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Abstract
Background: Fault prediction is a key problem in software engineering domain. In recent
years, an increasing interest in exploiting machine learning techniques to make informed
decisions to improve software quality based on available data has been observed.
Aim: The study aims to build and examine the predictive capability of advanced fault
prediction models based on product and process metrics by using machine learning
classifiers and ensemble design.
Method: Authors developed a methodological framework, consisting of three phases,
i.e., (i) metrics identification (ii) experimentation using base ML classifiers and ensemble
design (iii) evaluating performance and cost sensitiveness. The study has been conducted
on 32 projects from the PROMISE, BUG, and JIRA repositories.
Result: The results shows that advanced fault prediction models built using ensemble
methods show an overall median of F -score ranging between 76.50% and 87.34% and the
ROC(AUC) between 77.09% and 84.05% with better predictive capability and cost sensi-
tiveness. Also, non-parametric tests have been applied to test the statistical significance
of the classifiers.
Conclusion: The proposed advanced models have performed impressively well for inter
project fault prediction for projects from PROMISE, BUG, and JIRA repositories.

Keywords: product and process metrics, classifiers, ensemble design, software
fault prediction, software quality

1. Introduction

Software fault prediction has been an important research topic in the software engineering
field for more than three decades, increasingly catching the interest of researchers [1, 2].
According to IEEE terminology [3] the term fault is used to indicate an incorrect step,
process, or data definition in a computer program (i.e., a BUG). In the literature, authors
have addressed the software fault prediction (SFP) problem with two viewpoints, i.e.,
in the first viewpoint, they proposed new method or method combinations to increase
fault prediction performance. In the second viewpoint, they used new parameters to
present the most influential metrics for fault prediction. Based on first perspective many
fault prediction approaches have been proposed in literature and most of these papers
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categorize a software module faulty or non-faulty. Unfortunately, fault-proneness of software
components classification remains a largely unsolved problem [2]. In order to address this
issue, researchers have been increasingly using sophisticated techniques and we can say
that the fault prediction is going towards novel and more attractive directions, like the
use of machine learning, deep learning or unsupervised techniques [4–6]. The usage of
machine learning algorithms has increased in the last decade and is still one of the most
popular methods for defect prediction [4, 6–10]. According to Lessmann et al. [11] ““there
is a need to develop more reliable research procedures before we can have confidence in the
conclusion of comparative studies of software prediction models””. Thus, in the present
study we aim to consider and evaluate the performance of different classifier models and
not any particular classifier. Further, application of ensemble techniques has been reported
by the researchers [4, 8, 12] for improving the accuracy of fault prediction. Moreover, the
diversity of classifiers, while building the ensemble model, should also be investigated to
improve the effectiveness of the ensemble designs [9]. This motivated us to design ensembles
for improving predictive capability of classifiers.

As regards to the second viewpoint, considerable amount of the research has been
undertaken in which authors have used software metrics extracted from the code to unveil
whether a software component is fault prone or not. It has been observed that fault
estimation models are designed mainly based on product metrics in literature [13–16], but
the models which are build using a combination of product and process metrics are little
known [17, 18]. Though some authors [19, 20] has emphasized about the usage of both
product and process metrics in their works. Madeyski and Jureczko [18], in their research,
determined that process metrics provide information for fault proneness. The usage of
process metrics to ascertain the faults possibly results in superior outcomes than only with
the product metrics. They emphasized the need to conduct further studies and establish
evidence for developing such advanced models. Radjenovic et al. [19] in their SLR, stressed
finding ways to measure and evaluate process-related information for fault proneness. Wan
et al. [19] in their study on perceptions, expectations, and challenges in defect prediction,
concluded that software practitioners prefer rational, interpretable, and actionable metrics
for defect prediction. It is also observed from the literature studies that not only process
metrics have been shown to be superior to product metrics, but also alternative features
have been proposed on the basis of developer-related factors, code smells, etc. [21–24]. This
calls for further studies to examine the association between metrics and fault proneness to
provide meaningful insights for making informed decisions. To this effect, the authors in
the present study aimed to develop advanced models for software fault prediction, which
utilises combination metrics. After finding a suitable set of product metrics, advanced fault
prediction models are created using process metrics one at a time approach.

Thus, to motivate the need for development of advanced models for fault prediction
authors in the present study developed a research framework which consists of three
phases. In Phase-I, the metrics were identified after performing pre-processing and feature
extraction on the datasets. In phase-II, experimentation is carried out by training and
testing various models using machine learning classifiers, i.e., Naive Bayes (NB), Decision
Tree (DT), Multilayer Perceptron (MLP), Random Tree (RT), and Support Vector Machine
(SVM). To estimate the performance of the advanced models, an assessment criterion
based upon accuracy, root mean square error (RMSE), F -score, and the area under curve
AUC(ROC) has been applied. In phase-III, rather than relying on the outcome of base
classifiers, authors used the ensemble approach to combine multiple classifiers to further
improve the performance, particularly fault-detection abilities. Also, the cost sensitiveness
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of the proposed best models is examined. The comparison of results confirms the predictive
capability of proposed classifiers for developing advanced fault prediction models.

Thus, the significant contributions of the work are as follows:
1. Development of learning scheme consisting of both base and ensemble learning classifiers.
2. Building and examining the predictive capability of advanced fault prediction models.
3. Evaluating the cost sensitiveness of the proposed ensemble-based classifier using a cost

evaluation framework.
The work presented in the study is reported as follows. Section 2 offers related research.

Section 3 presents a description of the proposed framework, research questions, dataset
selection, feature extraction, selection, normalization procedure, classifier selection, and
performance measurement indices. Section 4 presents the experimental design and Section 5
presents the results. Section 6 presents threats to validity, and Section 7 presents the
conclusions.

2. Related Work

Over the preceding two decades, software researchers have shown great prominence in fault
prediction studies, as evident from work dealing with the development of fault prediction
models. Table 1 presents the state of the art and proposed benchmark solutions. The
contributions provided by the researchers in recent years are summarised based on the
software metrics (product, process, change) and techniques used to tackle the software
fault prediction problem. Malhotra and Jain [8] provided empirical comparison of software
defect prediction models developed by using various boosting based ensemble methods on
three open source JAVA projects. Ghotra et al. [25] studied the impact of classification
techniques on the performance of defect prediction models. Yucalar et al. [26] conducted
experiments using 15 software projects from the PROMISE repository to demonstrate that
ensemble predictors might improve fault detection performance to some extent. Qiao et al.
[16] proposed deep learning techniques to predict defects in a software system. The study
by Malhotra [15] uses a logistic regression-based classifier on object-oriented metrics data
set to predict the software fault proneness. Laradji et al. [27] demonstrated the positive
effects of combining feature selection and ensemble learning on the performance of defect
classification.

Comprehensive surveys on fault prediction were presented by Catal and Diri [28], Li
Zhiqiang et al. [1]; Matloob et al. [9] and Radjenovic et al. [19] in the context of prediction
models, modelling techniques and the metrics used. According to Radjenovic et al. [19],
in the literature on fault prediction studies, process metrics account for 24%, source code
accounts for 27%, and object-oriented accounts for 49%. Future studies shall apply the ways
to measure and evaluate process-related information for fault proneness along with product
metrics. Madeyski and Jureczko [17] performed an empirical study using industrial and
open-source software datasets to ascertain the process metrics, which noticeably improved
results. At the same time, they stressed upon replicating the study using machine learning
approaches, as it is unclear whether the features that work fine in one method will also be
useful in other approaches. Hence, experimentation can be conducted to investigate the
usage of the product and process-related metrics. Khoshgoftaar et al. [29] build software
quality models with majority voting using multiple training datasets. The work can be
extended using data from various software project repositories and analyse the predictive
capability of ensembles as compared to base classifiers for advanced models. Chen et al.
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[30] in work investigated whether different cross–project defect prediction methods identify
the same defective modules? The result can be extended by using learning approaches
based on ensemble design to further improve cross–project defect prediction performance.
In the study Zhang et al. [31], investigated the use of various algorithms that integrate
ML predictors for cross-project defect prediction. However, for examining the predictive
capability of advanced algorithms, additional experimentation is required.

Studying the presented works above, it is clear that using a pre-processing technique
on the dataset significantly affected the performance of learning algorithm. Most of the
studies lack the processing on a larger dataset so that the generalized model will be
formed. Also, class imbalance problem, needs to be addressed to improve the performance
of fault prediction [9]. The parameter combinations are often less investigated in literature
studies. Hence, it is observed that the work can be replicated by including more datasets
with focus on product and process software metrics and experimenting different scenarios
or combinations of models (simple and advanced models) to achieve the reliability and
robustness.

Further investigations shall include the use of more classifiers or classifier ensembles and
the development of advanced defect prediction models with datasets from various projects
written in different programming languages, and commercial projects from industry can
also be considered for experimentation. In the proposed work, authors presented a three
phase framework consisting of dataset pre-processing, feature extraction and selection;
learning classifiers along with cost evaluation to predict the fault-prone components.

Table 1. Literature review

Authors Metrics
considered

Study outcomes and proposed benchmark solutions

Song et al.
[2]

Product
metrics

Authors proposed and evaluated a general framework for software
defect prediction using different learning schemes for different data
sets. The future work shall include process attributes for fault
estimation. Experiments with the various available techniques can
be undertaken for generalization.

Yang et al.
[5]

Product
metrics

Authors proposed a deep learning technique to predict defect-prone
changes. The experiments can be replicated on more datasets using
other classifiers to reduce the threats to external validity.

Yibiao et al.
[6]

Change
metrics

Authors investigated the predictive power of simple unsupervised
models in effort-aware JIT defect prediction using commonly used
change metrics. The work can be checked with closed-source soft-
ware systems.

Yang et al.
[4]

– Authors hybridized various ensemble learning methods to examine
performance of just-in-time defect prediction. Experiments on more
datasets can be performed to reduce the threats due to external
validity.

Matloob
et al. [9]

– This research provides a systematic literature review on the use of
the ensemble learning approach for software defect prediction and
stressed for further analysis and comparison of results.

Pascarella
et al. [10]

Change
metrics

Authors proposed a novel fine-grained just-in-time defect prediction
model to predict the specific files, contained in a commit, that are
defective. Future work can replicate the results on a larger set of
systems in an industrial context by including other independent
variables too.
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Table 1 continued

Malhotra,
Jain [8]

Product
metrics

Authors provided empirical comparison of software defect predic-
tion models developed by using various boosting based ensemble
methods on three open source JAVA projects. The future work
shall investigate more attributes for fault estimation with more
datasets for replication.

Li et al. [14] Code metrics Authors summarised the defect prediction studies focusing on
emerging topics, e.g., ML-based algorithms, data manipulation,
and effort-aware prediction. They stressed overcoming the class
imbalance problem and the development of models in defect pre-
diction.

Ghotra et al.
[25]

Product
metrics

Authors studied the impact of classification techniques on the
performance of defect prediction models using NASA dataset and
the Promise dataset. Further experiments with the various available
techniques can be undertaken for generalization.

Yucalar et al.
[26]

Product
metrics

The authors conducted experiments using 15 software projects from
the Promise repository to demonstrate that ensemble predictors
might improve fault detection performance to some extent. The
future work shall investigate more attributes for fault estimation
to provide help in successive releases.

Rathore and
Kumar [12]

Product
metrics

Authors performed an investigation on ensemble techniques for
SFP by using 21 object-oriented software metrics. Future work can
assess the ensemble techniques for the fault datasets from other
software systems and shall include additional software metrics for
generalization.

