, 44, 74]

NDC/NAUTH It counts the number of different programmers /developer-
s/authors who committed their changes in the given class
during the improvement of the specific revision of the soft-
ware.

[17, 24, 44, 74]

NML/NREF It is the sum of all number of lines that are added or altered
or number of times a file has been refactored.

[17, 24, 44, 74]

NDPV The metric counts the number of defects in the previous ver-
sion being corrected in the respective class while developing
the previous releases or versions.

[24, 44, 74]

220104-36

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table A2. Details of base classifiers and classifier ensembles

Base Classifiers Description
Naive Bayes (NB) [29] It is a probabilistic classification technique based on Bayes Theorem

with an assumption, that each pair of features being classified is
independent of each other.

Decision Tree (DT) [29] The simplest supervised learning method which creates tree structure
to consider target values as discrete set or decision rules known as
classification tree and nodes denotes class labels.

Random Tree (RT) [29] It is a collection of multiple trees which are relatively uncorrelated,
operating as a committee, split out a class with the most votes for
models prediction.

Multilayer Perceptron
(MLP) [29]

A supervised feed-forward artificial neural network model which maps
input data onto a set of appropriate outputs and in between these two,
an arbitrary number of hidden layers which work as a computational
engine of the MLP.

Support vector machines
(SVMs) [41]

SVMs are a group of supervised learning methods which makes
use of statistical learning theory for classification. The methods are
proposed by Cortes and [69]. The basic idea of SVM is to identify
a similarity distance between two entities (classes) by considering
a distance metric between them. It could also be used to handle
unbalanced classes.

Ensemble classifiers Description
Random Forest (RF) [29] It is an ensemble-based method used in classification which constitute

multiple decision trees on randomly selected data at training time
and get prediction from each tree and choose best solution by voting.

Boosting [61] The method is proposed by Freund [71]. It modifies a training set
by repeatedly applying a basic learning device (i.e., classifier) under
a pre-specified number of iterations. Adaptive Boosting (AdaBoost)
is a well-known Boosting technique.

Bootstrap aggregating
[29]

Bagging is a bootstrap method proposed by Breiman [72] that mainly
extracts a training sample from a training set by returning them
to each extraction. It allocates equal weight to developed models,
thereby reduces the variance related with classification, which in turn
improves the classification process.

Voting [29] It represents the simplest ensemble algorithm used for classification
or regression problems. Each sub model in the algorithm makes use of
votes or algebraic combinations (mean or the mode) of heterogeneous
predictors to make predictions.

220104-37

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Table A3. Details of performance measures

Measures Defined as Description
Pd/Recall/TP TP/(TP + FN) It is defined as the ratio of the number

of defective instances that are correctly
classified as defective to the total number
of defective instances.

Pf FP/(FP + TN) It is defined as the ratio of the number of
non-defective instances that are wrongly
classified as defective to the total number
of non-defective instances.

Precision TP/(TP + FP) Precision is defined as the number of cor-
rectly identified positive results to the to-
tal number of all positive outcomes, in-
cluding those not recognized correctly.

F1-score (2 × precision ×
Pd)/(precision + Pd)

It is a measure for harmonic mean of Pd
and precision.

Accuracy (TP + TN)/(TP + TN +
FP + FN) × 100

It denotes the percentage of correctly pre-
dicted instances.

Root mean
square error
(RMSE)

√
1/N

∑N
i=1(Ai − Pi)2 It defines the square root of the mean of

squared differences of actual and expected
predictions.

ROC(AUC) Receiver operating Char-
acteristics (Area under
curve)

ROC(AUC) measures the performance
of the classification problems at various
thresholds in the imbalanced data-set.
ROC is a probability curve, and AUC
represents the measure of separability. If
AUC value is high, the model is predicting
better. It ranges from 0 to 1

False-positive
rate (FPR)

FPR = FP/(TP + TN) The expectancy of the false-positive ratio
to the total of actual negative.

False-negative
rate (FNR)

FNR = FN/(TP + FN) The ratio of the individuals with an iden-
tified positive instance for which the clas-
sified test result is negative.

Table A4. Confusion matrix for classifying data as faulty or non-faulty

Actual
Positive Negative

Predicted Positive True-positive (TP) False-positive (FP)
Negative False-negative (FN) True-negative (TN)

220104-38

Pooja Sharma, Amrit Lal Sangal e-Informatica Software Engineering Journal, 16 (2022), 220104

Under the cost evaluation framework, the notations used to formulate
various costs are:

– Ecost: Estimated fault removal cost of the software when software fault prediction
results are used

– T cost: Estimated fault removal cost of the software without the use of software fault
prediction results

– NEcost: Normalized fault removal cost of the software when software fault prediction is
used

– Cu: Normalized value of fault removal cost when unit testing is done
– Ci: Normalized value of fault removal cost when integration testing is done
– Cs: Normalized value of fault removal cost when system testing is done
– Cf : Normalized value of fault removal cost when field testing is done
– Mp: Percentage of modules when unit tested
– FM : Total number of faulty modules, and
– TM : Total number of modules in software projects
– FP, FN : Number of false positives, number of false negatives
– TP: Number of true positives

220104-39

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220105, DOI: 10.37190/e-Inf220105

A Systematic Review of Ensemble Techniques
for Software Defect and Change Prediction

Megha Khanna∗
∗Department of Computer Science, Sri Guru Gobind Singh College of Commerce,

University of Delhi
meghakhanna86@gmail.com

Abstract
Background: The use of ensemble techniques have steadily gained popularity in several
software quality assurance activities. These aggregated classifiers have proven to be
superior than their constituent base models. Though ensemble techniques have been
widely used in key areas such as Software Defect Prediction (SDP) and Software Change
Prediction (SCP), the current state-of-the-art concerning the use of these techniques
needs scrutinization.
Aim: The study aims to assess, evaluate and uncover possible research gaps with respect
to the use of ensemble techniques in SDP and SCP.
Method: This study conducts an extensive literature review of 77 primary studies on the
basis of the category, application, rules of formulation, performance, and possible threats
of the proposed/utilized ensemble techniques.
Results: Ensemble techniques were primarily categorized on the basis of similarity,
aggregation, relationship, diversity, and dependency of their base models. They were
also found effective in several applications such as their use as a learning algorithm for
developing SDP/SCP models and for addressing the class imbalance issue.
Conclusion: The results of the review ascertain the need of more studies to propose, assess,
validate, and compare various categories of ensemble techniques for diverse applications
in SDP/SCP such as transfer learning and online learning.

Keywords: Ensemble learning, Software change prediction, Software defect pre-
diction, Software quality, Systematic review

1. Introduction

Technology has ensured that software is a fundamental part of every activity. This ne-
cessitates the development and maintenance of good quality software products. However,
rigid deadlines, limited budgets, and scarce resources often impede the development of
competent software products. Thus, it is essential to perform Software Quality Assurance
(SQA) activities so that the quality of software products is not compromised. Software
Defect Prediction (SDP) and Software Change Prediction (SCP) models, which predict
defect prone and change prone parts of software in its early stages of development are
popular means of prioritizing effort for SQA activities. Defect prone and change prone parts,
though few, account for a majority of the defects and changes in a software [1, 2]. Thus,
SQA efforts should be focused on these parts as they need to be meticulously designed and

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 23 Jul. 2021; Revised: 09 Jan. 2022; Accepted: 21 Feb. 2022; Available online: 04 Mar. 2022

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

carefully verified [3–5]. Software practitioners may design and verify these parts in such
a manner so that future occurrences of defects can be minimized and the effect of changes
may be localized [2, 6–9]. These activities would assure the timely delivery of cost-effective
and maintainable software products.

Over the years, the research community has extensively explored various algorithms
for developing SDP and SCP models. Amongst the various categories, the “ensemble”
techniques are a key category that have been widely investigated by the researchers [10–13].
These techniques are an assembly of diverse base models, where each base model attempts
to resolve the original problem at hand [12], which in our case is the determination of
defect prone and change prone classes. Ensemble Techniques (ET) output the result of the
aggregated base models as “aggregation” provides a more stable and reliable estimate with
an improved predictive ability [14–17]. Combining several diverse base models is analogous
to consulting a committee of experts thereby resulting in more accurate predictions [18].

Given the unique nature of ET and its improved performance over single models, it is
vital to systematically summarize and analyze the empirical evidence for its use in SDP
and SCP literature. Previous studies have comprehensively evaluated the use of ET for
feature selection [19], effort estimation [12], and class imbalance problem [20]. Also, there
have been several efforts by researchers that systematically summarize the SDP and SCP
studies from various aspects. Radjenovic et al. [21] examined various software metrics in
the context of SDP and found object-oriented metrics to be most prevalent. Catal [22]
investigated SDP studies in the period 1990–2009 to summarize the metrics, performance
measures, methods, datasets, and experimental results used in the studies. Hosseini et al.
[23] synthesized the state of the art concerning the use of cross-project models in SDP
studies. Malhotra [10] evaluated the use of several machine learning techniques for SDP.
Amongst other findings, she reported that ET were used in 18% of 65 primary studies.
Wahono [11] conducted a systematic literature review of 71 SDP studies to investigate
the methods, datasets, frameworks, and research trends in SDP. An interesting result of
the review pointed out that researchers have suggested the use of ET and the use of the
boosting algorithm for improving the performance of existing machine learning classifiers.
Two other previous reviews have also scrutinized SDP and SCP studies [24, 25], but with
respect to the use of search-based algorithms and validity threats specific to its usage.
A recent review by Malhotra and Khanna [13] assessed the various predictors, techniques
and their predictive performance, experimental settings and validity threats in 38 SCP
studies. Amongst other results, the review study encouraged the use of ET as they were
found to be popular as well as effective (when evaluated in terms of accuracy and AUC
measures) in the SCP domain. This study complements the previous work as we investigate
the use of ET in both SCP as well as SDP domain (a related area of SCP). We analyze the
several categories of ET, their rules, predictive capability and their possible application in
aiding the SDP/SCP problems. Certain other researchers [26–28] have also reviewed SDP
and SCP literature. However, to the best of the author’s knowledge, there has been no
study till date which has focused on a comprehensive evaluation of the use of ET for SDP
and SCP, which is the primary aim of this study.

To facilitate an extensive analysis of ET used in SDP and SCP literature we examine
the following Research Questions (RQ):
– RQ1: What is the categorization of ET? Which is the most popular category of ET in

SDP/SCP literature?
– RQ2: What are the various applications of ET in SDP/SCP literature?

220105-2

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

– RQ3: Which rules/mechanisms are used for combining base models to form ET in
SDP/SCP literature?

– RQ4: What is the performance of ET for various tasks in the domain of SDP/SCP? How
does the performance of ET compare to other non-ensemble techniques and amongst
each other?

– RQ5: What are the various reported threats to validity specific to the use of ET in
SDP/SCP literature?
The objective of the study is to systematically collect and rigorously evaluate literature

studies that develop classification models using ET to predict defect prone and change
prone parts of a software. This would help in summarizing the current trends for the use
of ET in SDP/SCP literature and further determine gaps in existing research. The study
is structured into five further sections, which includes research methodology followed to
conduct the review (Section 2), review results (Section 3), discussion and proposed future
work (Section 4), threats to validity of the review (Section 5) and conclusions (Section 6).

2. Review methodology

To accomplish our goals, we performed a systematic literature review in three stages
according to the guidelines stated by Kitchenham et al. [29]. The first stage was planning
which included identifying the review objectives and the protocol for conducting the review.
As discussed in the previous section, we evaluated existing systematic reviews on the topic.
However, these reviews did not focus on the application of ET in SDP and SCP. Thus, the
primary objective of this review was to study the existing literature and provide a critical
overview of the use of ET in the domain of SDP and SCP. Thereafter, the research questions
were formulated and the review protocol was defined. The review protocol characterizes
the search strategy for extracting relevant studies from literature, criteria for including
and excluding the collected studies, a benchmark for quality assessment of candidate
studies, processes for data extraction from primary studies, and the method for synthesis
of extracted data. The second stage of the review involves conducting the review according
to the procedures decided in the planning stage. This stage collects the relevant studies
and scrutinizes them if they are fit to be primary studies of the review. Thereafter, data
pertaining to the formulated RQ’s is extracted and synthesized. The last stage of the review
concerns itself with reporting of the findings of the review. Here, we report crisp answers to
the investigated RQ’s and document research gaps in the form of future work to interested
researchers.

2.1. Search strategy

To search for relevant studies, we need to prepare a search string by combining appropriate
search terms. These search terms were determined by selecting “key” terms from the RQ’s of
the review [21]. Furthermore, equivalent terms and other possible spellings were examined
for the identified search terms. Thereafter, the search string was defined by combining all
synonymous terms using Boolean “OR” and all distinct terms by Boolean “AND”. The
following search string was used:

(“software”) AND (“Defect” OR “Fault” OR “Error” OR ”Bug” OR “Change” OR
“Evolution”) AND (“proneness” OR “prone” OR “predict*” OR “probability” OR
“classification” OR “empirical”) AND (“Ensemble” OR “Bagging” OR “Boosting”

220105-3

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

OR “Machine learning” OR “Soft Computing” OR “Random Forest” OR “Bootstrap
Aggregating” OR “Adaboost” OR “Combin*” OR “Stack*” OR “Meta*” OR “Rotation
Forest” OR “Voting” OR “Logitboost”).
We conducted the search in five well-known literature sources namely ScienceDirect,

ACM Digital Library, IEEEXplore, Wiley Online Library, and SpringerLink. These sources
were chosen based on our previous knowledge of conducting reviews in the SDP and SCP
domains [13, 24]. Moreover, most of the primary studies in previously conducted systematic
reviews in SDP and SCP are indexed in these sources [10, 11]. The search string was
modified suitably according to the requirements of each literature source. It examined the
title, abstract, and keywords of the studies in the literature databases. The period of the
search was limited from January 2000 to December 2020. We also removed the duplicate
studies which were extracted from more than one source. To avoid missing a relevant study,
we also scanned the reference lists of recent reviews on SDP and SCP [10, 13] and those
of the already collected candidate studies. These efforts resulted in the collection of 182
relevant studies. These studies were further scrutinized using the inclusion and exclusion
criteria stated in the next section.

2.2. Inclusion and exclusion criteria

Before stating the criteria for inclusion and exclusion, we first define “defect proneness” and
“change proneness” attributes of a software entity. Both these attributes are dichotomous.
A software entity is designated as defect-prone if a defect is likely to occur in a subsequent
release of the software. Most of the studies in literature, label a class/module as defect-prone
if one or more bugs have occurred in the class [3, 4]. On the other hand, a software entity is
termed as change-prone if it is likely to change in a future released version of the software
product. Majority of studies labeled software entities with a threshold value of one or more
changes as change-prone [13]. Certain other studies in literature use “median-based” [30]
or “boxplot-based partition method” [31] for labeling change-prone classes [13]. Keeping
these definitions in mind we state the following criteria for inclusion and exclusion of the
collected studies.

2.2.1. Inclusion criteria

– Empirical studies that use ET for SDP or SCP.
– Empirical studies that compare different ET with each other or with other non-ensemble

techniques for SDP or SCP.
– Empirical studies that propose new ET for SDP or SCP.

2.2.2. Exclusion criteria

– Studies that use ET for dependent variables other than defect proneness and change
proneness, such as the number of defects/changes, class stability, just in time defect
prediction, bug assignment, code churn, etc.

– Studies including ET just to compare or demonstrate their proposed models/per-
formance measures. These studies were excluded as they included ET without any
discussion and did not perform or focus on their empirical evaluation.

– Similar studies that were conducted by the same authors. In case a conference paper is
extended in a journal, the conference paper is excluded.

220105-4

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

– Studies that used clustering or clustering ensembles for prediction.
– Review studies, poster papers, Ph.D. dissertations, and studies with little or no empirical

analysis.
– Studies that were not written in English language.

Study inclusion and exclusion was done in two steps. We first applied the mentioned
criteria on the title, abstract, and keywords. Thereafter, the remaining studies were
adjudged based on their full text. After applying the above discussed criteria, we obtained
106 candidate studies.

2.3. Quality assessment

Each candidate study obtained after application of the inclusion and exclusion criteria
was further subject to quality assessment. This step ensures the selection of only those
studies, which are capable of effectively answering the investigated research questions.
Quality assessment was done by two researchers by formulating a checklist shown in Table 1.
According to the table, criteria (i) evaluates whether the study clearly states its aims,
while criteria (ii) assesses whether ET and its uses have been clearly mentioned in the
study. Criteria (iii) assesses whether the study mentions the base learners and aggregation
mechanism used by the ET. Criteria (iv) allocates lower score to a study if it basis it’s
results on less than five datasets. While criteria (v) focus on selection of an appropriate
validation method such as ten-fold, cross-project or others, criteria (vi) evaluates whether
robust and appropriate performance measures such as Area Under the Receiver operating
characteristic Curve (AUC), Balance, Mathews Correlation Coefficient (MCC) etc., have
been used. Studies that base their results only on biased performance measures like
accuracy are given less scores. Criteria (vii) evaluates whether models developed using ET
are compared with other models, while criteria (viii) allocates a higher score to studies
that have performed statistical validation of their results. Criteria (ix) checks if the study
has mentioned its probable threats. Finally, Criteria (x) gives higher score to a study that
add value to existing literature on ensembles at the time of its publication. As this was
hard to evaluate, due to temporal aspect of relevance of the work, the authors allocated
lesser score to similar studies that were published in the same year. Similar checklists were
used in previous reviews [12, 13, 32]. Each of the two researchers conducting the quality
assessment independently assessed each study on the ten questions stated in the checklist.

Table 1. Quality questions

(i) Does the study state its objectives in a clear and precise manner?
(ii) Is the use of ET and its application clearly defined?
(iii) Are the base learners clearly stated? Are the rules/mechanisms for combining base

learners to form ET clearly described?
(iv) Is the experiment conducted on an appropriate number of datasets?
(v) Are the models developed using ET validated appropriately using effective validation

methods?
(vi) Are the models developed using ET effectively assessed using suitable performance

measures?
(vii) Are the models developed using ET compared with models developed using other

non-ensemble techniques or amongst each other?
(viii) Do the results of the study map to its objectives? Are the results statistically validated?
(ix) Does the study state possible threats to validity specific to the use of ET?
(x) Does the study add value to the existing work on ensembles in SDP/SCP literature?

220105-5

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

The questions could have three possible responses: Yes (score of +1), Partly (score of +0.5),
and No (score of 0). In case the researchers disagreed on the allocated score, a discussion
ensued to allocate a reasonable score. The cumulative score (CS) of the study was a sum
of all the scores of the questions mentioned in the checklist. A study obtaining a score of 5
or more (50% or more) was considered to be of acceptable quality [12, 13, 32]. We rejected
29 studies on the basis of quality assessment. The remaining 77 studies were termed as
primary studies.

2.4. Data extraction and synthesis

For each of the study selected after quality assessment, we extracted the relevant data to
answer the RQ’s. The extracted data consisted of basic details of a paper such as a title,
authors, year of publication, etc. as well as details specific to the experiment that is required
to answer the RQs (mentioned in Table 2). After extracting the data, we need to synthesize
it to appropriately answer the investigated RQ’s. Table 2 mentions the manner in which
the data was analyzed and synthesized with respect to each RQ and the expected result
after the synthesis and analysis.

Table 2. Data extraction and synthesis

RQ Data extracted from
primary study

Data analysis Result

RQ1: What is the
categorization of ET?
Which is the most pop-
ular category of ET in
SDP/SCP literature?

ET Used, Base learners
of ET

Categorization of ET
used on the basis of
base models, i.e., their
similarity, course of
aggregation, cooper-
ative or competitive
relationship, means of
diversity, dependency
amongst themselves
and the type of base
learner used

Pie-charts depicting
percentage of SDP
and SCP studies
using a specific
categorization of ET,
Bar chart of primary
studies using different
categories of base
learners

RQ2: What are the
various applications of
ET in SDP/SCP liter-
ature?

Application or stage
where ET was used

Listing and analyzing
the percentage of pri-
mary studies that uti-
lized ET for a spe-
cific stage/application
while developing SDP/
SCP models

Finding the most com-
mon and sporadic ap-
plications of ET while
developing SDP/SCP
models

RQ3: Which
rules/mechanisms
are used for combining
base models to form
ET in SDP/SCP
literature?

Rules for formulating
the ET used in the
study

Categorizing the ET
in accordance with ag-
gregation mechanism
(Weighing or Meta-
learning)

A table listing the var-
ious combination rules,
the various ET using
the specific rules and
the number of primary
studies using the rule

220105-6

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 2 continued
RQ Data Extracted from

Primary Study
Data Analysis Result

RQ4: What is the per-
formance of ET for
various tasks in the
domain of SDP/SCP?
How does the perfor-
mance of ET com-
pare to other non-en-
semble techniques and
amongst each other?

Other non-ensemble
techniques used,
datasets used, val-
idation method
used, performance
measures used (such as
accuracy, recall, AUC),
dataset-wise value of
performance measures
for the developed
SPD/SCP model in
the study

Computing box-
plots and various
descriptive statistics
of the extracted
performance measure
values, Dataset-wise
comparison (vote
count method) and
statistical analysis
using Wilcoxon signed-
rank test of ET with
other non-ensemble
techniques based on
their application in
SDP/SCP domain,
Pairwise comparisons
using wilcoxon test
amongst ET based on
their application

Evaluation of perfor-
mance of ET based
on computed statistics
and boxplots, Graphs
representing the com-
parative performance
of ET with other non-
ensemble techniques,
Tables representing ET
comparison amongst
themselves, Superior
ET for specific applica-
tions

RQ5: What are the var-
ious reported threats
to validity specific to
the use of ET in
SDP/SCP literature?

Threats specific to use
of ET (only extracted
from studies contain-
ing “Threats to Valid-
ity” or “Limitations”
section)

Listing and categoriz-
ing (Construct/Exter-
nal/Internal) various
threats specific to the
scenario when ET were
used in SDP/SCP

Recommendations
to researchers for
planning future studies
that minimize the
commonly found
threats.

3. Results

This section discusses the review results. We first state the overview of the selected studies
followed by an analysis to answer the various investigated RQ’s. We also discuss and
analyze the review results to determine research gaps. This aids in proposing directions for
future work in the domain.

3.1. Overview of primary studies

The various steps followed to collect the primary studies have already been mentioned in
Sections 2.1–2.3. Figure 1 states the number of studies collected in each step from the
various sources (A–F). The year-wise distribution of primary studies is depicted in Figure 2.
It may be seen from the figure that there has been a consistent increase in the number of
studies using ET in recent years (2016–2020).

Table 3 states all the 77 primary studies along with their study identifier (SI) and
cumulative quality score (CS). ES12, ES37, and ES40 are top-scoring primary studies with
a CS of 9.5. Amongst the primary studies, the most popularly cited study in accordance
with citation count normalized with respect to year was ES3, followed by ES18, ES8, ES26,

220105-7

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Figure 1. Primary studies collection and source-wise distribution

Figure 2. Year-wise distribution of primary studies

and ES35. We also classified the primary studies based on their publication venue. 33% of
the primary studies were published in conferences, while 63% of the studies were published
in various reputed journals. Three studies were published as chapters. The most popular
publication venues were “Information and Software Technology” journal and “Software
Quality” journal with six and five studies, respectively. Thereafter, “IEEE Transactions
on Software Engineering” was the source of four primary studies. No conference was the
source of more than one primary study. It was also noted that 67 primary studies used
ensembles for SDP, while only 10 primary studies investigated the use of ensembles for
SCP. A similar trend was also observed if we accounted for the rejected studies. Out of
the 29 rejected studies, only four studies developed SCP models, all other rejected studies
developed SDP models.

220105-8

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 3. Primary studies with quality score

SI Study Name CS SI Study Name CS SI Study Name CS

ES1 Jiang et al. 2007 [33] 5.5 ES27 Rubinic et al. 2015
[34]

5.5 ES53 Ali et al. 2019 [35] 7.5

ES2 Ma et al. 2007 [36] 7 ES28 Siers and Islam 2015
[37]

6.5 ES54 Campos et. al. 2019
[38]

6.5

ES3 Lessmann et al. 2008
[3]

8 ES29 Li and Wang 2016
[39]

6.5 ES55 Catolino and Ferrucci
2019 [30]

8.5

ES4 Jia et al. 2009 [40] 5.5 ES30 Malhotra 2016 [41] 8 ES56 Gong et al. 2019 [42] 8.5
ES5 Khoshgoftaar et al.

2009 [43]
6 ES31 Ryu et al. 2016 [44] 8.5 ES57 He et al. 2019 [45] 8.5

ES6 Mende and Koschke
2009 [46]

6.5 ES32 Petric et al. 2016 [47] 9 ES58 Kumar et al. 2019 [48] 6

ES7 Seiffert et al. 2009 [49] 8 ES33 Wang et al. 2016a [50] 8.5 ES59 Li et al. 2019a [51] 10
ES8 Arisholm et al. 2010

[52]
6.5 ES34 Wang et al. 2016b [53] 8.5 ES60 Li et al. 2019b [54] 6

ES9 Liu et al. 2010 [55] 8 ES35 Xia et al. 2016 [56] 8.5 ES61 Malhotra and Kamal
2019 [57]

6

ES10 Zheng 2010 [58] 6 ES36 Alsawalqah et al. 2017
[59]

6 ES62 Malhotra and Khanna
2019b [60]

9

ES11 Seliya et al. 2010 [4] 8.5 ES37 Di Nucci et al. 2017
[61]

9.5 ES63 Tong et. al. 2019 [62] 9

ES12 Misirh et al. 2011 [63] 9.5 ES38 Kumar et al. 2017 [64] 7 ES64 Tran et al. 2019 [65] 6.5
ES13 Peng et al. 2011 [66] 6 ES39 Malhotra and Khanna

2017b [67]
7 ES65 Zhou et. al. 2019[68] 9

ES14 Seliya and
Khoshgoftaar 2011
[69]

8.5 ES40 Ryu et al. 2017[70] 9.5 ES66 Abbas et al. 2020 [71] 6

ES15 Gao et al. 2012 [72] 5 ES41 Yohannese et al. 2017
[73]

6 ES67 Aljamaan and Alazba
2020 [74]

8.5

ES16 Sun et al. 2012 [75] 8.5 ES42 Agarwal and Singh
2018 [76]

5.5 ES68 Ansari et al. 2020 [77] 7

ES17 Wang et al. 2013 [78] 7.5 ES43 Bowes et al. 2018 [79] 7.5 ES69 Banga and Bansal
2020 [80]

5.5

ES18 Wang and Yao 2013
[81]

8 ES44 Chen et al. 2018 [82] 8.5 ES70 Elahi et al. 2020 [83] 7.5

ES19 Kaur and Kaur 2014
[84]

8.5 ES45 El-Shorbagy et al.
2018 [85]

6 ES71 Goel et al. 2020 [86] 5.5

ES20 Panichella et al. 2014
[87]

9 ES46 Malhotra and Bansal
2018 [88]

8 ES72 Khuat and Le 2020
[89]

7.5

ES21 Rodriguez et al. 2014
[90]

8 ES47 Malhotra and Khanna
2018a [17]

8.5 ES73 Malhotra and Jain
2020 [91]

6

ES22 Suma et al. 2014 [92] 5.5 ES48 Mousavi et al. 2018
[93]

7.5 ES74 Pandey et al. 2020
[94]

9

ES23 Chen et al. 2015 [95] 9 ES49 Moustafa et al. 2018
[96]

6 ES75 Rathore and Kumar
2020 [97]

9

ES24 Elish et al. 2015 [98] 6.5 ES50 Tong et al. 2018 [99] 8.5 ES76 Saifan and Abuwaridh
2020 [100]

7.5

ES25 Hussain et al. 2015
[101]

7 ES51 Zhang et al. 2018
[102]

7.5 ES77 Yucular et al. 2020
[103]

9

ES26 Laradji et al. 2015
[104]

7.5 ES52 Zhu et al. 2018 [31] 8.5

220105-9

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

3.2. Categorization of ET

We first list the various ET used in primary studies along with the study identifier using
the specific ET (Appendix, Table A1). An analysis of the Appendix indicates that the
most popular ET were Random Forests (RF), Bagging (BAG), AdaBoost (AB) and Voting
amongst Heterogenous Base Learners (VHetBL) used in 42%, 32%, 32% and 23% of
primary studies, respectively. Thereafter, we categorize the various ET according to five
different criteria [105–107] on the basis of base models as shown in Figure 3. We also
evaluated the percentage of SDP and SCP primary studies according to the ET used by
them corresponding to various categories (Figures 4 and 5). The various categorizations
are explained as follows:

Figure 3. Categorization of ET

1. Similarity of base models: This categorization indicates the similarity of learners used to
construct the base models in an ensemble (homogeneous or heterogeneous). A homoge-
neous ensemble combines base models developed using the same data analysis technique.
Some examples of the homogeneous ensemble include RF, BAG, LB, AB, Rotation Forest
(ROT), Dagging (Dag), Random Subspace (RS), MultiBoost (MBoost), DECORATE,
Logit Model Trees (LMT), Double Transfer Boosting (DTB), Adaptive Selection of
Optimum Fitness (ASOF), Multiple Kernel Ensemble Learning (MKEL), various other
cost-sensitive ensembles like AdaCost, MetaCost (MC), SMOTEBoost (SMBoost),
AdaBoost.NC (BNC), Voting amongst Homogeneous Base Learners (VHomBL), etc.
On the other hand, a heterogeneous ensemble combines base models developed using
diverse data analysis techniques. Examples of heterogeneous ET used in primary studies
are voting based ensembles with varied learners for base models, Stacking, Two Stage
Ensemble (TSE), Non-Linear Decision Tree Forest (NDTF), Best Training Ensemble
(BTE), Combined Defect Predictor (CODEP), Adaptive Selection of Classifiers (ASCI),
etc. It may be noted that the Validation and Voting (VV) ensemble is homogeneous
in ES9 but heterogeneous in ES36. Also, Omni Ensemble Learning (OEL) used by
ES48 is a special category of ET which combines the concept of both homogeneity
and heterogeneity. It uses bagging approach along with random oversampling for

220105-10

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Figure 4. Percentage of SDP primary studies in each category according to: (a) learner similarity,
(b) aggregation, (c) relationship, (d) diversity, and (e) dependency categorizations

Figure 5. Percentage of SCP primary studies in each category according to: (a) learner similarity,
(b) aggregation, (c) relationship, (d) diversity, and (e) dependency categorizations

handling the class imbalance issue. This can be categorized as homogeneous. However,
in the next stage for SDP, genetic algorithm is used for ensemble selection amongst
34 different base classifiers. This stage of the OEL is heterogeneous. According to
Figure 4a, 65% of the SDP primary studies used homogeneous ET, while 19% of the
studies used heterogeneous ET. The other remaining 16% used both heterogeneous
and homogeneous ET. On the other hand, as depicted in Figure 5a, 70% of the SCP
primary studies used homogeneous ET, 10% used only heterogeneous ET, while 20%
used both homogeneous and heterogeneous categories of ET.

220105-11

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

2. Aggregation of base models: This categorization indicates whether the ensemble aggrega-
tion is top-down or bottom-up. A top-down ensemble combines its base models without
taking into account the outputs generated by them. On the other hand, in a bottom-up
ensemble, the outputs of base models are crucial for aggregating them [108]. Ensembles
that use voting or stacking are a subset of bottom-up ensembles [105]. All the ET used
in primary studies (both SDP and SCP) are bottom-up ensembles as depicted in figures
(Figure 4b and 5b).

3. Relationship amongst base models: This categorization suggests the relationship amongst
different base models for producing the ensemble output. The base models of an ET
could be competitive or cooperative. An ensemble is termed as competitive if only one
of the constituent base model is selected to produce the final output [105]. Examples
of such ET used in primary studies are ASOF, ASCI, BTE, NDTF, Omni Ensemble
Learning, and Multischeme. A co-operative ensemble is the one in which the output
of all the constituent base models is combined to produce the final output [106]. All
other ET mentioned in Table A2 (Appendix) such as RF, AB, LB, CODEP, BAG,
etc. are co-operative ensembles. As shown in Figures 4c and 5c, 94% and 70% of the
primary studies used co-operative ET in SDP and SCP, respectively, while 6% of the
SDP primary studies and 30% of the SCP primary studies used both co-operative and
competitive ET. There was no primary study that used only competitive ET.

4. Diversity of base models: This categorization dictates the means for the diversity of
base models, i.e., implicit or explicit. Implicit ET employs mechanisms for assuring
that the constituent models are diverse [106]. These mechanisms could be random
subsamples of the training data or random selection of features etc. Implicit techniques
do not measure if diversity is introduced or not. Examples of implicit ET are RF, BAG,
SysFor, Multischeme, MC, ROT, RS, Dag, Cost-sensitive Forest, MBoost, Roughly
Balanced Bagging (RBBag), Balanced RF, Sampling based Online Bagging (SOB),
Oversampling based Online Bagging (OOB) and Undersampling based Online Bagging
(UOB). Explicit ET employs a measurement to ensure that the constituent models
are different from each other [106]. Examples include AB, LB, DECORATE, AdaCost,
etc. Explicit ensembles may also use different base learners to ensure diversity among
base learners such as in ASCI, BIT, CODEP, TSE or may use the same learner but
with a significant difference in basic configurations (such as different kernels or different
fitness variant) as in MKEL and ASOF. Figure 4d depicts 38% of the SDP primary
studies used explicit ET, 18% used implicit ET, and the other studies (44%) evaluated
both implicit and explicit ET. Amongst the primary studies that use ET in SCP
(Figure 5d), majority of the studies (70%) investigated both implicit and explicit ET.

5. Dependency amongst base models: This categorization dictates how the various base
models interact with each other (dependent or independent). In dependent ET the
various base models or consequent iterations of an ensemble interact with each other.
A base model constructed later may benefit from the guidance provided by a base
model (iteration) constructed earlier [107]. Some of the dependent ET used in primary
studies are AB, LB, MKEL, AdaCost, DECORATE, TransferBoost, SMBoost, and
DTB. On the other hand, in an independent ET, several base models are constructed
in parallel, which are independent of the other base models (iterations). BTE, NDTF,
CODEP, Stacking, RF, BAG, MC, ROT, VHomBC, and VHetBC are examples of
independent ET used in primary studies [107]. It was observed (Figure 4e) that 37%
of the SDP primary studies used independent ET, 13% used dependent ET and 50%
investigated both dependent and independent ET. However, there was no SCP primary

220105-12

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

study (Figure 5e) that investigated the use of only independent ET, 40% of the studies
used dependent ET, while the other 60% used both independent and dependent category
of ET.
It may be noted that Coding based Multiclassifier (CEL) proposed by ES15 was a very

different type of ET and could not be categorized into the discussed categories.
We also assessed the various categories of base learners used by the ET in each primary

study. The base learners were categorized into various families as suggested by [10, 13, 43].
These categories were tree-based learners, support vector machine, Bayesian learners,
rule-based learners, instance-based learners, search-based algorithms, artificial neural
networks, ensemble learners, logistic regression, and other miscellaneous learners. The base
learners which were included in each category are mentioned in Appendix (Table A2). While
analyzing the data for base learners we found that 14 primary studies did not mention
the base learners used by them. Figure 6 depicts the number of the remaining 63 primary
studies which use base learners from a specific family. According to the figure, tree-based
learners are the most popular category used by 70% of the studies (both SDP and SCP).
Thereafter, Logistic Regression (LR) was used by 56% of the studies. Also, Bayesian
learners were used as base learners in 42% of the primary studies. It was interesting to
note that ET were themselves used as base learners for constructing other ET in 42% of
the studies. We term such techniques as an ensemble of ensembles. Rule-based learners and
instance-based learners were less popular as base learners of ET (used in 20% and 30% of
studies, respectively). Search based algorithms and miscellaneous learners were the least
popular categories as they were each used by only 14% and 19% of the studies, respectively.

Figure 6. Number of primary studies with specific category of base learners

3.3. Application of ET

All the studies collected in the review develop either SDP or SCP models using ET. However,
there are multiple factors that make the task of developing SPD/SCP model difficult and
challenging. ET in the collected studies were not only used for model development but for
also handling these other critical factors which include existence of large number of features,
lack of defect-prone or change-prone instances making the training data imbalanced,
evaluating prediction in realistic online scenarios or unavailability of appropriate training

220105-13

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

data. We investigated the primary studies to ascertain the various applications of ET, i.e.,
what was the underlying use of ET in SDP/SCP. The various applications are listed as
under along with the percentage of primary studies that utilized the ET for the particular
application.
– As a learning algorithm for developing the SDP model (65%).
– As a learning algorithm for developing the SCP model (13%).
– Addressing the class imbalance issue (37%).
– Transfer learning (10%).
– Online Learning (3%).
– Feature selection (1%).

As indicated above, the majority of the studies (65%) used ET as learners for developing
SDP models. On the other hand, only 13% of the primary techniques used ET as learning
algorithms for developing SCP models. ET used for these two applications included RF,
LMT, AB, BAG, LB, DECORATE, VHetBL, VHomBL, VV, ROT, CODEP, Stacking,
NDTF, BTE, RS, Dag, XGBoost, ASCI, ASOF, etc. It may be noted that 85% of the
primary studies developed within-project models for SDP/SCP using validation techniques
such as hold-out validation, k-fold cross-validation, or inter-release validation. However,
there may be a scenario where previous data related to the same project may be unavailable
or difficult to collect [52]. For such a situation, researchers suggest the use of cross-project
models [86, 87, 102]. A critical issue in developing these models is that varied projects
may have different data distributions or different metric sets. To overcome such issues,
a transfer learning mechanism, which derives common observations and expertise from the
available projects and transfers it to the target project [56, 70] is proposed by the research
community. This is a relatively recent application of ET as the first primary study which
used ET for transfer learning was published in 2014 (ES32). As mentioned above, 10% of
the primary studies used ET for transfer learning. These ET were TransferBoost, Improved
Transfer Adaptive Boosting (ITrAdaBoost), Kernel Spectral Embedding Transfer Ensemble
(KSETE), TSE, Value Cognitive Boosting with Support Vector Machine (VCB-SVM),
DTB, VHetBL, and TransferCostSensitive Boosting (TCSBoost).

Another critical issue while developing SDP/SCP models is the presence of imbalanced
training data [20, 57, 67, 109]. In general, a standard classifier assumes that each class is
present in equal proportion, i.e., there is an equal number of defect-prone/change-prone
and not defect prone/not change prone classes in a dataset. This assumption hinders the
development of an effective SDP/SCP model as the class distributions in actual datasets
are biased. This results in erroneous identification of the minority class instances. Therefore,
a popular application of ET in the primary studies was using them for addressing the
class imbalance issue (37% of primary studies). As proposed by Galar et al. [20], we
categorized the ET used for class imbalance in primary studies into Cost-sensitive ET,
Boosting-based ET, Bagging-based ET, and Hybrid ET. Boosting based and Bagging
based ensembles combine Bagging and Boosting with data preprocessing techniques such
as random undersampling, SMOTE, oversampling, etc. Hybrid ensembles combine both
bagging and boosting techniques along with data preprocessing techniques. Furthermore,
we also mention a category of ET namely “Novel” ET, which are proposed by primary
studies but could not be categorized into the above categories.
– Cost-Sensitive ET: MetaCost, AdaCost, Csb2, Adc2, Dynamic Adaboost.NC (DNC),

Adaboost.NC (BNC), Cost-Sensitive Forest, Cost-sensitive Boosting Neural Networks,
MKEL, TCSBoost.

220105-14

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

– Boosting based ET: SMBoost, RUSBoost, WeightedSmoteBoost, SelectRUSBoost, Non-
negative Sparse based Semiboost, DataBoost, MSMOTEBoost.

– Bagging based ET: SOB, OOB, UOB, RBBag, OEL.
– Hybrid ET: MBoost, Ensemble Random Undersampling
– Novel ET: CEL, KSETE, TSE, Bug Prediction using Deep representation and Ensemble

learning.
It may be noted that there were five studies (ES32, ES40, ES56, ES59, ES63) which

proposed ET (VCB-SVM, TCSBoost, ITrAdaBoost, TSE, KSETE) dealing with both
the important issues, i.e., handling class imbalance and transfer learning for cross-project
defect prediction. However, only one study ES14 proposed the SelectRUSBoost technique,
which incorporates feature selection and class imbalance learning. Feature selection involves
choosing a subset of features (independent variables) that develops SDP/SCP models with
good predictive capability. Two studies (ES17 and ES54) used ET for online learning. ES54
used ET for online failure prediction, where past data is correlated with the existing state
of the system to predict the occurrence of faults in near future. The study by Wang et
al. [78], i.e., ES17, deals with the scenario where data continuously arrives in streams,
and the training data is constantly updated with new data. There are multiple runs of
time sensitive prediction which leads to better prediction models that are less biased [110].
ES17 also addressed the issue of class imbalance and proposed the SOB technique. As
there are very few studies that propose comprehensive ET which deal with multiple issues
simultaneously, more such techniques should be proposed and validated in future studies.

3.4. Rules/mechanisms for combining base models

As ET are a combination of different base models, this RQ concerns itself with the mechanism
of aggregating the outputs of constituent base models. We found that the base models were
combined either by giving appropriate weights to the output of constituent base models
or through the process of meta-learning. The construction of a meta-learning ensemble
generally involves multiple learning stages. The outputs of constituent base models act as
inputs to the meta-learner, which is responsible for producing the final ensemble output. The
ET which use meta-learning as a combination mechanism were ASCI, ASOF, MKEL, MC,
Ensemble Selection, Grading, OEL, Stacking, CODEP, GcForest, DeepForest and NDTF.
All other ET used the weighing mechanism for combining the base models. However, there
were two exceptions, which we could not categorize properly into weighing or meta-learning
mechanisms. These were: a) CEL (ES16), which used a specific coding mechanism for
aggregation, and b) LMT, though many LB iterations were performed in LMT, there was
only one resultant tree at the end. Table 4 lists the various combination rules used by the ET,
the number of ET, and the number of primary studies using the specific combination rule.
According to the Table, the most popular combination rule was “majority voting” amongst
the base models, which was used in 78% of the primary studies. The ET which used this rule
were BAG, RF, UOB, OOB, SOB, RS, SysFor, Balanced RF, VHetBL, VHomBL, VV, Extra
Trees and Dag. The next popular combination rule was “weighing based on misclassification
error of the base model” used in 56% of the primary studies. This is a combination rule
generally used by several ET using the Boosting mechanism such as AB, LB, VCB-SVM,
SMBoost, WeightedSmoteBoost, SelectRUSBoost, MBoost, etc. and some others like MKEL.
Another popular combination rule was “Average Probability”, which was used in 14 primary
studies.

220105-15

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 4. Combination rules

Combination rule Number of ET Number of primary studies

Average Probability 9 14
Selection of Best 2 4
Majority Vote 13 60
Maximum Confidence Score 1 1
Weighing based on misclassification error and
cost adjustment

4 4

Weighing based on misclassification error of the
base model

22 45

Weighted adjustment based on misclassification
error and penalty for ambiguity

2 4

Weighing based on MCC obtained by the base
model

1 1

Weighing based on data distribution of target
data, misclassification error, and cost adjustment

2 2

Weighing based on error on the prediction of
instances in the training target data

1 2

Voting based on cost-sensitive labeling of records 1 1
Weighing of base models that lead to objective
function (inconsistency between labels and simi-
larities) minimization

1 1

Weighted adjusted probabilities and probability
adjustment

1 3

Weighing based on predictive performance on
other data

1 2

Weighing based on the predictive capability to
predict hard instances

1 2

Weighing based on predictive performance on
other data and ability to predict hard instances

1 2

3.5. Performance of ET

It is crucial to evaluate the effectiveness of ET for SDP and SCP. To do so, we analyze
the performance measures of the developed SDP and SCP models by various ET in the
primary studies. An analysis of the performance measures used in the primary studies
indicates AUC as the most widely used performance measure (65%) in these studies.
Moreover, the use of AUC for assessing the performance of predictive models has also
been propagated in literature studies as it is capable of handling skewed datasets with
disparate class distributions and the dissimilar cost of various classification errors [67, 111].
AUC is computed by plotting recall and 1-specificity on the y-axis and x-axis, respectively
and estimating the area under the plotted curve. Apart from AUC, Recall and F -measure
performance measures were found to be popularly used in the primary studies. While recall
states the percentage of correctly identified defect-prone/change-prone classes, it gives
us no insight into the number of incorrectly identified defect-prone/change-prone classes.
However, this measure has been used in many previous review studies [10, 13, 23, 24, 27] to
assess the performance of the developed SDP/SCP models. Thus, we include it for assessing
the predictive capability of ET. On the other hand, F -measure, which is computed as
the harmonic mean of precision and recall has not been included in our analysis. Menzies
et al. [112] have criticized the use of precision due to its unstable nature, thus, raising

220105-16

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Figure 7. Dataset-wise boxplots when ET is used as a learning algorithm
for developing SDP models (a), (b) AUC (c), recall

Figure 8. Dataset-wise boxplots for ET that handle class-imbalance issue (a), (b) AUC (c), recall

concerns over use of F -measure as a performance evaluator [10]. He and Garcia [109] have
also doubted the capability of F -measure while “comparing the performance of different
classifiers over a range of sample distributions”. Therefore, we analyze two performance
measures, AUC, and Recall for determining the predictive performance of ET.

The performance of ET was analyzed dataset wise. Similar to [10], we found that the
most popular datasets used in SDP were NASA datasets (CM1, JM1, KC1, KC2, KC3, KC4,
MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5) and Promise repository datasets such as
AR5, AR6, Jedit (http://promise.site.uottawa.ca/SERepository/datasets-page.html). Some
other open-source datasets (Gate, Intercafe, Lucene, Xalan, Tomcat, Synapse, Velocity,
etc.) and application package datasets (Bluetooth, Contacts, Email, Calendar, Telephony,
etc.) from the Android operating system were also used by primary studies for SDP. Similar
to SDP, various open-source software datasets were used by SCP studies such as ArgoUML,
FreeMind, Eclipse, Ant, Lucene, Gate, KolMafia, etc. and datasets from the Android
operating system.

We analyze the performance of only those ET whose performance measures (AUC and
Recall) could be extracted from at least two or more studies and have been validated on at
least three or more datasets. This was done to yield generalized results and comparisons
across studies. The performance of ET was assessed with respect to datasets and outlier
values (Figs 7–9) were disposed off. Thereafter, various statistics were reported. By using
such rules, an ET that might have shown exceptional performance in just one study or
on specific datasets will not be designated as a good performer in the SDP/SCP domain.
As ET have several parameter values such as the number of base models, different base
learners, etc., their performance values may vary a lot. However, we are interested in
finding the best values of ET. Thus, we use the following rules while extracting the values
of performance measures:

220105-17

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Figure 9. (a), (b) Dataset wise AUC and recall boxplots for ET used for transfer learning,
(c) dataset wise AUC boxplot for ET used as a learning algorithm for developing SCP models

– If an ET has been evaluated on the same dataset, more than once in a study (maybe
with different internal parameter settings), we report the highest values.

– If two studies have evaluated an ET on the same dataset, we again report the highest
values amongst the two studies for the particular dataset.
The rules for extracting the performance measures are similar to the ones used by

[13, 24].

3.5.1. Assessment of performance statistics of ET

We grouped the ET according to the various applications they were used for (Section 3.3).
Figures 7–9 depict the boxplots of the ET for AUC and Recall performance measures. The
outliers are labeled with their corresponding dataset names. As some ET were used for
more than one application, we segregated the studies according to the application the ET
was used for to construct the boxplots. For instance, AB, BAG, LB, and RF were used
both as learning algorithms for developing SDP and SCP models. Figures 7a and 7b depicts
the boxplots when they were used for developing SDP models and Figure 9c depicts the
boxplot when they were used for developing SCP models. TCSBoost has two applications
(addressing class imbalance and transfer learning). However, we include it in the Transfer
learning application for simplicity. The performance measure values for VHetBL could be
extracted for two applications: as a learning algorithm for developing SDP models and for
transfer learning but since we could extract the values for transfer learning application in
only one study for VHetBL, we only reported the values for its application as a learning
algorithm for developing SDP models. Similarly, the performance measures values for TSE
could be extracted for two applications, i.e., for transfer learning and for addressing the
class imbalance issue. But since only one study reported values for the transfer learning
application, we include TSE as an algorithm for addressing the class imbalance issue.

Table 5 reports the AUC and Recall statistics of ET for various applications. These
statistics were computed after removing the outliers depicted in Figures 7–9. The table
reports the minimum, maximum, mean, median, standard deviation, and the count of the
number of datasets from which the statistics are computed for each ET. According to
the table, apart from Stacking and MKEL all ET depicted a mean AUC score of 0.75 or
above for three of the discussed applications namely as a learning algorithm for developing
SDP and SCP models and for addressing the class imbalance issue. This indicates the
favorability of ET for these applications. Though, a little lower, but ET for transfer learning
showed AUC mean values of 0.65 indicating they could be effective for it. However, we
could analyze the AUC values for just one ET in the transfer learning domain. CODEP,

220105-18

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 5. Performance measure statistics of ET for various applications

ET Performance
measure

Dataset
count

Mini-
mum

Maxi-
mum

Mean Median Standard
deviation

Learning algorithm for developing SDP models

AB AUC 40 0.53 0.99 0.81 0.79 0.13
Recall 20 35.34 99.00 78.63 85.00 16.43

BAG AUC 42 0.51 0.99 0.81 0.81 0.11
Recall 24 32.00 100.00 84.16 91.65 17.40

Boosting AUC 18 0.58 0.87 0.76 0.77 0.07
Recall 3 11.80 16.90 13.90 13.00 2.17

CODEP AUC 8 0.81 0.89 0.87 0.88 0.02

LB AUC 28 0.60 0.84 0.75 0.75 0.07
Recall 6 62.70 67.22 65.54 66.09 1.61

LMT AUC 17 0.66 0.92 0.76 0.76 0.07
Recall 7 62.30 71.95 67.05 67.14 2.95

RF AUC 55 0.61 1.00 0.80 0.79 0.10
Recall 46 13.70 100.00 68.06 70.60 26.41

ROT AUC 20 0.65 0.87 0.79 0.81 0.06
Stacking AUC 13 0.37 0.50 0.46 0.49 0.05

VHetBL AUC 14 0.66 0.86 0.78 0.79 0.05
Recall 6 75.00 90.00 82.00 81.00 4.61

Handling class imbalance issue

BNC AUC 12 0.60 0.94 0.78 0.79 0.08

CEL AUC 17 0.75 0.98 0.86 0.84 0.07
Recall 14 32.00 87.67 61.21 66.86 20.69

DNC AUC 9 0.76 0.87 0.81 0.80 0.03
Recall 10 66.00 88.70 76.71 76.42 5.78

MKEL AUC 8 0.64 0.77 0.71 0.71 0.04
Recall 12 55.00 81.00 70.59 72.07 8.93

MBOOST AUC 18 0.50 0.98 0.83 0.85 0.13
Recall 8 82.05 95.74 90.59 91.73 4.56

RUSBoost AUC 16 0.63 0.96 0.77 0.79 0.09
Recall 8 49.20 63.00 55.98 56.35 4.11

SMBoost AUC 16 0.60 0.96 0.78 0.77 0.09
Recall 9 35.70 74.20 55.53 63.10 13.44

TSE AUC 12 0.66 0.94 0.76 0.75 0.08

Transfer learning

DTB Recall 33 8.90 92.40 55.56 59.50 21.61
TCSBoost Recall 33 10.90 86.60 48.05 50.00 21.73

VCB-SVM AUC 33 0.53 0.84 0.65 0.63 0.08
Recall 30 26.60 71.30 53.23 54.75 9.53

A learning algorithm for developing SCP models

AB AUC 13 0.65 0.96 0.77 0.74 0.09
BAG AUC 15 0.65 0.99 0.85 0.85 0.09
LB AUC 13 0.68 0.98 0.79 0.76 0.11
RF AUC 13 0.71 1.00 0.85 0.78 0.11

220105-19

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

BAG and ROT depicted the best median AUC values 0.88, 0.81 and 0.81, respectively
for their use as a learning algorithm for developing SDP models. BAG also attained the
best median AUC value (0.85) for its use as a learning algorithm for SCP models. MBoost
depicted the best median AUC values (0.85) for handling imbalanced datasets.

An analysis of the mean Recall values stated in Table 4 indicates that the values range
from 60%–90% in the majority of the cases except for Boosting and some of its variants
such as DTB, RUSBoost, SMBoost, VCB-SVM, and TCSBoost. These ET depicted poor
recall values which were in the range of 48%–55%. On the other hand, other ET based on
boosting mechanism such as AB and MBoost depicted exceptionally good median recall
values (AB: 85.00%, MBoost: 91.73%). Thus, future studies should continue to explore
and validate various ET based on the boosting mechanism. The statistics of the AUC and
Recall values reported in Table 5 confirm the capability of ET for the various discussed
applications. Moreover, the use of ET should be encouraged for these applications.

