
e-Informatica Software Engineering Journal, Volume 16, Issue 1, 2022, pages: 220101, DOI 10.37190/e-Inf220101

Self-Adaptation Driven by SysML
and Goal Models – A Literature Review

Amal Ahmed Andaa∗, Daniel Amyot∗

∗School of Electrical Engineering and Computer Science, University of Ottawa
aanda027@uottawa.ca, damyot@uottawa.ca

Abstract
Background: Socio-cyber-physical systems (SCPSs) are a type of cyber-physical systems
with social concerns. Many SCPSs, such as smart homes, must be able to adapt to reach an
optimal symbiosis with users and their contexts. The Systems Modeling Language (SysML)
is frequently used to specify ordinary CPSs, whereas goal modeling is a requirements
engineering approach used to describe and reason about social concerns.
Objective: This paper aims to assess existing modeling techniques that support adapta-
tion in SCPSs, and in particular those that integrate SysML with goal modeling.
Method: A systematic literature review presents the main contributions of 52 English
articles selected from five databases that use both SysML and goal models (17 techniques),
SysML models only (11 techniques), or goal models only (8 techniques) for analysis and
self-adaptation.
Result: Existing techniques have provided increasingly better modeling support for
adaptation in a SCPS context, but overall analysis support remains weak. The techniques
that combine SysML and goal modeling offer interesting benefits by tracing goals to SysML
(requirements) diagrams and influencing the generation of predefined adaptation strategies
for expected contexts, but few target adaptation explicitly and most still suffer from
a partial coverage of important goal modeling concepts and of traceability management
issues.
Keywords: adaptation, cyber-physical systems, goal modeling, socio-technical
systems, SysML, traceability, uncertainty

1. Introduction

Cyber-physical systems (CPSs) are systems that tightly “integrate physical, software, and
network aspects in a sometimes adverse physical environment” [1]. They are composed of
hybrid components such as hardware (e.g., sensors, devices, and networks) and software,
which can even be integrated at runtime. Horváth [2] observes that the complexity, emergent
properties, and adaptability of CPSs have increased substantially in the past decade in order
for CPSs to be compatible with different components and changes in their surrounding
environment. Moreover, CPSs are characterized by a high level of uncertainty, which is
difficult to address with current design methods [2, 3].

Socio-cyber-physical systems (SCPSs) are a type of CPSs that are also socio-technical
systems, where human concerns are considered during the development process (i.e., at
design time) and during execution (i.e., at runtime). Many SCPSs should ideally be able

© 2022 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 26 Apr. 2021; Revised: 11 Aug. 2021; Accepted: 26 Sep. 2021; Available online: 15 Dec. 2021

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
http://creativecommons.org/licenses/by/4.0/

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Figure 1. Self-adaptation activities: MAPE-cycle (adapted from [8])

to adapt to changing conditions in order to reach an optimal symbiosis with users (and
other stakeholders) and their contexts [2]. Examples include existing systems such as air
traffic control systems, and emerging ones such as smart homes/cities [4], human-oriented
services exploiting the Internet of Things (IoT) [5], adaptive Systems of Systems (SoS) [6],
and Industry 4.0 [7].

Many CPSs and SCPSs monitor their environments, which enables them to detect
contexts where the system may no longer accomplish what it was intended to do or meet
its goals. Self-adapting systems are capable of detecting such situations and change their
own behavior accordingly. Kephart and Chess [8] divided the adaptation process into four
different activities (Monitor, Analyze, Plan, and Execute), collectively called MAPE-cycle
and illustrated in Figure 1. These activities share some knowledge and interact with the
rest of the system and its environment. The general functionality of each activity is as
follows:
– Monitor: Gathers information about monitored system features and the environmental

context.
– Analyze: Analyzes the information and determines whether to activate the planning

process and what information should be passed on to it.
– Plan: Selects the most suitable adaptation strategy (some might be predefined) depend-

ing on the information provided by the analysis activity.
– Execute: Executes the selected adaptation strategy, with impact on the system and the

environment that again must be monitored.
Some challenges coming with adaptive systems were identified and addressed by Bocane-

gra et al. [9], Muńoz-Fernández et al. [10], and Horváth [2] with Model-Driven Engineering
(MDE) approaches. In particular, goal modeling, which enables the description of stakeholder
and system goals together with their relationships, is used as part of many MDE approaches
to facilitate traceability, deal with uncertainty, manage stakeholder objectives, and support
requirements engineering at design time and at runtime. Bocanegra et al. [9] further stated
that integrating MDE and goal-oriented requirements engineering is a promising way
to solve many self-adaptation challenges. In addition, Muńoz-Fernández et al. suggest
that traceability supports reasoning about system behavior and the changes or events
that triggered a specific adaptation at runtime [10]. Although traceability in SCPSs was

2

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

identified by Bordeleau et al. as a challenge [11], ideally, for self-adaptive systems to be
realizable, traceability should be managed synchronously from the beginning (goals) to
the end of the system (code). Even if Bocanegra et al. cited the lack or loss of information
while transforming (goal) models to code as one weakness of many MDE approaches [9],
the benefits of goal modeling in this context tend to outweigh its drawbacks.

MDE is the basis of many Systems Engineering (SE) methods meant to deal with
complex, technological obstacles and the heterogeneous nature of multidisciplinary sys-
tems [1, 12, 13]. One opportunity here is to include stakeholder goals into targeted systems
via modeling. In the same context, the Systems Modeling Language (SysML) is a language
standardized by the Object Management Group (OMG) [14, 15] and the International
Organization for Standardization [16] to support SE methods. SysML reuses part of
the Unified Modeling Language (UML), including use case, sequence, activity, and state
machine diagrams, and modifies other types of diagrams to produce block and internal
block diagrams. Moreover, SysML adds parametric and requirements diagrams to facilitate
the connection between system components and their requirements [15]. SysML enables
the modeling of software and hardware components as well as their relationships, in a way
that simplifies their design [17] and reduces their complexity [18, 19].

SysML modelers can connect requirements to other model elements such as use cases, test
cases, and blocks using a few diagram types. Yet, SysML lacks important “social” modeling
concepts for SCPSs such as goals and stakeholders’ objectives [20]. Cross-disciplinary model
fusion and flexible model integration are known to be challenging [21], but a multi-level
modeling approach is still a promising avenue in contexts such as Systems of Systems and
adaptive SCPS [1, 22, 23]. There exist many goal modeling languages that can help here,
including KAOS [24, 25], i* [26], and the Goal-oriented Requirement Language (GRL) [27],
part of the User Requirements Notation (URN) [28]. GRL is discussed further here because
this is the only internationally standardized goal modeling language so far and one of the
few languages that supports indicators, which enable monitoring in an adaptive context.
GRL has also been used in the modeling and design of large CPSs, some with a social
aspect but without adaptation (e.g., for collaborative CPSs [29]), some that adapt but
without a social aspect (e.g., for unmanned aircraft systems [30]), and some that model
adaptive SCPSs (e.g., for smart homes [31]).

GRL helps capturing stakeholders (roles, organizations, systems, etc., collectively named
actors), their intentions (goals, softgoals, or tasks), their relationships (AND/OR decompo-
sition, positive/negative contributions, dependencies), and indicators to measure intention
satisfaction based on external evidence. Figure 2 illustrates a GRL model of a simplified
hybrid car’s engine system and its related user’s goals. The system needs to select which
engine(s) to activate so that speed and distance from other cars are properly controlled while
ensuring that the user’s concerns (comfortable driving, measured via a vibration indicator,
and costs minimized) are satisfied. GRL actors (illustrated as ellipses) are used to
capture the system itself as well as its users and other stakeholders. Their goals () should
be fulfilled, while their softgoals () point out the non-functional or quality aspects desired.
Tasks () capture the alternatives that the system has to chose from in the plan activity.
Indicators () are used to monitor internal/external conditions and convert this informa-
tion into satisfaction levels. Intentions can also be AND/OR-decomposed (), whereas an
arrow (

) with a negative/positive weight (normalized to a value between −100 and +100)
represents the contribution of some element to another one. The color coding (the greener,
the better) and the numbers above intentions (between 0 and +100) indicate the current level

3

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Figure 2. Simplified goal model (in GRL) of a hybrid car’s engine

of satisfaction in a given context called a strategy, whose initial values (*) are propagated
to the other elements and actors based on an automated propagation algorithm [32].

The other goal modeling languages also support distinctive goal and quality concepts,
together with AND/OR decomposition, and assignment of goals to actors (or “agents” in
other languages). For example, Figure 3 briefly highlights the syntax of the popular KAOS
language [24, 25], also used in several adaptive SCPS approaches. Unlike GRL, KAOS
neither supports indicators nor contributions, but it includes explicit concepts for obstacles
and threats, akin to goals or tasks that would be the source of negative contributions in
GRL.

GRL was initially created to support requirements engineering activities during de-
velopment; however, it can also be used in a runtime adaptation context [33]. GRL
supports a system’s dynamic adaptation by connecting goals with requirements, feeding
indicators from external sources of information, and providing comprehensive alternative
strategies/tasks supporting trade-off analysis [20].

Figure 3. KAOS goal modeling concepts and syntax (from https://kaos.info.ucl.ac.be/)

4

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Figure 4. Some SysML diagrams of a simplified hybrid car’s engine

To briefly illustrate SysML (more commonly known than goal modeling languages),
Figure 4 highlights important types of diagrams and tables for adaptive systems, with content
relevant to the simplified hybrid car’s engine example. A requirements table contains natural
language requirements (functional and non-functional) with their attributes. This information,
together with traceability and other relationships (e.g., derivation or satisfaction), can be
visualized in a requirements diagram. A block definition diagram shows the system components
(software and hardware) as a static structure of blocks with their attributes, operations,
constraints, interfaces, and relationships (e.g., containment or generalization). Parametric
diagrams describe mathematical functions for constraint blocks. Activity diagrams present
the dynamic flow of activities that describe behavioral aspects. SysML also supports other
diagrammatic views for use cases, sequences, state machines, internal blocks, and packages.

In order to adjust requirements engineering and modeling techniques for modeling SCPSs,
and especially adaptive ones, it is necessary to consider the integration between SysML
(which supports system specification) and a goal modeling language that supports social
concepts and comprehensive decision making [3, 20, 34, 35]. The objective of this paper is
to survey and analyze articles that relate to goal and SysML modeling and their support for
self-adaptive systems, especially SCPSs. The focus is on the techniques that combine both
SysML and goal modeling in that context (and this literature review is quite exhaustive
in that regard), but some key techniques that only use SysML or goal modeling are also
discussed in order to enable useful comparisons.

The main contributions of this literature review are its consolidation of existing work and
an outline of achievements and challenges related to existing techniques. This review is also
original in that although there exist general literature surveys and mappings about adaptive
systems [36–38], CPS modeling [39], goal modeling [40], and SysML [41, 42], none really
goes deep into the combination of goal and SysML modeling for emerging types of adaptive
socio-cyber-physical systems. This review will help academics understand what contributions
and gaps exist in that research area. It will also raise the awareness of practitioners in
the existing techniques for self-adaptation based on SysML and/or goal modeling, while
providing guidance in the selection of appropriate techniques in their development context.

5

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

This paper is structured as follows. Section 2 describes the methodology used to plan,
conduct, and report on the literature review. Section 3 provides the selected resources on
Goal/SysML integration, as well as their evaluation methods, concepts, and objectives. In
addition, the methods presented for self-adaptation are classified into different categories,
and the self-adaptation concepts and dimensions are evaluated and extracted. Results are
compared in order to provide insight into their aims, achievements, and challenges. Related
literature reviews are discussed in Section 4. The limitations and threats to the validity of
this review are explained in Section 5. Finally, Section 6 concludes the paper.

2. Methodology

Based on the systematic literature review approach of Kitchenham and Charters [43], we
followed three common steps: planning, conducting, and reporting on the review.

2.1. Planning the review

This step includes setting research questions, identifying the search scope and strategy, as
well as formulating quality assessment criteria and data extraction items.

2.1.1. Setting the study goal and research questions

SCPSs combine stakeholder goals, software, and hardware components. Some SCPSs may
also be self-adaptive. In this context, the objective of this review is to investigate the possible
modeling methods that 1) integrate goal and SysML models, or 2) support self-adaption
via SysML only or via the integration of SysML and goal models. The research questions
for this objective include two main questions, each of which containing secondary questions.
RQ1. What are the existing methods that integrate goal-oriented models with SysML

models?
SQ1.1. Why have these integrations been proposed?
SQ1.2. How do the methods integrate the two types of models?

RQ2. What are the collected methods that support self-adaptation?
SQ2.1. How do the methods support self-adaptive systems?
SQ2.2. What are the roles that each model plays in this adaptation support?

2.1.2. Identifying the search scope and strategy

The search scope combines three areas: 1) the studies that are relevant to goal models and
SysML models together, independently of support for self-adaptive systems; 2) the principal
studies that use SysML models to support adaptive systems; and 3) important studies
(selected manually) that use goal models to support adaptive systems, as a comparison
point outside the SysML world.