Qiao et al.
[16]

Product
metrics

The authors proposed deep learning techniques to predict defects in
a software system. In future work, more investigations by including
more projects are written in different programming languages, and
commercial projects from industry can be carried out.

Malhotra
[15]

Product
metrics

The study uses a logistic regression-based classifier on object-ori-
ented metrics data set to predict the software fault proneness.
Future investigations shall include the use of more classifiers or
classifier ensembles and the development of advanced defect pre-
diction models with cross project defect prediction datasets from
various projects.

Madeyski
and Jureczko
[18]

Product and
Process

They performed an empirical study using industrial and open source
software datasets to ascertain the process metrics, which noticeably
improved results. At the same time, they stressed upon replicating
the study using ML approaches, as it is unclear whether the features
that work fine in one method will also be useful in other approaches.
Hence, experimentation can be conducted to investigate the usage
of the product and process-related metrics.

Radjenovic
et al. [19]

Process and
Product

According to the authors, in the literature on fault prediction
studies, process metrics account for 24%, source code accounts for
27%, and object-oriented accounts for 49%. Future studies shall
apply the ways to measure and evaluate process-related information
for fault proneness along with product metrics.

Rahman,
and Devanbu
[24]

Product and
process

Authors analysed the applicability and efficiency of process and
code metrics. The future work shall replicate the findings with more
data sets from several different perspectives.

Bird,
Christian
et al. [21]

Change
metrics

Authors examined the relationship between different ownership mea-
sures and software failures in two large software projects: Windows
Vista and Windows 7.
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Table 1 continued

Nucci et al.
[22]

Product and
change
metrics

Provided a developer centred bug prediction model. Work can be
extended to analyse the role of developer related factors along with
product metrics in the bug prediction field using different base line
predictors.

Palomba
et al. [23]

Process and
Product

Authors evaluated the code smell intensity by adding it to existing
bug prediction models based on both product and process metrics.
Future work shall be devoted to the analysis of the contribution
of smell-related information in the context of local-learning bug
prediction models.

Laradji et al.
[27]

Product
metrics

Authors demonstrated the positive effects of combining feature
selection and ensemble learning on the performance of defect clas-
sification. The work can be replicated by including more datasets
with focus on product and process software metrics.

Lee et al.
[32]

Process and
Product

They proposed micro-interaction metrics to study developer”s in-
teraction by experimenting with Mylyn dataset. More experiments
need to be conducted to show that MIMs considerably improve
software defect prediction.

Juneja [33] Product Author”s proposed Neuro-fuzzy framework to predict the fault in
software system based on feature based evaluation of inter-project
and intra-project modules. The effectiveness of models can be
compared using process metrics.

Wang et al.
[34]

Product
metrics

The authors performed a study using seven classifiers ensemble
methods on MDP datasets from real software projects of NASA. The
use of classifiers ensemble on multiple datasets can be experimented.

Petric et al.
[35]

Product
metrics

They used explicit diversity technique with stacking ensemble to
investigate improvement in defect prediction. The work can be
extended and the experiments should be conducted using more
classifiers and applying full parameter search in order to build
models with superior performances.

Pecorelli and
Nucci [36]

Product
metrics

Authors compared the performance of seven ensemble techniques
on 21 open-source software projects to verify how ensemble tech-
niques perform in cross and local project settings. The work can
be replicated using cross-project and within-project strategies in
larger contexts, using a richer set of independent variables.

Nucci et al.
[37]

Product
metrics

An empirical study conducted on 30 software systems indicates that
ASCI exhibits higher performances than five different classifiers used
independently and combined with the majority voting ensemble
method. Work can be extended to analyse how the proposed model
works in the context of cross-project bug prediction.

Bowles et al.
[38]

Product
metrics

Authors investigated difference in the individual defects and predic-
tion stability using RPart, SVM, Naive Bayes, and Random Forest
classifiers. They used NASA, open-source, and commercial datasets.
The work can be extended by developing advanced models using
ensemble-based classifiers.

Abaei and
Selamat [39]

Product
metrics

They proposed fuzzy clustering and probabilistic neural network to
study defect prediction accuracy. The use of machine learning ap-
proaches can be investigated to analyze advanced defect prediction
models.

Erturk and
Sezer [40]

CK Product
metrics

In their work, the authors concluded that ANFIS outperforms NN
and SVM approaches for predicting faults. The future work may
include the process metrics or develop advanced defect prediction
models.
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Table 1 continued

Zhang et al.
[31]

Process and
Product
metrics

In the study authors, investigated the use of various algorithms that
integrate ML predictors for cross-project defect prediction. However,
for examining the predictive capability of advanced algorithms,
additional experimentation is required.

Khoshgoftaar
et al. [29]

Product and
Process

Authors build software quality models using majority voting using
multiple training datasets. The work be extended using data from
various software project repositories and analyze the predictive
capability of ensembles as compared to base classifiers for advanced
models.

Yong Hu
et al. [41]

Product (all
CK metrics)

This study provides a research framework that combines cost-sensi-
tive learning with the ensemble method. Future work can examine
the use of ensembles trained on different datasets. Such solutions
may not only enhance the prediction accuracy but also address the
defect prediction problems.

Elish et al.
[42]

product
metrics

The authors used product metrics to investigate and empirically
validate ensemble methods for software maintenance effort and
change proneness. However, future studies shall use the proposed
ensemble approaches to investigate defect prediction using combi-
nation metrics.

Chen et al.
[30]

Process and
Product

The authors in work investigated whether different cross project
defect prediction methods identify the same defective modules.
The result can be extended by using learning approaches based on
ensemble design to further improve cross project defect prediction
performance.

Peng He
et al. [43]

Static code
metrics

The authors provided guidelines for the selection of training data,
classifier, and metric subset. They conducted an empirical study
on software defect prediction with a simplified metric set. The
guidelines can further be used to develop advanced models for
defect prediction in different scenarios.

Wasiur R
et al. [44]

Change
metrics

Authors conducted an empirical study for defect prediction using
software change metrics. The application of hybrid algorithms used
in the task can be used to develop advanced models.

Kaur and
Kaur [45]

Product
metrics

Authors used statistical and machine learning techniques for pre-
dicting the quality of the software. For experimentation, they used
five open source software projects. Further experiments can be
conducted using product-process or combination metrics using
cross project defect data.

3. Research Framework

The proposed framework consists of three phases, as shown in Figure 1. Phase-I deals
with “dataset pre-processing, feature extraction and experimental setup;” Phase-II is
“classification methods, ensemble design and performance measurement” and Phase-III is
“cost evaluation framework”. Briefly, the phases shown in Figure 1 are discussed as:
Phase-I deals with identifying the metrics suite from metric datasets available in PROMISE,
BUG, and JIRA dataset repository. Further, various pre-processing methods such as feature
ranking methods and feature subset selection methods and normalization have been applied
to select a minimal subset of features from the original dataset so that the features are
reduced based on a specific evaluation criterion. It also reduces the dimensionality of feature
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Figure 1. A framework of Proposed ensemble model with cost analysis

space, removes redundant, irrelevant information and improves the data quality, thereby
improving the algorithm performance. An experimental design with N -fold cross-validation
is used to train, test and replicate the experiment using various datasets.
Phase-II deals with the evaluation of simplified dataset representing different scenarios,
i.e., scenario-1: simple model (product metrics); scenario-2: Advanced model-1 (Product
metrics + NR process metric); scenario-3: Advanced model-2 (Product metrics + NDC
process metric); scenario-4: Advanced model-3 (Product metrics + NML process metric);
scenario-4: Advanced model-4 (Product metrics + NDPV process metric) using various
base ML classifiers. The performances of proposed models are evaluated using performance
indices, i.e., accuracy, AUC (ROC), RMSE, and F -score. Further, to improve base ML
classifier”s performance, the classifier ensembles were designed by following Bagging,
AdaBoostM1 (which is the most popular version of boosting), and Voting algorithms.
Phase-III deals with examining the cost sensitiveness of the proposed ensemble classifiers.
It is achieved by developing a cost analysis framework to compare the best ensemble”s cost
with the best base classifier by finding normalized fault removal cost.
Research Questions
Based on the literature studies and potential research gaps, the research questions framed
are as follows:
RQ1: How does the advanced defect prediction models proposed in the study perform using
various machine learning classifiers?
RQ2: How does the ensemble design improve classification performance when compared to
individual machine learning classifiers?
RQ3: Whether there exist any statistically significant performance difference among the
base classifiers and ensemble classifiers?
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RQ4: For a given software system, whether the proposed ensembles are cost sensitive?
The rationale behind the selection of the research questions RQ1 and RQ2 is to investigate
the effectiveness of advanced models representing different scenarios of combination of
software product and process metrics. These models are trained using base learning
and ensemble based classifiers. The model performances are tested with measures such as
accuracy, RMSE, ROC(AUC) and F -score. The rationale behind the usage of statistical test
was to find the empirical evidence regarding the performance of predictors, i.e., to answer
RQ3. Cost-based evaluation framework has been adopted to examine the cost-sensitiveness
of proposed predictors in RQ4.

3.1. Selection of Dataset

In software engineering, Tera-Promise [46], Bug Prediction Dataset [47], Promise [48] and
NASA and repositories contain versioned datasets of different software projects that can
be assessed for fault prediction. In the present study, authors examined versioned datasets
of (i) Ant, Camel, J-edit, Lucene, Synapse, Xalan, Xerces projects from the Promise
repository, (ii) Equinox, Eclipse-JDT, Eclipse-PDE, MYLYN projects from the Bug dataset
and (iii) ActiveMQ 5.0.0, Derby-10.5.1.1, Groovy1_6_BETA_1, Hbase-0.94.0, Hive-0.9.0,
Jruby-1.1, Wicket-1.3.0beta2 from Jira repository, respectively. Table 2 presents the data
related to versions, total modules, faulty modules, and defect rates of different projects
with their interpretations. To improve the quality of software datasets, we performed data
pre-processing following the guidelines provided by Shepperd et al. [49] in order to remove
noisy data. To make the training set uniform for the fault-prone and non-fault prone
classes to handle data imbalance, in the study, we have applied the synthetic minority
over-sampling technique proposed by Chawla et al. [50]. In literature, researchers too have
considered class imbalance learning techniques to improve the predictors performance
[8, 29, 51].

Table 2. Project dataset versions

Project Total
mod-
ules

Faulty
mod-
ules

Defect
rate

ant 1.4 178 40 22.47
ant 1.5 293 32 10.92
ant 1.6 351 92 26.21
ant 1.7 745 166 22.28
camel 1.2 608 216 35.53
camel 1.4 872 145 16.63
camel 1.6 965 188 19.48
jedit 4.0 306 75 24.51

Promise jedit 4.1 312 79 25.32
dataset jedit 4.2 367 48 13.07

jedit 4.3 492 11 2.24
Lucene 2.2 247 144 58.3
Lucene 2.4 340 203 59.7
synapse 1.1 222 60 27.03
synapse 1.2 256 86 33.59
xalan 2.5 803 387 48.19
xalan 2.6 885 411 46.44
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Table 2 continued

xalan 2.7 909 897 98.79
Promise xerecs 1.2 440 71 16.14
dataset xerecs 1.3 453 69 15.23

xerecs 1.4 588 437 74.32

Equinox 324 129 39.81
Projects Eclipse-JDT 997 206 20.06
from Bug Eclipse-PDE 1497 209 13.96
repository MYLYN 1862 245 13.15

ActiveMQ 5.0.0 1884 293 15.55
Derby-10.5.1.1 2705 383 14.15

Projects Groovy1_6_BETA_1 821 70 8.52
from Jira Hbase-0.94.0 1059 218 20.58
repository Hive-0.9.0 1416 283 19.98

Jruby-1.1 731 87 11.9
Wicket-1.3.0beta2 1763 130 7.5

3.2. Feature Extraction, Selection and Normalization

Feature selection is categorised as feature ranking and feature subset selection, or be
classified as filters and wrappers. In filter based algorithms, a subset of features is selected
without involving any learning algorithm and in wrapper based algorithms feedback from
a classification learning algorithm is used to determine the feature(s) to be included in
development of a classification model. The more refined a feature subset becomes, the
more stable a feature selection algorithm is [42]. It reduces the dimensionality of feature
space, removes redundant, irrelevant information and improves the quality of the data
thereby improving the performance of the algorithm. In the literature [42, 52, 53] numerous
methods have been proposed to discard features which are least important to improve
defect prediction.