3.5.2. Comparative performance of ET with other techniques

To ascertain the effectiveness of ET, it is important to compare them with other non-ensemble
techniques. The rules for extracting data for comparison were similar to the ones stated
in Section 3.5.1. As discussed previously, the comparison was done with respect to the
application the ET is used for. In order to perform the comparison, we used only the AUC
performance measure due to its robustness and stability. We do not compare the techniques
based on recall values as analyzing recall may not give a comprehensive picture in the
case of imbalanced datasets [67] and since our comparison is dataset wise we should select
the performance criteria for comparison wisely. It may be noted that we could extract
relevant data for comparing only two applications of the ET, i.e., as a learning algorithm
for developing SDP models and as a learning algorithm for developing SCP models.

We compared 10 ET (AB, BAG, LB, LMT, RF, Boosting, CODEP, ROT, Stacking,
VHetBL) with 10 non-ensemble techniques (Artificial Neural Network (ANN), Bayesian
Network (BN), Decision Tree C4.5, Classification and Regression Tree (CART), Decision
Table (Dec.T), K-Nearest Neighbor (KNN), LR, Naïve Bayes (NB), Support Vector
Machine (SVM), Voting Feature Intervals (VFI)) to assess their capability as a learning
algorithm for developing SDP models. The non-ensemble techniques that were chosen for
comparison were based on two criteria: a) the data for comparison could be extracted so
that ET could be compared on at least 3 or more datasets, which were used in at least
2 or more studies b) they should represent the various categories of learners as depicted
in Figure 6. The chosen non-ensemble techniques were representative of support vector
machine, i.e., SVM, artificial neural networks, i.e., ANN, tree-based learners (C4.5 and
CART), Bayesian learners (NB and BN), rule-based learner, i.e., Dec.T, instance-based
learner, i.e., KNN, statistical learner, i.e., LR and miscellaneous learner, i.e., VFI. The
comparison was performed using vote count method (dataset wise), i.e., we computed the
number of datasets (votes) on which a specific ET is better than a specific non-ensemble
technique and the number of datasets (votes) on which a specific ET is worse than a specific
non-ensemble technique in terms of AUC value. These results are depicted in Figure 10.
For instance, in Figure 10a, the AUC value of AB was better than BN in 17 datasets, while
the AUC value of AB was worse than BN in 9 datasets. This means 17 votes favor AB and
9 votes are against AB, when compared with BN. Similarly, in Figure 10b, the AUC value
of Boosting was better than C4.5 by 12 votes and there were 6 votes against Boosting
when compared with C4.5.

220105-20

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Figure 10. Comparison results of ET with non-ensemble techniques when they are used
as a learning algorithm for developing SDP models

Apart from comparing the results dataset wise, we also performed a statistical analysis of
the comparison between an ET and the various chosen non-ensemble techniques. Wilcoxon
signed-rank test with Bonferroni correction was conducted to pairwise compare the AUC
values of an ET and the various other compared techniques. Though, while conducting
pairwise comparisons paired t-test is a common choice, Wilcoxon signed-rank test is
considered safe as it does not require the underlying data to follow normal distribution.
Moreover, in case of Wilcoxon signed rank test, its outcome is generally less influenced by
exceptionally superior or inferior performance of a technique corresponding to a dataset
(i.e., an outlier) [113]. These reasons favor the use of the test for the comparison. The test
was conducted at an α value of 0.05. The results of these pairwise comparisons are also
depicted in Figure 10 (at the top of data columns). If an ET fared significantly better than
the compared non-ensemble technique it was depicted as B*, however, if the ET was better
but the results were not significant it was depicted as B at the top of the data column (in
Figure 10). Similarly, if the ET turned out to be significantly poorer than the compared
non-ensemble technique, it was depicted as W* and if it was worse but not significantly,

220105-21

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

it was depicted with the symbol W. For instance, according to Figure 10a, RF is better
than ANN, Dec.T, KNN and NB. But these results were not significant. However, RF was
significantly better than BN, C4.5, CART, LR, SVM, and VFI according to the Wilcoxon
signed-rank test. As depicted in Figure 10b, the AUC values of ROT on various datasets
were found to be worse than ANN, CART, and KNN, but not significantly.

According to the results shown in Figure 10, BAG, RF and CODEP exhibited the
best AUC values as they were better than all the compared non-ensemble techniques,
and more so significantly better than 7, 6 and 3 non-ensemble techniques, respectively.
Thereafter, the results of AB, Boosting, and ROT were also good as they were better than
the majority of the compared non-ensemble techniques and were only not significantly
worse than a maximum of three compared techniques. The results of Stacking were quite
poor as it was found worse than the majority of the compared techniques. It was interesting
to note while comparing different ET that Stacking, a heterogeneous ET showed the worst
results. However, VHetBL and CODEP other heterogeneous techniques showed encouraging
results. Though, VHetBL, uses the weighing mechanism for aggregation, both CODEP
and stacking use meta-learning as combination mechanisms.

We also compared the performance of ET as a learning algorithm for developing SCP
models. However, we could only extract the AUC results of three non-ensemble techniques
(ANN, LR, and NB) to be compared with four ET namely AB, BAG, LB, and RF. Similar
to the comparison performed for the application as a learning algorithm for developing SDP
models, we compared the AUC values dataset wise and performed Wilcoxon signed-rank
test with Bonferroni correction. The results of the comparison and the statistical test are
indicated in Figure 11. According to the figure apart from the case when AB was compared
with ANN, all other ET were found better than the compared non-ensemble techniques.
Wilcoxon test results indicated BAG to be the best as it was significantly superior than all
the compared techniques.

Figure 11. Comparison results of ET with non-ensemble techniques when they are used
as a learning algorithm for developing SCP models

The results discussed in the section indicate that the AUC values of the majority of the
analyzed ET were found better than the non-ensemble techniques. The primary reason
for the good performance of ET is that they combine multiple learners and give stable
results as compared to single learners. Also, the various base models of ET are of diverse
nature, i.e., several base classifiers are combined that explore a “set of hypotheses” as an

220105-22

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

alternative to a single model that searches the “best hypothesis” [114]. This mechanism
thereby improves the performance of ET as compared to non-ensemble techniques that are
single classifiers. The results discussed in the section favor the use of ET for the explored
applications and in other related domains.

3.5.3. Comparative performance amongst ET

As indicated in the previous two sections, ET have been found effective in the SDP/SCP
domain for doing various tasks. Furthermore, we intend to evaluate if a specific ET
outperforms others in the various applications where they are used. We pairwise compare
the AUC values (dataset wise) of all the ET amongst each other for each application and
analyze whether a specific ET is significantly better than the majority of other ET for
a particular application. The rules for comparing different ET and extracting the AUC
values are similar to the ones mentioned in the previous sections. For comparison amongst
ET we use Wilcoxon signed-rank test with Bonferroni correction at an α value of 0.05.

Tables 6–8 state the Wilcoxon test results when we compare ET amongst each other,
which are used for applications, i.e., as a learning algorithm for developing SDP models,
for addressing the class imbalance issue, and as a learning algorithm for developing SCP
models respectively. The tables use the following symbols:
– B: When the results of ET depicted in the row is found better than the results of ET

depicted in the column. However, not significantly.
– B*: When the results of ET depicted in the row are significantly better than the results

of the ET depicted in the column.
– W: When the results of ET depicted in the row are found worse than the results of ET

depicted in the column. However, not significantly.
– W*: When the results of ET depicted in the row are significantly worse than the results

of the ET depicted in the column.
– EQ: When both the compared ETs get equivalent results, i.e., neither worse nor better.
– ND: When the data to compare the ETs could not be extracted from the primary

studies.
It may be noted that we could not compare ET for the application of transfer learning

as we could extract AUC statistics for only one technique (VCB-SVM) for this application.

Table 6. Comparison amongst ET for use as a learning algorithm for developing SDP models
(Wilcoxon test results)

AB BAG Boost-
ing

CODEP LB LMT RF ROT Stack-
ing

VHetBL

AB – W B W B B W B B* B
BAG B – W W* B B W B B* B
Boost-
ing

W B – W B W W W B W

CODEP B B* B* – B ND B B B B
LB W W W W – W W W B* W
LMT W W B ND B – W W B W
RF B B B W B B – W B* B
ROT W W B W B B B – B* B
Stacking W* W* W W W* W W* W* – W*
VHetBL W W B W B B W W B* –

220105-23

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 6 compares the ET that were used as a learning algorithm for developing SDP
models. The Wilcoxon test results in Table 6 depict that the Stacking technique was found
worse than all the compared ET. On the other hand, the results of CODEP, another
heterogenous ensemble that uses the meta-learning combination mechanism was found
better than all the other compared ET. Apart from Stacking and CODEP, all the other
compared ET use the weighing mechanism for combining the base models. Amongst the
ET that used weighing as a mechanism for combination, LB exhibited the worst results. It
was only found better than Stacking. The best results were shown by the RF technique
as it fared better than seven of the other compared ET. However, it may be noted that
the results of RF was significantly better in only one case (when compared with stacking).
After CODEP and RF, ROT, AB and BAG showed good results as they were found better
than 5 or more compared ET.

Table 7 depicts the comparison results (Wilcoxon test) amongst ET which were used
for specifically handling the class imbalance issue. According to the Table, the MBoost
technique was the best as its AUC results were better than seven of the compared ET,
moreover significantly better than three ET (MKEL, RUSBoost, SMBoost). The next
best results were shown by the CEL technique, which was found better than all the other
compared ET except MBoost. The worst ET according to the table was MKEL, as its
AUC values were poorer than all the compared ET. The poor performance of MKEL could
be due to the random selection strategy used to initialize the training set. It is a possibility
that no defective samples were selected in the initial training set, thus leading to poor
results [50]. RUSBoost was found better than only MKEL and TSE while SMBoost was
found better than three ET (MKEL, TSE, and RUSBoost). It is interesting to note that
MBoost, a combination of wagging and boosting gives exceptionally good results however,
just boosting when combined with a sampling technique (such as SMOTE (SM) or Random
Undersampling (RUS)), though handles the class imbalance issue, but fares poorer than
most of the other explored ET in the domain.

Table 7. Comparison amongst ET for handling class imbalance issue (Wilcoxon test results)

BNC CEL DNC MKEL MBoost RUS-
Boost

SM-
Boost

TSE

BNC – W B B W EQ B B
CEL B – B B* W B* B* B
DNC W W – B W B B B
MKEL W W* W – W* W W W
MBoost B B B B* – B* B* B
RUS-
Boost

EQ W* W B W* – W B

SMBoost W W* W B W* B – B
TSE W W W B W W W –

Table 8 states the Wilcoxon test results of the comparative performance of ET when
used as a learning algorithm for developing SCP models. According to the table, the best
ET was BAG as it was better than all the other compared ET, moreover, the results were
significant in two out of three cases. The AB technique exhibited poor AUC values and was
found significantly worse in all the comparisons. Similarly, the LB technique also showed
poor results than most of the other compared ET. The RF technique also exhibited good
results for this application.

220105-24

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 8. Comparison amongst ET for use as a learning algorithm for developing SCP models
(Wilcoxon test results)

AB BAG LB RF

AB – W* W W*
BAG B* – B* B
LB B W* – W*
RF B* W B* –

According to the results, we find that RF and BAG turned out to be a superior
technique as a learning algorithm for developing both SDP and SCP models. BAG creates
multiple bootstrap training samples for developing diverse base models. RF combines the
bootstrap samples used in bagging along with random features to create diverse base
models. Though, CODEP technique also showed good results, it was evaluated in only
three primary studies. However, both BAG and RF have been widely used in literature
studies for various applications in the SDP/SCP domain. A key reason for their popularity
is their effective performance and ease of availability, i.e., open-source tools such as WEKA
[115], etc. have efficient implementations of BAG and RF. On the other hand, ET like
CODEP, ROT, MBoost, and CEL though exhibited good results in different applications
are rarely used in SDP/SCP literature. This could be possibly because of the lack of tools
that provide their implementation. These techniques should be widely explored in future
studies. It may also be noted that though the comparison results indicate that Stacking,
TSE and MKEL performed worse than the majority of the other compared ET, but there
were very few studies that could provide data for comparing these ET. Thus, these results
are not necessarily true in all scenarios. Researchers must perform more experiments that
investigate different ET and compare different ET for a specific application.

3.6. Threats specific to the use of ET

While using ET for SDP/SCP, it is essential to understand the possible threats one needs to
address for the effective application of these techniques. This would allow the computation
of effective and realistic results. We extracted threats specific to the use of ET from the
“Threats to Validity” or the “Limitations” section of the primary studies. However, we
found that 42% of the primary studies did not report their threats (i.e., did not have any
“Threats to Validity” or “Limitations” section). Another section of primary studies (25%)
though stated their corresponding threats but did not specify any threats on the use of
ET. Only 33% of studies stated threats specific to the use of ET.

The threats extracted from the primary studies were further categorized into ‘Construct
validity’, ‘Internal Validity’, and ‘External Validity’ threats [116]. We state only those
threats which could be extracted from two or more primary studies. This was done to
eliminate threats that are specific to the experimental designs of a corresponding study.
The various threats extracted from primary studies are listed in Table 9.

The extracted ‘Construct Validity’ threats in Table 9 state that the various internal
parameter settings, base learners, and combination mechanisms are not experimented by the
primary studies. However, it may be noted that though parameter tuning mechanisms [117,
118] may produce effective internal parameter settings, it is very difficult for a researcher to
account for a change in base learners and combination mechanisms. In fact, researchers may

220105-25

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table 9. Threats to validity specific to the use of ET

Threat Supporting studies

Construct validity

Does not experiment with various internal parameter settings
of the ET or ensemble size

ES8, ES9, ES25, ES31, ES32,
ES40, ES44, ES54, ES56, ES59,
ES65, ES67

Does not experiment with different base learners for a specific
ET

ES11, ES12, ES20, ES52, ES54,
ES59, ES75

Does not account for the variation of results with the change
in combination mechanism

ES12, ES20

Internal validity

Threat concerning proper re-implementation of ET proposed
by other studies for comparison with other ET

ES22, ES37, ES59

Bias concerning the selection of ET used in the study ES25, ES37, ES70
Use of random sample selection strategy for training the ET ES33, ES34, ES57

External validity

The number and nature of datasets used for validating the
ET may not be appropriate to produce generalized results

ES25, ES77, ES65

Bias concerning the selection of baseline models for comparing
ET to obtain generalized results

ES52, ES55, ES77

perform experiments just to evaluate various base learners and combination mechanisms of
specific ET (such as ES18).

A critical threat to internal validity is the proper re-implementation of ET (proposed/ex-
plored by other studies) for comparing its results with the ET proposed in the corresponding
primary study. This needs to be done very carefully, and the results of the re-implemented
ET should be matched with base studies to ensure they have been properly replicated.
However, we would like to add, as previously mentioned in Section 3.2, 18% of primary
studies did not mention the base learners used by the ET, moreover, 17% did not mention
(or partially mention) the ensemble size used by them. Such practice makes replication of
ET impossible. Researchers must mention all the parameter settings, base learners, and
ensemble size of the ET used by them. Other internal validity threats involve bias in the
selection of ET used by a study, and use of random selection strategy used for training
certain ET (such as MKEL).

One threat to “External Validity” (Table 9) states the bias in the selection of datasets
for performing the experiment. However, this threat can only be mitigated by using datasets
of varied domains, sizes, and programming languages. The other external validity threat
concerns itself with the selection of baseline models for comparing the ET. A researcher
should choose a representative set of baseline models that are widely used by researchers
for a specific application or represent various categories of algorithms (such as while
analyzing ET for the class imbalance issue, a researcher may select baseline models that
are representative each from Cost-sensitive ET, Boosting based ET, Bagging based ET,
Hybrid ET and Novel ET as discussed in Section 3.3). Moreover, a researcher should clearly
state the reason behind his choice of baseline models for comparison.

220105-26

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

4. Discussion of results and future work

This section discusses the results presented in Section 3 and analyzes the gaps in the
literature. Out of the 77 primary studies, only 10 studies used ET for SCP, all other studies
were focused on SDP. Both SDP and SCP are important key activities that aid in software
quality improvement. Thus, researchers should compulsorily conduct more studies that
analyze and compare the capabilities of ET for various tasks in SCP apart from SDP.
Furthermore, on the basis of the analysis conducted in this paper, we propose future work
to researchers, which is discussed in the following sections.

4.1. Discussions related to RQ1

RQ1 attempts to categorize various ET used in literature according to the base learners
used and other criteria involving their fucntioning.
– As discussed in RQ1, ET were categorized on various parameters such as the similarity of

learners used by base models, their aggregation, relationship, diversity, and dependency.
Though the primary studies of the review investigated ET that corresponded to most of
these categories, few categories were ignored by a majority of the studies. For instance,
no study used an ET which used the top-down approach for aggregation of base
models. Also, there were very few studies which investigated ET that had competitive
relationship amongst base models. Future studies should evaluate these less commonly
explored categorizations of ET.

– While analyzing the families of machine learning techniques used as base learners, we
found that only 11% of primary studies used search-based algorithms as base learners.
Researchers have ascertained the effectiveness of search-based algorithms in the domain
of software quality predictive modeling [26]. Therefore, future studies should extensively
explore ET that use search-based algorithms as base learners.

– Another interesting class of ET (explored by 35% of primary studies) were ensembles of
ensembles that use ET such as RF, BAG, AB, and Gradient Boosting as base learners.
Apart from these ET other techniques such as ROT, MC, Random Subspace or other
ET should be investigated as base learners for forming new ensembles. Certain primary
studies also proposed new ensemble of ensembles such as Deep Forest (ES65), Ensemble
Random Undersampling (ES44) and others. However, it was also observed that only
one primary SCP study evaluated ET as base learners. More studies which assess the
use of ensemble of ensembles should be conducted in the domain of SCP.

– The essence of ET is aggregation of several base models to yield a more stabilized and
reliable predictive outcome. However, all the base models of an ET use the original
feature set of the training dataset. These original features primarily quantify the
measurements in the process (such as evolution-based metrics [9]) or the code structure
(represented by code metrics [7]). On the contrary, deep learning techniques in SDP
generates new higher-level features from the original given feature set which symbolize
the semantic attributes and have found to yield better predictive outcomes than models
developed using original feature set [119, 120]. However, they do not generate multiple
models to provide aggregated and stabilized results. A culmination of both these
techniques, i.e., deep learning and ensemble learning is promising. Such a combination
has been explored by two primary studies. ES65 uses Deep Forest for ensembles while
ES74 uses deep representation of software metrics followed by two stage ensemble
learning. The results of both the studies have ascertained that blend of deep learning

220105-27

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

and ensemble learning is successful and would yield upscaling of current SDP models.
Researchers in future should further explore the combination of these two paradigms
for conclusive and generalized results.

4.2. Discussions related to RQ2

RQ2 investigates the various applications for which ET have been utilized in SDP/SCP
literature.
– We found only six ET namely SOB, OOB, UOB and three heterogeneous learners based

on plurality voting, soft voting and stacking, which were explored for online learning
in SDP. Moreover, there were only two primary studies that evaluated ET for online
learning. There is an urgent need for more studies that assess and evaluate ET for
online learning not just for SDP but for SCP too.

– After analyzing the results of RQ2, we found that 65% of the studies used ET as
a learning algorithm for developing SDP models. However, there are various other less
commonly explored applications of ET such as transfer learning (explored by 10% of
primary studies) which need more investigation by the research community. It may also
be noted that we could not find sufficient data to assess and compare ET for these less
explored applications. These observations necessitate a mandatory step by the research
community in exploring ET for transfer learning and other less explored applications.

– Researchers in the future should propose ET that collectively deal with diverse issues
such as handling imbalanced data and online learning together or other unified ET
such as TCSBoost that deal with multiple issues simultaneously. Studies should also
be conducted to extensively validate such proposed techniques and obtain generalized
conclusions concerning their effectiveness.

4.3. Discussions related to RQ3

RQ3 analyzes the various mechanisms/rules which have been used to aggregate base models
in ET used in SDP/SCP literature.
– Researchers may conduct studies where they experiment with different base learners for

a specific ensemble technique. The results of such studies can be used to effectively choose
base learners as there are a wide variety of options available in literature as discussed
in RQ1. Studies should also be conducted to evaluate different combination rules, i.e.,
if they improve or deteriorate the performance of a specific ensemble technique.

– As we evaluated the various combination mechanisms used in ET, we found that
there was a need to extensively validate the ET which are based on the meta-learning
mechanism. The performance of such techniques (evaluated in RQ4) could not be
generalized as though CODEP yielded exceptionally good results, the results of Stacking
was found to be poor when compared with non-ensemble techniques and amongst each
other. However, as the comparison data for these techniques could be extracted from
very few studies, these techniques should be explored by large number of studies in
both SDP as well as SCP.

220105-28

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

4.4. Discussions related to RQ4

RQ4 evaluates the performance of ET for the various applications in SDP/SCP domain.
It also attempts to compare the performance of ET amongst each other and with other
non-ensemble techniques for the various applications.
– While conducting comparisons for RQ4, we were not able to effectively compare all the

applications of ET. Thus, more studies should be conducted which provide comparisons
of ET amongst each other and with different non-ensemble techniques for varied
applications. Moreover, apart from AUC, other stable performance measures such as
MCC [90] or Balance [63] should be widely used by researchers to report and compare
the results of SDP/SCP models developed using various ET. Different ET that address
the class imbalance issue may also be compared based on “cost-effectiveness” to provide
a comprehensive picture to other researchers and software practitioners.

– Certain ET such as ROT, MBoost, and CEL, though exhibited promising results were
not widely used by primary studies. Such ET should be thoroughly investigated for
various applications. Also, various ET such as Multischeme, Non Negative Sparse-based
Semiboost, RBBag, ASCI, DECORATE, ASOF, etc., were only investigated in one
primary study each. More studies must be conducted which evaluate and compare such
ET in the SDP/SCP domain.

– It was also observed that ET belonging to the same category may exhibit contrasting
results. For instance, as Stacking, CODEP and VHetBL are heterogeneous ET, but
exhibit very different results when they were compared as a learning algorithm for
developing SDP models. Researchers in future should conduct comparisons amongst
specific categories of ET such as comparison amongst heterogeneous learners for several
applications to observe their capabilities and effectiveness.

4.5. Discussions related to RQ5

RQ5 scrutinizes the primary studies for the various threats specific to the use of ET in
SDP/SCP literature.
– The threats specific to ET could be extracted from just a few studies. As a good practice,

researchers should state all the possible threats to validity in their studies. Moreover,
they should design their experiments so that possible threats can be minimized as far
as possible.

– The review results indicated several primary studies that did not either state the base
learners used (18% of primary studies) or did not mention the ensemble size (17% of
primary studies). Such incomplete information hinders the replication of results by
other researchers. Also, several researchers proposed new ET, however, they should
be encouraged to provide tools for their proposed techniques. This would enable other
researchers to validate and replicate their proposed techniques. If not tools, researchers
should at least clearly state all the internal parameter settings, base learners used,
and combination mechanisms so that others may replicate and repeat their results for
comparison.

220105-29

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

5. Threats to validity

This section discusses the various threats to the validity of this review. The search for
relevant studies of the review included the formulation of a search string by choosing
specific search terms from the research questions. The search string was thereafter used to
retrieve studies from five electronic databases. However, it may be the case that certain
relevant studies may not include the search terms in their titles, abstracts, or keywords. We
might miss such studies. In order to address this threat, we manually scanned the reference
lists of all the extracted studies so that we may not miss a relevant study. Furthermore, we
also scanned the reference lists of two recent reviews [10, 13] conducted on SDP and SCP.
We are positive that these steps reduce the risk of missing out on a relevant study.

Another possible threat to the review results occurs from our assumption that all the
primary studies present their results in an unbiased manner. However, there could be
publication bias, wherein there are higher chances that positive results of ET are reported
rather than negative results [32]. There is a possibility that the authors of a study may
incorrectly claim that their proposed ET is better than other ET prevalent in literature. In
order to encounter this threat, we included “empirical studies which compare different ET
with each other or with other non-ensemble techniques for SDP or SCP” as an inclusion
criterion (mentioned in Section 2.2.1). Such studies only aim to compare various existing
ET, and do not propose their own techniques. Therefore, such studies would report both
favorable and unfavorable results of ET, mitigating the publication bias.

To evaluate the capability of ET for various applications related to SDP and SCP, we
performed a comparison of the results of SDP/SCP models developed by various ET and
non-ensemble techniques. For doing so, data was extracted from different primary studies.
However, these studies use diverse experimental designs and settings (internal parameters
of ET, size of ET, base learners of ET, independent variables, datasets, preprocessing
techniques, etc.). This could be a possible threat to the review. This threat was mitigated
by reporting the statistics dataset wise, after removing the outliers. This would ensure that
exceptional values reported by a specific study due to its corresponding experimental design
are removed. Moreover, we also state the median values to report the most common values
rather than extreme results reported by a study. Another possible threat in comparing
ET and non-ensemble techniques is that there could be certain bias in the dataset wise
comparison performed in the review. As already pointed out, we collect only those studies
that use ET or compare ET with each other and other non-ensemble techniques. Since, we
do not collect and extract data from studies that have used only non-ensemble techniques
on the compared datasets, the comparison may be biased and more favorable for ET. The
only way to address this threat is to additionally collect and extract data from studies that
have employed non-ensemble techniques on the said datasets. However, this is beyond the
purview of the study.

The external validity of the review concerns itself with the appropriateness of the
primary studies of the review, as per the review’s objective, so that the review results are
valid and generalizable. The review protocol is clearly defined so that we extract a valid
set of primary studies, which are in line with the review objectives. Also, the study clearly
states the review protocol, which supports the replicability and repeatability of the review.

220105-30

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

6. Conclusion

This review systematically summarizes the use of ET in SDP and SCP studies. We
analyzed the studies that used ET in SDP/SCP literature from five perspectives namely
their category, application, combination mechanism, performance, and probable threats
that could occur while using ET. We extensively explored 5 online libraries and extracted
77 primary studies in the period from January 2000 to December 2020. The primary
findings of the review are summarized below:
– ET used in SDP/SCP literature can be categorized according to five criteria which

includes: a) similarity of the base models (homogeneous and heterogeneous), b) aggrega-
tion mechanism of base models (top-down and bottom-up), c) relationship amongst base
models (competitive or cooperative), d) diversity of base models (implicit and explicit),
and e) dependency amongst base models (dependent and independent). Amongst the
mentioned criteria, we found that homogeneous, bottom-up, cooperative, explicit, and
independent ET are popular with respect to learner similarity, aggregation, relationship,
diversity, and dependency categorizations. Tree-based learners were the most popular
machine learning family which were used as base learners for ET.

– After analyzing the primary studies, we found six different applications of ET in
SDP/SCP literature. The most common application of ET was its use as a learning
algorithm for developing an SDP model. The other applications were addressing the
issue of imbalanced training data, their use as a learning algorithm for developing an
SCP model, transfer learning, online learning, and feature selection.

– Primarily, there are two mechanisms for combining base models, one is where the output
of constituent base models are given specific weights to get an aggregated ensemble
output, the second is when an ensemble is constructed through meta-learning. Only
twelve ET used the meta-learning mechanism while all others used the weighing mecha-
nism. We found sixteen combination rules for ET that used the weighing mechanism for
aggregation. Amongst them, some of the popular ones were majority voting, providing
weights according to misclassification error, and combining the base models according
to average probability.

– The performance of ET was analyzed dataset wise by evaluating the AUC and recall
performance metrics. A mean AUC value of 0.75 or above was depicted by a majority
of the explored ET when used as a learning algorithm for developing SDP or SCP
models or for addressing the imbalanced data issue. Majority of ET that were used as
a learning algorithm for developing SDP models depicted median recall values in the
range 70%–90%. A comparison of ET with other non-ensemble techniques (conducted
using vote count method and Wilcoxon signed ranked test) indicated that RF and BAG
were superior and popular ET as they exhibited better results than most of the other
compared non-ensemble techniques when being used as learners for developing SDP or
SCP models. The CODEP technique, a heterogeneous ET also exhibited favourable
results. We also compared ET amongst each other and found CODEP, RF and BAG to
be the best performing ET when used for developing SDP/SCP models and MBoost as
the best technique for handling skewed data.

– Amongst 77 primary studies, only 33% of them reported the threats specific to the use
of ET. The construct validity threats included the inability of the study to account for
the change in parameter settings, base learners, and the combination mechanism of the
ET. The internal validity threats need to address the biased selection of ET in a study,
suitable replication of ET proposed by other studies, and accounting for the random

220105-31

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

selection strategy for training certain ET. The reported external validity threats could
be addressed by the selection of an appropriate number and nature of datasets for
empirical validation and selection of appropriate baseline models for comparing the ET.

Acknowledgement

The author would like to acknowledge the contribution of Ms. Sugandha Gupta for helping
in data extraction and quality analysis of the candidate studies.

References

[1] N.E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex
software system,” IEEE Transactions on Software Engineering, Vol. 26, No. 8, Aug. 2000,
pp. 797–814.

[2] A.G. Koru and J. Tian, “Comparing high-change modules and modules with the highest
measurement values in two large-scale open-source products,” IEEE Transactions on Software
Engineering, Vol. 31, No. 8, Aug. 2005, pp. 625–642.

[3] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for
software defect prediction: A proposed framework and novel findings,” IEEE Transactions on
Software Engineering, Vol. 34, No. 4, May 2008, pp. 485–496.

[4] N. Seliya, T.M. Khoshgoftaar, and J. Van Hulse, “Predicting faults in high assurance software,”
in 12th International Symposium on High Assurance Systems Engineering. IEEE, Nov. 2010,
pp. 26–34.

[5] R. Malhotra and M. Khanna, “An exploratory study for software change prediction in
object-oriented systems using hybridized techniques,” Automated Software Engineering, Vol. 24,
No. 3, Sep. 2017, pp. 673–717.

[6] A.G. Koru and H. Liu, “Identifying and characterizing change-prone classes in two large-scale
open-source products,” Journal of Systems and Software, Vol. 80, No. 1, Jan. 2007, pp. 63–73.

[7] D. Romano and M. Pinzger, “Using source code metrics to predict change-prone java inter-
faces,” in 27th International Conference on Software Maintenance (ICSM). IEEE, Sep. 2011,
pp. 303–312.

[8] E. Giger, M. Pinzger, and H.C. Gall, “Can we predict types of code changes? An empirical
analysis,” in 9th Working Conference on Mining Software Repositories (MSR). IEEE, Jun.
2012, pp. 217–226.

[9] M.O. Elish and M. Al-Rahman Al-Khiaty, “A suite of metrics for quantifying historical
changes to predict future change-prone classes in object-oriented software,” Journal of
Software: Evolution and Process, Vol. 25, No. 5, May 2013, pp. 407–437.

[10] R. Malhotra, “A systematic review of machine learning techniques for software fault predic-
tion,” Applied Soft Computing, Vol. 27, Feb. 2015, pp. 504–518.

[11] R.S. Wahono, “A systematic literature review of software defect prediction: research trends,
datasets, methods and frameworks,” Journal of Software Engineering, Vol. 1, No. 1, Apr.
2015, pp. 1–16.

[12] A. Idri, M. Hosni, and A. Abran, “Systematic literature review of ensemble effort estimation,”
Journal of Systems and Software, Vol. 118, Aug. 2016, pp. 151–175.

[13] R. Malhotra and M. Khanna, “Software change prediction: A systematic review and future
guidelines,” e-Informatica Software Engineering Journal, Vol. 13, No. 1, 2019, pp. 227–259.

[14] L.I. Kuncheva and C.J. Whitaker, “Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy,” Machine Learning, Vol. 51, No. 2, May 2003,
pp. 181–207.

[15] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh et al., “Automated bug assignment:
Ensemble-based machine learning in large scale industrial contexts,” Empirical Software
Engineering, Vol. 21, No. 4, Aug. 2016, pp. 1533–1578.

220105-32

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

[16] S.S. Rathore and S. Kumar, “Linear and non-linear heterogeneous ensemble methods to
predict the number of faults in software systems,” Knowledge-Based Systems, Vol. 119, Mar.
2017, pp. 232–256.

[17] R. Malhotra and M. Khanna, “Particle swarm optimization-based ensemble learning for
software change prediction,” Information and Software Technology, Vol. 102, Oct. 2018,
pp. 65–84.

[18] M. Re and G. Valentini, “Ensemble methods: A review,” in Advances in Machine Learning
and Data Mining for Astronomy, Data Mining and Knowledge Discovery. Chapman-Hall,
2012, pp. 563–594.

[19] V. Bolón-Canedo and A. Alonso-Betanzos, “Ensembles for feature selection: A review and
future trends,” Information Fusion, Vol. 52, Dec. 2019, pp. 1–12.

[20] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A review on ensembles
for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 42,
No. 4, Aug. 2011, pp. 463–484.

[21] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault prediction metrics:
A systematic literature review,” Information And Software Technology, Vol. 55, No. 8, Aug.
2013, pp. 1397–1418.

[22] C. Catal, “Software fault prediction: A literature review and current trends,” Expert Systems
With Applications, Vol. 38, No. 4, Apr. 2011, pp. 4626–4636.

[23] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature review and meta-analysis
on cross project defect prediction,” IEEE Transactions on Software Engineering, Vol. 45,
No. 2, Nov. 2017, pp. 111–147.

[24] R. Malhotra, M. Khanna, and R.R. Raje, “On the application of search-based techniques for
software engineering predictive modeling: A systematic review and future directions,” Swarm
and Evolutionary Computation, Vol. 32, Feb. 2017, pp. 85–109.

[25] R. Malhotra and M. Khanna, “Threats to validity in search-based predictive modelling for
software engineering,” IET Software, Vol. 12, No. 4, Jun. 2018, pp. 293–305.

[26] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert
Systems With Applications, Vol. 36, No. 4, May 2009, pp. 7346–7354.

[27] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic literature review
on fault prediction performance in software engineering,” IEEE Transactions on Software
Engineering, Vol. 38, No. 6, Oct. 2011, pp. 1276–1304.

[28] R. Malhotra and A.J. Bansal, “Software change prediction: A literature review,” International
Journal of Computer Applications in Technology, Vol. 54, No. 4, Nov. 2016, pp. 240–256.

[29] B.A. Kitchenham, D. Budgen, and P. Brereton, Evidence-based software engineering and
systematic reviews. CRC press, Nov. 2015, Vol. 4.

[30] G. Catolino and F. Ferrucci, “An extensive evaluation of ensemble techniques for software
change prediction,” Journal of Software: Evolution and Process, Mar. 2019, p. e2156.

[31] X. Zhu, Y. He, L. Cheng, X. Jia, and L. Zhu, “Software change-proneness prediction through
combination of bagging and resampling methods,” Journal of Software: Evolution and Process,
Vol. 30, No. 12, Oct. 2018, p. e2111.

[32] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of machine learning
based software development effort estimation models,” Information and Software Technology,
Vol. 54, No. 1, Jan. 2012, pp. 41–59.

[33] Y. Jiang, B. Cukic, and T. Menzies, “Fault prediction using early lifecycle data,” in The 18th
International Symposium on Software Reliability (ISSRE’07). IEEE, Nov. 2007, pp. 237–246.

[34] E. Rubinić, G. Mauša, and T.G. Grbac, “Software defect classification with a variant of
NSGA-II and simple voting strategies,” in International Symposium on Search Based Software
Engineering. Springer, Sep. 2015, pp. 347–353.

[35] A. Ali, M. Abu-Tair, J. Noppen, S. McClean, Z. Lin et al., “Contributing features-based
schemes for software defect prediction,” in International Conference on Innovative Techniques
and Applications of Artificial Intelligence. Springer, Dec. 2019, pp. 350–361.

220105-33

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

[36] Y. Ma, L. Guo, and B. Cukic, “A statistical framework for the prediction of fault-proneness,”
in Advances in Machine Learning Applications in Software Engineering. IGI Global, 2007,
pp. 237–263.

[37] M.J. Siers and M.Z. Islam, “Software defect prediction using a cost sensitive decision forest
and voting, and a potential solution to the class imbalance problem,” Information Systems,
Vol. 51, Jul. 2015, pp. 62–71.

[38] J.R. Campos, E. Costa, and M. Vieira, “Improving failure prediction by ensembling the
decisions of machine learning models: A case study,” IEEE Access, Vol. 7, Dec. 2019,
pp. 177 661–177 674.

[39] G. Li and S. Wang, “Oversampling boosting for classification of imbalanced software defect
data,” in 35th Chinese Control Conference (CCC). IEEE, Jul. 2016, pp. 4149–4154.

[40] H. Jia, F. Shu, Y. Yang, and Q. Wang, “Predicting fault-prone modules: A comparative
study,” in International Conference on Software Engineering Approaches for Offshore and
Outsourced Development. Springer, Jul. 2009, pp. 45–59.

[41] R. Malhotra, “An empirical framework for defect prediction using machine learning techniques
with Android software,” Applied Soft Computing, Vol. 49, Dec. 2016, pp. 1034–1050.

[42] L. Gong, S. Jiang, and L. Jiang, “An improved transfer adaptive boosting approach for
mixed-project defect prediction,” Journal of Software: Evolution and Process, Vol. 31, No. 10,
Oct. 2019, p. e2172.

[43] T.M. Khoshgoftaar, P. Rebours, and N. Seliya, “Software quality analysis by combining
multiple projects and learners,” Software Quality Journal, Vol. 17, No. 1, Mar. 2009, pp. 25–49.

[44] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a support vector machine for
cross-project defect prediction,” Empirical Software Engineering, Vol. 21, No. 1, Feb. 2016,
pp. 43–71.

[45] H. He, X. Zhang, Q. Wang, J. Ren, J. Liu et al., “Ensemble multiboost based on ripper
classifier for prediction of imbalanced software defect data,” IEEE Access, Vol. 7, Aug. 2019,
pp. 110 333–110 343.

[46] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction models,” in
Proceedings of the 5th International Conference on Predictor Models in Software Engineering,
May 2009, pp. 1–10.

[47] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “Building an ensemble for
software defect prediction based on diversity selection,” in Proceedings of the 10th ACM/IEEE
International symposium on empirical software engineering and measurement, Sep. 2016,
pp. 1–10.

[48] L. Kumar, S. Lal, A. Goyal, and N. Murthy, “Change-proneness of object-oriented software
using combination of feature selection techniques and ensemble learning techniques,” in
Proceedings of the 12th Innovations on Software Engineering Conference (formerly known as
India Software Engineering Conference). ACM, Feb. 2019, p. 8.

[49] C. Seiffert, T.M. Khoshgoftaar, and J. Van Hulse, “Improving software-quality predictions
with data sampling and boosting,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, Vol. 39, No. 6, Sep. 2009, pp. 1283–1294.

[50] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel ensemble learning for software
defect prediction,” Automated Software Engineering, Vol. 23, No. 4, Dec. 2016, pp. 569–590.

[51] Z. Li, X.Y. Jing, X. Zhu, H. Zhang, B. Xu et al., “Heterogeneous defect prediction
with two-stage ensemble learning,” Automated Software Engineering, Vol. 26, No. 3, 2019,
pp. 599–651.

[52] E. Arisholm, L.C. Briand, and E.B. Johannessen, “A systematic and comprehensive investi-
gation of methods to build and evaluate fault prediction models,” Journal of Systems and
Software, Vol. 83, No. 1, Jan. 2010, pp. 2–17.

[53] T. Wang, Z. Zhang, X. Jing, and Y. Liu, “Non-negative sparse-based semiboost for software
defect prediction,” Software Testing, Verification and Reliability, Vol. 26, No. 7, Nov. 2016,
pp. 498–515.

220105-34

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

[54] R. Li, L. Zhou, S. Zhang, H. Liu, X. Huang et al., “Software defect prediction based on
ensemble learning,” in Proceedings of the 2019 2nd International conference on data science
and information technology, Jul. 2019, pp. 1–6.

[55] Y. Liu, T.M. Khoshgoftaar, and N. Seliya, “Evolutionary optimization of software quality
modeling with multiple repositories,” IEEE Transactions on Software Engineering, Vol. 36,
No. 6, May 2010, pp. 852–864.

[56] X. Xia, D. Lo, S.J. Pan, N. Nagappan, and X. Wang, “Hydra: Massively compositional model
for cross-project defect prediction,” IEEE Transactions on software Engineering, Vol. 42,
No. 10, Nov. 2016, pp. 977–998.

[57] R. Malhotra and S. Kamal, “An empirical study to investigate oversampling methods for
improving software defect prediction using imbalanced data,” Neurocomputing, Vol. 343, May
2019, pp. 120–140.

[58] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction,” Expert
Systems with Applications, Vol. 37, No. 6, Jun. 2010, pp. 4537–4543.

[59] H. Alsawalqah, H. Faris, I. Aljarah, L. Alnemer, and N. Alhindawi, “Hybrid SMOTE-ensemble
approach for software defect prediction,” in Computer Science on-Line Conference. Springer,
Apr. 2017, pp. 355–366.

[60] R. Malhotra and M. Khanna, “Dynamic selection of fitness function for software change
prediction using particle swarm optimization,” Information and Software Technology, Vol. 112,
Aug. 2019, pp. 51–67.

[61] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia, “Dynamic selection of classifiers in bug
prediction: An adaptive method,” IEEE Transactions on Emerging Topics in Computational
Intelligence, Vol. 1, No. 3, May 2017, pp. 202–212.

[62] H. Tong, B. Liu, and S. Wang, “Kernel spectral embedding transfer ensemble for heterogeneous
defect prediction,” IEEE Transactions on Software Engineering, Vol. 14, No. 8, Sep. 2019,
pp. 1–21.

[63] A.T. Mısırlı, A.B. Bener, and B. Turhan, “An industrial case study of classifier ensembles for
locating software defects,” Software Quality Journal, Vol. 19, No. 3, Sep. 2011, pp. 515–536.

[64] L. Kumar, S. Misra, and S.K. Rath, “An empirical analysis of the effectiveness of software
metrics and fault prediction model for identifying faulty classes,” Computer Standards and
Interfaces, Vol. 53, Aug. 2017, pp. 1–32.

[65] H.D. Tran, L.T.M. Hanh, and N.T. Binh, “Combining feature selection, feature learning
and ensemble learning for software fault prediction,” in 11th International Conference on
Knowledge and Systems Engineering (KSE). IEEE, Oct. 2019, pp. 1–8.

[66] Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, “Ensemble of software defect predictors:
an AHP-based evaluation method,” International Journal of Information Technology and
Decision Making, Vol. 10, No. 01, Jan. 2011, pp. 187–206.

[67] R. Malhotra and M. Khanna, “An empirical study for software change prediction using
imbalanced data,” Empirical Software Engineering, Vol. 22, No. 6, Dec. 2017, pp. 2806–2851.

[68] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect prediction with deep forest,”
Information and Software Technology, Vol. 114, Oct. 2019, pp. 204–216.

[69] N. Seliya and T.M. Khoshgoftaar, “The use of decision trees for cost-sensitive classification:
an empirical study in software quality prediction,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Vol. 1, No. 5, Sep. 2011, pp. 448–459.

[70] D. Ryu, J.I. Jang, and J. Baik, “A transfer cost-sensitive boosting approach for cross-project
defect prediction,” Software Quality Journal, Vol. 25, No. 1, Mar. 2017, pp. 235–272.

[71] R. Abbas, F.A. Albalooshi, and M. Hammad, “Software change proneness prediction using
machine learning,” in International Conference on Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT). IEEE, Dec. 2020, pp. 1–7.

[72] K. Gao, T.M. Khoshgoftaar, and A. Napolitano, “A hybrid approach to coping with high
dimensionality and class imbalance for software defect prediction,” in 11th international
conference on machine learning and applications, Vol. 2. IEEE, Dec. 2012, pp. 281–288.

220105-35

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

[73] C.W. Yohannese, T. Li, M. Simfukwe, and F. Khurshid, “Ensembles based combined learning
for improved software fault prediction: A comparative study,” in 12th International conference
on intelligent systems and knowledge engineering (ISKE). IEEE, Nov. 2017, pp. 1–6.

[74] H. Aljamaan and A. Alazba, “Software defect prediction using tree-based ensembles,” in
Proceedings of the 16th ACM international conference on predictive models and data analytics
in software engineering, Nov. 2020, pp. 1–10.

[75] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning to improve software defect
prediction,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), Vol. 42, No. 6, Dec. 2012, pp. 1806–1817.

[76] A. Agrawal and R.K. Singh, “Empirical validation of OO metrics and machine learning
algorithms for software change proneness prediction,” in Towards Extensible and Adaptable
Methods in Computing. Springer, Nov. 2018, pp. 69–84.

[77] A.A. Ansari, A. Iqbal, and B. Sahoo, “Heterogeneous defect prediction using ensemble learning
technique,” in Artificial Intelligence and Evolutionary Computations in Engineering Systems.
Springer, 2020, pp. 283–293.

[78] S. Wang, L.L. Minku, and X. Yao, “Online class imbalance learning and its applications
in fault detection,” International Journal of Computational Intelligence and Applications,
Vol. 12, No. 4, Dec. 2013, p. 1340001.

[79] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: Do different classifiers find the
same defects?” Software Quality Journal, Vol. 26, No. 2, Jun. 2018, pp. 525–552.

[80] M. Banga and A. Bansal, “Proposed software faults detection using hybrid approach,” Security
and Privacy, Jan. 2020, p. e103.

[81] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,” IEEE
Transactions on Reliability, Vol. 62, No. 2, Apr. 2013, pp. 434–443.

[82] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap and imbalance problems in
software defect prediction,” Software Quality Journal, Vol. 26, No. 1, Jun. 2018, pp. 97–125.

[83] E. Elahi, S. Kanwal, and A.N. Asif, “A new ensemble approach for software fault prediction,”
in 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST).
IEEE, Jan. 2020, pp. 407–412.

[84] A. Kaur and K. Kaur, “Performance analysis of ensemble learning for predicting defects in open
source software,” in international Conference on Advances in Computing, Communications
and Informatics (ICACCI). IEEE, Sep. 2014, pp. 219–225.

[85] S.A. El-Shorbagy, W.M. El-Gammal, and W.M. Abdelmoez, “Using SMOTE and heteroge-
neous stacking in ensemble learning for software defect prediction,” in Proceedings of the 7th
International Conference on Software and Information Engineering, May 2018, pp. 44–47.

[86] L. Goel, M. Sharma, S.K. Khatri, and D. Damodaran, “Defect prediction of cross projects
using PCA and ensemble learning approach,” in Micro-Electronics and Telecommunication
Engineering. Springer, 2020, pp. 307–315.

[87] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect prediction models: L’union
fait la force,” in Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, Feb. 2014, pp. 164–173.

[88] R. Malhotra and A. Bansal, “Investigation of various data analysis techniques to identify
change prone parts of an open source software,” International Journal of System Assurance
Engineering and Management, Vol. 9, No. 2, Apr. 2018, pp. 401–426.

[89] T.T. Khuat and M.H. Le, “Evaluation of sampling-based ensembles of classifiers on imbalanced
data for software defect prediction problems,” SN Computer Science, Vol. 1, No. 2, Mar. 2020,
pp. 1–16.

[90] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J.C. Riquelme, “Preliminary comparison
of techniques for dealing with imbalance in software defect prediction,” in Proceedings of the
18th International Conference on Evaluation and Assessment in Software Engineering, May
2014, pp. 1–10.

[91] R. Malhotra and J. Jain, “Handling imbalanced data using ensemble learning in software
defect prediction,” in 10th International Conference on Cloud Computing, Data Science and
Engineering (Confluence). IEEE, Jan. 2020, pp. 300–304.

220105-36

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

[92] V. Suma, T. Pushphavathi, and V. Ramaswamy, “An approach to predict software project
success based on random forest classifier,” in ICT and Critical Infrastructure: Proceedings of
the 48th Annual Convention of Computer Society of India-Vol II. Springer, 2014, pp. 329–336.

[93] R. Mousavi, M. Eftekhari, and F. Rahdari, “Omni-ensemble learning (OEL): utilizing
over-bagging, static and dynamic ensemble selection approaches for software defect pre-
diction,” International Journal on Artificial Intelligence Tools, Vol. 27, No. 6, Sep. 2018,
p. 1850024.

[94] S.K. Pandey, R.B. Mishra, and A.K. Tripathi, “BPDET: An effective software bug prediction
model using deep representation and ensemble learning techniques,” Expert Systems with
Applications, Vol. 144, Apr. 2020, p. 113085.

[95] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction in cross-company
software defects prediction,” Information and Software Technology, Vol. 62, Jun. 2015,
pp. 67–77.

[96] S. Moustafa, M.Y. ElNainay, N. El Makky, and M.S. Abougabal, “Software bug prediction
using weighted majority voting techniques,” Alexandria Engineering Journal, Vol. 57, No. 4,
Dec. 2018, pp. 2763–2774.

[97] S.S. Rathore and S. Kumar, “An empirical study of ensemble techniques for software fault
prediction,” Applied Intelligence, Vol. 51, No. 6, Jun. 2021, pp. 3615–3644.

[98] M.O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on predicting software main-
tainability using ensemble methods,” Soft Computing, Vol. 19, No. 9, Sep. 2015, pp. 2511–2524.

[99] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising autoencoders
and two-stage ensemble learning,” Information and Software Technology, Vol. 96, Apr. 2018,
pp. 94–111.

[100] A.A. Saifan and L. Abu-wardih, “Software defect prediction based on feature subset selection
and ensemble classification,” ECTI Transactions on Computer and Information Technology
(ECTI-CIT), Vol. 14, No. 2, Oct. 2020, pp. 213–228.

[101] S. Hussain, J. Keung, A.A. Khan, and K.E. Bennin, “Performance evaluation of ensemble
methods for software fault prediction: An experiment,” in Proceedings of the ASWEC 24th
Australasian software engineering conference, Sep. 2015, pp. 91–95.

[102] Y. Zhang, D. Lo, X. Xia, and J. Sun, “Combined classifier for cross-project defect prediction:
an extended empirical study,” Frontiers of Computer Science, Vol. 12, No. 2, 2018, pp. 280–296.

[103] F. Yucalar, A. Ozcift, E. Borandag, and D. Kilinc, “Multiple-classifiers in software quality
engineering: Combining predictors to improve software fault prediction ability,” Engineering
Science and Technology, an International Journal, Vol. 23, No. 4, Aug. 2020, pp. 938–950.

[104] I.H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning
on selected features,” Information and Software Technology, Vol. 58, Feb. 2015, pp. 388–402.

[105] L. Rokach, “Taxonomy for characterizing ensemble methods in classification tasks: A review
and annotated bibliography,” Computational statistics & data analysis, Vol. 53, No. 12, Oct.
2009, pp. 4046–4072.

[106] C. Sammut and G.I. Webb, Eds., Encyclopedia of Machine Learning. Springer Science &
Business Media, 2011.

[107] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Vol. 8, No. 4, 2018, p. e1249.

[108] A.J. Sharkey, “Types of multinet system,” in International Workshop on Multiple Classifier
Systems. Springer, Jun. 2002, pp. 108–117.

[109] H. He and E.A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 21, No. 9, Jun. 2009, pp. 1263–1284.

[110] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for imbalanced data,” in
37th International Conference on Software Engineering, Vol. 2. IEEE, May 2015, pp. 99–108.

[111] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, Vol. 27, No. 8,
Jun. 2006, pp. 861–874.

[112] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with precision: A response
to “Comments on ‘Data mining static code attributes to learn defect predictors”’,” IEEE
Transactions on Software Engineering, Vol. 33, No. 9, Aug. 2007, pp. 637–640.

220105-37

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

[113] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonpara-
metric statistical tests as a methodology for comparing evolutionary and swarm intelligence
algorithms,” Swarm and Evolutionary Computation, Vol. 1, No. 1, Mar. 2011, pp. 3–18.

[114] T.G. Dietterich, “Ensemble methods in machine learning,” in International Workshop on
Multiple Classifier Systems. Springer, Jun. 2000, pp. 1–15.

[115] F. Eibe, M.A. Hall, and I.H. Witten, “The WEKA workbench. online appendix for data
mining: practical machine learning tools and techniques,” in Morgan Kaufmann. Elsevier
Amsterdam, The Netherlands, 2016.

[116] T.D. Cook, D.T. Campbell, and A. Day, Quasi-experimentation: Design and analysis issues
for field settings. Houghton Mifflin Boston, 1979, Vol. 351.

[117] W. Fu, V. Nair, and T. Menzies, “Why is differential evolution better than grid search for
tuning defect predictors?” arXiv preprint arXiv:1609.02613, 2016.

[118] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, and K. Matsumoto, “The impact of auto-
mated parameter optimization on defect prediction models,” IEEE Transactions on Software
Engineering, Vol. 45, No. 7, Jan. 2018, pp. 683–711.

[119] S. Omri and C. Sinz, “Deep learning for software defect prediction: A survey,” in Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, Jun.
2020, pp. 209–214.

[120] E.N. Akimova, A.Y. Bersenev, A.A. Deikov, K.S. Kobylkin, A.V. Konygin et al., “A survey
on software defect prediction using deep learning,” Mathematics, Vol. 9, No. 11, Jan. 2021,
p. 1180.

