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Abstract
Background: The use of ensemble techniques have steadily gained popularity in several
software quality assurance activities. These aggregated classifiers have proven to be
superior than their constituent base models. Though ensemble techniques have been
widely used in key areas such as Software Defect Prediction (SDP) and Software Change
Prediction (SCP), the current state-of-the-art concerning the use of these techniques
needs scrutinization.
Aim: The study aims to assess, evaluate and uncover possible research gaps with respect
to the use of ensemble techniques in SDP and SCP.
Method: This study conducts an extensive literature review of 77 primary studies on the
basis of the category, application, rules of formulation, performance, and possible threats
of the proposed/utilized ensemble techniques.
Results: Ensemble techniques were primarily categorized on the basis of similarity,
aggregation, relationship, diversity, and dependency of their base models. They were
also found effective in several applications such as their use as a learning algorithm for
developing SDP/SCP models and for addressing the class imbalance issue.
Conclusion: The results of the review ascertain the need of more studies to propose, assess,
validate, and compare various categories of ensemble techniques for diverse applications
in SDP/SCP such as transfer learning and online learning.

Keywords: Ensemble learning, Software change prediction, Software defect pre-
diction, Software quality, Systematic review

1. Introduction

Technology has ensured that software is a fundamental part of every activity. This ne-
cessitates the development and maintenance of good quality software products. However,
rigid deadlines, limited budgets, and scarce resources often impede the development of
competent software products. Thus, it is essential to perform Software Quality Assurance
(SQA) activities so that the quality of software products is not compromised. Software
Defect Prediction (SDP) and Software Change Prediction (SCP) models, which predict
defect prone and change prone parts of software in its early stages of development are
popular means of prioritizing effort for SQA activities. Defect prone and change prone parts,
though few, account for a majority of the defects and changes in a software [1, 2]. Thus,
SQA efforts should be focused on these parts as they need to be meticulously designed and
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carefully verified [3–5]. Software practitioners may design and verify these parts in such
a manner so that future occurrences of defects can be minimized and the effect of changes
may be localized [2, 6–9]. These activities would assure the timely delivery of cost-effective
and maintainable software products.

Over the years, the research community has extensively explored various algorithms
for developing SDP and SCP models. Amongst the various categories, the “ensemble”
techniques are a key category that have been widely investigated by the researchers [10–13].
These techniques are an assembly of diverse base models, where each base model attempts
to resolve the original problem at hand [12], which in our case is the determination of
defect prone and change prone classes. Ensemble Techniques (ET) output the result of the
aggregated base models as “aggregation” provides a more stable and reliable estimate with
an improved predictive ability [14–17]. Combining several diverse base models is analogous
to consulting a committee of experts thereby resulting in more accurate predictions [18].

Given the unique nature of ET and its improved performance over single models, it is
vital to systematically summarize and analyze the empirical evidence for its use in SDP
and SCP literature. Previous studies have comprehensively evaluated the use of ET for
feature selection [19], effort estimation [12], and class imbalance problem [20]. Also, there
have been several efforts by researchers that systematically summarize the SDP and SCP
studies from various aspects. Radjenovic et al. [21] examined various software metrics in
the context of SDP and found object-oriented metrics to be most prevalent. Catal [22]
investigated SDP studies in the period 1990–2009 to summarize the metrics, performance
measures, methods, datasets, and experimental results used in the studies. Hosseini et al.
[23] synthesized the state of the art concerning the use of cross-project models in SDP
studies. Malhotra [10] evaluated the use of several machine learning techniques for SDP.
Amongst other findings, she reported that ET were used in 18% of 65 primary studies.
Wahono [11] conducted a systematic literature review of 71 SDP studies to investigate
the methods, datasets, frameworks, and research trends in SDP. An interesting result of
the review pointed out that researchers have suggested the use of ET and the use of the
boosting algorithm for improving the performance of existing machine learning classifiers.
Two other previous reviews have also scrutinized SDP and SCP studies [24, 25], but with
respect to the use of search-based algorithms and validity threats specific to its usage.
A recent review by Malhotra and Khanna [13] assessed the various predictors, techniques
and their predictive performance, experimental settings and validity threats in 38 SCP
studies. Amongst other results, the review study encouraged the use of ET as they were
found to be popular as well as effective (when evaluated in terms of accuracy and AUC
measures) in the SCP domain. This study complements the previous work as we investigate
the use of ET in both SCP as well as SDP domain (a related area of SCP). We analyze the
several categories of ET, their rules, predictive capability and their possible application in
aiding the SDP/SCP problems. Certain other researchers [26–28] have also reviewed SDP
and SCP literature. However, to the best of the author’s knowledge, there has been no
study till date which has focused on a comprehensive evaluation of the use of ET for SDP
and SCP, which is the primary aim of this study.

To facilitate an extensive analysis of ET used in SDP and SCP literature we examine
the following Research Questions (RQ):
– RQ1: What is the categorization of ET? Which is the most popular category of ET in

SDP/SCP literature?
– RQ2: What are the various applications of ET in SDP/SCP literature?
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– RQ3: Which rules/mechanisms are used for combining base models to form ET in
SDP/SCP literature?

– RQ4: What is the performance of ET for various tasks in the domain of SDP/SCP? How
does the performance of ET compare to other non-ensemble techniques and amongst
each other?

– RQ5: What are the various reported threats to validity specific to the use of ET in
SDP/SCP literature?
The objective of the study is to systematically collect and rigorously evaluate literature

studies that develop classification models using ET to predict defect prone and change
prone parts of a software. This would help in summarizing the current trends for the use
of ET in SDP/SCP literature and further determine gaps in existing research. The study
is structured into five further sections, which includes research methodology followed to
conduct the review (Section 2), review results (Section 3), discussion and proposed future
work (Section 4), threats to validity of the review (Section 5) and conclusions (Section 6).

2. Review methodology

To accomplish our goals, we performed a systematic literature review in three stages
according to the guidelines stated by Kitchenham et al. [29]. The first stage was planning
which included identifying the review objectives and the protocol for conducting the review.
As discussed in the previous section, we evaluated existing systematic reviews on the topic.
However, these reviews did not focus on the application of ET in SDP and SCP. Thus, the
primary objective of this review was to study the existing literature and provide a critical
overview of the use of ET in the domain of SDP and SCP. Thereafter, the research questions
were formulated and the review protocol was defined. The review protocol characterizes
the search strategy for extracting relevant studies from literature, criteria for including
and excluding the collected studies, a benchmark for quality assessment of candidate
studies, processes for data extraction from primary studies, and the method for synthesis
of extracted data. The second stage of the review involves conducting the review according
to the procedures decided in the planning stage. This stage collects the relevant studies
and scrutinizes them if they are fit to be primary studies of the review. Thereafter, data
pertaining to the formulated RQ’s is extracted and synthesized. The last stage of the review
concerns itself with reporting of the findings of the review. Here, we report crisp answers to
the investigated RQ’s and document research gaps in the form of future work to interested
researchers.

2.1. Search strategy

To search for relevant studies, we need to prepare a search string by combining appropriate
search terms. These search terms were determined by selecting “key” terms from the
RQ’s of the review [21]. Furthermore, equivalent terms and other possible spellings were
examined for the identified search terms. Thereafter, the search string was defined by
combining all synonymous terms using Boolean “OR” and all distinct terms by Boolean
“AND”. The following search string was used:

(“software”) AND (“Defect” OR “Fault” OR “Error” OR "Bug" OR “Change” OR
“Evolution”) AND (“proneness” OR “prone” OR “predict*” OR “probability” OR
“classification” OR “empirical”) AND (“Ensemble” OR “Bagging” OR “Boosting”
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OR “Machine learning” OR “Soft Computing” OR “Random Forest” OR “Bootstrap
Aggregating” OR “Adaboost” OR “Combin*” OR “Stack*” OR “Meta*” OR “Rotation
Forest” OR “Voting” OR “Logitboost”).
We conducted the search in five well-known literature sources namely ScienceDirect,

ACM Digital Library, IEEEXplore, Wiley Online Library, and SpringerLink. These sources
were chosen based on our previous knowledge of conducting reviews in the SDP and SCP
domains [13, 24]. Moreover, most of the primary studies in previously conducted systematic
reviews in SDP and SCP are indexed in these sources [10, 11]. The search string was
modified suitably according to the requirements of each literature source. It examined the
title, abstract, and keywords of the studies in the literature databases. The period of the
search was limited from January 2000 to December 2020. We also removed the duplicate
studies which were extracted from more than one source. To avoid missing a relevant study,
we also scanned the reference lists of recent reviews on SDP and SCP [10, 13] and those
of the already collected candidate studies. These efforts resulted in the collection of 182
relevant studies. These studies were further scrutinized using the inclusion and exclusion
criteria stated in the next section.

2.2. Inclusion and exclusion criteria

Before stating the criteria for inclusion and exclusion, we first define “defect proneness” and
“change proneness” attributes of a software entity. Both these attributes are dichotomous.
A software entity is designated as defect-prone if a defect is likely to occur in a subsequent
release of the software. Most of the studies in literature, label a class/module as defect-prone
if one or more bugs have occurred in the class [3, 4]. On the other hand, a software entity is
termed as change-prone if it is likely to change in a future released version of the software
product. Majority of studies labeled software entities with a threshold value of one or more
changes as change-prone [13]. Certain other studies in literature use “median-based” [30]
or “boxplot-based partition method” [31] for labeling change-prone classes [13]. Keeping
these definitions in mind we state the following criteria for inclusion and exclusion of the
collected studies.

2.2.1. Inclusion criteria

– Empirical studies that use ET for SDP or SCP.
– Empirical studies that compare different ET with each other or with other non-ensemble

techniques for SDP or SCP.
– Empirical studies that propose new ET for SDP or SCP.

2.2.2. Exclusion criteria

– Studies that use ET for dependent variables other than defect proneness and change
proneness, such as the number of defects/changes, class stability, just in time defect
prediction, bug assignment, code churn, etc.

– Studies including ET just to compare or demonstrate their proposed models/performance
measures. These studies were excluded as they included ET without any discussion and
did not perform or focus on their empirical evaluation.

– Similar studies that were conducted by the same authors. In case a conference paper is
extended in a journal, the conference paper is excluded.
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– Studies that used clustering or clustering ensembles for prediction.
– Review studies, poster papers, Ph.D. dissertations, and studies with little or no empirical

analysis.
– Studies that were not written in English language.

Study inclusion and exclusion was done in two steps. We first applied the mentioned
criteria on the title, abstract, and keywords. Thereafter, the remaining studies were
adjudged based on their full text. After applying the above discussed criteria, we obtained
106 candidate studies.

