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Abstract
Background: Prediction of software vulnerabilities is a major concern in the field
of software security. Many researchers have worked to construct various software
vulnerability prediction (SVP) models. The emerging machine learning domain aids in
building effective SVP models. The employment of data balancing/resampling techniques
and optimal hyperparameters can upgrade their performance. Previous research studies
have shown the impact of hyperparameter optimization (HPO) on machine learning
algorithms and data balancing techniques.
Aim: The current study aims to analyze the impact of dual hyperparameter optimization
on metrics-based SVP models.
Method: This paper has proposed the methodology using the python framework Optuna
that optimizes the hyperparameters for both machine learners and data balancing
techniques. For the experimentation purpose, we have compared six combinations of
five machine learners and five resampling techniques considering default parameters and
optimized hyperparameters.
Results: Additionally, the Wilcoxon signed-rank test with the Bonferroni correction
method was implied, and observed that dual HPO performs better than HPO on learners
and HPO on data balancers. Furthermore, the paper has assessed the impact of data
complexity measures and concludes that HPO does not improve the performance of those
datasets that exhibit high overlap.
Conclusion: The experimental analysis unveils that dual HPO is 64% effective in
enhancing the productivity of SVP models.

Keywords: software vulnerability, hyperparameter optimization, machine learning
algorithm, data balancing techniques, data complexity measures

1. Introduction

With the advent of information technology, Software is the main component of devices and
systems on which modern life is dependent. Software Vulnerabilities are mistakes, errors,
flaws, weaknesses, or loopholes caused during the specification, design, development, or
configuration of the software [1]. We can say that a lack of programming practices [2]
may lead to software vulnerability which may further provide a gateway for attacks,
thereby hampering the confidentiality, integrity, and availability of the information systems.
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Attackers make use of software vulnerabilities to attack the system. Once access is obtained,
security is at stake and any valuable information can be stolen from it, for example, theft
of email passwords, debit card information, etc., or the system can be corrupted. To curb
the intrusion of attackers, software free from vulnerabilities needs to be developed using
security techniques along with secured design principles and software development life
cycles [3]. Conventional security techniques include static analysis [4] such as penetration
testing [5], fuzz-testing [6], etc., dynamic analysis such as tainted data-flow analysis [7],
code inspections [8], etc., and hybrid analysis [9]. Static analysis has the problem of a high
false-positive rate [10]. Code reviews are time-consuming and cannot be easily performed
on large systems because of time constraints, and scarcity of validation and verification
resources. To tackle these limitations to an extent, researchers worked on developing new
prediction models based on machine learning algorithms. The time of the developers is
reduced by early prediction of the most vulnerable components.

Predictive modeling calculates or predicts future outcomes using historical data and aids
in prioritizing the efforts of software testing. The prediction models consist of independent
variables (predictors) and dependent variables (outcomes). They are built after collecting
historical data for relevant predictors. In the domain of software engineering, various fault
prediction and defect prediction models are proposed for predicting faults and defects and
enhancing the efficiency of software testing plans [11]. Therefore, to predict vulnerabilities
researchers developed SVP models. Although faults and vulnerabilities are different, yet
construction of their respective models is almost similar [12]. SVP machine learning-based
models classify the software components into vulnerable or non-vulnerable categories
depending on different levels of granularity such as file, package, class, or method. They are
categorized as metrics-based, text-mining-based, and a combination of both. Metrics-based
models are where metrics determine the vulnerable components. Text-mining-based models
are where the conversion of source code into tokens and frequencies predicts the vulnerable
components. A combination of both predicts the vulnerability by combining the metrics
and text features.

Vulnerabilities are hard to find, as it requires attack patterns knowledge and understand-
ing of the source code. Due to security concerns, developers publish a limited number of
vulnerabilities compared to faults [13] so, vulnerabilities are subgroups of faults. The class
imbalance problem has always been an issue as prediction models favor the majority class
(over-represented concept) over the minority class (under-represented concept). Various
studies have managed to tackle it by using data-level methods [14–18], algorithm-level
methods [19], and ensemble learning methods [20].

1.1. Motivation

The main challenge faced by the SVP models is their performance which is affected by
the imbalanced datasets and the hyperparameter settings of machine learning techniques.
Therefore, to enhance the efficacy of prediction models, recent studies have used various
combinations of resampling techniques and optimized machine learning methods [21–25]
in the areas of software engineering. By far, studies have optimized the hyperparameters
of machine learners and applied data balancing techniques to balance the dataset but
optimization of resamplers has only been explored in a few studies [26–29]. In [26], Six
imbalanced datasets from the Keel collection are used. The current study aims to analyze
the effect of hyperparameter optimization (HPO) when applied to both machine learners
and resamplers called dual HPO on the performance of metrics-based SVP models which
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has not been performed on the PHP dataset before. In addition to this, it has been observed
that the capability of machine learners is not only hampered by imbalanced datasets but
also by the degree of class overlapping, which motivates us to further anatomize the problem
with the degree of class overlapping for the cases where efficiency is not improved. Papers
[27–29] have worked on bug prediction models and worked on textual data.

1.2. Contributions

In this study, we have replicated the six scenarios of HPO used in [26] on three publicly
available datasets PHPMyAdmin, Moodle, and Drupal [30]. We have used five supervised
machine learning algorithms and five resampling techniques which are highly used in past
studies. This paper revolves around the construction of metrics-based SVP models using

Table 1. Scenarios for hyperparameter optimization

Scenario Machine Learning Methods Resampling Techniques

1. Ad + Rn Default hyperparameters No Resampling
2. Ao + Rn Optimized hyperparameters No Resampling
3. Ad + Rd Default hyperparameters Default hyperparameters
4. Ao + Rd Optimized hyperparameters Default hyperparameters
5. Ad + Ro Default hyperparameters Optimized hyperparameters
6. Ao + Ro Optimized hyperparameters Optimized hyperparameters

the six scenarios mentioned in Table 1. The comparative analysis of all the scenarios is
performed, and significant improvement is calculated using Wilcoxon signed-rank test, and
Bonferroni correction is applied as there are six statistical tests. The effect of hyperparameter
tuning and resampling on the prediction models is demonstrated through the outcomes of
our experiments performed in the python framework Optuna. The study has the following
major contributions:
RQ 1) How much is dual HPO effective in improving the performance of SVP models?
Dual HPO is the optimization of hyperparameters of both machine learners and resampling
techniques. Since HPO is known to improve the productivity of SVP models [21–25] the
aim is to check whether applying dual HPO increases their performance.
RQ 2) Is dual HPO better than other HPO scenarios?
This question aims to find whether the performance improvements by dual HPO compared
with AdRd are better than HPO scenarios AoRd and AdRo when each is compared with
AdRd.
RQ 3) How has the degree of class overlapping affected the HPO?
As mentioned in [26] the performance of SVP is also affected by the degree of class
overlapping which is measured by the data complexity measures. This paper has used two
measures imbalance ratio and maximum Fisher’s discriminant (F1). The current study is
the first attempt to search for the cause of no improvement in the efficiency of models even
after applying HPO.
RQ 4) Which resampling technique has performed the best?
The current study has applied five resampling techniques namely SMOTE, Adasyn, Bor-
derline SMOTE, SMOTE + Tomek links, and SMOTE + Edited Nearest Neighbors to
balance the datasets. Four scenarios in Table 1 have used resampling with default and
optimized parameters respectively. So, the goal of this research question is to find the best
resampling technique across all datasets and machine learning techniques.
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1.3. Paper organization

The remaining sections of the current study are structured as Section 2 presents the related
work, Section 3 provides the methodology, Section 4 describes the experimental design,
Section 5 explains the results, Section 6 discusses the findings of the study, Section 7 shows
threats to validity, and Section 8 concludes the paper and provides the future scope of the
study.

