e-Informatica Software Engineering Journal, Volume 17, Issue 1, 2023, pages: 230104, DOI: 10.37190/e-Inf230104

Story Point Estimation Using Issue Reports
With Deep Attention Neural Network

Haithem Kassem*”| Khaled Mahar**{2 Amani A. Saad***

* Multimedia Center, AASTMT, Alex, Eqypt
**College of Computing and Information Technology, AASTMT, Alex, Eqypt
** College of Engineering and Technology, AASTMT, Alex, Egypt

haithem_k@aast.edu, khmahar@aast.edu, amani.saad®@aast.edu

Abstract

Background: Estimating the effort required for software engineering tasks is incredibly
tricky, but it is critical for project planning. Issue reports are frequently used in the agile
community to describe tasks, and story points are used to estimate task effort.

Aim: This paper proposes a machine learning regression model for estimating the number
of story points needed to solve a task. The system can be trained from raw input data to
predict outcomes without the need for manual feature engineering.

Method: Hierarchical attention networks are used in the proposed model. It has two levels
of attention mechanisms implemented at word and sentence levels. The model gradually
constructs a document vector by grouping significant words into sentence vectors and
then merging significant sentence vectors to create document vectors. Then, the document
vectors are fed into a shallow neural network to predict the story point.

Results: The experiments show that the proposed approach outperforms the
state-of-the-art technique Deep-S which uses Recurrent Highway Networks. The pro-
posed model has improved Mean Absolute Error (MAE) by an average of 16.6% and has
improved Median Absolute Error (MdAE) by an average of 53%.

Conclusion: An empirical evaluation shows that the proposed approach outperforms the
previous work.

Keywords: story points, deep learning, glove, hierarchical attention networks,
agile, planning poker

1. Introduction

The primary goal of all software project managers is to complete the project on time
and within the budget that has been established. Since the release of the agile manifesto
[1], many companies have chosen to use agile approaches to guide software development.
Estimating effort is critical for successful agile project management. To avoid inefficient
resource allocation, accurate estimates are required [2, 3]. The story points [4, 5] are
a popular method for estimating task effort. In the context of agile development, story
points are typically assigned through organized group meetings known as Planning Poker
sessions [6]. These meetings heavily rely on human judgment: the better the developers
understand the job, the more accurate their estimates will be. Human judgment, on the
other hand, is sensitive to a range of constraints. Humans are positive by nature, and

© 2023 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 27 Mar. 2022; Revised: 21 Nov. 2022; Accepted: 22 Nov. 2022; Available online: 20 Jan. 2023

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9010-967X
https://orcid.org/0000-0003-3340-6130
https://orcid.org/0009-0006-3908-8064

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

this bias is amplified in group interactions [7-9]. Furthermore, the presence of a project
manager, other senior developers, or dominant personalities in the meeting has been shown
to affect developer estimation [10].

The use of machine learning regessors has three advantages. To begin with, the regressors
have a thorough understanding of the project that dates back to its beginnings, and it
based its predictions on all past issues in the issue tracking system. Second, because the
regressors’ estimations can be tracked back to the regressor’s characteristics, it is not
influenced or coerced by others. Third, the estimation is repeatable and predictable: the
system never grows bored of producing the same results over and over again.

We introduce a prediction model that helps teams by providing a story-point estimate
for a certain user story. The model uses the team’s previous story point assessments to
forecast the complexity of new issues. The team’s existing estimation techniques will be
used in conjunction with (rather than in place of) this prediction system. It could also be
used as a decision-making tool and help with estimating. This is similar to the notion of
combination-based effort estimating [11, 12]. Estimates are generated from various sources,
such as a combination of expert and formal model-based estimates.

The suggested model automatically learns semantic features that represent the meaning
of user stories or issue reports, removing the need for users to develop and extract features
manually. Feature engineering is often done by domain specialists who use their in-depth
understanding of the data to develop features that machine learning algorithms may exploit.
Our model is a full end-to-end system that estimates story points by passing raw data
signals (i.e., words) from input nodes to the final output node. The use of hierarchical
attention networks (HAN) for story point prediction is a fundamental innovation in our
method.

An empirical evaluation was conducted to answer the following research questions:

RQ1. Does the use of Hierarchical Attention Networks provide more accurate story

point estimates than Recurrent Highway Nets?

RQ2. Does the use of BERT provide more accurate story point estimates than using

HAN?

The remainder of the paper is organized as follows: Section 2 provides context for Story
Points, Planning Poker, Deep learning, and Hierarchical Attention Network. Section 3
presents related works, while Section 4 focuses on the design of the proposed model.
Section 5 discusses the proposed model evaluation , Section 6 comparing with the state of
art, Section 7 shows future work, and finally Section 8 presents the conclusion.

2. Background

2.1. Story points

Story points are a unit of measure for expressing the overall size of a user story,feature
or another piece of work [4]. The number of story points is an indication of how difficult
a specific task is for the development team, rather than measuring the quantity of work
required to achieve it. As a first stage, the team normally decides on the number of story
points that a baseline activity deserves. After that, estimating effort is dependent on
comparison to that baseline. The Fibonacci sequence (i.e., 1, 2, 3, 5, 8, 13, 21, 34, 55, ...) is

230104 2

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

commonly deviated from when assigning story points. The uncertainty that comes with
estimating complex tasks in real-world software is shown in this series.