2.3. Quality assessment

Each candidate study obtained after application of the inclusion and exclusion criteria
was further subject to quality assessment. This step ensures the selection of only those
studies, which are capable of effectively answering the investigated research questions.
Quality assessment was done by two researchers by formulating a checklist shown in Table 1.
According to the table, criteria (i) evaluates whether the study clearly states its aims,
while criteria (ii) assesses whether ET and its uses have been clearly mentioned in the
study. Criteria (iii) assesses whether the study mentions the base learners and aggregation
mechanism used by the ET. Criteria (iv) allocates lower score to a study if it basis it’s
results on less than five datasets. While criteria (v) focus on selection of an appropriate
validation method such as ten-fold, cross-project or others, criteria (vi) evaluates whether
robust and appropriate performance measures such as Area Under the Receiver operating
characteristic Curve (AUC), Balance, Mathews Correlation Coefficient (MCC) etc., have
been used. Studies that base their results only on biased performance measures like
accuracy are given less scores. Criteria (vii) evaluates whether models developed using ET
are compared with other models, while criteria (viii) allocates a higher score to studies
that have performed statistical validation of their results. Criteria (ix) checks if the study
has mentioned its probable threats. Finally, Criteria (x) gives higher score to a study that
add value to existing literature on ensembles at the time of its publication. As this was
hard to evaluate, due to temporal aspect of relevance of the work, the authors allocated
lesser score to similar studies that were published in the same year. Similar checklists were
used in previous reviews [12, 13, 32]. Each of the two researchers conducting the quality
assessment independently assessed each study on the ten questions stated in the checklist.

Table 1. Quality questions

(i) Does the study state its objectives in a clear and precise manner?
(ii) Is the use of ET and its application clearly defined?
(iii) Are the base learners clearly stated? Are the rules/mechanisms for combining base

learners to form ET clearly described?
(iv) Is the experiment conducted on an appropriate number of datasets?
(v) Are the models developed using ET validated appropriately using effective validation

methods?
(vi) Are the models developed using ET effectively assessed using suitable performance

measures?
(vii) Are the models developed using ET compared with models developed using other

non-ensemble techniques or amongst each other?
(viii) Do the results of the study map to its objectives? Are the results statistically validated?
(ix) Does the study state possible threats to validity specific to the use of ET?
(x) Does the study add value to the existing work on ensembles in SDP/SCP literature?
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The questions could have three possible responses: Yes (score of +1), Partly (score of +0.5),
and No (score of 0). In case the researchers disagreed on the allocated score, a discussion
ensued to allocate a reasonable score. The cumulative score (CS) of the study was a sum
of all the scores of the questions mentioned in the checklist. A study obtaining a score of 5
or more (50% or more) was considered to be of acceptable quality [12, 13, 32]. We rejected
29 studies on the basis of quality assessment. The remaining 77 studies were termed as
primary studies.

2.4. Data extraction and synthesis

For each of the study selected after quality assessment, we extracted the relevant data to
answer the RQ’s. The extracted data consisted of basic details of a paper such as a title,
authors, year of publication, etc. as well as details specific to the experiment that is required
to answer the RQs (mentioned in Table 2). After extracting the data, we need to synthesize
it to appropriately answer the investigated RQ’s. Table 2 mentions the manner in which
the data was analyzed and synthesized with respect to each RQ and the expected result
after the synthesis and analysis.

Table 2. Data extraction and synthesis

RQ Data extracted from
primary study

Data analysis Result

RQ1: What is the
categorization of ET?
Which is the most pop-
ular category of ET in
SDP/SCP literature?

ET Used, Base learners
of ET

Categorization of ET
used on the basis of
base models, i.e., their
similarity, course of
aggregation, cooper-
ative or competitive
relationship, means of
diversity, dependency
amongst themselves
and the type of base
learner used

Pie-charts depicting
percentage of SDP
and SCP studies
using a specific
categorization of ET,
Bar chart of primary
studies using different
categories of base
learners

RQ2: What are the
various applications of
ET in SDP/SCP liter-
ature?

Application or stage
where ET was used

Listing and analyzing
the percentage of pri-
mary studies that uti-
lized ET for a spe-
cific stage/application
while developing SDP/
SCP models

Finding the most com-
mon and sporadic ap-
plications of ET while
developing SDP/SCP
models

RQ3: Which
rules/mechanisms
are used for combining
base models to form
ET in SDP/SCP
literature?

Rules for formulating
the ET used in the
study

Categorizing the
ET in accordance
with aggregation
mechanism (Weighing
or Meta-learning)

A table listing the var-
ious combination rules,
the various ET using
the specific rules and
the number of primary
studies using the rule
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Table 2 continued
RQ Data Extracted from

Primary Study
Data Analysis Result

RQ4: What is the per-
formance of ET for
various tasks in the
domain of SDP/SCP?
How does the perfor-
mance of ET com-
pare to other non-en-
semble techniques and
amongst each other?

Other non-ensemble
techniques used,
datasets used, val-
idation method
used, performance
measures used (such as
accuracy, recall, AUC),
dataset-wise value of
performance measures
for the developed
SPD/SCP model in
the study

Computing boxplots
and various descriptive
statistics of the
extracted performance
measure values,
Dataset-wise com-
parison (vote count
method) and statis-
tical analysis using
Wilcoxon signed-rank
test of ET with
other non-ensemble
techniques based on
their application in
SDP/SCP domain,
Pairwise comparisons
using wilcoxon test
amongst ET based on
their application

Evaluation of perfor-
mance of ET based
on computed statistics
and boxplots, Graphs
representing the
comparative perfor-
mance of ET with
other non-ensemble
techniques, Tables
representing ET
comparison amongst
themselves, Superior
ET for specific applica-
tions

RQ5: What are the var-
ious reported threats
to validity specific to
the use of ET in
SDP/SCP literature?

Threats specific to use
of ET (only extracted
from studies contain-
ing “Threats to Valid-
ity” or “Limitations”
section)

Listing and cat-
egorizing (Con-
struct/External/Internal)
various threats specific
to the scenario when
ET were used in
SDP/SCP

Recommendations
to researchers for
planning future studies
that minimize the
commonly found
threats.

3. Results

This section discusses the review results. We first state the overview of the selected studies
followed by an analysis to answer the various investigated RQ’s. We also discuss and
analyze the review results to determine research gaps. This aids in proposing directions for
future work in the domain.

3.1. Overview of primary studies

The various steps followed to collect the primary studies have already been mentioned in
Sections 2.1–2.3. Figure 1 states the number of studies collected in each step from the
various sources (A–F). The year-wise distribution of primary studies is depicted in Figure 2.
It may be seen from the figure that there has been a consistent increase in the number of
studies using ET in recent years (2016–2020).

Table 3 states all the 77 primary studies along with their study identifier (SI) and
cumulative quality score (CS). ES12, ES37, and ES40 are top-scoring primary studies with
a CS of 9.5. Amongst the primary studies, the most popularly cited study in accordance
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Figure 1. Primary studies collection and source-wise distribution

Figure 2. Year-wise distribution of primary studies

with citation count normalized with respect to year was ES3, followed by ES18, ES8, ES26,
and ES35. We also classified the primary studies based on their publication venue. 33% of
the primary studies were published in conferences, while 63% of the studies were published
in various reputed journals. Three studies were published as chapters. The most popular
publication venues were “Information and Software Technology” journal and “Software
Quality” journal with six and five studies, respectively. Thereafter, “IEEE Transactions
on Software Engineering” was the source of four primary studies. No conference was the
source of more than one primary study. It was also noted that 67 primary studies used
ensembles for SDP, while only 10 primary studies investigated the use of ensembles for
SCP. A similar trend was also observed if we accounted for the rejected studies. Out of
the 29 rejected studies, only four studies developed SCP models, all other rejected studies
developed SDP models.
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Table 3. Primary studies with quality score

SI Study Name CS SI Study Name CS SI Study Name CS

ES1 Jiang et al. 2007 [33] 5.5 ES27 Rubinic et al. 2015
[34]

5.5 ES53 Ali et al. 2019 [35] 7.5

ES2 Ma et al. 2007 [36] 7 ES28 Siers and Islam 2015
[37]

6.5 ES54 Campos et. al. 2019
[38]

6.5

ES3 Lessmann et al. 2008
[3]

8 ES29 Li and Wang 2016 [39] 6.5 ES55 Catolino and Ferrucci
2019 [30]

8.5

ES4 Jia et al. 2009 [40] 5.5 ES30 Malhotra 2016 [41] 8 ES56 Gong et al. 2019 [42] 8.5
ES5 Khoshgoftaar et al.

2009 [43]
6 ES31 Ryu et al. 2016 [44] 8.5 ES57 He et al. 2019 [45] 8.5

ES6 Mende and Koschke
2009 [46]

6.5 ES32 Petric et al. 2016 [47] 9 ES58 Kumar et al. 2019 [48] 6

ES7 Seiffert et al. 2009 [49] 8 ES33 Wang et al. 2016a [50] 8.5 ES59 Li et al. 2019a [51] 10
ES8 Arisholm et al. 2010

[52]
6.5 ES34 Wang et al. 2016b [53] 8.5 ES60 Li et al. 2019b [54] 6

ES9 Liu et al. 2010 [55] 8 ES35 Xia et al. 2016 [56] 8.5 ES61 Malhotra and Kamal
2019 [57]

6

ES10 Zheng 2010 [58] 6 ES36 Alsawalqah et al. 2017
[59]

6 ES62 Malhotra and Khanna
2019b [60]

9

ES11 Seliya et al. 2010 [4] 8.5 ES37 Di Nucci et al. 2017
[61]

9.5 ES63 Tong et. al. 2019 [62] 9

ES12 Misirh et al. 2011 [63] 9.5 ES38 Kumar et al. 2017 [64] 7 ES64 Tran et al. 2019 [65] 6.5
ES13 Peng et al. 2011 [66] 6 ES39 Malhotra and Khanna

2017b [67]
7 ES65 Zhou et. al. 2019[68] 9

ES14 Seliya and
Khoshgoftaar 2011
[69]

8.5 ES40 Ryu et al. 2017[70] 9.5 ES66 Abbas et al. 2020 [71] 6

ES15 Gao et al. 2012 [72] 5 ES41 Yohannese et al. 2017
[73]

6 ES67 Aljamaan and Alazba
2020 [74]

8.5

ES16 Sun et al. 2012 [75] 8.5 ES42 Agarwal and Singh
2018 [76]

5.5 ES68 Ansari et al. 2020 [77] 7

ES17 Wang et al. 2013 [78] 7.5 ES43 Bowes et al. 2018 [79] 7.5 ES69 Banga and Bansal
2020 [80]

5.5

ES18 Wang and Yao 2013
[81]

8 ES44 Chen et al. 2018 [82] 8.5 ES70 Elahi et al. 2020 [83] 7.5

ES19 Kaur and Kaur 2014
[84]

