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Abstract

Background: Service oriented architectures are becoming increasingly popular due to
their flexibility and scalability which makes them a good fit for cloud deployments.
Aim: This research aims to study how an efficient workload prediction mechanism for
a practical proactive scaler, could be provided. Such a prediction mechanism is necessary
since in order to fully take advantage of on-demand resources and reduce manual tuning,
an auto-scaling, preferable predictive, approach is required, which means increasing or
decreasing the number of deployed services according to the incoming workloads.
Method: In order to achieve the goal, a workload prediction methodology that takes into
account microservice concerns is proposed. Since, this should be based on a performant
model for prediction, several deep learning algorithms were chosen to be analysed against
the classical approaches from the recent research. Experiments have been conducted in
order to identify the most appropriate prediction model.

Results: The analysis emphasises very good results obtained using the MLP (MultiLayer
Perceptron) model, which are better than those obtained with classical time series
approaches, with a reduction of the mean error prediction of 49%, when using as data,
two Wikipedia traces for 12 days and with two different time windows: 10 and 15 min.
Conclusion: The tests and the comparison analysis lead to the conclusion that
considering the accuracy, but also the computational overhead and the time duration for
prediction, MLP model qualifies as a reliable foundation for the development of proactive
microservice scaler applications.

Keywords: microservices, web-services, workload-prediction, performance-model-
ing, microservice-applications, microservice scaler

1. Introduction

Microservice architectures are considered to be the next step in the evolution of Service
Oriented Architectures (SOA) that were popularised in the 90s [1]. Some particular aspects
of the microservices are their fine granularity, focus on decoupling, scalability, usage of
lightweight protocols, and strong DevOps integration [2]. They are currently seeing a huge
adoption rate: a survey of Kong Inc. done in the summer of 2019 with 200 technology
leaders at large U.S. companies has revealed that 84% of them have embraced microservices,
and 40% believe that organizations will fail within 3 years if they do not keep up with
these [3]. Furthermore, microservices are a good fit for cloud deployments, proven by the
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large scale operations of companies like Amazon, Netflix and LinkedIn, and their reported

improvements after switching from the monolithic model [4].

Workload prediction is important in order to ensure efficient scaling of these services
and optimisation of cloud resource usage, which means starting up new services during
periods of high traffic and stopping some of them when resources are not needed. An
analysis of the application of microservices, described in [4], has shown that the use of tools
designed to deploy and scale microservices reduces infrastructure costs by 70% or more.
Improving workload prediction performance means equipping scaler services with better
tools for dealing with unexpected traffic spikes, which is translated in both a smoother
experience for users and lower costs for maintainers. Autoscaling is the most practical
solution since it assures the automatic scaling of microservice instances in order to meet the
SLA(Service Level Agreement) [5], without a human agent analyzing and constantly taking
scaling decisions. It can be reactive or predictive, the latter considering multiple inputs like
historical information and current trends, in order to predict future traffic patterns.

The main goal of the presented investigation was to find a performant model for
microservices workload prediction, which can be later used by a proactive microservice
scaler. As a consequence of our goal, the research question that led our investigation was:

“Do deep learning algorithms lead to better results than classical time series approaches
for workload predicting of a microservice autoscaler? If yes, which one is the most appro-
priate?”’

Previous research in this field mainly uses classical time series approaches (such as
ARIMA — autoregressive integrated moving average, Brown’s quadratic exponential smooth-
ing or WMA-weighted moving average) [6-8], or simple machine learning [9, 10]. Our
investigation uses different deep learning architectures: MLP (Multilayer Perceptron), CNN
(Convolutional Neural Network), hybrid CNN-LSTM (CNN Long Short-Term Memory
Networks); deep learning was shown to outperform classical methods on some time series
prediction tasks [11], and we selected some models of varied complexity.

The contribution of this research is twofold:

— A microservice-oriented prediction methodology adapted to the particularities of this
setting, is proposed. The methodology includes steps and decisions that were taken
to match practical microservice demands, such as choosing to predict the number of
requests, which is a metric that is not influenced by the scaling prediction, and making
the prediction in time intervals of an order of minutes and predict a step into the future
to allow time for services to be deployed to match the expected traffic. The prediction
window size was chosen for accuracy while also allowing time for most application
servers or containers to initialize the application. This methodology is also covering
data preparation and processing, that is designed for prediction accuracy.

— A comparative analysis of the performance of different prediction models inside the
proposed methodology is conducted; the comparison is done between the results obtained
using the chosen deep-learning algorithms, and classical time series approaches, but
also with some hybrid machine learning models used in industry [9]. The comparison
shows important improvements over the previous results, and emphasizes MLP as the
best choice for a predictive microservice scaler. MLP seems to be the most appropriate
to capture the complexities of the dataset while also having the advantage of faster
training time.

The paper is structured as follows: After we present the related work in the next
section, we succinctly describe microservice characteristics and the practical aspects which
influenced the lines of this research in Section 3.1. Section 3 introduces the proposed
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methodology and in Section 4 we refine it in substeps and specify the settings for our
experiments. Section 5 presents our practical implementation of the methodology on
a specific dataset: the baseline models’ results, the tuning process of the deep learning
models for selecting the hyperparameters, an evaluation of the best performing ones, and
a comparison with the baselines and other research work. Section 5.4 summarises the
obtained results, and in addition, in order to emphasise their utility, a proof of concept
implementation for an auto-scaling tool using this model is presented. Conclusions and
future work are presented in Section 6.

The following abbreviations are used in the paper: ANN (Artificial Neural Networks),
ARIMA (AutoRegressive Integrated Moving Average), CNN (Convolutional Neural Net-
work), CNN-LSTM (CNN Long Short-Term Memory Networks); FFT (Fast Fourier Trans-
form); MAE (Mean Absolute Error); MAPE (Mean Absolute Percentage Error); MRE
(Mean Relative Error); MLP (Multilayer Perceptron); MSE (Mean Squared Error); RMSE
(Root Mean Square Error); RSLR (Robust Stepwise Linear Regression); SVM (Support
Vector Machine); VM (Virtual Machine).