Glossary

AB: AdaBoost
ANN: Artificial Neural Network
AUC: Area Under the Receiver operating
characteristic Curve
ASOF: Adaptive Selection of Optimum Fit-
ness
ASCI: Adaptive Selection of Classifiers
BAG: Bagging
BN: Bayesian Network
BNC: AdaBoost.NC
BTE: Best in Training Ensemble
CART: Classification and Regression Tree
CEL: Coding based Multiclassifier
CS: Cumulative Quality Score
CODEP: Combined Defect Predictor
Dag: Dagging
Dec.T: Decision Table
Decorate: Diverse Ensemble Creation by Op-
positional Relabeling of Artificial Training
Examples
DNC: Dynamic Adaboost.NC
DTB: Double Transfer Boosting
ET: Ensemble Techniques
ITrAdaBoost: Improved Transfer Adaptive
Boosting
KNN: K-Nearest Neighbor

KSETE: Kernel Spectral Embedding Trans-
fer Ensemble
LB: LogitBoost
LMT: Logit Model Tree
LR: Logistic Regression
MBoost: MultiBoost
MC: MetaCost
MCC: Mathews Correlation Coefficient
MKEL: Multiple Kernel Ensemble Learning
NB: Naïve Bayes
NDTF: Non-Linear Decision Tree Forest
OEL: Omni Ensemble Learning
OOB: Oversampling based Online Bagging
RBBag: Roughly Balanced Bagging
RF: Random Forests
ROT: Rotation Forest
RQ: Research Question
RUSBoost: Random UnderSampling Boost-
ing
RS: Random Subspace
SCP: Software Change Prediction
SDP: Software Defect Prediction
SI: Study Identifier
SMBoost: SMOTEBoost
SOB: Sampling based Online Bagging
SQA: Software Quality Assurance
SVM: Support Vector Machine
TCSBoost: TransferCostSensitive Boosting

220105-38

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

TSE: Two Stage Ensemble
UOB: Undersampling based Online Bagging
VCB-SVM : Value Cognitive Boosting with
Support Vector Machine
VFI: Voting Feature Intervals
VHetBL: Voting amongst Heterogenous

Base Learners
VHomBL: Voting amongst Homogeneous
Base Learners
VV: Validation and Voting
WEKA: Waikato Environment for Knowl-
edge Analysis

220105-39

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Appendix

Table A1 lists all the primary studies that use a specific ET. Table A2 states the machine
learning family of the techniques, which have been used as base learners for ET in the
primary studies.

Table A1. List of ET used by primary studies

ET Primary Studies

AdaBoost ES7, ES8, ES13, ES21, ES24, ES25, ES29,
ES30, ES36, ES39, ES41, ES44, ES46, ES47,
ES50, ES55, ES56, ES60, ES61, ES62, ES67,
ES73, ES74, ES76, ES77

AdaBoost.NC ES18, ES73
AdaCost ES14, ES40
Adc2 ES14
Adaptive Selection of Classifiers ES37
Adaptive Selection of Optimum Fitness ES62
Average Probability Ensemble ES26, ES54, ES70
Average Voting ES51
Bagging ES6, ES13, ES16, ES19, ES21, ES24, ES30,

ES31, ES36, ES39, ES41, ES42, ES46, ES47,
ES50, ES51, ES52, ES55, ES60, ES61, ES62,
ES69, ES74, ES76, ES77

Balanced Random Forests ES2
Best in Training Ensemble ES24, ES38, ES58
Boosting ES2, ES16, ES19, ES31, ES32, ES51
Bug Prediction using Deep representation and
Ensemble learning

ES74

Cascaded Weighted Majority Voting ES49
Cascaded Randomized Weighted Majority Vot-
ing

ES49

Categorical Boosting ES67
Combined Defect Predictor ES20, ES35, ES51
Coding based Multi classifier ES16, ES33, ES57
Cost-sensitive Forest ES28
Cost-sensitive Boosting Neural Networks ES10, ES33
Csb2 ES14
Dagging ES75, ES77
Data Boost ES73
DeepForest ES65
Diverse Ensemble Creation by Oppositional
Relabeling of Artificial Training Examples
(DECORATE)

ES8, ES75

Double Transfer Boosting ES23, ES56
Dynamic Adaboost.NC ES18, ES33, ES44, ES57
Ensemble learning phase in HYDRA ES35, ES56
Ensemble Random Undersampling ES44
Ensemble Selection ES75
Extra Trees ES67
GcForest ES65
Gradient Boosting ES67
Grading ES75

220105-40

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table A1 continued
ET Primary Studies

Histogram based Gradient Boosting ES67
Improved Transfer Adaptive Boosting ES56
Kernel Spectral Embedding Transfer Ensemble ES63
Logistic Model Tree ES3, ES30, ES46
LogitBoost ES4, ES30, ES39, ES46, ES47, ES62, ES74,

ES77
Maximum Voting ES51
Metacost ES14, ES21, ES39, ES61
Multiboost ES57, ES66, ES75, ES77
Multiple Kernel Ensemble Learning ES33, ES57
Multischeme ES77
MSMOTEBoost ES73
Non Negative Sparse based Semiboost ES34
Non-linear Decision Tree Forest ES24, ES38, ES58
Oversampling-based Online Bagging ES17
Omni Ensemble Learning ES48
Random Subspace method ES60
Random Forest ES1, ES2, ES3, ES4, ES6, ES14, ES16, ES18,

ES22, ES23, ES26, ES30, ES32, ES36, ES39,
ES42, ES43, ES44, ES46, ES47, ES48, ES50,
ES51, ES53, ES55, ES60, ES61, ES62, ES65,
ES66, ES67, ES71, ES74, ES77

Rotation Forest ES19, ES21, ES48, ES75, ES77
Roughly balanced Bagging ES11
Random Undersampling Boosting (RUSBoost) ES15, ES21, ES44, ES73
RealAdaBoost ES75
Randomized Weighted Majority Voting ES49
Sampling based Online Bagging ES17
SelectRUSBoost ES15
SMOTEBoost ES18, ES21, ES44, ES73
Stacking ES13, ES25, ES31, ES45, ES54, ES66, ES70,

ES77
SysFor ES28
Transfer Adaptive Boosting ES56
Transfer Cost-Sensitive Boosting ES40, ES56
TransferBoost ES35, ES40
Two Stage Ensemble ES50, ES59, ES64
Undersampling based Online Bagging ES17
Validation and Voting Classifier ES9, ES37
Value Cognitive Boosting with Support Vector
Machine

ES32, ES56, ES59

Voting amongst Homogeneous Base Learners
(VHomBL)

ES27, ES47, ES62

Voting amongst Heterogeneous Base Learners
(VHetBL)

ES5, ES9, ES12, ES13, ES24, ES25, ES38,
ES48, ES54, ES55, ES58, ES60, ES66, ES68,
ES70, ES72, ES77

Weighted Majority Voting ES49
WeightedSmoteBoost ES29
XGBoost ES67, ES71

220105-41

Megha Khanna e-Informatica Software Engineering Journal, 16 (2022), 220105

Table A2. List of techniques (used as base learners) belonging to each machine learning family

Tree-based Learners C4.5, Random Tree, Decision Tree, Decision Stump, J48, CART,
Alternating Decision Tree, Partial Decision Tree, Tree Disc Classi-
fication, Naïve Bayes Tree, REP Tree.

Support Vector Machine Support Vector Machine, Sequential Minimal Optimization, Voted
Perceptron, Pegasos.

Bayesian Learners Naïve Bayes, Bayesian Network,Multinomial Naïve Bayes, Bernoulli
NaïveBayes, Parzen classifierwith theGaussian kernel,Uncorrelated
normal densities based quadratic Bayes.

Rule-based Learners One Rule, Lines-of-Code, Decision Table, Ripper Down Rules,
Repeated Incremental Pruning to Produce Error Reduction.

Instance-based Learners Locally weighted learning with decision stump, 1-Instance based
Learning, K-Instance based Learning, K-Nearest Neighbor, Near-
est Mean Classifier, Scaled Nearest Mean Classifier.

Search based Algorithms Genetic Algorithm, Genetic Programming, Particle Swarm Opti-
mization, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II).

Artificial Neural Networks Multilayer Perceptron, Radial Basis Function, Linear Perceptron
classifierwithBatchProcessing, Levenberg–Marquardt feed-forward
neural network, Automatic Levenberg–Marquardt feed-forward
neural network.

Ensemble Learners RF, BAG, AB, Boosting, XGBoost, Boosting, Gradient Boosting.
Miscellaneous Learners Voting Feature Interval, KStar, KMeans, Random Subspace,

Stochastic Gradient Descent, Minimum Least Square Linear Clas-
sifier, Subspace Classifier, Linear classifier based on Principal
Component Analysis, Linear Discriminant Classifier, Quadratic
Discriminant Classifier, Minimum Linear Least Square Classifier,
Linear classifier based on Karhunen Loeve (KL) expansion of
common covariance matrix.

220105-42

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220106, DOI: 10.37190/e-Inf220106

A Comparison of Citation Sources for
Reference and Citation-Based Search in

Systematic Literature Reviews

Nauman bin Ali∗, Binish Tanveer∗
∗Blekinge Institute of Technology, Sweden

nauman.ali@bth.se, binish.tanveer@bth.se

Abstract
Context: In software engineering, snowball sampling has been used as a supplementary
and primary search strategy. The current guidelines recommend using Google Scholar
(GS) for snowball sampling. However, the use of GS presents several challenges when
using it as a source for citations and references.
Objective: To compare the effectiveness and usefulness of two leading citation databases
(GS and Scopus) for use in snowball sampling search.
Method: We relied on a published study that has used snowball sampling as a search
strategy and GS as the citation source. We used its primary studies to compute precision
and recall for Scopus.
Results: In this particular case, Scopus was highly effective with 95% recall and had
better precision of 5.1% compared to GS’s 2.8%. Moreover, Scopus found nine additional
relevant papers. On average, one would read approximately 15 extra papers in GS than
Scopus to identify one additional relevant paper. Furthermore, Scopus supports batch
downloading of both citations and papers’ references, has better quality metadata, and
does better source filtering.
Conclusion: This study suggests that Scopus seems to be more effective and useful
for snowball sampling than GS for systematic secondary studies attempting to identify
peer-reviewed literature.

Keywords: Snowball sampling, snowballing, reference-based, citation-based, search
strategy, systematic review, systematic mapping

1. Introduction

Systematic literature reviews and mapping studies [1] rely on a systematic and extensive
search to identify the literature on a topic of interest. The two main search strategies in such
secondary studies have been: (1) the use of keyword-based search and (2) supplementing
the keyword-based results with snowball sampling [2]. However, others have proposed to
use snowball sampling as the primary search method [3, 4]. Snowball sampling refers to the
use of reference-of (for backward snowballing) and citations-to (for forward snowballing),
a set of papers for identifying other relevant papers.

The indexing/citation database plays a critical role, whether using snowball sampling
as the primary or supplementary search strategy. The coverage of the citation database
may limit the snowball sampling strategy’s effectiveness. Several alternative electronic data

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 28 Sep. 2021; Revised: 08 Mar. 2022; Accepted: 09 Mar. 2022; Available online: 17 Mar. 2022

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

sources for citation search exist, e.g., Elsevier Scopus (Scopus), Clarivate Analytics – Web
of Science (WoS), and Google Scholar (GS). However, the current guidelines [4] recommend
using GS.

For keyword-based search, where an automatic search is conducted using a combination
of keywords, several studies have investigated the relevance and coverage of different
electronic data sources [5–7]. However, no such investigation is reported of electronic data
sources for snowball sampling in software engineering (SE) to the best of our knowledge.

In this study, we have compared Scopus and GS for use in the snowball sampling search
strategy. We choose GS and Scopus, as these are among the most used citation databases
in SE systematic reviews [2]. Similarly, the snowball sampling guidelines in SE recommend
the use of GS [4]. The snowball sampling guidelines [4] already have over 2000 citations1.
At least 1150 of these 2000 citing articles mention “google scholar”2 indicating that GS
is one of the sources used in these articles. This further justifies this study as the results
could potentially have significant implications for future SE research employing snowball
sampling in their search strategy.

The remainder of the paper is structured as follows: Section 2 describes the related
work. Section 3 presents the approach used in this study for comparing the two sources.
Section 4 presents the results. In Section 5 we further discussed the limitations of GS in
light of related research. Section 6 presents our recommendations for future studies using
snowball sampling search strategy. Section 7 highlights the validity threats and limitations
of the paper. Section 8 concludes the paper.

2. Related work

We discuss the related work for this study in three complementary themes: (1) guidelines for
the design, reporting, and evaluation of search strategies (2) the evaluation of electronic data
sources used in SE, and (3) studies comparing citation databases without a focus on SE.

2.1. Search guidelines for systematic secondary studies

Several comprehensive guidelines for designing keyword-based search [1] and snowball sam-
pling [4] are available. Furthermore, new improvements have been suggested to the design
and assessment guidelines [8–11] based on the limitations identified in the repeatability of
search in existing SLRs [2, 9].

Even when using keyword-based search as the primary search method, it is recommended
to supplement the search using snowball sampling [1]. Thus, both search strategies will
benefit from this study that assesses the usefulness and effectiveness of the currently
recommended citation source.

2.2. Comparison of databases for keyword-based search in SE

There have been numerous studies investigating electronic data sources for keyword-based
searches covering topics such as features required to support secondary studies ([7, 12, 13])
overlaps among sources ([5, 6, 14, 15]), and the value of Google and GS ([7, 13]). These

1On September 20, 2021, in GS, Wohlin’s guidelines [4] had accumulated over 2000 citations.
2In GS, we searched for “Google Scholar” within the articles citing Wohlin’s guidelines [4].

220106-2

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

studies conclude that: (a.) multiple sources should be searched ([5, 6, 14, 15]), and (b.) GS
and Google have good coverage of SE literature and SE secondary studies ([7, 13]).

However, we could not find a study in SE that compared citation databases for snowball
sampling. In this study, we fill this gap by assessing the effectiveness and usefulness of the
recommended citation database, i.e., GS, in the current guidelines and comparing it with
other commonly used citation databases in SE research.

2.3. Studies comparing citation databases outside SE

Several comparisons of citations databases have been conducted, which are summarised in
Table 1. The main sources compared include GS, WoS, Scopus, and Microsoft Academic
Search (MAS). Some studies have indicated that the coverage (both in terms of indexing
papers and citations) varies between different sources depending on the timeframe and
research areas considered [16, 17]. However, one can conclude that overall, GS has the
most indexed bibliographic records and citations [18–21]. GS also seems to have a faster
indexing speed [22]. On the other hand, the quality of data and transparency of what is
indexed is better in paid services like Scopus [22].

In this study, which is the first in SE literature, we compare GS and Scopus as sources for
citations and references when performing snowball sampling. Unlike the studies discussed

Table 1. An overview of related work on comparing various data sources outside SE

ID Data sources
compared

Parameters Main conclusions

[16] GS, WoS As a source for forward snowball
sampling for public health litera-
ture.

WoS is recommended for public
health guidance needs.

[17] GS, WoS, Scopus For citation tracking in two fields
oncology and condensed matter
physics.

Databases performance varied for
different research areas and pub-
lication years.

[18] GS, MAS No of papers indexed and cita-
tion to those papers for several
authors.

GS indexed more papers and ci-
tations for information and com-
puting literature.

[22] GS, Scopus Indexed sources and indexing
speed.

Scopus provides a clear documen-
tation of what is indexed in its
database. Scopus has higher ac-
curacy and quality of data.The
most important additional source
indexed by GS is Google Books.
GS has faster indexing speed.

[19] GS, WoS, Scopus,
MAS, and eight
others

Number of bibliographic records
indexed by the data source.

GS had the most number of bibli-
ographic records.

[20] GS, WoS, Scopus,
MAS, and two
others.

The number of citations to a set
of 2515 highly-cited documents.

GS has the most number of cita-
tions.

[21] GS, WoS, Scopus,
MAS.

The number of citations to set
of 150 articles from journals with
high, low and no impact factors.

GS and Microsoft Academic had
similar average number of cita-
tions, which were much higher
than WoS and Scopus.

220106-3

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

above, we take into consideration the relevance of the additional citations (not just the
number of citations) found by a source.

3. Research method

In this study, we have only compared Scopus and GS. These two are the most often used [2]
citation databases [6] in secondary studies in SE. Moreover, GS is the recommended source
in snowball sampling guidelines in SE [4]. Hence, we attempt to answer the following
research question:

RQ: How effective and useful are GS and Scopus citation databases for implementing
snowball sampling-based search strategy?

To compare Scopus and GS, we have used a published systematic review [23] (from
here on referred to as the case SLR) that has used GS for executing the snowball sampling
search strategy. We did this for convenience as we had access to the intermediate and final
results, which is hard to obtain for papers where one has not been a co-author [24]. In the
future, we intend to replicate the analysis reported in this paper on more published papers
reducing the bias that having a single case introduces. This limitation is further discussed
in Section 7. The data used in the study is available for replication and further analysis by
other researchers at this link.

3.1. Criteria for assessing the effectiveness and usefulness

We now present the criteria for evaluating the effectiveness and usefulness of citation
databases as used in this study:

Effectiveness: The primary studies from the case SLR have allowed us to objectively
assess the implication of using Scopus instead of GS using the following metrics (adapted
from [1, 16]):
– Recall = 100 * (# of primary studies found in the search) / (total # of primary

studies).
– Precision = 100 * (total # of primary studies in the search results) / (total

of search results).
– Number needed to read for each relevant paper (NNR) = (total # of ex-

cluded papers) / (# of primary studies found in the search results)
Usefulness: Usefulness [25] in this study is defined as a subjective measure of how well

a source supports users performing snowball sampling. We consider the following features
as indicators for the usefulness of a citation source for snowball sampling:
– Ability to easily download citations to a paper.
– Ability to easily download the references in a paper.
– Ability to easily filter citations and references (e.g., based on the publication language,

venue, or whether they are peer-reviewed).
This is not an exhaustive list of features. However, these are essential for enabling the

use of snowball sampling as a search approach.

3.2. Overview of the relevant aspects of the case SLR

The case SLR [23] was an attempt to find industrially relevant regression testing research.
Existing SLRs on the topic of regression testing were identified and used as a start-set for

220106-4

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

one iteration of forward and backward snowball sampling. Forward snowballing here refers
to reviewing the citations to the papers in the start-set, and backward snowballing refers
to checking the references used in the papers in the start-set. By one-iteration, we mean
that no further snowballing was performed on the additionally included relevant papers
found in the first iteration.

The search in the case SLR [23] was done in August 2016. Since the search was done in
August (without a clear cut-off at a full year), it was impossible to recreate the citations list
of Scopus in August 2016 at the time of the current study. Therefore, to have a relatively
fair comparison, we have included the citations from both GS and Scopus up to and
including the calendar year 2016.

Table 2 provides information about the start set, the number of citations and references
in the start set. The case SLR had 38 primary studies. However, four papers were excluded
from the comparison in the current study (i.e., making 34 primary studies in Table 2).
Of the four papers not considered as primary studies in the current review, three were
excluded as these were not identified by snowball sampling in the case SLR (these were
added as a known-set of papers), and the remaining one paper was in pre-print in 2016,
i.e., at the time of the search in the case SLR. The paper was eventually printed in 2017.
This means that a search now will not find it as a publication in 2016 but as a publication
from 2017. Furthermore, we had identified 12 of these primary studies through backward
snowballing (i.e., through references in the seed set and do not represent the value of the
data source, since they are listed in the full-text of the papers). Therefore, when assessing
the effectiveness of GS and Scopus, we have used only 22 primary studies found by forward
snowballing for comparison. For assessing the usefulness, we consider the features of the
citation sources for both forward and backward snowball sampling.

Table 2. Details of the start set used in the case SLR [23]

No. of papers in seed set 11
No. of references in the seed set 877
No. of unique references in the seed set 506
No. of primary studies 34
Primary studies found through backward snowballing only 12

4. Results

After removing duplicate citations, we had 764 citations in GS and 415 in Scopus (see
Table 3). Table 3 shows the number of citations and the objective measures of effectiveness
for both sources. Please note that recall by definition will be 100% for the source used as
a baseline. We also present the potential impact of having used Scopus in the Table 3.

The Venn diagram (see Figure 1) shows that 365 papers (that did not meet the inclusion
criteria of the case SLR) and 21 (primary studies) are shared between Scopus and GS. At
the same time, Scopus and GS each have 20 and 377 unique papers (that is papers that
did not meet the inclusion criteria of the case SLR), respectively. Whereas nine potential
primary studies are identified only by Scopus, and GS only identifies one unique primary
study.

220106-5

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

Table 3. Precision and recall for the two sources

GS Scopus

No. of citations to the seed papers 937 498
Unique citations to the seed papers (after re-
moving duplicates)

764 415

Using only GS for forward snowballing, and its comparison with Scopus shows the
following:a

Of the 22 primary studies identified in GS 22 21
Precision (22/764) * 100 = 2.8% (21/415) * 100 = 5.1%
Recall (22/22) * 100 = 100% (21/22) * 100 = 95%
NNR (377 + 365)/22 = 33.7 (29 + 365)/21 = 18.8

Using only Scopus for forward snowballing, and its comparison with GS shows the
following:b

Of the 30 potential primary studies identified
in Scopus

21 30

Precision (21/764) * 100 = 2.7% (30/415) * 100 = 7.2%
Recall (21/30) * 100 = 70.0% (30/30) * 100 = 100%
NNR (377 + 365 + 1)/21 =

35.3
(20 + 365)/30 = 12.8

a The nine potentially relevant papers only identified by Scopus are not considered in the analysis.
b One primary study only identified by GS is not considered in the analysis.

9

ScopusGoogle Scholar

Papers not meeting the inclusion
criteria of the case SLR

Primary studies in the case SLR
identified using GS

Potentially additional primary
studies if Scopus was used in the
case SLR

377 365 20

21

1

Figure 1. Data and results of the comparison between GS and Scopus

4.1. Effectiveness of GS and Scopus

Of the 22 primary studies identified through forward snowballing in GS, except for one
paper, we found all the primary studies through Scopus as well (see Figure 1). While
both the missing primary study and the referenced seed paper are indexed in Scopus, the
citation is not recognized in Scopus. We reported the issue to Elsevier’s support, and the
papers are now correctly linked.

We further analysed the 29 unique citations in Scopus (see Figure 1) by applying the
selection criteria of the case SLR. We found that nine of these papers meet the selection
criteria and would be shortlisted for data extraction and synthesis. However, we have not
done the data extraction and re-analysis of the entire data for the current paper as we do
not consider it essential for the objective of this paper. The impact of these nine papers on
the metrics of effectiveness used in the study is presented in Table 3. The numbers indicate
that Scopus would have been a far superior choice. However, since we have not done data

220106-6

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

extraction from these nine potential primary studies, we are not confident if they will all
become primary studies. Therefore, for the remainder of the paper, we will focus on the
numbers based on the case SLR where GS was used.

For the case SLR, the values for precision and NNR show that Scopus is more effective
than GS. Scopus found 95% (21 out of the 22 papers) of the relevant papers identified
by GS with considerably higher precision. The NNR value in (see Table 3) suggests that,
on average, one would have to examine 15 extra papers in GS than Scopus to identify an
additional relevant paper.

4.2. Usefulness of GS and Scopus

Table 4 summarises our assessment of GS and Scopus against the stated criteria for
usefulness.

Table 4. Usefulness of GS and Scopus for snowball sampling

GS Scopus

Ability to easily download citations to a paper No Yes
Ability to easily download the references in a paper No Yes
Ability to easily filter citations and references No Partially yesa

a In Scopus, of the 14 fields of metadata to use for filtering citations only
four fields are available to filter references in a paper. This was last
confirmed in December 2021.

Downloading citations to a paper and references in a paper: In GS, it is
difficult to download citations to papers. There is no native support for batch downloading
of citations. Furthermore, to prevent denial of service attacks, GS blocks any attempt to
automate the download. For example, one of the seed papers for the case SLR has over
1200 citations making it very difficult to download the citations manually. Furthermore, GS
has no support for backward snowballing as references in the papers have to be manually
extracted from the papers’ full text.

On the other hand, we found that Scopus facilitates both forward and backward snow-
balling, by enabling batch download of citations and references.

Filtering citations and references: In GS, we found no means to exclude based on
the publication language or whether they have been peer reviewed. For systematic studies
that only include peer-reviewed literature published in certain languages (which is often
the case in SE), we consider this a significant limitation of GS. Furthermore, due to the
quality of metadata in GS, it was also difficult to remove duplicates. It took considerable
effort to resolve minor differences in the titles and venues of the papers.

In Scopus, we can extract additional metadata about the publication, including the
publication type and language that significantly aids in the selection process. Moreover,
removing duplicates was reasonably straightforward in the citations retrieved through
Scopus, as the data were relatively clean.

5. Discussion of GS in light of the related work

As discussed in Section 4, our study shows that GS does not have features that are necessary
for its use in snowball sampling-based search. Furthermore, we found that Scopus was more

220106-7

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

effective and useful for this purpose. To further strengthen our recommendation to use
Scopus instead of GS, we now briefly discuss the limitations of GS in terms of the nature
and quality of metadata indexed in it, transparency of what is indexed, and its support
for snowball sampling. We base this section both on the results of our study and also on
investigations of GS by others.

5.1. Lack of transparency in what is indexed

There is a lack of transparency regarding what is indexed in GS [16, 26] which may explain
to a certain degree the changing citation numbers for the same period [27]. This is a serious
threat to the reliability of search when using GS. Furthermore, Winter et al. [27] concluded
in a longitudinal study that the number of citations substantially increased in GS for the
same articles retroactively (i.e., when the search was repeated for the number of citations
for a paper in the same time period on a later date, a larger number of citations was
retrieved). They conclude that coverage seems to have stabilized over the more recent
years [27]. However, in a recent investigation Martín-Martín and López-Cózar [26] found
large fluctuations in coverage of literature by GS, which they conclude is a clear limitation
of GS’s use as a data source for bibliometrics.

5.2. Quality of metadata

GS does not facilitate automatic data collection (see Section 4), and researchers use custom
web scrapers to extract the list of citing documents (e.g., see Martín-Mart í [20]). For the
current study, we used Publish or Perish3. However, we noticed several shortcomings in
the collected data, e.g., several entries were missing venues, abstract, or publication years.
This is consistent with the observations by other researchers [22, 28–30]. For example,
Adriaanse and Rensleigh [30] compared the content quality of WoS, GS, and Scopus and
found that Scopus outperformed both WoS and GS [30]. They concluded that GS had the
most inconsistencies, like mistakes in author spellings and order and the volume and issue
numbers for the publications. Recent bibliometric studies using citation data in various
disciplines including SE have also used Scopus [31, 32].

5.3. The quality of literature in GS

Aguillo [33] investigated the literature coverage by GS by analyzing which web domains
are the sources for their records. GS indexes low-quality literature like low-impact journals,
teaching material, unpublished reports. They concluded that GS lacks the quality to use in
bibliometric studies, a conclusion shared by other studies [22].

GS may be a useful source for studies interested in both peer-reviewed and non-
peer-reviewed literature, e.g., in multi-vocal literature reviews [34] or topics wherein
insufficient scientific literature is available.
However, there is considerable and unavoidable noise in GS search results for other
studies, where primarily peer-reviewed literature is of interest. For example, the citations
analysis of a paper with 234 citations in GS [35] revealed that only 116 of the 234
citations were from journal and conference papers in English, and 54 of the remaining
118 citations were from Grey-Literature.

3Harzing, A.W. (2007) Publish or Perish, available from https://harzing.com/resources/publish-or-
perish.

220106-8

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

6. Recommendations when using snowball sampling

The studies using snowball sampling as the search strategy often conflate a systematic
literature study’s search and selection phase. We have observed at least two consequences
of this: (1) the level of record-keeping is insufficient for cross-validation and replications
(in particular for studies considering a large number of papers), (2) it is challenging to
employ the best practices for study selection (e.g., using multiple reviewers or using text
mining-based solutions).

SLR authors need to record the meta information for each citation and reference
considered in various snowball iterations in an SLR. Another benefit of documenting the
start set, the metadata of papers considered and the finally included primary studies list will
be to enable comparison of various citation sources for snowball sampling. However, several
current SLRs using snowball sampling as the primary search strategy do not document the
data about intermediate references and citations considered in an SLR.

Suppose Scopus is used to operationalize the snowballing strategy. Then with some
additional effort, one can automatically download the citations and references and other
necessary metadata, including publication venues, language, abstracts, and keywords.
Once these references and citations are collated, and duplicates are removed (as done in
the keyword-based search), we can proceed with using state-of-the-art procedures, and
tools [24, 36, 37]) to assist the selection process [1].

Furthermore, the metrics and indicators used in this study [1, 6, 16] can be used to
assess the electronic data sources for snowball sampling. However, these metrics must
be interpreted in relative terms, i.e., to compare two or more data sources, as the entire
population of all primary studies is unknown, and we typically only identify a subset of
the primary studies in our search [38].

7. Validity threats

The current study has used only one case SLR; therefore, we need similar comparative
analysis of other secondary studies to gain more confidence in the value of using Scopus.
However, the results of the study illustrate the need to evaluate the recommendation of
using GS in the guidelines for performing snowball sampling.

In this study, surprisingly (as several studies as discussed in Section 2 considered GS
more comprehensive than Scopus), we found that Scopus has 29 unique contributions that
are not available in GS. After applying the inclusion-exclusion criteria from the case SLR,
we identified that nine of these papers would have been included in the case SLR. It will be
interesting to see what may have been the impact of these on the results of the case SLR.
However, that analysis has not been done in the current study since we did not consider it
essential for the objective of this paper.

Since we are doing the study in 2021 and looking at citations in 2016, this may be
a disadvantage to the database that is more efficient in indexing new publications and
updating the citations. This limitation of our study can be overcome by replicating the
analysis on more recently concluded SLRs that have used GS for snowball sampling.

We have cleaned the data extensively to avoid any problems, e.g., hyphenation or case
differences in the citing papers’ titles. However, we may have still missed a few unique
cases where the same papers are considered unique due to slight differences. However, due

220106-9

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

to the measures taken and manual checking of some of the unique results, we are confident
that this is not a significant threat to this study’s validity.

Furthermore, the criteria used for usefulness are not very comprehensive. In the future,
we should also collect additional data about the perceived usefulness of the two citation
databases. However, we think that the criteria used for evaluation in this study indicate
the usefulness of the databases for use in snowball sampling.

8. Conclusion

In this study, we have compared and empirically evaluated two leading alternative sources
of citation data for snowball sampling. GS and Scopus have very different features and
have different strengths, which will make them suitable for different use cases. However,
based on the results of the current study, we conclude that Scopus is a superior source for
snowball sampling in SE research when primarily peer-reviewed literature is targeted.

The results of this study suggest that by using Scopus instead of GS researchers can
save substantial effort in data collection and reduce the effort spent on selection without
a significant likelihood of missing relevant peer-reviewed literature. Based on these findings,
we recommend that the researchers employing a snowball sampling search strategy may use
Scopus in the future.

In the future, we would like to replicate the analysis reported in this study with other
published secondary studies and with additional citation databases.

Acknowledgements

This work has been supported by ELLIIT, a Strategic Area within IT and Mobile Commu-
nications, funded by the Swedish Government and by research grants for the VITS project
(reference number 20180127) and the SERT project from the Knowledge Foundation in
Sweden.

References

[1] B.A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based Software Engineering and
Systematic Reviews. Chapman & Hall/CRC, 2015.

[2] J. Krüger, C. Lausberger, I. von Nostitz-Wallwitz, G. Saake, and T. Leich, “Search. Review.
Repeat? An empirical study of threats to replicating SLR searches,” Empir. Softw. Eng.,
Vol. 25, No. 1, 2020, pp. 627–677.

[3] M. Skoglund and P. Runeson, “Reference-based search strategies in systematic reviews,” in
13th International Conference on Evaluation and Assessment in Software Engineering, EASE,
Workshops in Computing, D. Budgen, M. Turner, and M. Niazi, Eds. Durham University, UK:
BCS, 2009, pp. 31–40. [Online]. http://ewic.bcs.org/content/ConWebDoc/25022

[4] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in
software engineering,” in 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE’14, 2014, pp. 38:1–38:10.

[5] J. Bailey, C. Zhang, D. Budgen, M. Turner, and S. Charters, “Search engine overlaps: Do
they agree or disagree?” in 2nd International Workshop on Realising Evidence-Based Software
Engineering, REBSE’07, 2007, p. 2.

[6] L. Chen, M.A. Babar, and H. Zhang, “Towards an evidence-based understanding of electronic
data sources,” in 14th International Conference on Evaluation and Assessment in Software
Engineering, EASE. BCS, 2010, pp. 135–138.

220106-10

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

[7] A. Yasin, R. Fatima, L. Wen, W. Afzal, M. Azhar et al., “On using grey literature and Google
Scholar in systematic literature reviews in software engineering,” IEEE Access, Vol. 8, 2020,
pp. 36 226–36 243.

[8] N. bin Ali and M. Usman, “A critical appraisal tool for systematic literature reviews in software
engineering,” Inf. Softw. Technol., Vol. 112, 2019, pp. 48–50. [Online]. https://doi.org/10.1016/
j.infsof.2019.04.006

[9] N. bin Ali and M. Usman, “Reliability of search in systematic reviews: Towards a quality
assessment framework for the automated-search strategy,” Information and Software Tech-
nology, Vol. 99, 2018, pp. 133–147. [Online]. https://linkinghub.elsevier.com/retrieve/pii/
S0950584917304263

[10] M. Usman, N. bin Ali, and C. Wohlin, “A quality assessment instrument for systematic
literature reviews in software engineering,” CoRR, Vol. abs/2109.10134, 2021. [Online]. https:
//arxiv.org/abs/2109.10134

[11] H.K.V. Tran, J. Börstler, N. bin Ali, and M. Unterkalmsteiner, “How good are my search strings?
Reflections on using an existing review as a quasi-gold standard,” e-Informatica Software
Engineering Journal, Vol. 16, No. 1, 2022. [Online]. https://doi.org/10.37190/e-inf220103

[12] P. Singh and K. Singh, “Exploring automatic search in digital libraries: A caution guide for
systematic reviewers,” in 21st International Conference on Evaluation and Assessment in
Software Engineering, EASE’17. New York, NY, USA: ACM, 2017, pp. 236–241. [Online].
http://doi.acm.org/10.1145/3084226.3084275

[13] R. Fatima, A. Yasin, L. Liu, and J. Wang, “Google Scholar vs. dblp vs. Microsoft Academic
Search: An indexing comparison for software engineering literature,” in 44th Annual Computers,
Software, and Applications Conference (COMPSAC). Madrid, Spain: IEEE, 2020, pp. 1097–1098.
[Online]. https://ieeexplore.ieee.org/document/9202826/

[14] T. Dybå, T. Dingsøyr, and G.K. Hanssen, “Applying systematic reviews to diverse study types:
An experience report,” in Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement, ESEM. ACM / IEEE Computer Society, 2007,
pp. 225–234. [Online]. https://doi.org/10.1109/ESEM.2007.59

[15] J.A.M. Santos, A.R. Santos, and M.G. de Mendonça, “Investigating bias in the search phase
of software engineering secondary studies,” in 12th Workshop on Experimental Software
Engineering, 2015, pp. 488–501.

[16] P. Levay, N. Ainsworth, R. Kettle, and A. Morgan, “Identifying evidence for public health
guidance: A comparison of citation searching with Web of Science and Google Scholar: Identi-
fying Evidence for Public Health Guidance,” Research Synthesis Methods, Vol. 7, No. 1, 2016,
pp. 34–45.

[17] N. Bakkalbasi, K. Bauer, J. Glover, and L. Wang, “Three options for citation tracking: Google
Scholar, Scopus and Web of Science,” Biomedical Digital Libraries, Vol. 3, 2006.

[18] J. Ortega and I. Aguillo, “Microsoft Academic search and Google Scholar citations: Comparative
analysis of author profiles,” Journal of the Association for Information Science and Technology,
Vol. 65, No. 6, 2014, pp. 1149–1156.

[19] M. Gusenbauer, “Google Scholar to overshadow them all? Comparing the sizes of 12 academic
search engines and bibliographic databases,” Scientometrics, Vol. 118, No. 1, 2019, pp. 177–214.

[20] A. Martín-Martín, M. Thelwall, E. Orduña-Malea, and E.D. López-Cózar, “Google Scholar,
Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A mul-
tidisciplinary comparison of coverage via citations,” Scientometrics, Vol. 126, No. 1, 2021,
pp. 871–906. [Online]. https://doi.org/10.1007/s11192-020-03690-4

[21] M. Levine-Clark and E. Gil, “A new comparative citation analysis: Google Scholar, Microsoft
Academic, Scopus, and Web of Science,” Journal of Business and Finance Librarianship,
Vol. 26, No. 1–2, 2021, pp. 145–163.

[22] H.F. Moed, J. Bar-Ilan, and G. Halevi, “A new methodology for comparing Google Scholar
and Scopus,” Journal of Informetrics, Vol. 10, No. 2, 2016, pp. 533–551. [Online]. https:
//www.sciencedirect.com/science/article/pii/S1751157715302285

220106-11

Nauman bin Ali, Binish Tanveer e-Informatica Software Engineering Journal, 16 (2022), 220106

[23] N. bin Ali, E. Engström, M. Taromirad, M.R. Mousavi, N.M. Minhas et al., “On the search for
industry-relevant regression testing research,” Empirical Software Engineering, Vol. 24, No. 4,
2019, pp. 2020–2055.

[24] Z. Yu and T. Menzies, “FAST2: An intelligent assistant for finding relevant papers,” Expert
Syst. Appl., Vol. 120, 2019, pp. 57–71. [Online]. https://doi.org/10.1016/j.eswa.2018.11.021

[25] F.D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information
technology,” MIS quarterly, 1989, pp. 319–340.

[26] A. Martín-Martín and E.D. López-Cózar, “Large coverage fluctuations in Google Scholar:
A ase study,” CoRR, Vol. abs/2102.07571, 2021. [Online]. https://arxiv.org/abs/2102.07571

[27] J.C.F.d. Winter, A.A. Zadpoor, and D. Dodou, “The expansion of Google Scholar versus Web
of Science: A longitudinal study,” Scientometrics, Vol. 98, No. 2, 2014, pp. 1547–1565.

[28] E.D. López-Cózar, E. Orduña-Malea, and A. Martín-Martín, “Google Scholar as a data source
for research assessment,” in Springer Handbook of Science and Technology Indicators, Springer
Handbooks, W. Glänzel, H.F. Moed, U. Schmoch, and M. Thelwall, Eds. Springer, 2019,
pp. 95–127. [Online]. https://doi.org/10.1007/978-3-030-02511-3_4

[29] G. Halevi, H. Moed, and J. Bar-Ilan, “Suitability of Google Scholar as a source of scientific
information and as a source of data for scientific evaluation – Review of the literature,” Journal
of Informetrics, Vol. 11, No. 3, 2017, pp. 823–834.

[30] L. Adriaanse and C. Rensleigh, “Web of Science, Scopus and Google Scholar a content
comprehensiveness comparison,” Electronic Library, Vol. 31, No. 6, 2013, pp. 727–744.

[31] J.P. Ioannidis, K.W. Boyack, and J. Baas, “Updated science-wide author databases of stan-
dardized citation indicators,” PLoS Biology, Vol. 18, No. 10, 2020, p. e3000918.

[32] K. Petersen and N. bin Ali, “An analysis of top author citations in software engineering and
a comparison with other fields,” Scientometrics, Vol. 126, No. 11, 2021, pp. 9147–9183. [Online].
https://doi.org/10.1007/s11192-021-04144-1

[33] I. Aguillo, “Is Google Scholar useful for bibliometrics? A webometric analysis,” Scientometrics,
Vol. 91, No. 2, 2012, pp. 343–351.

[34] V. Garousi, M. Felderer, and M.V. Mäntylä, “Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering,” Infiormation Software
Technology, Vol. 106, 2019, pp. 101–121. [Online]. https://doi.org/10.1016/j.infsof.2018.09.006

[35] N. bin Ali, H. Edison, and R. Torkar, “The impact of a proposal for innovation measurement
in the software industry,” in ESEM’20: ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, M.T. Baldassarre, F. Lanubile, M. Kalinowski, and
F. Sarro, Eds. Bari, Italy: ACM, 2020, pp. 28:1–28:6. [Online]. https://doi.org/10.1145/3382494.
3422163

[36] N. bin Ali and K. Petersen, “Evaluating strategies for study selection in systematic literature
studies,” in ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM’14, M. Morisio, T. Dybå, and M. Torchiano, Eds. Torino, Italy: ACM,
2014, pp. 45:1–45:4. [Online]. https://doi.org/10.1145/2652524.2652557

[37] K. Petersen and N. bin Ali, “Identifying strategies for study selection in systematic reviews and
maps,” in Proceedings of the 5th International Symposium on Empirical Software Engineering
and Measurement, ESEM. IEEE Computer Society, 2011, pp. 351–354. [Online]. https://doi.
org/10.1109/ESEM.2011.46

[38] C. Wohlin, P. Runeson, P.A. da Mota Silveira Neto, E. Engström, I. do Carmo Machado et al.,
“On the reliability of mapping studies in software engineering,” J. Syst. Softw., Vol. 86, No. 10,
2013, pp. 2594–2610. [Online]. https://doi.org/10.1016/j.jss.2013.04.076

220106-12

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220107, DOI: 10.37190/e-Inf220107

Microservice-Oriented Workload Prediction
Using Deep Learning

Sebastian Ştefan∗, Virginia Niculescu∗
∗Faculty of Mathematics and Computer Science, Babeş-Bolyai University

stefansebii@gmail.com, virginia.niculescu@ubbcluj.ro

Abstract
Background: Service oriented architectures are becoming increasingly popular due to
their flexibility and scalability which makes them a good fit for cloud deployments.
Aim: This research aims to study how an efficient workload prediction mechanism for
a practical proactive scaler, could be provided. Such a prediction mechanism is necessary
since in order to fully take advantage of on-demand resources and reduce manual tuning,
an auto-scaling, preferable predictive, approach is required, which means increasing or
decreasing the number of deployed services according to the incoming workloads.
Method: In order to achieve the goal, a workload prediction methodology that takes into
account microservice concerns is proposed. Since, this should be based on a performant
model for prediction, several deep learning algorithms were chosen to be analysed against
the classical approaches from the recent research. Experiments have been conducted in
order to identify the most appropriate prediction model.
Results: The analysis emphasises very good results obtained using the MLP (MultiLayer
Perceptron) model, which are better than those obtained with classical time series
approaches, with a reduction of the mean error prediction of 49%, when using as data,
two Wikipedia traces for 12 days and with two different time windows: 10 and 15 min.
Conclusion: The tests and the comparison analysis lead to the conclusion that
considering the accuracy, but also the computational overhead and the time duration for
prediction, MLP model qualifies as a reliable foundation for the development of proactive
microservice scaler applications.

Keywords: microservices, web-services, workload-prediction, performance-model-
ing, microservice-applications, microservice scaler

1. Introduction

Microservice architectures are considered to be the next step in the evolution of Service
Oriented Architectures (SOA) that were popularised in the 90s [1]. Some particular aspects
of the microservices are their fine granularity, focus on decoupling, scalability, usage of
lightweight protocols, and strong DevOps integration [2]. They are currently seeing a huge
adoption rate: a survey of Kong Inc. done in the summer of 2019 with 200 technology
leaders at large U.S. companies has revealed that 84% of them have embraced microservices,
and 40% believe that organizations will fail within 3 years if they do not keep up with
these [3]. Furthermore, microservices are a good fit for cloud deployments, proven by the

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 17 Sep. 2021; Revised: 18 Feb. 2022; Accepted: 09 Mar. 2022; Available online: 25 Mar. 2022

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

large scale operations of companies like Amazon, Netflix and LinkedIn, and their reported
improvements after switching from the monolithic model [4].

Workload prediction is important in order to ensure efficient scaling of these services
and optimisation of cloud resource usage, which means starting up new services during
periods of high traffic and stopping some of them when resources are not needed. An
analysis of the application of microservices, described in [4], has shown that the use of tools
designed to deploy and scale microservices reduces infrastructure costs by 70% or more.
Improving workload prediction performance means equipping scaler services with better
tools for dealing with unexpected traffic spikes, which is translated in both a smoother
experience for users and lower costs for maintainers. Autoscaling is the most practical
solution since it assures the automatic scaling of microservice instances in order to meet the
SLA(Service Level Agreement) [5], without a human agent analyzing and constantly taking
scaling decisions. It can be reactive or predictive, the latter considering multiple inputs like
historical information and current trends, in order to predict future traffic patterns.

The main goal of the presented investigation was to find a performant model for
microservices workload prediction, which can be later used by a proactive microservice
scaler. As a consequence of our goal, the research question that led our investigation was:

“Do deep learning algorithms lead to better results than classical time series approaches
for workload predicting of a microservice autoscaler? If yes, which one is the most appro-
priate?”

Previous research in this field mainly uses classical time series approaches (such as
ARIMA – autoregressive integrated moving average, Brown’s quadratic exponential smooth-
ing or WMA-weighted moving average) [6–8], or simple machine learning [9, 10]. Our
investigation uses different deep learning architectures: MLP (Multilayer Perceptron), CNN
(Convolutional Neural Network), hybrid CNN-LSTM (CNN Long Short-Term Memory
Networks); deep learning was shown to outperform classical methods on some time series
prediction tasks [11], and we selected some models of varied complexity.

The contribution of this research is twofold:
– A microservice-oriented prediction methodology adapted to the particularities of this

setting, is proposed. The methodology includes steps and decisions that were taken
to match practical microservice demands, such as choosing to predict the number of
requests, which is a metric that is not influenced by the scaling prediction, and making
the prediction in time intervals of an order of minutes and predict a step into the future
to allow time for services to be deployed to match the expected traffic. The prediction
window size was chosen for accuracy while also allowing time for most application
servers or containers to initialize the application. This methodology is also covering
data preparation and processing, that is designed for prediction accuracy.

– A comparative analysis of the performance of different prediction models inside the
proposed methodology is conducted; the comparison is done between the results obtained
using the chosen deep-learning algorithms, and classical time series approaches, but
also with some hybrid machine learning models used in industry [9]. The comparison
shows important improvements over the previous results, and emphasizes MLP as the
best choice for a predictive microservice scaler. MLP seems to be the most appropriate
to capture the complexities of the dataset while also having the advantage of faster
training time.
The paper is structured as follows: After we present the related work in the next

section, we succinctly describe microservice characteristics and the practical aspects which
influenced the lines of this research in Section 3.1. Section 3 introduces the proposed

220107-2

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

methodology and in Section 4 we refine it in substeps and specify the settings for our
experiments. Section 5 presents our practical implementation of the methodology on
a specific dataset: the baseline models’ results, the tuning process of the deep learning
models for selecting the hyperparameters, an evaluation of the best performing ones, and
a comparison with the baselines and other research work. Section 5.4 summarises the
obtained results, and in addition, in order to emphasise their utility, a proof of concept
implementation for an auto-scaling tool using this model is presented. Conclusions and
future work are presented in Section 6.

The following abbreviations are used in the paper: ANN (Artificial Neural Networks),
ARIMA (AutoRegressive Integrated Moving Average), CNN (Convolutional Neural Net-
work), CNN-LSTM (CNN Long Short-Term Memory Networks); FFT (Fast Fourier Trans-
form); MAE (Mean Absolute Error); MAPE (Mean Absolute Percentage Error); MRE
(Mean Relative Error); MLP (Multilayer Perceptron); MSE (Mean Squared Error); RMSE
(Root Mean Square Error); RSLR (Robust Stepwise Linear Regression); SVM (Support
Vector Machine); VM (Virtual Machine).

2. Related work

Different classical time series models have been applied for web-services workload prediction.
Calheiros et al. [6] apply the ARIMA model to cloud workload prediction. The model was
evaluated using a trace of English Wikipedia resource requests spanning a duration of four
weeks. The data of the first three weeks are used for training and the fourth for prediction
using a time window of 1 hour. The obtained MAPE varies from 9% to 22% depending on
the confidence interval, which was chosen from 80 to 95 in order to limit the occurrence of
underestimations.

Other classical time series models have also been applied, like Brown Exponential
Smoothing by Mi et al. [7] obtaining a MRE of 0.064 on the France World Cup 1998
web server trace. Another classical model is Weighted Moving Average, in which recent
observations receive more weight than older ones, was applied by Aslanpour et al. [8], and
was tested on a NASA server 24h trace, achieving a 5% improvement in response time on
a cloud scaling simulator.

It is difficult to identify the best of these classical approaches for our task since the
research outlined above used different datasets and evaluations measures. However, we can
look for comparisons between different classical models on other time series problems (not
necessarily related to workload prediction). Udom and Phumchusri [12] show that ARIMA
performs better than other models (Moving Average, Holt’s and Winter’s exponential
methods) in terms of MAPE on four different datasets. ARIMA was also shown to perform
better on a short-term forecasting dataset than an exponential smoothing approach [13].
Zhu et al. [14] show that ARIMA outperforms Holt’s exponential smoothing model in
terms of MSE on air quality time series analysis.

Khan et al. [15] have used Hidden Markov Models to predict workloads for a cluster of
VMs. The used dataset comes from an in-production private cloud environment, and the
selected metric is the CPU utilization of the VMs. Their model identifies VMs which have
similar loads, trained on a trace of 17 days and generates predictions for intervals of 15 min
for the next 4 days. Still, their approach only works for a static configuration, because the
training dataset is a matrix of the all VMs in the system on the all selected time intervals,
and the selected metric is the CPU utilization. This means that if the configuration of the

220107-3

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

system changes then the accuracy will not be preserved, and utilization data for the new
VMs must be built, and then a retraining session is necessary. We try to propose a model
which can dynamically adapt to scaling decisions without penalty in prediction accuracy.

Another example of a static system predictor is the one proposed by Syer et al. [16],
which detects variation in workloads between test and production environments for multiple
large-scale software systems from the telecommunications domain. As opposed to this
approach which discovers various types of workloads and their deviation from the training
environment, but can not adapt automatically to system re-configuration, our solution
assumes requests homogeneity (discussed in Section 3) and can adapt to automatic scaling
events.

Kumar and Singh [10] applied ANN for workload prediction on a seven month log of
traffic from a Saskatchewan University web server and a two month one from the NASA
Kennedy Space Center web server. They use a classical ANN architecture: one input layer
(size 10), one hidden and one output layer, and the model is trained through the SaDE
technique, which means learning the weights through evolutionary algorithms. The results
of this model were compared to an ANN trained through backpropagation. The model
trained with SaDE got 0.013 and 0.001 RMSE on the selected data sets, while for the one
with backpropagation a RMSE of 0.265 and 0.119 was obtained.

CloudInsight [9] is one of the most complex models for workload prediction. It uses
a technique called “council of experts” – an ensemble of different models, which in this case
are: classical time series (autoregressive, moving average, exponential smoothing), linear
regression, and machine learning – SVM. Each model has a different prediction weight,
which is also real-time learned through a SVM, based on their accuracy on the dataset.
The evaluation was done on a subset of the Wikipedia trace [17], on Google cloud data,
and on some generated workloads. They indicated that ARIMA and SVM are the two best
static predictors they have experimented with. Considering as a performance indicator
the normalized RMSE, on average, the ensemble system was 13%–27% better than the
baselines (ARIMA, FFT, SVM, RSLR).

A review of how deep learning methods can be applied to time series problems was
presented by Gamboa in [11]. The paper distinguishes between three types of problems:
classification, forecasting and anomaly detection, presents methods for modeling them, and
guidance for selecting appropriate models. It also shows that using these, an improvement
in performance could be achieved, on case studies for different applications in which deep
learning performed better. Brownlee [18] published a comprehensive guide on applying
MLPs, CNNs and LSTMs on various real datasets, and discussed their advantages over
classical methods, which were used as baselines for the experiments. The study highlighted
the ability of deep learning models to find non linear relationships in data, as opposed to
linear methods, like ARIMA; this was the reason to focus on this kind of methods in our
investigation.

Lin et al. [19] proposed a hybrid CNN-LSTM architecture for learning trends in time
series. It relies on CNN to extract important features from raw time series data, and passes
them to the LSTM layers to find long range dependencies in historical data. The model
was shown to outperform both CNN and LSTM with around 30% lower RMSE on three
real world datasets. These results look promising, and for this reason this is one of the
models taken into consideration for our experiments.

There are some approaches for workload prediction of large scale systems that use
LSTM models such as Tang et al. [20], Zhu et al. [21] which show it to be a suitable

220107-4

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

approach. In our experiments, we have tested the hybrid CNN-LSTM model with the
expectation that it would perform better than its individual components.

Zhang et al. [22] used deep learning based on canonical polyadic decomposition to
predict workloads for cloud applications (in this case using a trace of 10 days for the
PlanetLab platform, which is a global research network that supported the creation of new
network services [23]). Their results indicate better performance of the deep learning model
than of the state-of-the-art machine learning based approaches. However, while the model
is robust in terms of request workload variety, it aims to predict CPU utilization, which,
as outlined above, is not a good fit for our investigation.

A significant description of the necessity and of an implementation of a predictive
autoscaler for microservices was done by Netflix in [24]. Before implementing Scryer, the
name of the aforementioned service, they relied on Amazon Auto Scaling service of the
Amazon Cloud, which was based on a reactive approach. Scryer uses classical time series
methods such as Fast Fourier Transformation, which models a sinusoidal over the input data,
and linear regression on clusters of points from the predicted time window in previous days.
This model addressed three problems encountered with Amazon’s scaler: dealing with rapid
spikes in demand by preparing ahead of time, restoring compute capacity after outages,
and factoring known usage traffic patterns. Netflix are one of the pioneers of microservice
technologies, having broken down their monolith application into multiple services covering
everything from video streaming, account registration, content recommendations, in the
early 2010s, and later becoming an authority in this domain by developing a strong presence
in the open source community based on publishing their tools [25].