8.5 ES45 El-Shorbagy et al.
2018 [85]

6 ES71 Goel et al. 2020 [86] 5.5

ES20 Panichella et al. 2014
[87]

9 ES46 Malhotra and Bansal
2018 [88]

8 ES72 Khuat and Le 2020
[89]

7.5

ES21 Rodriguez et al. 2014
[90]

8 ES47 Malhotra and Khanna
2018a [17]

8.5 ES73 Malhotra and Jain
2020 [91]

6

ES22 Suma et al. 2014 [92] 5.5 ES48 Mousavi et al. 2018
[93]

7.5 ES74 Pandey et al. 2020
[94]

9

ES23 Chen et al. 2015 [95] 9 ES49 Moustafa et al. 2018
[96]

6 ES75 Rathore and Kumar
2020 [97]

9

ES24 Elish et al. 2015 [98] 6.5 ES50 Tong et al. 2018 [99] 8.5 ES76 Saifan and Abuwaridh
2020 [100]

7.5

ES25 Hussain et al. 2015
[101]

7 ES51 Zhang et al. 2018
[102]

7.5 ES77 Yucular et al. 2020
[103]

9

ES26 Laradji et al. 2015
[104]

7.5 ES52 Zhu et al. 2018 [31] 8.5
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3.2. Categorization of ET

We first list the various ET used in primary studies along with the study identifier using
the specific ET (Appendix, Table A1). An analysis of the Appendix indicates that the
most popular ET were Random Forests (RF), Bagging (BAG), AdaBoost (AB) and Voting
amongst Heterogenous Base Learners (VHetBL) used in 42%, 32%, 32% and 23% of
primary studies, respectively. Thereafter, we categorize the various ET according to five
different criteria [105–107] on the basis of base models as shown in Figure 3. We also
evaluated the percentage of SDP and SCP primary studies according to the ET used by
them corresponding to various categories (Figures 4 and 5). The various categorizations
are explained as follows:

Figure 3. Categorization of ET

1. Similarity of base models: This categorization indicates the similarity of learners used to
construct the base models in an ensemble (homogeneous or heterogeneous). A homoge-
neous ensemble combines base models developed using the same data analysis technique.
Some examples of the homogeneous ensemble include RF, BAG, LB, AB, Rotation Forest
(ROT), Dagging (Dag), Random Subspace (RS), MultiBoost (MBoost), DECORATE,
Logit Model Trees (LMT), Double Transfer Boosting (DTB), Adaptive Selection of
Optimum Fitness (ASOF), Multiple Kernel Ensemble Learning (MKEL), various other
cost-sensitive ensembles like AdaCost, MetaCost (MC), SMOTEBoost (SMBoost),
AdaBoost.NC (BNC), Voting amongst Homogeneous Base Learners (VHomBL), etc.
On the other hand, a heterogeneous ensemble combines base models developed using
diverse data analysis techniques. Examples of heterogeneous ET used in primary studies
are voting based ensembles with varied learners for base models, Stacking, Two Stage
Ensemble (TSE), Non-Linear Decision Tree Forest (NDTF), Best Training Ensemble
(BTE), Combined Defect Predictor (CODEP), Adaptive Selection of Classifiers (ASCI),
etc. It may be noted that the Validation and Voting (VV) ensemble is homogeneous
in ES9 but heterogeneous in ES36. Also, Omni Ensemble Learning (OEL) used by
ES48 is a special category of ET which combines the concept of both homogeneity
and heterogeneity. It uses bagging approach along with random oversampling for

10

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2022/issue-1/article-5/


Megha Khanna e-Informatica Software Engineering Journal 16 (2022) 220105

Figure 4. Percentage of SDP primary studies in each category according to: (a) learner similarity,
(b) aggregation, (c) relationship, (d) diversity, and (e) dependency categorizations

Figure 5. Percentage of SCP primary studies in each category according to: (a) learner similarity,
(b) aggregation, (c) relationship, (d) diversity, and (e) dependency categorizations

handling the class imbalance issue. This can be categorized as homogeneous. However,
in the next stage for SDP, genetic algorithm is used for ensemble selection amongst
34 different base classifiers. This stage of the OEL is heterogeneous. According to
Figure 4a, 65% of the SDP primary studies used homogeneous ET, while 19% of the
studies used heterogeneous ET. The other remaining 16% used both heterogeneous
and homogeneous ET. On the other hand, as depicted in Figure 5a, 70% of the SCP
primary studies used homogeneous ET, 10% used only heterogeneous ET, while 20%
used both homogeneous and heterogeneous categories of ET.
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2. Aggregation of base models: This categorization indicates whether the ensemble aggrega-
tion is top-down or bottom-up. A top-down ensemble combines its base models without
taking into account the outputs generated by them. On the other hand, in a bottom-up
ensemble, the outputs of base models are crucial for aggregating them [108]. Ensembles
that use voting or stacking are a subset of bottom-up ensembles [105]. All the ET used
in primary studies (both SDP and SCP) are bottom-up ensembles as depicted in figures
(Figure 4b and 5b).

3. Relationship amongst base models: This categorization suggests the relationship amongst
different base models for producing the ensemble output. The base models of an ET
could be competitive or cooperative. An ensemble is termed as competitive if only one
of the constituent base model is selected to produce the final output [105]. Examples
of such ET used in primary studies are ASOF, ASCI, BTE, NDTF, Omni Ensemble
Learning, and Multischeme. A co-operative ensemble is the one in which the output
of all the constituent base models is combined to produce the final output [106]. All
other ET mentioned in Table A2 (Appendix) such as RF, AB, LB, CODEP, BAG,
etc. are co-operative ensembles. As shown in Figures 4c and 5c, 94% and 70% of the
primary studies used co-operative ET in SDP and SCP, respectively, while 6% of the
SDP primary studies and 30% of the SCP primary studies used both co-operative and
competitive ET. There was no primary study that used only competitive ET.

4. Diversity of base models: This categorization dictates the means for the diversity of
base models, i.e., implicit or explicit. Implicit ET employs mechanisms for assuring
that the constituent models are diverse [106]. These mechanisms could be random
subsamples of the training data or random selection of features etc. Implicit techniques
do not measure if diversity is introduced or not. Examples of implicit ET are RF, BAG,
SysFor, Multischeme, MC, ROT, RS, Dag, Cost-sensitive Forest, MBoost, Roughly
Balanced Bagging (RBBag), Balanced RF, Sampling based Online Bagging (SOB),
Oversampling based Online Bagging (OOB) and Undersampling based Online Bagging
(UOB). Explicit ET employs a measurement to ensure that the constituent models
are different from each other [106]. Examples include AB, LB, DECORATE, AdaCost,
etc. Explicit ensembles may also use different base learners to ensure diversity among
base learners such as in ASCI, BIT, CODEP, TSE or may use the same learner but
with a significant difference in basic configurations (such as different kernels or different
fitness variant) as in MKEL and ASOF. Figure 4d depicts 38% of the SDP primary
studies used explicit ET, 18% used implicit ET, and the other studies (44%) evaluated
both implicit and explicit ET. Amongst the primary studies that use ET in SCP
(Figure 5d), majority of the studies (70%) investigated both implicit and explicit ET.

5. Dependency amongst base models: This categorization dictates how the various base
models interact with each other (dependent or independent). In dependent ET the
various base models or consequent iterations of an ensemble interact with each other.
A base model constructed later may benefit from the guidance provided by a base
model (iteration) constructed earlier [107]. Some of the dependent ET used in primary
studies are AB, LB, MKEL, AdaCost, DECORATE, TransferBoost, SMBoost, and
DTB. On the other hand, in an independent ET, several base models are constructed
in parallel, which are independent of the other base models (iterations). BTE, NDTF,
CODEP, Stacking, RF, BAG, MC, ROT, VHomBC, and VHetBC are examples of
independent ET used in primary studies [107]. It was observed (Figure 4e) that 37%
of the SDP primary studies used independent ET, 13% used dependent ET and 50%
investigated both dependent and independent ET. However, there was no SCP primary
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study (Figure 5e) that investigated the use of only independent ET, 40% of the studies
used dependent ET, while the other 60% used both independent and dependent category
of ET.
It may be noted that Coding based Multiclassifier (CEL) proposed by ES15 was a very

different type of ET and could not be categorized into the discussed categories.
We also assessed the various categories of base learners used by the ET in each primary

study. The base learners were categorized into various families as suggested by [10, 13, 43].
These categories were tree-based learners, support vector machine, Bayesian learners,
rule-based learners, instance-based learners, search-based algorithms, artificial neural
networks, ensemble learners, logistic regression, and other miscellaneous learners. The base
learners which were included in each category are mentioned in Appendix (Table A2). While
analyzing the data for base learners we found that 14 primary studies did not mention
the base learners used by them. Figure 6 depicts the number of the remaining 63 primary
studies which use base learners from a specific family. According to the figure, tree-based
learners are the most popular category used by 70% of the studies (both SDP and SCP).
Thereafter, Logistic Regression (LR) was used by 56% of the studies. Also, Bayesian
learners were used as base learners in 42% of the primary studies. It was interesting to
note that ET were themselves used as base learners for constructing other ET in 42% of
the studies. We term such techniques as an ensemble of ensembles. Rule-based learners and
instance-based learners were less popular as base learners of ET (used in 20% and 30% of
studies, respectively). Search based algorithms and miscellaneous learners were the least
popular categories as they were each used by only 14% and 19% of the studies, respectively.

Figure 6. Number of primary studies with specific category of base learners

3.3. Application of ET

All the studies collected in the review develop either SDP or SCP models using ET. However,
there are multiple factors that make the task of developing SPD/SCP model difficult and
challenging. ET in the collected studies were not only used for model development but for
also handling these other critical factors which include existence of large number of features,
lack of defect-prone or change-prone instances making the training data imbalanced,
evaluating prediction in realistic online scenarios or unavailability of appropriate training
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data. We investigated the primary studies to ascertain the various applications of ET, i.e.,
what was the underlying use of ET in SDP/SCP. The various applications are listed as
under along with the percentage of primary studies that utilized the ET for the particular
application.
– As a learning algorithm for developing the SDP model (65%).
– As a learning algorithm for developing the SCP model (13%).
– Addressing the class imbalance issue (37%).
– Transfer learning (10%).
– Online Learning (3%).
– Feature selection (1%).