3.2.1. Feature Ranking Methods

It is the process of ordering the features based upon the value of some scoring function,
which generally measures feature relevance. In this study, authors have used Information
Gain (IG) attribute estimation which is the frequency driven observation in which the
information explicit to a particular metric is considered on the class value. The available
information is corresponding to the fault proneness of specific modules. Similar feature
ranking methods has been applied by various authors in their work on software fault
prediction [7, 19, 26, 31]. Gain Ratio (GR) attribute estimation is an alternative of IG
and is used to rank the attributes present in the datasets to reduce its bias [19, 54]. Gain
Ratio is used for the proliferation of nodes when data is evenly distributed and small while
choosing an attribute when all data belong to one branch.

3.2.2. Feature Subset Selection Methods

Instead of using all metrics of the dataset, a subset of features is used as input in the
study. These methods are used to generate a subset of attributes that jointly have excellent
predictive ability. The classifier subset evaluation method uses a classifier method to
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estimate the “merit” of the possible subsets of features in the project. It evaluates the
worth of a subset of attributes by considering the individual predictive ability of each
feature along with the degree of redundancy between them [50, 53]. Correlation-based
feature selection (CFS) evaluates values of the subset of attributes according to correlation
with the class label and individual features along with the degree of redundancy between
them [55]. Filtered subset evaluation is a random subset of the evaluator made to run on
a class through an arbitrary filter using data [50, 56]. These filters do not change the order,
and the numbers of attributes entirely depend on training data. In literature CFS based
feature selection technique has been applied by various authors [7, 45, 57].

3.2.3. Feature extraction and selection

In the study, feature ranking and feature subset selection techniques such as IG, GR
attribute evaluation, Classifier subset evaluation, CFS subset evaluation and Filtered
subset evaluation were used in the experiments. The common sets of features extracted
are shown in Table 3, respectively. A total of 15 features are selected and used in the
experiments. The simple defect prediction model is constructed using the 15 product
metrics, and advanced defect prediction models are built using 15 product metrics and
single process metric with one at a time approach, as discussed in Section 3. Table A1 in
appendix provides the definitions for the selected features based on product and process
metrics.

Table 3. Selection of metrics

Feature Ranking Methods Selected Metrics

Information Gain (IG) AMC, LOC, CAM, LCOM3, LOC, AVG-CC, RFC, MFA, WMC,
CBO, DAM, NPM, CE, MAX-CC, MOA, CA, NOC, CBM, IC,
DIT

Gain Ratio (GR) AMC, LCOM3, LOC, LCOM, CAM, AVG-CC, DAM, MFA, MOA,
RFC, WMC, MAX-CC, CE, CBO, NPM, NOC, CA, CBM, IC,
DIT

Feature Subset Methods Selected Metrics

Subset evaluation Classifier AMC, LCOM3, LOC, LCOM, CAM, AVG-CC, DAM, MFA, MOA,
RFC, WMC, MAX-CC, CE, CBO, NPM, NOC, CA, CBM, IC,
DIT

CFS subset evaluation MOA, DAM, MAX-CC, LCOM, NOC, LCOM3, CE, IC, NPM,
CBO, WMC, DIT, CA, RFC, MFA, AMC, LOC

Filtered subset evaluation WMC, DIT, NOC, LCOM, NPM, MOA, CA, RFC, CE, LOC,
DAM, AMC, CBO, AVG-CC, MAX-CC

Common Selected Features LCOM, CA, LOC, AMC, CBO, RFC, DAM, WMC, DIT, NOC,
MOA, CAM, MAX-CC, CE, NPM

Process Metrics NR, NDC/NAUTH, NML/NREF, NDPV

3.2.4. Normalization of selected features

The performance of prediction models can also be affected by the different levels of design
complexity metrics [58–60]. Various software metrics values which are obtained from the
dataset have different ranges or magnitude; to make the data in a similar series or format,
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we have applied data normalization. For the data normalization process, a simple min-max
normalization method is used [61]. After the data is normalized, the values are transformed
between intervals of 0–1.

3.3. Selection of classifiers

The main aim of the study is to demonstrate the predictive capability of advanced software
defect perdition models. The well-known ML classifiers, i.e., Naive Bayes (NB); Decision
tree (DT); Random tree (RT); Support Vector Machine (SVM) and Multilayer Perceptron
(MLP) are used in the study to build defect prediction models. We used Catal et al. [28]
review to determine frequency of base predictors in the software fault prediction literature.
Authors performed comparative experimentation by taking one classifier from each category
to achieve the balance between different classification models (statistical approaches, neural
networks and tree-based methods) as proposed by various researchers [42–44, 61]. Also, to
get an enhanced learning algorithm, classifiers ensembles have been designed. The names of
the classifiers, classifiers ensembles and their references with brief description are presented
in Table A2 in Appendix.

3.4. Performance measurement indices

For the assessment of defect predictors performance, various measures have been used in
literature by researchers [11, 19, 27, 62, 63]. In the study, the performance indices, i.e.,
accuracy, RMSE, ROC (AUC) and F -score are used to measure the performance of fault
prediction models. The brief details are presented in Table A3 in Appendix. Table A4
in Appendix presents the confusion matrix for fault prediction models, which is used to
compute all the parameters. It contains actual and predicted classification information
using various prediction techniques.

3.5. Framework for cost evaluation

Cost-based evaluation framework is necessary to assess the usability of designed fault
prediction models. The analysis of cost evaluation is very important because misclassification
of faulty prone (fp) modules is more costly as compared to the misclassification of non-faulty
prone (nfp) modules. Some researchers [14, 41, 53] have adopted a cost evaluation criterion
in their study. In this section, we discussed the cost evaluation framework, proposed
by Wagner [64]. He has designed the cost-based evaluation framework based on certain
constraints, as mentioned below:
(i) Different phases (unit, integration and testing phases) of testing account for different
fault removal cost.
(ii) None of testing phase can detect 100% faults.
(iii) It is not practically feasible to perform unit testing on all modules, so a limited number
of important logical paths should be selected to ensure proper working of the delivered
software.
Since different projects are developed on varying platforms and in varying organization
standards, the cost varies. The normalized fault removal cost for test techniques, i.e., unit,
integration, system and field are presented in Table 4 with min, max and median values.
The fault detection efficiency values for different test phases are taken from study by Jones
[65]are summarized in Table 5. Wilde and Huitt [66] stated that more than fifty percent of
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modules are usually very small in size; hence performing unit testing on these modules is
not fruitful.

3.5.1. Estimated fault removal cost (Ecost)

The estimated fault removal cost (Ecost)is the sum of cost of unit testing, cost for integration
test system test and the cost for field test. The number of faulty modules recognized by
the predictor is the sum of true positive and false positive values. Hence, it is important to
calculate testing and verification cost at the module level, which means that this cost is
equal to the cost of unit testing (Costunit). Equation (1) shows the total unit testing cost.

Costunit = (TP + FP) ∗ Costu (1)
The fault removal cost for integration test (Cost integration) is obtained as

Cost integration = δi ∗ Ci ∗ (FN + TP(1 − δu)) (2)
The left out faulty modules which are not predicted by integration testing are predicted by
system test. Equation (3) gives the fault removal cost for system test

Costsystem = δs ∗ Cs ∗ (1 − δi) ∗ (TP(1 − δu) + FN ) (3)
For the left out faulty modules which were not predicted in system testing, field-testing is
done. The fault removal cost for field test (Costfield) is given by Eq. (4) as

Costfield = (1 − δs) ∗ Cf ∗ (1 − δi)(TP(1 − δu) + FN ) (4)
So, the value of the overall estimated fault removal cost can be determined by adding Eq.
(1) to (4), as shown by Eq. (5)

Ecost = Costunit + Cost integration + Costsystem + Costfield (5)

3.5.2. Estimated testing cost (T cost)

The steps followed to calculate estimated testing cost are:
The cost of unit testing on all the modules is given by Eq. (6)

Costunit = Mp ∗ Cu ∗ TM (6)
The testing cost for faulty modules that are not detected during unit testing and may be
detected in integration, system, and field testing are calculated as follows.

Cost integration = δi ∗ Ci ∗ (1 − δu) ∗ FM (7)
Costsystem = δs ∗ Cs ∗ (1 − δi) ∗ (1 − δu) ∗ FM (8)

Costfield = (1 − δs) ∗ (1 − δi) ∗ (1 − δu) ∗ FM (9)
The overall value of estimated testing cost (Tcost) is given by adding the Eq. (6)) to (9), as
represented by Eq. (10)

T cost = ({Mp ∗ Cu ∗ TM} + {δi ∗ C i ∗ (1 − δu) ∗ FM}+
{δs ∗ Cs ∗ (1 − δi) ∗ (1 − δu) ∗ FM} + {(1 − δs) ∗ (1 − δi) ∗ (1 − δu) ∗ FM} (10)
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3.5.3. Normalized fault removal cost (NEcost)

The normalized fault removal cost is obtained as ratio of estimated fault removal cost to
estimated testing cost, as shown by Eq. 11

NEcost = Ecost
Tcost

=
{

< 1 application of proposed fault prediction is useful
≥ 1 application of testing methods is useful

(11)

Where: Ecost and T cost is the estimated fault removal cost of the software with and
without using the fault prediction approach.

Table 4. Removal cost for test techniques (staff hours per defect)

Testing Type Min Max Median

Unit (Cu) 1.5 6 2.5
Integration (C i) 3.06 9.5 4.55
System (Cs) 2.82 20 6.2
Field (Cf) 3.9 66.6 27

Table 5. Fault identification efficiencies for different test phases

Testing Type Min Max Median

Unit(δu) 0.1 0.5 0.25
Integration(δi) 0.25 0.60 0.45
System(δs) 0.25 0.65 0.5

4. Experiment design

For conducting the experiments, we designed five scenarios, based on the research questions.
In scenario1, we collected all the product metrics after data-processing and normalization.
This is called “Simple model”. The detail of selected metrics is shown in Table 3. In
scenario-2: the “Advanced model-1” is constructed by using product metrics and one
process metric, i.e., Product + NR metric. Similarly, in scenario-3: “Advanced model-2” is
formed by using Product + NDC metric, scenario-4 is constructed by using “Advanced
model-3” using Product + NML metric and in scenario-5 “Advanced model-4” is built by
using with Product + NDPV metric. All the designed models are tested on various project
datasets repositories, i.e., Promise, Bug, and Jira using different classifiers such as DT,
MLP, SVM, RT, NB and classifiers ensembles, as discussed in Section 3.3, respectively.
The performance of various models “Simple model;” “Advanced model-1;” “Advanced
model-2;” “Advanced model-3,” and “Advanced model-4” are measured using accuracy,
RMSE, ROC(AUC), and F -score.