A predictive scaling policy was later added in Amazon Web Services [26], based on
machine learning algorithms. However, this feature is not yet available in other cloud
providers such as Microsoft Azure [27] or Google Cloud [28].

Building on top of the related work presented in this section, we aim to apply and
compare some deep learning methods, which were shown to be suited for time series in [18]
and [19], for the specific task of workload prediction. The success of this task is highlighted
by comparing error metrics with those reported by CloudInsight [9] – the specified ensemble
of classical and machine learning approaches, on the same dataset, which is a subset of
Wikipedia traces.

3. Scaler prediction methodology

This section presents some of the most important characteristics of Microservice architec-
tures in the first part. Based on these characteristics, in the second part we present our
proposed scaler prediction methodology which can be applied to any particular implemen-
tation of this architecture.

3.1. Microservice characteristics

Web services are generally associated with Service Oriented Architectures (SOA) [1].
The main idea of this type of architecture is to break down monolithic applications
into independent parts that are loosely coupled, autonomous, offer a standard contract
and act mostly as black boxes to their consumers. This means that services can be
developed, updated and deployed independently offering better scalability than traditional
architectures.

220107-5

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Microservices [29] are the modern approach of Service Oriented Architectures, and they
have several important characteristics [2]:
1. Fine Granularity – each service is implemented to serve a specific business case.
2. Maintainability – changes of a feature will have limited impact on the overall code-base.
3. Reusability – you can select which features to import into a different system.
4. Agility – bug fixes and new features can be deployed without retesting or taking down

other parts of the system.
5. Autonomy – they are separate entities, with their own tech stack, and can be deployed

independently.
6. Loose Coupling – they communicate using lightweight network protocols such as

REST and HTTP.
7. High Scalability – due to their autonomy and loose coupling they can scale-out

horizontally without incurring heavy communication overhead.

3.1.1. Deployment

All these characteristics make microservices a good fit for cloud deployments. Cloud
providers generally offer on-demand resources, which is more convenient for hosting the
applications, and allowing less expensive dynamic workloads [4]. If application workloads
are fluctuating, then it is advisable to scale the services accordingly, in order to provide
smooth experience for the users, and in the same time to use the resources efficiently.

The problem of having unused resources during the periods of low traffic is solved
automatically by cloud deployments, by allocating them to some other users who need
them. Similarly, it may be necessary to request more resources when a traffic spike is
foreseen. Microservice architectures are ideal for these operations because they offer high
level of scalability. Due to their fine granularity it is possible to scale only the services that
are in high demand, which would not be possible on monolithic applications. Also, since
they are designed to be autonomous, it is simple to setup necessary dependencies such as
databases without conflicts among instances.

Also, service discovery is one of the key tenets of a microservice-based architecture.
Trying to hand-configure each client or to define some form of convention can be very
difficult and also unsafe. In order to overcome these kinds of problems service discovery
applications are offered. For example, Eureka is the Netflix Service Discovery Server and
Client [30]; this server can be configured and deployed to be highly available.

3.1.2. Scaling

The microservices could be scaled manually, which is inefficient, or automatically through
a dedicated service. Autoscaling is the process of automatically scaling out instances in order
to meet the SLA(Service Level Agreement) [5], which is formed of a list of commitments
between clients and service providers, related to different aspects of the service, such as:
quality, availability, responsibilities. For example, it could be stated that the application
should have 99% uptime, or it should respond to most requests within a given time range.

Autoscaling can be reactive, by setting up thresholds such as resource utilization, and
instantiating new services when they are reached, or predictive by creating new instances
ahead of the foreseen traffic spikes. Predictive autoscaling considers multiple inputs like
historical information and current trends in order to predict future traffic patterns.

220107-6

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Even though predictive auto-scaling can be done efficiently without having a cloud
deployment, for example scaling some service up and other down alternatively on a fixed
resource environment, cloud environments are the best fit and research work is done to
address this need [31].

3.2. Proposed scaler prediction methodology

We propose a methodology for finding a prediction model to be used by a proactive scaler
for microservice architectures, which takes into account the specific characteristics outlined
in the previous section. The main steps are the following:
– Choose one type of services for which to define a proactive scaler

– Each microservice type should have its own predictive autoscaler; a microservice is
specialized for a single specific task and it will operate very specific requests.

– It is expected to obtain better prediction accuracy and resource utilization when
working with a single type of requests. The request type would increase the dimen-
sionality of the input data, therefore increasing computational resource utilization,
and finally impact on the prediction accuracy, since the model would have to learn
multiple features (the error will increase proportionally to the number of the request
types). Additionally, to put it into practice, a new model would be required in order
to estimate how many resources need to be allocated based on multiple request
counters, but also on interactions between them.

– Choose the number of requests per resource to be the selected metric for
prediction
– The reason for choosing this metric is this metric independence of the scaler’s action.

Metrics such as CPU utilization or response time, predicted in [32], are affected by
the outcome of the predictor, making them an unreliable target. Also, this is in line
with the research done by Jindal et al. [33], who proposed a metric for measuring
microservice performance based on the number of satisfied requests, called MSC
(Microservice Capacity). Thus, a proactive scaler can determine the number of
required instances by dividing the predicted incoming traffic to the MSC.

– Microservices have fine granularity, therefore we can assume request homogeneity –
the requests for one specific microservice are uniform (i.e., they could be solved in
a similar period of time). This means that for this problem we can use this simple
metric without compromising the usefulness of our predictions.

– Model real service trace data analysis as a time series supervised learning
problem
– A common dataset which can be extracted from any application’s log is a list of

timestamps when requests were handled (one such dataset could be extracted from
each microservice type, as they are highly autonomous and we can demarcate exactly
the requests they received and when they were completed).

– It is possible to extract more useful information from this data if we model it as
a time series problem [34]. Since specific timestamps are not required, but just
general access patterns, a feasibly approach would be to group requests into a series
of buckets (abstraction used for representing time series). A bucket has a fixed
width (some time range) and variable height (the number of requests handled by
the program in that range). A visualization of such a time series model is presented
in Figure 1.

220107-7

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Figure 1. Abstract representation of a time series modeling traffic of one microservice type

– Microservices are highly scalable, so we need to achieve a granularity in predictions
as fine as possible, meaning that scaling decisions can be taken as soon as the
information is available. We can control this granularity in terms of selecting the
width of the time series buckets. Therefore the lower bound (which we are aiming for)
of the bucket width is dependent on technological constraints for scaling up/down
microservices. This estimation also fits an observation from [15] which has used
a 15 min bucket width, from analyzing autocorrelations on their dataset, which
consists of a 21 days trace from an in-production distributed application.

– After converting the dataset to time series it must be prepared for being fed to
a supervised learning algorithm (the supervised learning is considered because we
already know the desired prediction target and we can label our data [35]) which
means transforming the series into a list of vectors of the form (input, output).
A possible choice for this transformation is based on sliding window technique
(which was shown to have adequate performance and allow for a wide range of
algorithms to be applied to the resulting dataset [36]); more details about using this
process of data preparation is detailed in Section 4.2.

– Also, we are not interested to predict the height of the first next bucket in the
future, because the scaling decisions might be useless if they can not be executed in
practice, meaning that a time is required between the moment in which the scaling
decision is taken and the moment when the new microservice application instance is
online and can actually process requests. This period of time was outlined previously
as the ideal width of a bucket. In order to accommodate this requirement we need
a classical approach for multi-step time series prediction (e.g., the Direct strategy
from [37]), in which the prediction target is the second window in the future.

– The prediction window is limited to one, in the near future, in order to improve
accuracy. This requires periodic predictions, however, once a deep learning model
is trained, the actual computational overhead is small (less than a second in our
experiments).

– Apply an appropriate prediction model
– Choosing the most appropriate model is a complex problem, and our empirical

investigation aimed to provide such a model.
– Evaluate the results

– estimate the prediction error using different metrics;
– compare the results with similar results obtained using with different prediction

models;

220107-8

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

– verify using practical usage.
The summary of the proposed methodology is depicted using a diagram in Figure 2.

Figure 2. Diagram associated to the methodology for finding a prediction model
for a proactive microservices scaler

In order to estimate the most appropriate prediction model for microservice workload
prediction (to be applied in the fourth step), we have conducted an investigation based
on the specified methodology. This investigation started by choosing and preparing data
on which we can do the experiments, extracting a collection of prediction models that are
potential candidates, followed by the preparation of their initial settings. After that we did
the experiments and the evaluation of the results.

4. Methodology refinement and investigation settings

In this section we present details regarding the data used in the experiments, their
preparation as corresponding supervised datasets, and the collection of prediction models
that we have chosen as potential candidates.

220107-9

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

4.1. Data sets

Very important aspects in the selection of the datasets were to follow real world user traffic
patterns, to have a consistent size, and to have some variation which would showcase
how the model can handle unpredictable spikes. Based on these we have chosen several
Wikipedia traces. Although we do not know the specific implementation of the Wikipedia
server, this dataset can be used for testing the model for two reasons:
– the requests are all of the same type (fetch the content of a wiki page) which is in line

with the assumption of request homogeneity for microservices, and
– the traffic patterns come from a production server and capture realistic user traffic

(random spikes, day/night variation, weekend variations, etc.).
In addition, the appropriateness of this choice is also confirmed by the fact that similar
datasets were used in the analysis conducted by Kim et al. [9] that describes the algorithms
for the CloudInsight service, which is a commercial cloud scaling and monitoring platform.

The raw data used for the experiments is a Wikipedia trace for 12 days in September
2007 [17], available online at http://www.wikibench.eu/. From this, two subsets of requests
were extracted as separate datasets: all requests to Japanese and German Wikipedia,
respectively, to facilitate the results comparison with those obtained by Kim et al. [9] which
were based on the same data.

The Japanese wiki dataset is presented in Figure 3. The y-axis represents the number of
requests and the x-axis the time, measured in 10 minute intervals over the whole period. It
shows an interesting variation in the form of a large spike during the 5th day of measured
data which could be a challenge for some prediction models.

Figure 3. Japanese Wikipedia data visualization: number of requests per 10 minute intervals

The first dataset contains 111 million requests (ja.wikipedia) and the second 101 millions
requests (de.wikipedia). The amount of data after preparation is the same as if we would
extract from the global trace during the same time range, but with a much faster processing,
because the number of buckets depends on the considered time interval, and not on the
number of requests.

220107-10

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Since the target bucket width is given by the time in which a microservice application
can be reasonably started up we can do some estimations about general technical constraints
of this operation. For example, if we considered the Netflix open source stack that is among
the most popular approaches for implementing microservices, we have to consider the time
for initializing Spring Boot, service discovery (e.g., Eureka [30] – the Netflix default client –
needs a refresh time of 30 s, which is recommended on production environments, too), and
in some cases performing business logic like initializing in-memory caches from database
information. The typical initialization time for microservice frameworks will also add a few
seconds [38]. In addition, a typical deployment may also need time for starting up the
container (e.g., Docker) or virtual machine. Considering that there are many factors which
can influence this interval in our experiments we considered a permissive estimation of
a few minutes. Therefore we have chosen two cases for target bucket width: 10 min and
15 min.

4.2. Data preparation

In order to turn a web request log file into a supervised dataset the following steps were
taken:
– extract timestamps of all requests for a country (e.g., all lines matching ja.wikipedia);
– create buckets that contain the number of requests in a time interval;
– iterate over the buckets using the sliding window technique, and group them into (input,

output) tuples.
Applying sliding window. The starting point for the sliding window time series

technique [39] is a time series (t1, t2, . . . , tsize), where ti is the number of requests in the
i-th bucket. Training instances are then generated with input (ti, ti+1, . . . , ti+n−1) and
output (ti+n+1), where n is the size of the sliding window. This process starts at i = 1 and
is incremented by 1 until i = size − n + 1. The predicted value is ti+n+1 instead of ti+n

because a scaler using this model would need to have a buffer window during which to
deploy the services. These are emphasized in Figure 4.

Figure 4. Sliding window technique

Input data were scaled using the min-max scaling technique: x = (x − min)
(max − min) , which

brings the dataset into the [0, 1] range. The same method was applied by Kumar and Singh
in [10] in order to speed-up learning. In a practical implementation, this scaling step is

220107-11

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

more difficult to apply because it should rely on some hypothetical bounds that have to be
determined for future traffic. Still, these bounds could be estimated based on the historical
data.

The sizes of the datasets, after applying transformations were 1166 for the 15 min
window and 1747 for the 10 min window. The sizes are determined by the sampling window
of 12 days and the bucket windows of 10 and 15 minutes.

Performance metrics

The error metrics selected in this investigation are:

Mean squared error: MSE = 1
n

n∑

i=1
(Yi − Ŷi)2,

Mean absolute error: MAE = 1
n

∑n
i=1 |Yi − Ŷi|, and

Mean absolute percentage error: MAPE = 1
n

n∑

i=1
(Yi − Ŷi)/Yi,

where Yi and Ŷi are the observed, respectively, the predicted values [40]. MSE was used
as the loss function for training because it tends to penalize big deviations in prediction,
which is desirable for our problem as we want to accurately predict traffic spikes. MAE is
similar, but conceptually simpler, given that each prediction error contributes in proportion
to its absolute value. MAPE is independent of the problem scale and can be interpreted
intuitively, therefore can be used to give a general evaluation of how well a model performs
across different datasets. According to Lewis [41] a highly accurate forecast would have
MAPE lower than 10%, and a good forecast between 10% and 20%.

4.3. Baseline models

Baseline models were considered in order to verify in which measure machine learning is
useful for this problem, and if using it, features not considered by simpler methods could
be learned. Two baseline models were applied: a naive approach, and a classical time series
model – ARIMA.

The naive approach just assumes that the predicted workload is the same as the last
observed workload. No proactive scaler could use this model as the predicted change in
traffic is always null, but it is used in order to check if the proposed models perform better
than doing no prediction at all.

ARIMA [42] is a classical approach for modeling time series. It has been selected
because it has been applied with good results to workload prediction before [6], and was
shown to perform better than other classical models [12–14]. Also, it is a common baseline
model for machine learning solutions in time series predictions [9, 43–45]. Furthermore, it
combines multiple simpler models (AR and MA) into a performant one. Autoregressive
models (AR) make predictions based on previous observations while Moving average(MA)
models use recent forecast errors. The integrated part indicates whether the series needs to
be differenced, and how many times. Therefore, the parameters of the ARIMA model are:
– p: the number of lag observations included in the model;
– d: the number of times that the raw observations are differenced;
– q: the size of the moving average window.

220107-12

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

4.4. Deep learning models

We have chosen in this investigation the following deep learning architectures: MLP,
CNN, CNN-LSTM hybrid, since all have been shown to perform well on time series tasks
[11, 18, 19]. Also, deep learning has constantly outperformed classical methods in prediction
tasks [46].

All the selected models have advantages and drawbacks among each other regarding
training speed, the amount of data required to produce good answers, and the tuning of
the size of the sliding window to capture relevant recent information.

4.4.1. MLP – Multilayer perceptron

MLPs are quintessential deep learning models that although efficient in their own right also
serve as baselines for more sophisticated architectures [47]. It is made up of an input layer,
a number of hidden layers and an output layer, linked by weights which are learned through
the backpropagation algorithm. While a MLP with one hidden layer is theoretically sufficient
to represent any function, that layer may be too large and training could be affected by
overfitting, therefore deeper models can help reducing the generalization error [48].

This model has been selected to check whether looking at a smaller sliding window,
without taking into account further historical dependencies, achieves satisfactory results.

4.4.2. CNN – Convolutional neural network

CNNs are specialized in dealing with data that has a grid-like topology such as images (2d)
or time series (1d) [47]. They have the ability to learn filters which assign importance to
some aspects of the input data, which is done by the convolutional layers. Another type of
layers that they usually contain are the pooling layers, which reduce the spatial size of the
convolved features and make the representation invariant to small translations in input.

CNN has been tested in this experiment because it looks like a natural fit for a time
series problem given its assumed spatial dependencies. CNNs can extract only the important
features of the input, therefore they can efficiently work with a larger sliding window, and
take into account more recent measurements when making a prediction.

4.4.3. CNN-LSTM – CNN long short-term memory networks

The CNN-LSTM architecture involves using Convolutional Neural Network (CNN) layers
for feature extraction on input data combined with LSTMs to support sequence prediction.
This hybrid model was applied on a range of time series tasks by Lin et al. [19] and was
shown to outperform both CNN and LSTM models.

Recurrent Neural Networks (RNN) are Neural Networks that take into account the out-
come of previous predictions, while making the current one [47]. LSTM – Long Short-Term
Memory, networks are an improvement over RNNs in the sense that they are better at
capturing long-term dependencies [49].

This model has been chosen because it combines the ability of CNNs to extract salient
features from raw time series data with the capability of LSTMs to find long range
dependencies and historical trends.

220107-13

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

5. Experiments and evaluation

In this section we describe the experiments that we conducted, their results, and a com-
parative analysis of these results. The research follows a set of best practices such as:
setting baselines, starting with parameters that have been shown to perform well on other
problems, exploring possible solutions manually and automatic exhaustive search for fine
tuning parameters. The experiments were performed using the data and models described
in Section 4.

First a tuning phase has been carried out for each chosen architecture in order to choose
the best parameters for each model. The details of this phase are presented in the next
subsection.
For the validation we have used k-fold validation [50], which estimates how well a model
will perform on previously unseen data and offers a less biased skill estimation than the
classical train/test validation method. The k-fold Cross-Validation with k = 3 was chosen,
which means splitting the training dataset into k = 3 equal parts; for cross-validation k − 1
parts are used to perform the training (the weights are reinitialised for training on each
subset), and the evaluation is done on the part left out, and this process is repeated until
an evaluation was done on each of the parts. Finally, the averaged accuracy of all tests
was considered. The instances themselves were not shuffled inside the partitions, as their
ordering is significant for LSTM models.

Each dataset was split into training (the first 90% of data points) and testing (the
remaining 10%) data. After tuning (on the training set of a selected dataset), the resulting
models were next trained again on all training datasets, and evaluated on the testing data,
which were unseen during tuning and training.

Implementation. All the selected models were implemented in Python programming
language. For machine learning models the Keras library [51] was used with some variations
(described below) on the following types of layers: Dense for MLP, Conv1D, MaxPooling1D
and Dense for CNN, and the previous ones with the addition of LSTM for CNN-LSTM
hybrid.

The k-fold validation process was carried out using the scikit-learn library [52]. Statsmod-
els library [53] was used for ARIMA implementation.

Aside from the configurations described in the article, the default settings of the library
were used. The algorithm used in initializing the connection weights of our neural networks
models was Glorot Uniform provided by Keras, also called the Xavier initializer [54].

5.1. Hyperparameter optimisation

We have chosen for the tuning phase the Japanese wiki dataset (on the first 90% data
points) described in section 4.1 because, besides the fact that includes significant patterns,
it also has some interesting irregularities, like a huge spike which is not repeated. As we
have previously mentioned, this dataset was also used by Kim et al. [9] and we intend to
compare the results.

The selected time window for tuning was set to 10 min, because this is a reasonable
prediction time to allow a scaler to spin out new instances, as shown in some previous
experiments [24].

220107-14

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

5.1.1. Naive baseline

The naive baseline leads to the following results: 2.02 × 107 MSE, 3577.8 MAE and 7.1%
MAPE. This illustrates the fact that although the MAPE score would classify it as a very
good predictor, it does not do anything useful and the proposed models should achieve
better results.

5.1.2. ARIMA

Settings. In order to apply the ARIMA model we had to find appropriate values for its
parameters: p, d, q. The value of d represents the number of times the series needs to be
differenced in order to make it stationary. The series stationarity was checked using the
augmented Dickey–Fuller test [55] which found the p-value to be 1.09e−08. This is lower
than 0.05, the commonly used threshold, meaning that we can set the d parameter to 0.

Figure 5. Partial autocorrelation plot for ARIMA

The partial autocorrelation plot (Figure 5) was analyzed to set the autoregression
parameter (p). The significance region is confidently passed at 1, with a steep decline
afterwards. The moving average parameter (q) is approximated from the autocorrelation
plot (Figure 6) which suggests a value of around 20 would be a good start. After fitting
ARIMA(1, 0, 20) the final 2 layers had p-value of 0.547 and 0.758, which meant that they
were not significant enough, therefore we used 18 as the upper limit for q in our tuning.

Results. The results obtained for several values for q : 5, 10, 15, 18, are illustrated in
Table 1, the best one being for ARIMA(1, 0, 15) with 1.42 × 107 MSE, 3056.7 MAE and
6.3% MAPE.

5.1.3. MLP

Settings. After some manual experiments we started with a MLP with 2 hidden layers
(150, 100) neurons, and a sliding window size of n = 24 (this is the window used to

220107-15

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Figure 6. Autocorrelation plot for ARIMA

Table 1. ARIMA tuning – based on different values for q parameter

p d q MSE / 106 prediction time

1 0 5 15.4 0.4 s
1 0 10 14.3 9.6 s
1 0 15 14.2 31 s
1 0 18 14.3 71 s

transform the time series data into a supervised dataset, meaning how many buckets are
taken into account for each prediction, not the bucket width which was set at 10 min).
To find an optimal combination of batch size and epoch numbers a 2d grid search was
performed, and the results are presented in Figure 7. Batch size should ideally be a power
of 2 for extra performance on GPU architectures, as some experiments were ran on Google
Colab’s cloud GPU1. Using lower batch size is more accurate but the training is slower [56].
As expected the lowest MSE is obtained for the lowest batch size (4), however it does not
drop significantly at 8, regardless of epochs numbers. The selection of the epoch numbers
is again a trade-off between the speed and the accuracy. We noticed that using a smaller
number of epochs (50) the performance is not very good, while the difference between
100 and 250 is not very important, meaning that we can get a good approximation using
a model with a epoch size of 100.

Additional experiments were done by adding Dropout layers on different values (0.2,
0.1, 0.05), however it did not improve performance. These are generally used to prevent
over-fitting, when the network is too big, the data is scarce, or the training is done for too
long [57], which was not the case for this experiment.
Various optimizers and activation functions were tested, and from these Adadelta optimizer
and ReL (Rectified Linear) activation function were selected. ReL activation function is also
the default recommendation [47] for modern neural networks, because it is non-linear while
preserving many advantages of linear functions that make them generalize well. Although
the ADAM optimizer is widely used in research, there is no consensus on which is the

1https://colab.research.google.com

220107-16

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Figure 7. Grid search depending on the epoch number and the batch size

optimal one [47], therefore we choose Adadelta, which in our experiments performed better
– 1.92 × 107 vs. 2.58 × 107 values for MSE.

A comprehensive grid search was performed for sliding window size and number and
content of hidden layers, of around 90 combinations. Some of the best results are presented
in Table 2.

Table 2. MLP tuning – based on different combinations of sliding window size
and number and content of hidden layers

Sliding window Hidden layers MSE / 106

4 (100, 50, 25, 20, 10) 18.8
4 (100, 50, 50, 20, 10) 18.8
8 (100, 50, 25, 20, 10) 17.0
8 (150, 50, 50, 50, 50, 10) 17.2
8 (50, 50, 50, 50) 18.3
16 (10, 20, 30, 40, 50) 18.1
16 (100, 20, 20, 20, 10) 18.4

Results. The final parameters chosen for the proposed MLP model were: Adadelta
optimizer with ReL activation function, a sliding window of size 8 with 5 hidden layers of
size: 100, 50, 25, 20, 10.

5.1.4. CNN

Settings. Firstly, a baseline model was selected through manual experimentation. This
had the following structure: input of size 20, a 1d convolutional layer, a max pooling
layer, a flatten layer, a dense layer of size 150 and the output layer. The same batch size,
epoch number grid search was performed and it yielded similar results to those reported
in Figure 7 for MLP. This was followed by iterating the same optimizers and activation
function which resulted in our selection of Adadelta and softplus.

220107-17

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

A grid search was again performed in order to find out the optimal sizes for sliding
window, hidden layers and their neurons (see Table 3). This proves our assumption that
CNNs can extract better features from larger sliding window as best results were obtained
with a window of 128 as opposed to 8 for MLPs.

Table 3. CNN tuning – based on different combinations of sliding window size
and number and content of hidden layers

Sliding window Hidden layers MSE / 106

8 (25, 10, 5) 35.3
64 (100, 20, 10, 5) 35.0
128 (100, 20, 10, 5) 21.0
128 (300, 50) 22.2
128 (10, 10, 10) 23.4
256 (100, 20, 10, 5) 23.7

Results. The parameters selected for the CNN model were: Adadelta optimizer, softplus
activation function, a window of size 128 and 4 hidden layers of size: 100, 20, 10, 5.

5.1.5. CNN-LSTM hybrid

Settings. The starting values for some parameters were influenced by the research done
by Lin et al. [19]: a convolutional layer with 32 CNN filters, a max pooling layer, a LSTM
layer with a couple of hundred units. In order to feed the output of the convolutional layers
into the LSTM layer the input was broken into multiple sequences. This provided the time
dimension which LSTM input shape specifies, as the sequences are arranged in a temporal
order.

A similar search as for the previous model was performed and as a result we selected
Adadelta optimizer and ReL activation function.

While searching for the size of the LSTM layer, we observed a trend where error value
would become very large after a couple of epochs, of approximately 1.7 ·1027. This might be
linked with a gradient explosion [47], which causes a network to become unstable because
of an increase in the number or values of the gradients with which the inputs are multiplied.
Therefore, we applied a common solution, to rescale elements in a gradient vector if their
norm exceeds 1, which has solved the issue.

A search was then performed for different combinations of sliding window size (which
is transformed into a 2D structure, the input shape of the algorithm), CNN sequences and
LSTM units, and the most important results are shown in the Table 4.

Table 4. CNN-LSTM tuning – based on different combinations
of input shape and size of LSTM layer

Input shape LSTM units MSE / 106

(20, 15) 500 246.0
(16, 16) 150 98.3
(16, 16) 500 90.2
(12, 12) 750 93.6
(12, 12) 500 97.3
(8, 8) 500 370.1

220107-18

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

It can be observed that the MSE values are quite larger than those reported in the
validation of previous models. The reason for this is that the amount of data used for
training becomes smaller as we increase the sliding window size. There was also a lot of
variance for different runs of the same configuration.

Results. From the previously described experiments we selected the following parame-
ters for this model: Adadelta optimizer, ReL function, (16, 16) input shape (sliding window
size equal to 256) with 500 LSTM units.

5.2. Evaluation

The evaluation was done on both Japanese and German Wikipedia traces with two time
windows on each, 10min and 15min, thus obtaining 4 data sets. The sliding window size
was slightly scaled when evaluating models on the 15min window with a 0.66 ratio to
account for the different time ranges in the data set.
This evaluation process of retraining and testing the models has been repeated 10 times
to account for the random weight initialization. The results obtained using deep learning
models were averaged and then compared to baselines and to each other, and the results
could be seen in Table 5.

Table 5. The MSE based comparison of the final results (the values are divided by106)

DataSet Naive ARIMA MLP CNN CNN-LSTM

Jp10 20.2 15.2 8.5 11.7 7.2
Jp15 87.8 56.6 31.0 35.0 50.2
De10 16.7 10.3 5.1 10.5 21.3
De15 77.4 43.3 17.2 35.4 65.7

If we compare the results across across all datasets then we may conclude that MLP
performed very well, consistently passing both baselines. On average, the MLP model
was 49% more accurate than the classical ARIMA method which also indicates a better
performance than CloudInsight [9] which obtained a 12% improvement over ARIMA on
the same dataset.

CNN performed a bit worse, but still managed to beat the baselines in 3 out of 4 cases,
while being very close on the other one.

CNN-LSTM has been very inconsistent. On Jp10 dataset it obtained the best result,
beating MLP but this performance has not been repeated. In the De10 and De15 experiments
it did not even beat ARIMA performance. This has not been improved even after multiple
measurements or epochs, as seen on the loss plot from Figure 8, which indicates that the
loss improves very little after 100 epochs.

Computational overhead. An aspect which should be noted is the computational
overhead of the proposed models. The prediction time for the ARIMA model varies from
0.4 s to 31 s for the most accurate one (see Table 1). The time in which the deep learning
models make a prediction (once trained) is much shorter: 0.16 s for MLP, 0.21 s for CNN
and 0.24 s for CNN-LSTM.

Best performer: MLP. The comparison revealed this model to be the best performer,
beating both ARIMA baseline and the CloudInsight hybrid model. A more detailed
comparison with the classical method can be seen in Table 6 taking into account all error
metrics. A plot of the predicted traffic on the Jp10 dataset can be seen in Figure 9.

220107-19

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

Figure 8. Training loss for CNN-LSTM on De15 with different numbers of epochs

Figure 9. Actual vs. Predicted traffic for about a day on the Jp10 dataset using MLP

Table 6. MLP vs ARIMA, compared based on MSE/MAE/MAPE

ARIMA MLP

DataSet MSE MAE MAPE MSE MAE MAPE
Jp10 15.2E6 3056 6.3% 8.5E6 1960 2.9%
Jp15 56.6E6 6124 8.8% 31.0E6 3540 3.4%
De10 10.3E6 2517 7.6% 5.1E6 1583 3.4%
De15 43.3E6 5606 13.4% 17.2E6 2787 3.9%

220107-20

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

5.3. Threats to validity

As with any experiment based analysis, the reported results and conclusions could be
subject to certain threats to validity [58]. The followings are the major threats to the
validity of our work and the ways we tried to mitigate them.
– Construct validity – For our purposes we assume that the number of requests in an

interval is a satisfactory prediction metric. This tends to be enough because a mi-
croservice should fit a specific business case therefore having homogeneous requests.
The results might not be as accurate when a single microservice type handles widely
different requests.

– External validity – We propose a prediction model building methodology which can
be customized to the specific microservice deployment it is used on, because the ∆t
window should be chosen after performance benchmarking the selected application (see
Section 3).

– Internal validity – The metric we chose (number of requests) is independent of the
prediction result. The other options (e.g., CPU utilization, average response time) would
change depending of the scaling actions performed and then influence further decisions,
causing a small error to propagate in time.
We used scaling on input data to improve accuracy and training time. In a real world
scenario scaling could still be done using historical bounds which would be updated
periodically. Values which are out of these bounds could impact accuracy [59]. In the
case of a sudden burst of requests with no historic precedent the measurement of the
metric may be impacted. For example if there is a bottleneck of requests waiting to
be processed they may not even be counted. However, in a practical deployment the
system would eventually scale to handle the requests but it would take multiple scale
out commands instead of just one (which is the norm in non exceptional scenarios).

– Reliability – The selected dataset is publicly available [17] and has been used by other
researchers for the same goal [9].
The selected models have been implemented and evaluated using Keras, scikit-learn,
and statsmodels libraries. The measurements analysis was in general based on their
default settings and on repeating the processes, but an extended analysis of the possible
measurements errors could reveal the need of some additional adaptations. From our
observations, the MSE value ranges do not wildly fluctuate on multiple measurements,
which is also indicated by calculating confidence intervals. For example, on a random
re-evaluation with a larger number of repetitions (30) of MLP on De10 dataset with
a 95% confidence level the resulting confidence interval was 6.6 ± 0.67(1e6), which still
convincingly outperforms the baselines.
During experiments we have chosen k-fold cross validation with k = 3, but we are aware
of the fact that a higher value for k could estimate a more accurate confidence interval
[60–62]. Our choice was justified by the impact on the computational time of a higher
value for k. We tried various settings and layer distributions for some of the more
complex models (CNN and CNN-LSTM) and choosing for example k = 10 would have
led to a much higher asymptotical computational complexity. Still, we acknowledge
that would be worth investigating the results that could be obtained using a much
higher value of k for cross validation.

220107-21

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

5.4. Results analysis

In order to find an efficient model for a proactive auto-scaler for microservices, we have
started by analysing the most suitable steps, and we arrived to a methodology adapted to
the microservices specifity.

Inside the proposed methodology we compared a naive and a classical time series
method – ARIMA, with three deep learning models, MLP, CNN, CNN-LSTM, over two
traces of Wikipedia traffic data and two time windows (of 10 and 15 minutes).

This analysis emphasized that MLP(Multilayer Perceptron) shows considerable im-
provements in performance over the classical method, of around 49% in MSE, which is
also better than some state of the art models currently used for this task, like the council
of experts employed by CloudInsight [9].

It also showed that the sophisticated hybrid CNN-LSTM can obtain great results
(having the best performance on Jp10), however it requires considerably more tuning
and training time. Given a larger data trace and tuning effort, it might become the most
accurate model.

MLPs are much faster to train than the other deep learning models which facilitates
the periodic workload data update a practical application might need.

All these recommend MLP as the best choice for application in a practical proactive
auto-scaler. This model was selected as the most appropriate from our implementation
(based on the selected collection of models) of the methodology described in Section 3.
Still our investigation maybe also seen as a starting point for other applications of this
methodology.

5.5. Practical usage

In order to emphasise a possible practical usage of the model presented in this research,
we developed a proof of concept implementation of a predictive scaling tool, which is
available at https://github.com/StefanSebastian/MicroserviceMonitoring/tree/master/
monitor_scaler_app.

The tool, modelled in Figure 10, was designed to simplify the process of monitoring
and automatic scaling as much as possible. The main components are:
– a server application which consumes the data stream from all microservice instances

(through Kafka message queue) generates various statistics and stores aggregates into
the local database for training the prediction model,

– a dashboard monitor application which displays all active microservices and their
performance, and

Figure 10. The schema of the proof of concept scaling tool

220107-22

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

– a scaling manager which is responsible with starting or stopping instances of the service
(in the demo implementation it executes Docker commands to start or stop containerized
microservices)

– a proactive scaler which uses historic data to predict traffic patterns (containing
a Python implementation of the proposed MLP model) and generates scaling decisions,
which are then forwarded to the scaling manager.

An additional Java client is also provided which captures traffic from Spring Cloud
microservice implementations and puts onto a kafka queue which feeds data into the scaling
system.

This scaling tool was tested on a simplistic microservice system (https://github.com/
StefanSebastian/MicroserviceMonitoring/tree/master/demoapp) built on the Spring Cloud
stack: a Zuul load balancer, an Eureka name server, and a microservice which simulates
workloads, and was shown to work on a manually prepared scenario. The scenario consisted
of one spike of traffic repeated over and over again, for which we compared the system
performance of reactive and predictive scaling approaches. The conclusion was that in the
proactive approach the average processing time of the system was 14% better.

6. Conclusions

The paper proposes a methodology for microservice oriented workload prediction and
analyzes whether deep learning models are appropriate to be used as a prediction model
for this kind of data. The methodology is adapted to practical microservice demands, such
as the metric selection of the number of requests, which are not influenced by the scaling
prediction, and the prediction in time intervals of an order of minutes, with a buffer window
in which the services can be deployed.

An empirical investigation was conducting in order to find the most appropriate
deep learning model to be used for a microservice proactive auto-scaler. The tests and
the comparison analysis led to the conclusion that considering the accuracy, but also the
computational overhead and the time duration for prediction, MLP (MultiLayer Perceptron)
model qualifies as a reliable foundation for the development of proactive micro-service
scaler applications.

Future plans include investigation of other models, but also development of a more
complex proof of concept project that considers realistic scenarios, with varied traffic
patterns over a longer period of time to showcase the accuracy of the proposed tool.

References

[1] T. Erl, Service-Oriented Architecture: Analysis and Design for Services and Microservices,
2nd ed. Springer International Publishing, 2016.

[2] S. Newman, Building Microservices: Designing Fine-Grained Systems, 2nd ed. O’Reilly Media,
2021.

[3] 2020 Digital Innovation Benchmark, Kong Inc, 2019. [Online]. https://konghq.com/resources/
digital-innovation-benchmark-2020/ Released on konghq website.

[4] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca et al., “Infrastructure cost
comparison of running web applications in the cloud using aws lambda and monolithic and
microservice architectures,” in Proceedings of 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 179–182.

[5] R.V. Rajesh, Spring Microservices. Packt Publishing, 2016.

220107-23

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

[6] R.N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction using ARIMA
model and its impact on cloud applications’ QoS,” IEEE Transactions on Cloud Computing,
Vol. 3, No. 4, 2015, pp. 449–458.

[7] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi et al., “Online self-reconfiguration with performance
guarantee for energy-efficient large-scale cloud computing data centers,” in Proceedings of 2010
IEEE International Conference on Services Computing, 2010, pp. 514–521.

[8] M.S. Aslanpour, M. Ghobaei-Arani, and A. Toosi, “Auto-scaling web applications in clouds:
A cost-aware approach,” Journal of Network and Computer Applications, Vol. 95, 07 2017,
pp. 26–41.

[9] I.K. Kim, W. Wang, Y. Qi, and M. Humphrey, “Cloudinsight: Utilizing a council of experts to
predict future cloud application workloads,” in Proceedings of the 11th International Conference
on Cloud Computing (CLOUD), 2018, pp. 41–48.

[10] J. Kumar and A.K. Singh, “Workload prediction in cloud using artificial neural network and
adaptive differential evolution,” Future Generation Computer Systems, Vol. 81, 2018, pp. 41–52.

[11] J.C.B. Gamboa, “Deep learning for time-series analysis,” CoRR, Vol. abs/1701.01887, 2017.
[Online]. http://arxiv.org/abs/1701.01887

[12] P. Udom and N. Phumchusri, “A comparison study between time series model and ARIMA
model for sales forecasting of distributor in plastic industry,” IOSR Journal of Engineering
(IOSRJEN), Vol. 4, No. 2, 2014, pp. 32–38.

[13] K.I. Stergiou, “Short-term fisheries forecasting: comparison of smoothing, ARIMA and regres-
sion techniques,” Journal of Applied Ichthyology, Vol. 7, No. 4, 1991, pp. 193–204. [Online].
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0426.1991.tb00597.x

[14] J. Zhu, R. Zhang, B. Fu, and R. Jin, “Comparison of ARIMA model and exponential smoothing
model on 2014 air quality index in Yanqing County, Beijing, China,” Applied and Computational
Mathematics, Vol. 4, No. 6, 2015, pp. 456–461.

[15] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization and prediction in the
cloud: A multiple time series approach,” in Proceedings of 2012 IEEE Network Operations and
Management Symposium, 2012, pp. 1287–1294.

[16] M.D. Syer, W. Shang1, Z.M. Jiang, and A.E. Hassan, “Continuous validation of performance
test workloads.” Automated Software Engineering, Vol. 24, 3 2016, pp. 189–231.

[17] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis for decentralized
hosting,” Elsevier Computer Networks, Vol. 53, No. 11, July 2009, pp. 1830–1845.

[18] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs
and LSTMs in Python. Machine Learning Mastery, 8 2018.

[19] T. Lin, T. Guo, and K. Aberer, “Hybrid neural networks for learning the trend in time series,”
in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 2273–2279.

[20] X. Tang, “Large-scale computing systems workload prediction using parallel improved LSTM
neural network,” IEEE Access, Vol. 7, 2019, pp. 40 525–40 533.

[21] Y. Zhu, W. Zhang, Y. Chen, and H. Gao, “A novel approach to workload prediction using
attention-based LSTM encoder-decoder network in cloud environment,” EURASIP Journal on
Wireless Communications and Networking, 2019, pp. 1–18.

[22] Q. Zhang, L.T. Yang, Z. Yan, Z. Chen, and P. Li, “An efficient deep learning model to predict
cloud workload for industry informatics,” IEEE Transactions on Industrial Informatics, Vol. 14,
No. 7, 2018, pp. 3170–3178.

[23] PlanetLab – An open platform for developing, deploying, and accessing planetary-scale services.
[Online]. https://planetlab.cs.princeton.edu Read October-2020.

[24] D. Jacobson, D. Yuan, and N. Joshi, Scryer: Netflix’s Predictive Auto Scaling Engine, 2013. [On-
line]. https://netflixtechblog.com/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
Read 17-October-2020.

[25] Why You Can’t Talk About Microservices Without Mentioning Netflix, SmartBear Software,
(2015, December). [Online]. https://smartbear.com/blog/develop/why-you-cant-talk-about-
microservices-without-ment/ Read October-2020.

220107-24

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

[26] J. Bar, New-Predictive Scaling for EC2, Powered by Machine Learning, (2018, November). [On-
line]. https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-
learning/ Read October-2020.

[27] Autoscaling guidance – Best practices for cloud applications, Microsoft, (2017, May). [On-
line]. https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling Read
17-October-2020.

[28] Autoscaling groups of instances, Google, 2014. [Online]. https://cloud.google.com/compute/
docs/autoscaler Read October-2020.

[29] P. Jamshidi, C. Pahl, N.C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey so
far and challenges ahead,” IEEE Software, Vol. 35, No. 3, 2018, pp. 24–35.

[30] Spring Cloud Netflix. [Online]. https://cloud.spring.io/spring-cloud-netflix/reference/html/
Read October-2020.

[31] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-scaling of web applications in
cloud: Survey, trends and future directions,” Scalable Computing: Practice and Experience,
Vol. 20, 05 2019, pp. 399–432.

[32] A.A. Bankole and S.A. Ajila, “Predicting cloud resource provisioning using machine learning
techniques,” in Proceedings of the 26th IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), 2013, pp. 1–4.

[33] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud microservice
applications,” in Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE ’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 25–32.

[34] R. Shumway and D. Stoffer, Time Series Analysis and Its Applications with R Examples,
3rd ed. Springer, 2011.

[35] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A.J. Aljaaf, A Systematic Review on
Supervised and Unsupervised Machine Learning Algorithms for Data Science. Cham: Springer
International Publishing, 2020, pp. 3–21. [Online]. https://doi.org/10.1007/978-3-030-22475-
2_1

[36] T.G. Dietterich, “Machine learning for sequential data: A review,” in Structural, Syntactic, and
Statistical Pattern Recognition, T. Caelli, A. Amin, R.P.W. Duin, D. de Ridder, and M. Kamel,
Eds. Berlin, Heidelberg: Springer, 2002, pp. 15–30.

[37] G. Bontempi, S. Ben Taieb, and Y.A. Le Borgne, Machine Learning Strategies for Time Series
Forecasting. Springer Berlin Heidelberg, 01 2013, Vol. 138, pp. 62–67.

[38] M. Smeets, Microservice framework startup time on different JVMs, 2019. [On-
line]. https://technology.amis.nl/languages/java-languages/microservice-framework-startup-
time-on-different-jvms-aot-and-jit/ Read 26-June-2021.

[39] R. Frank, N. Davey, and S. Hunt, “Time series prediction and neural networks,” Journal of
Intelligent and Robotic Systems, 2001, pp. 91–103.

[40] A. Botchkarev, “Performance metrics (error measures) in machine learning regression, fore-
casting and prognostics: Properties and typology,” Interdisciplinary Journal of Information,
Knowledge, and Management, Vol. 14, 2019, p. 045–076.

[41] C.D. Lewis, Industrial and business forecasting methods: A practical guide to exponential
smoothing and curve fitting. London(U.A.): Butterworth Scientific, 1982.

[42] S.L. Ho and M. Xie, “The use of ARIMA models for reliability forecasting and analysis,”
Computers and Industrial Engineering, Vol. 35, No. 1–2, Oct. 1998, p. 213–216.

[43] A.O. Adewumi and C.K. Ayo, “Comparison of ARIMA and Artificial Neural Networks models
for stock price prediction,” Journal of Applied Mathematics, Vol. 2014, 03 2014, pp. 1–7.

[44] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A comparison of ARIMA and LSTM in
forecasting time series,” in Proceedings of 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), 2018, pp. 1394–1401.

[45] V.R. Prybutok, J. Yi, and D. Mitchell, “Comparison of neural network models with ARIMA
and regression models for prediction of Houston’s daily maximum ozone concentrations,”
European Journal of Operational Research, Vol. 122, No. 1, 2000, pp. 31–40. [Online]. https:
//www.sciencedirect.com/science/article/pii/S0377221799000697

220107-25

Sebastian Ştefan, Virginia Niculescu e-Informatica Software Engineering Journal, 16 (2022), 220107

[46] T.J. Sejnowski, The Deep Learning Revolution. The MIT Press, 2018.
[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Adaptive Computation and

Machine Learning series. MIT Press, 2016. [Online]. https://books.google.ro/books?id=
Np9SDQAAQBAJ

[48] R.D. Reed and R.J. Marks, Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks. Cambridge, MA, USA: MIT Press, 1998.

[49] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, Vol. 9,
No. 8, Nov. 1997, p. 1735–1780.

[50] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. USA: Prentice
Hall Press, 2009.

[51] F. Chollet and et al., Keras, GitHub, 2015. [Online]. https://github.com/fchollet/keras
[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.
[53] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling with Python,”

in Proceedings of the 9th Python in Science Conference, 2010.
[54] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, Machine Learning Research, Y.W. Teh and M. Titterington, Eds., Vol. 9.
Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. https:
//proceedings.mlr.press/v9/glorot10a.html

[55] Y.W. Cheung and K.S. Lai, “Lag order and critical values of the augmented Dickey–Fuller
test,” Journal of Business & Economic Statistics, Vol. 13, No. 3, 1995, pp. 277–280.

[56] N. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. Tang, “On large-batch training
for deep learning: Generalization gap and sharp minima,” in Proceedings of 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017.

[57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, Vol. 15, No. 56, 2014, pp. 1929–1958.

[58] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in
software engineering,” Empirical Software Engineering, Vol. 14, 2008, pp. 131–164.

[59] S. Nayak, B.B. Misra, and H.S. Behera, “Impact of data normalization on stock index fore-
casting,” International Journal of Computer Information Systems and Industrial Management
Applications, Vol. 6, No. 2014, 2014, pp. 257–269.

[60] J.D. Rodriguez, A. Perez, and J.A. Lozano, “Sensitivity analysis of k-fold cross validation in
prediction error estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 32, No. 3, 2010, pp. 569–575.

[61] R.R. Bouckaert, “Estimating replicability of classifier learning experiments,” in Proceedings of
the Twenty-First International Conference on Machine Learning, ICML ’04. New York, NY,
USA: Association for Computing Machinery, 2004. [Online]. https://doi.org/10.1145/1015330.
1015338

[62] M. Huk, K. Shin, T. Kuboyama, and T. Hashimoto, “Random number generators in training of
contextual neural networks,” in Proceedings of 13th Asian Conference on Intelligent Information
and Database Systems, N.T. Nguyen, S. Chittayasothorn, D. Niyato, and B. Trawiński, Eds.
Cham: Springer International Publishing, 2021, pp. 717–730.

220107-26

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220108, DOI: 10.37190/e-Inf220108

Empirical AI Transformation Research:
A Systematic Mapping Study

and Future Agenda

Einav Peretz-Andersson∗, Richard Torkar∗∗
∗Department of Computing, School of Engineering, Jönköping University, Sweden

∗∗Department of Computer Science and Engineering,
Chalmers and University of Gothenburg, Sweden

Einav.Peretz.Andersson@ju.se, torkarr@chalmers.se

Abstract
Background: Intelligent software is a significant societal change agent. Recent research
indicates that organizations must change to reap the full benefits of AI. We refer to this
change as AI transformation (AIT). The key challenge is to determine how to change and
which are the consequences of increased AI use.
Aim: The aim of this study is to aggregate the body of knowledge on AIT research.
Method: We perform an systematic mapping study (SMS) and follow Kitchenham’s
procedure. We identify 52 studies from Scopus, IEEE, and Science Direct (2010–2020).
We use the Mixed-Methods Appraisal Tool (MMAT) to critically assess empirical work.
Results: Work on AIT is mainly qualitative and originates from various disciplines. We
are unable to identify any useful definition of AIT. To our knowledge, this is the first
SMS that focuses on empirical AIT research. Only a few empirical studies were found in
the sample we identified.
Conclusions: We define AIT and propose a research agenda. Despite the popularity and
attention related to AI and its effects on organizations, our study reveals that a significant
amount of publications on the topic lack proper methodology or empirical data.

Keywords: AI transformation, digital transformation, organizational change,
systematic mapping study

1. Introduction

Artificial Intelligence (AI) technology can yield a competitive advantage and new business
models for many types of organizations [1] provided that they have sufficient knowledge,
skills, and a suitable infrastructure [2]. Technology adoption is one of the driving forces
of economic growth [3]. In particular, this adoption can help in tackling global challenges
such as health, education, environment, science and it has significant capability to address
our regional, local, and organizational challenges [4]. However, technology adoption itself
can be a challenge that leads to success or failure based on how it is tackled.

AI is intrinsically software-based and entails massive software engineering [5]. The
increased use of AI is closely connected to recent hardware development (the computational
resources are now sufficient) and developments in software engineering (it is now possible to

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 03 Nov. 2021; Revised: 20 May 2022; Accepted: 25 May 2022; Available online: 31 May 2022

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

design, implement, and test AI-based software systems) [6]. Most successful AI applications
are data-driven and use machine learning as core technology [7]. Organizations today are
either developers or users of data-driven products and services. An organization is deemed
data-driven, or AImature, if it possesses sufficient knowledge and skills to use AI internally (to
improve the organization) and externally (to improve products or services) [8]. The main ques-
tion for many organizations is how to successfully adopt AI (become data-driven and achieve
AI maturity). Despite the expansion, availability, and value of AI technologies, organizations
are still struggling to adopt AI [1]. Recent collaborative research made by researchers from
MIT, University of Toronto, and the US Census Bureau point out that the adoption rate of AI
technologies in organizations is low in general and concentrated to older and larger firms [9].

Organizations are difficult to change in the ways necessary for technology adoption. With
rapid development and change of AI technologies, organizations must change continuously.
Various factors that could potentially influence willingness or the ability to adopt AI include
the availability of relevant resources (computational, economical, and human), legislation
(governance and ethics), cost, limited computational capability and infrastructure, security,
organization size and structure, traditions, and organizational culture [10]. We identify
several studies that explore the phenomenon of digital transformation (DT). One existing
definition of DT states that it is a “radical improvement in business performance and
operations outcomes due to the use of technology” [11]. DT is thus a very broad umbrella
term encompassing all transformations relating to digital technologies.

We argue that the type of transformation that organizations need to undergo to
benefit from AI technology is sufficiently different from DT to deserve its own definition
and exploration. Our main motivation for making this distinction is connected to the
primary function of AI, which is to offload cognitive work from humans to computers. This
functionality will potentially lead to more drastic organizational changes than DT in general.
The key problem is that AIT is understudied as a distinct phenomenon. This means that
it is typically defined indirectly through digital transformation research and explorations
into which factors actually contribute to failure or successful AI adoption are scarce.

The aim of this study is to aggregate the body of knowledge concerning the relationship
between AI and organizational transformation (OT), to map the field by performing
a systematic mapping study (SMS) and, by doing so, identifying gaps in research that
represent opportunities for future studies. Our work can help organizations to optimize
AIT by finding approaches and models that have been successful in similar contexts.

This study is organized as follows: Section 2 discuss the concept of AI and organization.
Section 3 present the aim and the scope, lists and motivates the research questions, and
discusses the methodology and the threat and validity. Section 4 summarizes the results
for each research question and describes the overall implications of the results. Section 5
includes an assessment of validity threats as well as a discussion and definition of AIT.
Finally, Section 6 provides conclusions and pointers to future work.

2. Background

2.1. AI and organizations

AI changes the composition of human skills and tasks required in an organization [3].
Organizations need to develop new knowledge and competences to comprehend new
technologies so that they will be aligned with the strategy, processes, and structure.

220108-2

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Organizational adaptation to AI can be viewed as an external catalyst for change, where
organizations react on a strategic and tactical level. It also acts as an augmentation to an
internal catalyst, where organizations change processes and their operation to meet the
technological and societal challenges [12]. Adaptation of AI is inevitable and will affect the
business models.

AI will eventually change the composition, business models, and the tasks required in an
organization. New business models can be a result of strategy or a strategizing action [13].
AI vastly changes organizations’ resources, operations and structure. It is argued that
organizations that adjust to this change will become more efficient [14].

Rapid change requires organizations to be flexible and to quickly adapt and adopt
new technologies while preparing the organization from a human, societal, and tech-
nological perspective to meet this dynamic change [15]. It is suggested that the social
and technological changes that organizations are experiencing in the new millennium,
will lead to changes in social values, practices, and in the structure and processes of
organizations [16]. It has been pointed out that AI has immense influence on organizations,
such as: reducing costs, improving human task solving efficiencies, and supporting business
customer relationships [17]. However, there are also limitations of AI, and humans will
still play an important role in the organization as well [17]. In addition, the importance
of human skills that cannot be learned by intelligent technologies, will only increase [18].
A reference is made to Michael Polanyi’s expression “we know more than we can tell” [19].
This is known as Polanyi’s Paradox [18]; where many decisions and actions made by humans
cannot be learned or described, which creates an implication for intelligent technologies to
duplicate human behavior or improve upon gut feelings [20]. Decision making based on
gut feeling cannot explain the reasons behind the decisions, which are often described as
feel-right decisions. Moreover, it is hard to identify which decisions are based on this kind
of intuition since many employees will find it hard to admit that a crucial decision they
have made is based on gut feeling [20].