The searches were more exhaustive for the first two areas (involving SysML) than for the
last one. The main strategy for the first two areas is based on automatic searches performed
on popular databases. As the topic of the last step (goal models for adaptive systems) is
quite wide and already well covered in the literature, a selection based on a domain expert’s
opinions and on forward citation searches (i.e., recent papers citing previously selected papers,

6

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

including from the same authors) was used to highlight the main trends and contributions
without being exhaustive.
Data Sources. Five important electronic databases were used to discover scientific papers
related explicitly to the research questions: Elsevier’s Scopus and Clarivate Analytics’ Web
of Science are two wide-scope search engines, IEEE Xplore and the ACM Digital Library
are covering the two main societies publishing on systems modeling, and finally Google
Scholar is a catch-all academic search engine. Note that Google Scholar discriminates less
than the other databases in terms of paper quality, and its query language is less powerful
than the ones of the other engines. Together, these databases provide a very high coverage
of the literature related to SysML and goal-oriented modeling.
Search Queries. Many synonyms of goal models were used in order to cover the most
common goal modeling languages (i*, GRL, URN, and KAOS). Adaptive, adaptation,
socio-technical, and socio cyber were also considered as quasi-synonyms in our context. The
automatic search was conducted in two phases, first with a focus on SysML/goal integration
and second on SysML models and self-adaptation. Table 1 specifies each search conducted
with the related query. Because Google Scholar retrieved thousands of papers (with many
false positives), we eliminated adaptation/social terms from the second query to ensure
papers only integrating goal and SysML models would be included in our dataset, as we
excluded goal models from the fourth query to focus on non-goal-oriented SysML adaptation.
These abstract queries were transformed to concrete queries for the different languages used
by the databases. With Google Scholar (which retrieves thousands of papers with many false
positives), as we were mainly interested in using its results as a complement to the other
(and more reliable) databases while minimizing the effort needed to prune out irrelevant
papers, only the first 60 papers returned by each query were further inspected. The number
60 was selected based on observing an increasingly high density of false positives as we went
down the lists of results, especially after 40 results. The return on the time investment after
60 results was deemed ineffective.

Table 1. Queries used for Goal/SysML integration (1 and 2)
and self-adaptation with SysML (3 and 4)

No. Search Query

1 SysML and goal models

TITLE−ABS−KEY(SysML AND
("goal oriented" OR

"goal model" OR "i star" OR istar OR
KAOS OR "user requirements notation" OR
URN OR adaptation OR adaptive OR
"Socio cyber" OR "Socio technical")

)

2 SysML and goal models, using
Google Scholar

(SysML AND
("goal oriented" OR "goal model" OR

"i star" OR istar OR KAOS OR
"user requirements notation" OR URN)

)

3 SysML models and self-adaption TITLE−ABS−KEY(SysML AND
(adaptation OR adaptive))

4 SysML models and self-adaption, us-
ing Google Scholar

(SysML adaptation OR adaptive)
−"goal model"

7

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Inclusion and Exclusion Criteria. We used inclusion and exclusion criteria to select
which papers to keep. The inclusion criteria were:
1. The article is peer reviewed (no book, patent, tutorial, magazine, or gray literature).
2. The article is written in English.
3. For queries 1 and 2 in Table 1, the article provides or clarifies methods about Goal/SysML

integration.
4. For queries 3 and 4 in Table 1, the article includes methods using SysML for self-adap-

tation support.
The exclusion criteria were:
1. The article duplicates (or is a subset of) another paper in terms of the Goal/SysML

integration or self-adaptation methods.
2. The article does not provide any information related to our research questions.
A paper satisfying one of the exclusion criteria or not satisfying all of the inclusion criteria
was excluded. Some papers did discuss a combination of goal modeling with SysML
modeling, but not their integration or self-adaptation. For example, Tueno Fotso et al. [44]
integrate KAOS-like AND/OR goal models with a subset of SysML for the generation of
Event-B specifications, but not for adaptive systems.

2.1.3. Quality assessment criteria

We used the checklist in Table 2 to provide a qualitative assessment of each study.

Table 2. Quality assessment criteria and possible values

Code Quality Qualitative Score
C1 Is the problem specified clearly? Yes, No, Partially
C2 Is a method provided? Yes, No, Partially
C3 Is the presented method original? Yes, No, Partially
C4 Is the method detailed? Yes, No, Partially
C5 Is the method complete? Yes, No, Partially
C6 Is a case study provided? Yes, No
C7 Does the case study clearly illustrate the method? Yes, No, Partially
C8 Is self-adaptation handled? Yes, No, Partially
C9 Is self-adaptation specified in detail? Yes, No, Partially

2.1.4. Identifying data extraction items

Table 3 details the data items extracted from each selected paper, together with their
related research questions from the planning stage.

Table 3. Data extracted from each paper

Questions Data item
Documentation Title, Year, Publisher, Authors, Database engine
RQ1 Goal model, Automation, Integrated diagrams, Method realization
RQ1, RQ2 Goal model, Goal concepts, Goal analysis, Objective, Development phase,

Environment of the method, Realization type
RQ2 Quality attribute, Realization dimension, Adapted object, Temporal features,

Modeling dimension (Goal), Why SysML model

8

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

For data documentation, from each article, we collected the title, the publication year,
the publisher, the authors’ names, and the database engine used to retrieve the article. To
answer research questions RQ1 and RQ2, information was collected by posing the following
questions:
1. Are the goals integrated with SysML as a model, or as text/requirement?
2. What are the diagram types that were used in the integration?
3. Are common goal modeling concepts considered in the integration? These include goal

types, qualitative/quantitative contributions between different types of goals, and goal
dependencies.

4. Is goal analysis considered in the integration?
5. What is the purpose of the integration?
6. Is the integration fully automatic, semi-automatic, or manual?
7. What method was utilized when the integration was done?
8. What are the non-functional requirements (NFRs) that were the focus of attention?
9. For which development phase was the integration done?

10. How are the methods realized? This includes the adaptation type and approach, if any.
a) How is the adaptation type explained from these different perspectives?

i. When are the alternatives handled? (closed: at development phase; or open:
at runtime).

ii. Is the method model-based or not?
b) How is the adaptation approach realized? This is grouped into the following:

i. The decision-making process decides the adaptation and chooses between
alternatives (analysis and selection processes) [37]. Is it static and created at
development time as rules, or dynamic using an equation or algorithm?

ii. The adaptation approach is based on the phase of the system in which the
adaptation approach was included [3]. Is Making adaptation included at
development time or Achieving adaptation included at runtime using learning
approaches?

11. What is the object affected by the adaptation process? Three different sets of information
related to this object are:
a) The layer in which the object is located (application, middleware, network, hardware,

etc.);
b) The impacted object (architecture, subsystem, service, component, parameter, etc.);

and
c) The adaptation action, which could be weak or strong depending on the effect and

cost of adaptation. For example, strong adaptation includes adaptations that add
or change the system architecture or components behaviors at runtime. This result
exists because much system time and effort is consumed to achieve the adaptation
goals. A weak adaptation is related to any inexpensive change. (Cost-impact)

12. When does the adaptation happen before specific events (Proactive) or after specific
events (Reactive)? (Temporal adaptation)

13. Does the system monitor specific features or does it monitor its environment continually
using sensors? (Temporal monitoring)

14. Is human intervention involved in the adaptation process?
15. How is the adaptation done? For example, using a specific language or algorithm.
16. Goal:

a) Does the number of goals change at runtime? (Evolution)

9

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

b) Do system goals remain unchanged, change within constraints, or change without
constraints? (Flexibility)

c) How many goals are considered in the adaptation process? (Multiplicity)
d) Are the goals dependent or independent of each other? (Dependency)

17. What is the reason for the adaptation? (Change)
a) Is the source of the change external (environmental) or internal (system)?
b) Is the change due to functional requirements, to non-functional requirements, or to

a technical reason?
18. Was the time spent for adaptation process guaranteed or not? (Timeliness)
19. What was the reason for using a SysML model to specify self-adaptive systems?

2.2. Conducting the review

After having identified the queries and databases engines, the study was conducted along
four steps: search, screening, data extraction, and quality assessment.

2.2.1. Search methods

The retrieval of papers to satisfy the conditions we identified included two search methods:
1) goals/ SysML integration and 2) SysML and self-adaptation support. The search method
for goals/SysML integration consisted of the following steps:
1. The first query was used to capture the papers from the Scopus, IEEE, Web of Science

and ACM database engines.
2. Because Google scholar retrieves many irrelevant articles, we used the following strategy

on this engine:
a) The first query was applied to retrieve papers first using the “anywhere” option

and second using the “in the title” option. The latter retrieved only 10 papers
while the former retrieved 4,200 papers. We considered only the first 60 papers
(which are ranked by relevance).

b) To include further relevant papers, we conducted the second query using the
“anywhere” option. This returned 660 papers, and again only the first 60 papers
were considered.

The search method for SysML and self-adaptive systems consisted of the following
steps:
1. The third query was used to capture the papers from the Scopus, IEEE, Web of Science

and ACM database engines.
2. Using Google Scholar, the fourth query was used with the two options, “anywhere”

and “in the title” separately. The first option led to 3,860 papers, and only the first
60 papers were included in our dataset. The second option retrieved only three papers.

To get a non-exhaustive overview of the role that goals have played in supporting
self-adaptation features, our dataset was supplied with 12 primary articles using goals in
self-adaptive systems by an expert and two more papers using forward search (snowballing).

2.2.2. Screening

The papers retrieved through the previous step were screened for relevance. The exclusion
and inclusion criteria were applied on each paper based on abstracts and conclusions. If the
information was insufficient to decide whether a paper was relevant or not, its introduction

10

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

and method sections were read. If the information was still insufficient to decide, the
full-text of the article also was read. Discussions between both authors were required for
nine papers because it was difficult to decide whether they were relevant or not.

2.2.3. Result

Figure 5 illustrates the results of the screening process, with the numbers of results returned
for each query available in Table 4. From the goals/SysML search, out of 444 papers returned
by the search engines, 33 papers were deemed relevant whereas 411 were rejected, including
58 duplicates1. For the SysML and adaptation search, 334 papers (including 18 duplicates)
were considered but only eleven articles met our criteria. Most of the papers were found by
Scopus, with much duplication by the Web of Science, and the other engines added little
value. In addition to these 44 papers, eight papers on goal modeling for adaptive systems

Figure 5. Result of the screening process

Table 4. Results of the searches per databases

Database Goal and SysML SysML and adaptation
Scopus 70 62
IEEE Xplore 60 67
Web of Science 28 17
ACM Digital library 23 62
Google Scholar (title only) 23 6
Google Scholar (any field) 60+60 (from 4,200) 60+60 (from 3,860)
Google Scholar (with goals-SysML) 60+60 (660) -
Total (with duplicates) 444 334
Total (unique papers) 386 316

1A table with the accepted and rejected papers is available online at http://bit.ly/SysML-Goal-SLR

11

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
http://bit.ly/SysML-Goal-SLR

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

were included at the suggestion of an expert and with a simple forward search (we did not
aim to be exhaustive here). This resulted in 52 papers that were eligible for the analysis.

2.2.4. Data extraction

For each study, we extracted the data items mentioned in Table 3. Extracting this data
was done iteratively from the selected studies to accumulate information concerning our
research questions.

2.2.5. Quality Assessment Process

The collected studies were compared against the criteria listed in Table 2. We did not
evaluate how good the articles were (beyond ensuring they were not coming from a predatory
source), but we did evaluate how useful each would be to the study. The result of the
quality assessment against the criteria explained in Table 2 is provided in Tables A1 and A2
in Appendix A.

3. Discussion

We classify and present the selected studies in a way that will enable answering our research
questions accurately. We split the discussion into five subsections: integration methods,
adaptation support methods, adaptation assessment, and challenges.

3.1. Integration methods

To answer the first research question (RQ1: What are the existing methods that integrate
goal-oriented models with SysML models?), we used the 33 articles retrieved by the
Goal/SysML search (Table A1). We classify the studies according to the applied methods
and current objectives. A total of 17 methods, named M1 to M17 in Table 5, are proposed
by these articles. The types of goal modeling languages and SysML diagrams used in each
method are also listed in Table 5, and the main papers in each collection are highlighted in
bold.

3.1.1. Languages and diagrams involved

For each method, we extracted the goal modeling language and SysML diagrams used
(Table 5). Any additional model was considered out of the scope of the study.

The most commonly used SysML diagrams in the 17 proposed methods are requirements
diagrams and block diagrams, in that order. All presented methods but three (M1, M11,
M14) connected goals or goal models with requirements diagrams, while nearly half the
methods (M1, M2, M9, M11, M12, M13, M17) used block diagrams in their integration.

From a goal model perspective, several different languages were used. The most popular
languages in these methods are KAOS [24] (M5, M7, M8) and GRL [28] (M2, M4, M17).
OMG’s Business Motivation Model [76] was also mentioned once in M6 and RELAX [77]
once in M8. Several methods only used textual goals or non-functional requirements (NFRs),
with some integrating them more formally as SysML stereotypes (M15 and M16). Instead
of integrating goal models themselves, Ingram et al. [45] (M1) used goal model analysis

12

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Table 5. Selected studies and their methods used
(FG = Functional goals; NFG = Non-functional goals)

Research studies Code Goal language SysML diagrams
Ingram et al. [45] M1 Fault tolerance strategies Block (and dependency

relationships)
Amyot et al. [20] M2 GRL Requirements, block
Vanderperren and Dehaene [46] M3 NFG (no specific notation) Requirements, use case
Ozkaya [47] M4 GRL Requirements
Matoussi et al. [48], Laleau
et al. [49]

M5 KAOS (FG) Requirements

Cui and Paige [50] M6 Business Motivation
Model

Requirements

Gnaho et al. [51, 52],
Mammar and Laleau [53],
Bousse [54]

M7 KAOS (FG, NFG) Requirements

Ahmad et al. [55], Ahmad
et al. [56–58], Ahmad [59],
Ahmad and Bruel [60, 61],
Belloir et al. [62]

M8 KAOS (FG, NFG), RELAX Requirements

Apvrille and
Roudier [63, 64], Roudier
and Apvrille [65]

M9 Textual goals/NFR Requirements, block,
state machine,
parametric

Tsadimas et al. [66] M10 NFR diagram Requirements
Spyropoulos and Baras [67] M11 Textual NFRs Block, parametric
Badreddin et al. [68] M12 Textual goals

(based on GRL)
Requirements, block,
use case

Fan et al. [69] M13 Textual goals Requirements, block,
activity

Wang [70] M14 Textual goals (with
AND/OR decomposition)

Use case

Lee et al. [71] M15 Requirements diagrams
with goal stereotypes

Requirements

Maskani et al. [72] M16 Requirements diagrams
with goal stereotypes

Requirements

Anda and Amyot [73], Anda
and Amyot [74], Anda [75],
Anda and Amyot [31]

M17 GRL Requirements, block, in-
ternal block, paramet-
ric, state machine

13

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

results in their integration to increase the confidence of system designers when defining the
system architecture. From another perspective, Anda and Amyot [74] (M17) used GRL
models and enabled analysis through arithmetic expressions.