2.2. Planning pokers

The majority of software projects rely completely on human judgment to estimate ef-
fort [13]. The most prevalent effort estimation approaches based on human judgment
are those based on group estimation. When it comes to estimating story points, Plan-
ning Poker [13] is the most commonly used method. To perform Planning Poker, the
customer must first communicate an issue that they would like to get handled. The
developers then gather for a poker game in which each player selects a card with the
desired story points for each issue to be estimated, and then all the cards are revealed
at the same time. The developer that provides the lowest and highest estimate must
justify their choice, thus eventually triggering further discussion which is followed by
another group estimation. The process continues until the team agrees upon a consensus
estimate.

2.3. Deep learning

Deep learning technology (DL) has shown impressive results in a variety of fields, in-
cluding machine vision [14], speech recognition [15], and text classification [16]. Re-
searchers can divide deep learning research on text classification into two steps: The
first step is to learn word vector representations through neural language models [17],
and the second step is to perform classification composition over the learned word
vectors.

Deep learning models such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) [18] are commonly used in text classification. Recently, several
text classification methods based on CNNs or RNNs have been proposed [19, 20]. The
CNN learns local responses using temporal or spatial data, but cannot learn sequential
correlations. RNNs, in contrast, are designed to do sequential modeling, but cannot extract
features in a parallel manner.

2.4. Hierarchical attention network

Yang et al. [21] developed Hierarchical Attention Network (HANs), a DL document
classification model based on RNNs. They are made up of hierarchies, with the lower
hierarchies’ outputs becoming the upper hierarchies’ inputs. This is based on the intuition
that documents are made up of meaningful sentences, which are made up of meaning-
ful word sequences. Each HAN hierarchy is made up of a bidirectional dynamic Long
short-term memory (LSTM) or gated recurrent unit (GRU) with attention mechanisms.
When processing words/sentences, directionality is required so that the network can account
for the prior and subsequent context. The attention mechanism is added to enable the
network to put extra focus on the LSTM/GRU outputs associated with the words and
lines that are most indicative of a particular class. LSTMs/GRUs are used because they
allow the network to selectively process input information based on how relevant it is to
the classification tasks; similarly, the attention mechanism is added to enable the network
to put extra focus on the LSTM/GRU outputs associated with the words and lines that
are most indicative of a particular class. Hierarchical attention networks were used to

230104 3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

learn semantic features that automatically convey the true meaning of user stories and
predict the estimated story point.We’ll go over the details of each component later in this

paper.

3. Related work

Methods for estimating software work can be divided into three categories: expert-based,
model-based, and hybrid techniques. Expert-based methods, which rely on human under-
standing to create estimates, are the most widely used technique [22, 23]. Expert-based
estimation necessitates the presence of experts at all times when an estimate is required.
Model-based approaches draw on data from previous projects, but they differ in terms of
how they construct customized models. A fixed model in which elements and variables are
fixed is the well-known construction cost (CO-COMO) model [24]. Their relationship has
already been established. These estimation models were built using data from a range of
past studies. As a result, they are usually only effective for the type of project that was
used to develop the model. Regression (e.g., [25, 26]), neural networks (e.g., [27, 28]), fuzzy
logic (e.g., [29]), Bayesian belief networks (e.g., [30]), analogy-based (e.g., [31, 32]), and
multi-objective evolutionary approaches are all used in the customized model construction
process (e.g., [33]). However, no single strategy is expected to perform well across all project
types [34-36]. As a result, some recent research [37] suggests integrating estimates from
several estimators. Papers [38, 39], which are similar to the ideas in this paper, hybrid
techniques integrate expert judgments with available data.

While the majority of existing research focuses on estimating a project as a whole, less
attention is paid to developing models for agile projects in particular. Different planning and
estimation methodologies are required for today’s agile, dynamic, and incremental projects
[40]. Machine learning techniques are being used in recent approaches to assist in estimating
effort for agile projects. The study recently provided an approach for extracting TF-IDF
features from the problem description to construct a model for story point estimations,
which was published in [41]. The retrieved features are then subjected to the uniform
selection process and input into regressors such as SVM.

In addition, Cosmic Function Points (CFP) [42] estimate the effort required to finish an
agile project [43]. Abrahamsson [44] created a regression model and neural network-based
effort prediction model for the creation of iterative software. Unlike standard effort estimate
models, this model is developed after each iteration (rather than at the end of the design
phase) to estimate the effort for the next iteration.

The authors of [45] developed a Bayesian network model for estimating effort in agile
Extreme Programming software projects. Their model, on the other hand, is based on
several criteria (such as process effectiveness and improvement) that necessitate a significant
amount of learning and fine-tuning. Bayesian networks are frequently used in [46] to model
dependencies between multiple aspects in Scrum-based software development projects to
identify difficulties (e.g., sprint progress and sprint planning quality affect product quality).