The metrics used in the base classifiers are obtained after performing feature selection
and feature ranking. N -fold cross-validation technique [51, 52] is used to evaluate the perfor-
mance of the base classifiers, which makes use of both training and testing. Cross-validation
technique splits the dataset into N parts each of which contains an equivalent number
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of samples in the dataset. While conducting the experiments algorithm is made to run
N times; and in each run, training is achieved through (N − 1) parts, and the testing is
performed with the leftover part. N fold are usually selected as 10, 20, 30, 40, 50, 60, 70,
80, and 90. Authors tried with 10 fold for the cross-validation. This approach is carried
out on different versions of datasets for different base classifiers.

To answer RQ2, i.e., to evaluate and compare the performance of various ensemble
methods presented in Section 3, the library of the said algorithms was installed using the pip
Python installer, e.g., (sudo pip install xgboost) to conduct the experiments. The algorithm
packets used in the study are Bagging, AdaBoostM1 (which is the most popular version of
boosting), and Voting [67]. Heterogeneous classifier ensembles applied the majority voting
method, whereas the homogenous ones applied both bagging and boosting methods. For
ensembles with boosting and bootstrap aggregating, the weak learners selected in the
study are Decision Stump and REPTree, as these are widely used in literature studies
[67–70]. In AdaBoosting, a training set is modified by repeatedly applying a basic learning
device, i.e., classifier, under a pre-specified number of iterations. Initially, the training
samples are equal in weight, and the first base classifier is trained to test the training
set. Thus, at each iteration, a weight is assigned to each instance of the training set, and
the weights of misclassified instances are increased so that their chances to be correctly
predicted by the new models get increased. The adjusted training set trains the second
basic classifier, and this process is repeated until a good learning device is obtained. During
bootstrap aggregating, in the training phase, m data sets of the same size are extracted by
performing sampling with replacement (bootstrap) from the training set. Therefore, for
each data set, a model is trained using a weak classifier. For each instance, the multiple
classifiers utilize a majority voting to obtain the classification result in the test phase.
Ensembles are designed using voting works by constructing two or more sub-models. Each
sub-model gives a prediction, which is pooled either by taking the mean or the mode of
the predictions, permitting each sub-model to vote on the possible outcome. The final
output is the class label that attains the maximum number of votes from the predictors.
Otherwise, the input is rejected, and the classifier ensembles make no prediction. In our
case, the base learners for ensemble design chosen are the four best classifiers. From
the pool of four base classifiers, all sets of classifiers of size three were chosen to design
ensembles committee. This meant that there were a total of four classifier ensembles. The
various constituent combinations, so obtained are defined as: VOT-E1 (DT + MLP + RT),
VOT-E2 (DT + MLP + SVM), VOT-E3 (MLP + RT + SVM), and VOT-E4 (DT + RT
+ SVM). The ensembles performance is measured using the same metrics as used for base
classifiers discussed in Section 4. Also, to check whether the ensemble design improves
the classification performance compared to individual machine learning classifiers, the
comparison of the best ensemble, i.e., VOT-E2, is made with other base classifiers in terms
of AUC(ROC) values.

To answer RQ3, i.e., whether there exist any statistically significant performance
difference among the base classifiers and ensemble classifiers? Author”s tested the following
hypothesis using Friedman”s tests and Wilcoxon signed rank tests [71].
H0: There is no significant difference between base classifier performance and ensemble
classifier performance.
To answer RQ4, i.e., cost sensitiveness of proposed ensembles, the normalized fault removal
cost approach has been used as discussed in Section 3.5. Further, to evaluate the cost
sensitiveness of the best ensemble classifier for the misclassification of faults, we predicted
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the fault removal cost of the best ensemble, i.e., VOT-E2 strategy, and compared its
performance with the best base classifier, i.e., MLP.

5. Results and discussions

The section presents the experimental results and discussions to all the research questions.
Results related to examining the predictive capability of advanced models are discussed
in Section 5.1 followed by discussion on results based on ensemble design in Section 5.2.
Section 5.3 discusses the results related to statistical difference among the base classifiers
and ensemble classifiers and Section 5.4 discusses the results related to the cost sensitiveness
of the proposed ensembles.

5.1. Results for predictive capability of advanced models

For examining the predictive capability of proposed advanced models, we evaluated the
performance of simple model, advanced model-1, advanced model-2, advanced model-3
and advanced model-4 using various base classifiers. For the simple model, the values of
accuracy so obtained are presented in Table 6 for all the datasets. Also, the results are
compared with [33] for classifiers DT, MLP, RT and NB classifiers for the projects from
Promise data set. Similarly, for all models, the values of accuracy are obtained. Table 7
shows the average accuracies of all the base classifiers for simple model, advanced model-1,
advanced model-2, advanced model-3, and advanced model-4 with the standard deviation
values after ten executions of the classifiers for all the datasets.

For promise dataset the average accuracy for the simple model in MLP is 75%, for
Advanced model-1 is 80%, Advanced model-2 is 87%, Advanced model-3 is 85%, and
Advanced model-4 is 79%. It is clear from the bar graph that average accuracy for MLP is
higher for Advanced model-2, than for Advanced model-3, Advanced model-1 and simple
model. From the bar graph Figure 2a it is observed that average accuracy is behaving
well with advanced models as compared to simple models. The average accuracy for
the DT”s simple model is 74%, for advanced model-1 is 81%, advanced model-2 is 87%,
advanced model-3 is 83%, and advanced model-4 is 77%. So, it is clear from the bar
graph that the average accuracy for DT is higher for advanced model-2 then for advanced
model-3, advanced model-1, and simple model. The average accuracy results achieved
for all projects from Promise data set by Decision tree, Random Tree, Naive Bayes and
Multilevel Perceptron classifiers for advanced models is 82.4%, 78.25%, 74.75% and 81.75%
as compared to 64.58%, 63.83%, 61.17% and 64.54%, reported by Juneja [33]. This shows
that advanced models performed better.

As shown in the graph Figure 2b, the average accuracy is behaving well with advanced
models compared to a simple model. The average accuracy is high in Camel projects and
low for Xerces projects. The average accuracies for various classifiers like SVM, RT, and
NB are calculated as shown in Figure 2c to e. The results show that in the advanced
model-2, average accuracy for SVM, RT, and NB is 76%, 82%, and 81%, respectively. The
model is behaving significantly good as the average accuracy is higher than 0.5. So, from
Table 7 and Figures 2a–e, it is clear that the advanced model-2 (Product + NDC metric)
is performing better as compared to other models.

For the projects from Bug repository, the results of average accuracy in the case of
advanced model-2, for MLP is 86%, for DT is 85% , for SVM is 85%, for RT is 81%and
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Table 6. Simple model accuracy with ten-fold for various classifiers

Projects DT DT [33] MLP MLP [33] RT RT [33] NB NB [33] SVM

ant 1.4 77.53% 76.40% 77.99% 77.52% 75.45% 73.3% 67.97% 67.1% 73.23%
ant 1.5 93.88% 94.88% 94.93% 95.90% 90.88% 100 80.54% 80.45% 90.98%
ant 1.6 73.79% 72.93% 78.89% 73.21% 71.11% 69.76% 59.50% 58.4% 70.43%
ant 1.7 77.72% 75.83% 81.02% 75.97% 76.65% 74.56% 61.98% 61.07% 73.69%
camel 1.2 64.30% 64.30% 68.87% 64.43% 66.60% 65.65% 63.99% 62.7% 65.95%
camel 1.4 82.45% 82.45% 87.76% 87.02% 76.43% 79.85% 79.84% 79.9% 79.41%
camel 1.6 79.68% 79.66% 81.05% 80.51% 80.01% 76.70% 74.66% 74.65% 78.56%
jedit 4.0 74.67% 74.12% 74.67% 74.78% 70.00% 73.1% 67.00% 67.3% 73.89%
jedit 4.1 75.32% 75.33% 75.99% 75.85% 69.95% 69% 69.00% 69.5% 71.87%
jedit 4.2 86.10% 86.10% 87.93% 85.98% 81.90% 80% 74.00% 73.3% 81.14%
jedit 4.3 95.12% 95.12% 96.13% 95.73% 89.95% 95.5% 80.00% 80.1% 89.44%
Lucene 2.2 66.98% 69.77% 68.42% 55.00% 67.87%
Lucene 2.4 69.04% 73.27% 70.27% 78.92% 65.63%
synapse 1.1 72.52% 72.53% 72.87% 72.07% 66.12% 66.8% 69.98% 69.8% 64.98%
synapse 1.2 66.40% 66.1% 66.63% 65.62% 64.92% 66.5% 65.89% 66% 68.04%
xalan 2.5 51.43% 51.42% 54.76% 51.76% 48.89% 51% 54.00% 54.87% 50.98%
xalan 2.6 53.89% 53.9% 60.43% 62.43% 53.34% 53% 61.00% 60.09% 50.76%
xalan 2.7 71.29% 71% 71.24% 70% 62.14% 64.2% 55.00% 57% 58.42%
xerecs 1.2 82.41% 83.40% 83.41% 83.4% 79.41% 80.21% 73.45% 73.14% 78.34%
xerecs 1.3 84.55% 84.54% 84.59% 84.5% 82.98% 83% 76.99% 77% 80.88%
xerecs 1.4 57.36% 28.84% 61.52% 61.12% 90.01% 94% 78.92% 78.5% 91.91%
Equinox 74.07% 73.15% 71.91% 71.60% 73.46%
Eclipse-JDT 82.65% 84.35% 81.44% 83.95% 85.06%
Eclipse-PDE 89.3% 85.64% 79.89% 82.77% 84.05%
MYLYN 84.91% 86.36% 81.68% 83.94% 86.84%
ActiveMQ 5.0.0 86.46% 88.09% 82.95% 85.03% 85.56%
derby-10.5.1.1 85.80% 87.88% 83.25% 83.84% 84.02%
Groovy-1 91.47% 91.01% 92.73% 86.84% 91.59%
Hbase-0.94.0 82.43% 88.35% 77.71% 80.07% 81.11%
Hive-0.9.0 80.01% 86.81% 80.15% 82.52% 81.64%
Jruby-1.1 85.49% 90.02% 88.46% 89.09% 84.95%
Wicket-1 95.03% 95.98% 93.12% 93.42% 83.55%

for NB is 80%, respectively. The model is behaving significantly well as average accuracy
is higher than 0.5. So, it is clear that the advanced model-2 (Product + NDC metric)
performs better than other models.

For the projects from Jira repository, the results of average accuracy for advanced
model-2, for MLP is 91%, for DT is 89% , for SVM is 86%, for RT is 87%, NB is 88%,
respectively. The model is behaving significantly well as average accuracy is higher than
0.5. So, it is clear that the Advance model-2 (Product + NDC metric) performs better
than other models for Jira projects.