3.1.2. Objectives of the integration

In our investigation, extracting information about the adaptation objective is different
from extracting information for the integration itself. To answer the secondary question
SQ1.1 (Why have these integrations been proposed?), we clustered the studies according
to their objectives to figure out which ones were most frequently used in the literature to
justify a goal/SysML integration.

Table 6 reports on seven main objectives, together with their related methods and
articles. The management of uncertainty and adaptation (which is concerned with whether
the information being monitored is reliable enough to justify adaptation decision, and
with what adaptation will help satisfy goals the best), has attracted the highest number of
studies (14), with four different methods. However, the architecture selection and modeling
objective (which is important at design time to find suitable trade-offs between various
non-functional goals such as performance, cost, and reliability of systems and adaptations)
is targeted by a more varied set of methods (6). These two important objectives are
followed by formal validation and verification (to ensure safety, liveness, security, and other
such properties), and traceability (to manage change effectively and to ensure coverage
during quality assurance). Other objectives were mentioned only by one or two papers,
namely process improvement (e.g., so goals are more explicitly considered), requirements
visualization (e.g., to see how system requirements trace to or contribute to goals), and
impact assessment of non-functional requirements on functional requirements (e.g., to
consider trade-offs involving both types of requirements).

Table 6. Objectives of Goal/SysML integration and related methods

Objectives Methods Articles
Uncertainty & adaptation M1, M2, M8, M17 [20, 45, 51, 55–62, 73–75]
Architecture selection & modeling M1, M9, M10, M11, M13,

M17
[45, 63–67, 69, 73, 74]

Formal V&V M5, M7, M8, M15 [48, 49, 53, 54, 58, 71]
Traceability M6, M12, M14, M16, M17 [31, 50, 68, 70, 72]
Development process improvement M3, M17 [46, 75]
Requirements visualization M4 [47]
Impact of NFRs on FRs M7 [52]

3.1.3. Method characteristics

Integrating goal models with SysML models has different dimensions depending on the
objective of the study and the researchers’ vision for a specific problem and its solutions.
To answer the secondary question SQ1.2 (How do the methods integrate the two types of
models?), Table 7 includes information about each main study and the related data that
explains the following:
1. Whether the method was automated;
2. Whether the method integrated goals as a model;

14

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

3. Whether the main goal concepts are used in the integration;
4. Whether goal analysis was supported; and
5. The method realization (usually through a profile).

Table 7. Extracted data on the integration dimensions
(F = fully automatic, S = Semi-automatic, M = Manual, ? = Unknown)

Research method Code Auto Goal
model

Goal
concepts

Goal
analysis

Method
realization

Ingram et al. [45] M1 ? M M S Profile
Amyot et al. [20] M2 S F S S Investigating
Vanderperren and Dehaene [46] M3 ? M S M Profile
Ozkaya [47] M4 ? ? ? M Investigating
Matoussi et al. [48] M5 ? S S M Profile
Cui and Paige [50] M6 ? S S M Profile
Gnaho et al. [51, 52] M7 ? S S M Profile
Ahmad et al. [55] M8 S S S M Profile
Apvrille and Roudier [63, 64] M9 S M S S Profile
Tsadimas et al. [66] M10 S M S M Profile
Spyropoulos and Baras [67] M11 S M S S Profile
Badreddin et al. [68] M12 ? S S S Textual syntax
Fan et al. [69] M13 S M M M Profile
Wang [70] M14 M S S M Mapping
Lee et al. [71] M15 M S S M Profile
Maskani et al. [72] M16 M S S M Profile
Anda and Amyot [31, 74] M17 F F F F Math functions

and RMS

To assess how far the methods go in their integration, Table 7 includes columns that
are further explained below. Note however that some methods were still under development
or investigating alternatives. As they did not provide sufficient details about their process,
the level of automation and the method realization were difficult to assess at times. Most of
the studies did not mention how goals or requirements are transferred to extended SysML
profiles. Some of them developed specific editors for their methods but did not explain
whether the goals or requirements were translated automatically or re-entered manually.
Automation. Does the method support an MDE (automated) approach? Several stud-
ies [9] have addressed the advantages of an MDE approach, including information traceabil-
ity, holistic validation and verification, as well as code generation. These features are not
only important to support self-adaptability, but also to improve productivity and system
quality [9, 46]. As seen in Table 7, most selected methods used goals (partially) as a model
with SysML requirements diagrams. In contrast, Badreddin et al. [68] proposed the only
method (M12) that does not support a graphical MDE approach and presented a new
language that combines the models using a textual syntax. In many studies, goals have
actually been translated to a textual, hierarchical structure using a profiled SysML require-
ments diagram, (with various degrees of formalization). One method (M17) automatically
translates GRL goal models to mathematical functions that can be embedded in SysML
models. Some studies used SysML block and parametric diagrams with some goal model
analysis such as trade-off analysis.
Goal Modeling Concepts. Were important goals modeling concepts (goals, softgoals,
decompositions, actor importance, contribution weights, indicators, etc.) part of the inte-
gration with the SysML model? Anda and Amyot [31, 74] proposed the only method (M17),

15

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

named CGS4Adaptation, that includes all the elements of goal models in their integration.
Goals were integrated with SysML requirements diagrams in most methods but not all
goal modeling concepts were mapped. These methods extended requirements diagrams
with goal types (functional and/or non-functional) and some goal relationships (mainly
AND/OR decomposition). However, quantitative/qualitative contributions between goals,
importance of goals to their containing actors, and indicators with parameters are seldom
covered. For example, Cui and Paige [50] integrated goals model without considering the
quantitative values of the contribution relationships between goals or indicator parameters,
whereas Ahmad et al. [55] integrated all types of goals and their relationships except
for contribution weights, importance levels, and indicators. This prevents modelers from
quantitatively 1) performing goal analysis to guide the selection of alternatives (at design
time) and 2) supporting dynamic adaptation at runtime according to user preferences [36].

When dealing with NFRs, the methods presented by Apvrille and Roudier [63, 64],
Tsadimas et al. [66], and Spyropoulos and Baras [67] focused on the important role of
goal-oriented techniques in system architecture and design selection. However, none actually
transformed or linked goals to the design phase. Instead, they broke down system goals into
non-functional requirements and linked them to design elements of SysML requirements
diagrams. In contrast to these methods, Maskani et al. [72] expanded the requirements
profile with security goals and requirements while the related stakeholders, goals, assets,
and risks were added as attributes.
Goal Analysis. Trade-off analysis can be conducted through positive and negative
contributions between goals during the decision-making process, e.g., to determine which
actors will be satisfied or dissatisfied by a particular solution or adaptation strategy. Some
methods were used to analyze fault tolerance and security mechanisms using quantitative
values in their goal/ SysML integration, but mainly to select the best architecture/design [55,
63, 64] or to include possible choices in the system implementation phase [45, 67]. However,
these analyses are limited to static decisions and adaptions, often outside of the SysML
model as well. To support goal-based design selection and runtime adaption in a way that
is integrated with SysML, Anda and Amyot [73–75, 78] generate arithmetic functions from
GRL models that can be inserted in SysML models for simulation and optimization, and
in the system code for runtime adaptations.
Method Realization. As seen in Table 7, all but four studies used some level of SysML
profiling to map goal concepts to SysML concepts (often using requirements diagrams as
a basis). Badreddin et al. [68] however proposed (in M12) integrating both views through
a new textual language (fSysML), whereas two other studies were still investigating this
aspect. In M17, in addition embedding functions generated form goal models in the
SysML models, the authors also support importing both the goal and SysML models into
a third-party traceability tool (commonly called a Requirements Management System –
RMS) to enable managing traceability links between the elements of the goal and SysML
models (blocks and requirements diagrams and their relationships), hence also enabling
impact analysis and consistency checks as models evolve [31].

3.2. Adaptation support methods

To answer research question RQ2 (What are the collected methods that support self-adapta-
tion?), we selected additional articles coming from digital libraries and provided by experts.
Sub-questions SQ2.1 and SQ2.2 are answered using adaptation concepts and dimensions.

16

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

In order to find the methods that support self-adaptation characteristics in a context
where adaptation objectives are not explicitly mentioned in some of the studies, we classified
the methods using two criteria: self-adaptation properties and adaptation type. These two
criteria are respectively based on two classifications: 1) the non-functional requirements
that guide a particular system architecture design, and 2) the phase used to realize the
adaptation.

3.2.1. Self-adaptation properties

We classified the studies based on the four common self-* properties of self-adaption [8, 35],
namely self-healing (from failures and incorrect states), self-configuration (to changing
contexts and resources), self-optimization (to best meet specific goals), and self-protection
(to avoid system harm). This classification was done with the help of related quality
attributes, as suggested by Mistrik et al. [79] and Salehie and Tahvildari [80]. We extracted
the non-functional requirements (NFRs) cited in the 52 eligible studies before we related
them to four self-* properties.

For the studies where an adaption rationale was available, we established a mapping
to self-* types via NFRs. Table 8 details the results. Sixteen methods support systems
in adapting themselves while running by responding to changes that could be external
(environmental) or internal (the system itself) [81]. Only four of them [45, 55, 67, 74]
integrate goal and SysML models for both system design and self-adaptation. SysML also
was hired by another 7 methods to support self-adaptation.

In terms of adaptation approaches that use goal models but not SysML, we find several
methods such as those from Morandini et al. [82, 83], Qian et al. [94], Ramnath et al. [95],
Baresi et al. [86], and Baresi and Pasquale [87, 88]. Additional diversity is brought by
pattern-based and case-based approaches [90, 94].

Table 8. Distribution of self-* properties and non-functional requirements among the studies

Self-* NFRs Goal/SysML Goal SysML

Self-Healing Fault diagnosing
tolerance

Ingramet al.[45] Morandini et al.
[82, 83]

Bareiß et al. [84],
Parri et al. [85]

Self-Configuration

Adaptability,
Integrity and
Availability

Ahmad [59],
Ahmad et al.
[55–58], Ahmad
and Bruel [60, 61]

Adaptability Anda and
Amyot [73, 74],
Anda [75]

Baresi et al. [86],
Baresi and
Pasquale [87, 88]

Hussein et al. [89],
Meacham [90]

Reliability Ribeiro et al. [91]

Self-Optimization
Resource
utilization

Spyropoulos and
Baras [67]

Lopes et al. [92],
Souza et al. [93]

Time behavior Qian et al. [94]
Self-Protection Security Belloir et al. [62] Ramnath et al.

[95]

17

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

3.2.2. Adaptation phase and development

Support for the development of adaptive systems is provided at different levels. Some studies
provide analysis and design methods for such systems, but without explicit adaptation
support. Others that come with adaptation support do so either for design-time adaptation
or for runtime adaptation. In design-time adaptation, the situations triggering adaptation,
the adaptation mechanisms, and the strategies for decision making are already known and
applied in the system at design time. Systems that apply runtime adaptation are distinguished
by the ability to deal with unpredictable environmental changes while running [80, 90].

Table 9 shows that most of the studies that integrate goal and SysML models target the
development adaptive systems for different reasons (i.e., uncertainty reduction, complexity
simplification, system validation and verification) other than for adaptation, while most of
the methods that target self-adaptation trough SysML models or goal models separately
implement their adaption strategies, mechanisms, and decisions at design time (design-time
adaptation). Interestingly, runtime adaption in SysML is currently lacking contributions.

Table 9. Distribution of the studies related to development of adaptive systems

Study Category
Without Adaptation Support With Adaptation Support

Analysis and Design Only Design-Time
Adaptation

Runtime
Adaptation

Goal/SysML [31, 46–54, 63–66, 68–72] [20, 45, 55–62, 67] [73–75]
SysML and adaptation [18, 19, 96] [17, 84, 85, 89–93]
Goals and Adaptation [97] [82, 83, 86–88, 95] [94]

3.2.3. Adaptation approaches

Tables 10 and 11 summarize the approaches each method applies to meet its objectives.
Three methods (in four articles) used the i* goal modeling language, and one (in four
articles) used GRL, a language that originates from i*. Four methods used the KAOS
language (in 11 articles), and RELAX [77] was used in a few instances. Please note that the
methods in Tables 10 and 11 are different and independent from the integration methods
described in Table 5.

Table 10. Methods using combined Goal/SysML models to represent self-adaptive systems

Method Overview
Ingram et al. [45] Employed conditions and roles of a fault tolerance study to choose the best

strategy for managing traffic problems.
Ahmad et al. [55] Used SysML, KAOS and RELAX to manage uncertainty at runtime.
Spyropoulos and
Baras [67]

Used trade-off analysis to optimize resource distribution of an Electrical
Microgrid system using mathematical algorithms applied in a SysML model.
The last model was integrated with the Consol-Optcad optimization tool for
early cost and performance estimation.