Choetkiertikul [47] focuses on estimating issues with story points, which is a substantial
improvement over earlier work, by applying deep learning techniques to automatically learn
semantic features that reflect the underlying meaning of issue descriptions. The previous
study has been done in projecting the elapsed time for correcting a bug or the danger of
addressing an issue with a pause (see [48-51]).

230104 4

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

The proposed model uses pre-trained embedding vectors and transfer learning with
GloVe to save training time, which is the key difference from [47]. Word-to-vector (Word2Vec)
and global vector (GloVe) are two recent techniques that are well recognized for producing
vector representations [52, 53|. Pennington et al. [54]. demonstrated that GloVe outperforms
Word2Vec since Word2Vec has a low vector dimensionality and cannot incorporate all of
the corpus data. The GloVe, in comparison, has both local and worldwide information
about the words that have appeared. GloVe algorithm uses the statistics of word-word
co-occurrences in a corpus and is used for similarity and entity identification [55].

Choetkiertikul [47] is the first model providing end-to-end trainable from raw input
data to prediction outcomes without any manual feature engineering and has outperformed
previous work [41, 43—46]. The proposed model is aiming to use deep learning and make
use of the hierarchical attention mechanism, this model has the ability to detect important
words and sentences. The Hierarchical Attention Network (HAN) was implemented with
the goal of capturing two fundamental ideas about document organization. First, because
documents are hierarchical (words make sentences, sentences form a document), we generate
a document representation by first creating sentence representations and then aggregating
them into a document representation. Second, different words and sentences in a document
are found to have varying levels of information. The model constructs a document vector
progressively by aggregating important words into sentence vectors and then aggregating
important sentence vectors to document vectors.

4. The proposed model

The general goal of our research is to create a prediction system that takes the title and
description of an issue as input and generates the estimated story-point. The proposed
model introduces the use of hierarchical attention networks (HAN). An embedding layer,
attention layers, and encoders are all components of the HAN model, which together
help the model understand the textual features. The extraction of relevant context is the
responsibility of the encoders. The attention layers evaluate how important a sequence of
tokens is with reference to the document. The HAN essentially consists of “hierarchies,”
where the outputs of the lower hierarchies serve as the inputs for the upper hierarchies.
We first break down a document into sentences before feeding it into the HAN. Each
sentence is encoded into a vector representation using a word encoder (a bidirectional
GRU) and a word attention mechanism. These sentence representations are passed through
a sentence encoder with a sentence attention mechanism resulting in a document vector
representation. A fully connected layer with the appropriate activation function receives
this final representation and uses it to make predictions. The term “hierarchical” refers
to a document’s “semantic hierarchy.” The same algorithms are used twice, once at the
word level and once at the sentence level. The model gradually builds a document vector
by grouping significant words into sentence vectors and then merging important sentence
vectors to create document vectors. The document vectors are then fed into a shallow
neural network to predict the story point. The proposed model is made up of five layers,
as shown in Figure 1, and is explained briefly as follows:

1. Input layer: Accepts a document that is made up of sentences, each of which is made
up of a series of word IDs that represent user stories or issues that describe what has to be
produced in the software project. Assume that a document includes L sentences s; and
each sentence contains T} words. w;, with ¢ € [1,T)] represents the words in the i*" sentence.

230104 5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

2. Embedding layer: Each word in each sentence is individually embedded, resulting
in Sequences of word vectors, one for each sentence. It does this by converting input text
into dense word vectors that encode both the meaning and context of the text. Word
Representation using Global Vectors Each word’s vector representation was obtained
using GloVe [56]. GloVe is an unsupervised learning technique for obtaining word vector
representations.

3. Encoding layer: We have a sequence of word vectors from the previous layer, and this
layer seeks to compute a sentence matrix from which we can construct a document matrix.
The sentence matrix is made up of rows, each representing the meaning of a single token
in the phrase. A Bidirectional RNN is used to implement this layer. The vector of each
token is divided into two portions, one computed with a forward pass and the other with
a backward pass. To get the entire vector, we just join the two. There are two encoders in
this layer:

Sentence Encoder: Converts sequence of word vectors to sentence matrix.

Document Encoder: Converts sequence of sentence vectors to document matrix.

Given a sentence with words w;, t € [0,T], we first embed the words to vectors through
an embedding matrix we, T;; = wew;;.

We obtain word annotations using bidirectional GRU by combining input from both
directions and adding contextual information to the annotation.. The bidirectional GRU

contains the forward GRU 7 which reads the sentence s; from w;; to w;7 and a backward

%
GRU f which reads from w;p to wj.

Xit = Wew;, t € [1,T]. (1)
hit = GRU Xy, t € [1,T]. 2)
It = GRU Xu, t € [T, 1]. 3)

Document Encoder in a similar manner, given the sentence vectors s;, we can obtain
a document vector. To encode the sentences, we use a bidirectional GRU:

h, = GRU (s;),i € [1, L. (4)
;= GRU(s:),i € (L, 1]. (5)

4. Attention layer: Our goal in this layer is to reduce the Sentence matrix from the
previous layer to a single vector that the feed-forward network may use for prediction. This
layer’s job is to determine the words that are most important to a user story’s meaning.
The following equations were utilized in this layer [57] .

e = tanh(Uc + Why + b) (6)

oy = softmax(ey) (7)

0= Zatht (8)

c is the vector obtained by applying max poling to the matrix obtained from GRU. U is
a new weight.