2. Related work

Different classical time series models have been applied for web-services workload prediction.
Calheiros et al. [6] apply the ARIMA model to cloud workload prediction. The model was
evaluated using a trace of English Wikipedia resource requests spanning a duration of four
weeks. The data of the first three weeks are used for training and the fourth for prediction
using a time window of 1 hour. The obtained MAPE varies from 9% to 22% depending on
the confidence interval, which was chosen from 80 to 95 in order to limit the occurrence of
underestimations.

Other classical time series models have also been applied, like Brown Exponential
Smoothing by Mi et al. [7] obtaining a MRE of 0.064 on the France World Cup 1998
web server trace. Another classical model is Weighted Moving Average, in which recent
observations receive more weight than older ones, was applied by Aslanpour et al. [8], and
was tested on a NASA server 24h trace, achieving a 5% improvement in response time on
a cloud scaling simulator.

It is difficult to identify the best of these classical approaches for our task since the
research outlined above used different datasets and evaluations measures. However, we can
look for comparisons between different classical models on other time series problems (not
necessarily related to workload prediction). Udom and Phumchusri [12] show that ARIMA
performs better than other models (Moving Average, Holt’s and Winter’s exponential
methods) in terms of MAPE on four different datasets. ARIMA was also shown to perform
better on a short-term forecasting dataset than an exponential smoothing approach [13].
Zhu et al. [14] show that ARIMA outperforms Holt’s exponential smoothing model in
terms of MSE on air quality time series analysis.

Khan et al. [15] have used Hidden Markov Models to predict workloads for a cluster of
VMs. The used dataset comes from an in-production private cloud environment, and the
selected metric is the CPU utilization of the VMs. Their model identifies VMs which have
similar loads, trained on a trace of 17 days and generates predictions for intervals of 15 min
for the next 4 days. Still, their approach only works for a static configuration, because the
training dataset is a matrix of the all VMs in the system on the all selected time intervals,
and the selected metric is the CPU utilization. This means that if the configuration of the
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system changes then the accuracy will not be preserved, and utilization data for the new
VMs must be built, and then a retraining session is necessary. We try to propose a model
which can dynamically adapt to scaling decisions without penalty in prediction accuracy.

Another example of a static system predictor is the one proposed by Syer et al. [16],
which detects variation in workloads between test and production environments for multiple
large-scale software systems from the telecommunications domain. As opposed to this
approach which discovers various types of workloads and their deviation from the training
environment, but can not adapt automatically to system re-configuration, our solution
assumes requests homogeneity (discussed in Section 3) and can adapt to automatic scaling
events.

Kumar and Singh [10] applied ANN for workload prediction on a seven month log of
traffic from a Saskatchewan University web server and a two month one from the NASA
Kennedy Space Center web server. They use a classical ANN architecture: one input layer
(size 10), one hidden and one output layer, and the model is trained through the SaDE
technique, which means learning the weights through evolutionary algorithms. The results
of this model were compared to an ANN trained through backpropagation. The model
trained with SaDE got 0.013 and 0.001 RMSE on the selected data sets, while for the one
with backpropagation a RMSE of 0.265 and 0.119 was obtained.

CloudInsight [9] is one of the most complex models for workload prediction. It uses
a technique called “council of experts” — an ensemble of different models, which in this case
are: classical time series (autoregressive, moving average, exponential smoothing), linear
regression, and machine learning — SVM. Each model has a different prediction weight,
which is also real-time learned through a SVM, based on their accuracy on the dataset.
The evaluation was done on a subset of the Wikipedia trace [17], on Google cloud data,
and on some generated workloads. They indicated that ARIMA and SVM are the two best
static predictors they have experimented with. Considering as a performance indicator
the normalized RMSE, on average, the ensemble system was 13%—27% better than the
baselines (ARIMA, FFT, SVM, RSLR).

A review of how deep learning methods can be applied to time series problems was
presented by Gamboa in [11]. The paper distinguishes between three types of problems:
classification, forecasting and anomaly detection, presents methods for modeling them, and
guidance for selecting appropriate models. It also shows that using these, an improvement
in performance could be achieved, on case studies for different applications in which deep
learning performed better. Brownlee [18] published a comprehensive guide on applying
MLPs, CNNs and LSTMs on various real datasets, and discussed their advantages over
classical methods, which were used as baselines for the experiments. The study highlighted
the ability of deep learning models to find non linear relationships in data, as opposed to
linear methods, like ARIMA; this was the reason to focus on this kind of methods in our
investigation.

Lin et al. [19] proposed a hybrid CNN-LSTM architecture for learning trends in time
series. It relies on CNN to extract important features from raw time series data, and passes
them to the LSTM layers to find long range dependencies in historical data. The model
was shown to outperform both CNN and LSTM with around 30% lower RMSE on three
real world datasets. These results look promising, and for this reason this is one of the
models taken into consideration for our experiments.

There are some approaches for workload prediction of large scale systems that use
LSTM models such as Tang et al. [20], Zhu et al. [21] which show it to be a suitable
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approach. In our experiments, we have tested the hybrid CNN-LSTM model with the
expectation that it would perform better than its individual components.

Zhang et al. [22] used deep learning based on canonical polyadic decomposition to
predict workloads for cloud applications (in this case using a trace of 10 days for the
PlanetLab platform, which is a global research network that supported the creation of new
network services [23]). Their results indicate better performance of the deep learning model
than of the state-of-the-art machine learning based approaches. However, while the model
is robust in terms of request workload variety, it aims to predict CPU utilization, which,
as outlined above, is not a good fit for our investigation.

A significant description of the necessity and of an implementation of a predictive
autoscaler for microservices was done by Netflix in [24]. Before implementing Scryer, the
name of the aforementioned service, they relied on Amazon Auto Scaling service of the
Amazon Cloud, which was based on a reactive approach. Scryer uses classical time series
methods such as Fast Fourier Transformation, which models a sinusoidal over the input data,
and linear regression on clusters of points from the predicted time window in previous days.
This model addressed three problems encountered with Amazon’s scaler: dealing with rapid
spikes in demand by preparing ahead of time, restoring compute capacity after outages,
and factoring known usage traffic patterns. Netflix are one of the pioneers of microservice
technologies, having broken down their monolith application into multiple services covering
everything from video streaming, account registration, content recommendations, in the
early 2010s, and later becoming an authority in this domain by developing a strong presence
in the open source community based on publishing their tools [25].