Anda and
Amyot
[31, 73, 74],
Anda [75]

Transformed GRL and feature models into mathematical functions that can
be executed outside of goal modeling tools including SysML, simulation,
optimization, and implementation tools. Also, goal and SysML models are
imported into an RMS to manage traceability and consistency as models
evolve.

18

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Table 11. Methods using SysML models or goal models separately
to represent self-adaptive systems

Method Overview Using
Morandini
et al. [82, 83]

Unified goal model (i*), failure model, and environmental model to
support self-adaptation.

Goals

Qian et al. [94] Combined strategies selection and case-based reasoning self-adapta-
tion approaches. In order to determine the embedded strategies, the
lowest level of parameterized goal models was linked with the highest
level of softgoals via weighted contribution relationships.

Goals

Ramnath et al.
[95]

Linked strategies for attack and protection at the design layers of
the proposed architecture.

Goals

Meacham [90] Combined pattern-based with case-based reasoning approaches where
repeated falls were collected and analyzed to identify their patterns,
leading to solutions as plans.

SysML

Ribeiro
et al. [91]

Modeled real time requirements and managed traceability through
extending SysML requirements diagram with relationships and prop-
erties. Synchronized relationships were used to represent parallel
real-time requirements.

SysML

Bareiß et al.
[84]

Modified the SysML meta-model to create a SysML4Pack profile that
combines SysML model, OCL [98] and the state machines of OMAC
to represent predictable faults of automatic production systems.

SysML

Lopes et al.
[92]

Integrated SysML models with trade-off analysis and techno-eco-
nomical cost-benefit analysis to optimize electricity management,
generation, and distribution among customers.

SysML

Soyler and
Sala-Diakanda
[17]

Included disaster management strategies in a SysML system archi-
tecture with continuous feedback from the last disaster data.

SysML

Akbas and
Karwowski [18]

Combined dynamic models with agent-based models that were ex-
tracted from system design using SysML models.

SysML

Souza et al.
[93]

Created a SmartCitySysML profile that extends the profiles of re-
quirement and block in SysML to represent smart city elements.

SysML

Horkoff et al.
[97]

Integrated goal models i* with the MAVO framework of [99] to iterate
over the analysis process for early uncertainty reduction.

Goals

Baresi et al.
[86]

Modified the KAOS language with fuzzy goals (i.e., non-functional
goals with uncertainty) leading to a new language called FLAGS,
which supports functional models (crisp goals) and adaptive models
(fuzzy goals). The crisp goals were formalized through Linear Tempo-
ral Logic language (LTL) [100] plus fuzzy temporal operations such
as <, >, <=, and approximately to express the fuzzy goals.

Goals

Parri et al. [85] Combined system configurations derived from SysML block definition
diagrams (BDD) metadata with a failure model derived from fault
tree via digital twins and data analysis agents.

SysML

Baresi and
Pasquale [88]

Used service composition based on the Business Process Execution
Language (BPEL) [101] to transform the FLAGS/KAOS model in
Baresi et al. [86] to membership functions and abstract processes,
semi-automatically. These functions trigger the adaptation strategies
using Boolean conditions.

Goals

Baresi and
Pasquale [87]

Added operators from RELAX Language to the FLAGS language
in Baresi and Pasquale [88] to represent the fuzzy goals. Member
functions are used in the monitoring process but the adaptation
strategies are triggered by conditions associated with the operational
model.

Goals

19

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Several integrations (and, at times, extensions) were also done with goal models or
SysML models separately, hence answering the sub-question SQ2.2.
Goal Model Integrations with Languages Other than SysML
1. In order to support dynamic adaptive systems, Morandini et al. [82, 83] integrated

models of goals, failures, and the environment.
2. To deal with unpredicted changes at runtime, Qian et al. [94] integrated goal models

with case-based reasoning.
3. Horkoff et al. [97] integrated goal models with the MAVO framework to reduce uncer-

tainty early.
4. Baresi et al. [86] and Baresi and Pasquale [87, 88] described goals using a formal linear

temporal logic (LTL) language and the RELAX language for usage at runtime.
5. Anda and Amyot [31] adapted a model import method [102] to import and trace GRL

models into an RMS (IBM Rational DOORS [103]). They also generate functions from
goal and feature models that can be embedded in SysML models.

SysML Model Integrations with Non-Goal-Oriented Languages
1. Meacham [90] did an integration of SysML with UML to specify cases of presented

patterns, while Soyler and Sala-Diakanda [17] also supported an integration with
UML, but this time to represent the structure and behavior of systems in one single
environment.

2. Additional relationships and properties were added to SysML requirements diagrams
by Ribeiro et al. [91] for representing runtime requirements in a hierarchical way and
for managing requirements traceability for system validation and verification.

3. Bareiß et al. [84] used an integration with OMAC state machines, ISA-88 physical
models, and OCL constraints for transforming models to code.

4. Lopes et al. [92] provided an integration supporting trade-off analysis and techno-eco-
nomical cost-benefit analysis when modeling detailed system architectures.

5. System dynamic models and agent-based simulation were integrated by Akbas et al.
[19] and Akbas and Karwowski [18] for minimizing system complexity and specifying
system agents in a hierarchical structure.

6. Smart city elements including different types of requirements, solutions, processes,
stakeholders, problems, and dimensions have been added to a SysML profile by Souza
et al. [93] to support a domain-specific modeling process.

7. Real configuration items from SysML BDD properties and diagnostic, predictive, and
prescriptive analytics derived from fault tree are integrated by Parri et al. [85] to
discover alternative configurations when a runtime violation is detected.

8. Ginigeme and Fabregas [96] derived configuration parameters from the stakeholder’s
requirements and system design in SysML to be used by a discrete-event simulation
(Arena) tool to evaluate the design configurations.

9. SysML BDDs and requirements diagram are imported in an RMS (DOORS) by Anda
and Amyot [31] to support consistency and completeness checks (against imported GRL
models) as well as more common impact analysis and change management processes.

3.3. Adaptation assessment

In order to answer questions SQ2.1 and SQ2.2 on adaptation methods, we extracted
information that identifies terms inspired from existing adaptation taxonomies [37, 80] and
modeling dimensions of self-adaptation [81, 104]. Using these terms was helpful in inferring

20

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

correct indicators that specify how each method supports self-adaptation and what roles
each model plays in this adaptation.

Among the articles collected, some were eliminated from this assessment because their
adaptation methods were redundant or not described in sufficient detail. In particular,
Akbas and Karwowski [18] and Horkoff et al. [97] designed self-adaptive systems for reducing
uncertainty and system complexity. They supported the use of self-adaptive systems but
not the use of adaptation where the system re-configures itself to become more usable. In
addition, Baresi et al. [86] and Baresi and Pasquale [87, 88] expressed the same methods
with different emphases, so we considered them as one method represented by the most
detailed paper [87]. Finally, Spyropoulos and Baras [67] provided information about their
dynamic decision-making process but not about the adaptation strategies and properties;
this paper was excluded from the adaptation properties and dimensions assessment, but
kept for the decision-making criterion. As a result, 14 methods are discussed here.

3.3.1. Adaptation terms

The selected terms were defined in Section 2.2.4 on data extraction. Table 12 illustrates
the assessment of each adaptation term against related methods and studies. The color
coding reflects how positive a result is (green = positive, yellow = neutral, red = negative,
and white = unknown or inappropriate).

3.3.2. Adaptation modeling dimensions

Three types of modeling dimensions (goal, change, and mechanisms), proposed by Andersson
et al. [81], are used to specify self-adaptive properties. Some of these properties are
overlapping with the adaptation taxonomy previously mentioned. Some of the methods,
such as those presented by Ahmad et al. [55], Anda and Amyot [74], and Baresi and
Pasquale [87], are generic and can be applied to different applications; we estimated their
values based on the provided information. We extracted the methods’ information related
to the chosen modeling dimensions, which is summarized in Table 13.

3.3.3. Assessment results

The surveyed methods handled self-adaptation from several perspectives: adaptation terms
and modeling dimensions, early management of uncertainty, the use of different languages to
deal with adaptation, frameworks for developing self-adaptive systems, adaptation strategies,
and finally decision-making and strategy selection processes. This section provides further
assessment of the methods along these six perspectives. A comparison of the methods
according to the used models is also provided to highlight the contribution of these models
to the ability of systems to self-adapt.
Adaptation Terms and Modeling Dimensions. From Tables 12 and 13, several
observations can be made:
– Most of the collected methods realized a closed approach of adaptation by including

their strategies with system design. Only three were clearly open, i.e., more amenable
to adaptation to unforeseen situations and contexts.

– All of the collected methods supported their adaptation approach at design time, and
they do not enhance or change them at runtime using a learning technique (e.g., based
on machine learning).

21

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Table 12. Adaptation terms related to each selected method
(C = Closed, O = Open, ? = Not provided, Y = Yes, N = No, P = Partially, Dy = Dynamic,

Sta = Static, M = Making, A = Achieving, Md = Middleware, Ap = Application, Sr = Service,
St = Structure, W = Weak, Rt = Reactive, Pt = Proactive, Co = Continuous, Ad = Adaptive)

Goals and SysML Goals only SysML only
A

da
pt

at
io

n
te

rm
s

In
gr

am
et

al
.[

45
]

A
nd

a
an

d
A

m
yo

t
[7

4]

A
hm

ad
et

al
.[

55
]

Ba
re

si
an

d
Pa

sq
ua

le
[8

7]

M
or

an
di

ni
et

al
.[

83
]

Q
ia

n
et

al
.[

94
]

R
am

na
th

et
al

.[
95

]

M
ea

ch
am

[9
0]

R
ib

ei
ro

et
al

.[
91

]

Ba
re

iß
et

al
.[

84
]

Lo
pe

s
et

al
.[

92
]

So
yl

er
an

d
Sa

la
-D

ia
ka

nd
a

[1
7]

So
uz

a
et

al
.[

93
]

Pa
rr

ie
t

al
.[

85
]

Adaptation
Type

C O ? C C O C C C C ? O C C

Model-based Y Y Y Y Y P Y Y Y Y Y Y Y Y
Decision (Ana-
lyze/Selection
process)

? Dy Sta Dy/
Sta

Sta Dy Sta Sta ? Sta ? ? ? Dy/
Sta

Adaptation
approach

M M M M M M M M M M M M M M

Layer Md Ap Ap Ap Ap Ap Ap Ap ? ? Md Ap Ap Md
Artifact Sr/St Sr Sr Sr Sr Sr Sr Sr ? St Sr

/St
Sr Sr St

Cost-impact W W W W W W W W ? W W W W W
Temporal
adaptation

Rt Pt
/Rt

Rt Rt Pt/
Rt

Rt Rt Rt ? Rt Rt Rt Pt/
Rt

Pt/
Rt

Temporal
monitoring

Ad Co Co Co Co Co ? Co ? Co Co Co Co Co

Human
intervention

N N N P P N N N ? P ? ? N P

– According to their effected layers and artifacts, they supported only a weak adaptation
(i.e., no change to the architecture at runtime).

– The closed approaches affect the goals flexibility feature negatively and consequently
lead to different ways of managing adaptivity via fixed goals or flexible goals with
constraints, as shown in Table 13.

– Most methods that used goals as a model managed flexible goals with constraints
because of the conditions that were used to trigger system plans and strategies during
the strategy selection process (closed approach and design-time adaptation).

– The collected methods do not support unconstrained goals except for two methods.
Qian et al. [94] used methods to generate solutions: 1) goal-reasoning to generate
a new solution when the current cases did not match the conditions of the stored cases,
and 2) using the average of the similar cases to generate new solutions. However, the

22

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Table 13. Modeling dimension of the selected methods
(Sta=Static, Dy=Dynamic, Rgd=Rigid, Cns=Constrained, Ncn = Unconstrained,

Mlti = Multiple, S = Single, E = External, I = Internal, Nfr = Non-functional requirement,
Gt = guaranteed, NGt = Not guaranteed, ? = Unknown)

Goals and SysML Goals only SysML only

A
da

pt
at

io
n

te
rm

s

In
gr

am
et

al
.[

45
]

A
nd

a
an

d
A

m
yo

t
[7

4]

A
hm

ad
et

al
.[

55
]

Ba
re

si
an

d
Pa

sq
ua

le
[8

7]

M
or

an
di

ni
et

al
.[

83
]

Q
ia

n
et

al
.[

94
]

R
am

na
th

et
al

.[
95

]

M
ea

ch
am

[9
0]

R
ib

ei
ro

et
al

.[
91

]

Ba
re

iß
et

al
.[

84
]

Lo
pe

s
et

al
.[

92
]

So
yl

er
an

d
Sa

la
-D

ia
ka

nd
a

[1
7]

So
uz

a
et

al
.[

93
]

Pa
rr

ie
t

al
.[

85
]

Goal
Evolution Sta Sta Sta Dy Sta Sta Sta Sta Sta Sta Sta Sta Sta Sta
Flexibility Rgd Ncn Cns Cns Cns Ncn Rgd Rgd Rgd Rgd Rgd Rgd Cns Rgd
Multiplicity Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti S Mlti Mlti Mlti Mlti
Dependency Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti Mlti S Mlti Mlti Mlti Mlti
Change
Source E E&

I
E E&I E&

I
I E E ? I E&

I
E E I

Type NFR NFR NFR NFR NFR NFR NFR NFR NFR NFR NFR ? NFR NFR
Mechanisms
Timeliness Gt Gt ? NGt Gt NGt Gt Gt ? Gt Gt ? Gt Gt

new solutions could be unsuitable for the current problem and consequently lead to
non-guaranteed adaptation timeliness, as shown in Table 13. On the contrary, Anda and
Amyot [73, 74] have used a goal reasoning method (without constraints or conditions
on its choices) to generate on the fly the best solutions when unforeseen circumstances
are encountered at runtime. Since the used mathematical functions include the impact
of the current environmental condition on all elements of the goal models and are
restricted by the mathematical function of feature models, the created solutions are
feasible and the best (the functionality and quality of the system satisfy its stakeholders’
objectives) for the current environmental condition.