As indicated above, the majority of the studies (65%) used ET as learners for developing
SDP models. On the other hand, only 13% of the primary techniques used ET as learning
algorithms for developing SCP models. ET used for these two applications included RF,
LMT, AB, BAG, LB, DECORATE, VHetBL, VHomBL, VV, ROT, CODEP, Stacking,
NDTF, BTE, RS, Dag, XGBoost, ASCI, ASOF, etc. It may be noted that 85% of the
primary studies developed within-project models for SDP/SCP using validation techniques
such as hold-out validation, k-fold cross-validation, or inter-release validation. However,
there may be a scenario where previous data related to the same project may be unavailable
or difficult to collect [52]. For such a situation, researchers suggest the use of cross-project
models [86, 87, 102]. A critical issue in developing these models is that varied projects
may have different data distributions or different metric sets. To overcome such issues,
a transfer learning mechanism, which derives common observations and expertise from the
available projects and transfers it to the target project [56, 70] is proposed by the research
community. This is a relatively recent application of ET as the first primary study which
used ET for transfer learning was published in 2014 (ES32). As mentioned above, 10% of
the primary studies used ET for transfer learning. These ET were TransferBoost, Improved
Transfer Adaptive Boosting (ITrAdaBoost), Kernel Spectral Embedding Transfer Ensemble
(KSETE), TSE, Value Cognitive Boosting with Support Vector Machine (VCB-SVM),
DTB, VHetBL, and TransferCostSensitive Boosting (TCSBoost).

Another critical issue while developing SDP/SCP models is the presence of imbalanced
training data [20, 57, 67, 109]. In general, a standard classifier assumes that each class is
present in equal proportion, i.e., there is an equal number of defect-prone/change-prone
and not defect prone/not change prone classes in a dataset. This assumption hinders the
development of an effective SDP/SCP model as the class distributions in actual datasets
are biased. This results in erroneous identification of the minority class instances. Therefore,
a popular application of ET in the primary studies was using them for addressing the
class imbalance issue (37% of primary studies). As proposed by Galar et al. [20], we
categorized the ET used for class imbalance in primary studies into Cost-sensitive ET,
Boosting-based ET, Bagging-based ET, and Hybrid ET. Boosting based and Bagging
based ensembles combine Bagging and Boosting with data preprocessing techniques such
as random undersampling, SMOTE, oversampling, etc. Hybrid ensembles combine both
bagging and boosting techniques along with data preprocessing techniques. Furthermore,
we also mention a category of ET namely “Novel” ET, which are proposed by primary
studies but could not be categorized into the above categories.
– Cost-Sensitive ET: MetaCost, AdaCost, Csb2, Adc2, Dynamic Adaboost.NC (DNC),

Adaboost.NC (BNC), Cost-Sensitive Forest, Cost-sensitive Boosting Neural Networks,
MKEL, TCSBoost.
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– Boosting based ET: SMBoost, RUSBoost, WeightedSmoteBoost, SelectRUSBoost, Non-
negative Sparse based Semiboost, DataBoost, MSMOTEBoost.

– Bagging based ET: SOB, OOB, UOB, RBBag, OEL.
– Hybrid ET: MBoost, Ensemble Random Undersampling
– Novel ET: CEL, KSETE, TSE, Bug Prediction using Deep representation and Ensemble

learning.
It may be noted that there were five studies (ES32, ES40, ES56, ES59, ES63) which

proposed ET (VCB-SVM, TCSBoost, ITrAdaBoost, TSE, KSETE) dealing with both
the important issues, i.e., handling class imbalance and transfer learning for cross-project
defect prediction. However, only one study ES14 proposed the SelectRUSBoost technique,
which incorporates feature selection and class imbalance learning. Feature selection involves
choosing a subset of features (independent variables) that develops SDP/SCP models with
good predictive capability. Two studies (ES17 and ES54) used ET for online learning. ES54
used ET for online failure prediction, where past data is correlated with the existing state
of the system to predict the occurrence of faults in near future. The study by Wang et
al. [78], i.e., ES17, deals with the scenario where data continuously arrives in streams,
and the training data is constantly updated with new data. There are multiple runs of
time sensitive prediction which leads to better prediction models that are less biased [110].
ES17 also addressed the issue of class imbalance and proposed the SOB technique. As
there are very few studies that propose comprehensive ET which deal with multiple issues
simultaneously, more such techniques should be proposed and validated in future studies.

3.4. Rules/mechanisms for combining base models

As ET are a combination of different base models, this RQ concerns itself with the mechanism
of aggregating the outputs of constituent base models. We found that the base models were
combined either by giving appropriate weights to the output of constituent base models
or through the process of meta-learning. The construction of a meta-learning ensemble
generally involves multiple learning stages. The outputs of constituent base models act as
inputs to the meta-learner, which is responsible for producing the final ensemble output. The
ET which use meta-learning as a combination mechanism were ASCI, ASOF, MKEL, MC,
Ensemble Selection, Grading, OEL, Stacking, CODEP, GcForest, DeepForest and NDTF.
All other ET used the weighing mechanism for combining the base models. However, there
were two exceptions, which we could not categorize properly into weighing or meta-learning
mechanisms. These were: a) CEL (ES16), which used a specific coding mechanism for
aggregation, and b) LMT, though many LB iterations were performed in LMT, there was
only one resultant tree at the end. Table 4 lists the various combination rules used by the ET,
the number of ET, and the number of primary studies using the specific combination rule.
According to the Table, the most popular combination rule was “majority voting” amongst
the base models, which was used in 78% of the primary studies. The ET which used this rule
were BAG, RF, UOB, OOB, SOB, RS, SysFor, Balanced RF, VHetBL, VHomBL, VV, Extra
Trees and Dag. The next popular combination rule was “weighing based on misclassification
error of the base model” used in 56% of the primary studies. This is a combination rule
generally used by several ET using the Boosting mechanism such as AB, LB, VCB-SVM,
SMBoost, WeightedSmoteBoost, SelectRUSBoost, MBoost, etc. and some others like MKEL.
Another popular combination rule was “Average Probability”, which was used in 14 primary
studies.
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Table 4. Combination rules

Combination rule Number of ET Number of primary studies

Average Probability 9 14
Selection of Best 2 4
Majority Vote 13 60
Maximum Confidence Score 1 1
Weighing based on misclassification error and
cost adjustment

4 4

Weighing based on misclassification error of the
base model

22 45

Weighted adjustment based on misclassification
error and penalty for ambiguity

2 4

Weighing based on MCC obtained by the base
model

1 1

Weighing based on data distribution of target
data, misclassification error, and cost adjustment

2 2

Weighing based on error on the prediction of
instances in the training target data

1 2

Voting based on cost-sensitive labeling of records 1 1
Weighing of base models that lead to objective
function (inconsistency between labels and simi-
larities) minimization

1 1

Weighted adjusted probabilities and probability
adjustment

1 3

Weighing based on predictive performance on
other data

1 2

Weighing based on the predictive capability to
predict hard instances

1 2

Weighing based on predictive performance on
other data and ability to predict hard instances

1 2

3.5. Performance of ET

It is crucial to evaluate the effectiveness of ET for SDP and SCP. To do so, we analyze
the performance measures of the developed SDP and SCP models by various ET in the
primary studies. An analysis of the performance measures used in the primary studies
indicates AUC as the most widely used performance measure (65%) in these studies.
Moreover, the use of AUC for assessing the performance of predictive models has also
been propagated in literature studies as it is capable of handling skewed datasets with
disparate class distributions and the dissimilar cost of various classification errors [67, 111].
AUC is computed by plotting recall and 1-specificity on the y-axis and x-axis, respectively
and estimating the area under the plotted curve. Apart from AUC, Recall and F -measure
performance measures were found to be popularly used in the primary studies. While recall
states the percentage of correctly identified defect-prone/change-prone classes, it gives
us no insight into the number of incorrectly identified defect-prone/change-prone classes.
However, this measure has been used in many previous review studies [10, 13, 23, 24, 27] to
assess the performance of the developed SDP/SCP models. Thus, we include it for assessing
the predictive capability of ET. On the other hand, F -measure, which is computed as
the harmonic mean of precision and recall has not been included in our analysis. Menzies
et al. [112] have criticized the use of precision due to its unstable nature, thus, raising
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Figure 7. Dataset-wise boxplots when ET is used as a learning algorithm
for developing SDP models (a), (b) AUC (c), recall

Figure 8. Dataset-wise boxplots for ET that handle class-imbalance issue (a), (b) AUC (c), recall

concerns over use of F -measure as a performance evaluator [10]. He and Garcia [109] have
also doubted the capability of F -measure while “comparing the performance of different
classifiers over a range of sample distributions”. Therefore, we analyze two performance
measures, AUC, and Recall for determining the predictive performance of ET.

The performance of ET was analyzed dataset wise. Similar to [10], we found that the
most popular datasets used in SDP were NASA datasets (CM1, JM1, KC1, KC2, KC3, KC4,
MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5) and Promise repository datasets such as
AR5, AR6, Jedit (http://promise.site.uottawa.ca/SERepository/datasets-page.html). Some
other open-source datasets (Gate, Intercafe, Lucene, Xalan, Tomcat, Synapse, Velocity,
etc.) and application package datasets (Bluetooth, Contacts, Email, Calendar, Telephony,
etc.) from the Android operating system were also used by primary studies for SDP. Similar
to SDP, various open-source software datasets were used by SCP studies such as ArgoUML,
FreeMind, Eclipse, Ant, Lucene, Gate, KolMafia, etc. and datasets from the Android
operating system.

We analyze the performance of only those ET whose performance measures (AUC and
Recall) could be extracted from at least two or more studies and have been validated on at
least three or more datasets. This was done to yield generalized results and comparisons
across studies. The performance of ET was assessed with respect to datasets and outlier
values (Figs 7–9) were disposed off. Thereafter, various statistics were reported. By using
such rules, an ET that might have shown exceptional performance in just one study or
on specific datasets will not be designated as a good performer in the SDP/SCP domain.
As ET have several parameter values such as the number of base models, different base
learners, etc., their performance values may vary a lot. However, we are interested in
finding the best values of ET. Thus, we use the following rules while extracting the values
of performance measures:
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Figure 9. (a), (b) Dataset wise AUC and recall boxplots for ET used for transfer learning,
(c) dataset wise AUC boxplot for ET used as a learning algorithm for developing SCP models

– If an ET has been evaluated on the same dataset, more than once in a study (maybe
with different internal parameter settings), we report the highest values.

– If two studies have evaluated an ET on the same dataset, we again report the highest
values amongst the two studies for the particular dataset.
The rules for extracting the performance measures are similar to the ones used by

[13, 24].

3.5.1. Assessment of performance statistics of ET

We grouped the ET according to the various applications they were used for (Section 3.3).
Figures 7–9 depict the boxplots of the ET for AUC and Recall performance measures. The
outliers are labeled with their corresponding dataset names. As some ET were used for
more than one application, we segregated the studies according to the application the ET
was used for to construct the boxplots. For instance, AB, BAG, LB, and RF were used
both as learning algorithms for developing SDP and SCP models. Figures 7a and 7b depicts
the boxplots when they were used for developing SDP models and Figure 9c depicts the
boxplot when they were used for developing SCP models. TCSBoost has two applications
(addressing class imbalance and transfer learning). However, we include it in the Transfer
learning application for simplicity. The performance measure values for VHetBL could be
extracted for two applications: as a learning algorithm for developing SDP models and for
transfer learning but since we could extract the values for transfer learning application in
only one study for VHetBL, we only reported the values for its application as a learning
algorithm for developing SDP models. Similarly, the performance measures values for TSE
could be extracted for two applications, i.e., for transfer learning and for addressing the
class imbalance issue. But since only one study reported values for the transfer learning
application, we include TSE as an algorithm for addressing the class imbalance issue.