2. Related work

Software vulnerability provides the gateway for attackers to damage the software systems.
Therefore, research studies have focused on predicting the software vulnerable components
effectively using machine learning algorithms. There exists a large amount of work that
exhibits machine-learning techniques for the construction of SVP models. The performance
of models is increased by using machine learners but more research needs to be done on the
factors affecting them, i.e., hyperparameter tuning, imbalanced datasets, and the degree of
class overlapping. In this paper, we are trying to improve machine learners’ performance
by understanding the role of these factors.

2.1. Class imbalance in prediction models

Ghaffarian and Shahriari [1] have presented a survey paper showing machine learning and
data-mining techniques to mitigate the impact of software vulnerability. It has encapsulated
various definitions of software vulnerability. Various works related to vulnerability prediction
models have been reviewed in this paper. Also, it has been mentioned that the vulnerability
datasets are imbalanced and affect the productivity of machine learning algorithms.

Kaya et al. [3] have described the effect of feature types, machine learners, and resamplers
on SVP models. It has included three feature types’ metrics, text, and a combination of both.
It has experimented using seven machine learners namely random forest, linear support
vector machine, weighted k-nearest neighbors, adaboost, rusboost, linear discriminant,
subspace discriminant and four resamplers such as SMOTE, cluster SMOTE, borderline
SMOTE, and adasyn. The datasets used are Drupal, Moodle, and PHPMyAdmin. For
experimental evaluation, the performance metrics used are precision, recall, AUC , F 1-score,
and specificity. The paper concludes that random forest has performed the best for smaller
datasets Drupal and PHPMyAdmin, and rusboost for larger datasets, i.e., Moodle.

Wang and Yao [15] have used under-sampling techniques, ensemble-learning techniques,
and threshold moving techniques on two classifiers (naive bayes and random forest) to
address the class imbalance issue in software defect prediction (SDP) models. It has been
concluded that balanced random under-sampling shows better defect prediction but lesser
than naive bayes. Adaboost has turned out to be the best performer in improving the
efficiency of SDP models. The overall performance is assessed using G-mean, AUC, and
balance metrics.

Sasada et al. [16] have raised the data complexity issue caused by resampling techniques
that affect the accuracy of the predictive model. The performance metrics used are accuracy
and f-measure. SMOTE + ENN and SMOTE + TL are proposed for handling the noise and
overlap in the dataset. The proposed method is effective in four out of ten datasets. Borowska
and Stepaniuk [17] have studied the behavior of under-sampling and over-sampling methods
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on imbalanced datasets. The experimental results illustrated that SMOTE + ENN and
SMOTE + TL provide good results for datasets with few positive instances and random
oversampling (ROS) gives good results when there are more positive instances.

Walden et al. [30] have stated that previous works were done on Java, C++, and C
projects so they have proposed the vulnerability datasets based on PHP open-source projects
as most of the vulnerabilities are found in web applications. The datasets provided include
software metrics and text features. The paper has worked on both software metrics-based
and text mining-based SVP models and found that text mining-based models perform
better than metrics-based ones. Experiments include random forest machine learner and
under-sampling technique for balancing the dataset and the performance metrics used are
recall and inspection ratio.

Stuckman et al. [31] have extended the work in [30] by inspecting the impact of
dimensionality reduction techniques (feature selection, principal component analysis, and
confirmatory factor synthesis) on metrics and text-mining features. It has implemented
SMOTE and under-sampling technique for data balancing and found that SMOTE has
shown lower recall, lower inspection rate, and higher f-measure so; it is preferred over the
under-sampling method. In addition to this, dimensionality reduction techniques worked
well for cross-project prediction than within-project prediction.

2.2. Hyperparameter tuning

Hyperparameter tuning in recent studies has been observed to improve the efficiency of
prediction models. A lot of studies exist on hyperparameter tuning of defect prediction and
bug prediction models which motivated us to explore the same for vulnerability prediction
models.

Tantithamthavorn et al. [21] have shown the effect of optimal parameter settings on
the defect prediction model (DPM) by using the caret technique (automated parameter
optimization technique) and concluded that on optimizing the parameters of classifiers, the
performance of DPM has improved by 40% in terms of AUC evaluation metric. The paper
has suggested experimenting with different parameter tuning of machine learning classifiers.

Rijn and Hutter [22] have employed a hundred datasets from OpenML to find the
important hyperparameters for the random forest, adaboost, and support vector machine
algorithms. This paper projects the idea of optimizing important hyperparameters rather
than optimizing all the hyperparameters. We have considered some of these important
hyperparameters to be tuned as per our research requirement.

Yang and Shami [24] have identified the hyperparameters for machine learning algorithms
through their work. The study has discussed the HPO problem in detail and has explained
different HPO algorithms and frameworks with their advantages and disadvantages. The
range for hyperparameters of (both classifiers and regressors) random forest, k-nearest
neighbor, and support vector machine. For our study, we have used classifiers’ ranges.

Shu et al. [25] perform parameter tuning of machine learners and data pre-processors to
classify bug reports. A comparison of FARSEC and HPO is performed. It is observed that on
applying HPO, the recall has improved from 35% to 65% with an increased false-positive rate.
Also, optimizing data pre-processors produces better performance results than optimizing
machine learners. The paper used five machine learners such as random forest, logistic
regression, naïve bayes, k-nearest neighbor, and multilayer perceptron.

Claesen and Moor [32] have discussed the challenges in searching hyperparameters for
the machine learning algorithm. Also, current approaches for searching hyperparameters are
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mentioned in the paper. Kudjo et al. [33] have discussed the importance of parameter tuning
on three PHP datasets Drupal, Moodle, and PHPMyAdmin. The paper has compared
the results for random forests with the benchmark study by [30] and found an increase
in precision, recall, and accuracy for Drupal and PHPMyAdmin whereas for Moodle only
accuracy has increased. The paper has not included balancing techniques. In addition to
this, the accuracy metric gives biased results for imbalanced datasets.

Sara et al. [34] use the concept of data balancing and HPO on maintainability or
bug prediction models. The paper uses SMOTE and grid search on five machine learning
algorithms (k-nearest neighbor, support vector machine, decision tree, naive bayes, and
multilayer perceptron). The evaluation metrics involve sensitivity, specificity, accuracy,
and precision. Grid search is better than default settings in all datasets but there is no
existence of the best machine learning technique for all datasets. However, it concludes
that tuning hyperparameters and balanced data helps in obtaining the best productivity
of machine learning methods.

Osman et al. [35] have worked on optimizing hyperparameters of two machine learning
algorithms (k-nearest neighbor and support vector machine) using five open-source java
systems. Hyperparameter tuning improves the accuracy of bug prediction models such as
k-nearest neighbor became a better predictive model after HPO. The paper shows how
different machine learning algorithms are compared after hyperparameter tuning.

2.3. Class overlapping

Almutairi and Janicki [14] discuss the class imbalance problem and the impact of overlapping
on imbalanced data. It has compared and analyzed three machine learning algorithms
(decision tree, k-nearest neighbor, and support vector machine) using six combinations
of overlapping and imbalance. For the evaluation criteria accuracy, precision, and recall
are used. The findings show that imbalanced data has less overlap than balanced data.
It further concluded that the performance of the predictive model not only depends on
resampling techniques but also on the degree of overlapping in the datasets.