– Baresi and Pasquale [87] presented the only method that changes the number of system
goals during adaptation by adding and deleting goals. As a consequence, the time
needed for adaptation is not guaranteed even if the conditions and related plans are
already known and embedded in the system at design time.

– Most methods (except three) included work or comments on mechanisms.
To conclude, using goal models in adaptation methods strengthens their flexibility and
ability to deal with unknown conditions at runtime. However, this can also lead to the
generation of infeasible solutions or unguaranteed adaptation timeliness due to insufficient
validity checking of the generated solutions and the new alternatives.

23

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Early Management of Uncertainty. Reducing or eliminating uncertainty before having
to manage it is one way to analyze and design self-adaptive systems. To support the
decision-making process in analysis and design phases, early in the requirement engineering
process, Horkoff et al. [97] presented a formal iterative goal analysis process with a tool
that integrated i* goal models with the MAVO framework [99] to remove unnecessary
requirements alternatives. The treatment of uncertainty in general goal modeling is further
explored by Alwidian et al. [105].
Language Usage. Self-adaptive systems offer an opportunity for more relaxed language to
be used to better specify their requirements, because common patterns such as “the system
shall do this” are often too strict that context. This need was addressed in by Ahmad
et al. [55], who used the RELAX language [77] as a more formal representation of this idea
for monitoring environmental conditions and detecting violations. In addition, the formal
language called FLAGS [87, 88] formalizes the KAOS goal modeling language through
LTL. In order to represent fuzzy goals with uncertainty, LTL is accompanied by fuzzy
temporal operators based on RELAX [87]. This language was used to keep tracking and
using the goal model from requirements elicitation to the implementation phase. Anda and
Amyot [31, 73, 74] generate arithmetic functions in common languages (including C, Java,
and Python) from GRL and feature models, which enable analysis and implementation to
be done with a wide range of development tools.
Frameworks for Designing Self-Adaptive Systems. Several approaches and frame-
works were presented to design and select an appropriate architecture for self-adaptive
systems (SAS). Morandini et al. [83] extended the Tropos framework [106] for Adaptive
Systems (Tropos4AS). This framework helps analyzing requirements of SAS from early
requirements to the implementation by mapping the goal model of particular actors to
architecture agents and by mapping the plan (tasks) to activity diagrams. This framework
uses goal, failure, and environmental models. The Tropos goal modeling language, itself
based on i*, was extended to add goal types (achieve, maintain, perform), relationships
(sequence, inhibition) and conditions. Code is generated automatically from the models by
mapping Tropos4AS terms to Belief-Desire-Intention (BDI) agents, which enable SAS
validation and verification via simulation.

To support system reliability, flexibility, and runtime recoverability, Parri et al. [85]
proposed a software/hardware framework, called JARVIS, for developing CPSs and Sys-
tems of Systems. JARVIS adopts SysML BDDs and fault trees to discover configuration
alternatives using digital twins and data analytic agents.

Security strategies can also affect user privacy and cost. For this reason, Ramnath et al.
[95] proposed a non-functional framework to deal with adaptive security analysis. The goal
model is linked from and to dynamic behavior of the organization via a transaction-based
mechanism. Such goal model is used to support trade-off analysis between cost and privacy
in order to help with the definition of a secure architecture.

To reduce the complexity of SAS and manage traceability between their components,
Soyler and Sala-Diakanda [17] presented a model-based framework exploiting SysML. This
framework was selected to capture a Disaster Management System in one single environment
using feedback to adapt the embedded strategies, plans, and policies.

Finally, Akbas and Karwowski [18] proposed an agent-based framework that uses
a hybrid simulation model to support system design, validation, and verification, as well as
to provide quick feedback about the chosen design.

24

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Adaptation Strategies. The collected methods dealt with possible adaptation strategies
or configurations through open and closed adaptation.
– Closed adaptation approaches: In a closed approach, possible alternatives, strategies, and

configurations are embedded in the system during the development phase. Assuming
environmental conditions and changes are well-known at design time, the closed methods
(Table 12) manage uncertainty through rigid or constrained goals. From the Goal/SysML
integration methods, Ingram et al. [45] used fault tolerance analysis and rules to deal
with errors. Without considering goal models, Ribeiro et al. [91], Parri et al. [85], Bareiß
et al. [84], Souza et al.[93], and Soyler and Sala-Diakanda [17] triggered their embedded
strategies, configuration, or plans to respond to internal or environmental changes.
Similarly, Morandini et al. [82, 83] represented the goal model in an agent structure
while embedding the environmental and failure conditions, alternatives, and plans in
agent beliefs and system design. Designing self-adaptive systems with predicted or
predictable change management is a characteristic common to these types of methods.
One issue here is that they cannot deal with unpredictable changes that could emerge
at runtime. On the other hand, they guarantee that the selected adaptation strategy is
suitable and timely for a given contextual change (see Tables 12 and 13).

– Open adaptation approaches: Open approaches do not solely rely on predetermined
adaption strategies and conditions. Feedback can be used to update the embedded
strategies, as suggested by Soyler and Sala-Diakanda [17] (although they give little
explanation on how to do so). Case-based reasoning is an approach that uses previ-
ously stored solutions in solving current similar problems. To deal with unexpected
environmental changes, case-based reasoning can be employed to update embedded
configurations and strategies. Based on such feedback loop, Qian et al. [94] create new
solutions or configurations from the average of the parameters’ values of two or more
stored cases or from goal reasoning (such as label propagation algorithms [107]). In
contrast, Meacham [90] used case-based reasoning to manage fall cases of elderly people
and infer their patterns in order to determine the related system reactions. She used
stored cases and patterns only while the feedback technique was not applied, in order to
continue enhancing the stored cases, as Qian et al. [94] did. To enhance overall system
performance, new strategies or configurations can be issued by the optimization method
of Anda and Amyot [31, 73], which deals with unexpected conditions at runtime.

Decision-Making and Strategy Selection Processes. The collected methods have not
provided much diversity in the decision-making process that triggers the adaptation and
the selection of the most suitable strategy (see Figure 1). All the decision processes were
encoded inside the system (i.e., static decision-making) and no adaptation was performed
on these processes using learning techniques. However, the decision-making process can use
different policies: action (static decision), goal and utility (dynamic decision), as well as
hybrid policies [37, 108]. These methods realized their decision-making processes as follows.
– Action policies: Apply to the process that decides when the adaptation should be done

and what the system should do based on the current state, conditions, and actions
(if-then logic) [108]. Meacham [90] used a pattern analysis algorithm to trigger the
adaptation while Morandini et al. [83] used a goal modeling approach and several types
of conditions that trigger the adaptation process. In order to select a suitable recovery
strategy, Bareiß et al. [84] used a diagnosis model that compared the current system state
with the pre- and post-conditions of each operation state. The if-condition-then-plan
technique is used here because it is a simple way for humans to express a rational

25

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

logic in the systems. However, action policies become complex in real-world conditions,
and additional techniques (e.g., prioritization) are needed to solve policy conflicts in
practice [10, 108].

– Utility and goal policies: In order to select an optimal adaptation strategy, experts are
needed to identify the control variables required by the utility policy approach. Such
approach has been used in the decision-making process, providing a flexible way to
trigger the optimal adaptation’s strategy by exploiting designer knowledge at design
time and real monitored data at runtime [108].
Ramnath et al. [95] used utility functions for cost and benefit of the involved stakeholders
and trade-off analysis to select a suitable design. From there, related strategies were
connected to the security layers of this architecture to be executed at runtime. Similarly,
Spyropoulos and Baras [67] used trade-off analysis to get the optimal solution for power
allocation in their Microgrid system. In their approach, Lopes et al. [92] added an
enterprise service management plan using utility functions to select the best strategy
based on the techno-economical costs/benefits and trade-off analysis at design time.
However, none of the previous studies used these policies at runtime with the real data.
Baresi and Pasquale [87] used satisfaction equations and goal reasoning in analyzing
system state. However, they were not used in their strategy selection process triggering
the possible solutions depending on several conditions attached to the system operations
as rules. Similarly, Parri et al. [85] used Fault Tree analysis to detect and predict failures
while the suitable configurations were associated to the tree via digital twins. Also, Qian
et al. [94] used case-based reasoning in all MAPE activities (see Figure 1) except in
the planning process, the latter being supported by goal-based reasoning when it failed.
However, they applied goal-based reasoning in generating new configurations only by
increasing the weights of the violated goals to get solutions related to these specific
goals, but the new solutions could still be unsuitable for the current problem. Hence,
although using such a utility function leads to an optimal solution without strategy
conflicts, its usability is affected significantly and experts are still required [10, 108].
On the other hand, goal and feature models transformed to mathematical functions
by Anda and Amyot [73, 74, 78] are used in MAPE activities to monitor, analyze, and
select the suitable strategies at design time and during runtime adaptation.

3.3.4. Self-adaptation, goals, and SysML

The collected articles display distinguished features when classified according to the three
categories (Figure 5) initially used to search the literature: goal models (without SysML),
SysML models (without goal models), and goal models combined with SysML models.

From Section 3.2.3, goal models are used to reduce uncertainty early and provide
adaptation rationale and alternatives. Also, based on Table 9, goals are involved into all
the methods that enhance their adaptation solutions at runtime while runtime adaption is
not well supported in SysML. In Table 12, two methods used goal models to generate new
solutions/strategies when facing unknown conditions at runtime while only one SysML-based
method used feedback to create new strategies, but without much detail. Similarly, three
methods out of four that provided dynamic decisions exploited goal models while only one
method (Parri et. al. [85]) supports dynamic analysis with a strategy selection process using
SysML. From a modeling dimension perspective, SysML is involved in all the inflexible
methods that use fixed goals in their adaptation approaches. On the other hand, all the
goal-based methods manage multiple goals and their dependencies defined in goal models.

26

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Also from Section 3.2.3, SysML provides a suitable environment that reduces the complex-
ity of self-adaptive systems and represents them in one single environment through profiles.
Such profiles are used to strengthen domain-specific modeling by adding new terms for new
types of systems such as smart cities [93]. However, these profiles do not represent goal
model elements and analysis together, and valuable information is lost during the mapping
of goal-related concepts to SysML concepts, which reduces the flexibility of theses methods
(and leads to rigid or constrained goals instead of goal reasoning enabling selections and
trade-offs among goals). Only one method [74] integrates goal model analysis (including goals,
softgoals, actors, tasks, indicators, contributions, relationships, and their importance) with
SysML models without using profiles. This integration involves mathematical expressions
generated from goal models, which enables a flexible method with open adaptation together
with dynamic decision in analysis and mapping mechanisms.

3.4. Challenges

The studies have faced several challenges while employing their methods, and some are
further explored below.
Usability of Integration. The integration processes are often characterized by remodeling
goals with design tools (duplication of work), which not only causes risks of information
loss and inconsistencies, but also consumes much development effort and time. One reason
is that requirements, goal models, and SysML design artifacts have different and specific
environments and tools that deal with their creation, management, and analysis needs.
Representing a goal model using another tool with a different purpose (such as s SysML
design tool) was a major obstacle faced by most methods. Furthermore, trade-off analysis
as well as runtime adaptation selection are other affected features within all these methods
because the goal model is not mapped completely and used effectively in the MAPE
activities.
Goal Models and MAPE Activities. The MAPE activities (monitor, analyze, plan,
and execute, see Figure 1) are not all supported at the same level by the collected methods.
Managing and changing system goals at runtime is one suggested solution for conducting
trade-off analysis and selecting the best adaptation strategy using real-time variables.
However, in these studies, the scalability of the proposed methods is rarely formally
assessed.
Goal-based Reasoning at Runtime. The use of goal-based reasoning at runtime differed
from one study to another, and it was affected negatively by several factors: 1) transferring only
part of a goal model to the design and/or runtime phases (e.g., not transferring contribution
linksweights) and 2) handling the reasoning process in several ways (i.e., considering softgoals
and tasks only, or violated softgoals only). As a result, the methods’ ability to use goal
reasoning at runtime for selecting the best (or even just one) suitable solution during the
analysis and strategy selection processes was limited, and unsuitable solutions could be
generated along the way. Furthermore, goal analysis and trade-off analysis cannot be done at
runtime accurately using those methods, which consequently limits the ability to self-adapt
in the developed systems by using conditions and implementing inflexible methods that
cannot deal with unpredictable contexts.
Unmanageable Traceability. High-level goals are usually more stable than low-level
ones, and they help guide the evolution of requirements from elicitation to runtime
adaptation [9, 61]. However, to truly unlock the benefits of goal-orientation (including
consistency/completeness, conflict, trade-off, and impact analyses), SysML system design
components should be linked to goals at all levels [9, 54, 55]. Yet, it is difficult to manage

27

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

traceability and consistency between goal and SysML models. Embedding goal models
in SysML tools can help, but amount to redeveloping goal-based analysis in such tools,
and none of the existing methods really does this. Overall, although establishing links
between goals/requirements, system design, and the implementation was an objective of
most selected methods, most fail from providing sufficient and practical traceability support
except one [31], which uses an external RMS to do so but with low usability due the high
number of tools involved (goal modeling environment, SysML tool, and RMS). SysML tool
vendors should consider better integrating goal modeling and analysis capabilities in their
solutions.