The discussion of the effect of new technologies on organizations and the changes they
will lead to are not new, but rather a continuous discussion of previous industrial revolutions.
Research shows two different approaches toward AI: the utopian, where machines will
improve human life quality, and the dystopian, where machines will take over the human
society [21]. AIT triggers scholarly interests in various disciplines. The scientific literature
presents various models related to smart technology transformation, regardless of whether
the future of AI will be utopian, dystopian, or something in between, research must be
carried out to support the best possible use of AI.

We observe large organizations such as Apple, Amazon, Microsoft, Google, Facebook,
and other corporations that have the resources (capital and human) and the market
position to invest and develop their use of AI technologies to transform their organization.
In addition, research shows that companies upgrade their workflows and the way they
work based on AI technologies which lead to enhancement of their financial and market
performance [22].

2.2. What is AI transformation (AIT)?

Artificial Intelligence (AI) is used as a genre name and it is becoming increasingly discussed,
following the developments related to, for example: IBM Watson, Google DeepMind, Google
AlphaGo, and IBM Deep Blue. To the best of our knowledge, this is the most well-known
case dealing with AIT. However, AI transformation has also been observed in other studies,

220108-3

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

such as the impact of AI on business performance, business value, business capabilities etc.
One example is an in-depth study on the impact of AI on firm performance that presents
a framework for building on the business value of AI-based transformation projects based
on 500 case studies from IBM, AWS, Cloudera, Nvidia, Conversica, and Universal Robots
websites [23]. It becomes a dynamic tool that people and communities make use of to refer
to various technologies. AI does not have a specific, universal definition but its overarching
focus is intelligent systems that can think humanly, act humanly and learn as humans [24].
AI discussions often feature topics such as the possibility of machines to perform as humans
in terms of thought processes, reasoning, and behavior. From a technological point of
view, AI includes a number of subareas of importance [25]: machine learning deals with
the intellectual ability to learn from experience and to improve in order to increase the
performance at solving some task, natural language processing deals with the interpretation
and production of natural (human) language, computer vision deals with the parsing of
data from vision-based sensors to capture aspects of the physical world in the computer,
agent-based systems deal with simulation and optimization of micro an macro world
models [6].There are a number of additional subareas of AI and it is possible to view some
of these different subareas as complementary or overlapping in terms of the overall mission
to design intelligent computer-based systems. In this SMS, we view AI as an umbrella term
for all such subareas.

The focus on AI as an interdisciplinary research area is relatively new, and the capacity
of this technology is versatile and enormous [26]. The interest associated with AI involves
economical, psychological, technological, political, and ethical aspects [27]. AIT receives
scholarly interest from various domains as well as the attention of various industries in
recent years (see the linked data sheet for more detailed information [28]). We also observe
that there is a substantial scientific discussion around digital transformation [11, 29–31],
but few studies focused only on AI transformation.

Out of the 52 papers we identify in this study, 23% discuss digital transformation of AI
technologies (the technologies that are discussed in these papers are AI, Big Data Analytics
(BDA), and Data Analytics (DA)). We observe that other concepts such as various smart
industries, i.e., smart manufacturing, smart agriculture, and Industry 4.0 also discuss the
concept of AIT (see subsection 4.2). This helps us to distinguish between the two concepts
and to argue that this SMS mainly discusses AIT and focuses only on AI technologies,
which is partly discussed in DT.

AIT should be discussed distinctly from any other DT. The reason for this is that,
unlike other forms of DT, AIT will clearly shift cognitive work from human actors to
computers. The consequence for many organizations is significant.

2.3. Organizational transformation

Organizational transformation can be described from various perspectives; on the one hand
it denotes to be a radical change in the form or character of something or someone that
completely changes the organization. Transformational change is discussed as a complex
phenomenon, where the change requires a shifting of the current organization strategy,
structure, process, culture, work behavior and mindset [32]. This change occurs by a break-
through to pursue new opportunities. Furthermore, it is argued that organizations that
will not identify these types of needs for a change will be disrupted [32].

On the other hand, the change can also be considered to be incremental; an ongoing,
gradual, discontinuous process which leads to change [33]. It is argued that organizational

220108-4

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

change is a continuous process in organizations as a result of various activities that occur
on a regular basis, such as hiring new employees, getting new facilities, renewing the
organization strategy, implementing new technologies, and restructuring [34]. Continuous
and confluent organizational change can be described as a slow and evolutionary change
which is not episodic or a result of a crisis [35]. The organizational ambidexterity theory
states that organizations as part of their growth, in a simultaneous way, need to pursue
both an evolutionary change – a discontinuous incremental change where the organization
is expanding the existing business – and a revolutionary innovative change where the
organization is incubating novel opportunities [36].

3. Research methodology

The following section refers to present the aim and the scope, lists and motivates for the
research questions, and discusses the methodology and the threat and validity techniques
used to obtain and analyze data. This part outlines the approach used in order to fulfill
the purpose of this paper.

3.1. Aim and scope

The focus of this article is on change that is led by a particular purpose; AI, we are
interested in both incremental and radical change that will lead to a transformation
in the organization. We will follow AIT as a change agent; an incremental or radical
change that can happen in the organization. By using AI capabilities, the traditional
organization transforms its structure, processes, organizational learning, work routine,
knowledge management, products, and services [37]. We do not focus on the process of
the change or in a particular model or theory that explains the change, but rather on the
concept of AIT.

To explore AIT, it is important to understand the concept of AI and its implications,
while understanding its relationship to the organizational structure, leadership, culture,
vision, and mission and the human attributes within the organization. Organizations are
frequently integrating various technologies, but technology transformation related to AI is
considered to have a strong impact on organizations [12]. AIT is related to the integration
and adaptation of AI into an organization’s business, although it can also be considered as
a disruptive process that creates new forms of organizations [38].

The scope of this study is AIT. The aim is to follow the SMS process to aggregate the
body of knowledge on AIT research and to map the field and identify the research gaps
that represent opportunities for future studies [39].

3.2. Research questions

The research questions and the motivation for each question are formulated based on the
aim for the SMS. In this work, we seek to answer the following research questions:
RQ1. How is AI transformation conceptualized in the literature?

Motivation. To find existing definitions of AIT in the literature, to analyze these
definitions to identify contradictions, similarities, or issues. This analysis can be used
to establish a common and useful definition for AIT.

RQ2. What are the research methods used in AI transformation research?

220108-5

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Motivation. An understanding of which research methods are applied, and how, allows
us to assess the maturity of the research, and to characterize the existing body of
knowledge generated in the field.

RQ2.1. What are the main theories and frameworks adopted in AI transformation re-
search?
Motivation. AIT is inherently interdisciplinary. Due to this, theories and frameworks
come from multiple disciplines, which makes it difficult for a specific discipline to make
sense of results and conclusions. An understanding of the underlying theories and
frameworks of AIT enables the establishment of a unified framework, in which results,
and conclusions could be reinterpreted by any discipline, and by stakeholders from the
private and public sector.

RQ2.2. What real-world scenarios and contexts are studied in AI transformation research?
Motivation. To identify the maturity of AIT in different domains, and to explore
unique characteristics related to AI transformation in these domains.

RQ3. What are the emerging questions for future research and the important research
gaps in the area?
Motivation. It is important to identify the major trends of AIT research and to identify
research gaps, as they seed new research opportunities. In addition, an ever-increasing
number of organizations are looking into how to transform due to AI. The identified
research gaps may allow new research that helps these organizations reap the benefits
and mitigate the risks involved in AIT.

By addressing these research questions, we aim to provide an insight concerning AIT
definitions existing in literature. Secondly, we propose categories, based on the theories
used in the literature, which may increase the clarity about existing research relating to
AIT. Thirdly, we strive to offer a foundation for future research by finding research gaps in
this research field.

3.3. Literature review procedure

Systematic mapping study (SMS) can be described as identifying, evaluating, and interpret-
ing the available knowledge within a particular phenomenon of interest [39]. We follow the
Kitchenham procedure [39] for performing the SMS. SMS is a form of literature review where
one can gain a transparent and rigorous assessment of the literature. Furthermore, they
aim to provide a foundation and empirical answer for one or more research question [39, 40]
and to discover research trends [41].

Three databases (Science Direct, Scopus, and IEEE Xplore) are used as main literature
sources. The motivation for this selection is that the first two databases are common in
management and organization studies, while the third is linked to the profile of this study,
which is interdisciplinary and can offer a technological perspective. Hence, our aim was
to find a good sample, rather than finding all articles [41]. The papers are first selected
based on title, keywords, and abstracts. The second screening is performed by two external
reviewers. The third screening is performed based on the Mixed Methods Appraisal Tool
(MMAT), and the two external reviewers independently involved in the appraisal process
review 15% of the articles (the selection is performed based on a random sampling). We
have selected two reviewers from two different fields (Computer Science and Business
Administration). The reason was to make sure that we are catching both approaches, and
not missing relevant articles. Having two different reviewers in the review process is useful,
so one researcher extract the data and the two others reviewing the extraction [39]. In this

220108-6

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Start systematic
review

Identify the need for a
systematic review

Develop review
protocol

Evaluate review
protocol

Planning stage

Search for primary
studies

Select primary studies

Extract data from
primary studies

Conducting stage

Assess quality from
primary studies

Disseminate results Reporting stage

End systematic
review

Figure 1. SMS process [39]

way we also reduce the bias, though, given that this step involves human judgment, the
threat cannot be eliminated [39]. Based on the screening, a full text reading is conducted
to ensure that the right articles are selected. The search strategy and the selection criteria
are thoroughly described in Sections 3.3.3 and 3.3.4.

An SMS provides information about the effect of some phenomenon “across a wide
range of settings and empirical methods” [39] and gives a robust and thorough view of
the current status of research in a particular discipline, by collecting and summarizing the
empirical work that exist [42]. Worth mentioning in this context is that the purpose of
an SMS is not necessarily to be complete or exhaustive (something we can never assure)
but rather to be systematic and transparent. Concerning the former it will allow other
researchers to reproduce the results (now or in the future), and concerning the latter
an SMS provides a clear view of different sources of evidence and how said evidence is
weighted.

An SMS is conducted in three phases: planning the review, conducting the review, and
reporting the review. Each phase is divided into a step-by-step process, where an evolution
from phase-to-phase must occur. Once the last step is achieved one can progress to the
next phase (see Figure 1).

3.3.1. Define and evaluate review protocol

We develop a review protocol to specify the methods we use, and to reduce the possibility
for bias. The components of the review protocol are the research questions, the search
strategy for collecting primary studies, the exclusion and inclusion criteria, assessment
of quality, and data extraction strategy. The external reviewers evaluate and validate
the review protocol and, as per their suggestions, changes are incorporated to refine the
protocol.

220108-7

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

3.3.2. Source selection

We select as sources the following main literature databases:
1. Science Direct;
2. Scopus;
3. IEEE Xplore.

We have also carried out an additional pilot search in the proceedings of top-tier software
engineering conferences (ICSE, ESEC/FSE and ASE) and ACM digital library to ensure
the validity of the search results. We have followed the same search patterns employed for
the three already included databases, and we found 104 conference articles and 378 articles
at ACM digital library. We reviewed the title and the abstract but did not encounter any
additional papers that discussed AIT (the article’s focus was more on the technology than
the organization). Our mapping will provide a basis for more in-depth follow-up studies on
specific subtopics for which additional databases would be more appropriate. This work
can serve as a foundation for future research investigating AIT.

3.3.3. Search strategy

We divide the search into two stages: pilot search and primary search. For each search, we
perform the following:
1. Keywords: Keywords are identified based on the research questions,
2. Variants: Synonyms and alternate spellings of search keywords are identified,
3. Search keyword connectors: Combinations of OR and NOT are used to define sub

searches.
Following the SMS methodology and the research questions, in order to identify the

most relevant keywords, we perform a pilot search where we evaluate various combinations
of relevant keywords. Additionally, we check which word combinations provide the greatest
number of hits.

Based on this pilot, we identify the following keyword search terms:
transformation* OR organizational change* OR learning organization* OR change
management* OR organization restructuring* OR organization redesign* OR organi-
zation design* OR technology adoption* AND Artificial Intelligence* OR AI* OR
Machine learning* OR ML* OR Data mining* OR Data analytics* OR Decision
support system* OR Expert system* OR Knowledge-based system* OR Intelligence
system* OR/AND Human machine*
In addition, we consult with key stakeholders within the field of business administration,

economics, and AI, to review the keywords to make sure that we remain within the scope
of AIT.

3.3.4. Inclusion/exclusion criteria

To select the most relevant studies and exclude irrelevant studies, we establish inclusion
and exclusion criteria (see Table 1). We limit the study to existing management and
organization studies (MOS) during the period January 2010 to September 2020, since there
is a significant growth of publications on these issues within this time frame. We include
only studies that relate to AIT. For publications that are within the frame of our inclusion
criteria, the following filters are applied as exclusion criteria:
– Filter 1: remove publication types other than journal articles;

220108-8

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

– Filter 2: remove non-English language studies;
– Filter 3: remove duplicate studies.
For quality purposes, we limit the selection criteria to journal articles that are published
in the English language [43]. The reasoning behind this filtering is that, in most mature
areas journals are identified as a more influential and reliable source than other publication
channels.

Table 1. Exclusion/Inclusion Criteria

Inclusion criteria

Studies involving AIT
Studies published between 2010–2020
AI and organizational change
AI and organizational restructuring
Business, Management and Accounting
Decision Sciences, Psychology

Exclusion Criteria

Publication types other than journal articles
Duplicate studies
Non-English language studies

After the search, six stages of selection are used to reduce the initial 571 papers (Scopus),
252 papers (IEEE, only two duplicates), and 143 papers (Science Direct, 24 duplicates).
The search and selection processes are described below and summarized in Figure 2.
1. Screening the articles based on the title and abstract, and articles that we can identify

from the title and the abstracts that are relevant to the SMS, are categorized as include,
while articles that are irrelevant are categorized as exclude (see Table 2 – initial include).

2. A second screening of the included articles is conducted by two external reviewers who
evaluate and validate the screening incorporated changes to refine include articles (see
Table 2 – final include).

3. Krippendorff’s α (Kα) (inter-rater reliability statistic) is used to estimate the reliability
of the evaluation [45]. The Krippendorff’s α results for each database are presented in
Table 2. A Kα > 0.8 implies a strong inter-rater reliability, i.e., the reviewers were in
strong agreement.

4. A third screening is conducted based on the MMAT, which is a tool used to appraise
the quality of empirical studies and designed to support systematic reviews that have
various methods, i.e., qualitative, quantitative, and mixed methods [46]. The screening
questions are used as an indication of the level of quality of the empirical investigation.
The screening questions are: (1) Are there clear research questions? (2) Do the collected
data allow to address the research questions? Responding ‘No’ or ‘Can’t tell’ = 0
(the paper is not an empirical study), ‘Yes’ = 1 [46] (see Tables 3–5). Two external
reviewers are independently involved in the appraisal process. We randomly select:
Scopus: 14 articles (15% of 95 articles), IEEE: 2 articles (14% of 14 articles), Science
direct: 3 articles (18% of 17 articles).

5. The remaining 47 papers are used as the basis for the full-text review. The basic
structure of the search and selection process can be seen in Figure 1.

6. The last assessment is based on a full-text reading and leads to the further exclusion of
7 studies.

220108-9

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Table 2. Overview of Inclusion/Exclusion

Number of Initial Final
Source articles include include K1

α

Scopus 571 129 95 0.91
IEEE 252 16 14 0.85
Science Direct 143 19 17 0.93
1Krippendorff’s Alpha (Kα) test score

Table 3. MMAT (Scopus)

Scopus MMAT Screening question

0 1

Qualitative 73 47 26
Quantitative 18 6 12
Mixed methods 4 2 2
Total 95 55 40

Table 4. MMAT (IEEE)

IEEE MMAT Screening question

0 1

Qualitative 11 9 2
Quantitative 3 1 2
Total 14 10 4

Table 5. MMAT (Science Direct)

Science Direct MMAT Screening question

0 1

Qualitative 15 11 4
Quantitative 2 1 1
Total 17 12 51

1Two articles have been excluded since it was out of
the frame of management and organization

220108-10

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Records identified through
database searching

(n = 966)

Sc
re
en

in
g

In
clu

de
d

El
ig
ib
ili
ty

Id
en

tif
ica

tio
n

Records after
duplicates removed

(n = 26)

Records screened
(n = 940)

Records excluded based on
title and abstract

(n=814)

MMAT articles assessed
for eligibility

(n = 126)

Full-text articles excluded,
with reasons

(n = 7)

Full-text articles assessed
for eligibility

(n = 47)

Studies included
(n = 40)

Records excluded based on
MMAT screening

(n = 79)

Studies included
after snowballing

(n = 52)

Records excluded
from snowballing

(n =28)

Records screened
(n = 998)

Records excluded based on
inclusion exclusion criteria

(n=949)

MMAT articles assessed
for eligibility

(n = 49)

Records excluded based
on MMAT screening

(n = 37)

Records selected
for snowballing

(n =12)

In
clu

de
d

Id
en

tif
ica

tio
n

Sc
re
en

in
g

El
ig
ib
ili
ty

Figure 2. The phases of the SMS through PRISMA [44]

The remaining 40 papers are classified as primary studies and incorporated in the
analysis for this study. The basic structure of the search and selection process can be seen
in Figure 2.

As a final step, to control for bias, we conduct snowball sampling on the primary
studies according to suggested guidelines for secondary search procedures [47]. We identify
12 studies, from the selection of primary studies, to increase the numbers of articles which
discuss topics related to AIT. The motivation for selecting the 12 studies as the starting

220108-11

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Start literature search

Identify a tentative
start set of papers
and evaluate the
papers for inclusion
and exclusion.
Included papers enter
the snowballing
procedure

If no new papers are
found, then the
snowballing
procedure is finished.

Final inclusion of the paper should be done based on the full paper,
i.e., before a paper can be included in the new set of papers that
goes into the snowballing procedure

Iterate until
no new
papers
found.

Backward:

1. Look at title in
reference list.

2. Look at the
places of
reference.

3. Look at the
abstract of the
paper.

4. Look at the
full reference
paper.

Forward:

1. Look at the title
of the paper
citing.

2. Look at the
abstract of the
paper citing.

3. Look at the
place of the
citation in the
paper.

4. Look at the full
paper citing.

In each step in both backward and forward snowballing, it
is possible to decide to exclude a paper for further
consideration.

Figure 3. Snowballing procedure [47]

set is based on: the variety in disciplines and publishers, the number of Google Scholar1

citations in relation to all 40 articles (we have decided to include), and the rank of the
journal. We also include articles that thoroughly discuss topics closely related to AIT.

Snowballing is a complementary tool that increases the likelihood of finding all relevant
papers on a subject [47]. We perform one-step backward snowballing, which means that we
review the reference list of each selected article and follow the same inclusion and exclusion
criteria as mentioned in Section 3.3.4.

The studies we review are published between January 2010 to September 2020 and for
this reason we cannot perform forward snowballing. However, to complement the snowball
sampling, we contact the authors of the primary studies to potentially identify some
additional papers. We evaluate the papers retrieved as a consequence of this contact and
determine, using our inclusion and exclusion criteria, that none of the papers are to be
included as primary studies. Figure 3 describes the snowball procedure we follow, and
Figure 2 shows the phases of the snowballing through PRISMA.

We screen the reference list of the 12 studies (in total 998 references) and based on
our exclusion and inclusion criteria, we exclude 949 articles. The remaining 49 articles
are scrutinized according to MMAT, and 37 articles are excluded. In total 12 papers are
included in the full-text review. Hence, after the snowballing procedure, a total of 52 papers
are selected as primary studies.

1Google Scholar, http://scholar.google.com

220108-12

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

3.4. Validity threats

There can be different threats to the validity of study results. There exist additional
databases which we are not including in this study. In addition, there are likely other
keywords, or combinations of keywords, that would result in different sets of found, included,
and excluded papers. We use a particular research design, but there are other ways to
perform SMS. One validity threat is human judgment in data extraction and analysis.
Additionally, the focus of this SMS is on articles published within the interval 2010–2020.
Since AIT is gaining traction in the research community, later SMS will most likely include
a significantly higher number of well-performed empirical studies.

To overcome the SMS limitations and to validate its results, several actions were taken.
By following the suggested SMS guidelines [39] and by performing our analyses in the
prescribed way, we reduce the risk of biased assumptions and conclusions. The analysis of
our SMS threats to validity, considering construct validity, reliability, internal and external
validity.

Construct validity refers to establishing the correct operational measures for the concepts
under study. It describes how closely the phenomenon under study represents what the
researchers had in mind and what is investigated according to the research questions [48].
The main constructs in our study are the concepts of “AI Transformation” and “systematic
mapping study”. Regarding the first, we identified some field roots and discussed related
work. We could have used keywords for specific AI-related technologies (NLP, ML, machine
vision, neural networks, deep learning, etc.), but our focus was on the broader concept of
AI and the related transformation of the organization to support or adopt AI technologies.
It is important to perform follow-up studies that focus exclusively on specific areas of AI
(such as Deep Learning, Neural networks, and Natural Language Processing) but in the
present study, we have chosen to focus on empirical work that considers the general toolbox
of AI, without specifying particular areas.

As for the second construct, we followed the guidelines [39] to design our research
questions, search criteria, and review protocol. We also did a pilot study and documented all
steps to address possible threats to construct validity. We used additional databases (such
as ACM) and different keywords (such as deep learning) in our pilot study, and based on the
results, we decided which databases and keywords to use. We used keywords that we argue
are sufficiently stable to be used as search strings. A broad search of general publication
databases, which index the majority of well-regarded publications, was conducted so that
all papers on the selected topic could be found. Moreover, we have also carried out an
additional search in the proceedings of top-tier software engineering conferences (ICSE,
ESEC/FSE and ASE) to ensure the validity of the search results. Hence, our work could be
complemented with a systematic literature review that covers a larger number of databases
and keywords in order to give a broader overview of this topic.

Reliability focuses on whether the data are collected, and the analysis is conducted in
a way that it can be repeated by other researchers with the same results. All steps and
processes have been well documented, so replications of our study should yield similar
results. The selection of databases was based on providing coverage for management and
organizational studies (the first two databases), while the last one was linked to the profile
of this study, which is interdisciplinary and can offer a technological perspective. Hence,
we have relatively good coverage of the topic of AIT. We established a rigorous search
strategy (see Section 3.3.3) and addressed relevant questions related to AIT. The search
strategy was tested and reviewed by two external reviewers, and Krippendorff’s α statistic

220108-13

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

was calculated to ensure that a high inter-rater agreement had been reached. The MMAT
tool was used to evaluate the quality of empirical studies and was designed to support
the systematic review. The design of this SMS followed a rigorous structure to ensure
reproducibility and control for bias.

Internal validity concerns the analysis of the data [48]. Selecting primary studies and
assessing them individually pose the greatest threats. Our major source of data was
a journal on AIT. In order to increase the reliability of our conclusions, we extended
our literature review to several rounds in order to integrate the most complete primary
studies possible. We recognize that a much broader search string could have been beneficial.
Furthermore, we could include data from a wide range of sources, include keywords strongly
associated with AI technology, and include all types of articles. Based on our pilot study,
we defined the scope of our study, which was not to obtain an exhaustive sample but
rather a representative sample. Since the topic we are interested in is multi-disciplinary, we
opted for breadth (disparate databases in terms of venues covered) instead of depth (e.g.,
exclusive focus on classical computer science or software engineering venues). The second
threat stems from the bias of individual researchers in assessing the primary studies they
have been assigned. In the analysis, we use various methods to increase the trustworthiness
of the results. By following this structure (i.e., by following a predetermined protocol and
determining the differences collaboratively), we decrease the risk of assumptions biases.

External validity refers to the domain in which a study’s findings are generalizable [48].
The scope of our systematic mapping study was on AIT within the interval 2010–2020.
There may be limitations in generalizing our findings to broader time periods, or broader
choices of primary research, for example, books and white papers. The results of our
current study were drawn from qualitative analysis. To enable analytical and statistical
generalizations, quantitative analysis can be considered to complement our findings.

4. Results

This section presents the results for each of the research questions as stated in Section 3.2.
The grounds for the results are the papers found in the SMS. The number of papers that
have been kept in each step described in Figure 2. It can be seen, that in the end 52 papers
have been kept to fulfil the aim and the scope of this SMS and to answer the research
questions. A complete list of papers included in the SMS can be found in Appendix A and
on the online link [28].

4.1. Evaluation of methodological quality

The primary use of the MMAT tool in this SMS is to support the identification of empirical
studies based on the screening questions. The 52 papers included in this review have
been re-evaluated based on the MMAT quality criteria for these empirical studies. MMAT
categorizes papers into: qualitative studies, quantitative randomized controlled trails,
quantitative non-randomized studies, quantitative descriptive studies, and mixed-methods
studies). We perform this categorization of the 52 included papers and assess their quality
based on the MMAT methodological quality criteria.

We rate the papers into two groups: low methodological quality studies and high method-
ological quality studies. Studies which score 0 in one or more of the MMAT methodological
quality criteria questions, are categorized as studies with a low methodological quality.

220108-14

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Studies which score 1 in all of the MMAT methodological quality criteria, are categorized
as studies with a high methodological quality.

The MMAT-based quality assessment reveals that, for a subgroup of the qualitative
studies (11 out of 33), the methodological quality is considered low. These studies are lacking
adequate explanation of how the findings are derived from the data and an evaluation of
whether the results are sufficiently substantiated by data. This implies that the credibility
of the reported findings can be put into question. However, 22 out of the 33 qualitative
studies are considered as studies with high methodological quality. In the quantitative group
of papers, 7 studies out of 18 are considered to be of low methodological quality. These
studies are lacking discussion about the risk of non-response bias, which can indicate that
there are potential validity and reliability issues. The mixed-methods study is considered
to be of high methodological quality. We conclude that a majority of the studies (63%) are
of high methodological quality.

4.2. AI transformation conceptualization (RQ1)

Research question 1 (RQ1) concerns in which ways AIT is conceptualized in the literature.
The motivation behind RQ1 is to find existing definitions of AIT in the literature, and to
analyze these definitions to identify contradictions, similarities, or issues. This analysis can
potentially be used to establish a common and useful definition for AIT.

Method description and motivation

This research question is explored using content analysis, which helps to reduce and organize
large data to concrete concepts that describe a particular phenomenon [49]. It can be
employed using both quantitative and qualitative approaches. It can be used inductively or
deductively. Quantitative content analysis relies on the measurement instrument and its
reliability, while qualitative content analysis relies on the knowledge and experience of the
scholar [50].

Quantitative content analysis is defined as “the systematic, objective, quantitative
analysis of message characteristics” [51], in this view content analysis is a quantitative
method that includes human coding and computer text analysis. In addition, the quantita-
tive content analysis approach does not rely on the researcher. Moreover, the empirical
results can be reproduced if sufficient care has been taken during the design, execution, and
reporting of the research. On the other hand, qualitative content analysis follows a similar
coding process of a phenomenon, but mainly relies on the researcher’s comprehension of
the text/context.

In this study, we apply both methods: first we perform an inductive content analysis
(ICA) to improve our understanding of the existing definitions. Inductive content analysis is
used when there is insufficient or fragmented knowledge about a particular phenomenon [52].
It is used as a tool to identify repetition or commonality of use of a word, phrase, or text
which appears in a document. The concept of content analysis is to identify commonalities
in the text, gather it into groups, and evolve understanding of it [53].

The process of ICA comprises three steps: preparation, organization, and reporting
of results. In the preparation step, the focus is on collecting the data. In this study, the
collection of data for the analysis is performed based on the guidelines by Kitchenham [39].
In total, 52 primary studies were included in the analysis. This process and the systematic
procedure of the literature review strengthens the trustworthiness of the data collection [49].

220108-15

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

We argue that the methods for selecting the data for the SMS ensure an acceptable level
of trustworthiness for answering the research questions of our interest. In the organization
step, we review the conceptualization of AIT in the literature. This is a crucial step in
understanding the work that has been done within the field [54], and will help us to find
common understanding, definitions, and keywords used.

Results and analysis

When reviewing the articles in the final selection, we find that only 21% (n = 11) include
a clear definition of transformation related to technology. The remaining 79% (n = 41)
articles discuss AI transformation without providing a definition.

We follow the abstraction process [52] and identify five general themes. The purpose of
these themes is that they help us gain a better understanding of the different perspectives
discussed related to AIT, which is the main topic of our investigation.

The first theme is focused on transformation, where emphasis is put on the process
of change, and transition from the current state to a new state. This type of transition
seems to usually happen in the form of evolution or revolution. The second theme, fourth
industrial revolution, includes common phrases related to digital technologies that provide
intelligent and innovative solutions, such as smart city, smart manufacturing, and smart
agriculture. The third theme, the organization and its environment, consists of the forces that
influence the organization’s current status, such as adoption, adaptation, and integration
of smart technologies. The fourth theme, enterprise architecture is focused on the way the
organization strategizes and organizes, as well as its capabilities and structure. The last
theme, idea transformation, concerns how organizations transform through ideation as
a form of innovation. It can be radical, incremental, or a consequence of the ambidexterity
of the organization.

The overview of AIT literature by means of categories indicates that prior studies lack
an integrated approach to AIT and the associated challenges due to this transformation.
The literature uses digital transformation as a common denominator for any kind of
technological transformation. In all reviewed articles that discuss ideas related to AIT,
the authors use digital transformation as a concept. However, digital transformation per
se does not always involve AI. Hence, AI, in our view, is focused on smart technologies,
intelligent machines which can work, act and have human-like abilities [55]. We follow
the overarching definition of Russell and Norvig [24], which discusses the possibility of
machine to perform as humans in terms of thought processes, reasoning, and behavior, i.e.,
intelligent systems that can think humanly, act humanly, and learn as humans.

We are unable to find any definition for AIT in the literature. One likely reason for this
is the lack of a universal definition of AI. For example, depending on the context, AI is
sometimes described as including areas such as machine learning, big data analytics, and
even Internet of things. In other contexts, machine learning, natural language processing,
and computer vision are described as sub areas of AI. Some definitions of AI assume the
narrow, data-driven applied AI that is pervasive in many sectors today. Other definitions
assume the general, human-like AI. There are definitions of AI that benchmark the level of
intelligence by comparing with human performance. Other definitions assume objective
measures of intelligence. These multiple views of intelligence and of AI are captured well
in what could arguably be considered as the standard textbook on AI [24].

220108-16

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

It is important to define and clarify the meaning of AI before defining AIT. Once
a suitable definition of AI is adopted, it can serve as a starting point to define and describe
AIT. We propose a definition of AIT in Section 5.

Evaluation of validity

We performed an additional quantitative content analysis of the abstracts and titles of the
articles included in the study. We counted the frequencies of words (excluding punctuation
and stop words) to explored the patterns and clusters of terms used. This quantitative
content analysis is fully reproducible in that a researcher can perform the same analysis on
the same abstract and title corpus and achieve identical results2.

The top-20 most frequent words in the abstracts and titles of the articles included in
this study are listed in Table 6 [28]. It is clear that the most frequent words correspond
well together with the five manually identified themes. In Table 7, we report on an analysis
of bigrams (consecutive written words) in the abstracts of the papers included in this study.
When reviewing the list of most frequent bigrams, we identify a clear mapping to the five
identified themes and, in addition, some key phrases related to academic research.

Table 6. The top-20 most frequent words in the abstracts and titles of the articles
included in this study. For a full list of words, including common English language construct words

(refer to the linked data sheet for more detailed information [28])

Word Frequency Word Frequency

data 84 analytics 30
study 77 transformation 29
business 61 value 28
research 60 adoption 27
digital 52 paper 26
big 43 case 25
smart 40 technologies 24
technology 40 process 23
organizational 33 model 22
new 32 impact 21

Table 7. The top-20 most frequent bigrams (consecutive written words)
in the abstracts of the articles included in this study

No. Bigram Frequency No. Bigram Frequency

1 big data 45 11 originality value 11
2 artificial intelligence 20 12 publishing limited 11
3 data analytics 19 13 change management 10
4 digital transformation 19 14 data driven 10
5 dynamic capabilities 13 15 digital technologies 10
6 case study 12 16 firm performance 10
7 decision making 11 17 case studies 9
8 design methodology 11 18 industry 4.0 9
9 emerald publishing 11 19 smart manufacturing 8
10 methodology approach 11 20 business value 7

2The R scripts used to perform the content analysis are provided in the linked data sheet [28].

220108-17

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

AI receives significant attention and the discussions on AI and its consequences are
becoming more and more frequent. The question is what is actually known about such
consequences. We argue that there is a need for a useful definition of AIT. The reason
for this is that, unlike other forms of digital transformation, AI shifts cognitive work
from human actors to computers. The consequences for many organizations are therefore
likely be more significant. We also suggest more focused research related to specific AI
technologies and their respective impact on organizations.

4.3. The main research methods used in AI transformation research (RQ2)

Research question 2 (RQ2) concerns which research methods are used in research related
to AIT. The motivation behind RQ2 is that we want to acquire an understanding of which
research methods are commonly used, as well as gaining more knowledge concerning how
the methods are used and reported in published work. This allows us to assess the maturity
of the research, and to characterize the existing body of knowledge generated in the field.

We review the 52 primary studies included in this study. The analysis reveals that there
is a multitude of research designs employed in AIT research. The majority of research tends
to be qualitative (n = 33) in nature. Also, 18 articles employ a quantitative approach, and
one article uses a mixed-methods approach [28].

The quantitative studies are primarily based on surveys or questionnaires. Common anal-
ysis approaches include structural equation modeling and partial least squares, descriptive
statistic, correlation analysis, and basic regression analysis.

The qualitative studies primarily use case studies and interviews as the method of data
collection (n = 21). In some cases, secondary data are used for additional data collection.
This document analysis involves, for example: white papers, archive documents, and other
forms of documentation. Analysis is mainly performed through content analysis using
various coding techniques. The use of data triangulation increases the credibility of the
results. In these studies, the authors overcome a common bias that would occur when only
one research method is used. However, it does not imply that the results can be generalized.
In 33% of the qualitative studies (n = 11), the primary analysis method is not presented.
For the purpose of scientific clarity and reproducibility, the full disclosure and motivation
of the primary data analysis approach is paramount [56]. The lack of such descriptions and
motivations significantly reduces the credibility of the findings, and the conclusions that
have been drawn.

We identify one article which uses a mixed-methods approach to gather empirical data
from a real-world setting (Stantec in Edmonton, Canada) [57]. In this article, a case study
is performed. In the case study, interviews are combined with regular check-ins, document
analysis with data mining, social network analysis, surveys, and a snowball sampling
strategy. The use of mixed-methods to answer a specific research question provides both
breadth and depth evidence [46]

In many cases, it is difficult to classify published empirical research articles in a simple,
unambiguous way, according to which data collection and analysis method are used. One
reason is that many published research articles do not provide clear descriptions of how the
data collection and analysis are performed. Another reason is that some research articles
use multiple methods for data collection and analysis. We identify which of the selected
articles do not describe their analysis approaches (n = 11). We then study the remaining
articles (n = 41) to extract any listed data collection or analysis method. We argue that

220108-18

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

our categorization is sufficiently correct to allow us to summarize the nature and maturity
of the selected articles.

4.4. The theoretical perspectives and frameworks in the field (RQ2.1)

Research question 2.1 (RQ2.1) concerns which theories and frameworks are adopted in
AIT research. The motivation behind RQ2.1 is that we identify AIT as inherently interdis-
ciplinary. Due to this, theories and frameworks may come from multiple disciplines, which
could make it difficult for a specific discipline to make sense of results and conclusions. An
understanding of the underlying theories and frameworks of AIT enables the establishment
of a unified framework, in which results, and conclusions could be reinterpreted by any
discipline, and by stakeholders from the private and public sector.

The linked data sheet [28] describes the main theories and frameworks adopted in AIT
research (see Figure 4 for a stacked bar graph of the 52 included papers). Out of 52 articles,
14 (26%) of the studies clearly mentioned the use of a theory, model, or framework. These
14 studies are found to use 19 different theories that can be grouped into three major
categories. The first category uses theories/frameworks within the domain of business and
economics: socio-technical systems, the contingency theory, network theory, the theory of
the growth of the firm, the resource-based view, the organizational evolutionary theory,
and the dynamic capabilities view theory.

The second category uses theories/frameworks within the domain of psychology: the
stimulus-organism-response, the psychological reactance theory, decision making and mental
models, and the information processing theory. Additionally, one can find theory that is

2 2

8

4

9

30

1

0

5

10

15

20

25

30

Business And Economics Informatics N/A Psychology

N
um

be
r o

f r
es

ea
rc

h
m

et
ho

ds
 u

se
d

Quantitative Qualitative Mix methods

Figure 4. Stacked bar graph of the types of research methods used versus the theories
used with respect to the 52 included papers

220108-19

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

used within the domain of computer science and information technology, i.e., technology-
-organization-environment. In this category, we also decide to include the diffusion of
innovations theory even though it can be related to various domains (e.g., business and
economics, psychology, and so on).

We observe that 32 of the qualitative studies lack theoretical grounding, while only
five of the quantitative and the mixed-methods studies do not discuss theoretical grounds
(11 quantitative and 3 studies use theory a a foundation). Since qualitative studies tend to
be more descriptive and generally not aim for statistical generalizability, the use of theory
helps to clarify the logic behind the selected methods. Also, it allows the researcher to
reveal existing biases about a study and support the researcher with the primary analysis
and interpretation [58]. In quantitative studies, the theory is the foundation for testing
and answering the research question, and the research design is built on identifying the
theoretical framework that will support the research structure [59].

Based on the results of this SMS, we emphasize the need for more theory research
focused on the impact of AIT on organization.

4.5. The real-world scenarios and contexts
in AI transformation research (RQ2.2)

Research question 2.2 (RQ2.2) concerns which real-world scenarios and contexts are studied
in AIT research. The motivation behind RQ2.2 is that we want to identify the extent or
maturity of AIT in different domains, and to explore potentially unique characteristics
related to AIT in these domains.

The analysis reveals that AIT research is conducted related to a number of industrial
or societal domains. See Figure 5 for a horizontal bar chart of the 52 included papers.
We categorize the domains into general segments and describe sectors. The categorization
leads to four sectors: the industrial sector, the service sector, the knowledge sector, and
the extraction sector. In the industrial sector, manufacturing is the most common industry
discussed in the literature. In the service sector, the finance industry (banking, finance,
accounting and auditing, and insurance) is the most frequently studied, followed by
healthcare. The last two sectors are less represented. In the knowledge sector, high-tech
and information technologies are the main industries discussed in the literature. In the

2

1

4

3

2

3

3

6

3

2

2

1

2

4

4

2

1

5

4

3

6

7

1

1

12

10

0 5 10 15 20 25

Survey

Secondary Data

Observations

Literatur Review

Interview

Case Study

Number of sectors studied with respect to the 52 included papers

Extraction Industry Knowledge N/A Service

Figure 5. Horizontal bar chart of the types of data collection methods used versus the sector
studied with respect to the 52 included papers

220108-20

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

extraction sector the studied domains include agriculture, oil, and gas (refer to the linked
data sheet for more detailed information [28]).

To identify the maturity of AIT research in different domains, we also review the
distribution of papers in terms of publication venue. The 52 primary studies included in
the review are published in 44 different journals that belong to 15 different focus areas.
Of these 44 journals, 33 are ABS3-listed journals, and three are CORE4-listed journals.
In addition, we present the three-citation indices based on Web of Science, which covers
the articles in this study in Appendix B the linked data sheet [28]. In total, 21 articles are
included in SSCI5, 6 articles are listed SCIE6, six articles are included in both, 7 articles
are included in ESCI7, and 4 articles are not listed in any index.

It is clear that AI is increasingly influential as technology area, and the results of this
SMS shows the attention AIT has within various domains. We observe for the results that
the most discussed sectors are the industrial sector (manufacturing), and the service sector,
while big data analytics is the most researched AI technology when discussing AIT.

4.6. Future research (RQ3)

Research question 3 (RQ3) concerns the emerging questions for future research and the
important research gaps in the area. It is important to identify the major trends of AIT
research and to identify research gaps, as they seed new research opportunities. In addition,
an ever-increasing number of organizations are looking into how to transform due to AI.
The identified research gaps may allow new research that helps these organizations reap the
benefits and mitigate the risks involved in AIT. The review of the 52 articles included in
this study identifies potential opportunities for future research and outline future research
directions related to AIT. This can be beneficial both to academics and professionals.We
summarize the “future research” section from primary study, and we discuss the gaps
appearing when mapping studies. We identify at least six avenues for future research.

Research methods

From a theoretical point of view, there is still a lot of potential for research in the field
of AIT. The use of multiple measurement methods, or the use of various approaches to
investigate AIT is suggested [60]. The use of mixed-methods approaches, increased sample
sizes and in different industries would be of significant value [57]. In addition, future
research could take alternative approaches, such as field experiments [61]. Moreover, the
need to use various primary data collections to validate research findings and uncover

3ABS ranking list is a guide to the range and quality of journals in which business and management
academics publish their research. Its purpose is to give both emerging and established scholars greater
clarity as to which journals to aim for, and where the best work in their field tends to be clustered.

4CORE provides assessments of major journals in the computing disciplines (https://www.core.edu.au/
home).

5SSCI, stands for Social Science Citation Index, which covers over 3, 400 journals across 58 social
sciences disciplines, as well as selected items from 3, 500 of the world’s leading scientific and technical
journals (https://clarivate.com/webofsciencegroup/solutions/webofscience-ssci/).

6SCIE, stand for Science Citation Index Expanded which covers over 9, 200 of the world’s most impactful
journals across 178 scientific disciplines (https://clarivate.com/webofsciencegroup/solutions/webofscience-
scie/).

7ESCI, stands for Emerging Sources Citation Index which cover all disciplines and range from inter-
national and broad scope publications to those that provide deeper regional or specialty area coverage
(https://clarivate.com/webofsciencegroup/solutions/webofscience-esci/).

220108-21

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

the impact of AI is emphasized [62]. Furthermore, the importance of the use of various
databases and sources is stressed [63]. More research is needed to strengthen the validity
of smart technology transformation research [64].

Theoretical foundations

Future research should consider potential links to existing theories, which help to explain,
predict, and understand AIT. The articles included in this study discuss potential opportu-
nities for theoretical assumptions, which should be reviewed as a basis for investigation of
organizational change fueled by smart technologies. Further research can be accomplished
by the use of various theories related to the interaction, assessment and comparison of
organizations ordinary capabilities vs. dynamic capabilities [65].

Societal aspects

Legal, ethical, societal, and economic changes which are the result of AIT are relevant for
future investigation [66]. Legal and ethical considerations in relations to societal anticipation
is an important aspect from an organizational perspective and it provides a broader
perspective of the consequences concerning AI [11]. When studying AIT, researchers should
consider the development of organizational and societal expectations, the outcomes related
to opportunities, and the challenges involving AI. These factors and their implications
from an organizational perspective, we argue, are highly relevant for future research.

The importance of ethical challenges related to smart technologies, new data sets,
algorithms, and various AI solutions and machine learning is stressed [67]. Additional
research, along those lines can be taken from different organizational perspectives (operation,
strategy, structure, process, human labor, and so on). This may lead to an increase of
the level of usage and understanding of the concept of AI. It is argued that an increased
understanding of the factors that shape experiences on the transition age, not only of
technological changes, but also of any social and economic changes, may lead to a better
adaptation of smart technologies. It is further argued that there is a high value in the
collaboration between academia and industry, which can help to identify business, technical,
and societal challenges in the implementation of smart technologies [68].

The impact of adoption and adaption

The value of exploring the impact of investing in big data analytics to create higher-order
capabilities or dynamic capabilities is discussed [62]. The impact of AI capabilities on firm
performance should be studied from an organizational perspective, in a way which makes
it possible to comprehend the importance AI personal expertise and AI infrastructure. In
this way, organizations will be able to improve their business value and to gain a better
understanding of AI. It is claimed that organizations, while adopting AI, should consider
the impact on the firms [57]. A comparison of various findings and trends related to
smart technologies can be beneficial to gain an understanding of the capabilities of smart
technologies and its effect on the organization. Further research could explore the advantages
and disadvantages of AI and its impact on organizational structures [57]. To extend the
concept of technological transformation one should examine the adoption of one specific
digital innovation in a particular organizational context, as well as verifying and elaborating

220108-22

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

on this particular context, and examine how boundary relations are reconfigured in other
contexts and with other digital innovations [69].

The effect on human capital

The discussion on the effect of new technologies on human capital and organizations is not
new, but rather a continuous discussion of previous industrial revolutions and changes in the
labor market. It is stated that “any worker who now perform his task by following specific
instructions can, in principle, be replaced by a machine” [70]. The authors further claim
that physical jobs that disappear from the market as a result of the industrial revolution
increase the need for the mental capacity of human labor and the importance of training
and retraining of the labor to better anticipate future structural changes. The importance
of creative imagination, entrepreneurship, and leadership are emphasized and viewed to be
irreplaceable by a machine: “without creative imagination, neither art nor science could
possibly advance” [70].

Furthermore, it is emphasized that an organization’s future, based on new technologies,
will cause some jobs to disappear [3]. But from the nature of capitalism (or humans) it will
create other jobs which we cannot easily predict [3].

The user perspective plays a vital role in the way AI transforms. Future research
that focus on potential moderators to the impacts of users’ psychological reactance is
suggested [71]. Moreover, it is pointed out that the most important factor in organizational
transformation is not the technological but rather the managerial factor, along with employee
attitudes [72]. A holistic view for future research is discussed, which should emphasize the
need for collaboration between researchers and practitioners to contribute for clarifying
the relevance of human resources in the firms’ transformation and processes [73].

A focus is suggested on the reciprocal and symbiotic relationship between intelligent
technologies and human capital, which will have a complementary role in the future
organization [74]. The investment made in organizations to develop new technologies, or
implementing new technologies such as AI, leads to investments in human capital in a way
that can complement and support the decision-making. However, this type of human
capital, that is complementary to AI decision support, is not adequately researched or
identified. It is emphasized that future research should emphasize and compare the behavior
of employees and managers in the context of delegation of strategic decision to a human
being or an algorithm [75].

Complementary contexts

Smart technologies and their effects on the organization are investigated in various contexts.
To enable a thorough understanding of AIT further research can be taken in various
contextual basis. Published studies could be repeated in developing countries and different
industries and sectors, or to compare between organizations of similar size [22]. Similar
ideas are suggested that urge to also test conceptual models and theories in various service
industries [71]. The research around AIT should extend the target research areas and cover
more regions such as specific European and American countries to compare findings in
emerging and developed economies and to increase generalizability [76].

220108-23

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

5. Discussion

5.1. Understanding and defining AI transformation

In the last sections, we elaborate on our impetus for conducting an SMS on AIT, as
a key concept for incremental and radical change that will lead to a transformation in
the organization. AI and its technologies (for example: computer vision, machine learning,
natural language processing, and robotics) are reshaping organizational structure, processes,
organizational learning, work routines, knowledge management, products, and services [37].
AI involves both challenges and immense opportunities, its capability to manage information
and knowledge required change in organizations culture, mindset and skills and organization
that will understand and act on it will probably get a competitive advantage. AI counter
business, and the reciprocity relations, and influence it has on each other is discussed [77].
AI changes organizations, but organizations influence the way AI develops. Understanding
this link between the two is highly relevant from a research perspective.

Researchers from various disciplines should collaborate to understand and improve
the connection between the technology and the organization. AI and its effects on the
organization is unavoidable [23], however, it is important to understand the concept of AI
and its implications, while understanding its relationship to the organizational structure,
leadership, culture, vision, and mission and the human attributes within the organization.

In this SMS, we aggregate the body of knowledge on the relationship between AI and
organizational transformation, map the field, and identify the research gaps that represent
opportunities for future studies. Our SMS follows Kitchenham’s suggestions on conducting
an SMS [39] and identifies 52 articles published in various journals. We present three
main research questions and adopt both qualitative and quantitative approaches based
on the analysis of the 52 articles to increase the trustworthiness of this study, and to give
a thorough understanding of the phenomenon from different perspectives. In addition, the
use of both methods was complementary; the strengths of one approach supplemented the
weaknesses of another [78].

In general, from the review, we observe that MMAT reveals that very little empirical
research is conducted on the topic of the SMS. We find that the topic is discussed in
various academic disciplines and uses various methods, and theories, however only a few
use established theories. We identify a number of themes as discussed in Section 4: The
organization and its environment, enterprise architectures, idea transformation, and the
fourth industrial revolution. Four sectors were identified: The industrial sector, the service
sector, the knowledge sector, and the extraction sector (agriculture, oil, and gas). However,
the most discussed sectors were the industrial sector and the service sector, while big data
analytics is the most reviewed AI technology when discussing AIT.

However, we were unable to find a concise and useful definition of AIT. The available
research that brings up this phenomenon is often focusing on digital transformation, and
there is a substantial scientific discussion around digital transformation but few studies
focused only on AI. However, we emphasize the need for a definition of AIT. The reason for
this is that, unlike other forms of digital transformation, AI will clearly shift cognitive work
from human actors to computers. The consequences for many organizations is significant.

We view AIT as an interdisciplinary phenomenon. In this context, we thus define
AIT as:

220108-24

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Definition 1. the ongoing change in organizational dimensions (strategy, structure, people,
technology and processes), subject to constraints and interests of external forces (customers,
suppliers, partners, competitors, regulators), and manifested in AI readiness.

This division into organizational dimensions and external forces is suggested in an
existing work on e-business transformation [79]. In this definition, organizational dimen-
sions refer to strategy as the way organizations determine their goals, their actions, the
implementation, and the resource allocation required for achieving these goals [80]. The
structure is the way an organization is designed and the way it administrates, which is
linked to the effectiveness, the coordination, and the communication of the organization [80].
The organizational processes are linked with the strategy and structure. The processes are
essentially sequences of tasks, distributed in time and space. They are required to assign
tasks to people and to accomplish these tasks [81]. The external forces are uncontrollable
factors that can influence an organization. AI technology can refer to either the actual
hardware and software systems which are based on AI, or to the knowledge, skills, and
processes required to apply AI in the real world. These definitions of AI technology are
based on typical definitions of technology (see for example [82]). Most researchers discuss
the internal dimensions and the external forces as two separate agents of change. In our
view, AIT occurs when one or more of the organizational dimensions or the external forces
change due to the use of AI technologies. Transformation, on the one hand, can be of
a revolutionary nature, where the organization changes radically and quickly along one or
more of the organizational dimensions. On the other hand, transformation can also be of
a gradual or incremental nature, where the organization, in a discontinuous way, respond to
basic changes in its environment [83]. An organization that has a clear sense of its position
along the organizational dimensions is able to align itself properly to external factors.

The AIT Playbook8 discusses the journey of a successful organization’s transforma-
tion, and the leveraging of AI capabilities to significantly advance, due to the use of AI
technologies. Our definition of AIT is concretely connected to the knowledge and insights
about successful AIT provided in the playbook. The AI transformation playbook describes
various relevant organizational aspects (for example: resources, AI expertise, up-skilling
people, adjustment of processes and strategy).

Our definition categorizes these aspects into organizational dimensions. It also adds
the perspective of external forces (interests and constraints originating from outside
the organization), and introduces AI readiness to quantify the level of fulfilment of the
transformation. We argue that our definition provides the research community with a clear
description, which can be criticised, elaborated upon, and used to frame future work. It also
provides organizations with a foundation for their AI journey and a basis for evaluation of
the progress.

6. Conclusions

In this study, we systematically review the field of AI and organizational transformation,
and provide a thorough understanding of the field. By doing so, we identify gaps in research
that represent potential opportunities for future study. Despite the popularity and attention
related to AI and its effects on organizations, this Systematic mapping study (SMS) shows

8AI Transformation Playbook, https://landing.ai/ai-transformation-playbook/

220108-25

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

that the number of studies discussing this topic are opinion papers rather than scientific
research papers.

The results reveal that there is no existing useful definition of AIT and that in the
sample we identify there are few empirical research papers. Existing work on AIT originates
from various academic disciplines and domains. This shows that AI is interdisciplinary in
its nature and that it has impacts on various domains and industries. AIT researchers are
mainly using qualitative methods. We provide a new definition for AIT and attempt to
consolidate and relate existing work from the various disciplines and domains. We also
observe a clear need for research using mixed methods approaches.

This Systematic mapping study enriches the current state-of-the-art knowledge regarding
AIT research. We propose several directions for future research, including: a Systematic
mapping study to determine, for each specific AI technology, how it transforms organizations.
Another proposed direction for future work is to explore how one particular dimension of
the organization (i.e., strategy, structure, people, technology, processes) transform based
on the implementation of AI technology. It could be interesting to look into AIT in various
contexts, such as: private sector vs. public sector, different industries, different size of
organization and the context of various countries (developing countries vs. industrialized
countries and so on). The use of mixed-methods research approaches to investigate AIT
will give a more broad view about this phenomenon.

This SMS reveal that there is a substantial scientific discussion around digital transfor-
mation, but only few works discuss the concept of AIT. In this SMS we develop a definition
for AIT. This definition can be used as a foundation for future work involving the impact
of AI on organizations.