Barella et al. [36] have explained the class overlapping issue in imbalanced binary
classification. It states that various research studies have focused on balancing methods
but that works well when the classes are linearly separable. The class overlap is measured
by various data complexity measures mentioned in Ho and Basu [37] and Sotoca et al. [38]
that divide the data complexity measures into three categories: (i) measures of feature
overlap, (ii) class separability measures, and (iii) measures of geometry and topology.

Furthermore, Lorena et al. [39] have divided these measures into the following feature-
based measures linearity measures, neighborhood measures, network measures, dimension-
ality measures, and class imbalance measures. Also, it has mentioned the application areas
for data complexity measures such as data analysis, data pre-processing tasks, learning
algorithms, and meta-learning. For our study, since we need to deal with data imbalance
which is one of the data pre-processing tasks, therefore, data complexity measures are
applied to see their impact on the classification of imbalanced datasets.

2.4. Dual hyperparameter optimization

Shu et al. [27] extended the paper [25] by incorporating dual optimization approach
(SWIFT) for bug prediction. The research paper concludes that SWIFT is better than
optimizing data pre-processor and learners individually. Kong et al. [26] show the impact
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of resampling and HPO on the performance of machine learning algorithms. Also, tuning
the hyperparameters of both resamplers and learners is emphasized. The area under the
ROC curve is used for performance evaluation. The experiments are performed on two
machine learning algorithms (random forest and support vector machine) that consider six
combinations of HPO (learners and resamplers). Also, data complexity measures show that
hyperparameter optimization works for datasets with low overlap than datasets with high
overlap. Existing works have encouraged us to propose a methodology that assimilates
data imbalance, hyperparameter tuning, and class overlapping areas to increase the efficacy
of SVP models.

Agrawal et al. [28] have also applied HPO on pre-processor and machine learners for
defect prediction models where the “dodge” technique is applied to reduce the CPU cost
caused by HPO. It eliminates duplicate hyperparameter tunings but is efficient for data with
low dimensionality; therefore Agrawal et al. [29] extended the work for high-dimensionality
data. In [28] 10 SE defect prediction datasets and 6 SE issue tracking datasets were used.
In addition to this, [29] has included 63 SE datasets that explore Github issue close time,
4 SE datasets for bad smell detection, and 37 non-SE problems from the UCI repository
hence considering datasets with high dimensionality.

2.5. Comparisons with existing works

Table 2 has compared our work with the research studies based on machine learning
techniques used, resampling techniques, evaluation metrics, whether HPO exists, dual HPO
exists, and whether data complexity measure exists. It has been inferred from Table 2 that
most of the studies lack HPO, dual HPO, and data complexity measures. In [27], only
data complexity measures are missing. Since [26] has included all the factors but on the
Keel-collection datasets, only two machine learning techniques, four resampling techniques,
and one data complexity measure. In addition to this, only (Ao + Ro) is compared with
(Ad + Rd).

The proposed work has replicated this idea on the PHP dataset with three added machine
learning algorithms, i.e., gaussian naïve bayes, adaboost, and k-nearest neighbor, one added
resampler namely Borderline SMOTE, and one added data complexity measure such as
imbalance ratio. Furthermore, six scenarios are compared and mentioned in Section 4.2.

3. Research methodology

This section explains the research methodology stating the datasets used (Section 3.1),
machine learning methods (Section 3.2), resampling techniques (Section 3.3), hyperparam-
eter optimization (Section 3.4), performance evaluation metrics (Section 3.5), and data
complexity measures (Section 3.6) used in the study.

3.1. Experimental datasets

The experiments are performed on three open-source publicly available datasets1, namely
Drupal is a content management system, PHPMyAdmin is an open-source administration
for MySQL, and Moodleis a learning management system. These datasets have been used

1http://seam.cs.umd.edu/webvuldata
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in recent studies mentioned in the related work section. The level of granularity of datasets
is file and each file is labeled with “no” (no vulnerability exists) or “yes” (at least one
vulnerability exists from vulnerability type). There exist vulnerable types such as code
injection, cross-script request forgery (CSRF), cross-site scripting (XSS), path disclosure,
authorization issues, and others related to phishing or man-in-the-middle vulnerabilities.
The current paper focuses on binary classification as the dataset available are labeled
with two values “NO” and “YES”. There exist both metrics and text mining datasets1.
For this work, only metrics-based datasets are considered. The datasets downloaded have
comma-separated values which are further preprocessed and saved. Table 3 shows the
Drupal vulnerability prediction dataset after preprocessing. Each column header is the
software metric of the dataset. There are 13 software metrics (Independent variable) and
the column “IsVulnerable” (dependent variable) shows the labeling of each file:
– “nonecholoc”: non HTML lines of code;
– “loc”: total number of lines of code in a PHP file;
– “nmethods”: total number of functions in the file;
– “ccomdeep” and “ccom”: cyclomatic complexity, i.e., the number of independent paths.

Since these two metrics have the same values so can be considered as one metric;
– “nest”: maximum nesting complexity, i.e., maximum depth of the nested loops;

Table 3. Example of Drupal dataset
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4 4 0 1 1 0 3.29 0 0 0 2 2 2 0
126 126 9 26 26 4 1402.86 18 6 2 18 8 35 1
168 168 10 29 29 3 1455.88 4 4 8 19 9 32 0
412 412 35 77 77 5 4929.76 361 119 23 30 12 30 1
10 10 3 1 1 0 29.93 54 33 0 0 0 0 0
53 53 3 16 16 4 583.07 53 32 1 14 6 24 0

1355 1355 92 251 251 8 17945.97 698 147 38 62 19 137 1
162 162 13 31 31 3 1702.981 59 34 4 24 10 16 1
172 172 21 29 29 2 1854.86 113 77 7 17 5 35 0
131 131 19 14 14 1 1455.23 176 79 3 16 6 25 0
135 135 19 14 14 1 1510.92 176 79 3 16 6 25 0
328 328 42 51 51 2 4440.29 286 84 15 27 6 67 0
381 381 27 84 84 6 5256.54 48 15 16 24 9 82 1
896 896 70 197 197 6 13130.98 107 51 27 38 11 108 1
107 107 9 18 18 3 941.85 1 1 3 4 4 14 0
77 77 9 13 13 3 917.13 8 4 3 4 3 4 0
361 361 22 86 86 6 4169.19 33 9 8 26 10 39 0
60 60 2 11 11 1 360.58 0 0 1 2 2 16 0
59 59 2 10 10 1 413.19 0 0 1 2 2 16 0
74 74 2 16 16 1 473.45 0 0 1 2 2 18 0
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– “hvol”: Halstead’s volume is calculated using the number of total operands and operators
with the number of unique operators and operands;

– “nIncomingCalls”: fan-in, i.e., number of files that call the function from the measured
file;

– “nIncomingCallsUniq”: internal methods that are called by the statement in the mea-
sured file;

– “nOutgoingInternCalls”: fan-out is the number of files called from the measured file;
– “nOutgoingExternFlsCalled”: total external calls are the number of methods from other

files called in the measured file;
– “nOutgoingExternFlsCalledUniq”: external methods called are the number of functions

called from the measured file and also included in other files;
– “nOutgoingExternCalls”: external calls to methods are the number of files that calls

methods in the measured file.
Table 4 describes the version of the project, total files, vulnerable files, Imbalance Ratio (IR),
no of vulnerabilities, Maximum Fisher’s Discriminant Ratio (F 1), and text features. As per
equation (8) mentioned in Section 3.6, IR for each dataset is calculated and it is observed
that all three datasets are imbalanced, Moodle being highly imbalanced with IR 120.8.
Drupal and PHPMyAdmin are imbalanced with IR 2.25 and 10.92, respectively. Equation (7)
in Section 3.6 calculates the F1 values of the datasets. Moodle is less overlapped with
the F1 value of 0.8098. Drupal is moderately overlapped, having a 0.6229 F1 value, and
PHPMyAdmin is highly overlapped with an F1 of 0.3195.