A predictive scaling policy was later added in Amazon Web Services [26], based on
machine learning algorithms. However, this feature is not yet available in other cloud
providers such as Microsoft Azure [27] or Google Cloud [28].

Building on top of the related work presented in this section, we aim to apply and
compare some deep learning methods, which were shown to be suited for time series in [18]
and [19], for the specific task of workload prediction. The success of this task is highlighted
by comparing error metrics with those reported by CloudInsight [9] — the specified ensemble
of classical and machine learning approaches, on the same dataset, which is a subset of
Wikipedia traces.

3. Scaler prediction methodology

This section presents some of the most important characteristics of Microservice architec-
tures in the first part. Based on these characteristics, in the second part we present our
proposed scaler prediction methodology which can be applied to any particular implemen-
tation of this architecture.

3.1. Microservice characteristics

Web services are generally associated with Service Oriented Architectures (SOA) [1].
The main idea of this type of architecture is to break down monolithic applications
into independent parts that are loosely coupled, autonomous, offer a standard contract
and act mostly as black boxes to their consumers. This means that services can be
developed, updated and deployed independently offering better scalability than traditional
architectures.
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Microservices [29] are the modern approach of Service Oriented Architectures, and they

have several important characteristics [2]:

1. Fine Granularity — each service is implemented to serve a specific business case.

2. Maintainability — changes of a feature will have limited impact on the overall code-base.

3. Reusability — you can select which features to import into a different system.

4. Agility — bug fixes and new features can be deployed without retesting or taking down
other parts of the system.

5. Autonomy — they are separate entities, with their own tech stack, and can be deployed
independently.

6. Loose Coupling — they communicate using lightweight network protocols such as
REST and HTTP.

7. High Scalability — due to their autonomy and loose coupling they can scale-out
horizontally without incurring heavy communication overhead.

3.1.1. Deployment

All these characteristics make microservices a good fit for cloud deployments. Cloud
providers generally offer on-demand resources, which is more convenient for hosting the
applications, and allowing less expensive dynamic workloads [4]. If application workloads
are fluctuating, then it is advisable to scale the services accordingly, in order to provide
smooth experience for the users, and in the same time to use the resources efficiently.

The problem of having unused resources during the periods of low traffic is solved
automatically by cloud deployments, by allocating them to some other users who need
them. Similarly, it may be necessary to request more resources when a traffic spike is
foreseen. Microservice architectures are ideal for these operations because they offer high
level of scalability. Due to their fine granularity it is possible to scale only the services that
are in high demand, which would not be possible on monolithic applications. Also, since
they are designed to be autonomous, it is simple to setup necessary dependencies such as
databases without conflicts among instances.

Also, service discovery is one of the key tenets of a microservice-based architecture.
Trying to hand-configure each client or to define some form of convention can be very
difficult and also unsafe. In order to overcome these kinds of problems service discovery
applications are offered. For example, Eureka is the Netflix Service Discovery Server and
Client [30]; this server can be configured and deployed to be highly available.

3.1.2. Scaling

The microservices could be scaled manually, which is inefficient, or automatically through
a dedicated service. Autoscaling is the process of automatically scaling out instances in order
to meet the SLA(Service Level Agreement) [5], which is formed of a list of commitments
between clients and service providers, related to different aspects of the service, such as:
quality, availability, responsibilities. For example, it could be stated that the application
should have 99% uptime, or it should respond to most requests within a given time range.
Autoscaling can be reactive, by setting up thresholds such as resource utilization, and
instantiating new services when they are reached, or predictive by creating new instances
ahead of the foreseen traffic spikes. Predictive autoscaling considers multiple inputs like
historical information and current trends in order to predict future traffic patterns.
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Even though predictive auto-scaling can be done efficiently without having a cloud
deployment, for example scaling some service up and other down alternatively on a fixed
resource environment, cloud environments are the best fit and research work is done to
address this need [31].

3.2. Proposed scaler prediction methodology

We propose a methodology for finding a prediction model to be used by a proactive scaler
for microservice architectures, which takes into account the specific characteristics outlined
in the previous section. The main steps are the following:

— Choose one type of services for which to define a proactive scaler

Each microservice type should have its own predictive autoscaler; a microservice is
specialized for a single specific task and it will operate very specific requests.

It is expected to obtain better prediction accuracy and resource utilization when
working with a single type of requests. The request type would increase the dimen-
sionality of the input data, therefore increasing computational resource utilization,
and finally impact on the prediction accuracy, since the model would have to learn
multiple features (the error will increase proportionally to the number of the request
types). Additionally, to put it into practice, a new model would be required in order
to estimate how many resources need to be allocated based on multiple request
counters, but also on interactions between them.

— Choose the number of requests per resource to be the selected metric for
prediction

The reason for choosing this metric is this metric independence of the scaler’s action.
Metrics such as CPU utilization or response time, predicted in [32], are affected by
the outcome of the predictor, making them an unreliable target. Also, this is in line
with the research done by Jindal et al. [33], who proposed a metric for measuring
microservice performance based on the number of satisfied requests, called MSC
(Microservice Capacity). Thus, a proactive scaler can determine the number of
required instances by dividing the predicted incoming traffic to the MSC.
Microservices have fine granularity, therefore we can assume request homogeneity —
the requests for one specific microservice are uniform (i.e., they could be solved in
a similar period of time). This means that for this problem we can use this simple
metric without compromising the usefulness of our predictions.

— Model real service trace data analysis as a time series supervised learning
problem

A common dataset which can be extracted from any application’s log is a list of
timestamps when requests were handled (one such dataset could be extracted from
each microservice type, as they are highly autonomous and we can demarcate exactly
the requests they received and when they were completed).