The selected 52 papers in this SMS should be interesting for industry, academia and
public sector since it may contain relevant information for practitioners. We believe that the
results of this SMS can be a foundation for improvements of the collaboration between these
three actors. The university responsibility should be knowledge production, the industry is
responsible for market and economic production and exchange, and the government stands
for policy making.

The results introduced in these papers can provide valuable insight for organizations
which are adopting AI.

References

[1] J. Holmstrom, “From AI to digital transformation: The AI readiness framework,” Business
Horizons, 2021.

[2] U. Lichtenthaler, “Beyond artificial intelligence: Why companies need to go the extra step,”
Journal of Business Strategy, 2018.

[3] E. Brynjolfsson, The Second Machine Age: Work, Progress, and Prosperity in a Time of
Brilliant Technologies. Norton and Company, 2014.

[4] J. Maclure and S. Russell, AI for Humanity: The Global Challenges. Springer International
Publishing, 2021, pp. 116–126.

[5] R.C. Schank, “Where’s the AI?” AI Magazine, Vol. 12, No. 4, 1991.
[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, Vol. 521, No. 7553, 2015,

pp. 436–444.
[7] E. Ntoutsi, “Bias in data-driven artificial intelligence systems – An introductory survey,”

WIREs Data Mining and Knowledge Discovery, 2020.
[8] C. Anderson, Creating a data-driven organization: Practical advice from the trenches. O’Reilly

Media, Inc., 2015.

220108-26

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

[9] N. Zolas, Z. Kroff, E. Brynjolfsson, K. McElheran, D. Beede et al., “Advanced technologies
adoption and use by u.s. firms: Evidence from the annual business survey,” National Bureau
of Economic Research, Working Paper 28290, 2020.

[10] M. Cubric, “Drivers, barriers and social considerations for AI adoption in business and
management: A tertiary study,” Technology in Society, Vol. 62, 2020, pp. 101–257.

[11] S. Akter, K. Michael, M. Uddin, G. McCarthy, and M. Rahman, “Transforming business using
digital innovations: The application of AI, blockchain, cloud, and data analytics,” Annals of
Operations Research, 2020, pp. 1–33.

[12] F. Khanboubi and A. Boulmakoul, “Digital transformation in the banking sector: Surveys
exploration and analytics,” International Journal of Information Systems and Change Man-
agement, Vol. 11, No. 2, 2019, pp. 93–127.

[13] L. Achtenhagen, L. Melin, and L. Naldi, “Dynamics of business models – Strategizing, critical
capabilities and activities for sustained value creation,” Long Range Planning, Vol. 46, No. 6,
2013, pp. 427–442.

[14] S. Makridakis, “The forthcoming artificial intelligence (AI) revolution: Its impact on society
and firms,” Futures, Vol. 90, 2017, pp. 46–60.

[15] A. Schumacher, S. Erol, and W. Sihn, “A maturity model for assessing industry 4.0 readiness
and maturity of manufacturing enterprises,” Procedia Cirp, Vol. 52, 2016, pp. 161–166.

[16] H.A. Simon, Administrative Behavior: A Study of Decision-making Processes in Administrative
Organization, 3rd ed. Free Press, 1976.

[17] A. Ebbage, “Banking on artificial intelligence,” Engineering and Technology, Vol. 13, No. 10,
2018, pp. 66–69.

[18] H. David, “Why are there still so many jobs? The history and future of workplace automation,”
Journal of Economic Perspectives, Vol. 29, No. 3, 2015, pp. 3–30.

[19] M. Polanyi, The Tacit Dimension. University of Chicago Press, 2009.
[20] E. Sadler-Smith and E. Shefy, “The intuitive executive: Understanding and applying ‘gut feel’

in decision-making,” Academy of Management Perspectives, Vol. 18, No. 4, 2004, pp. 76–91.
[21] M. Tegmark, Life 3.0: Being Human in the Age of Artificial Intelligence, 1st ed. Alfred A.

Knopf, 2017.
[22] P. Maroufkhani, W.K.W. Ismail, and M. Ghobakhloo, “Big data analytics adoption model

for small and medium enterprises,” Journal of Science and Technology Policy Management,
Vol. 11, No. 4, 2020, pp. 483–513.

[23] S.L. Wamba-Taguimdje, S.F. Wamba, J.R.K. Kamdjoug, and C.T. Wanko, “Influence of
artificial intelligence (AI) on firm performance: The business value of AI-based transformation
projects,” Business Process Management Journal, Vol. 26, No. 7, 2020.

[24] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson Education,
2016.

[25] L. Deng, “Artificial intelligence in the rising wave of deep learning: The historical path
and future outlook [perspectives],” IEEE Signal Processing Magazine, Vol. 35, No. 1, 2018,
pp. 180–177.

[26] J. Lee, H. Davari, J. Singh, and V. Pandhare, “Industrial artificial intelligence for industry
4.0-based manufacturing systems,” Manufacturing Letters, Vol. 18, 2018, pp. 20–23.

[27] E.P.R. Service, “The ethics of artificial intelligence: Issues and initiatives,” European Parlia-
ment, Tech. Rep., 2020.

[28] E. Peretz-Andersson, “AI transformation: A systematic literature review (linked data sheet),”
https://osf.io/3afw6/?view_only=fd36e2c55f044f1abe55e6e9d1d0f852, 2021, [Online; accessed
2021-05-21].

[29] F. Li, “The digital transformation of business models in the creative industries: A holistic
framework and emerging trends,” Technovation, Vol. 92, 2020, p. 102012.

[30] L. Heilig, E. Lalla-Ruiz, and V. Stefan, “Digital transformation in maritime ports: Analysis
and a game theoretic framework,” Netnomics: Economic research and electronic networking,
Vol. 18, No. 2, 2017, pp. 227–254.

[31] A. Nadeem, B. Abedin, N. Cerpa, and E. Chew, “Digital transformation and digital business
strategy in electronic commerce-the role of organizational capabilities,” 2018, pp. 1–8.

220108-27

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

[32] D. Anderson and L.A. Anderson, Beyond Change Management: Advanced Strategies for
Today’s Transformational Leaders. John Wiley and Sons, 2002.

[33] H. Tsoukas and R. Chia, “On organizational becoming: Rethinking organizational change,”
Organization Science, Vol. 13, No. 5, 2002, pp. 567–582.

[34] H. Mintzberg and F. Westley, “Cycles of organizational change,” Strategic Management
Journal, Vol. 13, No. S2, 1992, pp. 39–59.

[35] H. Arazmjoo and H. Rahmanseresht, “A multi-dimensional meta-heuristic model for managing
organizational change,” Management Decision, Vol. 58, No. 3, 2019, pp. 526–543.

[36] M.L. Tushman and C.A. O’Reilly III, “Ambidextrous organizations: Managing evolutionary
and revolutionary change,” California Management Review, Vol. 38, No. 4, 1996, pp. 8–29.

[37] P. Weill and S.L. Woerner, “Is your company ready for a digital future?” MIT Sloan Manage-
ment Review, Vol. 59, No. 2, 2018, pp. 21–25.

[38] R. Ramilo and M.R.B. Embi, “Critical analysis of key determinants and barriers to digital
innovation adoption among architectural organizations,” Frontiers of Architectural Research,
Vol. 3, No. 4, 2014, pp. 431–451.

[39] B. Kitchenham, “Procedures for performing systematic reviews,” Keele University, UK, Tech.
Rep., 2004.

[40] R. Mallett, J. Hagen-Zanker, R. Slater, and M. Duvendack, “The benefits and challenges of
using systematic reviews in international development research,” Journal of Development
Effectiveness, Vol. 4, No. 3, 2012, pp. 445–455.

[41] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping
studies in software engineering: An update,” Information and Software Technology, Vol. 64,
2015, pp. 1–18.

[42] A. Bajaj and O.P. Sangwan, “A systematic literature review of test case prioritization using
genetic algorithms,” IEEE Access, Vol. 7, No. 126355–126375, 2019.

[43] I.M. Côté, P.S. Curtis, H.R. Rothstein, and G.B. Stewart, “Gathering data: searching literature
and selection criteria,” Handbook of meta-analysis in ecology and evolution, 2013, pp. 37–51.

[44] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, and P. Group, “Preferred reporting items
for systematic reviews and meta-analyses: The PRISMA statement,” PLoS Medicine, Vol. 6,
No. 7, 2009.

[45] A.F. Hayes and K. Krippendorff, “Answering the call for a standard reliability measure for
coding data,” Communication Methods and Measures, Vol. 1, No. 1, 2007, pp. 77–89.

[46] Q.N. Hong, P. Pluye, S. Fàbregues, G. Bartlett, F. Boardman et al., “Mixed methods appraisal
tool (MMAT),” McGill University, Tech. Rep., 2018.

[47] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in
software engineering,” in 18th International Conference on Evaluation and Assessment in
Software Engineering. ACM Press, 2014, pp. 1–10.

[48] T.D.Cook, D. Campbell, and W.R.Shadish, Experimental and quasi-experimental designs for
generalized causal inference. Houghton Mifflin Boston, MA, 2002.

[49] S. Elo, M. Kääriäinen, O. Kanste, T. Pölkki, K. Utriainen et al., “Qualitative content analysis:
A focus on trustworthiness,” SAGE Open, 2014, pp. 1–10.

[50] U. Flick, The SAGE Handbook of Qualitative Data Analysis. Sage, 2013.
[51] K.A. Neuendorf, The Content Analysis Guidebook, 2nd ed. SAGE, 2017.
[52] S. Elo and H. Kyngäs, “The qualitative content analysis process,” Journal of Advanced

Nursing, Vol. 62, No. 1, 2008, pp. 107–115.
[53] M. Bengtsson, “How to plan and perform a qualitative study using content analysis,” Nurs-

ingPlus Open, Vol. 2, 2016, pp. 8–14.
[54] J. vom Brocke, A. Simons, B. Niehaves, B. Niehaves, K. Riemer et al., “Reconstructing the

giant: On the importance of rigour in documenting the literature search process,” in 17th
European Conference on Information Systems, 2009, pp. 2206–2217.

[55] A.C. Serban and M.D. Lytras, “Artificial intelligence for smart renewable energy sector in
Europe – Smart energy infrastructures for next generation smart cities,” IEEE Access, Vol. 8,
2020, pp. 77 364–77 377.

220108-28

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

[56] M. Allen, The SAGE encyclopedia of Communication Research Methods. Sage Publications,
2017.

[57] M.M. Bonanomi, D.M. Hall, S. Staub-French, A. Tucker, and C.M.L. Talamo, “The impact of
digital transformation on formal and informal organizational structures of large architecture
and engineering firms,” Engineering, Construction, and Architectural Management, Vol. 27,
No. 4, 2019, pp. 872–892.

[58] C.S. Collins and C.M. Stockton, “The central role of theory in qualitative research,” Interna-
tional Journal of Qualitative Methods, Vol. 17, 2018, pp. 1–10.

[59] J.W. Creswell and J.D. Creswell, Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. Sage, 2018.

[60] M. Jocevski, N. Arvidsson, G. Miragliotta, A. Ghezzi, and R. Mangiaracina, “Transitions
towards omni-channel retailing strategies: A business model perspective,” International
Journal of Retail and Distribution Management, Vol. 47, No. 2, 2019, pp. 78–93.

[61] X. Fan, N. Ning, and N. Deng, “The impact of the quality of intelligent experience on smart
retail engagement,” Marketing Intelligence and Planning, Vol. 38, No. 7, 2020, pp. 877–891.

[62] S.F. Wamba and S. Akter, “Understanding supply chain analytics capabilities and agility for
data-rich environments,” International Journal of Operations and Production Management,
Vol. 39, No. 6–8, 2019, pp. 887–912.

[63] G. Elia, G. Polimeno, G. Solazzo, and G. Passiante, “A multi-dimension framework for value
creation through big data,” Industrial Marketing Management, Vol. 90, 2020, pp. 508–522.

[64] K. Tiwari and M.S. Khan, “Sustainability accounting and reporting in the industry 4.0,”
Journal of Cleaner Production, Vol. 258, 2020.

[65] Y. Gong and M. Janssen, “Roles and capabilities of enterprise architecture in big data
analytics technology adoption and implementation,” Journal of Theoretical and Applied
Electronic Commerce Research, Vol. 16, No. 1, 2021, pp. 37–51.

[66] T. Nam, “Technology usage, expected job sustainability, and perceived job insecurity,”
Technological Forecasting and Social Change, Vol. 138, 2019, pp. 155–165.

[67] P. Dahlbom, N. Siikanen, P. Sajasalo, and M. Jarvenpää, “Big data and HR analytics in the
digital era,” Baltic Journal of Management, Vol. 15, No. 1, 2020.

[68] M. Gotthardt, D. Koivulaakso, O. Paksoy, C. Saramo, M. Martikainen et al., “Current state
and challenges in the implementation of smart robotic process automation in accounting and
auditing,” ACRN Journal of Finance and Risk Perspectives, Vol. 9, 2020, pp. 90–102.

[69] M. Barrett, E. Oborn, W.J. Orlikowski, and J. Yates, “Reconfiguring boundary rela-
tions: Robotic innovations in pharmacy work,” Organization Science, Vol. 23, No. 5, 2011,
pp. 1448–1466.

[70] W. Leontief, The Long-Term Impact of Technology on Employment and Unemployment. The
National Academies Press, 1983.

[71] W. Feng, R. Tu, and Z. Zhou, “Understanding forced adoption of self-service technology: The
impacts of users’ psychological reactance,” Behaviour and Information Technology, Vol. 38,
No. 8, 2019, pp. 820–832.

[72] D.J. Bowersox, D.J. Closs, and R. Drayer, “The digital transformation: Technology and
beyond,” Supply Chain Management Review, Vol. 9, No. 1, 2005, pp. 22–29.

[73] F. Caputo, V. Cillo, E. Candelo, and Y. Liu, “Innovating through digital revolution: The role
of soft skills and big data in increasing firm performance,” Management Decision, Vol. 57,
No. 8, 2019, pp. 2032–2051.

[74] K. Conboy, P. Mikalef, D. Dennehy, and J. Krogstie, “Using business analytics to enhance
dynamic capabilities in operations research: A case analysis and research agenda,” European
Journal of Operational Research, Vol. 281, No. 3, 2020, pp. 656–672.

[75] S. Schneider and M. Leyer, “Me or information technology? Adoption of artificial intelligence
in the delegation of personal strategic decisions,” Managerial and Decision Economics, Vol. 40,
No. 3, 2019, pp. 223–231.

[76] W.E. Hilali, A.E. Manouar, and M.A. Idrissi, “Reaching sustainability during a digital
transformation: A PLS approach,” International Journal of Innovation Science, Vol. 12, No. 1,
2020, pp. 52–79.

220108-29

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

[77] C.D. Francescomarino and F.M. Maggi, “Preface to the special issue on business process
innovations with artificial intelligence,” Journal on Data Semantics, Vol. 8, 2019, pp. 77–77.

[78] A. Regnault, T.Willgoss, and S. Barbic, “Towards the use of mixed methods inquiry as best
practice in health outcomes research,” Journal of Patient-Reported Outcomes, Vol. 2, No. 19,
2018.

[79] A. Farhoomand and R. Wigand, “Editorial: Special section on managing e-business transfor-
mation,” European Journal of Information Systems, Vol. 12, 2003, pp. 249–250.

[80] A.D. Chandler, Strategy and Structure: Chapters in the History of the Industrial Enterprise,
3rd ed. MIT Press, 2013.

[81] B.T. Pentland, C.S. Osborn, G. Wyner, and F. Luconi, Useful Descriptions of Organiza-
tional Processes: Collecting Data for the Process Handbook. Center for Coordination Science,
Massachusetts Institute of Technology, USA, 1999.

[82] R. Bain, “Technology and state government,” American Sociological Review, Vol. 2, No. 6,
1937, pp. 860–874.

[83] E.Romanelli and M. Tushman, “Organizational transformation as punctuated equilibrium:
An empirical test,” Academy of Management Journal, Vol. 37, No. 5, 1994, pp. 1141–1166.

[84] Y. Chen and Z. Lin, “Business intelligence capabilities and firm performance: A study in
China,” International Journal of Information Management, Vol. 57, 2021, p. 102232.

[85] M. Aboelmaged and S. Mouakket, “Influencing models and determinants in big data analytics
research: A bibliometric analysis,” Information Processing and Management, Vol. 57, No. 4,
2020, p. 102234.

[86] R. Balakrishnan and S. Das, “How do firms reorganize to implement digital transformation?”
Strategic Change, Vol. 29, No. 5, 2020, pp. 531–541.

[87] F. Brunetti, D.T. Matt, A. Bonfanti, A.D. Longhi, G. Pedrini et al., “Digital transformation
challenges: Strategies emerging from a multi-stakeholder approach,” The TQM Journal,
Vol. 32, No. 4, 2020, pp. 697–724.

[88] C. Dremel, M.M. Herterich, J. Wulf, and J. vom Brocke, “Actualizing big data analytics
affordances: A revelatory case study,” Information and Management, Vol. 57, No. 1, 2020,
p. 103121.

[89] J. Lee and D. Kim, “Development of innovative business of telecommunication operator:
Case of KT-MEG,” International Journal of Asian Business and Information Management
(IJABIM), Vol. 11, No. 3, 2020, pp. 1–14.

[90] P. Mikalef, J. Krogstie, I. Pappas, and P. Pavlou, “Exploring the relationship between big
data analytics capability and competitive performance: The mediating roles of dynamic and
operational capabilities,” Information and Management, Vol. 57, No. 2, 2020, p. 103169.

[91] K. Moore, “Smart connected sensors, cyber-physical networks, and big data analytics systems
in internet of things-based real-time production logistics,” Economics, Management, and
Financial Markets, Vol. 15, No. 2, 2020, pp. 16–22.

[92] N. Nguyen, R. Gosine, and P. Warrian, “A systematic review of big data analytics for oil and
gas industry 4.0,” IEEE Access, Vol. 8, 2020, pp. 61 183–61 201.

[93] P. Osterrieder, L. Budde, and T. Friedli, “The smart factory as a key construct of industry
4.0: A systematic literature review,” International Journal of Production Economics, Vol. 221,
2020, p. 107476.

[94] R. Silva, C. Bernardo, C. Watanabe, R. Silva, and J. Neto, “Contributions of the internet of
things in education as support tool in the educational management decision-making process,”
International Journal of Innovation and Learning, Vol. 27, No. 2, 2020, pp. 175–196.

[95] M. Sott, L. Furstenau, L. Kipper, F. Giraldo, J. López-Robles et al., “Precision techniques
and agriculture 4.0 technologies to promote sustainability in the coffee sector: State of the
art, challenges and future trends,” IEEE Access, Vol. 8, 2020, pp. 149 854–149 867.

[96] A. Tuomi, I. Tussyadiah, E. Ling, G. Miller, and L. Geunhee, “x=(tourism_work) y=(sdg8)
while y= true: automate (x),” Annals of Tourism Research, Vol. 84, 2020, p. 102978.

[97] Z. Zhang and T. Luo, “Knowledge structure, network structure, exploitative and exploratory
innovations,” Technology Analysis and Strategic Management, Vol. 32, No. 6, 2020, pp. 666–682.

220108-30

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

[98] J. Brock and F.V. Wangenheim, “Demystifying AI: What digital transformation leaders can
teach you about realistic artificial intelligence,” California Management Review, Vol. 61,
No. 4, 2019, pp. 110–134.

[99] D. Kalaivani and P. Sumathi, “Factor based prediction model for customer behavior analysis,”
International Journal of System Assurance Engineering and Management, Vol. 10, No. 4,
2019, pp. 519–524.

[100] R. Leung, “Smart hospitality: Taiwan hotel stakeholder perspectives,” Tourism Review, 2019.
[101] S. Magistretti, C. Dell’Era, and A. Messeni Petruzzelli, “How intelligent is Watson? Enabling

digital transformation through artificial intelligence,” Business Horizons, Vol. 62, No. 6, 2019,
pp. 819–829.

[102] A. Mitra, S. Gaur, and E. Giacosa, “Combining organizational change management and
organizational ambidexterity using data transformation,” Management Decision, 2019.

[103] L. Pee, S. Pan, and L. Cui, “Artificial intelligence in healthcare robots: A social informatics
study of knowledge embodiment,” Journal of the Association for Information Science and
Technology, Vol. 70, No. 4, 2019, pp. 351–369.

[104] A. Thomas, “Convergence and digital fusion lead to competitive differentiation,” Business
Process Management Journal, 2019.

[105] K. Warner and M. Wäger, “Building dynamic capabilities for digital transformation: An
ongoing process of strategic renewal,” Long Range Planning, Vol. 52, No. 3, 2019, pp. 326–349.

[106] C. Lehrer, A. Wieneke, J.V. Brocke, R. Jung, and S. Seidel, “How big data analytics enables
service innovation,” Journal of Strategic Information Systems, Vol. 35, No. 2, 2018.

[107] R. Torres, A. Sidorova, and M. Jones, “Enabling firm performance through business intelligence
and analytics: A dynamic capabilities perspective,” Information and Management, Vol. 55,
No. 7, 2018, pp. 822–839.

[108] H. Chen, R. Schütz, R. Kazman, and F. Matthes, “How Lufthansa capitalized on big data for
business model renovation.” MIS Quarterly Executive, Vol. 16, No. 1, 2017.

[109] A. Gunasekaran, T. Papadopoulos, R. Dubey, S. Wamba, S. Childe et al., “Big data and
predictive analytics for supply chain and organizational performance,” Journal of Business
Research, Vol. 70, 2017, pp. 308–317.

[110] R. Basole, “Accelerating digital transformation: Visual insights from the API ecosystem,” IT
Professional, Vol. 18, No. 6, 2016, pp. 20–25.

[111] M. Hengstler, E. Enkel, and S. Duelli, “Applied artificial intelligence and trust – The case of
autonomous vehicles and medical assistance devices,” Technological Forecasting and Social
Change, Vol. 105, 2016, pp. 105–120.

[112] M. Chalal, X. Boucher, and G. Marquès, “Decision support system for servitization of
industrial SMEs: A modelling and simulation approach,” Journal of Decision Systems, Vol. 24,
No. 4, 2015, pp. 355–382.

[113] P. O’Donovan, K. Leahy, K. Bruton, and D. O’Sullivan, “An industrial big data pipeline for
data-driven analytics maintenance applications in large-scale smart manufacturing facilities,”
Journal of Big Data, Vol. 2, No. 1, 2015, pp. 1–26.

[114] P. O’Donovan, K. Leahy, K. K. Bruton, and D. O’Sullivan, “Big data in manufacturing:
A systematic mapping study,” Journal of Big Data, Vol. 2, No. 1, 2015, pp. 1–22.

[115] S. LaValle, E. Lesser, R. Shockley, M. Hopkins, and N. Kruschwitz, “Big data, analytics
and the path from insights to value,” MIT Sloan Management Review, Vol. 52, No. 2, 2011,
pp. 21–32.

220108-31

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Appendix A. List of selected articles

Author Title Year

Chen and Lin [84] Business intelligence capabilities and firm perfor-
mance: A study in China

2021

Gong and Janssen [65] Roles and capabilities of enterprise architecture in
big data analytics technology adoption and imple-
mentation

2021

Aboelmaged and Mouakket [85] Influencing models and determinants in big data
analytics research: A bibliometric analysis

2020

Akter et al. [11] Transforming business using digital innovations: The
application of AI, blockchain, cloud and data analyt-
ics

2020

Balakrishnan and Das [86] How do firms reorganize to implement digital trans-
formation?

2020

Brunetti et al. [87] Digital transformation challenges: Strategies emerg-
ing from a multi-stakeholder approach

2020

Conboy et al. [74] Using business analytics to enhance dynamic capa-
bilities in operations research: A case analysis and
research agenda

2020

Dremel et al. [88] Actualizing big data analytics affordances: A revela-
tory case study

2020

Elia et al. [63] A multi-dimension framework for value creation
through big data

2020

Fan et al. [61] The impact of the quality of intelligent experience
on smart retail engagement

2020

Gotthardt et al. [68] Current state and challenges in the implementation
of smart robotic process automation in accounting
and auditing

2020

Hilali et al. [76] Reaching sustainability during a digital transforma-
tion: A PLS approach

2020

Lee and Kim [89] Development of innovative business of telecommuni-
cation operator: Case of KT-MEG

2020

Maroufkhani et al. [22] Big data analytics adoption model for small and
medium enterprises

2020

Mikalef et al. [90] Exploring the relationship between big data analytics
capability and competitive performance: The medi-
ating roles of dynamic and operational capabilities

2020

Moore [91] Smart connected sensors, cyber-physical networks,
and big data analytics systems in internet of
things-based real-time production logistics

2020

Nguyen et al. [92] A systematic review of big data analytics for oil and
gas industry 4.0

2020

Osterrieder et al. [93] The smart factory as a key construct of industry 4.0:
A systematic literature review

2020

Serban and Lytras [55] Artificial intelligence for smart renewable energy sec-
tor in Europe – Smart energy infrastructures for next
generation smart cities

2020

Silva et al. [94] Contributions of the internet of things in educa-
tion as support tool in the educational management
decision-making process

2020

220108-32

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Author Title Year

Sott et al. [95] Precision techniques and agriculture 4.0 technologies
to promote sustainability in the coffee sector: State
of the art, challenges and future trends

2020

Tiwari and Khan [64] Sustainability accounting and reporting in the indus-
try 4.0

2020

Tuomi et al. [96] x=(tourism_work) y=(sdg8) while y= true: auto-
mate (x)

2020

Wamba-Taguimdje et al. [23] Influence of artificial intelligence (AI) on firm perfor-
mance: The business value of AI-based transforma-
tion projects

2020

Zhang and Luo [97] Knowledge structure, network structure, exploitative
and exploratory innovations

2020

Bonanomi et al. [57] The impact of digital transformation on formal and
informal organizational structures of large architec-
ture and engineering firms

2019

Brock and von Wangenheim [98] Demystifying AI: What digital transformation leaders
can teach you about realistic artificial intelligence

2019

Caputo et al. [73] Innovating through digital revolution: The role of soft
skills and big data in increasing firm performance

2019

Dahlbom et al. [67] Big data and HR analytics in the digital era 2019
Feng et al. [71] Understanding forced adoption of self-service tech-

nology: The impacts of users’ psychological reactance
2019

Jocevski et al. [60] Transitions towards omni-channel retailing strategies:
A business model perspective

2019

Kalaivani and Sumathi [99] Factor based prediction model for customer behavior
analysis

2019

Leung [100] Smart hospitality: Taiwan hotel stakeholder perspec-
tives

2019

Magistretti et al. [101] How intelligent is Watson? Enabling digital transfor-
mation through artificial intelligence

2019

Mitra et al. [102] Combining organizational change management and
organizational ambidexterity using data transforma-
tion

2019

Nam [66] Technology usage, expected job sustainability, and
perceived job insecurity

2019

Pee et al. [103] Artificial intelligence in healthcare robots: A social
informatics study of knowledge embodiment

2019

Schneider and Leyer [75] Me or information technology? Adoption of artificial
intelligence in the delegation of personal strategic
decisions

2019

Thomas [104] Convergence and digital fusion lead to competitive
differentiation

2019

Wamba and Akter [62] Understanding supply chain analytics capabilities
and agility for data-rich environments

2019

Warner and Wäger [105] Building dynamic capabilities for digital transforma-
tion: An ongoing process of strategic renewal

2019

Lehrer et al. [106] How big data analytics enables service innovation 2018
Torres et al. [107] Enabling firm performance through business intelli-

gence and analytics: A dynamic capabilities perspec-
tive

2018

Chen et al. [108] How Lufthansa capitalized on big data for business
model renovation

2017

220108-33

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Author Title Year

Gunasekaran et al. [109] Big data and predictive analytics for supply chain
and organizational performance

2017

Basole [110] Accelerating digital transformation: Visual insights
from the API ecosystem

2016

Hengstler et al. [111] Applied artificial intelligence and trust – The case of
autonomous vehicles and medical assistance devices

2016

Chalal et al. [112] Decision support system for servitization of industrial
SMEs: A modelling and simulation approach

2015

O’Donovan et al. [113] An industrial big data pipeline for data-driven ana-
lytics maintenance applications in large-scale smart
manufacturing facilities

2015

O’Donovan et al. [114] Big data in manufacturing: A systematic mapping
study

2015

Barrett et al. [69] Reconfiguring boundary relations: Robotic innova-
tions in pharmacy work

2012

LaValle et al. [115] Big data, analytics and the path from insights to
value

Appendix B. Journal publication patterns

Source title No. of
studies

ABS
rating

CORE
rating

Citation
index

Information Processing and Management 1 2 NA SCIE,
SSCI

International Journal of Asian Business and Infor-
mation Management

1 NA NA ESCI

Journal of Cleaner Production 1 2 NA SCIE
Technology Analysis and Strategic Management 1 2 NA SSCI
Journal of Science and Technology Policy Manage-
ment

1 1 NA ESCI

International Journal of Production Economics 1 3 NA SCIE
Annals of Operations Research 1 3 NA SCIE
Journal of Theoretical and Applied Electronic Com-
merce Research

1 1 NA SSCI

Information and Management 3 3 NA SCIE,
SSCI

International Journal of Innovation Science 1 NA NA ESCI
Business Process Management Journal 2 2 NA SSCI
International Journal of Innovation and Learning 1 NA NA ESCI
Marketing Intelligence and Planning 1 1 NA SSCI
TQM Journal 1 1 NA NA
Baltic Journal of Management 1 1 NA SSCI
Engineering, Construction and Architectural Man-
agement

1 1 NA SCIE,
SSCI

Business Horizons 1 2 NA SSCI
Management Decision 2 2 NA SSCI

220108-34

Einav Peretz-Andersson, Richard Torkar e-Informatica Software Engineering Journal, 16 (2022), 220108

Source title No. of
studies

ABS
rating

CORE
rating

Citation
index

Behaviour and Information Technology 1 NA B SCIE,
SSCI

California Management Review 1 3 NA SSCI
International Journal of Systems Assurance Engi-
neering and Management

1 NA NA ESCI

Long Range Planning 1 3 NA SSCI
International Journal of Retail and Distribution
Management

1 2 NA SSCI

Journal of the Association for Information Science
and Technology

1 NA A* SCIE,
SSCI

Managerial and Decision Economics 1 2 NA SSCI
Tourism Review 1 1 NA SSCI
Technological Forecasting and Social Change 2 3 NA SSCI
Journal of Decision Systems 1 1 NA ESCI
Strategic Change 1 2 NA NA
Economics, Management, and Financial Markets 1 NA NA NA
ACRN Journal of Finance and Risk Perspectives 1 NA NA NA
IEEE Access 3 NA NA SCIE
International Journal of Information Management 1 2 NA SSCI
Industrial Marketing Management 1 3 NA SSCI
Annals of Tourism Research 1 4 NA SSCI
Journal of Big Data 2 NA NA ESCI
MIT Sloan Manag. Rev 1 3 NA SSCI
Journal of Business Research 1 3 NA SSCI
International Journal of Operations Production
Management

1 4 NA SSCI

IT Professional 1 NA C SCIE
MIS Quarterly Executive 1 2 NA SSCI
Journal of Management Information Systems 1 4 NA SCIE,

SSCI
Organization Science 1 4* NA SSCI
European Journal of Operational Research 1 4 NA SCIE

220108-35

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220109, DOI: 10.37190/e-Inf220109

Reporting Consent, Anonymity and
Confidentiality Procedures Adopted in

Empirical Studies Using Human Participants

Deepika Badampudi∗, Farnaz Fotrousi∗∗, Bruno Cartaxo∗∗∗, Muhammad Usman∗∗∗∗
∗Blekinge Institute of Technology, Sweden

∗∗University of Hamburg, Germany
∗∗∗Federal Institute of Pernambuco, Brasil

∗∗∗∗Blekinge Institute of Technology, Sweden
deepika.badampudi@bth.se, farnaz.fotrousi@uni-hamburg.de, email@brunocartaxo.com,

muhammad.usman@bth.se

Abstract
Background: Empirical studies involving human participants need to follow procedures
to avoid causing harm to the subjects. However, it is not always clear how researchers
should report these procedures.
Aim: This study investigates how researchers report ethical issues in the software engineer-
ing journal publications, particularly informed consent, confidentiality, and anonymity.
Method: We conducted a literature review to understand the reporting of ethical issues
in software engineering journals. In addition, in a workshop, we discussed the importance
of reporting the different ethical issues.
Results: The results indicate that 49 out of 95 studies reported some ethical issues. Only
six studies discussed all three ethical issues. The subjects were mainly informed about
the study purpose and procedure. There are limited discussions on how the subjects were
informed about the risks involved in the study. Studies reported on how authors ensured
confidentiality have also discussed anonymity in most cases. The results of the workshop
discussion indicate that reporting ethical issues is important to improve the reliability
of the research results. We propose a checklist based on the literature review, which we
validated through a workshop.
Conclusion: The checklist proposed in this paper is a step towards enhancing ethical
reporting in software engineering research.

Keywords: research ethics, informed consent, confidentiality, anonymity

1. Introduction

Human subjects are often involved in studies in software engineering research, mainly
students and practitioners who are considered vulnerable participants [1, 2]. The research
results may cause significant psychological, social and economic damage to subjects who are
employees [2]. Similarly, there is a possibility that students who are subordinates could be
coerced into participating in research studies [2], which may affect the validity of the results.
Therefore, it is important to evaluate potential risks and vulnerabilities to participants
before employing them in a research study. The researchers should take the necessary steps

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 15 Feb. 2022; Revised: 10 Jun. 2022; Accepted: 10 Jun. 2022; Available online: 22 Jun. 2022

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

to minimize or prevent risks [2], as well as to adequately inform the subjects about the
study and its risks. Additionally, researchers should obtain informed consent explaining
the purpose and procedure of the research, the potential conflict of interest, risks and
benefits. The subjects are more likely to provide a reliable and honest response when they
are ensured confidentiality and anonymity [3].

Given the importance of ethical issues, some journals provide guidelines on crediting
authors (authorship), handling conflict of interest and reproducibility of the data and
analysis software. In addition, journals provide specific guidelines on how to involve human
subjects in the research and require that researchers report how they obtained informed
consent. For example, Springer instructs the authors to report the ethical issues as follows –
“For all research involving human subjects, freely-given, informed consent to participate in
the study must be obtained from participants and a statement to this effect should appear in
the manuscript… if any of the sections are not relevant to your manuscript, please include
the heading and write ‘Not applicable’ for that section”1. We believe that it is not only
important to state that authors obtained consent; however, the authors should also report
the procedure of obtaining consent to improve accountability and trust.

Badampudi [4] reviewed how authors report ethical issues in the latest issues of the
empirical software engineering journal. It concluded that there is limited reporting of
ethical issues [4]. However, the review study only considered five issues from one journal.
Our study has considered multiple volumes and issues of four different journals (more
details in Section 2.2).

The contributions of our study are as follows:
– We reviewed how researchers reported consent, anonymity and confidentiality in 95 jour-

nal papers.
– In addition, we aggregated the different details reported in the primary studies and

proposed a checklist that will help the authors to:
1. Identify the consent, anonymity and confidentiality issues that are important for

their study.
2. Plan for addressing the consent, anonymity and confidentiality issues.
3. Report the procedure to obtain consent, anonymity and confidentiality to increase

accountability and trust.
– The checklist contributes to a better understanding of consent, anonymity and confi-

dentiality by clarifying the difference between them and elaborating on what is meant
by each ethical issue.

– We also conducted a workshop to discuss the checklist for consent, anonymity and
confidentiality and get initial feedback.

It is important to keep in mind that both the review and the checklist we present in
this paper cover only consent, anonymity and confidentiality issues related to software
engineering empirical studies that use human participants directly. Ethical concerns not
associated with that sphere are – the use of data from social networks, code repositories,
or organization-related data, are out of scope. The review is also limited to a sample of
publications in four journals.

The remainder of this paper is structured as follows: Section 2 presents background on
ethical issues applicable to software engineering and the relevant related work to this study.
Section 3 describes the design of our research, which is followed by Section 4, where we
describe the literature review results. We present our and workshop results and checklist

1https://www.springer.com/gp/editorial-policies/informed-consent

220109-2

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

for reporting ethical issues in Section 5.2. Section 6 presents the discussions and finally
Section 7 concludes our study.

2. Background and related work

In this section we provide information on the ethical issues considered in our study, and
elaborate the related work.

2.1. Ethical issues

Singer and Norman [1] identify four ethical issues that are relevant to software engineering
empirical studies: informed consent, confidentiality, beneficence, and scientific value. Singer
and Norman have discussed anonymity as part of confidentiality [1]. Whereas Coffelt [5]
discussed the difference between the concepts. Anonymity is the state when the researchers
can not identify the identity of individual subjects. While confidentiality refers to the state
that the researchers know the subjects but take actions to protect their identity and data
from being revealed [5]. We describe the ethical issues below.
– Informed consent can be obtained by disclosing the following information: the purpose

of the study, research approach, who will access the raw data and for what purpose, risks
to the subjects, anticipated benefits for the subjects, the importance of voluntariness
and statement offering to answer subject’s questions.

– Anonymity involves not collecting data that can identify or trace an individual or an
organization.

– Confidentiality refers to protecting of the raw data and only publishing the aggregated
results that cannot be traced to an individual or an organization.

– Scientific value relates to the study validity and, research topic importance [1]. If
researchers do not ethically conduct research, it could lead to incorrect interpretation
of the data and have implications on human participation such as waste of time and
effort [6]. Examples of ethical issues in scientific value are: assigning participants
to a disadvantaged control situation, incorrect results due to publication bias (not
publishing statistically non-significant results)[7], researcher bias (flexible analyses
that lead initially statistically non-significant results to become significant) [7] and
experimenter expectancy bias (unintentional experimenter behavior that increases the
likelihood of the hypothesis to be confirmed) [8].

– Beneficence has two components: human beneficence, which is maximizing benefits and
minimizing harm (risk-benefit ratio), and organization beneficence which is minimizing
the harm to an organization when uncovering issues and challenges in a company.

Our study, focuses on: informed consent (including the description of benefits and risks),
confidentiality and anonymity. Since our goal is only on those ethical issues directly related
to human participation, we did not focus on ethical issues related to scientific value in
our study. Moreover, each of the ethical issues related to scientific value requires a deeper
investigation. For example, a crossover study design is considered good to ensure that all
participants are assigned to each control situation in the experiment. However, it is argued
that crossover design may make the study more unethical in oncology clinical trials due to
confounding by crossover [9]. Furthermore, if crossover design as not designed or analysed
properly, it may results in invalid results [10], which affects the scientific value.

220109-3

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

For investigating the reporting of beneficence in publications, the benefits and risks
should be sufficiently discussed to investigate the beneficence. However, in our pilot study
[4] we identified few studies that discussed risks explicitly; therefore, it would be difficult
to investigate the beneficence unless explicitly discussed in the publication. We did not
focus on beneficence reporting. However, we extracted information on risks and benefits,
which will allow us to investigate beneficence.

2.2. Journals guidance to authors regarding reporting ethical issues

In this study, we analyze ethical issues as reported in a sample of papers from four leading
software engineering journals: Springer – Empirical Software Engineering (EMSE), Elsevier
– Information and Software Technology (IST), IEEE – Transactions on Software Engineering
(TSE), and ACM – Transactions on Software Engineering and Methodology (TOSEM).
These journals provide different guidance to authors regarding how to report ethical issues.
– EMSE recommends that an informed consent statement should appear in the paper

manuscript for all research involving human subjects. The journal also touches on
anonymity and confidentiality issues, although it does not recommend whether to report
them or not.

– IST endorses that authors should include a statement in the manuscript mentioning
that they obtained informed consent whenever the research involves human subjects.
On the other side, the journal does not provide any instruction regarding anonymity
and slightly touches the confidentiality issue.

– TSE does not make any recommendation regarding any of the three ethical issues.
– TOSEM tangentially covers the three ethical issues. However, there is no recommen-

dation concerning whether and how to report such information in the paper.
A review of the author guidelines of these four software engineering journals indicates

that they do not impose strong and detailed guidance on how the authors should report
ethical issues like informed consent, anonymity, and confidentiality. Moreover, sometimes
it is hard to find the instructions to the authors. For example, EMSE at least touches
on all three ethical issues. However, parts of the recommendations are spread throughout
the journal submission guidelines2, while the other parts appear on the Springer editorial
policies3. Still, the latter has a general nature since it refers to all journals published by
Springer. Another example is TOSEM, which does not mention any of the three ethical
issues of its submission guidelines4. To find such kind of information, one has to access the
ACM Code of Ethics and Professional Conduct5, and it also has a general nature. One
must infer how to report ethical issues on papers by analysing a code of conduct to guide
computing professionals behavior.

2.3. Related work

There are many relevant discussions in the computer science academic community about
ethical issues of our profession. For instance, the various considerations on the ethics
of advanced machine learning algorithms [11–13], or how software developers should be

2https://bit.ly/3joV9YQ
3https://www.springer.com/gp/editorial-policies
4https://dl.acm.org/journal/tosem/author-guidelines
5https://www.acm.org/code-of-ethics

220109-4

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

conscious about the impacts of systems they create and the way they behave as professionals
[14–17].

Still, we do not see that level of urgency when considering ethical issues of empiri-
cal studies involving human subjects in software engineering. The results of our paper
substantiate this claim, as well as other few related studies.

In 2002, Singer and Vinson [1] called attention to ethical issues that had been neglected
in software engineering empirical studies. Based on a review of ethical codes of many
research fields, the authors identified ethical issues related to software engineering empirical
studies: informed consent, scientific value, beneficence, and confidentiality. They also
illustrated those four issues with real empirical studies. In 2008, Singer and Vinson [18]
expanded the first discussion, this time focusing on the role of Ethics Review Boards (ERB)
and how to comply with them. They provide detailed information about how to plan and
which documents are needed during an ERB review.

A recent literature review investigated ethical authorship issues on diverse research
disciplines [19]. The author did not find any paper discussing ethical authorship issues
in software engineering. In contrast, the author found 16 articles in research areas like
Medical, Science and Engineering, Chemistry, Education, and Economics. The literature
review does not cover ethical issues related to empirical studies in software engineering
as our study does. However, it unveils more evidence that ethical issues have low priority
in our research community. Few studies report or discuss ethical issues in the software
engineering research field.

Software engineering research based on Mining Software Repositories (MSR) strategies
has soared during the last decade. Although data collection and analysis in MSR studies
are usually automated, Gold and Krinke [20] argue that such kind of research may involve
human subjects, as repositories typically contain data about developers’ interactions. In
this context, they discuss the ethical implications of MSR research. From the viewpoint of
the process used to ensure ethical software engineering research, Strandberg [21] proposed
a checklist based on authoritative guidelines for interview studies involving industrial
practitioners.

A subject even more rarely discussed is how inviting participants to software engineering
surveys can pose relevant ethical issues. Baltes and Diehl [22] report their experience with
different sampling strategies to conduct surveys. The authors highlight that researchers
should be conscious that contacting software developers may harm them even when they
do not answer the survey. Baltes and Diehl received the following comment by a developer
they contacted asking to participate in one of their surveys “I consider this problem now
worse than spam since Google at least filters out spam for me. […] [Y]ou send one, I get
one per week – or more.”

3. Research method

We used a mixed-methods approach – consisting of a literature review and a workshop – to
understand 1) which ethical issues are reported in SE journal publications and 2) which
ethical issues should be reported and the importance SE researchers place on reporting
different ethical issues in their publications.

220109-5

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

3.1. Research questions

RQ1 To what extent, consent, confidentiality and anonymity are reported in
software engineering journal publications?
Rationale: Here we will describe reporting of research ethics in a sample of papers
published in the four journals mentioned in Section 3.2.1. Mainly to understand to
what extent and how authors discuss consent, confidentiality and anonymity.

RQ2 Which ethical issues related to consent, confidentiality and anonymity
should be reported in software engineering publications?
Rationale: Here we will describe the importance of reporting consent, confidentiality
and anonymity, and how they should be reported.

3.2. Literature review

We conducted a literature review to understand how software engineering (SE) researchers
report research ethics in SE publications. We followed a systematic study selection and data
extraction process. However, we did not perform the quality assessment of the included
studies. In addition, our search is also limited to a few volumes in the selected journals.
Thus, we do not refer to our review as a systematic literature review. We report the details
of the literature review process in the sections below.

3.2.1. Data collection

We selected four journals in software engineering, namely – The Empirical Journal in
Software Engineering (EMSE), Information and Software Technology (IST), Transactions on
Software Engineering (TSE), and Transactions on Software Engineering and Methodology
(TOSEM). We selected these journals as they are among the top-ranked SE journals and
are expected to reflect the best current reporting practices. We started our search from the
volumes published in the summer of 2019 and continued screening previous volumes until
we reached a sample of 100 papers (excluding editorials and letters) from each of the four
journals. Table 1 provides the details of screening which includes the volumes, years and
the number of papers reviewed in each journal.

Table 1. Data collection description

Publisher Journal Volume Year No.

Springer EMSE V.23 I.6 to V.24 I.3 2018 (all issues)–Aug 2019 100
Elsevier IST V.103 to V.110 Nov 2018–Jun 2019 104
IEEE TSE V.43 I.11 to V45 I.7 Nov 2017–Jul 2019 105
ACM TOSEM V.24 I.4 to V.28 I.3 Aug 2015–Jul 2019 100

Total 409

3.2.2. Study selection

Our objective was to include papers that employ humans in the study. Therefore we
included papers that employ human subjects or involve collecting the information that can
lead to identifying an individual or an organization. We excluded papers that do not collect

220109-6

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

information from practitioners, such as methodological papers, systematic literature reviews
and solution proposals. In addition, we excluded the studies that collect information that is
publicly available (data from open source) and studies that do not involve human subjects
or authors themselves are subjects. All four authors were involved in the review process.
To ensure that we have the same interpretation of the inclusion criteria, we conducted
a pilot study of 20 papers. All authors independently reviewed the title and abstracts of
the papers to either include or exclude the papers. We conducted a kappa test to evaluate
the agreement level. The average Cohen kappa for all raters for our pilot study was 0.88,
which indicates a high agreement [23]. However, we still discussed the papers where at least
one author had a different decision. We concluded that title and abstracts might not be
sufficient to determine the inclusion of human subjects in the study design. Therefore we
decided also to review the research questions and data collection methods when deciding
to include or exclude the paper. Table 2 provides the total number of papers included from
each journal.

Table 2. Number of papers included from each journal

Journals Included Papers

EMSE 28
IST 21
TSE 33
TOSEM 23

Total 105
After full text reading 95

3.2.3. Data extraction

To facilitate the data extraction, we devised an extraction form. We conducted a pilot
extraction study to review the relevance, completeness, and interpretation of the extraction
items. All four authors extracted two papers, each resulting in data extraction from eight
papers in the pilot extraction. As a result of the pilot extraction, we decided to remove
some of the extraction items, such as extraction of research methods, as the data collection
method was perceived to be more relevant for our study. Table 3 lists the extraction items.
The first, third, and fourth authors extracted the data, and the second author reviewed
the extraction.

Table 3. Data extraction form

Item Description

Data collection Procedure How was the data collected?
Data collector Who collected the data?
Category of subjects Who are the subjects – students and/or practi-

tioners
Data description What data is collected in the study?
Ethical issues (informed consent, confidentiality,
and anonymity)

What was reported on ethical issues? (Verbatim
from the paper)

220109-7

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

3.2.4. Analysis

We conducted a mixed qualitative-quantitative analysis approach. For qualitative analysis,
we performed inductive content analysis [24] to categorise the extracted information relevant
to informed consent, confidentiality and anonymity. We chose this approach to look for
new knowledge on the phenomena instead of relying on prior knowledge. We performed
the analysis in the following steps:
1. Performing initial coding: For all the extracted data, we underlined all terms related to

any of the three issues of informed consent, confidentiality, and anonymity. We doubled
check whether the information provided for each category could also be relevant to
another category.

2. Forming final codes: We grouped the initial codes to form the final codes iteratively
based on the shared characteristics of the codes that could put them in the same group.

3. Forming categories: We overviewed the final codes and categorised them based on the
patterns we found within the codes. We merged the categories into high-level when
they could make sense.

For example, we extracted a text from a paper regarding confidentiality as “…the data
would remain with us, and the transcripts would not be published but only the research
findings supported by the anonymous quote”. We assigned an initial coding “publishing”
to the statement, later converted to the final code “sharing.” Finally, we formed the
category “reporting the sharing procedure” and assigned the statement to this category.
For quantitative analysis, we used descriptive statistics and mainly used bar charts to
visualise data quantitatively.

3.3. Workshop

We conducted a workshop study [25] to evaluate the importance of ethical issues from the
perspective of software engineering researchers. The evaluation contributes to understanding
what ethical issues researchers should report in software engineering publications.

The first and second authors organised the workshop study as a session of the SEthics
2021 (2nd International Workshop on Ethics in Software Engineering Research and Practice),
co-located with ICSE 2021. SEthics2021 was virtual and used the ICSE Researchr platform.
We conducted a survey and group discussions in the workshop to collect data. Surveys and
group discussions are considered as suitable methods when evaluating artefacts (checklist in
our study) based on people’s perspectives [26]. The workshop study session was organized
for 40 minutes in the following four parts:
1: Introduction – At the beginning of the workshop, the first author provided the
following information: an introduction to ethical issues applicable to software engineering
(SE) research, journal publishers’ requirements to report ethical issues and a summary
of our literature review results on the current state of reporting research ethics in SE
publications.
2: Survey – We designed a questionnaire in the Mentimeter (https://www.mentimeter.
com/). After the introduction, we asked participants to answer a survey on the importance
of reporting ethical issues. The survey included the following question: How do you rank
the importance of the ethical issues?
– IC1: Report the process of how the study purpose statement is communicated.
– IC2: Report the process of how the risks, and benefits are communicated to the

participants. An explanation of any foreseeable risks or discomforts.

220109-8

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

– IC3: Report how voluntariness is ensured. An explanation of the subject’s right to
refuse without penalty.

– C1: Report how the analysis was conducted while protecting confidentiality.
– C2: Report how data is stored and used to ensure confidentiality.
– C3: Report how the data is shared to protect confidentiality.
– A1: Report how the data and subjects are anonymised.

The participants ranked the statements between 3 (Definitely will consider) to 1 (Would
not consider) using sliders in Mentimeter. We provided a guide for the participants that
defined and exemplified each statement to clarify the statements. The Ethical issues IC1–IC3
are relevant to informed consent, C1–C2 are about confidentiality and A1 is related to
anonymity.
3: Group discussion within the groups – We created two breakout rooms: “reporting
ethical details in manuscripts” or “skipping ethical details”. We asked the participants to
join the breakout rooms that best represented their survey response. For example, if the
participants primarily selected ratings close to 3, they should enter the breakout room:
“reporting ethical details in manuscripts”. The first and second authors moderated each
breakout room, responsible for facilitating, documenting, and summarising the discussions.
The moderators took notes to collect the breakout room discussions. Taking notes allows
unobtrusively collecting data in real-time [26]. Collecting data through field notes is prone
to researcher bias [26]. To mitigate researcher bias, we shared the data collected in our notes
with the participants, where they had an opportunity to confirm or suggest a reformulation.
4: Final group discussions – All participants from the breakout session joined the main
session to share the discussions carried out in the breakout rooms. The first and second
authors again shared the summarised statements of each group with all participants in the
main session.

We informed the participants about the working group in advance in the program of
the SEthics21 workshop published on the website. To ensure the confidentiality of the
participants, we did not report the traceability of individual responses to participants.
We ensured anonymity and confidentiality to mitigate social desirability bias. ‘‘Social
desirability refers to the respondents’ tendency to admit to socially desirable traits and
behaviors and to deny socially undesirable ones’’ [27]. We wanted the workshop participants
to be honest, particularly if they disagreed with the need to report ethical aspects which
could be considered sensitive in a workshop focused on ethics. Privacy (anonymity and
confidentiality) can help in producing honest responses to sensitive questions [28]. Due to
the pandemic, we conducted the workshop online. The sessions were recorded and uploaded
to a streaming platform. We did not audio or video record the discussions of the working
group; however, we recorded the summaries of the discussions. In our results, we report the
recorded summaries word to word to avoid any misinterpretation. To ensure the validity of
the concluded statements, we performed two real-time validations: within each breakout
rooms and again in the main session, where participants validated the discussion summary.

4. How ethical issues are reported in software engineering publications

This section answers RQ1 based on 95 included primary studies. We included only studies
that employed human subjects directly. Practitioners were the most commonly employed
subjects in the primary studies, followed by students. In some studies, both practitioners and

220109-9

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

students were involved. A small portion of papers also involved end-users and researchers
as subjects (see Figure 1 for details).

Figure 1. Number of papers in each subject category

4.1. Overview of papers that reported ethical issues (49/95)

In our sample, the data was collected from subjects mostly by conducting experiments
and through surveys and interviews as see in Figure 2. Most papers used a combination
of two or more methods. In addition, papers reported using additional sources to collect
data such as company documents, and data from crowdsourcing platform. In few papers,
a tool was used to collect data. For example, a tool was installed on developers system to
observe their activities. We categorized papers in the other category that did not report
any specific data collection method, the studies were mostly exploratory. We did not find
any significant relation among the papers reporting the three ethical issues and the data
collection methods.