Table 4. Dataset descriptions

Dataset Version Total Vulnerable IR Vulnerabilities F 1 Text
Files Files Features

Drupal 6.0 202 62 2.25 97 0.6229 3886
PHPMyAdmin 3.3.0 322 27 10.92 75 0.3195 5232
Moodle 2.0.0 2924 24 120.8 51 0.8098 18306

3.2. Machine learning methods

Machine learning methods consist of supervised and unsupervised algorithms. Supervised
machine learning methods include those machine learning algorithms where input features
are mapped to the target using labeled data. These include Linear Regression, Logistic
Regression, Naive Bayes (NB), k-Nearest Neighbors (KNN), Decision Tree (DT), Random
Forest (RF), Support Vector Machines (SVM), etc. Various ensemble learning methods are
Bagging, Voting, Adaboost, etc. In this paper, five supervised machine learning methods;
RF, AB, Gaussian NB, SVM, and KNN are used. In paper [44], we have studied the effect
of hyperparameter optimization on eight machine learning algorithms that are widely used
in research studies as per Table 2 and have different training strategies. Further, we have
considered the top five machine learners with high AUC values and extended our work on
those techniques.

3.2.1. Random forest (RF)

Most studies use the RF algorithm as mentioned in Table 2; therefore, it is selected for
the current study. It is a supervised learning technique based on the concept of ensemble
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learning. By counting the votes (classification output) of multiple decision trees constructed
from randomly generated subsets in the forest, the class with the majority votes is selected to
be the classification output of the RF classifier. It can perform classification and regression
tasks. It can handle large datasets and prevent the over-fitting issue [45].

3.2.2. Adaboost (AB)

Adaboost, called adaptive boosting, is the boosting algorithm to build strong classifiers
using several weak classifiers. Weak learners are sequentially added and trained by weighted
training data. It predicts the classification output by calculating the weighted mean of
the weak classifiers. It boosts the efficiency of the prediction model in binary classification
problems. It can use different base learners to improve its performance. Noisy data and
outliers highly affect the AB algorithm [46–48].

3.2.3. Naive Bayes (NB)

Naive Bayes is the supervised machine learning algorithm based on Bayes’ theorem,
assuming there is independence among the features of the class. NB models are of four types:
Gaussian NB (GNB), Multinomial NB (MNB), Bernoulli NB (BNB), and Complement NB
(CNB) [49] and [50].
– In GNB, the predictors follow the gaussian distribution. MNB is implemented for

multinomial distributed data and used for text classification.
– BNB is used for multivariate Bernoulli distributed data where multiple features exist,

with each feature to be assumed as binary-valued. CNB is a variant of MNB and is
suitable for imbalanced datasets. NB is easy to implement and consumes less time but
has the limitation of independence among predictors, which in real-life cases can affect
the performance of the classifier.

– We used GNB in this paper as compared to CNB because the former has performed
better than the latter [51].

3.2.4. Support vector machine (SVM)

SVM is a supervised machine learning algorithm used to construct a hyperplane (best
decision boundary) that separates n-dimensional space into classes to put new data points
in the correct category for the future. SVM are linear and non-linear used for linearly
separable and non-linearly separable data, respectively. It is effective for high dimensional
space, is memory efficient, and consists of various kernel functions (linear, polynomial,
radial basis function, and sigmoid) used for decision function. It has the limitation of
overfitting, which arises when the number of samples is much smaller than the number
of features [52, 53].

3.2.5. k-nearest neighbors (KNN)

KNN is a supervised machine learning algorithm that classifies the data points by calculating
the distance between them. It classifies the new data point based on the similarity with
the stored data. It is crucial to determine the value of k as a small value may lead to
underfitting and a large value to overfitting [54, 55].
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3.3. Resampling techniques

Resampling is an approach to yielding a balanced dataset (training dataset) from an imbal-
anced dataset (training dataset). Resampling can be done in three ways: Under-sampling,
Over-sampling, and Hybrid resampling. Under-sampling removes the majority of samples
leading to loss of data and degrading the performance of the classifiers. For example,
random under-sampling (RUS). Over-sampling replicates the minority samples which
leads to over-fitting. It should be ensured that over-sampling is restricted only to the
training dataset to avoid over-fitting issues. Examples are: random oversampling (ROS),
synthetic minority oversampling technique (SMOTE), adaptive synthetic sampling approach
(ADASYN), borderline SMOTE (BL SMOTE), cluster SMOTE, etc. [56]. Hybrid sampling
is the combination of under-sampling and over-sampling techniques such as SMOTE +
edited nearest neighbor (SMOTE + ENN), SMOTE + Tomek links (SMOTE + TL), and
condensed nearest neighbors + Tomek links (CNN + TL).

In this study, the main focus is on over-sampling and hybrid sampling techniques so;
we have used SMOTE, ADASYN, BL SMOTE, SMOTE + ENN, and SMOTE + TL for
our research.

3.3.1. SMOTE

SMOTE generates synthetic samples by creating new instances rather than duplicating the
existing ones. The oversampling process occurs in the feature space. The synthetic samples
are yielded along with the line segments that join k-nearest neighbors of the minority
samples. It prevents over-fitting and increases the performance capabilities of the classifiers
by generalizing the decision boundaries [57].

3.3.2. ADASYN

ADASYN produces synthetic samples by giving importance to minority samples that are
hard to learn and minority classes having fewer samples. Density distribution is considered
in ADASYN. It promotes adaptive learning and reduces learning bias [58].

3.3.3. BL SMOTE

BL SMOTE is an extended version of SMOTE. In this approach, synthetic samples are
generated by selecting misclassified instances of the minority class. The instances near and
on the borderline are misclassified than instances far from the borderline [59].

3.3.4. SMOTE + TL

SMOTE + TL is a hybrid sampling technique that integrates SMOTE and Tomek links
to reduce the occurrence of overlap. SMOTE oversamples the minority class, and Tomek
links are removed from the oversampled samples. A clear decision boundary is formed by
removing the instances in the overlapping region [16].

3.3.5. SMOTE + ENN

SMOTE + ENN combines the SMOTE technique with the ENN to reduce the noise.
SMOTE oversamples the minority class, and ENN removes the noisy samples. It removes
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misclassified examples by its three nearest neighbors. It deeply cleanses the data more than
SMOTE + TL [16].

3.4. Hyperparameter optimization

Optimal hyperparameter settings are required to improve the potential of SVP models
[33]. The data learning process initializes and updates the parameters, known as model
parameters, but we cannot estimate hyperparameters from this process. Hyperparameters
are set before the model’s training, as they configure prediction models and minimize the
loss function. Hyperparameter tuning can either be done: manually or automatically.

In the case of manual tuning, various machine learning algorithms require a deep
knowledge of hyperparameters. It is laborious and time-consuming for algorithms with
larger hyperparameters. Due to the above limitations, the optimization of hyperparameters
is automated called hyperparameter optimization (HPO). It is time-efficient, reduces
human effort, aids in comparing machine learning algorithms, and determines the suitable
prediction model for a particular problem [32].