Output layer: We use a feedforward neural network with a linear activation function
as the final regressor to construct a story-point estimate. The following is a definition for

230104 6

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

this function:
n
y=ao+ Z a;x; 9)
i=1

where y is the output story point, x; is an input signal from the previous layer, a; is the
trained coefficient (weight), and n is the size of the embedding dimension.

Output
layer
Document ‘DDDDDDDD D‘
Vector
Layer
~
Document
Matrix
-
'
Encoding _{
Layer
-
Sent
f,"e””{ ‘DDDDDDDD --------------- D‘
ector

Attention
Layer

>
=
(0]
3
o

Sentence oo 0
Matrix O |:| |:| _______ 0
O |:| |:| O

. ;

5

Encoding
Layer

Word
Vector

Embedding
Layer

Input
Layer

| I L —

S ;
1k
o
Lo 2
g
o
g

Figure 1. The proposed model

230104 7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

5. The proposed approach evaluation

Our data set [47] includes 23,313 issues from 16 different projects, including Apache Mesos
(ME), Apache Usergrid (UG), Appcelerator Studio (AS), Aptana Studio (AP), Titanium
SDK/CLI (TI), DuraCloud (DC), Bamboo (BB), Clover (CV), JIRA Software (JI), Moodle
(MD), Data Management (DM), Mule (MU), Mule Studio (MS), Spring XD (XD), Talend
Data Quality (TE) as shown in Table 1. The data set is divided into three parts: 60%
for training, 20% for validation, and the remaining 20% for testing. (Our dataset & code
are available at https://doi.org/10.5281/zenodo.7341235). In planning poker, the story
points are typically ordered in a Fibonacci sequence, such as 1, 2, 3, 5, 8, 13, 21, and
so on. To divide documents into sentences and tokenize each sentence, we used Natural
Language Toolkit (NLTK) [58]. The suggested technique employs a Transfer Learning model
called pre-trained word embedding. The basic concept is to leverage publicly available
embeddings that have been trained on large datasets. Instead of randomly initializing
our neural network weights, we use these previously trained integrations as initialization
weights. This speeds up training and improves the performance of NLP models. The most
widely used method for obtaining word embedding from text corpora is GloVe [57]. It
offers pre-trained embedding based on massive text corpora. GloVe allows for different
sizes of embedding. The experiment was conducted with a fifty-embedding size. When
evaluating the accuracy of an effort estimating model, a variety of metrics are used. The
majority of them (i.e., |ActualSP — EstimatedSP|) are based on the Absolute Error, where
AcutalSP denotes the actual story points awarded to a problem, and FEstimatedSP denotes
the result of estimation. Prediction at level [59], i.e., Pred(l), and Mean of Magnitude
of Relative Error (MRE) or Mean Percentage Error have also been employed in effort
estimate. However, several investigations [59-62] have discovered that these metrics have
a proclivity for underestimation and are not reliable. Consequently, the Mean Absolute
Error (MAFE) and Median Absolute Error (MdAFE) have been recommended to compare

Table 1. Descriptive statistics of story point dataset

Min Max Mean Median Mode Var Std Mean TD

Repo. Project Abb. # Issues SP SP SP SP Sp PSP length LOC
Apache Mesos ME 1680 1 40 3.09 3 3 5.87 2.42 181.12 247,542+
Usergrid UG 482 1 8 2.85 3 3 1.97 1.40 108.60 639,110+
Appcelerator Appcelerator Studio AS 2919 1 40 5.64 5 5 11.07 3.33 124.61 2,941,856#
Aptana Studio AP 829 1 40 8.02 8 8 35.46 5.95 124.61 6,536,521+
Titanium SDK/CLI TI 2251 1 34 6.32 5 5 25.97 5.10 205.90 882,986+
DuraSpace DuraCloud DC 666 1 16 2.13 1 1 4.12 2.03 70.91 88,978+
Atlassian Bamboo BB 521 1 20 242 2 1 4.60 2.14 133.28 6,230,465#
Clover CcvV 384 1 40 4.59 2 1 42.95 6.55 124.48 890,020#
JIRA Software JI 352 1 20 4.43 3 5 12.35 3.51 114.57 7,070,0224#
Moodle Moodle MD 1166 1 100 15.54 8 5 468.53 21.65 88.86 2,976,645+
Lsstcorp Data Management DM 4667 1 100 9.57 4 1 275.71 16.61 69.41 125,651*
Mulesoft Mule MU 889 1 21 5.08 5 5 12.24 3.50 81.16 589,212+
Mule Studio MS 732 1 34 6.40 5 5 29.01 5.39 70.99 16,140,452#
Spring Spring XD XD 3526 1 40 3.70 3 1 10.42 3.23 78.47 107,916+
Talendforge Talend Data Quality TD 1381 1 40 5.92 5 8 26.96 5.19 104.86 1,753,463#
Talend ESB TE 868 1 13 2.16 2 1 2.24 1.50 128.97 18,571,0524#
Total 23,313

230104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/
https://doi.org/10.5281/zenodo.7341235

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

effort estimation performance [63, 64] models. The term MAFE is defined as
1 n
MAFE = — Z ActualSP; — EstimatedSP; (10)
N i=1

where N is the number of issues used for evaluating the performance (i.e., test set),
ActualSP; is the actual story point, and EstimatedSP; is the estimated story point, for the
issue i. We also report the Median Absolute Error since it is more robust to large outliers.
MdAF is defined as

MdAE = Median{|Actual SP; — EstimatedSP;|} (11)
where 1 <7 < N.