Figure 2. Methods used to collect data from subjects

220109-10

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

From our sample of 95 papers, we found that around 50% (49 papers) considered at
least one ethical issue in their study. Figure 3 shows the number of papers that report the
different ethics issues. The number in round brackets (n) indicates the number of papers
discussing only one ethical issue. As seen in Figure 3, not all ethical issues (informed
consent, confidentiality and anonymity) are considered in all the 49 papers. Only six papers
have discussed all three issues. Confidentiality and anonymity are more often mentioned
together than any other combination of the three ethical issues. Although 50% of the papers
in our sample report ethical issues, in most cases, however, only one issue is discussed. We
provide details on what do researchers report on the ethical issues in Section 4.2.

Confidentiality

Informed Consent
(16)

(7)
Anonymity

(6)

2 4

8

6

Figure 3. Number of papers discussing different ethical issues

We looked at how the researcher reported the three ethical issues. The papers that
reported ethical issues reported different levels of detail. The next section provides details
on what researchers report and how.

4.2. Details on ethical issues reported in software engineering publications

This section provides details on what and how much researchers report on ethical issues
in the 49/95 studies. Figure 4 shows the overview of the reporting status. As seen in the
figure, 28 papers discussed informed consent. However, out of 28 papers, nine papers did
not discuss any details on the procedure for obtaining informed consent. The authors only
mentioned that they obtained informed consent. We observed that most papers reported
some details on how the authors ensured confidentiality. However, half of the papers did not
report how authors achieved anonymity. Overall, 38 papers discuss details on addressing at
least one ethical issue. Table 4 provides the list of the papers reporting details.

Table 4. List of papers that reported the procedure for addressing ethical issues

Paper ID Title

ESE1 System requirements-OSS components: matching and mismatch resolution practices
– an empirical study

220109-11

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Table 4 continued
Paper ID Title

ESE12 Getting the most from map data structures in Android
ESE13 Older adults and hackathons: a qualitative study
ESE14 An empirical study on the impact of AspectJ on software evolvability
ESE21 Understanding the behaviour of hackers while performing attack tasks in a profes-

sional setting and in a public challenge
ESE25 An empirical study of architecting for continuous delivery and deployment
ESE26 Eye tracking analysis of computer program comprehension in programmers with

dyslexia
ESE3 An industrial case study on the use of UML in software maintenance and its

perceived benefits and hurdles
ESE4 Factors and actors leading to the adoption of a JavaScript framework
ESE8 Large-scale agile transformation at Ericsson: a case study
IST11 Exploratory testing: Do contextual factors influence software fault identification?
IST12 Impact of model notations on the productivity of domain modelling: An empirical

study
IST14 The current state of software license renewals in the I.T. Industry
IST17 GuideGen: An approach for keeping requirements and acceptance tests aligned via

automatically generated guidance
IST18 Quality requirements challenges in the context of large-scale distributed agile: An

empirical study
IST5 An exploratory study of waste in software development organizations using agile or

lean approaches: A multiple case study at 14 organizations
TOSEM16 Documenting Design-Pattern Instances: A Family of Experiments on Source-Code

Comprehensibility
TOSEM17 Many-Objective Software Remodularization Using NSGA-III
TOSEM18 Software Change Contracts
TOSEM19 Platys: An Active Learning Framework for Place-Aware Application Development

and Its Evaluation
TOSEM2 Status Quo in Requirements Engineering: A Theory and a Global Family of Surveys
TOSEM21 Mining Unit Tests for Discovery and Migration of Math APIs
TOSEM22 Code-Smell Detection as a Bilevel Problem
TOSEM23 On the Comprehension of Program Comprehension
TOSEM6 Fixing Faults in C and Java Source Code: Abbreviated vs. Full-Word Identifier

Names
TOSEM9 Multi-Criteria Code Refactoring Using Search-Based Software Engineering: An

Industrial Case Study
TSE1 makeSense: Simplifying the Integration of Wireless Sensor Networks into Business

Processes
TSE14 Data Scientists in Software Teams: State of the Art and Challenges
TSE17 Coordination Challenges in Large-Scale Software Development: A Case Study of

Planning Misalignment in Hybrid Settings
TSE18 Measuring Program Comprehension: A Large-Scale Field Study with Professionals
TSE2 Automatic Identification and Classification of Software Development Video Tutorial

Fragments
TSE21 Towards Prioritizing Documentation Effort
TSE22 A Comparison of Program Comprehension Strategies by Blind and Sighted Pro-

grammers
TSE26 Understanding Diverse Usage Patterns from Large-Scale Appstore-Service Profiles
TSE3 The Good, the Bad and the Ugly: A Study of Security Decisions in a Cyber-Physical

Systems Game
TSE6 Integrating Technical Debt Management and Software Quality Management Pro-

cesses: A Normative Framework and Field Tests

220109-12

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Table 4 continued
Paper ID Title

TSE7 Automated Refactoring of OCL Constraints with Search
TSE9 What Makes a Great Manager of Software Engineers?

19

20

12

9

3

12

28

23

24

0 5 10 15 20 25 30

Informed Consent

Confidentiality

Anonymity

Total No Details Partial Details

Figure 4. Overview of ethical issues reporting

The status of each paper reporting details on confidentiality, anonymity and informed
consent is shown in Figure 5. As seen from Figure 3, six studies report all three ethical
issues. However, out of the six, only three studies report details on how they addressed
ethical issues, as seen in Figure 5. It is important to note that even though the studies
(ESE4, ESE13, and TOSEM22) reported on all three ethical issues, they only report partial
details. Most studies report details on at most one ethical issue. However, some of these
studies have a rather detailed explanation of how they addressed the ethical issues. The
level of details reported varies across the studies. We look at how researchers discuss each
ethical issue in the primary studies.

4.2.1. Informed consent

Full informed consent is important to ensure that the subjects understand the implications
of participating in the study. As seen in Figure 4, 19 out of 28 papers discussed the details
on obtaining informed consent. Most studies provided a link to the consent form from
which we extracted the details. Figure 6 provides the details on informed consent reported
in the 19 studies. As seen in Figure 6, among 19 studies that provided details on informed
consent, study purpose and procedure is discussed more commonly (10 studies) in the
consent forms, followed by benefit explanation (eight studies) and voluntariness (seven
studies). However, most of the studies (12/19 papers) discuss only one ethical issue. ESE26
reports most details on obtaining informed consent; however, it does not discuss the risks
to the subjects. Only one study, i.e., TOSEM16, discusses risk. The subjects can only be
fully informed about the participation if they are fully aware of the potential risks and in
related to the benefits gained from participation.

The primary studies reported the following details on the procedure for obtaining
informed consent:
Study purpose and procedure: The studies that mentioned that the study purpose
and procedure were mainly to get honest and accurate responses from the subjects. The

220109-13

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Figure 5. Papers reporting details on how ethical issues were addressed

authors communicated the study’s purpose and procedure at the beginning of the interview
or sent an email before the interviews/experiment.
Benefit: Some studies with students as subjects mentioned benefits in terms of extra
credit. In contrast, some studies mentioned monetary benefits ranging from $100 to $200
either to some or all subjects. One of the studies (ESE26) mentioned non-monetary benefits.
They provided the importance of the topic and the benefit to the software engineering
community at large.
Voluntariness: It is important to discuss voluntariness together with the benefit of
participation. For example, some studies mentioned that the students were not obliged to
participate in the study. However, the researchers offered the participating students extra
credit. Such a benefit can compromise the voluntariness as there is a penalty (no extra
credit) when not participating in the study. One study (TOSEM19) explicitly mentioned
that nonparticipating students received an alternative task to earn extra credit. Therefore,
it is important to report the procedure to ensure voluntariness without any penalty.
Risks: One study (TOSEM16) discusses the risk of the experiment results influencing
the students’ grades. They reported that the study ensured that the experiment did not
influence the grades.

Only one study (TOSEM16) in our sample discussed both risks and benefits (see
Figure 6). However, the risks and benefits were discussed for master student subjects and
not for other participants involved in the experiment (professionals and PHD students).
The risks for students was the experiment influencing their grades which was mitigated by
rewarding an extra point for all participants regardless of their performance.

4.2.2. Confidentiality

In total, 23 papers reported confidentiality, of which three papers do not provide any details,
just stated they assure confidentiality. Using the qualitative analysis, we understood that
the remaining 20 papers report confidentiality at least in one of the following aspects:
– Storing and using data (12 studies),
– Analysing data (two studies),
– Sharing data (eight studies),

220109-14

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Figure 6. Studies reporting details on informed consent procedure

– Ethical approval (four studies),
– What data that is kept confidential (six studies).
As seen in Figure 7, only one paper, i.e., IST14, reported all confidentiality aspects, while
most studies (14/20) address only one of the aspects. One study, i.e., ESE21, provides
most details about confidentiality, however, it does not discuss the ethical issues of data
analysis and approval.

The confidentiality details reported in the primary studies are as follows:
Storing and using data: Some studies reported the procedure on how authors collected
and kept the private information confidential. Most of the papers that reported confiden-
tiality have provided information on storing and using data (12/20). Researchers reported
that they chose not to reveal information while storing and retrieving data. TSE26 reported
using warehouse servers behind the company firewall to keep data confidential.
Analysing data: Only two studies, i.e., IST14 and TSE3, reported the procedure for

Figure 7. Studies reporting details on confidentiality

220109-15

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

analyzing data confidential. The studies mainly cleaned the interview transcripts and
recording statements to remove and destroy confidential information. One of the studies
(IST14) also summarised content to ensure no confidential information is taken out of the
organisation.
Sharing data: Some studies reported how the researchers protected and did not share the
private data with other organisations or individuals. One of the common approaches used
in the studies, for example, in ESE1, and TOSEM6, was aggregating answers/data before
sharing to ensure confidentiality.
Ethical approval: Four studies, TOSEM9, TOSEM22, TSE3, IST14, reported that an
Ethical committee reviewed the research project, design (e.g., questionnaire), and data to
ensure their conformity with the ethical norms.
Data that is kept confidential: Some studies reported what data they did not disclose
in the reports. Data such as companies’ information (e.g., name, available hard-wares),
faults and failures measurements are examples of the data that was kept confidential.
Such information is valuable to provide transparency on how researchers ensured the
confidentiality of subjects and projects.

4.2.3. Anonymity

In total, 24 papers reported anonymity, in which only 12 described the procedure on how
data and subjects are anonymised. ESE25 study reported anonymity for both of its research
methods, questionnaire and interview. Three studies (i.e., TOSEM9, ESE13, ESE21) used
more than one data collection method. TOSEM9 used questionnaire, experiment and
case study research methods but reported anonymity only for its questionnaire. ESE13
conducted the study using observation, interview and questionnaire, and ESE21 recruited
experiment and interview research methods. ESE13 and ESE21 reported anonymity for
the whole research, when the participants registered for the study.

The studies anonymised the name of the subjects, firms, projects, and subjects’ quotes.
The studies followed different approaches to anonymise subjects and data. One study,
i.e., ESE21, reported that participants chose a self-selected username to anonymise the
subjects. ESE13 reported anonymising subjects using the group names (of younger adults)
and the registration numbers (of older adults), but did not provide further details. The
studies provided several reasoning for anonymising subjects and data. Social desirability
bias (ESE25) and feeling of exposure (IST5) are two reasons the studies mentioned as
threats that influence the participants’ answers. Social desirability bias occurs when the
participants adapt their responses to make the researchers happy. The studies anonymised
the subject and data to mitigate these threats. Furthermore, the studies mentioned adhering
to a non-disclosure agreement (TSE6) and security policies (TSE18) as two other reasons
for anonymising subjects and data.

5. Checklist for reporting consent, confidentiality and anonymity
in software engineering publications

This section answers RQ2 based on the literature review and workshop results. We dis-
cussed the literature review results and the checklist derived from the literature review
in a workshop to understand the importance of reporting consent, confidentiality and
anonymity.

220109-16

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

The checklist we present here covers only ethical issues related to software engineer-
ing empirical studies that use human participants directly; in particular, it focuses on
informed consent, anonymity and confidentiality. It is the first step towards developing
recommendations for reporting ethical issues in publications. Researchers should also
consider the overall ethical aspects when designing their studies and publishing their
findings. Researchers could consider publishing a pre-study protocol that: 1) justifies the
planned sample sizes and the choice of study design (e.g., subject allocation to control
situations in experiments), 2) specifies the main hypotheses and analysis procedures to
mitigate experimenter and/or researcher bias and 3) explains any blinding methods adopted
to conceal design elements from participants, data collectors or analysts. Mechanisms to
publish pre-study protocol already exist. For example, there is a Registered Reports Track
in Empirical Software Engineering and Measurement (ESEM) in conjunction with EMSE
journal, and preregistered papers in Transactions on Software Engineering and Methodology
(TOSEM).

5.1. Importance of reporting consent, confidentiality and anonymity
in software engineering publications

We conducted a workshop to investigate the importance of reporting consent, confidentiality
and anonymity in software engineering publications. In total, 12 researchers participated
in the workshop. The participants mainly were assistant professors, one full professor, one
PhD student, and senior researchers from research institutes. All workshop participants
answered the survey and participated in the group discussions. The active participants in
the group discussions had co-authored at least one publication on ethics.

After the introduction to the workshop, individual participants rated the importance of
the ethical issues through a survey as presented in Figure 8.

Figure 8. Importance of ethical issues

The ratings were in the range of 2.6±0.3, meaning that the participants considered the
ethical issues important. Overall, the participants perceived informed consent reporting
slightly more important than other ethical issues. Within informed consent, the voluntariness
aspect was rated highest, which has implications for scientific values. Voluntary participation
could increase the accountability and trust of the results.

After the survey, we conducted group discussions. The participants were put in two
separate Zoom breakout rooms based on their agreement level. As mentioned in Section 3.3,

220109-17

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

we named the two breakout rooms as: “reporting ethical details in manuscripts” or “skipping
ethical details”.

There were only two participants in the “skipping ethical details” zoom room. We
summarised the discussion as follows:
– There is no concrete answer to whether researchers should include or skip ethical details

in a research publication.
– Depending on the research topics, the researchers should be able to decide the ethical

details to report.
– Research ethics value might be too limiting when the researchers discuss a lot of details

on the procedure to address ethical issues. It is not important to report everything for
the sake of reporting without adding any value to the report.

So, in conclusion, they mentioned that “there is no clear no to reporting ethical details; the
researcher should choose important details for reporting.”

The second group, with 10 participants. We summarised the discussion in “reporting
ethical details in manuscripts” breakout room as follows:
– Reporting ethical details are important, e.g., for reviewers of articles to get insight into

how the researchers deal with the ethical issues, or for healthcare articles to improve
the research reliability.

– Providing a supplementary ethical document attached to a paper, depending on the
program committee’s permission and confirmation.

– Software engineering committee should research and prepare guidelines for reporting
ethical details.

– Not only the ethical rules and regulations should be a matter, but also the rationale
behind considering them.
The session was concluded with the message that “we all think that reporting ethical

issues is important, but we are questioning ourselves how much of it should be reported
in practice.” We believe our checklist will help in deciding what and how much details on
ethical issues should be reported.

5.2. Checklist for authors and reviewers on reporting consent, confidentiality
and anonymity in software engineering publications

We aggregated details on reported consent, confidentiality and anonymity and created
a consolidated list as shown in Table 5. Table 5 contains attributes of informed consent,
confidentiality and anonymity that researchers can report to strengthen the validity of
the results. When applicable, the researchers can refer to the documentation they may
have used to get ethical boards’ approval or to communicate to the subjects, such as
consent forms. The checklist includes a description and the importance of reporting consent,
confidentiality and anonymity. In addition, we provide examples from the studies that have
reported the ethical issues. The checklist is not prescriptive; instead, the researchers should
identify the potential risks to the subjects based on the study objectives and decide which
attributes they should report to strengthen the results. In addition, the researchers should
also report the potential risks to justify the measures taken to address ethical issues.

220109-18

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Table 5. Checklist for reporting the process for obtaining informed consent, achieving
confidentiality and anonymity

ID Attribute Description of the ethical issue Example

IC1 Report the process of
how the study purpose
statement is communi-
cated. For example, how
the participants were
made aware of what the
study involves, its pur-
pose, procedures to be
followed, and the likely
duration of the subject’s
participation.

Participants may feel that they
are not only being observed but
also being evaluated. Hence, the
purpose should be clear and the
participation duration should be
clear so that participants can as-
sess the needed effort and avoid
inconveniences such as boredom,
frustration, and wasting of time.

IST18 – The interviewer
started each interview by ex-
plaining the objective of the
research to the participants
and the importance of giving
accurate and honest answers
to the validity and reliability
of the research.

IC2 Report the process of
how the risks and bene-
fits are communicated to
the participants. An ex-
planation of any foresee-
able benefits and risks or
discomforts to subjects.

The risks and benefits of partici-
pation should be clear so that true
results are obtained. For example,
students should be made aware of
the impact participation will have
on their grades, if any. Different
risks include psychological, social,
economic, legal, and physical risks.
Students and practitioners should
know the benefits of participating
in the research study. In addition,
it is important to discuss the bal-
ance of risks and benefits to the
subjects.

TOSEM16 – The partici-
pants were not evaluated on
the results achieved in the
experiments. All students…
were equally rewarded with
one extra point in the exam
grade, regardless of their ac-
tual performance.

IC3 Report how voluntari-
ness is ensured. An ex-
planation of the sub-
ject’s right to refuse
without penalty.

The participation should be volun-
tary and free from coercion. For ex-
ample, students should be able to
refuse participation without hav-
ing any impact on their grades.
When students are given credits
for study participation, an alter-
native task should be provided
when the students do not want to
participate in the study

TOSEM19 – Participation
in the study was not manda-
tory. Nonparticipants were
offered an alternative task
to earn points equivalent to
what they would earn by par-
ticipating in the study.

C1 Report how analysis was
conducted while protect-
ing confidentiality.

Participants should be ensured
that their private information is
protected and researchers do not
reveal the information during data
analysis.

IST14 – The responses of the
participants were literally
transcribed, allowing the de-
struction of the original ma-
terial, on the same day of
the interviews; in addition,
all identifying remarks were
perpetually removed and de-
stroyed to protect all the par-
ticipants.

220109-19

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Table 5 continued
ID Attribute Description of the ethical issue Example

C2 Report how data is
stored and used to en-
sure confidentiality

Participants should be ensured
that their private information is
kept confidential and researchers
have chosen proper storage to
record data and do not reveal the
information while storing or re-
trieving.

TSE26 – All raw data col-
lected for this study are kept
within the data warehouse
servers, which are placed be-
hind the company firewall.
Furthermore, The dataset in-
cludes only the aggregated
statistics for the users cov-
ered by our study period. No
actual users can be traced at
all.

C3 Report how the data is
shared to protect confi-
dentiality

Participants should be ensured
that their private information is
protected and researchers do not
share the private information with
other organizations and individ-
uals while reporting the research
findings.

ESE21 – For confidentiality
reasons on the industrial use
cases, programs could not be
shared among different com-
panies and each hacker team
only attacked the program
owned by the corresponding
company.

C4 Report what data is kept
confidential.

Participants should ensure that
their private information is pro-
tected by understanding which
corresponding info the researcher
hide and reveal during research
analysis and reporting.

IST11 – Access to the Firm’s
fault data and employees was
offered provided that liabil-
ity issues were considered
by not further disclosing the
company name or the mag-
nitude of the fault numbers.

A1 Report how the data and
subjects are anonymised
when needed

Participants should be ensured
that their identity and personally
identifiable information is pub-
licly kept unknown

ESE12 – All questions were
optional, and the survey was
anonymous to encourage de-
velopers to participate.

6. Discussion

A survey published in 2001 by Hall and Flynn [29], with heads of 44 computer science
departments in the UK, indicates that software engineering researchers have little regard
for ethical issues when conducting studies with human participants. Only 36% think that
monitoring ethical considerations is very important. Hall and Flynn’s survey [29] was
published 20 years ago. Our workshop study shows that researchers are more enthusiastic
about reporting ethical issues. However, our literature review results show that the software
engineering community still pays little attention to ethical issues when reporting empirical
studies.

It is important to justify ensuring confidentiality and anonymity, as one of the workshop
participants mentioned. Researchers should also consider the interactions of ethical aspects
with other scientific issues, such as open, transparent research practices (traceability and
reproducibility). To make the research reproducible, it is important that all relevant
information – such as methodological details on what and how data was collected and
analyzed – should be reported. However, the study subjects’ anonymity concerns should

220109-20

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

also be considered by withholding the information sensitive to the subjects, such as
their identities. There seems to be a tradeoff between reporting all versus withholding
or anonymizing some parts of the information considered sensitive by the study subjects.
However, to replicate a study, the secondary data users may not need all information as
long as all necessary methodological details are transparently reported. Thus, we think
it is possible to address both concerns by balancing the need to report all necessary
methodological details and withholding/anonymizing sensitive data. In addition, the
specific context of the study may also result in a different set of tradeoffs depending on,
for example, the type of research being reported. Even when researchers do not report
details that can identify individuals, they can choose to keep the links between the data
and subjects internally if needed for follow-up studies. Confidentiality mechanisms need to
be proportionate to possible risks. Researchers need to be aware that they cannot adopt
blanket solutions for all studies involving human subjects.

6.1. Comparing the results of the literature review and workshop

Informed Consent: The literature review results show that in the few papers (19/95) that
provided some details about informed consent, the most commonly mentioned informed
consent aspect was study purpose and procedure. The other two aspects – voluntariness
and benefits explanation – were discussed in even less number of studies. The survey
respondents, on the other hand, rated all three aspects worth considering to report in
their papers. IC3 (Voluntariness) received the participants’ highest ranking (2.9/3.0).
Voluntariness, however, is covered only in a handful of papers in our sample. Likewise, the
risk and benefits explanation also received a high rating from participants – however, that
too is not discussed in many papers in our sample. Overall, the survey participants rated
all informed consent aspects worth considering for reporting. However, the data from the
literature review indicates that these aspects are practically not reported by a majority of
the studies in our sample.
Confidentiality: In our sample of papers included in the literature review, only a limited
number of papers (20/95) reported some details about confidentiality. The most commonly
reported aspect (12/20) is about data storage and usage, followed by how data is shared
(8/20). The survey respondents considered all aspects worth considering for reporting.
However, the survey ratings for confidentiality related aspects are lower than informed
consent ratings.
Anonymity: Anonymity related details was reported in only 12 studies in our sample of
studies. In the case of the survey, overall, the participants did rate anonymity as something
that should be considered for reporting. However, it received a relatively lower rating as
compared to other issues. Half (12/24) of the papers in our sample that reported anonymity
did not share any details on how was it done. The authors thought it enough to just report
that anonymity is addressed without providing any further details.

6.2. Threats to validity

We used a combination of methods – literature review and a workshop – to investigate
reporting of ethical issues in SE research. Our study may still have a few limitations. We
use Petersen and Genzel’s [30] classification to discuss the threats to the validity of the
data collection and analysis phases of our study.

220109-21

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Descriptive validity is concerned with those threats that may happen due to problems
in the data collection phase of a study, which may eventually distort the accurate description
of the truth. With regards to the literature review, all authors first piloted the data
extraction form on a sample of papers. The results of the piloting process were discussed
in a joint meeting to ensure that all authors have a shared understanding of the data
extraction form and process. The questionnaire of the survey was designed jointly by the
first two authors, who were both involved in collecting the data at the workshop.

Interpretive validity is concerned with those threats, such as researchers’ bias, that
may lead to inaccurate conclusions. To avoid any issues in drawing conclusions, the first
two authors jointly performed the analysis, including the coding. Furthermore, the results
were presented and discussed in a joint meeting involving all four authors.

Generalizability is concerned about the extent to which the results are applicable to
those that are not part of the study. In case of the literature review, our sample is quite
small and therefore is not representative of the entire SE literature. Moreover, the results
obtained on the reports of ethical considerations in the literature review (and therefore
the checklist) are limited to the types of studies found (that is, primarily experiments,
interviews and surveys, as see in Figure 2). In addition, we review journal publications
only as they provide specific guidelines (see Section 2.2). The results may differ if we
consider conference publications as well. Our aim was not to achieve generalizability, but
rather to observe how ethical issues are reported in a sample of recent journal articles
published at top SE journals. The sample gives an idea about the state of research practice
on reporting ethical issues in SE research – that even most of the recent articles in this
sample at top quality journals do not report necessary ethical issues appropriately. The
workshop participants are also limited in number. In addition, as the participants were
attending a workshop on ethics in SE, they were likely more positive towards reporting
ethical issues. We think further evaluation of the checklist, involving more SE researchers,
is needed in future.

7. Conclusions and future work

Our literature review results based on 95 primary studies indicate limited reporting of
consent, anonymity and confidentiality issues in SE publications. The studies included in
our sample mostly discussed the process of obtaining informed consent. However, this was
limited to informing the subjects on the study purpose and procedure in most cases. We
identified different aspects of confidentiality reporting. Most studies discuss the details
of storing and using data to maintain confidentiality. Half of the studies that mentioned
anonymity did not provide information on how they anonymised.

In the workshop, the participants rated the procedure to: obtain voluntariness, commu-
nicate risks and benefits, and analyse to preserve confidentiality as the top three ethical
issues to report. However, in our literature review, we observe that the risks of participation
and the analysis process to preserve confidentiality were the least discussed aspects.

Finally, we propose a checklist that SE researchers can use to identify the ethical issues
related to informed consent, confidentiality and anonymity applicable to their study and
consider when reporting their findings.

The proposed checklist is only based on selected empirical software engineering literature.
In the future, we plan to compare it with related works from other disciplines (e.g., [31, 32])
as well and see how can we further improve it.

220109-22

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

Acknowledgement

We would like to acknowledge that this work was supported by the Knowledge Foundation
through the OSIR project (reference number 20190081) at Blekinge Institute of Technology,
Sweden.

References

[1] J. Singer and N.G. Vinson, “Ethical issues in empirical studies of software engineering,” IEEE
Transactions on Software Engineering, Vol. 28, No. 12, 2002, pp. 1171–1180.

[2] J.E. Sieber, “Protecting research subjects, employees and researchers: Implications for software
engineering,” Empirical Software Engineering, Vol. 6, No. 4, 2001, pp. 329–341.

[3] M. Jefford and R. Moore, “Improvement of informed consent and the quality of consent
documents,” The Lancet Oncology, Vol. 9, No. 5, 2008, pp. 485–493.

[4] D. Badampudi, “Reporting ethics considerations in software engineering publications,” in 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2017, pp. 205–210.

[5] T. Coffelt, “Confidentiality and anonymity of participants,” in The SAGE Encyclopedia of
Communication Research Methods, M. Allen, Ed. SAGE Publications, Inc, 2017.

[6] B. Kitchenham, L. Madeyski, and P. Brereton, “Problems with statistical practice in human-
centric software engineering experiments,” in Proceedings of the evaluation and assessment on
software engineering, 2019, pp. 134–143.

[7] M. Jørgensen, T. Dybå, K. Liestøl, and D.I. Sjøberg, “Incorrect results in software engineering
experiments: How to improve research practices,” Journal of Systems and Software, Vol. 116,
2016, pp. 133–145.

[8] R. Rosnow and R. Rosenthal, People studying people: Artifacts and ethics in behavioral research.
WH Freeman, 1997.

[9] V. Prasad and C. Grady, “The misguided ethics of crossover trials,” Contemporary Clinical
Trials, Vol. 37, No. 2, 2014, pp. 167–169.

[10] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software engineering experiments:
Benefits and perils,” IEEE Transactions on Software Engineering, Vol. 42, No. 2, 2015,
pp. 120–135.

[11] K. Xivuri and H. Twinomurinzi, “A systematic review of fairness in artificial intelligence
algorithms,” in Responsible AI and Analytics for an Ethical and Inclusive Digitized Society,
D. Dennehy, A. Griva, N. Pouloudi, Y.K. Dwivedi, I. Pappas et al., Eds. Springer International
Publishing, 2021, pp. 271–284.

[12] K. Boyd, “Ethical sensitivity in machine learning development,” in Conference Companion
Publication of the 2020 Conference on Computer Supported Cooperative Work and Social
Computing, CSCW ’20 Companion. Association for Computing Machinery, 2020, pp. 87–92.

[13] B. Zhang, M. Anderljung, L. Kahn, N. Dreksler, M.C. Horowitz et al., “Ethics and governance
of artificial intelligence: Evidence from a survey of machine learning researchers,” Journal of
Artificial Intelligence Research, Vol. 71, 2021, pp. 591–666.

[14] D. Spinellis, “The social responsibility of software development,” IEEE Software, Vol. 34, No. 2,
2017, pp. 4–6.

[15] F.F.S. Flores and S.R.L. de Meira, “Houston, we may have a problem: Results of an exploratory
inquiry on software developers’ knowledge about codes of ethics,” in International Systems
Conference (SysCon), 2019, pp. 1–6.

[16] A. McNamara, J. Smith, and E. Murphy-Hill, “Does ACM’s code of ethics change ethical
decision making in software development?” in Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018. Association for Computing Machinery, 2018, pp. 729–733.

220109-23

Deepika Badampudi et al. e-Informatica Software Engineering Journal, 16 (2022), 220109

[17] T. Ahmed and A. Srivastava, “Understanding and evaluating the behavior of technical users.
A study of developer interaction at StackOverflow,” Human-centric Computing and Information
Sciences, Vol. 7, No. 1, 2017, pp. 1–18.

[18] N.G. Vinson and J. Singer, “A practical guide to ethical research involving humans,” in Guide
to Advanced Empirical Software Engineering. Springer, 2008, pp. 229–256.

[19] N.M. Minhas, “Authorship ethics: An overview of research on the state of practice,” in
IEEE/ACM 2nd International Workshop on Ethics in Software Engineering Research and
Practice (SEthics), 2021, pp. 31–38.

[20] N.E. Gold and J. Krinke, “Ethical mining: A case study on msr mining challenges,” in
Proceedings of the 17th International Conference on Mining Software Repositories, MSR ’20.
Association for Computing Machinery, 2020, pp. 265–276.

[21] P. Strandberg, “Ethical interviews in software engineering,” in ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE Computer
Society, 2019, pp. 1–11.

[22] S. Baltes and S. Diehl, “Worse than spam: Issues in sampling software developers,” in Proceed-
ings of the 10th ACM/IEEE international symposium on empirical software engineering and
measurement, 2016, pp. 1–6.

[23] A.J. Viera, J.M. Garrett et al., “Understanding interobserver agreement: The kappa statistic,”
Fam med, Vol. 37, No. 5, 2005, pp. 360–363.

[24] S. Elo and H. Kyngäs, “The qualitative content analysis process,” Journal of Advanced Nursing,
Vol. 62, No. 1, 2008, pp. 107–115.

[25] R. Ørngreen and K. Levinsen, “Workshops as a research methodology,” Electronic Journal of
E-learning, Vol. 15, No. 1, 2017, pp. 70–81.

[26] K. Thoring, R. Mueller, and P. Badke-Schaub, “Workshops as a research method: Guidelines
for designing and evaluating artifacts through workshops,” in Proceedings of the 53rd Hawaii
International Conference on System Sciences, 2020.

[27] I. Krumpal, “Determinants of social desirability bias in sensitive surveys: A literature review,”
Quality and Quantity, Vol. 47, No. 4, 2013, pp. 2025–2047.

[28] A.D. Ong and D.J. Weiss, “The impact of anonymity on responses to sensitive questions,”
Journal of Applied Social Psychology, Vol. 30, No. 8, 2000, pp. 1691–1708.

[29] T. Hall and V. Flynn, “Ethical issues in software engineering research: A survey of current
practice,” Empirical Software Engineering, Vol. 6, No. 4, 2001, pp. 305–317.

[30] K. Petersen and C. Gencel, “Worldviews, research methods, and their relationship to validity
in empirical software engineering research,” in Joint Conference of the 23rd International
Workshop on Software Measurement and the 8th International Conference on Software Process
and Product Measurement. IEEE, 2013, pp. 81–89.

[31] F.G. Miller and D.L. Rosenstein, “Reporting of ethical issues in publications of medical
research,” The Lancet, Vol. 360, No. 9342, 2002, pp. 1326–1328.

[32] W.M. Association et al., “World medical association declaration of Helsinki: Ethical principles
for medical research involving human subjects,” Jama, Vol. 310, No. 20, 2013, pp. 2191–2194.

220109-24

e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220110, DOI: 10.37190/e-Inf220110

Reuse in Contemporary Software Engineering
Practices – An Exploratory Case Study

in A Medium-sized Company

Xingru Chen∗, Deepika Badampudi∗, Muhammad Usman∗
∗Department of Software Engineering, Blekinge Institute of Technology, SE-37179, Karlskrona,

Sweden
xingru.chen@bth.se, deepika.badampudi@bth.se, muhammad.usman@bth.se

Abstract
Background: Software practice is evolving with changing technologies and practices
such as InnerSource, DevOps, and microservices. It is important to investigate the impact
of contemporary software engineering (SE) practices on software reuse.
Aim: This study aims to characterize software reuse in contemporary SE practices
and investigate its implications in terms of costs, benefits, challenges, and potential
improvements in a medium-sized company.
Method: We performed an exploratory case study by conducting interviews, group
discussions, and reviewing company documentation to investigate software reuse in the
context of contemporary SE practices in the case company.
Results: The results indicate that the development for reuse in contemporary SE practices
incurs additional coordination, among other costs. Development with reuse led to relatively
fewer additional costs and resulted in several benefits such as better product quality
and less development and delivery time. Ownership of reusable assets is challenging in
contemporary SE practice. InnerSource practices may help mitigate the top perceived
challenges: discoverability and ownership of the reusable assets, knowledge sharing and
reuse measurement.
Conclusion: Reuse in contemporary SE practices is not without additional costs and
challenges. However, the practitioners perceive costs as investments that benefit the
company in the long run.

Keywords: software reuse, contemporary SE practices, software reuse costs and
benefits, software reuse challenges and improvements, InnerSource

1. Introduction

Software reuse is commonly practiced in organizations and is described as “the systematic
use of existing software assets to construct new or modified ones or products” [1]. The
benefits of software reuse such as improved product quality, faster time-to-market and
reduced development costs [1–3] are well-acknowledged. Although software reuse has been
studied for more than five decades, with the constant changes in architecture patterns and
styles (e.g., microservices), and processes (e.g., InnerSource [4]), the research in software
reuse still remains relevant. In 2019, Barros-Justo et al. [5] conducted a tertiary study
to investigate the trends in software reuse research. They identified many software reuse

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 08 Apr. 2022; Revised: 02 Jul. 2022; Accepted: 28 Jul. 2022; Available online: 02 Sep. 2022

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

research proposals related to 1) requirements engineering, testing, and design activities,
2) evolution/maintenance and variability management in project and process management,
and 3) other general reuse topics, such as decision-making based on systematic software
reuse and metrics to evaluate the reuse performance. Capilla et al. [6] also identified new
software reuse research opportunities in the context of new application domains, new
software reuse techniques and methods.

The growing popularity of open source use has also impacted software reuse. Mikkonen
and Taivalsaari [7] identified the growing popularity of opportunistic design, which is
“developing new software systems by routinely reusing and combining components (open
source components and modules online) that were not designed to be used together”. Xu
et al. [8] also identified a trend in increased library reuse of Maven libraries in Maven
Central1. Although opportunistic reuse is the opposite of systematic reuse as Barros-Justo
et al. [2] and Capilla et al. [9] stated, in the long run, there is a need to systematize
the maintenance of the external reusable assets from the open source. In addition to the
open source software, the open source “way of working” is adopted by various software
organizations, e.g., GlobalSoft/SoftCom [10], and IBM (CMS) [11, 12]. Inspired by the
open source way of working, Tim O’Reilly coined the term InnerSource [4] as “the use of
open source development techniques within the corporation” in 2000. Vitharana et al. [12]
further conceptualized InnerSource, particularly consumer contributions to reusable assets,
as participatory reuse. The authors described participatory reuse as “the scenario in which
potential reusers participate in the entire development process (e.g., analysis, design,
development, testing) to ensure that the project assets meet their reuse needs.”

In addition to the open source and IS practices, the changing technology also impacts
software reuse, i.e., the unit of reuse changed from components to microservices. Orga-
nizations are increasingly adopting microservices, together with DevOps practices (e.g.,
continuous integration and deployment) and container-based solutions (e.g., Docker) to
improve the delivery time and scalability of their products and systems (cf. [6, 13–15]).

Studies have investigated the impact of opportunistic reuse [9], microservices [16], and
InnerSource [17] on software reuse. Capilla et al. [9] found negative impacts of opportunistic
reuse on software reuse. Their results indicate that the integration of reusable assets found
opportunistically increases the number of smells and issues in most cases. Gouigoux and
Tamzalit [16] identified increased reuse as one of the main benefits of migrating from
monolith to microservices based architecture solutions. InnerSource (IS) practices facilitate
software reuse [17]. When consumers of reusable assets also participate in developing and
maintaining the reused assets, it further promotes reuse. The above mentioned software
engineering (SE) practices can be referred to as contemporary SE practices.

While studies investigate the impact of individual contemporary SE practices on
software reuse, there is no empirical investigation of software reuse in a combination of
contemporary SE practices. We refer to software reuse in contemporary SE practices as
organizations practicing both opportunistic reuse – leveraging open-source assets and
libraries wherever possible, and participatory reuse with the help of IS practices for
collaboratively developing reusable assets, together with the adoption of new technical
solutions such as microservices-based architectures and DevOps practices.

It is important to investigate if the previously well-known challenges of software
reuse are still applicable in the context of contemporary SE practices and discover the new
implications of software reuse. For example, when developing reusable assets in participatory

1Statistics for the Maven Repository, https://search.maven.org/stats

220110-2

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

reuse, additional coordination may be required when accepting contributions from other
teams. Furthermore, other teams may need additional documentation to understand how
they can contribute. The ownership of the reusable assets can be complicated when different
teams are involved in development. Opportunistic reuse involves additional integration
effort due to differences in the architectural style and technology in the target project and
the reusable asset from open source [9].

Barros-Justo et al. [18] pointed out the empirical evidence of software reuse in practice,
particularly in medium-sized companies, is limited. Also, existing systematic literature
studies on software reuse highlight the need for more empirical studies [1–3]. Therefore,
we contribute by investigating the state-of-the-practice of software reuse in the context
of contemporary SE practices in S-Group Solutions AB2, a medium-sized Swedish IT
company.

In our study we characterize software reuse in contemporary SE practices. We conducted
an exploratory case study to investigate how practitioners practice software reuse with
contemporary SE practices and how they perceive its costs, benefits, challenges, and
improvements. We collected the data using in-depth interviews, group discussions and
document analysis. Reduced time and improved product quality are the main identified
benefits. The study participants perceived additional coordination with stakeholders as
a cost in both, development and use of a reusable asset. The study participants identified
discoverability and ownership of the reusable assets, knowledge sharing and reuse mea-
surement as the top focused challenges and improvement areas. The participants were
in consensus on adopting IS patterns3 in order to address the top listed challenges and
improvement areas.

The remainder of the paper is structured as follows: Section 2 presents the related
work; Section 3 describes the study design; Section 4 provides the study results; Section 5
discusses the results in comparison to the related works and provides discussion on threats
to validity; Section 6 concludes the paper and proposes the future work.

2. Related work

Companies adopt software reuse practices to achieve certain benefits (e.g., better productiv-
ity), which leads to additional costs. Likewise, adopting software reuse practices also results
in some challenges, which researchers try to solve by proposing improvement suggestions.
This section will present an overview of the related works on software reuse costs, benefits,
challenges, and improvements.

Many studies identified increased development productivity and better product quality
as software reuse benefits, which includes both internal [19–21] and opportunistic reuse
[19, 22, 23]. Furthermore, less maintenance effort [18, 19, 23], standardized architecture
[21] and higher documentation quality [18] have also been identified as benefits of software
reuse.

Relatively fewer studies investigated software reuse costs than benefits. Kruger and
Berger [20] discovered that the majority of the additional reuse costs relate to the develop-
ment for reuse phase. They noted that developing assets for reuse is generally more costly
than developing for single use. However, Mohagheghi et al. [21] investigated the relation

2https://sgroup-solutions.se/
3https://patterns.innersourcecommons.org/

220110-3

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

between software reuse and increased rework and did not find a cause-effect relationship
between them.

The implementation of the software reuse initiative is not without challenges. Barros-Justo
et al. [18] replicated Bauer et al.’s study [19], investigating the challenges and problems
related to software reuse practices. Both studies [18, 19] identified the same software reuse
related challenges including licensing issues, “not invented here” syndrome, inadequate
granularity of reusable assets, accessibility of reusable assets, decrease of code understand-
ability and difficulties in modifying the code due to software reuse. Mäkitalo et al. [23]
and Barros-Justo et al. [18] also found that fixing compatibility and dependency related
issues is particularly challenging in case of reusable assets. In addition to these technical
challenges, coordination among the teams working on the development of the reusable
assets is also a challenge [20].

Some improvement suggestions have also been proposed in the literature to address
the challenges associated with the development of reusable assets. For example, using
a written reuse guidebook to improve the understandability of the reusable assets [24], tools
to help improve the discoverability of the reusable assets [24, 25] and allocating developers
a separate time budget to develop or maintain the reusable assets [24].

Barros-Justo et al. [18] pointed out that few empirical studies on software reuse
exist in small to medium-sized companies, therefore, they conducted a survey study in
a medium-sized company to fill the gap. Our study further contributes to the medium-sized
company context. We conducted an exploratory case study to cover the topic in more depth,
using interviews and group discussions. In our study, we collected data about software
reuse costs and benefits as well as about reuse related challenges and improvements in
the context of contemporary SE practices. Moreover, we also discussed the feasibility of
adopting selected IS patterns to address the identified challenges and improvement areas.

3. Study design

This section presents the details of the study design.

3.1. Research method

The study is part of a research project aimed at improving the internal reuse practices
of the partner companies. In a joint discussion involving both company and research
team members, it was decided to start with an initial study to understand the current
state-of-the-reuse practice at the case company. We chose an exploratory case study [26] as
our research method to investigate the current reuse practice in the company. We used
three data collection methods (see Section 3.4 and Table 1): interviews, group discussions
and company documentation.

3.2. Research questions

We formulated the following three research questions to guide our study:
RQ1: How software reuse is conducted in the context of contemporary SE
practices in a medium-sized company? Motivation: To understand the software reuse
strategies in contemporary SE practices, we aim to characterize the reuse process. We
investigated the company’s reuse related activities, roles and workflows.

220110-4

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

RQ2: What are the costs and benefits of practicing software reuse in the
context of contemporary SE practices in a medium-sized company? Motivation:
To understand practitioners’ perceptions of software reuse costs and benefits in the context
of contemporary SE practices. Cost is the extra/additional effort required to develop,
maintain or use the reusable assets.
RQ3: What are the challenges in practicing software reuse in the context of
contemporary SE practices in a medium-sized company, and how can they be
improved? Motivation: To understand what challenges, issues or problems the practitioners
in a medium-sized company encountered in software reuse in the context of contemporary
SE practices. To collect the improvements from the practitioners view and discuss other
possible interventions with practitioners that can facilitate software reuse.

3.3. Case company and unit of analysis

The case company, S-Group Solutions AB, is a private Swedish IT company that focuses on
developing spatial information and geographical information systems (GIS). The company
offers its solutions to the public sector and the target customers are mainly local governments
and authorities. S-Group Solutions AB has 65 employees and can therefore be classified
as a medium-sized company [27]. The software development organization of the company
consists of 29 people and it is divided into three teams corresponding to four solution
areas. Each development team consists of an average of five developers each, with one
senior developer acting as the tech lead. Each solution area has a corresponding project
manager, a product owner and a tester. The development organization has one software
architect who oversees and guides all teams and is responsible for maintaining the integrity
of the overall software design and architecture. In addition, the company also has a support
team, a UX engineer and a technical writer. The development teams follow agile practices
(e.g., daily standup and sprint planning) to manage their work. S-Group Solutions AB
uses Azure DevOps and has continuous integration and delivery (CI/CD) pipeline, which
updates every midnight. Currently, S-Group Solutions AB is migrating some codes from
a monolithic architecture to a microservices-based architecture. The unit of analysis is
the software reuse practice at the case company. Currently, two of the three teams are
more involved in the development and use of the reusable assets, while the other team is
relatively new in this reuse journey.

3.4. Data collection

The data is collected through semi-structured interviews, multiple group discussions and
company documentation. The aim of each data collection method and its corresponding
research questions (RQs) are presented in Table 1. We used group discussions and the
company documentation to validate and triangulate the interview data (see aims in
Table 1). The software architect was our contact person at the case company, who has
a long working experience (12 years) at the company and has a leading role in introducing
the software reuse related practices. We used semi-structured interviews to collect data
since it allows improvisation and exploration of the studied objects [26] and captures
unexpected information on the studied topic [28]. The group discussions are used since it
collects in-depth perspectives through interactive conversations with multiple participants,
not only with the moderator/interviewer as interviews do. Allowing multiple opinions
provides more descriptive and elaborated data.

220110-5

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

Table 1. Aims and corresponding research questions of the data collection methods

Data collection
methods

Aims RQ

Interviews

Understand how software reuse is practiced in the
company, and collect the practitioners’ perceptions on
software reuse costs, benefits, challenges and improve-
ments

RQ1, RQ2, RQ3

Group discussions 1) Validate the interview results, and get additional
inputs

RQ1, RQ2, RQ3

2) Collect the challenge prioritization results from the
company’s perspective 3) Discuss the feasibility and
application of the interventions which were proposed by
the authors and collect the feedback from the company

RQ3

Company
documentation

Understand the company structure in a written form
and triangulate it with the interview results

RQ1

Selection of the interview participants. To select the right person as participant
candidates, we shared with the software architect a list of candidate roles related to software
reuse at the company, including producers and consumers of the reusable assets and their
managers and team leads. The software architect helped us identify four participants
initially – the software architect himself, two tech leads (representing two different teams)
involved in the development and consumption of reusable assets and one product owner.
During the interviews with these four participants, we also identified the need to cover
the role of a tester and a project manager. With the help of the software architect, we
managed to interview one tester and one project manager. Table 2 shows the summary of
the participants. In total, we have interviewed 20 percent of the population (6 out of 29),
which covers all teams, and both technical and non-technical roles.

Table 2. Overview of the interview participants

PID Team Current role Expa Interview duration

P1 Team 2 Product owner (PO) 27 1h10mins
P2 Team 1 System developer and tech lead (TL1) 3 1h10mins
P3 Team 3 System developer and tech lead (TL2) 7 1h30mins
P4 All teams Software architect (SA) 12 1h20mins
P5 Team 1 Tester (T) 4 55mins
P6 Team 1 Project manager (PM) 6 1h

a Experience in number of years the practitioner is working with the current company.

Interview design. As mentioned in Section 3.1, we chose to conduct semi-structured
interviews. The second author developed the interview guide (see Table 3) and it was
reviewed independently by the other two authors and a senior researcher from the research
project, which resulted in minor reformulations. We also performed a pilot interview
with a practitioner from another company to test the interview guide. The interview
guide contains seven aspects: introduction, participants’ background, reuse practices, costs,
benefits, challenges and improvements. The mapping between the interview questions and
RQs are presented in Table 3. We used the interview questions as a guide and followed
semi-structured interview format which allowed for flexibility in the interview.

220110-6

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

Table 3. Mapping between the interview* questions and RQs

Interview questions Corresponding RQs

1. Overview of the current reuse practices and your role
a) Details on role and experience:
i: What is your role? Please provide a short overview of the tasks that you perform in
your role.
ii: Which other roles do you interact with and why?
iii: What is your overall experience and experience with development for and with reuse?

Demographic
information

b) Details on the product, team/s and shared assets:
i: What is the size of your team?
ii: Which software artefacts (requirements, test cases, code, etc.) you work with? Format
of requirements?
iii: Do you prefer development of assets from scratch or reuse? existing/available assets?
What is the motivation behind your preference?
iv: Which software assets do you/your team share (across site?)? What solution do they
offer?
Can you give an example?
v: Do you produce and/or consume the shared assets?
Give examples of the shared assets your are involved in?

RQ1

2. Is there a company/project/unit wide strategy/policy/goal to develop with reuse? RQ1

3. Is there a company/project/unit wide strategy/policy/goal to develop for reuse
(i.e., developing assets, e.g., code, with the aim to make them reusable)? RQ1

4. How is the funding of shared assets done? RQ1

5. What is your experience regarding developing for and with reuse? What reuse4 related
activities/tasks/initiatives are you involved in? RQ1

6. What activities, if any, are performed in your company to:
a) Identify the reusable assets
b) Develop/adapt reusable assets.
i: What are the unique activities in development of reusable assets?
c) Use reusable assets or replace existing assets with reusable assets.
d) Maintain reusable assets.
e) Share reusable assets or make reusable assets available.
i:[–] For all activities ask the following questions:
ii: Is there anyone response for this activity? If yes, who? If not, should there be any one
responsible?
iii: Who or what triggers this activity and how often?
iv: What information/input is needed for the activity?
v: Who provides the information needed for the activity or how is it obtained?

RQ1

7. Benefits of development for reuse and with reuse (what are the reuse benefits and how
are they measured?)
How reuse benefits – i: the organization, ii: your role (incentive), iii: the product,
iv: business/customers, v: the team?

RQ2

8. Costs of development for reuse and with reuse (what are the reuse costs and how are
they measured?)
How reuse costs affect – i: the organization, ii: your role, iii: the product, iv: business/cus-
tomers, v: the team?

RQ2

9. What are the challenges and improvement areas with respect to development for and
with reuse? RQ3

* In this interview, we want to know your view on software reuse. In particular, we want to know your experiences
of developing and/or using reusable assets. Assets include components, microservices, APIs etc. developed
either in-house or acquired from open source projects that could be reused within the company.

Due to the Covid-19 pandemic, we conducted the interviews online using Microsoft
Teams and the interview duration was set to approximately one and half hours. To provide

4Reuse could also mean using the same open source component that someone else at the company has
adopted.

220110-7

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

some context and background information, we shared high-level interview questions with
the participants before the interviews. The authors distributed their tasks mainly in three
parts during the interview: lead the interview, ask follow-up questions and take notes. All
three authors were involved in all the parts by switching their tasks in different interviews.
We requested participants’ permissions to audio record the interviews.We guaranteed that
the data will only be stored in a local drive and will only be used in an aggregate form
during the analysis and presentation of results. All interview participants gave their consent
for audio recording of the interviews.
Selection of the group discussions participants. As described previously, the study
is part of a research project. Keeping in view the relevance of the topics covered in the
study and the long-term goals of the project, we formed a discussion group to take the
study and the project forward. The discussion group consists of five members – including
two participants from the case company – the software architect and the project manager
– and the authors representing the project’s research team. The software architect has
a leading role in software reuse practice in the company and interacts with all development
teams about the technical issues. Therefore, his involvement was necessary for the study
and project. The project manager’s role is also important as he is responsible for planning
and managing the more active teams in developing and maintaining the reusable assets.
Including the project manager ensures coverage of project management and planning-related
perspectives in the discussions.
Group discussions design and company documentation review. Similar to the
interviews, group discussions were also held online through Microsoft Teams due to the
Covid-19 pandemic. We conducted discussions to validate interview results, prioritize the
challenges, and discuss the potential improvements to address the prioritized challenges.
In the group discussion on validating interview results, we presented the interview results
to the company contact person. The results of the interview data validation are provided
in Section 3.5. Prior to the next group discussion, we asked the company contact person
to conduct an internal discussion with the team members to prioritize the challenges
identified in the interviews. In addition, we investigated the possible solutions for the
identified challenges from the existing literature. Then in a group discussion, the company
contact mentioned the prioritized challenges (reported in Section 4.3.3). In the same group
discussion meeting, we provided potential solutions to mitigate the prioritized challenges.
We then discussed the feasibility of the proposed solutions with the contact person and the
project manager (see Section 4.3.3). The project manager provided company documentation
that included information about the people involved in reuse practices, reuse context and
the reuse activities, which we used to triangulate the interview results. On average, the
discussions lasted for an hour. The research team took extensive notes during the discussions.
The discussions concluded with one of the authors sharing the summary and confirming
the next steps (e.g., who is expected to do what before the next group discussion).

3.5. Interview data analysis approach

To enable the data analysis, the first author transcribed word to word of approximately
seven hours of audio recordings from the interviews. The other two authors did a preliminary
analysis by extracting and analyzing the relevant data from the transcripts. The authors
held a joint meeting to discuss the interview credibility, the transcription quality and the
preliminary analysis findings. At the end of the discussion, we reached a consensus on the
findings and agreed that all six interviews are eligible for the study. We presented the

220110-8

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

results from the preliminary analysis to the software architect. Apart from a few minor
corrections, the software architect agreed and was able to relate to the results.