There exist various HPO techniques, and selecting the apt technique is crucial. Grid
search (GS), random search (RS), bayesian optimization (gaussian process, SMAC, tree-
structured Parzen estimator), gradient-based optimization, multi-fidelity optimization algo-
rithms (successive halving, hyperband, bayesian optimization hyperband), and metaheuristic
algorithms (genetic algorithm, particle swarm optimization) are the HPO techniques [24].
These are applied depending on the hyperparameters such as continuous, conditional,
categorical, and discrete.

Some open-source libraries to handle the HPO problems are sklearn, spearmint, bayesopt,
hyperopt, optunity, and optuna [24]. For this paper, Optuna [60] is used instead of hyperopt
[26] due to its advantages that search space is dynamically constructed; searching and
pruning algorithms are efficient, scalable, lightweight, and distributed.

Different machine learning algorithms have different hyperparameters to be tuned.
Search spaces are selected based on recent studies. Table 5 describes the hyperparameters
for each machine learning algorithm, default values, and their ranges, respectively. We have
chosen hyperparameters suitable for our study.
– For RF, we have taken n_estimators, max-depth, max_features, and criterion where

n_estimators means the number of trees in the table, max_depth is the maximum
number of trees, max_features are the maximum features to consider when searching
for the best split, and criterion is the function that measures the quality of the split.

– In the case of AB, the hyperparameters chosen are: n_estimators are the maximum
number of estimators where boosting is terminated, learning_rate is the weight applied
to each machine learner at boosting iteration, and the algorithm is the real boosting
algorithm to be used.

– For GNB, we use var_smoothing, the part of the largest variance of all features added
to variances for calculation stability.

– In the case of SVM, we have used the “c” regularization parameter and kernel that
describes the kernel type of the algorithm.

– For KNN, n_neighbours is the number of neighbors, weights are the weight function
that describes the weights of neighbors, and leaf_size is passed to the algorithms like
BallTree or KDTree.

– For SMOTE, Adasyn, and BL-SMOTE, k-neighbors are the number of neighbors, and
sampling_strategy to resample the dataset are the hyperparameters to be used.
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– In the case of SMOTE + ENN, the hyperparameters are the SMOTE object, ENN
object, and sampling_strategy.

– Further, SMOTE + TL uses SMOTE object, Tomek links object, and sampling_strategy
as hyperparameters.

HPO problem is defined as [61]:
x′ = arg min f(x), x ∈ χ (1)

where f(x) is the objective function, χ is the hyperparameter search space, x is the set
of best hyperparameters, and x can choose any hyperparameter from χ. HPO process
is depicted in Figure 1. This paper has considered a single objective function to be
minimized therefore only one performance metric is considered. To optimize more metrics
multi-objective function is used.

Figure 1. HPO process

3.5. Performance evaluation metrics

The accuracy metric fails in evaluating the SVP models in the imbalanced domain. Hence,
we have used the area under the Receiver Operator Characteristic (ROC ) curve (AUC )
and F 1-Score as the performance metric for the current study. ROC is a probability curve
that plots the true positive rate (TPrate) against the false positive rate (FPrate). AUC
gives the probability that the positive sample is ranked higher than the negative sample
by the classifiers and is described in Figure 2. TPrate is defined as the probability that
the actual positive samples are correctly tested as positive whereas FPrate is defined as
the probability that the negative samples are tested as positive. AUC can be measured in
terms of true positive rate (TPrate) and false positive rate (FPrate) as [62]:

Recall = TPrate = TP
TP + FN = TP

P
(2)
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Precision = TP
TP + FN (3)

FPrate = FP
FP + TN = FP

N
(4)

AUC = 1 + TPrate − FPrate
2 (5)

Figure 2. Area under ROC curve

The performance values of AUC range from 0 to 1 and these values figure out how well
are classifiers at distinguishing between positive and negative classes. The high-performance
model has AUC close to 1, whereas the low-performance model has AUC close to 0.5 [63].
F1-Score is defined as the harmonic mean of precision and recall each weighted equally.

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall (6)

3.6. Data complexity measures

It is observed that the efficiency of the machine learning algorithms is not only degraded
by imbalanced datasets but also by the degree of class overlapping. The degree of class
overlapping is calculated by the data complexity measures [36] and [37].

The current study has focused on the feature-based measure (maximum Fisher’s
discriminant ratio (F1) and class imbalance measure (imbalance ratio). F1 measures the
maximum discriminative power of all features in different classes and is computed as [38]:

F1 = (µc1 − µc2)2

σc12 + σc22 (7)

230102 16

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-2/


Deepali Bassi, Hardeep Singh e-Informatica Software Engineering Journal, 17 (2023), 230102

where µci and σci are the mean and variance of values of the class i feature, respectively.
The higher values of F 1 indicate lower complexity; henceforth the classification problem is
simple. The lower value of F1 shows that classes are highly overlapped. The imbalance
ratio (IR) in the case of binary classification is calculated as [64]:

IR = No. of majority class instances
No. of minority class instances (8)

4. Experimental framework

This section includes an Experimental procedure (Section 4.1) and a statistical test
(Section 4.2). Figure 3 shows the experimental framework that illustrates the working of
the model [65].

4.1. Experimental procedure

The experimental procedure (see Table 6) is based on the pseudo-code presented in [3].
The experimental methodology is illustrated through Algorithm1 and Subalgorithm.

Table 6. Summary of the information regarding the experimental setup of the current study

Datasets Machine
Learning
Techniques

Resampling
Techniques

Hyperparameter
Optimization
Method

Performance
Metrics

Data
Complexity
Measures

Drupal,
Moodle, PHP-
MyAdmin

RF, AB,
GNB, KNN,
SVM

SMOTE,
ADASYN,
BL SMOTE,
SMOTE +
TL, SMOTE
+ ENN

Optuna AUC and
F 1-Score

F 1 and IR

– Algorithm1 calculates the AUC value and F 1-Score of each scenario for HPO explained
in Table 1. The experiments are performed on three datasets given in Table 4.

– The methodology uses three-fold cross-validation repeated 50 times to maintain the
random order construed in Subalgorithm. The three-fold cross-validation splits the
dataset into three parts (2:1) where two parts are used for training and one part is
used as the testing dataset. In other words, the training dataset is 66.66% of the entire
dataset and the testing dataset is 33.33% of the whole dataset. In Algorithm1, lines 5–8
calculates evaluation metrics for (Ad + Rn) and (Ao + Rn) scenarios and lines 9–12
calculates evaluation metrics for (Ad + Rd), (Ao + Rd), (Ad + Ro), and (Ao + Ro)
scenarios.

– There are two arrays default[] and optimized[] which stores the hyperparameters of
machine learners and resamplers. Default[] indicates that the machine learners will
run in their default settings whereas the optimized[] array is calculated by performing
hyperparameter tuning mentioned in Section 3.4.

– For hyperparameter tuning, there is a need for a validation dataset. The training
dataset (66.66%) is further split into two parts, i.e., new training dataset and one
part of the validation dataset which means 44.435% is the new training dataset and
22.217% is the validation dataset. The training dataset trains the classifier with chosen
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Figure 3. Working of proposed methodology

Figure 4. Example of the result of RF hyperparameter tuning on Drupal dataset
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hyperparameters and their ranges. An objective function is optimized (AUC in our
case), and on the validation part, 100 iterations are performed to achieve the best
hyperparameters. Figure 4 describes the example of hyperparameter tuning of RF on
the Drupal dataset for scenario 2.

– Further, the best hyperparameters are evaluated on the testing dataset using subalgo-
rithm which calculates the AUC and F1-Score of each scenario. The final ratio of the
training, validation, and testing part is 1.33:0.66:1.