It is possible to extract more useful information from this data if we model it as
a time series problem [34]. Since specific timestamps are not required, but just
general access patterns, a feasibly approach would be to group requests into a series
of buckets (abstraction used for representing time series). A bucket has a fixed
width (some time range) and variable height (the number of requests handled by
the program in that range). A visualization of such a time series model is presented
in Figure 1.
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Figure 1. Abstract representation of a time series modeling traffic of one microservice type

— Microservices are highly scalable, so we need to achieve a granularity in predictions
as fine as possible, meaning that scaling decisions can be taken as soon as the
information is available. We can control this granularity in terms of selecting the
width of the time series buckets. Therefore the lower bound (which we are aiming for)
of the bucket width is dependent on technological constraints for scaling up/down
microservices. This estimation also fits an observation from [15] which has used
a 15 min bucket width, from analyzing autocorrelations on their dataset, which
consists of a 21 days trace from an in-production distributed application.

— After converting the dataset to time series it must be prepared for being fed to
a supervised learning algorithm (the supervised learning is considered because we
already know the desired prediction target and we can label our data [35]) which
means transforming the series into a list of vectors of the form (input, output).
A possible choice for this transformation is based on sliding window technique
(which was shown to have adequate performance and allow for a wide range of
algorithms to be applied to the resulting dataset [36]); more details about using this
process of data preparation is detailed in Section 4.2.

— Also, we are not interested to predict the height of the first next bucket in the
future, because the scaling decisions might be useless if they can not be executed in
practice, meaning that a time is required between the moment in which the scaling
decision is taken and the moment when the new microservice application instance is
online and can actually process requests. This period of time was outlined previously
as the ideal width of a bucket. In order to accommodate this requirement we need
a classical approach for multi-step time series prediction (e.g., the Direct strategy
from [37]), in which the prediction target is the second window in the future.

— The prediction window is limited to one, in the near future, in order to improve
accuracy. This requires periodic predictions, however, once a deep learning model
is trained, the actual computational overhead is small (less than a second in our
experiments).

— Apply an appropriate prediction model

— Choosing the most appropriate model is a complex problem, and our empirical

investigation aimed to provide such a model.
— Evaluate the results

— estimate the prediction error using different metrics;

— compare the results with similar results obtained using with different prediction
models;


https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2022/issue-1/article-7/

Sebastian Stefan, Virginia Niculescu e-Informatica Software Engineering Journal 16 (2022) 220107

— verify using practical usage.
The summary of the proposed methodology is depicted using a diagram in Figure 2.
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Figure 2. Diagram associated to the methodology for finding a prediction model
for a proactive microservices scaler

In order to estimate the most appropriate prediction model for microservice workload
prediction (to be applied in the fourth step), we have conducted an investigation based
on the specified methodology. This investigation started by choosing and preparing data
on which we can do the experiments, extracting a collection of prediction models that are
potential candidates, followed by the preparation of their initial settings. After that we did
the experiments and the evaluation of the results.

4. Methodology refinement and investigation settings
In this section we present details regarding the data used in the experiments, their

preparation as corresponding supervised datasets, and the collection of prediction models
that we have chosen as potential candidates.

9
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4.1. Data sets

Very important aspects in the selection of the datasets were to follow real world user traffic

patterns, to have a consistent size, and to have some variation which would showcase

how the model can handle unpredictable spikes. Based on these we have chosen several

Wikipedia traces. Although we do not know the specific implementation of the Wikipedia

server, this dataset can be used for testing the model for two reasons:

— the requests are all of the same type (fetch the content of a wiki page) which is in line
with the assumption of request homogeneity for microservices, and

— the traffic patterns come from a production server and capture realistic user traffic

(random spikes, day/night variation, weekend variations, etc.).

In addition, the appropriateness of this choice is also confirmed by the fact that similar
datasets were used in the analysis conducted by Kim et al. [9] that describes the algorithms
for the CloudInsight service, which is a commercial cloud scaling and monitoring platform.

The raw data used for the experiments is a Wikipedia trace for 12 days in September
2007 [17], available online at http://www.wikibench.eu/. From this, two subsets of requests
were extracted as separate datasets: all requests to Japanese and German Wikipedia,
respectively, to facilitate the results comparison with those obtained by Kim et al. [9] which
were based on the same data.

The Japanese wiki dataset is presented in Figure 3. The y-axis represents the number of
requests and the x-axis the time, measured in 10 minute intervals over the whole period. It
shows an interesting variation in the form of a large spike during the 5th day of measured
data which could be a challenge for some prediction models.
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S 80000 -
g8
£
=)

z*= 60000
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20000

T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
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Figure 3. Japanese Wikipedia data visualization: number of requests per 10 minute intervals

The first dataset contains 111 million requests (ja.wikipedia) and the second 101 millions
requests (de.wikipedia). The amount of data after preparation is the same as if we would
extract from the global trace during the same time range, but with a much faster processing,
because the number of buckets depends on the considered time interval, and not on the
number of requests.

10
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Since the target bucket width is given by the time in which a microservice application
can be reasonably started up we can do some estimations about general technical constraints
of this operation. For example, if we considered the Netflix open source stack that is among
the most popular approaches for implementing microservices, we have to consider the time
for initializing Spring Boot, service discovery (e.g., Eureka [30] — the Netflix default client —
needs a refresh time of 30 s, which is recommended on production environments, too), and
in some cases performing business logic like initializing in-memory caches from database
information. The typical initialization time for microservice frameworks will also add a few
seconds [38]. In addition, a typical deployment may also need time for starting up the
container (e.g., Docker) or virtual machine. Considering that there are many factors which
can influence this interval in our experiments we considered a permissive estimation of
a few minutes. Therefore we have chosen two cases for target bucket width: 10 min and
15 min.

4.2. Data preparation

In order to turn a web request log file into a supervised dataset the following steps were

taken:

— extract timestamps of all requests for a country (e.g., all lines matching ja.wikipedia);

— create buckets that contain the number of requests in a time interval;

— iterate over the buckets using the sliding window technique, and group them into (input,
output) tuples.