4. Related work

Although a literature review is already about collecting and assessing related work, it is
also important to situate it among other literature reviews on related topics.

Zahid et al. [39] have recently published a systematic mapping of semi-formal and formal
methods in requirements engineering of (industrial) Cyber-Physical Systems. Although
SysML is mentioned on a few occasions, adaptive CPSs are not covered. Surprisingly, goal
modeling is not discussed in their review.

There are also generic language-oriented systematic mappings on goal-oriented modeling
(e.g., from Horkoff et al. [40]) and SysML (e.g., from Wolny [41, 42]) but they are superficial
in their treatment of (self-)adaptive systems.

In contrast, there are several literature surveys and mappings on adaptive systems,
whether they are cyber-physical or not. In particular:
– de Lemos et al. [109] provided an important roadmap for software engineering research

on self-adaptive systems, which emphasized the identification and representation of
goals, the management of the design space, and the validation of models (without
mentioning SysML or goal-oriented modeling however) as important challenges. Many
of the methods addressed in our review provide contributions in those areas.

– Macías-Escrivá et al. [36] also provided a survey with research challenges, but without
details on modeling aspects.

– Krupitzer et al. [37] reviewed software engineering approaches for self-adaptive systems
and discuss some goal-oriented methods, but no SysML-based ones, and not to the
depth of our own review.

– Yang et al.[110] provided a review of requirements modeling and analysis for self-adaptive
systems, where they identified 16 methods, some of which involving goal modeling.
No SysML-based method was identified at the time this review was published (2014).
Their main assessment was related to the coverage of important modeling and analysis
concepts by the methods and the languages they used. CPSs are not mentioned.

– More recently, Porter et al. [38] explored the types of questions that are researched in
the literature in relation to self-adaptive systems, instead of methods.
Our literature review is unique in that it is fairly exhaustive in its coverage of goal/SysML

integrations and of SysML methods targeting adaptation, with partial coverage of some of
the main goal-oriented methods for adaptive systems. It also provides a deeper analysis
of multiple research questions and facets of these methods. It finally positions these
methods in the CPS domain, with a specific emphasis on emerging types of adaptive
socio-cyber-physical systems.

28

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

5. Limitations and threats to validity

As highlighted by Feldt and Magazinius [111], the validity of any study depends on the degree
of correctness of its conclusions, including threats related to bias and over-generalization.
We applied some strategies to mitigate common threats to validity, but several remain,
as discussed below.

5.1. Internal validity

The first author selected and reviewed the papers, and extracted the raw data, with
supervision and informal consultations and checks from the second author. In addition, one
of the methods studied here (M17) also comes from the authors of this literature review.
There is hence a risk of bias here. To mitigate this threat, we consulted several experts,
including the authors of some of the selected papers, to increase the level of confidence
in our assessment of their contributions. We have also used existing assessment criteria
from the literature whenever they were available (e.g., from [37, 80, 81, 104]). However,
the authors of the many papers reviewed here have not been rigorously surveyed, and
hence there is a remaining risk that some of their contributions were classified or assessed
incorrectly.

There is also a risk that important and relevant papers have been missed or incorrectly
excluded in this literature review. To mitigate this risk, we used different and recognized
scientific databases in the areas of systems modeling, with fairly permissive queries (refined
over many iterations based on previous results). We also used Google Scholar with different
queries and choices to increase our confidence that relevant studies from different sources
were included. Precise inclusion and exclusion criteria were defined and used, and both
authors were involved in the selection in cases where we were unsure about relevance. Yet,
one remaining threat here is that the selected literature was limited to the English language.

We tried to be exhaustive for papers combining goal and SysML modeling, as well
as for papers about SysML for self-adaptation. However, we manually selected primary
articles (proposed by experts based on citations and reputation, as there were too many
such papers) that support adaptation using goal models (Figure 5). One threat here is
that many papers related to goals and self-adaptation have not been considered. Yet, the
sample we have selected was useful to understand what is being done outside the SysML
world, as a comparison point and as an indication of future opportunities.

5.2. External validity

This type of validity is related to the generalization of the results outside of the study’s
scope [111, 112]. The number of studies that focus on the integration of goal models with
SysML models is rather small. If we consider the method granularity, only 17 methods
were presented and four of them were specifically targeting adaptation. This is also why
we focused on a descriptive presentation of our results, without trying to discuss statistical
significance in the answers to our research questions.

What is published in peer-reviewed venues also may not be representative of what
practitioners actually use in industry. Generalizing the results of these methods is a threat
due to the relative immaturity of the field. We tried to mitigate this threat by systematically
including papers on SysML for self-adaptive systems, and manually including primary
papers on goal models for self-adaptation, again as comparison points. Still, general

29

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

conclusions about the use of goal modeling for adaption (without an integration with
SysML) or about the integration of SysML and goal models outside of a CPS context
should not be inferred from this literature review.

6. Conclusion

The number, complexity, and importance of socio-cyber-physical systems (SCPSs), which
consider the goals of their stakeholders at design time and at runtime, is increasing in
our societies [23]. In some SCPSs, the need for adaptability driven by stakeholder goals
was partially addressed in the peer-reviewed scientific literature. This paper reviewed 52
publications and assessed methods that integrate goal models with SysML models (or use
them separately) to support runtime self-adaption, with a consideration for the SCPS context.
The review answers many questions of broad interest both to researchers and to practitioners
who are considering the use of goal models, SysML models, or both in SCPSs or self-adaptive
systems contexts. The research questions were answered through this review as follows:
RQ1. What are the existing methods that integrate goal-oriented models with SysML models?

This was answered by Table 5, which presents a total of 17 methods, labeled M1 to
M17, extracted from 33 studies. KAOS and GRL are the most frequently mentioned
goal modeling languages in that context.
SQ1.1. Why have these integrations been proposed? The objective of each study was

presented in Table 6, where the common objectives are system architecture
selection and modeling, uncertainty and adaptation, as well as traceability
and formal validation and verification, in that order.

SQ1.2. How do the methods integrate the two types of models? The answer was
provided in Table 7 and its explanation in Section 3.1.3, which concluded
that mapping parts of goal models to SysML requirements diagrams via
profiles (formal or not) is by far the most often used approach through all
17 methods.

RQ2. What are the collected methods that support self-adaptation? By classifying the
collected methods using NFRs, self-* properties (Table 8), and adaptation phases
(Table 9), methods that support self-adaptation are listed and described in Table 10
(for the four approaches that integrate goals and SysML models) and Table 11 (for
a sample of 15 approaches that use either SysML or goal models).
SQ2.1. How do the methods support self-adaptive systems? This question was

answered by Tables 12 and 13, which respectively identify terms inspired
from the adaptation taxonomies and modeling dimensions of self-adaptation.
The discussion around these tables (Section 3.3) provides insight into how
the assessed methods support the activities of self-adaptive systems.

SQ2.2. What are the roles that each model plays in this adaptation support? This was
answered by exploring the reasons for using each model in each integration
in Section 3.2.3, and by discussing the adaptation assessment criteria in
Section 3.3.

Although there was much improvement in the last decade, the main results show that map-
ping goals at design time is common among the collected methods to support traceability,
architecture selection, system validation and verification, as well as self-adaptation. However,
existing mappings usually suffer from a loss of important information (e.g., contribution
links and weights) or an absence of information (e.g., indicators sensing external contexts)

30

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

that play key roles in runtime goal analysis and flexible self-adaptation. Goal modeling
is actually used sparsely and differently in MAPE activities of adaptive systems. Thus,
in addition to consuming time and effort, most of the proposed methods were unable to
implement goal-based reasoning in all activities. This consequently leads to situations where
incorrect adaptation solutions are produced and used, and in time constraints that cannot
be guaranteed. In fact, although modeling goal and SysML models in a single tool could
help solve traceability problems and support adaptation, achieving this integration with
existing design and analysis tools remains a challenge, as highlighted in Section 3.4.

To address many of the challenges and limitations observed throughout this review, we
identify the following research directions.
– Developing and evolving adaption methods for SCPS where the goal models exploit

important quantitative information such as contribution weights, importance levels to
stakeholders, and indicators that measure different facets of the context. Such information
is often necessary in models for data-centric systems and is very important for non-trivial
adaptive SCPSs [113]. Such methods exist, but they are seldom integrated with SysML
design activities.

– Ensuring that methods exploit the goal models through the MAPE cycle to their fullest
extent, especially during runtime adaptation for unforeseen contexts (open approaches).
Again, several opportunities have been explored in the goal modeling community but
they are yet to be exploited in a SysML modeling and analysis context.

– As most integrated methods only support weak adaptation, there are opportunities to
investigate goal-oriented, strong adaptations of component structures and architectures
at runtime in an SysML context.

– Improving the usability and scalability of goal/SysML integrations for adaptive systems,
with proper tool support, especially as the models grow in size and are frequently modified.

– Enabling (machine) learning during adaptation in integrated goal/SysML methods. None
of the current work currently exploits this opportunity.
Despite many observed gaps and challenges, we believe the benefits of goal modeling

(potential or actual) combined with SysML for adaptive SCPSs outweigh the identified
drawbacks, and that further research will bring innovative and practical solutions in the
near future.

Acknowledgment

Amal Ahmed Anda is supported by a scholarship from the Libyan Ministry of Education. We
are thankful to the Natural Science and Engineering Research Council of Canada (Discovery
program) for their support.

References

[1] B. Tekinerdogan, D. Blouin, H. Vangheluwe, M. Goulão, P. Carreira et al., Multi-Paradigm
Modelling Approaches for Cyber-Physical Systems. Elsevier Science, 2020.

[2] I. Horváth, “What the Design Theory of Social-Cyber-Physical Systems Must Describe,
Explain and Predict?” in An Anthology of Theories and Models of Design. Springer, 2014,
pp. 99–120.

[3] I.J. Jureta, A. Borgida, N.A. Ernst, and J. Mylopoulos, “The requirements problem for
adaptive systems,” ACM Transactions on Management Information Systems (TMIS), Vol. 5,
No. 3, 2015, p. 17.

31

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

[4] A. Smirnov, A. Kashevnik, and A. Ponomarev, “Multi-level self-organization in cyber-physical-
-social systems: Smart home cleaning scenario,” Procedia CIRP, Vol. 30, 2015, pp. 329–334, 7th
Industrial Product-Service Systems Conference – PSS, industry transformation for sustainability
and business.

[5] F. Zambonelli, “Towards a general software engineering methodology for the internet of things,”
CoRR, Vol. abs/1601.05569, 2016. [Online]. http://arxiv.org/abs/1601.05569

[6] E. Cavalcante, T. Batista, N. Bencomo, and P. Sawyer, “Revisiting goal-oriented models
for self-aware systems-of-systems,” in 2015 IEEE International Conference on Autonomic
Computing (ICAC), July 2015, pp. 231–234.

[7] M. Sanchez, E. Exposito, and J. Aguilar, “Autonomic computing in manufacturing process co-
ordination in industry 4.0 context,” Journal of Industrial Information Integration, Vol. 19, 2020,
p. 100159. [Online]. https://www.sciencedirect.com/science/article/pii/S2452414X20300340

[8] J.O. Kephart and D.M. Chess, “The vision of autonomic computing,” Computer, Vol. 36,
No. 1, 2003, pp. 41–50.

[9] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-Ramos, “On the role of model-driven
engineering in adaptive systems,” in Computing Conference (CCC), 2016 IEEE 11th Colombian.
IEEE, 2016, pp. 1–8.

[10] J.C. Muńoz-Fernández, R. Mazo, C. Salinesi, and G. Tamura, “10 challenges for the specifica-
tion of self-adaptive software,” in 12th International Conference on Research Challenges in
Information Science (RCIS), May 2018, pp. 1–12.

[11] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and M. Wimmer, “Tool-support
of socio-technical coordination in the context of heterogeneous modeling,” in 6th Int. Workshop
on the Globalization of Modeling Languages (GEMOC), MODELS 2018 Workshops, 2018,
pp. 1–3.

[12] BKCASE Governing Board, “Guide to the Systems Engineering Body of Knowledge (SEBoK)
v. 1.9.1,” 2014, p. 945. [Online]. https://bit.ly/2PWwxFJ

[13] T. Huldt and I. Stenius, “State-of-practice survey of model-based systems engineering,” Systems
Engineering, 2018, pp. 1–12 (online first).

[14] OMG, “OMG Systems Modeling Language (SysML), Version 1.6,” Object Management Group,
2019. [Online]. https://www.omg.org/spec/SysML/

[15] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems modeling
language. Morgan Kaufmann, 2014.

[16] ISO, “ISO/IEC 19514:2017 – Information technology – Object management group systems
modeling language (OMG SysML),” International Organization for Standardization, 2017.
[Online]. https://www.omg.org/spec/SysML/

[17] A. Soyler and S. Sala-Diakanda, “A model-based systems engineering approach to capturing
disaster management systems,” in 2010 IEEE International Systems Conference, apr 2010,
pp. 283–287.

[18] A.S. Akbas and W. Karwowski, “A systems engineering approach to modeling and simulating
software training management efforts,” in 25th European Modeling and Simulation Symposium,
EMSS 2013, 2013, pp. 264–269.