After presenting the accuracy-based evaluation, further analysis is conducted to examine
the root mean square error for Promise, Bug and Jira dataset repositories. The average
RMSE values for the Promise dataset in proposed advanced model-1, advanced model-2,
advanced model-3 and advanced model-4 is low as compared to the simple model. Table 8
presents the details of the average RMSE with standard deviation. The Advanced model-2
has the error ratio 0.13, 0.12, 0.18, 0.19, and 0.16 for DT, MLP, RT, NB and SVM which
is significantly lower than the simple model.
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Table 7. Average accuracy for various models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 74 ± 0.67% 75 ± 0.99% 71 ± 0.11% 60 ± 0.01% 71 ± 0.72%
Advanced
model-1 81 ± 0.09% 80 ± 0.74% 75 ± 0.37% 73 ± 0.07% 76 ± 0.94%

Advanced
model-2 87 ± 0.01% 87 ± 0.08% 82 ± 0.06% 81 ± 0.30% 76 ± 0.45%

Advanced
model-3 83 ± 0.03% 85 ± 0.16% 79 ± 0.08% 72 ± 0.42% 74 ± 0.36%

Advanced
model-4 77 ± 0.04% 79 ± 0.18% 77 ± 0.05% 73 ± 0.55% 72 ± 0.16%

BUG
Dataset

Simple 82 ± 0.28% 82 ± 0.66% 79 ± 0.18% 79 ± 0.86% 82 ± 0.76%
Advanced
model-1 83 ± 0.90% 84 ± 0.70% 80 ± 0.66% 80 ± 0.85% 83 ± 0.59%

Advanced
model-2 85 ± 0.63% 86 ± 0.92% 81 ± 0.95% 80 ± 0.19% 85 ± 0.27%

Advanced
model-3 84 ± 0.14% 84 ± 0.36% 81 ± 0.04% 79 ± 0.59% 84 ± 0.38%

Advanced
model-4 81 ± 0.96% 82 ± 0.76% 79 ± 0.73% 79 ± 0.47% 82 ± 0.96%

JIRA

Simple 86 ± 0.53% 89 ± 0.59% 85 ± 0.34% 85 ± 0.69% 84 ± 0.54%
Advanced
model-1 88 ± 0.15% 91 ± 0.07% 87 ± 0.39% 87 ± 0.64% 85 ± 0.45%

Advanced
model-2 89 ± 0.76% 91 ± 0.85% 87 ± 0.32% 88 ± 0.32% 86 ± 0.18%

Advanced
model-3 88 ± 0.75% 90 ± 0.65% 87 ± 0.44% 87 ± 0.72% 86 ± 0.05%

Advanced
model-4 86 ± 0.89% 89 ± 0.72% 85 ± 0.97% 86 ± 0.30% 84 ± 0.81%

For Bug dataset the average RMSE values for proposed advanced model-2, and advanced
model-3 are significantly lower than the advanced model-4, Advance model-1 and simple
model. The average RMSE values for DT, MLP, RT, NB and SVM are 0.18, 0.15, 0.16,
0.17 and 0.13, respectively for advanced model-2.

For Jira dataset the average RMSE values for proposed advance model-2 are significantly
lower than the advanced model-3, advanced model-4, advanced model-1 and simple model.
The RMSE values for advanced model-1 and advanced model-3 are almost similar for DT,
MLP and SVM. The average RMSE values for DT, MLP, RT, NB and SVM are 0.18, 0.12,
0.15, 0.15 and 0.14, respectively for advanced model-2.

AUC is the other performance measure considered in the study. Greater the AUC value
better is the model performance [7, 20]. The ROC curves provide the trade-off between
the TPR and FPR for a predictive model using different probability thresholds. These
measures are good performance indicator for the classification of an imbalanced dataset.

Table 9 shows the aggregative AUC of all the base classifiers for simple, advanced
model-1, advanced model-2, advanced model-3 and advanced model-4 with the standard
deviation values after ten executions of the classifiers. The aggregative average AUC for
Promise dataset achieved in advanced model-2 are 76%, 79%, 70%, 65% and 75% for DT,
MLP, RT, NB and SVM respectively. As evident from literature studies [7] that the AUC
value lying between 0.7 and 1 is considered significantly high and the accuracy value lying
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Figure 2. Average Accuracy for MLP, DT, SVM, RT, and NB using PROMISE data

between 0.6 and 0.7 is considered significantly good. It is evident from the Table 9 that
the advanced model-2 achieves and maintains high accuracy with respect to all classifiers.
The advanced model-3 is followed by advanced model-1and advanced model-4.

For the Bug dataset the average ROC values for the advanced model-2 and advanced
model-3 are significantly higher and for advanced model-1and advanced model-4 the average
ROC values are good as compared to simple model as shown in Table 9. The average
accuracy of advanced model-2 for DT, MLP, RT, NB, and SVM are 79%, 83%, 74%,
70%, and 78%, respectively. It shows that the proposed advanced models has performed
impressively well for inter project fault prediction.

We also calculated the performance of simple and advanced models in terms of F -score.
F -score values can range from (0–1) and accepted to be better as it approaches to one
[41, 60]. Table 10 presents the average F -score for simple and advanced models for Promise,
Bug, and Jira datasets on various classifiers. It is observed from Table 10; in the Promise
dataset the advanced model-2 for MLP classifier has the highest F1-score value, i.e., 0.83
as compared to the advanced model-3 (0.82), advanced model-2 (0.80), and the simple
model (0.79). The F -score value for DT in simple model (0.76), advanced model-1 (0.77),
advanced model-2 (0.81), the advanced model-3 (0.80) and the advanced model-4 is (0.76).
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Table 8. Average RMSE for various models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 0.21±0.0057 0.19 ± 0.006 0.21±0.0101 0.20±0.0059 0.17±0.0089
Advanced
model-1 0.16±0.0067 0.14 ± 0.007 0.19±0.0090 0.18 ± 0.006 0.17±0.0067

Advanced
model-2 0.13 ± 0.007 0.12 ± 0.005 0.18±0.0398 0.19 ± 0.046 0.16 ± 0.009

Advanced
model-3 0.15 ± 0.007 0.14 ± 0.008 0.19±0.0256 0.18 ± 0.025 0.15 ± 0.011

Advanced
model-4 0.16 ± 0.006 0.16 ± 0.005 0.19±0.0006 0.19 ± 0.005 0.17 ± 0.012

BUG
Dataset

Simple 0.22 ± 0.084 0.20±0.0127 0.21±0.0317 0.21±0.0997 0.17 ± 0.038
Advanced
model-1 0.21 ± 0.067 0.18 ± 0.055 0.19±0.0672 0.21±0.0302 0.15 ± 0.037

Advanced
model-2 0.18 ± 0.09 0.15±0.0545 0.16±0.0995 0.17±0.0997 0.13 ± 0.035

Advanced
model-3 0.18 ± 0.075 0.16±0.0902 0.19±0.0215 0.19±0.0615 0.13 ± 0.068

Advanced
model-4 0.20±0.0387 0.18±0.0857 0.20±0.0727 0.20±0.0382 0.16 ± 0.052

JIRA

Simple 0.20 ± 0.099 0.15±0.0395 0.19±0.0265 0.18±0.0951 0.17 ± 0.048
Advanced
model-1 0.19 ± 0.088 0.13±0.0757 0.17±0.0742 0.17 ± 0.048 0.15 ± 0.097

Advanced
model-2 0.18 ± 0.037 0.12±0.0108 0.15 ± 0.085 0.15 ± 0.085 0.14 ± 0.019

Advanced
model-3 0.19 ± 0.014 0.13±0.0982 0.16±0.0334 0.16 ± 0.095 0.15 ± 0.067

Advanced
model-4 0.20 ± 0.038 0.14±0.0721 0.18±0.0295 0.17±0.0938 0.16±0.0308

It is observed from the table that the advanced model-2 is behaving significantly well in all
the classifiers. The MLP is behaving well than DT, DT is better than RT, RT is better
than SVM, and SVM is better than NB.

Similarly, for the Bug dataset the advanced model-2 and the advanced model-3 have
almost similar values for MLP and NB classifiers. The advanced model-2 having F -score
MLP (0.88), DT (0.84), RT (0.84), NB (0.81) and SVM (0.85). For the simple model the
F -score values are 0.82, 0.86, 0.81, 0.79, 0.78 for DT, MLP, RT, NB, and SVM classifiers,
respectively. Similarly, for advanced model-1 the DT, MLP, RT, NB and SVM the values
for F -score are 0.82, 0.87, 0.82, 0.80 and 0.82, respectively and; for the advanced model-3
and for the advanced model-4 the F -score values are 0.83, 0.88, 0.84, 0.81, 0.85 and 0.81,
0.87, 0.81, 0.79, 0.79, respectively.

For the Jira dataset, the average F -score has the highest values for advanced model-2
compared to advanced model-1, advanced model-3, advanced model-4, and simple model.
The advanced model-2 has F -score values for MLP (0.89), DT (0.83), RT (0.82), NB
(0.80) and SVM (0.83), respectively. The advanced model-2 with MLP has the highest
F -score values as compared to other classifiers. Thus, it is observed that MLP performs
best with values 0.83, 0.88, and 0.89 with advanced model-2 for Promise, Bug, and Jira
datasets. Comparing the overall performance, the advanced model-2 with MLP performs
best followed by advanced model-3.
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So, it is concluded for the RQ1 that Advanced model-2 with MLP classifier having high
predictive capability as compared to other models and classifiers. The advanced model-2
with MLP has high accuracy, ROC (AUC) and F -score, and small RMSE values.

5.2. Experiment results based on ensemble design

In this section, we have summarised the results and discussed the main findings of various
ensemble methods. Table 11 presents the results for average Accuracy, average RMSE,
average ROC(AUC), and average F -score. Diagrammatically, the results of the performance
measures are shown with the help of Box plots. Figures 3a–l shows the box plot analysis
results for proposed ensembles with respect to the average Accuracy, average AUC(ROC),
average F -score, and average RMSE. The different regions of box plots in the figures
present the maximum, median minimum, first quartile, and third quartile values of the
dataset. The middle line of the box indicates the median value of the dataset. With
respect to average accuracy, average AUC(ROC), average F -score, and average RMSE, the
proposed ensembles VOT-E1 and VOT-E2 have high median value and high maximum
value followed by AdaBoost and Random Forest with features based on Product + NDC
metric data set for projects not only from Promise repository but also from Bug and Jira
dataset repositories, which validates the results and makes the approach more reliable.

Table 9. Average ROC(AUC) for various Models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 71 ± 0.009 74 ± 0.006 63 ± 0.014 61 ± 0.02 70 ± 0.014
Advanced
model-1 75 ± 0.001 78 ± 0.006 67 ± 0.017 63 ± 0.09 74 ± 0.004

Advanced
model-2 76 ± 0.002 79 ± 0.008 70 ± 0.001 65 ± 0.98 75 ± 0.009

Advanced
model-3 77 ± 0.012 78 ± 0.012 69 ± 0.019 62 ± 0.06 73 ± 0.009

Advanced
model-4 70 ± 0.013 77 ± 0.002 65 ± 0.016 60 ± 0.07 69 ± 0.008

BUG
Dataset

Simple 73 ± 0.09025 77 ± 0.5775 66 ± 0.05 63 ± 0.955 74 ± 0.2425
Advanced
model-1 76 ± 0.058 81 ± 0.04 71 ± 0.37 67 ± 0.845 77 ± 0.0725

Advanced
model-2 79 ± 0.03375 83 ± 0.14 74 ± 0.7375 70 ± 0.5325 78 ± 0.1825

Advanced
model-3 78 ± 0.069 81 ± 0.0785 73 ± 0.515 72 ± 0.4375 76 ± 0.7725

Advanced
model-4 74 ± 0.079 77 ± 0.0665 67 ± 0.2975 66 ± 0.2475 75 ± 0.2325

JIRA

Simple 76 ± 0.0628 82 ± 0.11 72 ± 0.62857 81 ± 0.181 74 ± 0.7142
Advanced
model-1 78 ± 0.0732 83±0.051571 74 ± 0.39429 83 ± 0.11 76 ± 0.5485

Advanced
model-2 79 ± 0.01429 84 ± 0.046 76 ± 0.27143 83 ± 0.82 77 ± 0.9171

Advanced
model-3 78 ± 0.0986 83 ± 0.0351 74 ± 0.92429 82 ± 0.75571 76 ± 0.8457

Advanced
model-4 77 ± 0.06 82 ± 0.0514 73 ± 0.88571 81 ± 0.97143 75 ± 0.7271
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From Figure 3a, it is observed that projects from Promise repository, VOT-E1 have the
highest accuracy, i.e., 0.8922, and high median value, i.e., 0.8906.