Applying sliding window. The starting point for the sliding window time series
technique [39] is a time series (t1,t2, ..., tsize), Where t; is the number of requests in the
i-th bucket. Training instances are then generated with input (¢;,ti41,...,titn—1) and
output (¢;4n+1), where n is the size of the sliding window. This process starts at ¢« = 1 and
is incremented by 1 until ¢ = size — n + 1. The predicted value is ¢;4,11 instead of ¢;4,
because a scaler using this model would need to have a buffer window during which to
deploy the services. These are emphasized in Figure 4.

Yy tn tn+1 th+2 tsize

——1 ]

buffer  predicted
window value

input
Figure 4. Sliding window technique

(z — min)

Input data were scaled using the min-max scaling technique: x = , which

(max — min)

brings the dataset into the [0, 1] range. The same method was applied by Kumar and Singh
in [10] in order to speed-up learning. In a practical implementation, this scaling step is

11
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more difficult to apply because it should rely on some hypothetical bounds that have to be
determined for future traffic. Still, these bounds could be estimated based on the historical
data.

The sizes of the datasets, after applying transformations were 1166 for the 15 min
window and 1747 for the 10 min window. The sizes are determined by the sampling window
of 12 days and the bucket windows of 10 and 15 minutes.

Performance metrics

The error metrics selected in this investigation are:

1 & -
Mean squared error: MSE = — Z(Yl -Yi)?,
nli:l
Mean absolute error: MAE = — Y | |V; — Y;|, and
n
1 & -
Mean absolute percentage error: MAPE = — Z(Y, -Y)/Y,,
n
=1

where Y; and Y; are the observed, respectively, the predicted values [40]. MSE was used
as the loss function for training because it tends to penalize big deviations in prediction,
which is desirable for our problem as we want to accurately predict traffic spikes. MAE is
similar, but conceptually simpler, given that each prediction error contributes in proportion
to its absolute value. MAPE is independent of the problem scale and can be interpreted
intuitively, therefore can be used to give a general evaluation of how well a model performs
across different datasets. According to Lewis [41] a highly accurate forecast would have
MAPE lower than 10%, and a good forecast between 10% and 20%.

4.3. Baseline models

Baseline models were considered in order to verify in which measure machine learning is
useful for this problem, and if using it, features not considered by simpler methods could
be learned. Two baseline models were applied: a naive approach, and a classical time series
model — ARIMA.

The naive approach just assumes that the predicted workload is the same as the last
observed workload. No proactive scaler could use this model as the predicted change in
traffic is always null, but it is used in order to check if the proposed models perform better
than doing no prediction at all.

ARIMA [42] is a classical approach for modeling time series. It has been selected
because it has been applied with good results to workload prediction before [6], and was
shown to perform better than other classical models [12-14]. Also, it is a common baseline
model for machine learning solutions in time series predictions [9, 43-45]. Furthermore, it
combines multiple simpler models (AR and MA) into a performant one. Autoregressive
models (AR) make predictions based on previous observations while Moving average(MA)
models use recent forecast errors. The integrated part indicates whether the series needs to
be differenced, and how many times. Therefore, the parameters of the ARIMA model are:
— p: the number of lag observations included in the model;

— d: the number of times that the raw observations are differenced;
— ¢: the size of the moving average window.
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4.4. Deep learning models

We have chosen in this investigation the following deep learning architectures: MLP,
CNN, CNN-LSTM hybrid, since all have been shown to perform well on time series tasks
[11, 18, 19]. Also, deep learning has constantly outperformed classical methods in prediction
tasks [46].

All the selected models have advantages and drawbacks among each other regarding
training speed, the amount of data required to produce good answers, and the tuning of
the size of the sliding window to capture relevant recent information.

4.4.1. MLP — Multilayer perceptron

MLPs are quintessential deep learning models that although efficient in their own right also
serve as baselines for more sophisticated architectures [47]. It is made up of an input layer,
a number of hidden layers and an output layer, linked by weights which are learned through
the backpropagation algorithm. While a MLP with one hidden layer is theoretically sufficient
to represent any function, that layer may be too large and training could be affected by
overfitting, therefore deeper models can help reducing the generalization error [48].

This model has been selected to check whether looking at a smaller sliding window,
without taking into account further historical dependencies, achieves satisfactory results.

4.4.2. CNN — Convolutional neural network

CNNs are specialized in dealing with data that has a grid-like topology such as images (2d)
or time series (1d) [47]. They have the ability to learn filters which assign importance to
some aspects of the input data, which is done by the convolutional layers. Another type of
layers that they usually contain are the pooling layers, which reduce the spatial size of the
convolved features and make the representation invariant to small translations in input.

CNN has been tested in this experiment because it looks like a natural fit for a time
series problem given its assumed spatial dependencies. CNNs can extract only the important
features of the input, therefore they can efficiently work with a larger sliding window, and
take into account more recent measurements when making a prediction.

4.4.3. CNN-LSTM - CNN long short-term memory networks

The CNN-LSTM architecture involves using Convolutional Neural Network (CNN) layers
for feature extraction on input data combined with LSTMs to support sequence prediction.
This hybrid model was applied on a range of time series tasks by Lin et al. [19] and was
shown to outperform both CNN and LSTM models.

Recurrent Neural Networks (RNN) are Neural Networks that take into account the out-
come of previous predictions, while making the current one [47]. LSTM — Long Short-Term
Memory, networks are an improvement over RNNs in the sense that they are better at
capturing long-term dependencies [49].

This model has been chosen because it combines the ability of CNNs to extract salient
features from raw time series data with the capability of LSTMs to find long range
dependencies and historical trends.
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5. Experiments and evaluation

In this section we describe the experiments that we conducted, their results, and a com-
parative analysis of these results. The research follows a set of best practices such as:
setting baselines, starting with parameters that have been shown to perform well on other
problems, exploring possible solutions manually and automatic exhaustive search for fine
tuning parameters. The experiments were performed using the data and models described
in Section 4.