Table 5 reports the AUC and Recall statistics of ET for various applications. These
statistics were computed after removing the outliers depicted in Figures 7–9. The table
reports the minimum, maximum, mean, median, standard deviation, and the count of the
number of datasets from which the statistics are computed for each ET. According to
the table, apart from Stacking and MKEL all ET depicted a mean AUC score of 0.75 or
above for three of the discussed applications namely as a learning algorithm for developing
SDP and SCP models and for addressing the class imbalance issue. This indicates the
favorability of ET for these applications. Though, a little lower, but ET for transfer learning
showed AUC mean values of 0.65 indicating they could be effective for it. However, we
could analyze the AUC values for just one ET in the transfer learning domain. CODEP,
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Table 5. Performance measure statistics of ET for various applications

ET Performance
measure

Dataset
count

Minimum Maximum Mean Median Standard
deviation

Learning algorithm for developing SDP models

AB AUC 40 0.53 0.99 0.81 0.79 0.13
Recall 20 35.34 99.00 78.63 85.00 16.43

BAG AUC 42 0.51 0.99 0.81 0.81 0.11
Recall 24 32.00 100.00 84.16 91.65 17.40

Boosting AUC 18 0.58 0.87 0.76 0.77 0.07
Recall 3 11.80 16.90 13.90 13.00 2.17

CODEP AUC 8 0.81 0.89 0.87 0.88 0.02

LB AUC 28 0.60 0.84 0.75 0.75 0.07
Recall 6 62.70 67.22 65.54 66.09 1.61

LMT AUC 17 0.66 0.92 0.76 0.76 0.07
Recall 7 62.30 71.95 67.05 67.14 2.95

RF AUC 55 0.61 1.00 0.80 0.79 0.10
Recall 46 13.70 100.00 68.06 70.60 26.41

ROT AUC 20 0.65 0.87 0.79 0.81 0.06
Stacking AUC 13 0.37 0.50 0.46 0.49 0.05

VHetBL AUC 14 0.66 0.86 0.78 0.79 0.05
Recall 6 75.00 90.00 82.00 81.00 4.61

Handling class imbalance issue

BNC AUC 12 0.60 0.94 0.78 0.79 0.08

CEL AUC 17 0.75 0.98 0.86 0.84 0.07
Recall 14 32.00 87.67 61.21 66.86 20.69

DNC AUC 9 0.76 0.87 0.81 0.80 0.03
Recall 10 66.00 88.70 76.71 76.42 5.78

MKEL AUC 8 0.64 0.77 0.71 0.71 0.04
Recall 12 55.00 81.00 70.59 72.07 8.93

MBOOST AUC 18 0.50 0.98 0.83 0.85 0.13
Recall 8 82.05 95.74 90.59 91.73 4.56

RUSBoost AUC 16 0.63 0.96 0.77 0.79 0.09
Recall 8 49.20 63.00 55.98 56.35 4.11

SMBoost AUC 16 0.60 0.96 0.78 0.77 0.09
Recall 9 35.70 74.20 55.53 63.10 13.44

TSE AUC 12 0.66 0.94 0.76 0.75 0.08

Transfer learning

DTB Recall 33 8.90 92.40 55.56 59.50 21.61
TCSBoost Recall 33 10.90 86.60 48.05 50.00 21.73

VCB-SVM AUC 33 0.53 0.84 0.65 0.63 0.08
Recall 30 26.60 71.30 53.23 54.75 9.53

A learning algorithm for developing SCP models

AB AUC 13 0.65 0.96 0.77 0.74 0.09
BAG AUC 15 0.65 0.99 0.85 0.85 0.09
LB AUC 13 0.68 0.98 0.79 0.76 0.11
RF AUC 13 0.71 1.00 0.85 0.78 0.11
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BAG and ROT depicted the best median AUC values 0.88, 0.81 and 0.81, respectively
for their use as a learning algorithm for developing SDP models. BAG also attained the
best median AUC value (0.85) for its use as a learning algorithm for SCP models. MBoost
depicted the best median AUC values (0.85) for handling imbalanced datasets.

An analysis of the mean Recall values stated in Table 4 indicates that the values range
from 60%–90% in the majority of the cases except for Boosting and some of its variants
such as DTB, RUSBoost, SMBoost, VCB-SVM, and TCSBoost. These ET depicted poor
recall values which were in the range of 48%–55%. On the other hand, other ET based on
boosting mechanism such as AB and MBoost depicted exceptionally good median recall
values (AB: 85.00%, MBoost: 91.73%). Thus, future studies should continue to explore
and validate various ET based on the boosting mechanism. The statistics of the AUC and
Recall values reported in Table 5 confirm the capability of ET for the various discussed
applications. Moreover, the use of ET should be encouraged for these applications.

3.5.2. Comparative performance of ET with other techniques

To ascertain the effectiveness of ET, it is important to compare them with other non-ensemble
techniques. The rules for extracting data for comparison were similar to the ones stated
in Section 3.5.1. As discussed previously, the comparison was done with respect to the
application the ET is used for. In order to perform the comparison, we used only the AUC
performance measure due to its robustness and stability. We do not compare the techniques
based on recall values as analyzing recall may not give a comprehensive picture in the
case of imbalanced datasets [67] and since our comparison is dataset wise we should select
the performance criteria for comparison wisely. It may be noted that we could extract
relevant data for comparing only two applications of the ET, i.e., as a learning algorithm
for developing SDP models and as a learning algorithm for developing SCP models.

We compared 10 ET (AB, BAG, LB, LMT, RF, Boosting, CODEP, ROT, Stacking,
VHetBL) with 10 non-ensemble techniques (Artificial Neural Network (ANN), Bayesian
Network (BN), Decision Tree C4.5, Classification and Regression Tree (CART), Decision
Table (Dec.T), K-Nearest Neighbor (KNN), LR, Naïve Bayes (NB), Support Vector
Machine (SVM), Voting Feature Intervals (VFI)) to assess their capability as a learning
algorithm for developing SDP models. The non-ensemble techniques that were chosen for
comparison were based on two criteria: a) the data for comparison could be extracted so
that ET could be compared on at least 3 or more datasets, which were used in at least
2 or more studies b) they should represent the various categories of learners as depicted
in Figure 6. The chosen non-ensemble techniques were representative of support vector
machine, i.e., SVM, artificial neural networks, i.e., ANN, tree-based learners (C4.5 and
CART), Bayesian learners (NB and BN), rule-based learner, i.e., Dec.T, instance-based
learner, i.e., KNN, statistical learner, i.e., LR and miscellaneous learner, i.e., VFI. The
comparison was performed using vote count method (dataset wise), i.e., we computed the
number of datasets (votes) on which a specific ET is better than a specific non-ensemble
technique and the number of datasets (votes) on which a specific ET is worse than a specific
non-ensemble technique in terms of AUC value. These results are depicted in Figure 10.
For instance, in Figure 10a, the AUC value of AB was better than BN in 17 datasets, while
the AUC value of AB was worse than BN in 9 datasets. This means 17 votes favor AB and
9 votes are against AB, when compared with BN. Similarly, in Figure 10b, the AUC value
of Boosting was better than C4.5 by 12 votes and there were 6 votes against Boosting
when compared with C4.5.
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Figure 10. Comparison results of ET with non-ensemble techniques when they are used
as a learning algorithm for developing SDP models

Apart from comparing the results dataset wise, we also performed a statistical analysis of
the comparison between an ET and the various chosen non-ensemble techniques. Wilcoxon
signed-rank test with Bonferroni correction was conducted to pairwise compare the AUC
values of an ET and the various other compared techniques. Though, while conducting
pairwise comparisons paired t-test is a common choice, Wilcoxon signed-rank test is
considered safe as it does not require the underlying data to follow normal distribution.
Moreover, in case of Wilcoxon signed rank test, its outcome is generally less influenced by
exceptionally superior or inferior performance of a technique corresponding to a dataset
(i.e., an outlier) [113]. These reasons favor the use of the test for the comparison. The test
was conducted at an α value of 0.05. The results of these pairwise comparisons are also
depicted in Figure 10 (at the top of data columns). If an ET fared significantly better than
the compared non-ensemble technique it was depicted as B*, however, if the ET was better
but the results were not significant it was depicted as B at the top of the data column (in
Figure 10). Similarly, if the ET turned out to be significantly poorer than the compared
non-ensemble technique, it was depicted as W* and if it was worse but not significantly,
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it was depicted with the symbol W. For instance, according to Figure 10a, RF is better
than ANN, Dec.T, KNN and NB. But these results were not significant. However, RF was
significantly better than BN, C4.5, CART, LR, SVM, and VFI according to the Wilcoxon
signed-rank test. As depicted in Figure 10b, the AUC values of ROT on various datasets
were found to be worse than ANN, CART, and KNN, but not significantly.

According to the results shown in Figure 10, BAG, RF and CODEP exhibited the
best AUC values as they were better than all the compared non-ensemble techniques,
and more so significantly better than 7, 6 and 3 non-ensemble techniques, respectively.
Thereafter, the results of AB, Boosting, and ROT were also good as they were better than
the majority of the compared non-ensemble techniques and were only not significantly
worse than a maximum of three compared techniques. The results of Stacking were quite
poor as it was found worse than the majority of the compared techniques. It was interesting
to note while comparing different ET that Stacking, a heterogeneous ET showed the worst
results. However, VHetBL and CODEP other heterogeneous techniques showed encouraging
results. Though, VHetBL, uses the weighing mechanism for aggregation, both CODEP
and stacking use meta-learning as combination mechanisms.

We also compared the performance of ET as a learning algorithm for developing SCP
models. However, we could only extract the AUC results of three non-ensemble techniques
(ANN, LR, and NB) to be compared with four ET namely AB, BAG, LB, and RF. Similar
to the comparison performed for the application as a learning algorithm for developing SDP
models, we compared the AUC values dataset wise and performed Wilcoxon signed-rank
test with Bonferroni correction. The results of the comparison and the statistical test are
indicated in Figure 11. According to the figure apart from the case when AB was compared
with ANN, all other ET were found better than the compared non-ensemble techniques.
Wilcoxon test results indicated BAG to be the best as it was significantly superior than all
the compared techniques.