[19] A.S. Akbas, K. Mykoniatis, A. Angelopoulou, and W. Karwowski, “A model-based approach
to modeling a hybrid simulation platform (work in progress),” in Proceedings of the Symposium
on Theory of Modeling & Simulation – DEVS Integrative, DEVS ’14. San Diego, CA, USA:
Society for Computer Simulation International, 2014, pp. 31:1–31:6. [Online]. http://dl.acm.
org/citation.cfm?id=2665008.2665039

[20] D. Amyot, A.A. Anda, M. Baslyman, L. Lessard, and J.M. Bruel, “Towards Improved
Requirements Engineering with SysML and the User Requirements Notation,” in 2016 IEEE
24th International Requirements Engineering Conference (RE), sep 2016, pp. 329–334.

[21] G. Mussbacher, D. Amyot, R. Breu, J.M. Bruel, B.H.C. Cheng et al., “The relevance of
model-driven engineering thirty years from now,” in Model-Driven Engineering Languages and
Systems, J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds. Cham: Springer
International Publishing, 2014, pp. 183–200.

32

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
http://arxiv.org/abs/1601.05569
https://www.sciencedirect.com/science/article/pii/S2452414X20300340
https://bit.ly/2PWwxFJ
https://www.omg.org/spec/SysML/
https://www.omg.org/spec/SysML/
http://dl.acm.org/citation.cfm?id=2665008.2665039
http://dl.acm.org/citation.cfm?id=2665008.2665039

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

[22] J.A. Lane and T. Bohn, “Using SysML modeling to understand and evolve systems of systems,”
Systems Engineering, Vol. 16, No. 1, 2013, pp. 87–98.

[23] C. Ncube and S.L. Lim, “On systems of systems engineering: A requirements engineering
perspective and research agenda,” in 26th International Requirements Engineering Conference
(RE). IEEE CS, Aug 2018, pp. 112–123.

[24] A. Van Lamsweerde, Requirements engineering: From system goals to UML models to software.
Chichester, UK: John Wiley & Sons, 2009, Vol. 10.

[25] S. Woldeamlak, A. Diabat, and D. Svetinovic, “Goal-oriented requirements engineering for
research-intensive complex systems: A case study,” Systems Engineering, Vol. 19, No. 4, 2016,
pp. 322–333.

[26] E.S.K. Yu, “Towards modelling and reasoning support for early-phase requirements engineering,”
in Requirements Engineering, 1997, Proceedings of the Third IEEE International Symposium
on, 1997, pp. 226–235.

[27] D. Amyot and G. Mussbacher, “User Requirements Notation: the first ten years, the next ten
years,” JSW, Vol. 6, No. 5, 2011, pp. 747–768.

[28] ITU-T, “Recommendation Z.151 (10/18): User Requirements Notation (URN) – Language
Definition,” 2018. [Online]. http://www.itu.int/rec/T-REC-Z.151/en

[29] M. Daun, J. Brings, L. Krajinski, V. Stenkova, and T. Bandyszak, “A GRL-compliant iStar
extension for collaborative cyber-physical systems,” Requirements Engineering, Vol. 26, No. 4,
2021, pp. 325–370.

[30] K. Neace, R. Roncace, and P. Fomin, “Goal model analysis of autonomy requirements for
unmanned aircraft systems,” Requirements Engineering, Vol. 23, No. 4, 2018, pp. 509–555.

[31] A.A. Anda and D. Amyot, “Traceability management of GRL and SysML models,” in SAM’20:
12th System Analysis and Modelling Conference. ACM, 2020, pp. 117–126.

[32] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton et al., “Evaluating goal models
within the Goal-oriented Requirement Language,” International Journal of Intelligent Systems,
Vol. 25, No. 8, 2010, pp. 841–877.

[33] D. Amyot, H. Becha, R. Bræk, and J.E. Rossebø, “Next generation service engineering,” in
First ITU-T Kaleidoscope Academic Conference – Innovations in NGN: Future Network and
Services, 2008, pp. 195–202.

[34] M. Alenazi, N. Niu, W. Wang, and J. Savolainen, “Using obstacle analysis to support
SysML-based model testing for cyber physical systems,” in 8th Int. Model-Driven Requirements
Engineering Workshop (MODRE). IEEE CS, 2018, pp. 46–55.

[35] G. Blair, N. Bencomo, and R.B. France, “Models@ run. time,” Computer, Vol. 42, No. 10,
2009.

[36] F.D. Macías-Escrivá, R. Haber, R. del Toro, and V. Hernandez, “Self-adaptive systems: A
survey of current approaches, research challenges and applications,” Expert Systems with
Applications, Vol. 40, No. 18, 2013, pp. 7267–7279.

[37] C. Krupitzer, F.M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A survey on engineer-
ing approaches for self-adaptive systems,” Pervasive and Mobile Computing, Vol. 17, 2015,
pp. 184–206.

[38] B. Porter, R.R. Filho, and P. Dean, “A survey of methodology in self-adaptive systems
research,” in International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS 2020). IEEE, 2020, pp. 168–177.

[39] F. Zahid, A. Tanveer, M.M. Kuo, and R. Sinha, “A systematic mapping of semi-formal and
formal methods in requirements engineering of industrial cyber-physical systems,” Journal of
Intelligent Manufacturing, 2021, pp. 1–36.

[40] J. Horkoff, F.B. Aydemir, E. Cardoso, T. Li, A. Maté et al., “Goal-oriented requirements
engineering: an extended systematic mapping study,” Requirements Engineering, Vol. 24,
No. 2, 2019, pp. 133–160.

[41] W. Wang, N. Niu, M. Alenazi, and L. Da Xu, “In-place traceability for automated production
systems: A survey of PLC and SysML tools,” IEEE Transactions on Industrial Informatics,
Vol. 15, No. 6, 2018, pp. 3155–3162.

33

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
http://www.itu.int/rec/T-REC-Z.151/en

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

[42] S. Wolny, A. Mazak, C. Carpella, V. Geist, and M. Wimmer, “Thirteen years of SysML: a
systematic mapping study,” Software & Systems Modeling, Vol. 19, No. 1, 2020, pp. 111–169.

[43] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in
software engineering,” Keele University and Durham University Joint Report, Tech. Rep. EBSE
2007-001, 2007.

[44] S.J. Tueno Fotso, M. Frappier, R. Laleau, A. Mammar, and M. Leuschel, “Formalisation of
SysML/KAOS goal assignments with B system component decompositions,” in Integrated
Formal Methods, C.A. Furia and K. Winter, Eds. Cham: Springer International Publishing,
2018, pp. 377–397.

[45] C. Ingram, Z. Andrews, R. Payne, and N. Plat, “SysML fault modelling in a traffic management
system of systems,” in System of Systems Engineering (SOSE), 2014 9th International
Conference on. IEEE, 2014, pp. 124–129.

[46] Y. Vanderperren and W. Dehaene, “SysML and systems engineering applied to UML-based
SoC design,” in Proc. of the 2nd UML-SoC Workshop at 42nd DAC, USA, 2005.

[47] I. Ozkaya, “Representing requirement relationships,” in First International Workshop on
Visualization in Requirements Engineering, REV 2006, 2007.

[48] A. Matoussi, F. Gervais, and R. Laleau, “A goal-based approach to guide the design of an
abstract Event-B specification,” in Engineering of Complex Computer Systems (ICECCS),
2011 16th IEEE International Conference on. IEEE, 2011, pp. 139–148.

[49] R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad et al., “A first attempt to combine
SysML requirements diagrams and B,” Innovations in Systems and Software Engineering,
Vol. 6, No. 1, 2010, pp. 47–54.

[50] X. Cui and R. Paige, “An integrated framework for system/software requirements development
aligning with business motivations,” in Proceedings – 2012 IEEE/ACIS 11th International
Conference on Computer and Information Science, ICIS 2012, 2012, pp. 547–552.

[51] C. Gnaho, R. Laleau, F. Semmak, and J.M. Bruel, “bCMS requirements modelling using
SysML/KAOS,” 2013. [Online]. https://goo.gl/QU9Tgn

[52] C. Gnaho, F. Semmak, and R. Laleau, “An overview of a SysML extension for goal-oriented
NFR modelling: Poster paper,” in IEEE 7th International Conference on Research Challenges
in Information Science (RCIS), may 2013, pp. 1–2.

[53] A. Mammar and R. Laleau, “On the use of domain and system knowledge modeling in
goal-based Event-B specifications,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9952 LNCS,
2016, pp. 325–339.

[54] E. Bousse, “Requirements management led by formal verification,” Master’s thesis, Master’s
thesis, Computer Science, University of Rennes, France, 2012.

[55] M. Ahmad, N. Belloir, and J.M. Bruel, “Modeling and verification of functional and
non-functional requirements of ambient self-adaptive systems,” Journal of Systems and
Software, Vol. 107, 2015, pp. 50–70.

[56] M. Ahmad, J.M. Bruel, R. Laleau, and C. Gnaho, “Using RELAX, SysML and KAOS
for ambient systems requirements modeling,” in Procedia Computer Science, Vol. 10, 2012,
pp. 474–481.

[57] M. Ahmad, J. Araújo, N. Belloir, J.M. Bruel, C. Gnaho et al., “Self-adaptive systems
requirements modelling: Four related approaches comparison,” in Comparing Requirements
Modeling Approaches Workshop (CMA@ RE), 2013 International. IEEE, 2013, pp. 37–42.

[58] M. Ahmad, I. Dragomir, J.M. Bruel, I. Ober, and N. Belloir, “Early analysis of ambient
systems SysML properties using Omega2-IFX,” in SIMULTECH 2013, 2013.

[59] M. Ahmad, “First step towards a domain specific language for self-adaptive systems,” in New
Technologies of Distributed Systems (NOTERE), 2010 10th Annual International Conference
on. IEEE, 2010, pp. 285–290.

[60] M. Ahmad and J.M. Bruel, “bCMS requirements modelling using RELAX/SysML/ KAOS,”
in 3rd CMA Workshop at RE’2013, 2013.

34

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
https://goo.gl/QU9Tgn

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

[61] M. Ahmad and J.M. Bruel, “A comparative study of RELAX and SysML/KAOS,” Institut
de Recherche en Informatique de Toulouse, University Toulouse II Le Mirail, France, Tech.
Rep., 2014.

[62] N. Belloir, V. Chiprianov, M. Ahmad, M. Munier, L. Gallon et al., “Using relax operators
into an mde security requirement elicitation process for systems of systems,” in Proceedings
of the 2014 European Conference on Software Architecture Workshops. ACM, 2014, p. 32.

[63] L. Apvrille and Y. Roudier, “SysML-Sec: A SysML environment for the design and development
of secure embedded systems,” APCOSEC, Asia-Pacific Council on Systems Engineering, 2013,
pp. 8–11.

[64] L. Apvrille and Y. Roudier, “Designing safe and secure embedded and cyber-physical systems
with SysML-Sec,” in International Conference on Model-Driven Engineering and Software
Development. Springer, 2015, pp. 293–308.

[65] Y. Roudier and L. Apvrille, “SysML-Sec: A model driven approach for designing safe and
secure systems,” in Model-Driven Engineering and Software Development (MODELSWARD),
2015 3rd International Conference on. IEEE, 2015, pp. 655–664.

[66] A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Extending SysML to explore
non-functional requirements: the case of information system design,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing. ACM, 2012, pp. 1057–1062.

[67] D. Spyropoulos and J.S. Baras, “Extending Design Capabilities of SysML with Trade-off Anal-
ysis: Electrical Microgrid Case Study,” Procedia Computer Science, Vol. 16, 2013, pp. 108–117.

[68] O. Badreddin, V. Abdelzad, T.C. Lethbridge, and M. Elaasar, “FSysML: Foundational
executable SysML for cyber-physical system modeling,” in CEUR Workshop Proceedings,
Vol. 1731, 2016, pp. 38–51.

[69] Z. Fan, T. Yue, and L. Zhang, “SAMM: an architecture modeling methodology for ship command
and control systems,” Software and Systems Modeling, Vol. 15, No. 1, 2016, pp. 71–118.

[70] H. Wang, “Multi-Level Requirement Model and Its Implementation For Medical Device,”
Master’s thesis, Master’s thesis, Mechanical and Energy Engineering, Purdue University,
United States, 2018.

[71] S. Lee, S. Park, and Y.B. Park, “Self-adaptive system verification based on SysML,” in 2019
International Conference on Electronics, Information, and Communication (ICEIC). IEEE
CS, 2019, pp. 1–3.

[72] I. Maskani, J. Boutahar, and S. El Ghazi El Houssaïni, “Modeling telemedicine security
requirements using a SysML security extension,” in 2018 6th International Conference on
Multimedia Computing and Systems, 2018, pp. 1–6.

[73] A. Anda and D. Amyot, “An optimization modeling method for adaptive systems based on
goal and feature models,” in 2020 IEEE Tenth International Model-Driven Requirements
Engineering (MoDRE). IEEE, 2020, pp. 11–20.

[74] A.A. Anda and D. Amyot, “Arithmetic semantics of feature and goal models for adaptive
cyber-physical systems,” in 2019 IEEE 27th International Requirements Engineering Conference
(RE). IEEE, 2019, pp. 245–256.

[75] A.A. Anda, “Modeling adaptive socio-cyber-physical systems with goals and SysML,” in 26th
International Requirements Engineering Conference (RE). IEEE CS, 2018, pp. 442–447.