First a tuning phase has been carried out for each chosen architecture in order to choose

the best parameters for each model. The details of this phase are presented in the next
subsection.
For the validation we have used k-fold validation [50], which estimates how well a model
will perform on previously unseen data and offers a less biased skill estimation than the
classical train/test validation method. The k-fold Cross-Validation with k = 3 was chosen,
which means splitting the training dataset into k = 3 equal parts; for cross-validation k& — 1
parts are used to perform the training (the weights are reinitialised for training on each
subset), and the evaluation is done on the part left out, and this process is repeated until
an evaluation was done on each of the parts. Finally, the averaged accuracy of all tests
was considered. The instances themselves were not shuffled inside the partitions, as their
ordering is significant for LSTM models.

Each dataset was split into training (the first 90% of data points) and testing (the
remaining 10%) data. After tuning (on the training set of a selected dataset), the resulting
models were next trained again on all training datasets, and evaluated on the testing data,
which were unseen during tuning and training.

Implementation. All the selected models were implemented in Python programming
language. For machine learning models the Keras library [51] was used with some variations
(described below) on the following types of layers: Dense for MLP, Conv1D, MaxPooling1D
and Dense for CNN, and the previous ones with the addition of LSTM for CNN-LSTM
hybrid.

The k-fold validation process was carried out using the scikit-learn library [52]. Statsmod-
els library [53] was used for ARIMA implementation.

Aside from the configurations described in the article, the default settings of the library
were used. The algorithm used in initializing the connection weights of our neural networks
models was Glorot Uniform provided by Keras, also called the Xavier initializer [54].

5.1. Hyperparameter optimisation

We have chosen for the tuning phase the Japanese wiki dataset (on the first 90% data
points) described in section 4.1 because, besides the fact that includes significant patterns,
it also has some interesting irregularities, like a huge spike which is not repeated. As we
have previously mentioned, this dataset was also used by Kim et al. [9] and we intend to
compare the results.

The selected time window for tuning was set to 10 min, because this is a reasonable
prediction time to allow a scaler to spin out new instances, as shown in some previous
experiments [24].
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5.1.1. Naive baseline

The naive baseline leads to the following results: 2.02 x 107 MSE, 3577.8 MAE and 7.1%
MAPE. This illustrates the fact that although the MAPE score would classify it as a very
good predictor, it does not do anything useful and the proposed models should achieve
better results.

5.1.2. ARIMA

Settings. In order to apply the ARIMA model we had to find appropriate values for its
parameters: p, d, q. The value of d represents the number of times the series needs to be
differenced in order to make it stationary. The series stationarity was checked using the
augmented Dickey—Fuller test [55] which found the p-value to be 1.09¢—08. This is lower
than 0.05, the commonly used threshold, meaning that we can set the d parameter to 0.

.04 ¢
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Figure 5. Partial autocorrelation plot for ARIMA

The partial autocorrelation plot (Figure 5) was analyzed to set the autoregression
parameter (p). The significance region is confidently passed at 1, with a steep decline
afterwards. The moving average parameter (g) is approximated from the autocorrelation
plot (Figure 6) which suggests a value of around 20 would be a good start. After fitting
ARIMA(1, 0, 20) the final 2 layers had p-value of 0.547 and 0.758, which meant that they
were not significant enough, therefore we used 18 as the upper limit for q in our tuning.

Results. The results obtained for several values for ¢ : 5,10, 15,18, are illustrated in
Table 1, the best one being for ARIMA(1, 0, 15) with 1.42 x 107 MSE, 3056.7 MAE and
6.3% MAPE.

5.1.3. MLP

Settings. After some manual experiments we started with a MLP with 2 hidden layers
(150,100) neurons, and a sliding window size of n = 24 (this is the window used to
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Figure 6. Autocorrelation plot for ARIMA

Table 1. ARIMA tuning — based on different values for ¢ parameter

p d q MSE/10% prediction time
1 0 5 15.4 0.4 s
1 0 10 14.3 9.6 s
1 0 15 14.2 31s
1 0 18 14.3 71s

transform the time series data into a supervised dataset, meaning how many buckets are
taken into account for each prediction, not the bucket width which was set at 10 min).
To find an optimal combination of batch size and epoch numbers a 2d grid search was
performed, and the results are presented in Figure 7. Batch size should ideally be a power
of 2 for extra performance on GPU architectures, as some experiments were ran on Google
Colab’s cloud GPU!. Using lower batch size is more accurate but the training is slower [56].
As expected the lowest MSE is obtained for the lowest batch size (4), however it does not
drop significantly at 8, regardless of epochs numbers. The selection of the epoch numbers
is again a trade-off between the speed and the accuracy. We noticed that using a smaller
number of epochs (50) the performance is not very good, while the difference between
100 and 250 is not very important, meaning that we can get a good approximation using
a model with a epoch size of 100.

Additional experiments were done by adding Dropout layers on different values (0.2,
0.1, 0.05), however it did not improve performance. These are generally used to prevent
over-fitting, when the network is too big, the data is scarce, or the training is done for too
long [57], which was not the case for this experiment.

Various optimizers and activation functions were tested, and from these Adadelta optimizer
and ReL (Rectified Linear) activation function were selected. ReL activation function is also
the default recommendation [47] for modern neural networks, because it is non-linear while
preserving many advantages of linear functions that make them generalize well. Although
the ADAM optimizer is widely used in research, there is no consensus on which is the

"https://colab.research.google.com
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Figure 7. Grid search depending on the epoch number and the batch size

optimal one [47], therefore we choose Adadelta, which in our experiments performed better
~1.92 x 107 vs. 2.58 x 107 values for MSE.

A comprehensive grid search was performed for sliding window size and number and
content of hidden layers, of around 90 combinations. Some of the best results are presented
in Table 2.

Table 2. MLP tuning — based on different combinations of sliding window size
and number and content of hidden layers

Sliding window Hidden layers MSE / 10°
4 (100, 50, 25, 20, 10) 18.8
4 (100, 50, 50, 20, 10) 18.8
8 (100, 50, 25, 20, 10) 17.0
8 (150, 50, 50, 50, 50, 10) 17.2
8 (50, 50, 50, 50) 18.3
16 (10, 20, 30, 40, 50) 18.1
16 (100, 20, 20, 20, 10) 18.4

Results. The final parameters chosen for the proposed MLP model were: Adadelta
optimizer with ReL activation function, a sliding window of size 8 with 5 hidden layers of
size: 100, 50, 25, 20, 10.