Figure 11. Comparison results of ET with non-ensemble techniques when they are used
as a learning algorithm for developing SCP models

The results discussed in the section indicate that the AUC values of the majority of
the analyzed ET were found better than the non-ensemble techniques. The primary reason
for the good performance of ET is that they combine multiple learners and give stable
results as compared to single learners. Also, the various base models of ET are of diverse
nature, i.e., several base classifiers are combined that explore a “set of hypotheses” as an
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alternative to a single model that searches the “best hypothesis” [114]. This mechanism
thereby improves the performance of ET as compared to non-ensemble techniques that are
single classifiers. The results discussed in the section favor the use of ET for the explored
applications and in other related domains.

3.5.3. Comparative performance amongst ET

As indicated in the previous two sections, ET have been found effective in the SDP/SCP
domain for doing various tasks. Furthermore, we intend to evaluate if a specific ET
outperforms others in the various applications where they are used. We pairwise compare
the AUC values (dataset wise) of all the ET amongst each other for each application and
analyze whether a specific ET is significantly better than the majority of other ET for
a particular application. The rules for comparing different ET and extracting the AUC
values are similar to the ones mentioned in the previous sections. For comparison amongst
ET we use Wilcoxon signed-rank test with Bonferroni correction at an α value of 0.05.

Tables 6–8 state the Wilcoxon test results when we compare ET amongst each other,
which are used for applications, i.e., as a learning algorithm for developing SDP models,
for addressing the class imbalance issue, and as a learning algorithm for developing SCP
models respectively. The tables use the following symbols:
– B: When the results of ET depicted in the row is found better than the results of ET

depicted in the column. However, not significantly.
– B*: When the results of ET depicted in the row are significantly better than the results

of the ET depicted in the column.
– W: When the results of ET depicted in the row are found worse than the results of ET

depicted in the column. However, not significantly.
– W*: When the results of ET depicted in the row are significantly worse than the results

of the ET depicted in the column.
– EQ: When both the compared ETs get equivalent results, i.e., neither worse nor better.
– ND: When the data to compare the ETs could not be extracted from the primary

studies.
It may be noted that we could not compare ET for the application of transfer learning

as we could extract AUC statistics for only one technique (VCB-SVM) for this application.
Table 6 compares the ET that were used as a learning algorithm for developing SDP

models. The Wilcoxon test results in Table 6 depict that the Stacking technique was found

Table 6. Comparison amongst ET for use as a learning algorithm for developing SDP models
(Wilcoxon test results)

AB BAG Boosting CODEP LB LMT RF ROT Stacking VHetBL

AB – W B W B B W B B* B
BAG B – W W* B B W B B* B
Boosting W B – W B W W W B W
CODEP B B* B* – B ND B B B B
LB W W W W – W W W B* W
LMT W W B ND B – W W B W
RF B B B W B B – W B* B
ROT W W B W B B B – B* B
Stacking W* W* W W W* W W* W* – W*
VHetBL W W B W B B W W B* –
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worse than all the compared ET. On the other hand, the results of CODEP, another
heterogenous ensemble that uses the meta-learning combination mechanism was found
better than all the other compared ET. Apart from Stacking and CODEP, all the other
compared ET use the weighing mechanism for combining the base models. Amongst the
ET that used weighing as a mechanism for combination, LB exhibited the worst results. It
was only found better than Stacking. The best results were shown by the RF technique
as it fared better than seven of the other compared ET. However, it may be noted that
the results of RF was significantly better in only one case (when compared with stacking).
After CODEP and RF, ROT, AB and BAG showed good results as they were found better
than 5 or more compared ET.

Table 7 depicts the comparison results (Wilcoxon test) amongst ET which were used
for specifically handling the class imbalance issue. According to the Table, the MBoost
technique was the best as its AUC results were better than seven of the compared ET,
moreover significantly better than three ET (MKEL, RUSBoost, SMBoost). The next
best results were shown by the CEL technique, which was found better than all the other
compared ET except MBoost. The worst ET according to the table was MKEL, as its
AUC values were poorer than all the compared ET. The poor performance of MKEL could
be due to the random selection strategy used to initialize the training set. It is a possibility
that no defective samples were selected in the initial training set, thus leading to poor
results [50]. RUSBoost was found better than only MKEL and TSE while SMBoost was
found better than three ET (MKEL, TSE, and RUSBoost). It is interesting to note that
MBoost, a combination of wagging and boosting gives exceptionally good results however,
just boosting when combined with a sampling technique (such as SMOTE (SM) or Random
Undersampling (RUS)), though handles the class imbalance issue, but fares poorer than
most of the other explored ET in the domain.

Table 7. Comparison amongst ET for handling class imbalance issue (Wilcoxon test results)

BNC CEL DNC MKEL MBoost RUSBoost SMBoost TSE

BNC – W B B W EQ B B
CEL B – B B* W B* B* B
DNC W W – B W B B B
MKEL W W* W – W* W W W
MBoost B B B B* – B* B* B
RUSBoost EQ W* W B W* – W B
SMBoost W W* W B W* B – B
TSE W W W B W W W –

Table 8 states the Wilcoxon test results of the comparative performance of ET when
used as a learning algorithm for developing SCP models. According to the table, the best
ET was BAG as it was better than all the other compared ET, moreover, the results were
significant in two out of three cases. The AB technique exhibited poor AUC values and was
found significantly worse in all the comparisons. Similarly, the LB technique also showed
poor results than most of the other compared ET. The RF technique also exhibited good
results for this application.

According to the results, we find that RF and BAG turned out to be a superior
technique as a learning algorithm for developing both SDP and SCP models. BAG creates
multiple bootstrap training samples for developing diverse base models. RF combines the
bootstrap samples used in bagging along with random features to create diverse base
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Table 8. Comparison amongst ET for use as a learning algorithm for developing SCP models
(Wilcoxon test results)

AB BAG LB RF

AB – W* W W*
BAG B* – B* B
LB B W* – W*
RF B* W B* –

models. Though, CODEP technique also showed good results, it was evaluated in only
three primary studies. However, both BAG and RF have been widely used in literature
studies for various applications in the SDP/SCP domain. A key reason for their popularity
is their effective performance and ease of availability, i.e., open-source tools such as WEKA
[115], etc. have efficient implementations of BAG and RF. On the other hand, ET like
CODEP, ROT, MBoost, and CEL though exhibited good results in different applications
are rarely used in SDP/SCP literature. This could be possibly because of the lack of tools
that provide their implementation. These techniques should be widely explored in future
studies. It may also be noted that though the comparison results indicate that Stacking,
TSE and MKEL performed worse than the majority of the other compared ET, but there
were very few studies that could provide data for comparing these ET. Thus, these results
are not necessarily true in all scenarios. Researchers must perform more experiments that
investigate different ET and compare different ET for a specific application.

3.6. Threats specific to the use of ET

While using ET for SDP/SCP, it is essential to understand the possible threats one needs to
address for the effective application of these techniques. This would allow the computation
of effective and realistic results. We extracted threats specific to the use of ET from the
“Threats to Validity” or the “Limitations” section of the primary studies. However, we
found that 42% of the primary studies did not report their threats (i.e., did not have any
“Threats to Validity” or “Limitations” section). Another section of primary studies (25%)
though stated their corresponding threats but did not specify any threats on the use of
ET. Only 33% of studies stated threats specific to the use of ET.

The threats extracted from the primary studies were further categorized into ‘Construct
validity’, ‘Internal Validity’, and ‘External Validity’ threats [116]. We state only those
threats which could be extracted from two or more primary studies. This was done to
eliminate threats that are specific to the experimental designs of a corresponding study.
The various threats extracted from primary studies are listed in Table 9.

The extracted ‘Construct Validity’ threats in Table 9 state that the various internal
parameter settings, base learners, and combination mechanisms are not experimented by the
primary studies. However, it may be noted that though parameter tuning mechanisms [117,
118] may produce effective internal parameter settings, it is very difficult for a researcher to
account for a change in base learners and combination mechanisms. In fact, researchers may
perform experiments just to evaluate various base learners and combination mechanisms of
specific ET (such as ES18).

A critical threat to internal validity is the proper re-implementation of ET (pro-
posed/explored by other studies) for comparing its results with the ET proposed in the
corresponding primary study. This needs to be done very carefully, and the results of the
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Table 9. Threats to validity specific to the use of ET

Threat Supporting studies

Construct validity

Does not experiment with various internal parameter settings
of the ET or ensemble size

ES8, ES9, ES25, ES31, ES32,
ES40, ES44, ES54, ES56, ES59,
ES65, ES67

Does not experiment with different base learners for a specific
ET

ES11, ES12, ES20, ES52, ES54,
ES59, ES75

Does not account for the variation of results with the change
in combination mechanism

ES12, ES20

Internal validity

Threat concerning proper re-implementation of ET proposed
by other studies for comparison with other ET

ES22, ES37, ES59

Bias concerning the selection of ET used in the study ES25, ES37, ES70
Use of random sample selection strategy for training the ET ES33, ES34, ES57

External validity

The number and nature of datasets used for validating the
ET may not be appropriate to produce generalized results

ES25, ES77, ES65

Bias concerning the selection of baseline models for comparing
ET to obtain generalized results

ES52, ES55, ES77

re-implemented ET should be matched with base studies to ensure they have been properly
replicated. However, we would like to add, as previously mentioned in Section 3.2, 18%
of primary studies did not mention the base learners used by the ET, moreover, 17% did
not mention (or partially mention) the ensemble size used by them. Such practice makes
replication of ET impossible. Researchers must mention all the parameter settings, base
learners, and ensemble size of the ET used by them. Other internal validity threats involve
bias in the selection of ET used by a study, and use of random selection strategy used for
training certain ET (such as MKEL).

One threat to “External Validity” (Table 9) states the bias in the selection of datasets
for performing the experiment. However, this threat can only be mitigated by using datasets
of varied domains, sizes, and programming languages. The other external validity threat
concerns itself with the selection of baseline models for comparing the ET. A researcher
should choose a representative set of baseline models that are widely used by researchers
for a specific application or represent various categories of algorithms (such as while
analyzing ET for the class imbalance issue, a researcher may select baseline models that
are representative each from Cost-sensitive ET, Boosting based ET, Bagging based ET,
Hybrid ET and Novel ET as discussed in Section 3.3). Moreover, a researcher should clearly
state the reason behind his choice of baseline models for comparison.

4. Discussion of results and future work

This section discusses the results presented in Section 3 and analyzes the gaps in the
literature. Out of the 77 primary studies, only 10 studies used ET for SCP, all other studies
were focused on SDP. Both SDP and SCP are important key activities that aid in software
quality improvement. Thus, researchers should compulsorily conduct more studies that
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analyze and compare the capabilities of ET for various tasks in SCP apart from SDP.
Furthermore, on the basis of the analysis conducted in this paper, we propose future work
to researchers, which is discussed in the following sections.