– This paper focuses on optimizing a single objective function which means we are
focusing on maximizing the AUC performance metric using the best hyperparameters
configuration.

– Subalgorithm takes the dataset, hyperparameters (default or optimized), machine
learning algorithm, resampling technique, and resampling condition as input and
returns the AUC metric and F1-score as output to Algorithm 1.

4.2. Statistical tests

The current study has applied Wilcoxon signed-rank test [66, 67] for statistical analysis. The
Wilcoxon signed-rank test is a non-parametric significance test, usually applied when the
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readings are not normally distributed. It is used to test the differences in the performance
(AUC) of six scenarios mentioned in Table 1. The p-value indicates a significant difference
in the readings. Since six statistical tests are being performed so the p-value will now
be changed to 0.05/6 = 0.0083 as per the Bonferroni correction method [68, 69]. To
conduct this test, the SPSS tool is used. The null hypothesis (Ho) describes that the
performance values are equal and the alternate hypothesis (Ha) indicates that performance
value differs.

To answer the research questions comparisons of the following cases are required:
1. (AdRn) & (AoRn): Default learner parameters with no resampling and optimized

hyperparameters of learner with no resampling.
2. (AdRn) & (AdRd): Default learner parameters with no resampling and Default learner

parameters with default resampler parameters.
3. (AdRd) & (AoRd): Default learner parameters with default resampling and optimized

hyperparameters of learner with default resampler parameters.
4. (AdRd) & (AdRo): Default learner parameters with default resampling and default

learner parameters with optimized hyperparameters of resampler.
5. (AdRn) & (AoRo): Default learner parameters with no resampling and optimized

hyperparameters of both learner and resampler.
6. (AdRd) & (AoRo): Default learner parameters with default resampler parameters and

optimized hyperparameters of both learner and resampler.

5. Results and analysis

This section explains the experimental results for the six scenarios of HPO. Further, the
analysis of the results is performed to check whether each scenario is statistically significant.
The results are based on the experimental procedure mentioned in Section 4. The goal of
this paper is not to find the best resampler or best machine learner but to find the impact
of dual HPO on SVP models.

5.1. AUC results

Tables 7–11 present the AUC values for each HPO scenario explained in Table 1. The
blue-shaded cells indicate the highest AUC value per row. The yellow-shaded cell indicates
the highest F1-Score among all scenarios. The bold + shaded cell indicates the highest
AUC per dataset for each machine learner. It should be noted that our study works on the
single objective function which has optimized the AUC metric and we are measuring AUC
improvements. Although we have shown F1-Score in the results HPO and dual HPO will
affect this metric mainly when used in the objective function which is a multi-objective
problem that is out of the scope of this paper. The paper has still presented the effect of
HPO and dual HPO on F1-Score when the single-objective function is optimized.

In Table 7, it has been observed that:
– In the case of RF, for Drupal, scenario 6 has achieved the highest AUC value of 0.8461

with SMOTE resampling technique.
– For Moodle dataset, BL SMOTE for scenario 6 has shown the highest AUC of 0.7783.
– For PHPMyAdmin, scenario 3 with default resampling results in a maximum AUC

value of 0.7081.
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– In the case of Drupal F1-Score has the highest value of 0.7088 in scenario 6 of Adasyn.
For Moodle, F1-Score has the highest value of 0.0664 in scenario 6 of SMOTE. In
PHPMyAdmin, the highest value of 0.2594 is attained in scenario 1.
In Table 8,

– For AB, it is observed that BL SMOTE for scenario 6 has performed the best for
Drupal, with an AUC value of 0.8524.

– For Moodle, Adasyn for scenario 6 has resulted best, with an AUC value of 0.8402.
– In the case of PHPMyAdmin, scenario 5 has performed the best with an AUC value of

0.7351.
– F1-Score in the case of Drupal is highest with a value of 0.7566 for BL SMOTE

scenario 6. Moodle has the highest F1-Score with a value of 0.0778 in SMOTE + TL
scenario 6. PHPMyAdmin has the highest value of F1-Score 0.2881 in scenario 4 of
SMOTE + TL.
Table 9 gives the AUC results for the GNB algorithm,

– SMOTE + TL with scenario 6 has provided the highest AUC value of 0.8777 for the
Drupal dataset.

– For Moodle, SMOTE + ENN in scenario 6 has given the highest AUC value of 0.8909.
– In the case of PHPMyAdmin, Adasyn in scenario 4 has performed the best with the

maximum AUC value of 0.7561.
– F1-Score in the case of Drupal is highest with a value of 0.5777 for SMOTE + ENN

scenario 5. Moodle has the highest F 1-Score with a value of 0.1679 in SMOTE scenario 6.
PHPMyAdmin has the highest value of F1-Score 0.2648 in scenario 1.
Table 10 presents the AUC values for the KNN algorithm,

– For the Drupal dataset, SMOTE in scenario 6 has performed the best, with an AUC
value of 0.8652.

– In the case of Moodle, BL SMOTE in scenario 6 has performed the best, with an AUC
value of 0.7997.

– For PHPMyAdmin, the highest AUC value of 0.7001 is achieved by SMOTE in sce-
nario 4.

– F1-Score in the case of Drupal is highest with a value of 0.6571 for SMOTE + ENN
scenario 5. Moodle has the highest F 1-Score with a value of 0.0743 in Adasyn scenario 5.
PHPMyAdmin has the highest value of F1-Score 0.2683 in BL SMOTE scenario 6.
Table 11 gives the AUC performance value measure for the SVM algorithm,

– For the Drupal dataset, SMOTE + TL in scenario 4 has performed the best, with an
AUC value of 0.8825.

– In the case of Moodle, BL SMOTE in scenario 6 has the best AUC value of 0.8492.
– For PHPMyAdmin, SMOTE + TL in scenario 4 has given the best AUC value of

0.7101.
– F1-Score in the case of Drupal is highest with a value of 0.6155 for BL SMOTE

scenario 5. Moodle has the highest F 1-Score with a value of 0.1133 in SMOTE scenario 4.
PHPMyAdmin has the highest value of F1-Score 0.3872 in scenario 4.
It has been found that there lies a slight difference among the results of resampling

techniques per HPO scenario; therefore we have not compared them in the study. Figures 5–7
describe the average AUC performance values of each HPO scenario calculated column-wise
for Drupal, Moodle, and PHPMyAdmin, respectively.
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Figure 5. Average AUC performance values of each HPO scenario for the Drupal dataset

Figure 6. Average AUC performance values of each HPO scenario for the Moodle dataset

Figure 7. Average AUC performance values of each HPO scenario for the PHPMyAdmin dataset

5.2. Statistical results

Tables 12–14 show the results of the Wilcoxon signed-rank test applied to six scenarios for
Drupal, Moodle, and PHPMyAdmin, respectively. The grey shaded area shows significant
improvement, and “*” indicates the AUC value has decreased.
Table 12 shows the p-values, calculated after comparing the six cases mentioned above, for
the Drupal dataset. The following observations depict the significant improvements of each
machine learning algorithm.
– RF shows improvement in case 4 SMOTE, case 5 SMOTE, BL SMOTE, and SMOTE

+ ENN, and in case 6.
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Table 12. Statistical comparison results among all five machine learners for Drupal dataset

Resampling techniques

Scenarios
Machine

NONE SMOTE ADASYN BL SMOTE SMOTE + TL SMOTE + ENNlearning
algorithm

(AdRn) & (AoRn)