5.1.4. CNN

Settings. Firstly, a baseline model was selected through manual experimentation. This
had the following structure: input of size 20, a 1d convolutional layer, a max pooling
layer, a flatten layer, a dense layer of size 150 and the output layer. The same batch size,
epoch number grid search was performed and it yielded similar results to those reported
in Figure 7 for MLP. This was followed by iterating the same optimizers and activation
function which resulted in our selection of Adadelta and softplus.
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A grid search was again performed in order to find out the optimal sizes for sliding
window, hidden layers and their neurons (see Table 3). This proves our assumption that
CNNs can extract better features from larger sliding window as best results were obtained
with a window of 128 as opposed to 8 for MLPs.

Table 3. CNN tuning — based on different combinations of sliding window size
and number and content of hidden layers

Sliding window  Hidden layers ~MSE / 10°

8 (25, 10, 5) 35.3
64 (100, 20, 10, 5) 35.0
128 (100, 20, 10, 5) 21.0
128 (300, 50) 22.2
128 (10, 10, 10) 23.4
256 (100, 20, 10, 5) 23.7

Results. The parameters selected for the CNN model were: Adadelta optimizer, softplus
activation function, a window of size 128 and 4 hidden layers of size: 100, 20, 10, 5.

5.1.5. CNN-LSTM hybrid

Settings. The starting values for some parameters were influenced by the research done
by Lin et al. [19]: a convolutional layer with 32 CNN filters, a max pooling layer, a LSTM
layer with a couple of hundred units. In order to feed the output of the convolutional layers
into the LSTM layer the input was broken into multiple sequences. This provided the time
dimension which LSTM input shape specifies, as the sequences are arranged in a temporal
order.

A similar search as for the previous model was performed and as a result we selected
Adadelta optimizer and ReL activation function.

While searching for the size of the LSTM layer, we observed a trend where error value
would become very large after a couple of epochs, of approximately 1.7 - 1027. This might be
linked with a gradient explosion [47], which causes a network to become unstable because
of an increase in the number or values of the gradients with which the inputs are multiplied.
Therefore, we applied a common solution, to rescale elements in a gradient vector if their
norm exceeds 1, which has solved the issue.

A search was then performed for different combinations of sliding window size (which
is transformed into a 2D structure, the input shape of the algorithm), CNN sequences and
LSTM units, and the most important results are shown in the Table 4.

Table 4. CNN-LSTM tuning — based on different combinations
of input shape and size of LSTM layer

Input shape LSTM units MSE / 106

(20, 15) 500 246.0
(16, 16) 150 98.3
(16, 16) 500 90.2
(12, 12) 750 93.6
(12, 12) 500 97.3
(8, 8) 500 370.1
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It can be observed that the MSE values are quite larger than those reported in the
validation of previous models. The reason for this is that the amount of data used for
training becomes smaller as we increase the sliding window size. There was also a lot of
variance for different runs of the same configuration.

Results. From the previously described experiments we selected the following parame-
ters for this model: Adadelta optimizer, ReL function, (16, 16) input shape (sliding window
size equal to 256) with 500 LSTM units.

5.2. Evaluation

The evaluation was done on both Japanese and German Wikipedia traces with two time
windows on each, 10min and 15min, thus obtaining 4 data sets. The sliding window size
was slightly scaled when evaluating models on the 15min window with a 0.66 ratio to
account for the different time ranges in the data set.

This evaluation process of retraining and testing the models has been repeated 10 times
to account for the random weight initialization. The results obtained using deep learning
models were averaged and then compared to baselines and to each other, and the results
could be seen in Table 5.

Table 5. The MSE based comparison of the final results (the values are divided by10°)

DataSet Naive ARIMA MLP CNN CNN-LSTM

Jp10 20.2 15.2 8.5 11.7 7.2
Jplb 87.8 96.6 31.0  35.0 50.2
Del0 16.7 10.3 5.1 10.5 21.3
Delb 77.4 43.3 172 354 65.7

If we compare the results across across all datasets then we may conclude that MLP
performed very well, consistently passing both baselines. On average, the MLP model
was 49% more accurate than the classical ARIMA method which also indicates a better
performance than CloudInsight [9] which obtained a 12% improvement over ARIMA on
the same dataset.

CNN performed a bit worse, but still managed to beat the baselines in 3 out of 4 cases,
while being very close on the other one.

CNN-LSTM has been very inconsistent. On Jpl0 dataset it obtained the best result,
beating MLP but this performance has not been repeated. In the Del0 and Del5 experiments
it did not even beat ARIMA performance. This has not been improved even after multiple
measurements or epochs, as seen on the loss plot from Figure 8, which indicates that the
loss improves very little after 100 epochs.

Computational overhead. An aspect which should be noted is the computational
overhead of the proposed models. The prediction time for the ARIMA model varies from
0.4 s to 31 s for the most accurate one (see Table 1). The time in which the deep learning
models make a prediction (once trained) is much shorter: 0.16 s for MLP, 0.21 s for CNN
and 0.24 s for CNN-LSTM.

Best performer: MLP. The comparison revealed this model to be the best performer,
beating both ARIMA baseline and the CloudInsight hybrid model. A more detailed
comparison with the classical method can be seen in Table 6 taking into account all error
metrics. A plot of the predicted traffic on the Jp10 dataset can be seen in Figure 9.
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Figure 9. Actual vs. Predicted traffic for about a day on the Jpl0 dataset using MLP

Table 6. MLP vs ARIMA, compared based on MSE/MAE/MAPE

ARIMA MLP
DataSet MSE MAE MAPE MSE MAE MAPE
Jpl10 15.2E6 3056 6.3% 8.5E6 1960 2.9%
Jplb 56.6E6 6124 8.8% 31.0E6 3540 3.4%
Del0 10.3E6 2517 7.6% 5.1E6 1583 3.4%
Delb 43.3E6 5606 13.4% 17.2E6 2787 3.9%
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5.3. Threats to validity

As with any experiment based analysis, the reported results and conclusions could be
subject to certain threats to validity [58]. The followings are the major threats to the
validity of our work and the ways we tried to mitigate them.