4.1. Discussions related to RQ1

RQ1 attempts to categorize various ET used in literature according to the base learners
used and other criteria involving their fucntioning.
– As discussed in RQ1, ET were categorized on various parameters such as the similarity of

learners used by base models, their aggregation, relationship, diversity, and dependency.
Though the primary studies of the review investigated ET that corresponded to most of
these categories, few categories were ignored by a majority of the studies. For instance,
no study used an ET which used the top-down approach for aggregation of base
models. Also, there were very few studies which investigated ET that had competitive
relationship amongst base models. Future studies should evaluate these less commonly
explored categorizations of ET.

– While analyzing the families of machine learning techniques used as base learners, we
found that only 11% of primary studies used search-based algorithms as base learners.
Researchers have ascertained the effectiveness of search-based algorithms in the domain
of software quality predictive modeling [26]. Therefore, future studies should extensively
explore ET that use search-based algorithms as base learners.

– Another interesting class of ET (explored by 35% of primary studies) were ensembles of
ensembles that use ET such as RF, BAG, AB, and Gradient Boosting as base learners.
Apart from these ET other techniques such as ROT, MC, Random Subspace or other
ET should be investigated as base learners for forming new ensembles. Certain primary
studies also proposed new ensemble of ensembles such as Deep Forest (ES65), Ensemble
Random Undersampling (ES44) and others. However, it was also observed that only
one primary SCP study evaluated ET as base learners. More studies which assess the
use of ensemble of ensembles should be conducted in the domain of SCP.

– The essence of ET is aggregation of several base models to yield a more stabilized and
reliable predictive outcome. However, all the base models of an ET use the original
feature set of the training dataset. These original features primarily quantify the
measurements in the process (such as evolution-based metrics [9]) or the code structure
(represented by code metrics [7]). On the contrary, deep learning techniques in SDP
generates new higher-level features from the original given feature set which symbolize
the semantic attributes and have found to yield better predictive outcomes than models
developed using original feature set [119, 120]. However, they do not generate multiple
models to provide aggregated and stabilized results. A culmination of both these
techniques, i.e., deep learning and ensemble learning is promising. Such a combination
has been explored by two primary studies. ES65 uses Deep Forest for ensembles while
ES74 uses deep representation of software metrics followed by two stage ensemble
learning. The results of both the studies have ascertained that blend of deep learning
and ensemble learning is successful and would yield upscaling of current SDP models.
Researchers in future should further explore the combination of these two paradigms
for conclusive and generalized results.

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2022/issue-1/article-5/


Megha Khanna e-Informatica Software Engineering Journal 16 (2022) 220105

4.2. Discussions related to RQ2

RQ2 investigates the various applications for which ET have been utilized in SDP/SCP
literature.
– We found only six ET namely SOB, OOB, UOB and three heterogeneous learners based

on plurality voting, soft voting and stacking, which were explored for online learning
in SDP. Moreover, there were only two primary studies that evaluated ET for online
learning. There is an urgent need for more studies that assess and evaluate ET for
online learning not just for SDP but for SCP too.

– After analyzing the results of RQ2, we found that 65% of the studies used ET as
a learning algorithm for developing SDP models. However, there are various other less
commonly explored applications of ET such as transfer learning (explored by 10% of
primary studies) which need more investigation by the research community. It may also
be noted that we could not find sufficient data to assess and compare ET for these less
explored applications. These observations necessitate a mandatory step by the research
community in exploring ET for transfer learning and other less explored applications.

– Researchers in the future should propose ET that collectively deal with diverse issues
such as handling imbalanced data and online learning together or other unified ET
such as TCSBoost that deal with multiple issues simultaneously. Studies should also
be conducted to extensively validate such proposed techniques and obtain generalized
conclusions concerning their effectiveness.

4.3. Discussions related to RQ3

RQ3 analyzes the various mechanisms/rules which have been used to aggregate base models
in ET used in SDP/SCP literature.
– Researchers may conduct studies where they experiment with different base learners

for a specific ensemble technique. The results of such studies can be used to effectively
choose base learners as there are a wide variety of options available in literature as
discussed in RQ1. Studies should also be conducted to evaluate different combination
rules, i.e., if they improve or deteriorate the performance of a specific ensemble technique.

– As we evaluated the various combination mechanisms used in ET, we found that
there was a need to extensively validate the ET which are based on the meta-learning
mechanism. The performance of such techniques (evaluated in RQ4) could not be
generalized as though CODEP yielded exceptionally good results, the results of Stacking
was found to be poor when compared with non-ensemble techniques and amongst each
other. However, as the comparison data for these techniques could be extracted from
very few studies, these techniques should be explored by large number of studies in
both SDP as well as SCP.

4.4. Discussions related to RQ4

RQ4 evaluates the performance of ET for the various applications in SDP/SCP domain.
It also attempts to compare the performance of ET amongst each other and with other
non-ensemble techniques for the various applications.
– While conducting comparisons for RQ4, we were not able to effectively compare all the

applications of ET. Thus, more studies should be conducted which provide comparisons
of ET amongst each other and with different non-ensemble techniques for varied
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applications. Moreover, apart from AUC, other stable performance measures such as
MCC [90] or Balance [63] should be widely used by researchers to report and compare
the results of SDP/SCP models developed using various ET. Different ET that address
the class imbalance issue may also be compared based on “cost-effectiveness” to provide
a comprehensive picture to other researchers and software practitioners.

– Certain ET such as ROT, MBoost, and CEL, though exhibited promising results were
not widely used by primary studies. Such ET should be thoroughly investigated for
various applications. Also, various ET such as Multischeme, Non Negative Sparse-based
Semiboost, RBBag, ASCI, DECORATE, ASOF, etc., were only investigated in one
primary study each. More studies must be conducted which evaluate and compare such
ET in the SDP/SCP domain.

– It was also observed that ET belonging to the same category may exhibit contrasting
results. For instance, as Stacking, CODEP and VHetBL are heterogeneous ET, but
exhibit very different results when they were compared as a learning algorithm for
developing SDP models. Researchers in future should conduct comparisons amongst
specific categories of ET such as comparison amongst heterogeneous learners for several
applications to observe their capabilities and effectiveness.

4.5. Discussions related to RQ5

RQ5 scrutinizes the primary studies for the various threats specific to the use of ET in
SDP/SCP literature.
– The threats specific to ET could be extracted from just a few studies. As a good practice,

researchers should state all the possible threats to validity in their studies. Moreover,
they should design their experiments so that possible threats can be minimized as far
as possible.

– The review results indicated several primary studies that did not either state the base
learners used (18% of primary studies) or did not mention the ensemble size (17% of
primary studies). Such incomplete information hinders the replication of results by
other researchers. Also, several researchers proposed new ET, however, they should
be encouraged to provide tools for their proposed techniques. This would enable other
researchers to validate and replicate their proposed techniques. If not tools, researchers
should at least clearly state all the internal parameter settings, base learners used,
and combination mechanisms so that others may replicate and repeat their results for
comparison.

5. Threats to validity

This section discusses the various threats to the validity of this review. The search for
relevant studies of the review included the formulation of a search string by choosing
specific search terms from the research questions. The search string was thereafter used to
retrieve studies from five electronic databases. However, it may be the case that certain
relevant studies may not include the search terms in their titles, abstracts, or keywords. We
might miss such studies. In order to address this threat, we manually scanned the reference
lists of all the extracted studies so that we may not miss a relevant study. Furthermore, we
also scanned the reference lists of two recent reviews [10, 13] conducted on SDP and SCP.
We are positive that these steps reduce the risk of missing out on a relevant study.
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Another possible threat to the review results occurs from our assumption that all the
primary studies present their results in an unbiased manner. However, there could be
publication bias, wherein there are higher chances that positive results of ET are reported
rather than negative results [32]. There is a possibility that the authors of a study may
incorrectly claim that their proposed ET is better than other ET prevalent in literature. In
order to encounter this threat, we included “empirical studies which compare different ET
with each other or with other non-ensemble techniques for SDP or SCP” as an inclusion
criterion (mentioned in Section 2.2.1). Such studies only aim to compare various existing
ET, and do not propose their own techniques. Therefore, such studies would report both
favorable and unfavorable results of ET, mitigating the publication bias.

To evaluate the capability of ET for various applications related to SDP and SCP, we
performed a comparison of the results of SDP/SCP models developed by various ET and
non-ensemble techniques. For doing so, data was extracted from different primary studies.
However, these studies use diverse experimental designs and settings (internal parameters
of ET, size of ET, base learners of ET, independent variables, datasets, preprocessing
techniques, etc.). This could be a possible threat to the review. This threat was mitigated
by reporting the statistics dataset wise, after removing the outliers. This would ensure that
exceptional values reported by a specific study due to its corresponding experimental design
are removed. Moreover, we also state the median values to report the most common values
rather than extreme results reported by a study. Another possible threat in comparing
ET and non-ensemble techniques is that there could be certain bias in the dataset wise
comparison performed in the review. As already pointed out, we collect only those studies
that use ET or compare ET with each other and other non-ensemble techniques. Since, we
do not collect and extract data from studies that have used only non-ensemble techniques
on the compared datasets, the comparison may be biased and more favorable for ET. The
only way to address this threat is to additionally collect and extract data from studies that
have employed non-ensemble techniques on the said datasets. However, this is beyond the
purview of the study.

The external validity of the review concerns itself with the appropriateness of the
primary studies of the review, as per the review’s objective, so that the review results are
valid and generalizable. The review protocol is clearly defined so that we extract a valid
set of primary studies, which are in line with the review objectives. Also, the study clearly
states the review protocol, which supports the replicability and repeatability of the review.

6. Conclusion

This review systematically summarizes the use of ET in SDP and SCP studies. We
analyzed the studies that used ET in SDP/SCP literature from five perspectives namely
their category, application, combination mechanism, performance, and probable threats
that could occur while using ET. We extensively explored 5 online libraries and extracted
77 primary studies in the period from January 2000 to December 2020. The primary
findings of the review are summarized below:
– ET used in SDP/SCP literature can be categorized according to five criteria which

includes: a) similarity of the base models (homogeneous and heterogeneous), b) aggrega-
tion mechanism of base models (top-down and bottom-up), c) relationship amongst base
models (competitive or cooperative), d) diversity of base models (implicit and explicit),
and e) dependency amongst base models (dependent and independent). Amongst the

30

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2022/issue-1/article-5/


Megha Khanna e-Informatica Software Engineering Journal 16 (2022) 220105

mentioned criteria, we found that homogeneous, bottom-up, cooperative, explicit, and
independent ET are popular with respect to learner similarity, aggregation, relationship,
diversity, and dependency categorizations. Tree-based learners were the most popular
machine learning family which were used as base learners for ET.