5.1. Results analysis and discussion

To compare the proposed regressor with the state of the art, we can refer to the work by
Choetkiertikul [47]. They use deep learning approaches to automatically learn semantic
characteristics that reflect the underlying meaning of issue descriptions to estimate issues
using story points, which is a significant advance over previous work. To reduce the risk
of external validity, we examined 23,313 issues across sixteen open source projects, each
with its size as shown in Figure 2, complexity, development team, and community. Table 2
shows MAFE and MdAE, achieved from hierarchical attention networks (HAN) against
Deep-SE using Recurrent Highway Networks for deep representation of issue reports [47],
the proposed model improved MAFE between 0.7 to 28 percent over Deep-SE and Improved
MdAFE between 18 to 68 percent over Deep-SE . Regardless of the size of the data, the
improvement is noticeable. The proposed approach surpasses the previous best baseline
methods by 16.5 percent and 19.4 percent for small projects like Apache Usergrid and
Clover, respectively. This observation holds true across a variety of larger projects. As seen
in Table 1, HAN is the best technique, continuously outperforming Deep-SE across all
sixteen projects. RQ1 is answered by this finding.

Our Story Point Dataset

issues
BERENNWWA S

vounounouniou
[eole]lelololelolole)
OOO0O0O0O0O000

<

S
%, N

“ mm
——

C m
|
| |
-

i
-
||
I
-
—

L & S SR PPN - SR) $ KGR
@Q/ \‘)c’Q} :\c}' > ")Q &’Z’(’ Q;’b@ ¢ P @00 ?}(\ q\\,® o {\\\Qo ’Z}o \®0
& B & & e F & TN TP
9 & S et P FFE W N &0
w (,‘2> v /\"\@ QQ & & ’b® ‘y\) CJQJ\\ &
& & ¥ v & Q
Q
Projects

Figure 2. Story point dataset

230104 9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

Table 2. Comparison between the proposed model Table 3. Comparison between the proposed
and Deep-SE model and BERT
Project Method MAE MdAFE Project Method MAE
Apache Mesos Deep-SE 1.02 0.73 Apache Mesos HAN 0.93
HAN 0.93 0.39 BERT 3.39
Apache Usergrid Deep-SE 1.03 0.80 Apache Usergrid HAN 0.84
HAN 0.84 0.47 BERT 3.24
Appcelerator Studio Deep-SE 1.36 0.56 Appcelerator Studio HAN 1.35
HAN 1.35 0.54 BERT 2.50
Aptana Studio Deep-SE 2.71 2.52 Aptana Studio HAN 2.63
HAN 2.63 1.13 BERT 4.18
Titanum Deep-SE 1.97 1.34 Titanum HAN 1.7
HAN 1.70 0.54 BERT 3.49
DuraCloud Deep-SE 0.68 0.53 DuraCloud HAN 0.49
HAN 0.6 0.12 BERT 3.79
Bamboo Deep-SE 0.74 0.61 Bamboo HAN 0.67
HAN 0.67 0.22 BERT 2.76
JIRA Software Deep-SE 1.38 1.09 JIRA Software HAN 1.27
HAN 1.27 0.43 BERT 3.13
Moodle Deep-SE 5.97 4.93 Moodle HAN 5.66
HAN 5.66 1.56 BERT 11.99
Data Management Deep-SE 3.77 2.22 Data Management HAN 3.63
HAN 3.63 1.03 BERT 7.78
Mule Deep-SE 2.18 1.96 Mule HAN 1.86
HAN 1.86 0.81 BERT 3.51
Mule Studio Deep-SE 3.23 1.99 Mule Studio HAN 2.56
HAN 2.56 1.39 BERT 3.51
Spring XD Deep-SE 1.63 1.31 Spring XD HAN 1.2
HAN 1.20 0.51 BERT 3.16
Talend Data Quality Deep-SE ~ 2.97 2.92 Talend Data Quality HAN 2.49
HAN 2.49 1.14 BERT 4.04
Talend Deep-SE 0.64 0.59 Talend HAN 0.60
HAN 0.60 0.25 BERT 3.42
Clover Deep-SE 2.11 0.8 Clover HAN 1.81
HAN 1.81 0.54 BERT 3.87

To compare the performance of two estimating models, we used the Wilcoxon Signed
Rank Test [65] to determine the statistical significance of the mean absolute errors obtained
by the two models. Because it makes no assumptions about underlying data distributions, the
Wilcoxon test is a robustness test. In order to evaluate if there were a good effect of the proposed
model for estimating the effort needed for a story point, Wilcoxon signed-rank tests revealed
a statistically positive change in effort estimation, z = —3.517, p = 0.001 with a medium effect
size (d = 0.6), Cohen’s d effect sizes [66] were calculated. Effect sizes of 0.2 were regarded
as small, 0.5 as a medium, and 0.8 as large. So the HAN has medium effect size on MAFE.