— Construct validity — For our purposes we assume that the number of requests in an
interval is a satisfactory prediction metric. This tends to be enough because a mi-
croservice should fit a specific business case therefore having homogeneous requests.
The results might not be as accurate when a single microservice type handles widely
different requests.

— External validity — We propose a prediction model building methodology which can
be customized to the specific microservice deployment it is used on, because the At
window should be chosen after performance benchmarking the selected application (see
Section 3).

— Internal validity — The metric we chose (number of requests) is independent of the

prediction result. The other options (e.g., CPU utilization, average response time) would
change depending of the scaling actions performed and then influence further decisions,
causing a small error to propagate in time.
We used scaling on input data to improve accuracy and training time. In a real world
scenario scaling could still be done using historical bounds which would be updated
periodically. Values which are out of these bounds could impact accuracy [59]. In the
case of a sudden burst of requests with no historic precedent the measurement of the
metric may be impacted. For example if there is a bottleneck of requests waiting to
be processed they may not even be counted. However, in a practical deployment the
system would eventually scale to handle the requests but it would take multiple scale
out commands instead of just one (which is the norm in non exceptional scenarios).

— Reliability — The selected dataset is publicly available [17] and has been used by other
researchers for the same goal [9].

The selected models have been implemented and evaluated using Keras, scikit-learn,
and statsmodels libraries. The measurements analysis was in general based on their
default settings and on repeating the processes, but an extended analysis of the possible
measurements errors could reveal the need of some additional adaptations. From our
observations, the MSE value ranges do not wildly fluctuate on multiple measurements,
which is also indicated by calculating confidence intervals. For example, on a random
re-evaluation with a larger number of repetitions (30) of MLP on DelO dataset with
a 95% confidence level the resulting confidence interval was 6.6 + 0.67(1e6), which still
convincingly outperforms the baselines.

During experiments we have chosen k-fold cross validation with k£ = 3, but we are aware
of the fact that a higher value for k could estimate a more accurate confidence interval
[60—62]. Our choice was justified by the impact on the computational time of a higher
value for k. We tried various settings and layer distributions for some of the more
complex models (CNN and CNN-LSTM) and choosing for example k& = 10 would have
led to a much higher asymptotical computational complexity. Still, we acknowledge
that would be worth investigating the results that could be obtained using a much
higher value of k for cross validation.
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5.4. Results analysis

In order to find an efficient model for a proactive auto-scaler for microservices, we have
started by analysing the most suitable steps, and we arrived to a methodology adapted to
the microservices specifity.

Inside the proposed methodology we compared a naive and a classical time series
method — ARIMA, with three deep learning models, MLP, CNN, CNN-LSTM, over two
traces of Wikipedia traffic data and two time windows (of 10 and 15 minutes).

This analysis emphasized that MLP(Multilayer Perceptron) shows considerable im-
provements in performance over the classical method, of around 49% in MSE, which is
also better than some state of the art models currently used for this task, like the council
of experts employed by CloudInsight [9].

It also showed that the sophisticated hybrid CNN-LSTM can obtain great results
(having the best performance on Jpl0), however it requires considerably more tuning
and training time. Given a larger data trace and tuning effort, it might become the most
accurate model.

MLPs are much faster to train than the other deep learning models which facilitates
the periodic workload data update a practical application might need.

All these recommend MLP as the best choice for application in a practical proactive
auto-scaler. This model was selected as the most appropriate from our implementation
(based on the selected collection of models) of the methodology described in Section 3.
Still our investigation maybe also seen as a starting point for other applications of this
methodology.

5.5. Practical usage

In order to emphasise a possible practical usage of the model presented in this research,

we developed a proof of concept implementation of a predictive scaling tool, which is

available at https://github.com/StefanSebastian/MicroserviceMonitoring/tree/master/
monitor_scaler_app.

The tool, modelled in Figure 10, was designed to simplify the process of monitoring
and automatic scaling as much as possible. The main components are:

— a server application which consumes the data stream from all microservice instances
(through Kafka message queue) generates various statistics and stores aggregates into
the local database for training the prediction model,

— a dashboard monitor application which displays all active microservices and their
performance, and

i
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Figure 10. The schema of the proof of concept scaling tool
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— a scaling manager which is responsible with starting or stopping instances of the service
(in the demo implementation it executes Docker commands to start or stop containerized
microservices)

— a proactive scaler which uses historic data to predict traffic patterns (containing
a Python implementation of the proposed MLP model) and generates scaling decisions,
which are then forwarded to the scaling manager.

An additional Java client is also provided which captures traffic from Spring Cloud

microservice implementations and puts onto a kafka queue which feeds data into the scaling

System.

This scaling tool was tested on a simplistic microservice system (https://github.com/
StefanSebastian/MicroserviceMonitoring/tree /master/demoapp) built on the Spring Cloud
stack: a Zuul load balancer, an Eureka name server, and a microservice which simulates
workloads, and was shown to work on a manually prepared scenario. The scenario consisted
of one spike of traffic repeated over and over again, for which we compared the system
performance of reactive and predictive scaling approaches. The conclusion was that in the
proactive approach the average processing time of the system was 14% better.

6. Conclusions

The paper proposes a methodology for microservice oriented workload prediction and
analyzes whether deep learning models are appropriate to be used as a prediction model
for this kind of data. The methodology is adapted to practical microservice demands, such
as the metric selection of the number of requests, which are not influenced by the scaling
prediction, and the prediction in time intervals of an order of minutes, with a buffer window
in which the services can be deployed.

An empirical investigation was conducting in order to find the most appropriate
deep learning model to be used for a microservice proactive auto-scaler. The tests and
the comparison analysis led to the conclusion that considering the accuracy, but also the
computational overhead and the time duration for prediction, MLP (MultiLayer Perceptron)
model qualifies as a reliable foundation for the development of proactive micro-service
scaler applications.

Future plans include investigation of other models, but also development of a more
complex proof of concept project that considers realistic scenarios, with varied traffic
patterns over a longer period of time to showcase the accuracy of the proposed tool.
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