RF

0.211
(AdRn) & (AdRd) * * * * *
(AdRn) & (AoRd) * * 0.059 0.331 0.173
(AdRn) & (AdRo) 0.066 * * 0.022 0.873
(AdRn) & (AoRo) <0.001 0.511 0.002 0.039 <0.001
(AdRd) & (AoRo) <0.001 0.005 <0.001 <0.001 <0.001

(AdRn) & (AoRn)

AB

<0.001
(AdRn) & (AdRd) * * * * *
(AdRn) & (AoRd) <0.001 <0.001 <0.001 0.057 *
(AdRn) & (AdRo) <0.001 * 0.004 <0.001 *
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRd) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001

(AdRn) & (AoRn)

GNB

<0.001
(AdRn) & (AdRd) 0.930 * * 0.360 *
(AdRn) & (AoRd) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AdRo) 0.023 * <0.001 * 0.018
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRd) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001

(AdRn) & (AoRn)

KNN

<0.001
(AdRn) & (AdRd) * * * * *
(AdRn) & (AoRd) <0.001 0.002 0.199 <0.001 <0.001
(AdRn) & (AdRo) 0.023 <0.001 * 0.705 <0.001
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 0.520
(AdRd) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.036

(AdRn) & (AoRn)

SVM

<0.001
(AdRn) & (AdRd) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AoRd) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AdRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRd) & (AoRo) 0.037 <0.001 <0.001 <0.001 <0.001

– For AB, case 1, case 3 SMOTE, Adasyn, and BL SMOTE, case 4 SMOTE, BL SMOTE,
SMOTE + TL, case 5, and 6 shows improvement.

– GNB shows improvement for scenarios 1, 3, 5, and 6 and BL SMOTE in case 4.
– KNN has complete improvements for case 1, and case 3 except for BL SMOTE, case 4

Adasyn and SMOTE + ENN, case 5 and 6 except SMOTE + ENN.
– SVM shows improvement in all the cases except for case 6 of SMOTE.

Table 13 shows the p-values for the Moodle dataset. The observations are as follows:
– RF has shown improvement in cases 2, 4, 5, case 3 except SMOTE + ENN, and case 6

with BL SMOTE and SMOTE + TL.
– AB shows improvement for case 1, case 5, case 2 SMOTE + ENN, case 3 except SMOTE

+ ENN, case 4 except SMOTE + ENN, and case 6 except SMOTE + TL and SMOTE
+ ENN.

– GNB shows improvement for case 1, case 5, case 6, for case 3 SMOTE + ENN.
– KNN shows improvement in case 1, case 2, case 5, case 3 except Adasyn and SMOTE

+ ENN, case 4 except SMOTE + TL, and case 6 except Adasyn and SMOTE + ENN.
– SVM shows improvement in all cases except SMOTE + ENN of the case 6.
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Table 13. Statistical comparison results among all five machine learners for Moodle dataset

Resampling techniques

Scenarios
Machine

NONE SMOTE ADASYN BL SMOTE SMOTE + TL SMOTE + ENNlearning
algorithm

(AdRn) & (AoRn)

RF

*
(AdRn) & (AdRd) <0.001 <0.001 0.003 <0.001 <0.001
(AdRn) & (AoRd) <0.001 <0.001 <0.001 0.002 0.047
(AdRn) & (AdRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRd) & (AoRo) 0.071 0.036 <0.001 0.004 0.709
(AdRn) & (AoRn)

AB

<0.001
(AdRn) & (AdRd) 0.183 0.172 * 0.159 0.004
(AdRn) & (AoRd) 0.007 <0.001 <0.001 <0.001 0.028
(AdRn) & (AdRo) 0.003 0.001 <0.001 0.002 0.023
(AdRn) & (AoRo) <0.001 <0.001 0.001 <0.001 <0.001
(AdRd) & (AoRo) <0.001 <0.001 <0.001 0.025 0.037
(AdRn) & (AoRn)

GNB

<0.001
(AdRn) & (AdRd) * * * * *
(AdRn) & (AoRd) 0.015 0.229 0.015 0.150 <0.001
(AdRn) & (AdRo) * * * * *
(AdRn) & (AoRo) <0.001 <0.001 <0.001 0.004 <0.001
(AdRd) & (AoRo) <0.001 <0.001 <0.001 0.002 <0.001
(AdRn) & (AoRn)

KNN

<0.001
(AdRn) & (AdRd) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AoRd) <0.001 0.031 <0.001 <0.001 0.0153
(AdRn) & (AdRo) 0.004 <0.001 <0.001 0.785 <0.001
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRd) & (AoRo) <0.001 0.022 <0.001 0.004 <0.013
(AdRn) & (AoRn)

SVM

<0.001
(AdRn) & (AdRd) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AoRd) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AdRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRn) & (AoRo) <0.001 <0.001 <0.001 <0.001 <0.001
(AdRd) & (AoRo) 0.022 <0.001 0.984 0.069 <0.001

Table 14 presents the p-values for the PHPMyAdmin dataset. The statistical results
are:
– RF has shown no significant improvement.
– AB has shown significant improvement for case 3 Adasyn, case 4 except SMOTE + TL,

SMOTE for case 5 and case 6.
– GNB has shown significant improvement for case 3 Adasyn
– KNN has shown significant improvement for case 1 and case 2 SMOTE + ENN.
– SVM shows a significant improvement in case 2 except SMOTE + ENN, case 3 SMOTE

+ TL, and case 4 Adasyn.

5.3. Illustration of research questions

Results reported in Tables 7–14 contribute to the answers to research questions.
RQ 1: How much is dual HPO effective in improving the performance of SVP models?
The statistical comparisons of AdRn & AoRo (case 5 of Section 4.2) show the effectiveness
of dual HPO on SVP models. There exist a total of 75 instances out of which 48 instances
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Table 14. Statistical comparison results among all five machine learners for PHPMyAdmin dataset

Resampling techniques

Scenarios
Machine

NONE SMOTE ADASYN BL SMOTE SMOTE + TL SMOTE + ENNlearning
algorithm

(AdRn) & (AoRn)

RF

*
(AdRn) & (AdRd) 0.100 0.159 0.089 0.041 *
(AdRn) & (AoRd) 0.638 * * * 0.985
(AdRn) & (AdRo) * 0.558 * 0.107 *
(AdRn) & (AoRo) * * * * *
(AdRd) & (AoRo) * * * * 0.009
(AdRn) & (AoRn)

AB

*
(AdRn) & (AdRd) * * * * *
(AdRn) & (AoRd) 0.020 0.005 * 0.181 0.033
(AdRn) & (AdRo) 0.004 0.006 <0.001 0.517 <0.001
(AdRn) & (AoRo) <0.001 * * 0.237 0.742
(AdRd) & (AoRo) <0.001 0.812 0.325 0.683 0.063
(AdRn) & (AoRn)

GNB

0.361
(AdRn) & (AdRd) * * * * 0.541
(AdRn) & (AoRd) 0.059 <0.001 0.361 0.203 0.031
(AdRn) & (AdRo) * * * * *
(AdRn) & (AoRo) * * * * *
(AdRd) & (AoRo) 0.042 * 0.095 * *
(AdRn) & (AoRn)

KNN

0.007
(AdRn) & (AdRd) 0.512 * * * <0.001
(AdRn) & (AoRd) 0.381 0.041 0.713 0.835 *
(AdRn) & (AdRo) * * * 0.406 *
(AdRn) & (AoRo) * * 0.173 0.492 *
(AdRd) & (AoRo) * * 0.056 0.443 *
(AdRn) & (AoRn)