Similarly, the box plot for VOT-E2 shows the median value of 0.8797 and a maximum
value of 0.8814. Similar trends are observed for projects from Bug and Jira repositories, as
shown in Figure 3b and Figure 3c, respectively. Thus, VOT-E1 performs better in terms of
accuracy as compared to other ensembles.

The average AUC(ROC) values are shown in Figures 3d–f. From Figure 3d, it is observed
that for projects from Promise repository, VOT-E2 have the highest AUC(ROC), i.e.,
0.8392, and high median value, i.e., 0. 8402 followed by VOT-E1 with median value 0.7972
and a maximum value 0.8011. The values of ensembles constructed with Boosting and
Bagging are 0.7851 and 0.7781, respectively. Similar trends are observed for Bug and Jira
repositories projects as shown in Figures 3e and 3f. VOT-E2 performs better in terms of
accuracy as compared to other ensembles. We also found that the difference in AUC(ROC)
for the best performing ensembles, i.e., VOT-E1 and VOT-E2 is very minimal, ranging
from 1% to 3%. Moreover, the shape of the box-plot for the projects is nipped, which
signifies that the performance of the ensemble method is the same among all the releases
of different projects from Promise, Jira and Bug repositories.

The performance for the average F -score is shown in Figure 3g–i, respectively. From
Figure 3g, it is observed that for projects from Promise repository, VOT-E2 have the highest

Table 10. Average F -score for various models with standard deviation on different classifiers

Projects DT MLP RT NB SVM

PROMISE

Simple 0.76±0.012 0.79±0.012 0.79 ± 0.03 0.73 ± 0.06 0.75 ± 0.05
Advanced
model-1 0.77 ± 0.04 0.80 ± 0.18 0.77 ± 0.16 0.74±0.017 0.76 ± 0.04

Advanced
model-2 0.81 ± 0.05 0.83 ± 0.05 0.79 ± 0.07 0.78 ± 0.09 0.79 ± 0.09

Advanced
model-3 0.80 ± 0.03 0.82 ± 0.16 0.78±0.078 0.79 ± 0.02 0.78 ± 0.06

Advanced
model-4 0.76 ± 0.05 0.79 ± 0.06 0.75 ± 0.04 0.74±0.053 0.74 ± 0.08

BUG
Dataset

Simple 0.82 ± 0.13 0.86 ± 0.07 0.81±0.024 0.79 ± 0.01 0.78 ± 0.05
Advanced
model-1 0.82±0.045 0.87 ± 0.1 0.82 ± 0.05 0.80±0.023 0.82 ± 0.09

Advanced
model-2 0.84±0.063 0.88 ± 0.12 0.84±0.063 0.81 ± 0.05 0.85 ± 0.02

Advanced
model-3 0.83 ± 0.05 0.88 ± 0.05 0.83±0.045 0.82 ± 0.06 0.85 ± 0.07

Advanced
model-4 0.81 ± 0.09 0.87 ± 0.03 0.81±0.098 0.79 ± 0.07 0.79 ± 0.04

JIRA

Simple 0.81±0.045 0.83±0.061 0.79 ± 0.07 0.79 ± 0.09 0.79 ± 0.06
Advanced
model-1 0.82 ± 0.08 0.84 ± 0.07 0.80±0.023 0.79 ± 0.06 0.80±0.078

Advanced
model-2 0.83±0.045 0.89 ± 0.01 0.82 ± 0.06 0.80 ± 0.05 0.83±0.087

Advanced
model-3 0.83±0.063 0.88 ± 0.08 0.81 ± 0.05 0.80 ± 0.16 0.83 ± 0.04

Advanced
model-4 0.81±0.092 0.78±0.065 0.79 ± 0.07 0.76 ± 0.01 0.81±0.045
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F -score, i.e., 0.8329 followed by VOT-E3 0.8201, AdaBoost 0.8068, and Random Forest
0.7864. The box plot for VOT-E3 shows the median value of 0.8134 and the maximum
value of 0.8201. Similar tendency is observed for F -score values for projects from Bug and
Jira repositories as shown in Figures 3h and 3i, where VOT-E2 has the highest F -score
value followed by VOT-E1. The overall median of F -score ranges between 85% (VOT-E2)
and 77.71% (Bagging). So, VOT-E2 performs better in terms of F -score as compared to
other ensembles.

The average root mean square error values are shown in Figure 3j–l. From Figure 3j,
it is observed that for the projects from Promise repository, the average RMSE is least
for the ensembles VOT-E1, i.e., 0.1693 and VOT-E2, i.e., 0.1724 and high for VOT-E4
0.199, AdaBoost 0.1785, and Random Forest 0.1966. The VOT-E1 and VOT-E2 performed
better, and it has the narrow box compared to the ensembles with bagging, adaboost, and
RF, respectively. The overall difference of RMSE ranges between 0.1703 (VOT- E1) and
0.1998 (VOT- E4).

5.3. Results for examining the performance difference
among the base classifiers and ensemble classifiers

The results shown in Table 12 in bold indicate the best performance. The proposed VOT-E2
produced the best results with advanced model-2, advanced model-3 and advanced model-1,
while it gave second best results for advanced model-4 and simple model datasets. The
values of ROC(AUC) for base classifiers were taken from Table 9. For comparison of
classifiers, the average ranks were computed. The ranks for each classifier for each dataset
were ascertained and later on summed up to get average ranks by dividing the average
values by the number of datasets. The lower the average ranking value; the better is
the performance of the model. The proposed ensemble-1 has a lower average rank of 1.2,

Table 11. Ensemble results for average Accuracy, average RMSE, average ROC(AUC), and F -score

Datasets Bag ADA RF VOT-E1 VOT-E2 VOT-E3 VOT-E4

Average accuracy

PROMISE Dataset 87.35% 88.07% 87.41% 89.22% 88.14% 86.30% 82.94%
BUG Dataset 87.69% 88.02% 86.79% 89.15% 88.70% 87.37% 85.08%
JIRA Dataset 90.19% 90.26% 88.89% 91.25% 90.47% 89.15% 88.45%

Average ROC (AUC)

PROMISE Dataset 78.51% 77.81% 79.32% 80.11% 83.92% 79.58% 77.17%
BUG Dataset 77.09% 79.23% 80.07% 80.53% 81.64% 79.25% 78.97%
JIRA Dataset 78.18% 79.01% 78.19% 81.60% 84.05% 79.82% 78.19%

Average F1 score

PROMISE Dataset 77.91% 80.68% 78.64% 80.37% 83.29% 82.01% 78.54%
BUG Dataset 78.62% 81.12% 78.86% 85.09% 87.34% 84.10% 78.72%
JIRA Dataset 76.50% 80.09% 76.94% 85.26% 87.24% 81.06% 79.80%

Average RMSE

PROMISE Dataset 0.1845 0.1785 0.1966 0.1693 0.1724 0.1843 0.199
BUG Dataset 0.1855 0.1765 0.20195 0.181615 0.18525 0.2036 0.2014
JIRA Dataset 0.170 0.1785 0.1966 0.1601 0.1679 0.1748 0.1992
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Figure 3. Box plots for Ensemble Results for average accuracy, average RMSE,
average ROC(AUC) and average F -score

followed by the classifier MLP with a rank 1.6. All other classifiers have ranks between 1.2
and 5.8 as shown in Table 13.

Thus, based upon the results, we can say that ensemble learning (i.e., AdaBoosting,
Bagging, Random Forests, and Voting) works best as compared to base predictors. The
ensemble algorithms combine signals from base classifiers in the committee to produce an
enhanced fault prediction algorithm. While experimenting, we have noticed that ensemble
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Table 12. Comparisons of different classifiers in terms of ROC(AUC)

Classifiers Simple Advanced Advanced Advanced Advanced Avg Rankmodel-1 model-2 model-3 model-4

DT 0.7338 0.7637 0.7801 0.7772 0.7371 3
MLP 0.7789 0.8069 0.8206 0.8071 0.7871 1.8
SVM 0.7029 0.7587 0.7703 0.7554 0.7332 4.0
RT 0.6723 0.7092 0.7366 0.7248 0.6873 5.8
NB 0.6871 0.7135 0.740 0.7241 0.6942 5.2
VOT-E2 0.7801 0.8182 0.8320 0.8156 0.7780 1.2

Table 13. Friedman test comparison

J (base classifiers) Pair wise differences

VOT- E2 DT 1.6 (P < 0.01)
MLP 0.4
SVM 2.6 (P < 0.001)
RT 3.5 (P < 0.001)
NB 4.6 (P < 0.001)

techniques performed better among all the advanced models. With respect to average
accuracy, average AUC(ROC), average F -score, and average RMSE, the proposed ensembles
VOT-E1 and VOT-E2 have high median value and high maximum value followed by
AdaBoost and Random Forest with features based on (Product + NDC metric data set) for
projects not only from Promise repository but also from Bug and Jira dataset repositories,
which validates the results and makes the approach more reliable. In general, the ensemble
methods show an overall median of F1 score ranging between 76.50% and 87.34% and the
ROC (AUC) between 77.09% and 84.05%. Base classifiers instead, reach an overall average
F -score ranging between 73% (simple model) and 83% (Advanced model-2) for Promise
data set and the ROC(AUC) between 60% (Advanced model-4) and 79% (Advanced
model-2). Thus, we can say that the ensemble design enhances the strengths of multiple
predictors and supplements to state of art in fault prediction problem [35, 72].

Furthermore, to examine whether the measured average ranks are significantly different
from the mean rank 3.5, the Friedman test has been applied. The results of the test
show below the significance level (p < 0.01), which means that at least two of the
predictors are significantly different from each other. When the scores differ significantly,
the researchers in the literature recommended follow-up pair-wise comparisons [68, 70].
For pair-wise comparisons, Wilcoxon signed ranks test had been applied. The results of
pair-wise comparisons are presented in Table 13. It is observed that the performance of
ensemble classifier is considerably dissimilar than other classifiers, apart from the MLP
based classifier. Thus, the null hypothesis is rejected, which states that there is no significant
difference between base classifiers performance and ensemble classifier performance. The
results of Friedman”s tests and Wilcoxon signed rank tests illustrate that the ensemble
method exhibits statistically significant performance differences.