Taking inspiration from the recommended thematic synthesis steps [29] and four-steps
data analysis process [30], we used the following integrated approach (both inductive and
deductive approaches) to code and analyze our data. The entire data analysis process is
described as follows:
Generating start list and clustering. We created a general start list for clustering
according to the research questions and context information. The start list acted as
a preliminary theme to group the raw data according to the general domain instead of
content-specific, enabling inductive coding. The start list contained seven aspects: personal
background, reuse context, reuse activities, reuse costs, reuse benefits, reuse challenges
and reuse improvements. The first author extracted the relevant text segments from the
transcripts and grouped them according to the generated start list.
Inductive coding within clusters. We followed the descriptive coding method according
to Saldana’s coding manual book [31]. The first and second authors agreed on a code
naming style and then they independently coded the text segments from the reuse benefits
cluster to pilot the code naming style. During the coding process, more text segments from
the transcripts were extracted when needed. The piloting results showed that we were
consistent in the code meanings and the corresponding text segments. However, we needed
to agree on a common name for each code. For example, we named the same text segments
“save time” and “reduced development time”. We eventually used “reduced development
time” and agreed that the code names should be more explicit. After the piloting, the
two authors independently coded clusters related to costs, challenges and improvements,
and arranged several meetings to address the disagreements. Apart from refining the code
names, the coding results showed that the first and second authors had similar opinions on
the codes and text segments. We merged two codes into one for the benefits cluster related
to maintenance, and merged another two codes into one for the costs cluster related to
team coordination. To enhance comprehension, we also cleaned the text segments jointly.
All the changes are logged to ensure code traceability. A codebook was generated when the
two authors reached a consensus on the codes and code descriptions. Using the codebook
as a reference, the first author went through all six transcripts again to ensure we did not
miss any relevant text segments. The first author extracted 15 new text segments, which
resulted in two code modifications. When there was no disagreement between the first and
second authors, they asked the third author for review. The review contains four parts:
the suitableness of the unit (broad or brief) of the extracted text segments, the relevance
between the codes and the text segments, the coverage of the codes and the clarity of the
code descriptions. We discussed the review results and addressed the disagreements in
a joint meeting among all authors. In the review process, the third author suggested the
removal of one code for benefits and three codes for challenges due to their low relevance
to software reuse. The relevance of these codes was discussed jointly and all three authors
agreed to remove them. In addition, we further refined the code names and extracted
additional text segments according to the review suggestions.
Translate codes into themes. We used pattern coding [31] to generate themes according
to the codes relations and thematic map to visualize and organize the codes and themes. The
first author independently came up with the themes for four clusters. Then the second and
third authors individually reviewed the appropriateness of the themes. The disagreements
were addressed iteratively through multiple discussions.

220110-9

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

Validation of the interview findings. To reduce the risk of researchers’ bias in data
interpretation, we shared the study report with the company contact person for review. The
contact person commented that one of the challenges was about technical incompatibility
than a challenge caused by software reuse. Therefore, we removed this challenge from
our results. Overall, the contact person confirmed that the results reflected the reality. In
addition, the results were also presented, discussed and agreed upon in one of the group
discussions.

4. Results

This section presents the results per research question.

4.1. RQ 1. Reuse practice and contemporary SE practices
in a medium-sized company

The software reuse process in S-Group Solutions AB consists of both participatory reuse
and opportunistic reuse, as presented in Figure 1. The potential reusable assets at the case
company are code (packages and microservices), requirements and automated test cases.
To better explain how software reuse is practiced in the contemporary software engineering
practices environment, we characterize different reuse activities in participatory reuse and
opportunistic reuse.

In participatory reuse (see the solid-lined box on top in Figure 1), the development
teams that use the reusable assets also participate in the development process. The software
architect, product owners, project managers and tech leads conduct a solution vision
meeting to propose reusable candidates before the project initiates and share the knowledge
among the teams. To facilitate the communication across different solution areas, people
in the same role sit together, i.e., testers at one place and product owners at one place,
which also facilitates exploring potential reuse opportunities across different teams. After
identifying the internal reusable candidates in solution vision, the software architect and
tech leads perform technical analysis to discuss overall design, such as the API design. Once
the technical analysis is completed, the relevant team develops the reusable code assets
themselves. When the consumers or other developers want to contribute to the internal
reusable code assets, they need to coordinate with the owner of the reusable assets to align
the needs from both sides (consumers and producers) and understand the code commit
requirements. There are two types of contributions: One is to add new functionalities to
the reusable assets and the other is to fix the bugs in the reusable assets. The reusable
assets include npm packages5, NuGet packages6 and microservices, which are stored in the
internal DevOps repository (Azure DevOps server). The internal DevOps repository has
the capability of keyword searching, which helps to look up the shared reusable assets. For
the most reused packages, a read-me file provides a short description of the package. All
developers are potential producers and consumers of the shared reusable assets, i.e., all
developers within the company can reuse the shared packages, and if the consumers identify
the need to fix or add something, they need to do that on their own. After the update,
a new version number is assigned to the revised package. The case company has reached
nearly 40% of the reuse rate, as a ratio of reusable assets from previous projects and the

5https://www.npmjs.com/
6https://www.nuget.org/

220110-10

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

Developer

Search internal
reusable code assets

Internal DevOps
Repository

Select

Search external
reusable code assets

Open Source

Find

External reusable
code assets

Step1: Approval
plus decision

on modify or not

Software Architect

Development team

Develop

microservice

Reuse

npm
packages

NuGet
packagesCoordinate

Developers from
other teams P

A
R
T
I
C
I
P
A
T
O
R
Y

R
E
U
S
E

O
P
P
O
R
T
U
N
I
S
T
I
C

R
E
U
S
E

Contribute/Maintain

Coordinate

Solution
vision

Technical
analysis

Store to
internal repo

Step 2: Store to
internal repo

Contribute/
Maintain

Internal reusable code assets

Figure 1. Software reuse and contemporary SE practices in S-Group Solutions AB

newly developed project. The company aims to increase the participatory reuse since it
supports the development and maintenance of the reusable assets and also facilitates the
company-wide adoption of the reuse practices.

In opportunistic reuse (see the dotted-lined box at bottom in Figure 1), the company
reuses from the open-source community. However, developers need to get approval from the
software architect before importing the external reusable assets into the internal DevOps
repository and reusing them. The approval includes risk analysis, such as the fit to purpose
check and the associated community activeness check. The developers need to coordinate
with the open source community for bug fixes and new feature requests. They also make
upstream contributions. If the open source maintainers do not respond in time, the software
architect and developers need to decide whether to modify the external reusable code assets
themselves and store the modified ones into the internal DevOps repository (provided that
the OSS license permits). The opportunity reuse in the company is limited in package
reuse only.

According to the software reuse process description in S-Group Solutions AB, Inner-
Source is practiced by accepting other teams’ developers participation in the development
and maintenance of the reusable assets. All code is stored and shared organization-wide in
the internal DevOps repository, expect for some sensitive code which is kept private within
the team that developed it.

220110-11

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

RQ1 – Summary. We characterize the reuse in contemporary SE practices in S-group
Solutions AB, which follows both participatory reuse and opportunistic reuse. All reusable
assets are managed in the internal DevOps repository. Developers from different teams col-
laborate in developing and maintaining the internal reusable assets. Developers also retrieve
external reusable assets from Open Source community and make upstream contributions
for bug fixes or maintain the assets locally.

4.2. RQ2. Software reuse costs and benefits

BenefitsCosts

Reduced development time
(TL1, TL2, PM, SA)

Better product quality
(TL1, TL2, SA, T, PM)

Faster time-to-market (SA)

Consistent UI
(TL1, PM)

Better learning experience
(TL1, TL2, SA)

Reduced need to have
dedicated resources
(TL1, TL2)

Additional boilerplate code when creating
reusable assets (TL1)

Additional approval process for creating
internal reusable assets (TL1, TL2, SA)

Additional effort in debugging reusable
assets (TL1)

Additional documentation when developing
reusable assets (TL2)

Additional design effort to create reusable
assets (TL1, TL2, T)

Additional risk analysis for external reusable
assets (TL2, SA)
Additional time to learn reusable assets (SA)

Additional effort in creating reuse related tools
(TL1)

Additional coordination with open source
community (TL2)

Additional coordination with different teams
(TL2, SA, PM, PO)

DFR

DWR

PROCESS

PRODUCT

PEOPLE

Reduced testing time (T)

Reduced maintenance time
(SA, T, PM)

Figure 2. Costs and benefits of the software reuse in the context of contemporary SE practices

Software reuse includes an upfront cost in creating reusable assets, which pays off when
reusable assets are integrated in new solutions. Figure 2 provides the classifications of
the practitioner perceived costs and benefits, mapping with the participants by the role
abbreviations (see Table 2). The listed codes follow the order of their coverage among the
participants – from more to less common, reflecting which costs and benefits are considered
relevant by different study participants. Sections 4.2.1 and 4.2.2 discuss the reuse costs
and benefits perceived by the participants, respectively.

4.2.1. Reuse costs perceived by the participants

This section describes the identified costs related to development for reuse (DFR) and
development with reuse (DWR). DFR contains all activities for “creating, acquiring or
re-engineering reusable assets”, while DWR contains all activities for “using reusable assets
in the creation of new software products” [32]. We identified six costs in DFR and four
costs in DWR.

In theme DFR, the software reuse costs are as follows:

220110-12

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

1. Additional coordination with different teams is perceived as a cost by four
participants (one of the tech leads, the software architect, the project manager and
the product owner). The producers and consumers need additional synchronization
and communication to develop or maintain the internal reusable assets, especially in
participatory reuse. The software architect described it as “developing something that
fits a few other people, you have to take their needs into consideration and integrate
that into the specific product” and it usually “ends up in a prioritize discussion” for the
purpose of matching release time as described by the product owner.

2. When creating reusable code assets, additional design effort to create reusable
assets is needed to make reusable assets easy to use, less error-prone and avoid breaking
changes. Such cost is reflected in technical analysis process in the participatory reuse
followed in the company (see Figure 1), which was shared by two tech leads and the
tester. The additional design effort is not limited to reusable code assets but also
reusable automated test cases. One tech lead described it as “usually you care more
about the design of the (reusable) component. But as soon as it is common, you need
to design it better so that it is easier for other teams to use as well.”. And the tester
shared that creating auto test using page object “adds small overhead in the short term
but will probably be time-saving in the long term.”

3. Three participants mentioned that additional approval process for creating internal
reusable assets is needed before the implementation. The product owner approves
the reusable asset functionality, and the project leader approves from the workload
and time perspective. One tech lead said reusable microservices need to “go through,
from the product owner, project leader, all of that, before you create the (reusable)
microservices”. The additional approval process is part of the solution vision activity in
the participatory reuse (see Figure 1).

4. When reusing, some technical problems might constraint the developers from efficient
reuse and they need to take additional actions to achieve reuse. One tech lead discussed
the cost that developers have to write additional boilerplate code when creating
reusable assets. He described this cost as “every time we need to create a new package
to address a lot of boilerplate code that we need to implement”. Boilerplate code is code
that is copy-and-pasted without modification, e.g., the definitions of getting and setting
instance variables method in object-oriented programs.

5. Tools can help in promoting reuse. However, if the developers need to create the reuse
related tools themselves then it involves additional effort. One of the developers
added – “create stuff (reuse tool) that is easy for reuse requires additional effort.
However, it can only take a very little time in the long run. It will take some time in
the beginning to set everything up and to get it working.”

6. Additional documentation when developing reusable assets is brought up by
one tech lead and he described it as “if you develop some reusable components, you try
to add more documentation, describing what component is, so the developers who reuse
it will understand.”
In theme DWR, the software reuse costs are as follows:

1. One tech lead and the software architect pointed out additional risk analysis for
external reusable assets in opportunistic reuse. To acquire an external reusable
asset, the tech lead said that “when you have some package candidates, you need
to check (if they fit) requirements, you need to do like prototyping and testing”. The
software architect added that “every time we choose to do something like picking
a new open-source framework or open-source tool, it has to go through that process

220110-13

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

(risk analysis) where it goes through a few lines within the company to assure that, for
example, licenses, agreements actually meets the terms for including this in the product
and so on.”

2. The software architect highlighted the cost of additional time to learn reusable
assets, and he said that “understanding is going to take a bit longer if you are not
familiar with that specific project or that specific component.”

3. One tech lead pointed out the cost of additional effort in debugging reusable
assets. The debugging process jumps over the reused code and developers have to copy
the source code into the project to enable the debugging process. He described this cost
as “it is kind of a little bit of a hassle to debug that, because you need to remove the
package and use the actual source code as a reference instead”.

4. Additional coordination with open source community is a cost in opportunistic
reuse. One of the tech lead explained that “If it is a new bug (in the external reusable
components), then sometimes you need to request for the fix and sometimes it is a problem
because you need to wait for such fix or if possible you need to do some workarounds.”

4.2.2. Reuse benefits perceived by the participants

Although the participants pointed out costs in both DFR and DWR, most of them stated
that the benefits outweigh the costs. We identified eight benefits of software reuse in the
case company (see Figure 2), which were classified into three themes according to the
context facets [33]: people, process and product.

The software reuse benefits the engineers that are involved in the development, integra-
tion and maintenance of the reusable assets. In the people theme, we identified better
learning experience as a reuse benefit. The software architect shared better learning
experience as a benefits for the developers that are involved in software reuse. Such benefit
is gained from the additional time that developers spend in learning reusable assets. During
the learning, the developers will understand what the reusable assets are about and how
they were built. A well-designed reusable asset will help developers grasp knowledge faster
than development from scratch. The software architect perceives the value in “getting
a much broader understanding of things” and “learning much faster than doing it all by
yourself ”. Such knowledge gaining will also help the company develop better-skilled teams.

In addition to the above benefit for people, the participants also shared the following
process related benefits of practicing software reuse:
1. As a result of the additional costs in the DFR, reusing the assets reduces time in

development, maintenance, testing and delivery (see first four codes for theme
PROCESS in Figure 2). The software architect highlighted that software reuse helps
“faster time-to-market” since developers do not need to develop everything. The project
manager, the software architect and two tech leads perceive the main benefit of reusing
software is that “it will save a lot of time instead of we have it (the code) from scratch”,
namely, reduced development time. Meanwhile, as a result of reuse, changes or fixes
can be propagated easily, which helps reduce the maintenance time. One tech lead said
software reuse “gain (benefits) from a maintainability point of view where you can fix
things in one place and reflect all over the entire product”. On the other hand, the
tester added the reusable code requires less testing effort and described it as “when
developers reuse stuff, because they reuse something that we know how good quality is,
we do not have to spend the same amount of time on testing that specific code once

220110-14

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

again.” Overall, the company can benefit from the time-saving perspective and be more
competitive in the market.

2. Two tech leads highlighted the benefit of reduced need for dedicated resources
for consumers because they can rely on the producers of the reusable assets, who have
competence in a particular area. One of them described that it is “a good thing that if it
(reusable asset) is more specific area, all the developers do not need to learn such area.
So other teams (consumers), they just reuse with such kind of component.” Teams, even
the company could benefit from the reduced resources and further reduce the costs.
Lastly, we also identified the following product related benefits of practicing software

reuse:
1. Due to the careful design in producing reusable assets and evolution after several reuses,

better product quality is discussed by five participants. They said that the software
with more reused content has better quality (reduced defects, bugs, deficiencies) as
“such kind of components (reusable components), they are more or less tested. And
they contain less bugs than in the components we just developed”. Good product quality
could gain reputation for the company and increase the competitiveness.

2. Two participants mentioned benefits in consistent UI, however, from different perspec-
tives. One tech lead emphasized the company brand value because of the consistent
UI and said “we will share the same, maybe header, sidebars, dashboard, so the users or
the customers will recognize our product by whichever application they are using.” The
project manager also mentioned a direct benefit to the customers, i.e., a consistent
UI leading to a consistent user experience for the customers across different products
and modules from the case company, and he described this benefit as “if you reuse
a component that has UI artifacts, it will also look and feel the same and work the same
way. You can help create consistency in our UIs.”.

RQ2 – Summary. Costs in DFR result mostly from designing, developing, coordinating
for creating reusable assets and their documentation. However, it pays off when developers
start to reuse more. Costs in DWR result from learning, analysing, and coordinating for
using the reusable assets. The main benefits of software reuse are related to time-saving,
better product quality and improved learning experience.

4.3. RQ3. Software reuse challenges and improvements

From interview, the participants also shared the challenges they face in practicing software
reuse in the context of contemporary SE practices and the improvements they would like
to implement. In total, we identified 14 challenges, which are divided into the following
two groups.
– The challenges with improvement suggestions: In this group there are five challenges

for which the participants also shared some improvement suggestions (see Section 4.3.1
for details).

– The challenges without improvement suggestions: In this group there are nine challenges,
without any specific improvement suggestions by the study participants (see Section 4.3.2
for details).
In addition to the challenges above, we also identified three improvement suggestions

(generic improvements) that could not be mapped to any of the challenges, which are
described at the end of Section 4.3.1.

220110-15

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

In the group discussions, the software architect and project manager prioritized the
challenges based on the company’s needs in the group discussions. We proposed IS related
improvements to address the top concerning challenges, namely discoverability and owner-
ship of reusable assets, knowledge sharing and reuse measurement. The prioritized challenges
and IS related improvements that the authors suggested are described in Section 4.3.3.

Figure 3 provides the classifications of the practitioner perceived challenges and im-
provements, mapping with the participants by the role abbreviations (see Table 2).

Challenges Improvements

Limited discoverability of internal
reusable assets (TL1, SA)

Lack of documentation for internal
reusable assets (TL1, TL2)

Hard to plan internal reusable
asset candidates (PM)

Improve technical and non-technical
understandability of internal reusable
assets (SA, PM)

Improve migration to microservices
(TL1)

Improve sprint planning for reuse
(PM)

Improve appreciation for reuse
(TL1)

Improve visibility of internal reusable
assets (PO)

Improve automated generation of
documentation (SA)

Improve identification of reused
assets when testing (T)

Improve tool support for creating
internal reusable packages (TL1)

Time constraints for developing internal
reusable assets (TL1, TL2, PO)

Hard to let non-technical people
understand reuse benefits
(TL1, SA)
Unclear maintenance &
governance of internal reusable
assets (PO)

Improve ownership for internal reusable
assets (PM)

Improve the measurements of reuse
progress (PM)

Generic
Balance the scope of internal
reusable assets (PM)

Open source reuse hesitation from
management level (SA)

Dependency issues of reusable
assets (TL2)

Increased risks of using external
reusable assets (SA)

License restrictions of external
reusable assets (TL1)

Reducing learning from scratch (TL1)

Lack of documentation for external
reusable assets (PO)
Lack of knowledge sharing across
different requirement areas to
enable reuse (PO)

With
proposed

improvements

Without
proposed

improvements

Figure 3. Challenges and improvements of the software reuse
in the context of contemporary SE practices

220110-16

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

4.3.1. Challenges along with improvement suggestions

We elicited five out of fourteen challenges with participants’ proposed improvements. In
addition, the participants mentioned three generic improvements which are also described
in this section. The challenges with proposed improvements are as follows:
1. Time constraints for developing internal reusable asset is a big concern raised

by two tech leads and the product owner. Tight release schedule is always a constraint
for software product delivery in the industry. Adding DFR into an existing development
life cycle is even more demanding. One of the tech leads gave an example that “we have
a notification system, which were very easily could be made to a microservice. But for
now, since we are close to release, we will keep it in our application for now, but it will
probably become a requirement and as new application or service of itself in the future”.

Improvement suggestion – Improve managing time constraints

Improving tool support for creating internal reusable packages is nec-
essary to manage the time constraints for developing reusable assets. One of
the tech lead suggested supporting tools for creating reusable packages – “to
have a lot of tools that do things for us or to create packages more easily”. To
enable development of reusable assets while ensuring timely delivery, the project
manager wanted to improve sprint planning for reuse and suggested the
following: “a good approach from my perspective is to have the developers give
me two estimates, one where we do not develop it as a reusable component, and
one where we do. So I can discuss reuse priorities with the product owner. If the
product owner does not agree to prioritize reuse tasks, then my suggestion is to
implement it for that specific area, but then we are allocated time afterwards for
converting it to a reusable component.”

2. Two participants perceived limited discoverability of internal reusable assets as
a challenge. Reuse will not happen if the developers cannot find the available reusable
assets. One of the tech lead and the software architect identified the challenges that
people in the company are not able to discover all the existing reused assets within the
company. The software architect emphasized “it (the challenge) is the discoverability of
the things for developers to know what actually exists internally”.

Improvement suggestion – Improve visibility of internal reusable assets

To improve the discoverability challenge, the product owner wanted to improve
visibility of internal reusable assets by managing and grouping the similar
user stories representing a workflow. The right categorization helps to improve
visibility and hence facilitate software reuse. He added “we probably have thou-
sands of user stories, but to be able to get that in a manageable way, you probably
need to step up a little bit, maybe on workflow level.”

3. Lack of documentation for internal reusable assets was mentioned by two tech
leads. One of the tech lead said “usually they (internal packages) do not have good

220110-17

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

documentation”. And low quality of documentation or missing documentation, may
hinder understandability of internal reusable assets.

Improvement suggestion – Improve documentation for internal reusable assets

The participants identified concrete improvement suggestions to improve docu-
mentation. The software architect wanted to improve automated generation
of documentation since they considered manually writing the documentation
for reusable assets is as an overhead and suggested automating this process:
“since we want to spare the developers from writing too much documentation, we
are looking into how to automate it entirely.”
The software architect and project manager both suggested on how to improve
technical and non-technical understandability of internal reusable as-
sets. The software architect suggested that they need to improve documentation
of reusable assets in a way that helps developers understand the capability of
the reusable assets and “how to use the package (reusable assets)”. The project
manager suggested that they need to improve documentation so that “other people
within the company know what is available for reuse than only the developers.”

4. One of the tech leads and the software architect found it was hard to let non-technical
people understand reuse benefits which led to a lack of management support.
The software architect brought up that “sometimes it is a challenge to get them
(non-technical people) to understand what is the actual benefit for it (software reuse)”.

Improvement suggestion – Improve management’s perception on reuse benefit

The project manager wanted to improve the measurement of reuse progress
to demonstrate the reuse rate to the management. He said that “when we develop
a new web application, I want to be able to see that in this new web application,
how much did we reuse. So basically how much of the code base that’s in this web
application is from reuse. And that could be one version of kind of measuring
how much implementation time is saved.”

5. The product owner pointed out the challenge of unclear maintenance/governance
of internal reusable assets. He raised the following question – “when we have written
it (the reusable assets), who should maintain it (the reusable assets)”.

Improvement suggestion – Improve maintenance/governance of internal
reusable assets

The project manager identified the need to improve ownership for internal
reusable assets and suggested that they need “a clear strategy of who is
responsible and who owns this (reusable) component”.

220110-18

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

Improvement suggestion – Generic improvements

Improvements in reward are mentioned by one of the tech leads to scale reuse
instead of providing suggestions to mitigate the listed challenges. It is important
to improve appreciation for reuse, which motivates the developers to not
only produce but also consume reusable assets. One tech lead mentioned “not
incentive or maybe like said appreciation that we make time to create something
that will save time later on.”
The tester wanted to improve identification of reused assets when testing.
He suggested enhancing the traceability of reused code in the system under test
– “I think from my (tester) point of view, one area for improvement is to clarify
when we reuse stuff, because it is not always very clear”.
One of the tech lead identified a need in having a clear vision to improve
migration to microservices, he described it as “from the architecture point of
view, what components, to plan, extract (for migration)”.

4.3.2. Challenges without proposed improvements

In this section we discuss nine out of fourteen challenges that participants brought up
without any associated improvement suggestions.
1. The project manager found it is hard to plan internal reusable assets candidates.

He added that: “identify is this functionality that should be implemented as a reusable
component, and taking that decision, that is hard to get in black or white. And usually
you have to move down some grey area to kind of take that decision.”

2. After identifying the reusable asset candidates, practitioners are faced with a dilemma
of the scope of the reusable assets. The project manager found it challenging to balance
how general and specific the reusable assets should be, namely balance the scope of
internal reusable assets. He got this input from developers that “they (developers)
find very hard when it comes to reusable components, to find the right level of how
generic the component should be”.

3. The software architect identified open source reuse hesitation from management
level. He said “people that started as a developer and he now have another role
in higher-up management” are hesitant towards open-source reuse. He added that
“mentioning open-source to a person who worked with proprietary systems and closed
was not really easy. And open-source is misunderstood in many ways, I would say.” The
management can hinder opportunistic reuse if they are not willing to take in the open
source software.

4. When performing reuse, one tech lead identified dependency issues of reusable
assets. Many dependencies need to be taken care of when reusing the package and
this dependency overhead creates lots of work for developers and is not good for users
as well. He added: “some (reusable) components are good for us, but it has a lot of
dependencies.”

5. The software architect highlighted the increased risks of using external reusable
assets. The company relies on the quality of the reused external assets. And he added
that “it is a bit more risky to include things from the outside”.

220110-19

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

6. License restrictions of external reusable assets may prevent the reuse of external
assets. One of the tech leads pointed that sometimes they “cannot reuse because it
depends on licensing”.

7. With increased software reuse, one of the tech lead highlighted an issue in reducing
learning from scratch. He described that “if we keep reusing stuff and not code
anything ourselves, that might be an issue. Get experience that way, to do things from
scratch as well.” However, the software architect viewed learning benefits in terms of
understanding and knowledge gained from reusing as described in Section 4.2.2.

8. The product owner and one tech lead raised a concern in lack of documentation for
external reusable assets. The product owner stated that developers also need to
know what exists externally, and what can be brought into the company. Incomplete
documentation in external reusable assets hinders the opportunistic reuse practice: “to
find and also to see can it (reusable asset) reports in that way that we want to utilize
it and maybe incorporate it in our product as the way it is or something else with the
license agreement. That is hard to find it on that level.” And the tech lead also said
sometimes “the real read-me files have none” in external packages.

9. Lack of knowledge sharing across different requirement areas to enable
reuse indicates limited transparency. The product owner explained that this knowledge
sharing problem occurred because different teams work on their specific requirement
areas and they lacked central communication for sharing. However, he emphasized that
“when every part is developed, it is very important that we need to share knowledge, so
several people know about this functionality.”

4.3.3. Prioritized challenges along with improvement suggestions -

Although practitioners perceived some challenges with software reuse, they considered reuse
to be important and wanted to invest in further improving the software reuse process in
the company. We presented the overall interview findings and asked the software architect
to prioritize the challenges and improvements they would like to implement. Based on
the company’s requirements and internal discussions with the relevant stakeholders, the
software architect prioritized discoverability and ownership of reusable assets, knowledge
sharing and reuse measurement as the focus areas for further investigation. We identified
some IS patterns from the InnerSource Commons7 that could address the top challenges
and improvement areas. The IS patterns that we discussed with the product manager and
the software architect are discussed below:
1. Discoverability of the reusable assets. InnerSource Portal pattern8 aims to create

an intranet portal that allows the project owners to advertise their projects to the
entire organization. Though the case company does not have shared IS projects, they
can use the portal to find all the reusable assets in an efficient way.

2. Ownership of the reusable assets. The participants emphasized there is a need to
have a clear strategy about the ownership. To complement the participant’s suggestion,
we proposed two InnerSource patterns – 30 Days Warranty pattern9 and Trusted
Committer pattern10, to address the maintenance/governance challenge. Thirty Days
Warranty pattern assigns the contributors the responsibility to pass the knowledge and

7https://innersourcecommons.org/
8https://patterns.innersourcecommons.org/p/innersource-portal
9https://patterns.innersourcecommons.org/p/30-day-warranty

10https://patterns.innersourcecommons.org/p/trusted-committer

220110-20

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

solve the problems about their contributions within a certain period. It creates a buffer
time for the one responsible for the reusable assets to understand the contributed
code and gain the ability to maintain them. Trusted Committer pattern aims to assign
a trusted committer role to the most active contributors and allocate bandwidth to
facilitate the maintenance/governance of the reusable assets.

3. Knowledge sharing of the reuse related information. To facilitate knowledge
sharing, we suggested to improve work and decision transparency in the group dis-
cussions, namely, 1) ask all teams to publish their roadmaps and backlog planning,
2) publish decisions and allow for discussions from other teams. Such suggestions were
generated from IS pattern – Transparent Cross-team Decision Making Using RFCs11,
which helps increase the chance of other teams’ participation by publishing internal
requests for comments (RFCs) documents.

4. Reuse measurement. We suggested Cross-team Project Valuation pattern12 to further
address the reuse measurement improvement. Such a pattern aims to create a model to
calculate the value of cross-team projects (in our case, the shared reusable assets) and
demonstrate the increased productivity when people from other teams are also involved
in development or maintenance.

We discussed the feasibility of the above proposed IS patterns with the product manager and
the software architect. In the discussions, we concluded that many patterns from InnerSource
Common13 could help address the top concerning challenges. Moreover, the project manager
agreed to conduct a follow-up investigation to check the company’s readiness for adopting
more InnerSource practice to improve the development and maintenance of the reusable
assets.

RQ3 – Summary. In the group discussions, S-Group Solutions AB rated discoverability
and ownership of the reusable assets, knowledge sharing of the reuse related information
and reuse measurement as the major improvement areas of the software reuse practice.
Apart from the improvements proposed by the participants, IS patterns help address a lot
of software reuse challenges.

5. Discussion

This section further discusses and compares our results in software reuse costs, benefits,
challenges, and improvements with the related works.

5.1. Software reuse costs in the context of contemporary SE practices

In our study, we identified that practicing software reuse results in additional costs – more
in case of development for reuse as compared to development with reuse. Our findings are
in line with the results reported by Kruger and Berger [20] and Agresti [24]. We found
additional coordination in participatory reuse as we anticipated. Additional coordination
is needed in the case of opportunistic reuse as well. Kruger and Berger [20] also found that
practicing software reuse results in additional synchronization and coordination among
different teams. They found additional coordination when handing over reusable assets

11https://patterns.innersourcecommons.org/p/transparent-cross-team-decision-making-using-rfcs
12https://patterns.innersourcecommons.org/p/crossteam-project-valuation
13https://innersourcecommons.org/

220110-21

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

to different functional teams, such as development teams and quality assurance teams. In
comparison, our identified additional coordination occurred when other consumer teams
wanted to participate and contribute to developing the reusable assets. It could also be
argued that additional coordination helps increase the transparency between different
teams and enhance the internal collaboration.

Our study and Agresti [24] found extra costs in understanding the reusable code.
However, Agresti [24] identified extra cost when the reused assets need extensive modi-
fication. Our participants did not bring up such a cost. Comparing Agresti’s study [24]
with our study, we think the reason could be that our case company follows a relatively
more systematic process when performing software reuse, such as using the solution vision
process and the technical analysis before developing the reusable assets (see Figure 1).
Moreover, our case company did not mention additional integration effort in opportunistic
reuse as we assumed.

5.2. Software reuse benefits in the context of contemporary SE practices

We identified better product quality and time-saving in development, maintenance, testing
and delivery as the main software reuse benefits in the case company. Multiple secondary
studies (cf. [1–3]) and primary studies [18, 20, 21, 24, 25, 34] on software reuse also identified
that the software reuse practices contribute to better product quality and time saving in
one or more phases of the software development cycle.

Bauer et al. [25] and our study found that software reuse helps in improving the
consistency of the product. However, in our study, software reuse is found to contribute
to consistent user interface experience across different modules, while in Bauer’s et al.
[25] study, software reuse contributes to feature consistency over the range of products.
Literature related to internal reuse [21, 34] and our study found the learning benefit in
software reuse, however, from different perspectives. We identified that internal reuse
practice also offers some learning opportunities to the developers – they could learn more
from understanding and reusing well-designed reusable assets. Goldin et al. [34] also found
that requirement management and reuse help the new employees complete the onboarding
process easier and quicker from the learning perspective.

Barros-Justo et al. [18] identified higher documentation quality as a benefit of software
reuse. We did not find higher documentation quality as a benefit of software reuse in
our study. However, the participants pointed out that reusable assets require additional
documentation (for details, see Section 4.2) as we anticipated. This upfront cost may
contribute to higher document quality later. There maybe two reasons for not having higher
documentation quality due to the reuse practices in the case company. First, the case
company is still at the beginning (about two years) of their software reuse journey. They
need more time to adapt to the reuse approaches. Second, in a medium-sized company, it
is difficult to invest extra resources to create additional documentation.

The participants also brought up that due to the availability of the reusable assets, the
consumer teams do not need to dedicate resources in those domain areas that are already
covered by the reusable assets. However, with this benefit placed, the consumers may take
things for granted and start to ask for more features in the reusable assets. Riehle et al.
[35] reported a similar scenario wherein the producer teams were over-burdened due to the
large number of change requests from the consumers of the reusable common assets.

220110-22

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

5.3. Software reuse challenges in the context of contemporary SE practices

In our study, the participants were positive about having internal reusable assets. However,
they also pointed out some challenges related to the management of the internal reusable
assets, including discoverability, knowledge sharing and the ownership of the internal
reusable assets. Barros-Justo et al. [18] and Bauer and Vetro [19] also reported that finding
the relevant reusable asset is a common problem. Due to the boundaries between projects,
reusable assets become unavailable for the developers across projects [19] – such a way of
working potentially constraints software reuse and it represents the same challenge that we
also identified in our case company – namely, lack of knowledge sharing across different
teams to enable reuse. According to our study, Bauer and Vetro [19], and Barros-Justo et
al. [18], practitioners rely on the repository search and communication with their colleagues
as the main methods for finding the relevant internal reusable assets.

The question of who will own and maintain the reusable assets in participatory reuse is
important. In our study, the participants brought up this question as an important challenge
to deal with as we anticipated. Kruger and Berger [20] also identified the challenges in
coordinating in and between teams, especially when the responsibilities are not clear.

Some participants in our study also shared that it is hard to explain the benefits of
practicing software reuse to the non-technical persons (e.g., senior management), which
may hinder the organization-wide adoption of software reuse. Morisio et al. [36] and Kolb
et al. [37] also found that the senior management support is essential for promoting the
software reuse process to the entire organization.

In our study, we found it is difficult to define the scope of the reusable assets at the
initial stage. Kolb et al. [37] also shared a similar finding, however in their case, the
challenge was about adding new features to an existing reusable component.

As discussed previously, software reuse practices offer learning opportunities to the
developers. However, interestingly some participants cautioned that too much reliance
on reuse may have a negative impact on the capability of the developers to write own
code. Bauer et al. [25] also discussed the challenge of trying to strike a balance between
acceptable level of reuse and excessive reuse.

Our study identified that the reuse of packages and components may lead to additional
dependencies that need to be taken care of. Bauer et al. [25] identified dependency explosion
was the major issue for Google in software reuse, especially the ripple effects caused by
changes in reused code assets. Barros-Justo et al. [18] also noted dependency issues when
reusable assets are integrated into the new solutions. We suggest practitioners could
adopt and follow the practices proposed by Gustavsson [38] for managing the open source
dependencies, e.g., establishing a forum for conscious decisions on open source dependencies,
maintaining a dependency list and scanning for security issues. For opportunistic reuse,
dealing with license restrictions was also shared as a challenge by the participants in our
study, which is in line with some related works [18, 19].

5.4. Software reuse related improvements
in the context of contemporary SE practices

First, we discuss those improvements that the case company has already implemented
as a result of this study. The improvements are aimed at improving the development,
integration and documentation of the reusable assets:

220110-23

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

1. Additional boilerplate code: To remove the need to write additional boilerplate code
while developing a reusable package, the company has developed a mechanism to create
a template that includes all startup code required for initiating the development of
a reusable package.

2. Additional effort in debugging: In cases when the bugs are related to the reused shared
packages, the participants shared that they need to spend some additional time on
debugging as they need to copy the code of the reusable package to a new project to
perform the debugging. The company has now developed the support to address this
issue.

3. Lack of documentation: Lack of documentation for reusable packages was identified as
one of the challenges. Some documentation for reusable packages is now automated,
thus saving the time and effort spent on manually creating the reusable package
documentation.

In addition to the three implemented improvements discussed above, we also agreed to
investigate the feasibility of adopting more IS practices and patterns to improve the
development, maintenance and governance of the reusable assets in software reuse.

In the case company, the reusable assets are maintained in a repository with some
keyword searching options. We suggested the case company to adopt the InnerSource
Portal pattern to enhance the discoverability of reusable assets. For the same discoverability
purpose, Agresti et al. [24] suggested cleaning up the reusable code library, setting criteria
to qualify the reusable code, finding a manager to look after the library, and having
an online keyword-search capability across different sources. Moreover, Bauer et al. [25]
suggested that the reusable assets should be listed in the marketplace and the reusable
assets from different libraries should be merged to avoid the duplicates. The similarity of
the discoverability improvements among our case company, related InnerSource pattern
and the discussed related works [24, 25] is that we all focused on the management and the
search facility of the reusable assets.

The ownership of reusable assets affects the developers and the project managers.
However, we did not find ownership related improvements in the selected related works.
The patterns – 30 Day Warranty and Trusted Committer pattern that we introduced to
the company, could help in solving the ownership issues, reducing the effort in locating
people, and synchronizing the meeting schedules and release plans [4]. As for the reuse
measurements, the case company started using the reuse rate to track the percentage of
the reused code assets. We also suggested Cross-team Project Valuation pattern to the
company. Mohagheghi and Conradi [1] conducted a literature review, investigating the
metrics about software reuse quality, productivity and economic benefits. They aggregated
and categorized different metrics from 11 studies from 1994 to 2005. We argue that there
is a need to extend such a literature review since the reusable assets (e.g., microservices)
and the reuse type (e.g., participatory reuse) have evolved since 2005.

Compared to our study, Agresti et al. [24] also provided suggestions for improving the
understandability of reusable assets, such as better comments in the code, better structured
software modules and a written reuse guidebook. However, they did not mention the need
for non-technical people, e.g., managers to understand the value of reuse.

The development and maintenance of reusable assets also have budgetary implications.
Like our study, Agresti et al. [24] also discussed the need for improvements in resource
planning to facilitate developers that are working on the reusable assets in addition to
other tasks. They [24] suggested allocating additional budget for the developers to facilitate
them for contributing to the reusable assets.

220110-24

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

5.5. Threats to validity

We discuss threats to validity in two phases using the validity threats categorization
proposed by Peterson and Gencel [39]: (1) study design and data collection, and (2) data
analysis.

5.5.1. Study design and data collection

Theoretical validity. The theoretical validity is concerned with construct definition,
evaluation comprehension and the selection of subjects. We decided the study objective
based on the company’s needs through a joint discussion with the company contact person.
The interview guide is developed and reviewed iteratively among authors, and a pilot
semi-structured interview is performed before the actual interviews to evaluate the interview
questions’ comprehension. As for the recruitment strategy, we provided the reuse related
role descriptions to help the contact person identify the relevant people for the interview.
The sample size is small, but we managed to cover at least 20% of the population, all teams,
and related roles. The sample size of the group discussions is small and the participants
are from the interviews. However, the selected two participants are the most relevant and
experienced people in software reuse practice in the company. In addition, we asked the two
participants to gather opinions from their colleagues and prepare documentation before
they came to the discussions.
Descriptive validity. The descriptive validity is concerned with factual accuracy. We
transcribed the interviews word to word and tried to use the actual text segments to
describe the results as much as possible. Moreover, we presented the preliminary study
results and shared the study report to the software architect. And he confirmed that the
results captured the reality.

5.5.2. Data analysis

Interpretative validity. The interpretive validity is concerned with capturing the relevant
information and researchers’ bias in interpretation. We transcribed the interviews word to
word to avoid misinterpretations. We followed the Cruzes’s and Dybå’s [29] recommended
steps of thematic analysis to analyze the transcripts. The first and second authors indepen-
dently analyzed and generated the code to confirm the results. The third author validated
the data credibility as mentioned in Section 3.5, which resulted in some minor changes
regarding code names and code descriptions. We also presented the results to the company
to eliminate misinterpretation.
Generalizability. The generalizability is concerned with the context information which
influences the study transferability. Our focus is medium-sized companies and we introduced
the company context information in detail (see Section 3.3 and Section 4.1), so that other
relevant companies could relate our case to their context and get some useful insights.
Furthermore, the detailed context information helps the researchers to include the details
when reporting findings on software reuse in contemporary SE practices.

220110-25

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

6. Conclusion and future work

In this paper, we reported the results of an exploratory case study on software reuse practice
in the context of contemporary SE practices conducted in a medium-sized company.
The reported study covers the software reuse process, costs, benefits, challenges and
improvements. We obtained the data from six semi-structured interviews, four group
discussions and relevant documentation, followed by a rigorous process to analyze the
collected data.

The study elaborates how the case company is practicing software reuse, including
participatory reuse and opportunistic reuse. Participatory reuse is an organizational-wide
reuse collaboration between the producers and consumers of the reusable assets, while
opportunistic reuse relates to the reuse of external assets from open source communities or
other third parties. The results show that the software reuse costs mainly relates to the
development of the reusable assets, their documenting and the time spent in additional
coordination between the teams working on the common reusable assets. In our study,
the participants perceived that the benefits of software reuse outweigh the associated
costs, thus were in favor of further improving the software reuse practices. Software reuse
benefits many stakeholders in terms of people, process and products. The main perceived
benefits are related to time-saving and product quality, which are highly aligned with
the investigated related works. The study participants were aware of the software reuse
challenges and suggested some concrete improvements. According to the interviews and
group discussions results, discoverability and ownership of the reusable assets, knowledge
sharing and reuse measurement are the top concerning challenges and improvements for
the case company, which have a great potential to be addressed by certain InnerSource
patterns and practices.

The case company is interested in adopting InnerSource patterns and practices to
systematize the software reuse process. We are planning a follow up investigation at the
case company to ascertain the company’s readiness for adopting InnerSource practices for
improving the development and maintenance of the reusable assets. With the help of the
relevant stakeholders, the idea is to assess the application of the proposed improvements in
terms of costs and importance and select specific InnerSource practices for implementation
in the case company. In the long term, we are interested in evaluating the effectiveness of
the adopted practices for improving the state of software reuse in the case company.

Acknowledgements

We would like to acknowledge that this work was supported by the Knowledge Foundation
through the OSIR project (reference number 20190081) at Blekinge Institute of Technol-
ogy, Sweden. We would also like to thank the practitioners from the case company for
collaborating with us. Lastly, we would like to thank Prof. Claes Wohlin for participating
in the initial discussion with the case company and providing valuable feedback on the
study design and the initial version of the study report.

220110-26

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

References

[1] P. Mohagheghi and R. Conradi, “Quality, productivity and economic benefits of software
reuse: A review of industrial studies,” Empirical Software Engineering, Vol. 12, No. 5, 2007,
pp. 471–516.

[2] J.L. Barros-Justo, F. Pinciroli, S. Matalonga, and N. Martínez-Araujo, “What software reuse
benefits have been transferred to the industry? A systematic mapping study,” Information
and Software Technology, Vol. 103, 2018, pp. 1–21.

[3] D. Bombonatti, M. Goulão, and A. Moreira, “Synergies and tradeoffs in software reuse
– A systematic mapping study,” Software: Practice and Experience, Vol. 47, No. 7, 2017,
pp. 943–957.

[4] D. Cooper and K.J. Stol, Adopting InnerSource. O’Reilly Media, Incorporated, 2018.
[5] J.L. Barros-Justo, F.B. Benitti, and S. Matalonga, “Trends in software reuse research: A tertiary

study,” Computer Standards and Interfaces, Vol. 66, 2019, p. 103352.
[6] R. Capilla, B. Gallina, C. Cetina, and J. Favaro, “Opportunities for software reuse in an

uncertain world: From past to emerging trends,” Journal of Software: Evolution and Process,
Vol. 31, No. 8, 2019, p. e2217.

[7] T. Mikkonen and A. Taivalsaari, “Software reuse in the era of opportunistic design,” IEEE
Software, Vol. 36, No. 3, 2019, pp. 105–111.

[8] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinventing the wheels? An empirical
study on library reuse and re-implementation,” Empirical Software Engineering, Vol. 25, No. 1,
2020, pp. 755–789.

[9] R. Capilla, T. Mikkonen, C. Carrillo, F.A. Fontana, I. Pigazzini et al., “Impact of opportunistic
reuse practices to technical debt,” in IEEE/ACM International Conference on Technical Debt
(TechDebt). IEEE, 2021, pp. 16–25.

[10] M. Höst, K.J. Stol, and A. Oručević-Alagić, “Inner source project management,” in Software
Project Management in a Changing World. Springer, 2014, pp. 343–369.

[11] S. Fox, “IBM internal open source bazaar.” Presentation at the IBM Linux Technology Center
in November 2007.

[12] P. Vitharana, J. King, and H.S. Chapman, “Impact of internal open source development on
reuse: Participatory reuse in action,” Journal of Management Information Systems, Vol. 27,
No. 2, 2010, pp. 277–304.

[13] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables DevOps:
Migration to a cloud-native architecture,” IEEE Software, Vol. 33, No. 3, 2016, pp. 42–52.

[14] P. Jamshidi, C. Pahl, N.C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey so
far and challenges ahead,” IEEE Software, Vol. 35, No. 3, 2018, pp. 24–35.

[15] J. Soldani, D.A. Tamburri, and W.J. Van Den Heuvel, “The pains and gains of microser-
vices: A systematic grey literature review,” Journal of Systems and Software, Vol. 146, 2018,
pp. 215–232.

[16] J.P. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons learned on an
industrial migration to a web oriented architecture,” in IEEE International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 62–65.

[17] M. Capraro and D. Riehle, “Inner source definition, benefits, and challenges,” ACM Computing
Surveys (CSUR), Vol. 49, No. 4, 2016, pp. 1–36.

[18] J.L. Barros-Justo, D.N. Olivieri, and F. Pinciroli, “An exploratory study of the standard reuse
practice in a medium sized software development firm,” Computer Standards and Interfaces,
Vol. 61, 2019, pp. 137–146.

[19] V. Bauer and A. Vetro, “Comparing reuse practices in two large software-producing companies,”
Journal of Systems and Software, Vol. 117, 2016, pp. 545–582.

[20] J. Krüger and T. Berger, “An empirical analysis of the costs of clone-and platform-oriented soft-
ware reuse,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 432–444.

220110-27

Xingru Chen et al. e-Informatica Software Engineering Journal, 16 (2022), 220110

[21] O.P.N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg et al., “An empirical
study of developers views on software reuse in statoil asa,” in Proceedings of the ACM/IEEE
international symposium on empirical software engineering, 2006, pp. 242–251.

[22] S.A. Ajila and D. Wu, “Empirical study of the effects of open source adoption on software
development economics,” Journal of Systems and Software, Vol. 80, No. 9, 2007, pp. 1517–1529.

[23] N. Mäkitalo, A. Taivalsaari, A. Kiviluoto, T. Mikkonen, and R. Capilla, “On opportunistic
software reuse,” Computing, Vol. 102, No. 11, 2020, pp. 2385–2408.

[24] W.W. Agresti, “Software reuse: developers’ experiences and perceptions,” Journal of Software
Engineering and Applications, Vol. 4, No. 01, 2011, p. 48.

[25] V. Bauer, J. Eckhardt, B. Hauptmann, and M. Klimek, “An exploratory study on reuse at
Google,” in Proceedings of the 1st international workshop on software engineering research
and industrial practices, 2014, pp. 14–23.

[26] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in
software engineering,” Empirical Software Engineering, Vol. 14, No. 2, 2009, pp. 131–164.

[27] E.C. (2003), Commission Recommendation of 6 May 2003 concerning the definition of micro,
small and medium-sized enterprises, C (2003) 1422. [Online]. http://data.europa.eu/eli/reco/
2003/361/oj.[Accessed:Apr.16,2021]

[28] C.B. Seaman, “Qualitative methods in empirical studies of software engineering,” IEEE
Transactions on Software Engineering, Vol. 25, No. 4, 1999, pp. 557–572.

[29] D.S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in software engineering,”
in International Symposium on Empirical Software Engineering and Measurement, 2011,
pp. 275–284.

[30] K. Petersen and C. Wohlin, “A comparison of issues and advantages in agile and incremental
development between state of the art and an industrial case,” Journal of Systems and Software,
Vol. 82, No. 9, 2009, pp. 1479–1490.

[31] J. Saldaña, The coding manual for qualitative researchers. SAGE Publications Limited, 2021.
[32] IEEE Standard for Information Technology – System and Software Life Cycle Processes –

Reuse Processes, IEEE Std. 1517–2010, Aug. 2010.
[33] K. Petersen and C. Wohlin, “Context in industrial software engineering research,” in 3rd

International Symposium on Empirical Software Engineering and Measurement. IEEE, 2009,
pp. 401–404.

[34] L. Goldin and D.M. Berry, “Reuse of requirements reduced time to market at one industrial
shop: A case study,” Requirements Engineering, Vol. 20, No. 1, 2015, pp. 23–44.

[35] D. Riehle, M. Capraro, D. Kips, and L. Horn, “Inner source in platform-based product
engineering,” IEEE Transactions on Software Engineering, Vol. 42, No. 12, 2016, pp. 1162–1177.

[36] M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in software reuse,” IEEE
Transactions on Software Engineering, Vol. 28, No. 4, 2002, pp. 340–357.

[37] R. Kolb, I. John, J. Knodel, D. Muthig, U. Haury et al., “Experiences with product line
development of embedded systems at testo ag,” in 10th International Software Product Line
Conference (SPLC’06). IEEE, 2006, pp. 10–pp.

[38] T. Gustavsson, “Managing the open source dependency,” Computer, Vol. 53, No. 2, 2020,
pp. 83–87.

[39] K. Petersen and C. Gencel, “Worldviews, research methods, and their relationship to validity
in empirical software engineering research,” in 2013 joint conference of the 23rd international
workshop on software measurement and the 8th international conference on software process
and product measurement. IEEE, 2013, pp. 81–89.

220110-28

e-Informatica Software Engineering Journal (EISEJ) is an international, fully open access (CC-BY 4.0 without any fees
for both authors and readers), blind peer-reviewed computer science journal using a fast, continuous publishing model
(papers are edited, assigned to volume, receive DOI & page numbers, and are published immediately after acceptance
without waiting months in a queue to be assigned for a specific volume/issue) without paper length limit that concerns
theoretical and practical issues pertaining development of software systems. Our aim is to focus on empirical software
engineering, as well as data science in software engineering.
The journal is published by Wroc law University of Science and Technology under the auspices of the Software Engineering
Section of the Committee on Informatics of the Polish Academy of Sciences.
Aims and Scope
The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all areas of
software engineering research.
The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress is laid on empirical evaluation
using well-chosen statistical and data science methods.
e-Informatica Software Engineering Journal is published online and in hard copy form. The on-line version is from the
beginning published as a gratis, no authorship fees, open-access journal, which means it is available at no charge to the
public. The printed version of the journal is the primary (reference) one.

Topics of interest

— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and

practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software

engineering (incl. replications)
— Evidence-based software engineering
— Systematic reviews and mapping studies (see

SEGRESS guidelines)
— Statistical analyses and meta-analyses of experiments
— Robust statistical methods
— Reproducible research in software engineering
— Object-oriented software development

— Aspect-oriented software development
— Software tools, containers, frameworks and

development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data science in software engineering
— Prediction models in software engineering
— Mining software repositories
— Search-based software engineering
— Multiobjective evolutionary algorithms
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and

measurement programs
— Process maturity models

Funding acknowledgements: Authors are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the
collection, analysis and interpretation of data; in the writing of the paper. If the funding source(s) had no such involvement
then this should be stated as well.
The submissions will be accepted for publication on the base of positive reviews done by international Editorial Board and
external reviewers.
English is the only accepted publication language. To submit an article please enter our online paper submission site.
Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.
The journal is included in the IC Journal Master List (ICV=7.59 was obtained in 2013) and indexed by Scopus, DBLP,
DOAJ, BazTech etc.
Paper copies of selected issues of the journal are available from our Publisher (please contact oficwyd@pwr.wroc.pl for
details). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission
of the publishers.

https://madeyski.e-informatyka.pl/download/shortly-about-segress-guidelines.pdf
https://www.e-informatyka.pl/index.php/einformatica/editorial-board/
https://mc.manuscriptcentral.com/e-InformaticaSEJ
http://jml2012.indexcopernicus.com/
http://www.scopus.com/results/results.url?sort=plf-f&src=s&st1=e-Informatica+Software+Engineering+Journal&sot=b&sdt=b&sl=52&s=SRCTITLE%28e-Informatica+Software+Engineering+Journal%29&origin=searchbasic&txGid=260E05697609553E7682FA0075FFB892.f594dyPDCy4K3aQHRor6A%3a6
http://www.informatik.uni-trier.de/~ley/db/journals/eInformatica/index.html
http://www.doaj.org/doaj?func=openurl&issn=18977979&genre=journal
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-journal-1897-7979-e-informatica_software_engineering_journal

	Title Page
	Editorial Board
	Contents
	Self-Adaptation Driven by SysML and Goal Models – A Literature Review
	Analysis of Factors Influencing Developers' Sentiments in Commit Logs: Insights from Applying Sentiment Analysis
	How good are my search strings? Reflections on using an existing review as a quasi-gold standard
	Examining the Predictive Capability of Advanced Software Fault Prediction Models – An Experimental Investigation Using Combination Metrics
	A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction
	A Comparison of Citation Sources for Reference and Citation-Based Search in Systematic Literature Reviews
	Microservice-Oriented Workload Prediction Using Deep Learning
	Empirical AI Transformation Research: A Systematic Mapping Study and Future Agenda
	Reporting Consent, Anonymity and Confidentiality Procedures Adopted in Empirical Studies Using Human Participants
	Reuse in Contemporary Software Engineering Practices – An Exploratory Case Study in A Medium-sized Company
	EISEJ Homepage