SVM

0.031
(AdRn) & (AdRd) <0.001 <0.001 <0.001 <0.001 0.567
(AdRn) & (AoRd) 0.195 0.080 0.207 <0.001 *
(AdRn) & (AdRo) 0.661 0.005 0.695 0.447 *
(AdRn) & (AoRo) * 0.354 * * 0.422
(AdRd) & (AoRo) * * * 0.272 *

significantly improved the AUC performance value. Therefore, dual HPO is 64% effective
in enhancing the productivity of SVP models.
RQ 2: Is dual HPO better than other HPO scenarios?
Wilcoxon signed-rank test results mentioned in Tables 11–13 show cases of significant
improvements. To check whether dual HPO is better than other HPO scenarios, we compare
the number of instances of significant improvement of dual HPO with others. AdRn &
AdRd (case 2) shows 26 significant improvements out of 75 instances, AdRn & AoRd
(case 3 of Section 4.2) shows 38 significant improvements, and AdRn & AdRo (case 4 of
Section 4.2) results in 34 instances of significant improvement. Dual HPO has 48 instances
of improvement; therefore it is better than other HPO scenarios.
RQ 3: How has the degree of class overlapping affected the HPO?
There are 100 instances (consider cases 3–6 of Section 4.2) of HPO comparisons per dataset.
Drupal has shown improvement in 61 instances, Moodle in 75 instances, and PHPMyAdmin
in 10 instances. HPO depends on data complexity measures mentioned in Section 3.6.
If the overlap among the classes is low, then HPO performs efficiently. As per the F1
values for Drupal, Moodle, and PHPMyAdmin in Table 4, PHPMyAdmin has the highest
overlap, and Moodle has the lowest. Therefore, for PHPMyAdmin, HPO has not improved
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Figure 8. Comparison of resampling techniques in Drupal dataset

Figure 9. Comparison of resampling techniques in Moodle dataset

Figure 10. Comparison of resampling techniques in PHPMyAdmin dataset

the performance and, for Moodle, which is highly imbalanced, HPO has worked well. For
Drupal, HPO has given mixed results.
RQ 4: Which resampling technique has performed the best?
Figures 8–10 show the highest AUC value among four scenarios (AdRd, AoRd, AdRo, and
AoRo) resampling techniques for each machine learning algorithm.
It has been observed that there is not one technique that performs well for all algo-
rithms and all datasets. Different machine learning algorithms and datasets have distinct
highest-performing resamplers. For instance, in the case of the Drupal dataset, SMOTE +
ENN has performed highest in RF, BL SMOTE in AB, SMOTE + TL in GNB and SVM,
and finally Adasyn in KNN. For Moodle, SMOTE + TL in RF, Adasyn in AB, SMOTE +
ENN in GNB, BL SMOTE in KNN and SVM. For PHPMyAdmin, SMOTE + TL in RF
and SVM, SMOTE + ENN in AB, Adasyn in GNB and KNN.
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6. Discussions

This section discusses the findings of our study. Imbalanced datasets and lack of hyper-
parameter tuning may impact the productivity of SVP models. HPO and resampling
techniques are known to improve the performance of the prediction models. The current
study aims to analyze the effect of dual HPO in software vulnerability prediction. By dual
HPO, it means that hyperparameters of both machine learning algorithms and resampling
techniques are optimized. We have not only checked the effect of dual HPO but additionally,
analyzed whether dual HPO is better than single HPO scenarios where only one of the
two factors (machine learning and resampling) is optimized. Furthermore, the inclusion
of data complexity measures helps in finding why HPO is not producing results for the
classes with high overlap.

Our study will help researchers in improving the performance of their work on prediction
models and provide open research for multi-objective optimization, text-mining-based SVP
models, cost and time complexity measures, and deep learning approaches.

7. Threats to validity

The current paper deals with the following threats to validity:
– Construct validity: The datasets used in this paper are PHP web application projects.

This paper has used a metrics-based dataset to carry out the experiments. If a different
type of feature such as text-mining is considered, then the results may vary.

– Internal validity: The selection of machine learning algorithms is based on past research
performed. We have confined our experiments to five machine-learning algorithms. Also,
the resampling techniques used are either oversampling or a combination of oversampling
and under-sampling. Under-sampling techniques are not used because information loss
may occur. The hyperparameter search spaces are taken from past research, and results
may vary for considering different search spaces. The paper takes care of optimizing the
single-objective function which works on increasing the value of the particular metric
AUC in our case, a multi-objective function is for the future scope.

– External validity: Generalization of the work in an empirical study is always limited, and
it is difficult to conclude. The generalizability of our results is out of the scope of the cur-
rent study. The performance varies for different programming languages as the features
and granularity levels may be different. The study aims to see the impact of dual HPO on
various machine learners and to check whether it improves the efficiency of metrics-based
SVP models. It uses the Wilcoxon signed-rank test with Bonferroni correction for
performing significant comparisons. This test is based on the data sample in hand.

– Conclusion validity: AUC is the performance metric used in the current study. There
exist other parameters for the evaluation of imbalanced datasets such as Geometric
mean, Matthews’s correlation coefficient (MCC), etc. HPO comes with time and cost
overhead. We have kept these overheads out of the scope of this paper.

8. Conclusions and future scope

The current study gives an insight into HPO in the machine learning area. Previous studies
have used HPO in bug prediction, defect prediction, and even vulnerability prediction
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models. In this work, we have analyzed the effectiveness of dual HPO on the capability of
machine learners in software vulnerability prediction. Further, whether dual HPO performs
better than other HPO scenarios is examined. In addition, it is further studied why HPO
performance is degraded for some datasets, i.e., has class overlapping affected the ability of
HPO in improving the efficacy of machine learners. The study proposed the experimental
methodology based on the python framework “Optuna” that evaluates the six HPO
scenarios depicted in Table 1. The paper uses five machine learning algorithms and five
resampling techniques for three open-source software vulnerability datasets Drupal, Moodle,
and PHPMyAdmin. The best hyperparameters are found for learners and resamplers to
optimize the SVP model. In addition to this, the Wilcoxon signed-rank test with Bonferroni
correction is applied for statistical comparison to know which HPO scenario has performed
significantly. The experimental results are concluded as:
– The results state that dual HPO has shown 64% effectiveness in amplifying the efficiency

of SVP models.
– Dual HPO shows 64% effectiveness whereas HPO when applied on machine learners

shows 51% and HPO when applied on resamplers obtains 45.33% effectiveness. Therefore,
it can be concluded that Dual HPO performs better than other HPO scenarios. We
have not compared with the scenarios that do not involve resampling. Although AoRn
has shown 9 significant improvements out of 15, we cannot compare them as they may
be biased since applied to unbalanced datasets.

– The efficiency of HPO is affected by class overlapping. One of the data complexity
measures; is the maximum Fisher’s discriminant ratio (F 1) which calculates the overlap
among the classes. The datasets with high overlapping classes result in the poor
performance of HPO. PHPMyAdmin is highly overlapped resulting in 10 improvements
out of 100; therefore HPO has not performed well for it. Moodle being low overlapped
gives the maximum significant results for HPO 75 out of 100.

– Resampling Techniques are analyzed and it is found that they perform differently on
distinct datasets and with different learners. Hence, we cannot find the best resampler
that fits all the datasets and machine learners.
Future work emphasizes the use of HPO scenarios for text-based datasets. We can

consider time and cost complexity measures with more data complexity measures in the
future. The impact of HPO on deep learning approaches can be studied. Other programming
languages can be explored. Furthermore, the multi-objective problem can be explored.
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