5.4. Results for examining the cost sensitiveness

Table 14 presents the predicted values of estimated fault removal cost (Ecost) for various
projects for both the best ensemble and the best base classifier. The unit, integration,
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system, and field-testing values are used to obtain estimated values for fault removal cost
using Equations (1) to (4) presented in Section 3.5.1. Table 15 shows the estimated testing
cost (T cost) values for various projects. These cost values are obtained using equations
(6) to (9) presented in Section 3.5.1. The values of fault removal cost (staff hours per
defect) for test techniques are shown in Table 4, and values of testing phase efficiencies
are presented in Table 5 in Section 3.5. Further, normalized cost values (N cost) of VOT-
E1 ensemble and best base classifier for projects from datasets (Promise, Bug and Jira)

Table 14. Estimated Fault Removal cost (Ecost) for best base classifier and best ensemble classifier

Projects Best base classifier (MLP) VOT-E2 ensemble classifier

Min Max Median Min Max Median

ant 1042 3862 1852 935 3712 2320
camel 534 2144 1167 654 2356 1367
Jedit 102 147 276 69 155 287
lucene 854 2393 3000 844 2382 2976
synapse 400 1018 1650 444 968 1601
xalan 3506 9803 11653 3498 9800 11650
xerecs 777 3912 1821 662 2461 1641
Equinox 596.06 2296.8 1502.42 562 2283.43 1407.7
Eclipse-JDT 921.753 4037.02 2419.48 918.45 4041.12 2389.04
Eclipse-PDE 1726.65 6565.25 3711.75 1710.12 6500.98 3645
MYLYN 2124.93 7548.55 4361.03 2023.34 7481.16 4243.03
ActiveMQ 5.0.0 1390.19 6510.64 3776.14 1390 6511 3768
derby-10.5.1.1 2041.09 9432.96 5607.88 2100 9456 5704
Groovy1_6_BETA_1 336.57 1309.85 857.90 321.34 1296 823
Hbase-0.94.0 1039.84 4907.87 2835.09 1109 4987 2965
Hive-0.9.0 1286.61 5661.904 3392.029 1261 5673 3753
Jruby-1.1 376.61 1547.42 962.66 376 1654 997
Wicket-1.3.0-beta2 1129.77 5998.59 3519.73 1127 5974 3678

Table 15. Estimated Testing cost (T cost) for various projects

Projects from PROMISE repository

Unit Integ. System Ant Camel Jedit Lucene Synapse Xalan Xerecs

Min 0.1 0.25 0.25 1079.78 1313.84 403.53 892.17 461.93 3500.35 1812.63
Max 0.5 0.6 0.65 3913.59 4796.06 1587.23 3072.74 1637.63 11807.5 6128.94
Median 0.25 0.45 0.5 2322.85 2782.28 707.21 2126.17 1040.95 8664.3 4398.43

Projects from BUG repository

Unit Integ. System Equinox Eclipse-JDT Eclipse-PDE MYLYN

Min 0.1 0.25 0.25 647.89 1394.33 1778.74 2165.49
Max 0.5 0.6 0.65 2276.44 5074.07 6604.41 8063.44
Median 0.25 0.45 0.5 1486.42 2973.17 3623.32 4381.36

Projects from Zira repository

Unit Integ. System ActiveMQ derby Groovy1 Hbase Hive Jruby Wicket

Min 0.1 0.25 0.25 2332.65 3230.89 835.46 1478.49 1950.26 821.32 1730.28
Max 0.5 0.6 0.65 8614.81 11987.9 3170.84 5381.41 7109.69 3072.74 6603.56
Median 0.25 0.45 0.5 4811.25 6591.98 1613.06 3151.27 4142.42 1643.08 3293.55
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Table 16. Normalized fault removal cost (NEcost)

Projects Best base classifier (MLP) VOT-E2 ensemble classifier

Min Max Median Min Max Median

ant 0.96 0.98 0.79 0.86 0.84 0.99
camel 0.40 0.44 0.42 0.49 0.50 0.49
jedit 0.25 0.21 0.17 0.17 0.21 0.18
lucene 0.95 1.12 0.97 0.94 1.12 0.97
synapse 0.87 0.98 1.0 0.96 0.93 0.98
xalan 1.0 1.13 0.98 0.99 1.13 0.98
xerecs 0.72 0.99 0.78 0.61 0.62 0.70
Equinox 0.75 0.82 0.79 0.86 1.00 0.94
Eclipse-JDT 0.66 0.79 0.81 0.65 0.79 0.80
Eclipse-PDE 0.56 0.60 0.71 0.96 0.98 1.0
MYLYN 0.62 0.72 0.83 0.93 0.92 0.96
ActiveMQ 5.0.0 0.59 0.75 0.78 0.59 0.75 0.78
derby-10.5.1.1 0.63 0.78 0.85 0.64 0.78 0.86
Groovy-1_6_BETA_1 0.40 0.41 0.53 0.38 0.40 0.51
Hbase-0.94.0 0.70 0.91 0.89 0.75 0.92 0.94
Hive-0.9.0 0.65 0.79 0.81 0.64 0.79 0.90
Jruby-1.1 0.45 0.50 0.58 0.45 0.53 0.60
Wicket-1.3.0beta2 0.65 0.90 1.06 0.65 0.90 1.11

are obtained using Equation (11). The values so obtained are presented in Table 16. The
values > 1.0 show that the proposed best ensemble, i.e., VOT-E1 is cost-effective. It entails
that if the results of fault prediction are used with software testing, then overall testing
cost and effort can be saved. At the same time, values greater than 1.0 demonstrate that
the results of fault prediction do not help save overall testing cost and effort, and thus, it
is suggested not to use fault prediction models in such cases. From the results presented in
Table 16, it can be observed that for almost all projects, i.e., Ant, Camel, Jedit, Synapse,
Xerecs, Equinox, Eclipse JDT, EclipsePDE, MYLYN, ActiveMQ 5.0.0, derby 10.5.1.1,
Groovy-1_6_BETA1, Hbase-0.94.0, Hive-0.9.0 and Jruby-1.1 from the Promise, Bug and
Jira repositories, N cost values are lower or equal to the threshold value, i.e., 1.0 for both
the proposed ensemble VOT-E2 and best base classifier MLP except in few cases, i.e.,
Xalan, Lucene and Wicket-1.3.0beta2 the normalized cost values are more than threshold
value. Therefore, as observed from the results, it may not be beneficial to make use of SFP
based on the suggested best ensemble and best base classifier. Thus, it is advisable to test
all the modules at the unit level in place of using predictor for defect prediction for such
projects. For all other datasets, the values of N cost are lower than the threshold value, i.e.,
1 and thus it is advantageous to utilize fault prediction approaches proposed in the study.

Table 17 presents the summary of research questions. Also, comparison of few related
studies in literature with the proposed study is provided in Table 18.

6. Threats to validity

The section presents discussion on possible validity threats of the work presented in the
paper along with possible measures how we mitigated them.

Construct validity: These types of threats are concerned with the relationship between
theory and observations. In this work, we built advanced models for defect prediction
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Table 17. Summary of research questions

Research question Discussion

RQ1: How does the
advanced defect predic-
tion models proposed in
the study perform using
various machine learn-
ing classifiers?

For conducting the experiments, we designed five scenarios, i.e., “Simple
model”; “Advanced model-1” (Product + NR metric); “Advanced
model-2” (Product + NDC metric); “Advanced model-3” (Product +
NML metric); and “Advanced model-4” (Product + NDPV metric),
respectively. All the designed models are tested on various project
datasets repositories, i.e., PROMISE, BUG and JIRA using different
classifiers such as DT, MLP, SVM, RT, NB. The advanced model-2 with
MLP classifier having high predictive capability followed by advanced
model-3. Results discussed in Section 5.1 shows that the proposed
advanced models have performed impressively well for inter project
fault prediction.

RQ2: How does the
ensemble design im-
prove classification per-
formance when com-
pared to individual ma-
chine learning classi-
fiers?

In general, the ensemble methods show an overall median of F -score
ranging between 76.50% and 87.34% and the ROC (AUC) between
77.09% and84.05%. Base classifiers instead, reach an overall average
F -score ranging between 73% (simple model) and 83% (Advanced
model-2) for PROMISE data set and the ROC (AUC) between 60%
(Advanced model-4) and 79% (Advanced model-2). Thus, we can say
that the ensemble design enhances the strengths of multiple predictors
and supplements to state of art in fault prediction problem. While exper-
imenting, we have noticed that ensemble techniques (i.e., AdaBoosting,
Bagging, Random Forests, and Voting) performed better among all the
advanced models as discussed in Section 5.2. With respect to average
accuracy, average AUC (ROC), average F -score, and average RMSE,
the proposed ensembles VOT-E1 and VOT-E2 have high median value
and high maximum value followed by AdaBoost and Random Forest
with features based on (Product + NDC) metric data set for projects
not only from PROMISE repository but also from BUG and JIRA
dataset repositories, which validates the results and makes the approach
more reliable.

RQ3: Whether there
exist any statistically
significant performance
difference among the
base classifiers and en-
semble classifiers?

For pair-wise comparisons, Wilcoxon signed ranks test had been ap-
plied. It is observed from the results (Table 13 in Section 5.3) that
the performance of ensemble classifier is considerably dissimilar than
other classifiers, apart from the MLP based classifier. The results of
Friedman”s tests and Wilcoxon signed rank tests illustrate that the
ensemble method exhibits statistically significant performance differ-
ences.

RQ4: For a given soft-
ware system, whether
the proposed ensembles
are cost sensitive?

From the results presented in Table 16 Section 5.4, it is observed that for
almost all projects, i.e., Ant, Camel, Jedit, Synapse, Xerecs, Equinox,
Eclipse JDT, Eclipse PDE, MYLYN, ActiveMQ5.0.0, derby 10.5.1.1,
Groovy-1 _6 _BETA _1, Hbase-0.94.0, Hive-0.9.0 and Jruby-1.1 from
the PROMISE, BUG and Zira repositories, Ncost values are lower or
equal to the threshold value, i.e. 1.0 for both the proposed ensemble
VOT-E2 and best base classifier MLP except in few cases, i.e. Xalan,
Lucene and Wicket-1.3.0beta2 the normalized cost values are more
than threshold value. Thus, for a given software system, the proposed
ensembles are cost sensitive.
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Table 18. Comparision summary of research techniques

Authors Study objective Software
fault data
sets used/
repository

Fault prediction techniques Results

Song et al.
[2]

Proposed and evalu-
ated a general frame-
work for software de-
fect prediction

NASA,
MDP and
AR Data
Sets

Three learning algorithms.
Naive Bayes (NB), J48, one R
and 12 learning schemes

Naive Bayes performs much bet-
ter than J48, and J48 is better
than OneR No learning scheme
dominates, i.e., always outper-
forms the others for all 17 data
sets.

Rathore
and
Kumar
[26]

Empirical study of
ensemble techniques
for software fault pre-
diction

28
software
fault
datasets
(PROMISE
reposi-
tory)

7 ensemble techniques, i.e., Dag-
ging, Decorate, Grading, Multi-
BoostAB, RealAdaBoost, Rota-
tion Forest, and Ensemble Se-
lection

Precision = 0.995 (Rotation For-
est) Recall = 0.994 (Rotation
Forest) AUC = 0.986 (Decorate)
Cost-sensitiveness: proposed en-
semble techniques saved soft-
ware testing cost and effort for
20 out of 28 fault datasets.

Laradji et
al. [27]

To demonstrate the
positive effects of
combining feature se-
lection and ensem-
ble learning on the
performance of defect
classification.

06
datasets:
Ant-1.7,
Camel-1.6,
KC3, MC1,
PC2, and
PC4

Average probability ensemble
(APE) consisting of 7 classifiers,
i.e., random forests, gradient
boosting, stochastic gradient de-
scent, W-SVMs, logistic regres-
sion, multinomial naive Bayes,
and Bernoulli naive Bayes

Higher AUC measures for each
dataset, which were close to 1.0
in the case of PC2, PC4 and
MC1 datasets.

Proposed
approach

Study aims to de-
velop advanced mod-
els for software de-
fect prediction which
uses both product
and process metrics.