230104 10

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

5.2. Threats to validity

We attempted to reduce the validity challenges by using real-world data from issues reported
in large open-source projects. These issue reports’ titles and descriptions and the actual
story points assigned to them were gathered. We are aware that those story points were
calculated by human teams, which means they may contain biases and, in some cases, be
inaccurate. Datasets of various sizes were used in our study. Additionally, in order to reduce
conclusion instability we carefully adhered to current best practices when evaluating effort
estimation models. To mitigate threats to external validity, we examined 23,313 issues from
sixteen open source projects that differ greatly in size, complexity, developer team, and
community. We acknowledge, however, that our dataset would not be representative of
all types of software projects, particularly in commercial settings (despite the fact that
open-source and commercial projects are similar in many ways). The nature of contributors,
developers, and project stakeholders is one of the key differences between open-source and
commercial projects that may influence story point estimation. More research is required
for commercial agile projects.

6. Comparing with the state of art

The Bidirectional Encoder Representations from Transformers (BERT) is a novel approach
and is regarded as the cutting edge of pre-trained language representation [67]. BERT models
are regarded as contextualized or dynamic models, and they have produced noticeably better
results in a number of NLP tasks [68-70], including sentiment classification, calculating the
semantic similarity of texts, and identifying tasks involving textual linking. The authors of
[52] proposed the use of Bert for effort estimation and their experiments were conducted
on the same data set. When comparing our experimental results to [52], the experimental
results presented in Table 3 showed that HAN models achieved significantly higher results
than the BERT model. RQ2 is answered by this finding. We conclude that a model’s
performance is dependent on the task and the data, so these factors should be considered
before choosing a model rather than just going with the most widely used model.

7. Future work

Future work will involve comparing the results of our model to other pre-trained language
models such as GPT [70] and XLNet [71]. These models have been shown to be state of the
art in a variety of tasks such as question answering, named entity recognition, and natural
language inference. It is also planned to test the proposed model on other Agile data sets.

8. Conclusion

The key novelty of the proposed model is using pre-trained embedding vectors and transfer
learning with GloVe to reduce training time instead of creating a new embedding vector.
Introducing the use of The Hierarchical Attention Network. The Hierarchical Attention
Network (HAN) was created to capture two key concepts in document organization. To begin,
we construct a document representation by first creating sentence representations and then

230104 11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

aggregating them into a document representation because documents are hierarchical (words
make sentences, sentences make a document). Second, different degrees of information are
discovered in different words and phrases in a document. The approach builds a document
vector by first aggregating key words into sentence vectors, then aggregating important
sentence vectors into document vectors. This process has a significant effect on story point
prediction. The results of our experiments show that the proposed model improved MAE by
0.7 to 28 percent compared to Deep learning model for Story Point Estimation (Deep-SE)
and MdAFE by 18 to 68 percent compared to Deep-SE. The proposed approach regularly
outperforms earlier work. The model can better locate and extract critical information.

References

[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham et al., Manifesto for
agile software development, 2001.

[2] L.C. Briand, “On the many ways software engineering can benefit from knowledge engineering,”
in Proceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering, 2002, pp. 3-6.

[3] J.W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source and closed-source
software products,” IFEE Transactions on Software Engineering, Vol. 30, No. 4, 2004,
pp- 246-256.

[4] M. Cohn, “Agile estimating and planning Pearson education,” 2006.

[5] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating story points from
issue reports,” in Proceedings of the The 12th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2016, pp. 1-10.

[6] J. Grenning, “Planning poker or how to avoid analysis paralysis while release planning,”
Hawthorn Woods: Renaissance Software Consulting, Vol. 3, 2002, pp. 22-23.

[7] R. Brown and S. Pehrson, Group processes: Dynamics within and between groups. John Wiley
& Sons, 2019.

[8] A.R. Lindesmith, A. Strauss, and N.K. Denzin, Social psychology. Sage, 1999.

[9] S. Nolen-Hoeksema, B. Fredrickson, G.R. Loftus, and C. Lutz, Introduction to psychology.
Cengage Learning Washington, 2014.

[10] J. Aranda and S. Easterbrook, “Anchoring and adjustment in software estimation,” in Pro-
ceedings of the 10th European Software Engineering Conference Held Jointly With 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2005, pp. 346-355.

[11] M. Jorgensen and M. Shepperd, “A systematic review of software development cost estimation
studies,” IEEFE Transactions on Software Engineering, Vol. 33, No. 1, 2006, pp. 33-53.

[12] K. Moharreri, A.V. Sapre, J. Ramanathan, and R. Ramnath, “Cost-effective supervised learning
models for software effort estimation in agile environments,” in 40th Annual Computer Software
and Applications Conference (COMPSAC), Vol. 2. IEEE, 2016, pp. 135-140.