[76] OMG, “Business Motivation Model (BMM), Version 1.3,” Object Management Group, 2015.
[Online]. https://www.omg.org/spec/BMM/

[77] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, and J.M. Bruel, “RELAX: A language to
address uncertainty in self-adaptive systems requirement,” Requirements Engineering, Vol. 15,
No. 2, 2010, pp. 177–196.

[78] Y. Fan, A.A. Anda, and D. Amyot, “An arithmetic semantics for GRL goal models with function
generation,” in System Analysis and Modeling. Languages, Methods, and Tools for Systems
Engineering, F. Khendek and R. Gotzhein, Eds. Cham: Springer International Publishing,
2018, pp. 144–162.

[79] I. Mistrik, N. Ali, R. Kazman, J. Grundy, and B. Schmerl, Managing Trade-offs in Adaptable
Software Architectures. Morgan Kaufmann, 2016.

35

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
https://www.omg.org/spec/BMM/

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

[80] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research challenges,”
ACM transactions on autonomous and adaptive systems (TAAS), Vol. 4, No. 2, 2009, p. 14.

[81] J. Andersson, R. De Lemos, S. Malek, and D. Weyns, “Modeling dimensions of self-adaptive
software systems,” Software engineering for self-adaptive systems, 2009, pp. 27–47.

[82] M. Morandini, L. Penserini, and A. Perini, “Automated mapping from goal models to
self-adaptive systems,” in Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 2008, pp. 485–486.

[83] M. Morandini, L. Penserini, A. Perini, and A. Marchetto, “Engineering requirements for
adaptive systems,” Requirements Engineering, Vol. 22, No. 1, 2017, pp. 77–103.

[84] P. Bareiß, D. Schütz, R. Priego, M. Marcos, and B. Vogel-Heuser, “A model-based failure recovery
approach for automated production systems combining SysML and industrial standards,” in
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation
(ETFA), sep 2016, pp. 1–7.

[85] J. Parri, F. Patara, S. Sampietro, and E. Vicario, “A framework for model-driven engineering
of resilient software-controlled systems,” Computing, 2020, pp. 1–24.

[86] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-driven adaptation,”
in Requirements Engineering Conference (RE), 2010 18th IEEE International. IEEE, 2010,
pp. 125–134.

[87] L. Baresi and L. Pasquale, “Adaptive goals for self-adaptive service compositions,” in Web
Services (ICWS), 2010 IEEE international conference on. IEEE, 2010, pp. 353–360.

[88] L. Baresi and L. Pasquale, “Live goals for adaptive service compositions,” Proceedings of the
2010 ICSE Workshop on Software, 2010.

[89] M. Hussein, S. Li, and A. Radermacher, “Model-driven development of adaptive iot systems.”
in MODELS (Satellite Events), 2017, pp. 17–23.

[90] S. Meacham, “Towards self-adaptive IoT applications: Requirements and adaptivity patterns
for a fall-detection ambient assisting living application,” in Components and Services for IoT
Platforms. Springer, 2017, pp. 89–102.

[91] F.G.C. Ribeiro, S. Misra, and M.S. Soares, “Application of an extended SysML requirements
diagram to model real-time control systems,” in International Conference on Computational
Science and Its Applications. Springer, 2013, pp. 70–81.

[92] A.J. Lopes, R. Lezama, and R. Pineda, “Model Based Systems Engineering for Smart Grids
as systems of systems,” in Procedia Computer Science, Vol. 6, 2011, pp. 441–450.

[93] L.S. Souza, S. Misra, and M.S. Soares, “SmartCitySysML: A SysML Profile for Smart Cities
Applications,” in Computational Science and Its Applications – ICCSA 2020. LNCS 12254,
Springer, 2020, pp. 383–397.

[94] W. Qian, X. Peng, B. Chen, J. Mylopoulos, H. Wang et al., “Rationalism with a dose of
empiricism: combining goal reasoning and case-based reasoning for self-adaptive software
systems,” Requirements Engineering, Vol. 20, No. 3, 2015, pp. 233–252.

[95] R. Ramnath, V. Gupta, and J. Ramanathan, “RED-Transaction and Goal-Model Based
Analysis of Layered Security of Physical Spaces,” in Computer Software and Applications,
2008. COMPSAC’08. 32nd Annual IEEE International. IEEE, 2008, pp. 679–685.

[96] O. Ginigeme and A. Fabregas, “Model based systems engineering high level design of a sus-
tainable electric vehicle charging and swapping station using discrete event simulation,” in
2018 Annual IEEE International Systems Conference (SysCon). IEEE, 2018, pp. 1–6.

[97] J. Horkoff, R. Salay, M. Chechik, and A. Di Sandro, “Supporting early decision-making in the
presence of uncertainty,” in Requirements Engineering Conference (RE), 2014 IEEE 22nd
International. IEEE, 2014, pp. 33–42.

[98] J.B. Warmer and A.G. Kleppe, The object constraint language: Precise modeling with UML
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 1998.

[99] R. Salay, M. Famelis, and M. Chechik, “Language independent refinement using partial
modeling,” in Fundamental Approaches to Software Engineering, J. de Lara and A. Zisman,
Eds. Springer Berlin Heidelberg, 2012, pp. 224–239.

[100] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science, 1977.,
18th Annual Symposium on. IEEE, 1977, pp. 46–57.

36

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

[101] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. Price, “Grid service orchestration
using the business process execution language (bpel),” Journal of Grid Computing, Vol. 3,
No. 3-4, 2005, pp. 283–304, cited By 104.

[102] A. Rahman and D. Amyot, “A DSL for importing models in a requirements management
system,” in 4th Int. Model-Driven Requirements Engineering Workshop (MoDRE). IEEE CS,
2014, pp. 37–46.

[103] IBM, “Rational DOORS v9.6.1,” 2018. [Online]. http://goo.gl/yGWpze
[104] B.H.C. Cheng, R. De Lemos, H. Giese, P. Inverardi, and J. Magee et al., “Software Engineering

for Self-Adaptive Systems: A Research Roadmap,” in Software engineering for self-adaptive
systems, Vol. LNCS 5525. Springer, 2009, pp. 1–26.

[105] S.A. Alwidian, M. Dhaouadi, and M. Famelis, “A vision towards a conceptual basis for the
systematic treatment of uncertainty in goal modelling,” in SAM’20: 12th System Analysis and
Modelling Conference, A. Gherbi, W. Hamou-Lhadj, and A. Bali, Eds. ACM, 2020, pp. 139–142.

[106] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos: An agent-ori-
ented software development methodology,” Autonomous Agents and Multi-Agent Systems,
Vol. 8, No. 3, 2004, pp. 203–236.

[107] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reasoning with goal models,”
in International Conference on Conceptual Modeling. Springer, 2002, pp. 167–181.

[108] J.O. Kephart and W.E. Walsh, “An artificial intelligence perspective on autonomic computing
policies,” in Policies for Distributed Systems and Networks, 2004. POLICY 2004. Proceedings.
Fifth IEEE International Workshop on. IEEE, 2004, pp. 3–12.

[109] R. de Lemos, H. Giese, H.A. Müller, M. Shaw, J. Andersson et al., “Software engineering for
self-adaptive systems: A second research roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1–32.

[110] Z. Yang, Z. Li, Z. Jin, and Y. Chen, “A systematic literature review of requirements modeling
and analysis for self-adaptive systems,” in Requirements Engineering: Foundation for Software
Quality, C. Salinesi and I. van de Weerd, Eds. Springer, 2014, pp. 55–71.

[111] R. Feldt and A. Magazinius, “Validity threats in empirical software engineering research – An
initial survey,” in SEKE, 2010, pp. 374–379.

[112] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou, “Identifying,
categorizing and mitigating threats to validity in software engineering secondary studies,”
Information and Software Technology, Vol. 106, 2019, pp. 201–230.

[113] B. Combemale, J.A. Kienzle, and G. Mussbacher et al., “A hitchhiker’s guide to model-driven
engineering for data-centric systems,” IEEE Software, Vol. 38, No. 4, 2021, pp. 71–84.

37

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf
http://goo.gl/yGWpze

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

A. Quality Assessment

This appendix complements Section 2.2.4 by presenting, in Tables A1 and A2, the result of
the quality assessment against the criteria explained in Table 2. The color coding reflects
how positive a result is (green is positive, yellow is neutral, and red is negative).

Table A1. Assessment of the studies on Goal/SysML against the identified quality criteria
(Y = Yes, N = No, P = Partially, ? = Not provided)

Research study C1 C2 C3 C4 C5 C6 C7 C8 C9
Amyot et al. 2016 [20] Y Y Y N N Y Y Y N
Ahmad 2010 [59] Y Y Y Y N N ? Y P
Ahmad et al. 2012 [56] Y Y N Y Y Y Y Y Y
Ahmad et al. 2013 [57] Y ? ? ? ? Y ? P N
Ahmad et al. 2013 [58] Y Y N Y Y Y Y P P
Ahmad et al. 2015 [55] Y Y Y Y Y Y Y Y Y
Ahmad and Bruel 2013 [60] Y Y N Y Y Y Y P P
Ahmad and Bruel 2014 [61] Y ? ? ? ? N ? Y Y
Anda and Amyot 2020 [31] Y Y Y Y Y Y Y N N
Anda and Amyot 2020 [73] Y Y Y Y Y N ? Y Y
Anda 2018 [75] Y Y Y Y Y N ? Y Y
Anda and Amyot 2019 [74] Y Y Y Y Y N ? Y Y
Apvrille and Roudier 2013 [63] Y Y Y Y Y N ? N N
Apvrille and Roudier 2015 [64] Y Y N Y Y Y Y N N
Badreddin et al. 2016 [68] Y Y Y P P Y Y Y N
Belloir et al. 2014 [62] Y Y N Y Y Y Y Y P
Bousse 2012 [54] Y P P N N N ? N N
Cui and Paige 2012 [50] Y Y Y Y Y Y P N N
Fan et al. 2016 [69] Y Y Y Y Y Y Y N N
Gnaho et al. 2013 [51] Y Y N Y Y Y Y N N
Gnaho et al. 2013 [52] Y Y P Y Y N ? N N
Ingram et al. 2014 [45] Y Y Y Y Y Y Y Y Y
Laleau et al. 2014 [49] Y Y Y Y Y Y Y N N
Lee et al. 2019 [71] Y Y Y Y Y N ? N N
Mammar and Laleau 2016 [53] Y Y N Y Y Y P N N
Maskani el al. 2018 [72] Y Y Y Y Y Y Y N N
Matoussi et al. 2011 [48] Y Y N Y Y N ? N N
Ozkaya 2007 [47] Y P Y N N N ? N N
Roudier and Apvrille 2015 [65] Y Y N Y Y Y Y N N
Spyropoulos and Baras [67] Y Y Y Y Y Y Y P N
Tsadimas et al. 2012 [66] Y Y Y Y Y Y Y N N
Vanderperren and Dehaene 2005 [46] Y P Y P N N ? P N
Wang 2018 [70] Y Y Y Y Y Y Y N N

38

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

Amal Ahmed Anda, Daniel Amyot e-Informatica Software Engineering Journal 16 (2022) 220101

Table A2. Assessment of the adaptation studies on Goal or SysML searches
against the identified quality criteria (Y = Yes, N = No, P = Partially, ? = Not provided)

Research study C1 C2 C3 C4 C5 C6 C7 C8 C9
Goals and Adaptation

Baresi et al. 2010 [86] Y Y Y P Y Y Y Y P
Baresi and Pasquale 2010 [87] Y Y P Y Y Y P Y Y
Baresi and Pasquale 2010 [88] Y Y P P Y Y Y Y P
Horkoff et al. 2014 [97] Y Y Y Y Y N ? N N
Morandini et al. 2008 [82] Y Y N N Y Y Y P N
Morandini et al. 2017 [83] Y Y Y Y Y Y Y Y Y
Qian et al. 2015 [94] Y Y Y Y Y N ? Y Y
Ramnath et al. 2008 [95] Y Y Y Y Y Y Y Y Y

SysML and Adaptation
Akbas and Karwowski 2013 [18] Y Y N Y Y Y Y N N
Akbas et al. 2014 [19] Y Y Y Y Y Y Y N N
Bareiß et al. 2016 [84] Y Y Y Y Y Y Y Y Y
Ginigeme and Fabregas 2018 [96] Y Y Y Y Y N ? N N
Hussein et al. 2017 [89] Y Y Y Y Y Y Y N N
Lopes et al. 2011 [92] Y Y Y Y Y Y P P P
Meacham 2017 [90] Y Y Y Y Y Y Y Y N
Parri et al. 2020 [85] Y Y Y Y Y Y Y Y P
Ribeiro et al. 2013 [91] Y Y Y Y Y Y Y P N
Soyler and Sala-Diakanda 2010 [17] Y Y Y P P Y Y P P
Souza et al. 2020 [93] Y Y Y P P Y P P N

39

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_16/eInformatica2022Art01.pdf

	Introduction
	Methodology
	Planning the review
	Setting the study goal and research questions
	Identifying the search scope and strategy
	Quality assessment criteria
	Identifying data extraction items

	Conducting the review
	Search methods
	Screening
	Result
	Data extraction
	Quality Assessment Process

	Discussion
	Integration methods
	Languages and diagrams involved
	Objectives of the integration
	Method characteristics

	Adaptation support methods
	Self-adaptation properties
	Adaptation phase and development
	Adaptation approaches

	Adaptation assessment
	Adaptation terms
	Adaptation modeling dimensions
	Assessment results
	Self-adaptation, goals, and SysML

	Challenges

	Related work
	Limitations and threats to validity
	Internal validity
	External validity

	Conclusion
	Acknowledgment
	References

	Quality Assessment