32
projects
from
PROMISE,
BUG, and
JIRA
dataset
reposi-
tory.

5 Base learners and ensem-
ble methods (i.e., AdaBoosting,
Bagging, Random Forests, and
Voting)

Ensemble methods: F -score
(76.50% −87.34%) and the ROC
(AUC) (77.09% −84.05%) for
Product + NDC metric data for
all data sets. Cost-sensitiveness:
VOT-E2 ensemble saved soft-
ware testing cost and effort for
29 out of 32 fault datasets.

using product and process metrics. To improve the quality of software datasets, we applied
dimensional reduction, which is achieved by using feature ranking and feature subset
selection techniques [7]. In this way, we obtained a reduced set of 15 features for defect
prediction. Thus, data preprocessing helps to avoid the creation of an unstable model
[30]. The study results are replicated with various datasets from Promise, Bug and Jira
repositories which makes the study reliable. We have used N fold cross-validation while
conducting experiments to avoid bias due to sampling. To obtain the experimentation
results, authors in the study used F -score and ROC(AUC) metrics which are considered to
be more consistent measures for evaluation of classification algorithms [26].

Conclusion validity: It denotes the relation between treatment and outcome. During
the study, our objective was to examine the overall predictive capability of proposed
advanced models using various machine learning classifiers. We also examined whether
the ensemble design improves classification performance as compared to base machine
learning classifiers. For this, we designed ensembles using bagging, boosting and voting to
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examine the improvement in the performance of proposed defect prediction models. The
performance of ensembles is measured by constructing box plots for accuracy, precision and
AUC(ROC). From the results, it is observed that fault prediction capability is increased
using ensemble-based learning [29, 63]. Furthermore, we validated the statistical significance
of performance differences among the base classifiers and the best ensemble classifier, using
the non-parametric Friedman test and performed pair wise comparisons using the Wilcoxon
Rank-Sum test to test the worst-performing classifiers.

External validity: It deals with the generalization of the results of our study to other
settings. In this study, we considered thirty two releases from various datasets used for
different application domains. To minimize the effect of a particular tool/technology, in our
normalized dataset we have taken applications developed using different version control
systems (CVS and SVN) and diverse bug tracking tools (Ckjm, Bug Info, Quality Spy)
[17, 63]. We preprocessed the data related to the metrics and obtained a reduced set of
thirteen features for defect prediction so that the generalized prediction models are formed.
The comparative assessment performed using base and ensemble classifiers verified the
significance of proposed advanced models in fault prediction and helps to minimize the
threat due to external validity.

7. Conclusions

The work presents advanced models for software fault prediction, in which authors have
used information related to product and process metrics. The models for investigation
were built based on five different scenarios as discussed in Section 4. Scenario-1: simple
model (consists of product metrics only); scenario-2: advanced model-1 (product metrics
+ NR process metric); scenario-3: advanced model-2 (product metrics + NDC process
metric); scenario-4: advanced model-3 (product metrics + NML process metric); scenario-4:
advanced model-4 (product metrics + NDPV process metric). The various base classifiers
used to predict the performance of proposed models are DT, MLP, RT, SVM and NB.
The study has been conducted on thirty-two open-source code projects extracted from the
Promise, Jira and Bug repositories. The results show that among base classifiers the MLP
based base classifier captures high average accuracy (87%), average ROC(AUC) (79%),
average F -score (83%) and least RMSE error (0.12) for advanced model-2 constructed
using (product + NDC metrics) from Promise repository as compared to other advanced
models, i.e., advanced model-1, advanced model-3 and advanced model-4, respectively.
Similar trend is observed for projects from Jira and Bug repositories too.

Furthermore, to examine whether the ensemble design improves classification perfor-
mance as compared to individual machine learning classifiers we used the ensemble approach
based on bagging, boosting and voting to combine multiple classifiers and conducted repli-
cation experiments. The comparison of results using average accuracy, average RMSE,
average ROC(AUC) and average F -score confirms the predictive capability of proposed
classifiers for developing advanced defect prediction models. The VOT-E2 (DT + MLP
+ SVM) ensemble produced the best results with advanced model-2, advanced model-3
and advanced model-1 followed by VOT-E1 classifiers (DT + MLP + RT), in terms of
ROC(AUC) and F -measure. Further to validate the statistical significance of performance
differences among the base classifiers and classifier ensemble, we also tested the hypothesis
H0, that there is no significant difference between base classifier performance and ensemble
classifier performance using a non-parametric test. We also evaluated the fault removal
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estimation cost for the proposed ensemble and best base classifier. The normalized fault
removal cost is obtained for different projects from Promise, Jira and Bug repositories by
calculating the ratio of estimated fault removal cost to estimated testing cost, which is
below the threshold value, i.e., less than one.

Our results shows that the advanced fault estimation models constructed with a nor-
malized and minimum subset of software metrics, which includes product metrics and one
process metric at a time, provide satisfactory performance as compared to simple models
constructed using product metrics alone. The proposed approach based on combination
models may prove useful to software engineers for their new projects. Though in the study,
authors have conducted experiments using projects from Promise, Jira and Bug repositories,
still, to establish evidence and improve generalization of results, the investigations shall be
replicated using more open-source and cross-project data sets. Several defect prediction
models have been developed which use heterogeneous metric data from other projects
[31, 63]. The investigation using more number projects would not only increase the variety
of examined data but also helps to improve the external validity of the research outcomes.
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A. Appendix

Table A1. Description of selected features

Product metrics Description References

WMC It is the weighted sum of methods implemented within
a class.

[73]

NOC It is defined as the number of instant sub classes (children)
subordinated to a class (parent) in the class hierarchy.

[73]

CBO It defines the number of other classes that are tied to a given
class during method call or function call, abstraction etc.

[73]

RFC It is a count of methods in a class or methods directly called
by these.

[73]

LCOM It is a number of private methods in a class which don”t
connect the class fields.

[73]

Ca It is used to measure the number of classes that depends on
a given class.

[74]

Ce It is used to measure the number of classes on which a given
class depends.

[74]

NPM It is a number of public methods in a given class. [58]
LOC It is a number of lines of code in a given class. [59]
DAM It is the ratio of the number of private/protected attributes

to the total number of attributes in a given class.
[65]

MOA It is a number of classes whose declaration is user defined. [65]
AMC It is the average size of methods in a given class. [75]
Max−CC It is the maximum McCabe”s CC score for methods in

a given class.
[75]

Avg−CC It is the arithmetic mean of McCabe”s CC score for methods
in a given class.

[75]

Process metrics Description References

NR It represents the number of revisions of a given class because
of bug/or some enhancements in a specific revision or version
of a software system.

[17, 24, 44, 74]

NDC/NAUTH It counts the number of different programmers /developer-
s/authors who committed their changes in the given class
during the improvement of the specific revision of the soft-
ware.

[17, 24, 44, 74]

NML/NREF It is the sum of all number of lines that are added or altered
or number of times a file has been refactored.

[17, 24, 44, 74]

NDPV The metric counts the number of defects in the previous ver-
sion being corrected in the respective class while developing
the previous releases or versions.

[24, 44, 74]
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Table A2. Details of base classifiers and classifier ensembles

Base Classifiers Description

Naive Bayes (NB) [29] It is a probabilistic classification technique based on Baye”s Theorem
with an assumption, that each pair of features being classified is
independent of each other.

Decision Tree (DT) [29] The simplest supervised learning method which creates tree structure
to consider target values as discrete set or decision rules known as
classification tree and nodes denotes class labels.

Random Tree (RT) [29] It is a collection of multiple trees which are relatively uncorrelated,
operating as a committee, split out a class with the most votes for
model”s prediction.

Multilayer Perceptron
(MLP) [29]

A supervised feed-forward artificial neural network model which maps
input data onto a set of appropriate outputs and in between these two,
an arbitrary number of hidden layers which work as a computational
engine of the MLP.

Support vector machines
(SVMs) [41]

SVMs are a group of supervised learning methods which makes
use of statistical learning theory for classification. The methods are
proposed by Cortes and [69]. The basic idea of SVM is to identify
a similarity distance between two entities (classes) by considering
a distance metric between them. It could also be used to handle
unbalanced classes.

Ensemble classifiers Description

Random Forest (RF) [29] It is an ensemble-based method used in classification which constitute
multiple decision trees on randomly selected data at training time and
get prediction from each tree and choose best solution by “voting”.

Boosting [61] The method is proposed by Freund [71]. It modifies a training set
by repeatedly applying a basic learning device (i.e., classifier) under
a pre-specified number of iterations. Adaptive Boosting (AdaBoost)
is a well-known Boosting technique.

Bootstrap aggregating
[29]

Bagging is a bootstrap method proposed by Breiman [72] that mainly
extracts a training sample from a training set by returning them
to each extraction. It allocates equal weight to developed models,
thereby reduces the variance related with classification, which in turn
improves the classification process.

Voting [29] It represents the simplest ensemble algorithm used for classification
or regression problems. Each sub model in the algorithm makes
use of “votes” or “algebraic combinations” (mean or the mode) of
heterogeneous predictors to make predictions.
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Table A3. Details of performance measures

Measures Defined as Description

Pd/Recall/TP TP/(TP + FN ) It is defined as the ratio of the number
of defective instances that are correctly
classified as defective to the total number
of defective instances.

Pf FP/(FP + TN ) It is defined as the ratio of the number of
non-defective instances that are wrongly
classified as defective to the total number
of non-defective instances.

Precision TP/(TP + FP) Precision is defined as the number of cor-
rectly identified positive results to the to-
tal number of all positive outcomes, in-
cluding those not recognized correctly.

F1-score (2 × precision ×
Pd)/(precision + Pd)

It is a measure for harmonic mean of Pd
and precision.

Accuracy (TP + TN )/(TP + TN +
FP + FN ) × 100

It denotes the percentage of correctly pre-
dicted instances.

Root mean
square error
(RMSE)

√
1/N

∑N
i=1(Ai − Pi)2 It defines the square root of the mean of

squared differences of actual and expected
predictions.

ROC(AUC) Receiver operating Char-
acteristics (Area under
curve)

ROC(AUC) measures the performance
of the classification problems at various
thresholds in the imbalanced data-set.
ROC is a probability curve, and AUC
represents the measure of separability. If
AUC value is high, the model is predicting
better. It ranges from 0 to 1

False-positive
rate (FPR)

FPR = FP/(TP + TN ) The expectancy of the false-positive ratio
to the total of actual negative.

False-negative
rate (FNR)

FNR = FN/(TP + FN ) The ratio of the individuals with an iden-
tified positive instance for which the clas-
sified test result is negative.

Table A4. Confusion matrix for classifying data as faulty or non-faulty

Actual
Positive Negative

Predicted Positive True-positive (TP) False-positive (FP)
Negative False-negative (FN) True-negative (TN)
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Under the cost evaluation framework, the notations used to formulate
various costs are:

– Ecost: Estimated fault removal cost of the software when software fault prediction
results are used

– T cost: Estimated fault removal cost of the software without the use of software fault
prediction results

– NEcost: Normalized fault removal cost of the software when software fault prediction is
used

– Cu: Normalized value of fault removal cost when unit testing is done
– Ci: Normalized value of fault removal cost when integration testing is done
– Cs: Normalized value of fault removal cost when system testing is done
– Cf : Normalized value of fault removal cost when field testing is done
– Mp: Percentage of modules when unit tested
– FM : Total number of faulty modules, and
– TM : Total number of modules in software projects
– FP, FN : Number of false positives, number of false negatives
– TP: Number of true positives
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