[13] K. Molgkken-@stvold, N.C. Haugen, and H.C. Benestad, “Using planning poker for combining
expert estimates in software projects,” Journal of Systems and Software, Vol. 81, No. 12, 2008,
pp. 2106-2117.

[14] V. Campos, B. Jou, and X. Giro-i Nieto, “From pixels to sentiment: Fine-tuning CNNs for
visual sentiment prediction,” Image and Vision Computing, Vol. 65, 2017, pp. 15-22.

[15] K. Marasek et al., “Deep belief neural networks and bidirectional long-short term memory
hybrid for speech recognition,” Archives of Acoustics, Vol. 40, No. 2, 2015, pp. 191-195.

[16] K.S. Tai, R. Socher, and C.D. Manning, “Improved semantic representations from tree-
-structured long short-term memory networks,” arXiv preprint arXiv:1503.00075, 2015.

[17] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, Vol. 61,
2015, pp. 85-117.

[18] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional
neural networks,” Advances in Neural Information Processing Systems, Vol. 25, 2012.

230104 12

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

[19]
[20]

[21]

[22]

[23]

K.I. Funahashi and Y. Nakamura, “Approximation of dynamical systems by continuous time
recurrent neural networks,” Neural Networks, Vol. 6, No. 6, 1993, pp. 801-806.

Y. Chen, “Convolutional neural network for sentence classification,” Master’s thesis, University
of Waterloo, 2015.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola et al., “Hierarchical attention networks for document
classification,” in Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2016, pp. 1480-1489.
M. Jgrgensen, “A review of studies on expert estimation of software development effort,”
Journal of Systems and Software, Vol. 70, No. 1-2, 2004, pp. 37-60.

M. Jgrgensen and T.M. Gruschke, “The impact of lessons-learned sessions on effort estimation
and uncertainty assessments,” IEEFE Transactions on Software Engineering, Vol. 35, No. 3,
2009, pp. 368-383.

B. Boehm, Software cost estimation with COCOMO II. New Jersey: Prentice-Hall, 2000.

P. Sentas, L. Angelis, and I. Stamelos, “Multinomial logistic regression applied on software
productivity prediction,” in 9th Panhellenic Conference in Informatics, 2003, pp. 1-12.

P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software productivity and effort prediction
with ordinal regression,” Information and Software Technology, Vol. 47, No. 1, 2005, pp. 17-29.
S. Kanmani, J. Kathiravan, S.S. Kumar, and M. Shanmugam, “Neural network based effort
estimation using class points for OO systems,” in International Conference on Computing:
Theory and Applications (ICCTA’07). IEEE, 2007, pp. 261-266.

A. Panda, S.M. Satapathy, and S.K. Rath, “Empirical validation of neural network models for
agile software effort estimation based on story points,” Procedia Computer Science, Vol. 57,
2015, pp. 772-781.

S. Kanmani, J. Kathiravan, S.S. Kumar, and M. Shanmugam, “Class point based effort
estimation of oo systems using fuzzy subtractive clustering and artificial neural networks,” in
Proceedings of the 1st India Software Engineering Conference, 2008, pp. 141-142.

S. Bibi, I. Stamelos, and L. Angelis, “Software cost prediction with predefined interval esti-
mates,” in Proceedings of Software Measurement Furopean Forum, Vol. 4, 2004, pp. 237-246.
M. Shepperd and C. Schofield, “Estimating software project effort using analogies,” IEEFE
Transactions on Software Engineering, Vol. 23, No. 11, 1997, pp. 736—743.

L. Angelis and I. Stamelos, “A simulation tool for efficient analogy based cost estimation,”
Empirical Software Engineering, Vol. 5, No. 1, 2000, pp. 35-68.

F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software effort estimation,” in 38th
International Conference on Software Engineering (ICSE). IEEE, 2016, pp. 619-630.

M. Jorgensen and M. Shepperd, “A systematic review of software development cost estimation
studies,” IEEFE Transactions on Software Engineering, Vol. 33, No. 1, 2006, pp. 33-53.

E. Kocaguneli, T. Menzies, and J.W. Keung, “On the value of ensemble effort estimation,”
IEEE Transactions on Software Engineering, Vol. 38, No. 6, 2011, pp. 1403-1416.

F. Collopy, “Difficulty and complexity as factors in software effort estimation,” International
Journal of Forecasting, Vol. 23, No. 3, 2007, pp. 469-471.

E. Kocaguneli, T. Menzies, and J.W. Keung, “On the value of ensemble effort estimation,”
IEEE Transactions on Software Engineering, Vol. 6, No. 38, 2012, pp. 1403-1416.

R. Valerdi, “Convergence of expert opinion via the wideband Delphi method,” in 21st Annual
International Symposium of the International Council on Systems Engineering, INCOSE,
Vol. 2011, 2011.

S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of empirical software engineering
cost models,” IEEE Transactions on Software Engineering, Vol. 25, No. 4, 1999, pp. 573-583.
M. Cohn, Agile estimating and planning. Pearson Education, 2005.

S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating story points from
issue reports,” in Proceedings of the The 12th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2016, pp. 1-10.

C. Commeyne, A. Abran, and R. Djouab, “Effort estimation with story points and cosmic
function points — An industry case study,” Software Measurement News, Vol. 21, No. 1, 2016,
pp- 25-36.