– After analyzing the primary studies, we found six different applications of ET in
SDP/SCP literature. The most common application of ET was its use as a learning
algorithm for developing an SDP model. The other applications were addressing the
issue of imbalanced training data, their use as a learning algorithm for developing an
SCP model, transfer learning, online learning, and feature selection.

– Primarily, there are two mechanisms for combining base models, one is where the output
of constituent base models are given specific weights to get an aggregated ensemble
output, the second is when an ensemble is constructed through meta-learning. Only
twelve ET used the meta-learning mechanism while all others used the weighing mecha-
nism. We found sixteen combination rules for ET that used the weighing mechanism for
aggregation. Amongst them, some of the popular ones were majority voting, providing
weights according to misclassification error, and combining the base models according
to average probability.

– The performance of ET was analyzed dataset wise by evaluating the AUC and recall
performance metrics. A mean AUC value of 0.75 or above was depicted by a majority
of the explored ET when used as a learning algorithm for developing SDP or SCP
models or for addressing the imbalanced data issue. Majority of ET that were used as
a learning algorithm for developing SDP models depicted median recall values in the
range 70%–90%. A comparison of ET with other non-ensemble techniques (conducted
using vote count method and Wilcoxon signed ranked test) indicated that RF and BAG
were superior and popular ET as they exhibited better results than most of the other
compared non-ensemble techniques when being used as learners for developing SDP or
SCP models. The CODEP technique, a heterogeneous ET also exhibited favourable
results. We also compared ET amongst each other and found CODEP, RF and BAG to
be the best performing ET when used for developing SDP/SCP models and MBoost as
the best technique for handling skewed data.

– Amongst 77 primary studies, only 33% of them reported the threats specific to the use
of ET. The construct validity threats included the inability of the study to account for
the change in parameter settings, base learners, and the combination mechanism of the
ET. The internal validity threats need to address the biased selection of ET in a study,
suitable replication of ET proposed by other studies, and accounting for the random
selection strategy for training certain ET. The reported external validity threats could
be addressed by the selection of an appropriate number and nature of datasets for
empirical validation and selection of appropriate baseline models for comparing the ET.
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AB: AdaBoost
ANN: Artificial Neural Network
AUC: Area Under the Receiver operating
characteristic Curve
ASOF: Adaptive Selection of Optimum Fit-
ness
ASCI: Adaptive Selection of Classifiers
BAG: Bagging
BN: Bayesian Network
BNC: AdaBoost.NC
BTE: Best in Training Ensemble
CART: Classification and Regression Tree
CEL: Coding based Multiclassifier
CS: Cumulative Quality Score
CODEP: Combined Defect Predictor
Dag: Dagging
Dec.T: Decision Table
Decorate: Diverse Ensemble Creation by Op-
positional Relabeling of Artificial Training
Examples
DNC: Dynamic Adaboost.NC
DTB: Double Transfer Boosting
ET: Ensemble Techniques
ITrAdaBoost: Improved Transfer Adaptive
Boosting
KNN: K-Nearest Neighbor
KSETE: Kernel Spectral Embedding Trans-
fer Ensemble
LB: LogitBoost
LMT: Logit Model Tree
LR: Logistic Regression
MBoost: MultiBoost

MC: MetaCost
MCC: Mathews Correlation Coefficient
MKEL: Multiple Kernel Ensemble Learning
NB: Naïve Bayes
NDTF: Non-Linear Decision Tree Forest
OEL: Omni Ensemble Learning
OOB: Oversampling based Online Bagging
RBBag: Roughly Balanced Bagging
RF: Random Forests
ROT: Rotation Forest
RQ: Research Question
RUSBoost: Random UnderSampling Boost-
ing
RS: Random Subspace
SCP: Software Change Prediction
SDP: Software Defect Prediction
SI: Study Identifier
SMBoost: SMOTEBoost
SOB: Sampling based Online Bagging
SQA: Software Quality Assurance
SVM: Support Vector Machine
TCSBoost: TransferCostSensitive Boosting
TSE: Two Stage Ensemble
UOB: Undersampling based Online Bagging
VCB-SVM : Value Cognitive Boosting with
Support Vector Machine
VFI: Voting Feature Intervals
VHetBL: Voting amongst Heterogenous
Base Learners
VHomBL: Voting amongst Homogeneous
Base Learners
VV: Validation and Voting
WEKA: Waikato Environment for Knowl-
edge Analysis
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Appendix

Table A1 lists all the primary studies that use a specific ET. Table A2 states the machine
learning family of the techniques, which have been used as base learners for ET in the
primary studies.

Table A1. List of ET used by primary studies

ET Primary Studies

AdaBoost ES7, ES8, ES13, ES21, ES24, ES25, ES29,
ES30, ES36, ES39, ES41, ES44, ES46, ES47,
ES50, ES55, ES56, ES60, ES61, ES62, ES67,
ES73, ES74, ES76, ES77

AdaBoost.NC ES18, ES73
AdaCost ES14, ES40
Adc2 ES14
Adaptive Selection of Classifiers ES37
Adaptive Selection of Optimum Fitness ES62
Average Probability Ensemble ES26, ES54, ES70
Average Voting ES51
Bagging ES6, ES13, ES16, ES19, ES21, ES24, ES30,

ES31, ES36, ES39, ES41, ES42, ES46, ES47,
ES50, ES51, ES52, ES55, ES60, ES61, ES62,
ES69, ES74, ES76, ES77

Balanced Random Forests ES2
Best in Training Ensemble ES24, ES38, ES58
Boosting ES2, ES16, ES19, ES31, ES32, ES51
Bug Prediction using Deep representation and
Ensemble learning

ES74

Cascaded Weighted Majority Voting ES49
Cascaded Randomized Weighted Majority Vot-
ing

ES49

Categorical Boosting ES67
Combined Defect Predictor ES20, ES35, ES51
Coding based Multi classifier ES16, ES33, ES57
Cost-sensitive Forest ES28
Cost-sensitive Boosting Neural Networks ES10, ES33
Csb2 ES14
Dagging ES75, ES77
Data Boost ES73
DeepForest ES65
Diverse Ensemble Creation by Oppositional
Relabeling of Artificial Training Examples
(DECORATE)

ES8, ES75

Double Transfer Boosting ES23, ES56
Dynamic Adaboost.NC ES18, ES33, ES44, ES57
Ensemble learning phase in HYDRA ES35, ES56
Ensemble Random Undersampling ES44
Ensemble Selection ES75
Extra Trees ES67
GcForest ES65
Gradient Boosting ES67
Grading ES75
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Table A1 continued
ET Primary Studies

Histogram based Gradient Boosting ES67
Improved Transfer Adaptive Boosting ES56
Kernel Spectral Embedding Transfer Ensemble ES63
Logistic Model Tree ES3, ES30, ES46
LogitBoost ES4, ES30, ES39, ES46, ES47, ES62, ES74,

ES77
Maximum Voting ES51
Metacost ES14, ES21, ES39, ES61
Multiboost ES57, ES66, ES75, ES77
Multiple Kernel Ensemble Learning ES33, ES57
Multischeme ES77
MSMOTEBoost ES73
Non Negative Sparse based Semiboost ES34
Non-linear Decision Tree Forest ES24, ES38, ES58
Oversampling-based Online Bagging ES17
Omni Ensemble Learning ES48
Random Subspace method ES60
Random Forest ES1, ES2, ES3, ES4, ES6, ES14, ES16, ES18,

ES22, ES23, ES26, ES30, ES32, ES36, ES39,
ES42, ES43, ES44, ES46, ES47, ES48, ES50,
ES51, ES53, ES55, ES60, ES61, ES62, ES65,
ES66, ES67, ES71, ES74, ES77

Rotation Forest ES19, ES21, ES48, ES75, ES77
Roughly balanced Bagging ES11
Random Undersampling Boosting (RUSBoost) ES15, ES21, ES44, ES73
RealAdaBoost ES75
Randomized Weighted Majority Voting ES49
Sampling based Online Bagging ES17
SelectRUSBoost ES15
SMOTEBoost ES18, ES21, ES44, ES73
Stacking ES13, ES25, ES31, ES45, ES54, ES66, ES70,

ES77
SysFor ES28
Transfer Adaptive Boosting ES56
Transfer Cost-Sensitive Boosting ES40, ES56
TransferBoost ES35, ES40
Two Stage Ensemble ES50, ES59, ES64
Undersampling based Online Bagging ES17
Validation and Voting Classifier ES9, ES37
Value Cognitive Boosting with Support Vector
Machine

ES32, ES56, ES59

Voting amongst Homogeneous Base Learners
(VHomBL)

ES27, ES47, ES62

Voting amongst Heterogeneous Base Learners
(VHetBL)

ES5, ES9, ES12, ES13, ES24, ES25, ES38,
ES48, ES54, ES55, ES58, ES60, ES66, ES68,
ES70, ES72, ES77

Weighted Majority Voting ES49
WeightedSmoteBoost ES29
XGBoost ES67, ES71
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Table A2. List of techniques (used as base learners) belonging to each machine learning family

Tree-based Learners C4.5, Random Tree, Decision Tree, Decision Stump, J48, CART,
Alternating Decision Tree, Partial Decision Tree, Tree Disc Classi-
fication, Naïve Bayes Tree, REP Tree.

Support Vector Machine Support Vector Machine, Sequential Minimal Optimization, Voted
Perceptron, Pegasos.

Bayesian Learners Naïve Bayes, Bayesian Network, Multinomial Naïve Bayes, Bernoulli
Naïve Bayes, Parzen classifier with the Gaussian kernel, Uncorrelated
normal densities based quadratic Bayes.

Rule-based Learners One Rule, Lines-of-Code, Decision Table, Ripper Down Rules,
Repeated Incremental Pruning to Produce Error Reduction.

Instance-based Learners Locally weighted learning with decision stump, 1-Instance based
Learning, K-Instance based Learning, K-Nearest Neighbor, Near-
est Mean Classifier, Scaled Nearest Mean Classifier.

Search based Algorithms Genetic Algorithm, Genetic Programming, Particle Swarm Opti-
mization, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II).

Artificial Neural Networks Multilayer Perceptron, Radial Basis Function, Linear Perceptron
classifier with Batch Processing, Levenberg–Marquardt feed-forward
neural network, Automatic Levenberg–Marquardt feed-forward
neural network.

Ensemble Learners RF, BAG, AB, Boosting, XGBoost, Boosting, Gradient Boosting.
Miscellaneous Learners Voting Feature Interval, KStar, KMeans, Random Subspace,

Stochastic Gradient Descent, Minimum Least Square Linear Clas-
sifier, Subspace Classifier, Linear classifier based on Principal
Component Analysis, Linear Discriminant Classifier, Quadratic
Discriminant Classifier, Minimum Linear Least Square Classifier,
Linear classifier based on Karhunen Loeve (KL) expansion of
common covariance matrix.
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