230104 13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

[43]

[44]

[45]

[46]

[49]
[50]

[51]

[52]

[53]

G. Poels, “Definition and validation of a COSMIC-FFP functional size measure for object-
oriented systems,” in Proc. 7th Int. ECOOP Workshop Quantitative Approaches OO Software
Eng. Darmstadt, 2003.

P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, “Effort prediction in iterative
software development processes — Incremental versus global prediction models,” in First
International Symposium on Empirical Software Engineering and Measurement (ESEM 2007).
IEEE, 2007, pp. 344-353.

P. Hearty, N. Fenton, D. Marquez, and M. Neil, “Predicting project velocity in XP using
a learning dynamic bayesian network model,” IEEE Transactions on Software Engineering,
Vol. 35, No. 1, 2008, pp. 124-137.

M. Perkusich, H.O. De Almeida, and A. Perkusich, “A model to detect problems on scrum-based
software development projects,” in Proceedings of the 28th Annual ACM Symposium on Applied
Computing, 2013, pp. 1037-1042.

M. Choetkiertikul, H.K. Dam, T. Tran, T. Pham, A. Ghose et al., “A deep learning model for
estimating story points,” IEEE Transactions on Software Engineering, Vol. 45, No. 7, 2018,
pp. 637-656.

E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” in Proceedings of the
2nd International Workshop on Recommendation Systems for Software Engineering, 2010,
pp- 52-56.

L.D. Panjer, “Predicting eclipse bug lifetimes,” in Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 2007, pp. 29-29.

P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: Can we do better?” in
Proceedings of the 8th Working Conference on Mining Software Repositories, 2011, pp. 207-210.
P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Proceedings of the
Twenty-Second IEEE/ACM International Conference on Automated Software Engineering,
2007, pp. 34-43.

E.M.D.B. Févero, D. Casanova, and A.R. Pimentel, “SE3M: A model for software effort esti-
mation using pre-trained embedding models,” Information and Software Technology, Vol. 147,
2022, p. 106886.

P. Liu, Y. Liu, X. Hou, Q. Li, and Z. Zhu, “A text clustering algorithm based on find of density
peaks,” in 7th International Conference on Information Technology in Medicine and Education
(ITME). IEEE, 2015, pp. 348-352

J. Pennington, R. Socher, and C.D. Manning, “Glove: Global vectors for word representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532-1543.

W. Guohua and G. Yutian, “Using density peaks sentence clustering for update summary
generation,” in Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE,
2016, pp. 1-5.

J. Pennington, R. Socher, and C.D. Manning, “Glove: Global vectors for word representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532-1543.

K. Cho, A. Courville, and Y. Bengio, “Describing multimedia content using attention-
based encoder-decoder networks,” IEEE Transactions on Multimedia, Vol. 17, No. 11, 2015,
pp- 1875-1886.

E. Loper and S. Bird, “Nltk: The natural language toolkit,” arXiv preprint cs/0205028, 2002.
B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, and M.J. Shepperd, “What accuracy statistics
really measure,” IEE Proceedings — Software, Vol. 148, No. 3, 2001, pp. 81-85.

T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study of the model
evaluation criterion MMRE,” IEEE Transactions on Software Engineering, Vol. 29, No. 11,
2003, pp. 985-995.

M. Korte and D. Port, “Confidence in software cost estimation results based on MMRE and
PRED,” in Proceedings of the 4th International Workshop on Predictor Models in Software
Engineering, 2008, pp. 63-70.

230104 14

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

Haithem Kassem et al. e-Informatica Software Engineering Journal, 17 (2023), 230104

[62]

D. Port and M. Korte, “Comparative studies of the model evaluation criterions mmre and pred
in software cost estimation research,” in Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, 2008, pp. 51-60.

F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software effort estimation,” in 38th
International Conference on Software Engineering (ICSE). IEEE, 2016, pp. 619-630.

T. Menzies, E. Kocaguneli, B. Turhan, L. Minku, and F. Peters, Sharing data and models in
software engineering. Morgan Kaufmann, 2014.

K. Muller, “Statistical power analysis for the behavioral sciences,” 1989.

J. Cohen, Statistical power analysis for the behavioral sciences. Routledge, 2013.

J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,” arXiv
preprint arXiv:1801.06146, 2018.

A.M. Dai and Q.V. Le, “Semi-supervised sequence learning,” Advances in Neural Information
Processing Systems, Vol. 28, 2015.

X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian et al., “GPT understands, too,” arXiv preprint
arXiw:2103.10385, 2021.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.R. Salakhutdinov et al., “Xlnet: Generalized
autoregressive pretraining for language understanding,” Advances in Neural Information
Processing Systems, Vol. 32, 2019.

230104 15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/

	Story Point Estimation Using Issue Reports With Deep Attention Neural Network
	Introduction
	Background
	Story points
	Planning pokers
	Deep learning
	Hierarchical attention network

	Related work
	The proposed model
	The proposed approach evaluation
	Results analysis and discussion
	Threats to validity

	Comparing with the state of art
	Future work
	Conclusion
	References

