
e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240101, DOI: 10.37190/e-Inf240101

A Multivocal Literature Review on
Non-Technical Debt in Software Development:

An Insight into Process, Social, People,
Organizational, and Culture Debt

Hina Saeeda∗ , Muhammad Ovais Ahmad∗, Tomas Gustavsson∗∗

∗Department of Computer Science, Karlstad University, Sweden
∗∗Business School, Karlstad University, Sweden

Hina.saeeda@kau.se, Ovais.Ahmad@kau.se, Tomas.gustavsson@kau.se

Abstract
Software development encompasses various factors beyond technical considerations. Ne-
glecting non-technical elements like individuals, processes, culture, and social and organi-
zational aspects can lead to debt-like characteristics that demand attention. Therefore,
we introduce the non-technical debt (NTD) concept to encompass and explore these
aspects. This indicates the applicability of the debt analogy to non-technical facets of
software development. Technical debt (TD) and NTD share similarities and often arise
from risky decision-making processes, impacting both software development professionals
and software quality. Overlooking either type of debt can lead to significant implications
for software development success. The current study conducts a comprehensive multivocal
literature review (MLR) to explore the most recent research on NTD, its causes, and
potential mitigation strategies. For analysis, we carefully selected 40 primary studies
among 110 records published until October 1, 2022. The study investigates the factors
contributing to the accumulation of NTD in software development and proposes strategies
to alleviate the adverse effects associated with it. This MLR offers a contemporary overview
and identifies prospects for further investigation, making a valuable contribution to the
field. The findings of this research highlight that NTD’s impacts extend beyond monetary
aspects, setting it apart from TD. Furthermore, the findings reveal that rectifying NTD is
more challenging than addressing TD, and its consequences contribute to the accumulation
of TD. To avert software project failures, a comprehensive approach that addresses NTD
and TD concurrently is crucial. Effective communication and coordination play a vital
role in mitigating NTD, and the study proposes utilizing the 3C model as a recommended
framework to tackle NTD concerns.
Keywords: systematic reviews and mapping studies, software quality

1. Introduction

Software development is inherently a sociotechnical process, where the successful completion
of software projects relies on the symbiotic relationship between technical capabilities and
non-technical aspects of software development [1, 2]. This includes considering social
aspects, as defects in software often arise from cognitive errors and miscommunication
within and outside of organizations [3]. Such defective software leads to the accumulation

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 12 Dec. 2022; Revised: 23 Jun. 2023; Accepted: 19 Aug. 2023; Available online: 25 Sep. 2023

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7562-338X


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

of technical debt and additional maintenance costs [4]. In software engineering, the term
“technical debt” metaphorically describes the consequences of rushing software project
development, resulting in defects and costly maintenance [5].

Over the past decade, both academia and industry have shown great interest in technical
debt (TD) [3, 6], exploring various dimensions such as TD effort [7], TD tools [8], TD
management strategies [5, 9], managing architectural TD [10], TD in Agile development
[11], TD management elements [12], and TD prioritization [13]. Surprisingly, non-technical
aspects also contribute to TD, as non-technical stakeholders play a role in driving projects
to acquire TD [14]. Therefore in SD, the debt metaphor is used to describe issues prevalently
– technical debt (i.e., code debt and code smells) and other debts (i.e., process debt, social
debt, people debt, organisational, and cultural debt) [7, 10, 11, 13]. Software projects’ success
or failure combines technical and non-technical elements [11, 12]. Despite the significant
attention given to TD in software [5–7, 10, 12, 14, 15], there remains a substantial research
gap concerning the study of non-technical debt (NTD) [3, 7, 11, 13, 16–18]. NTD, such as
process debt [7], people debt [16, 17], social debt [3, 11, 18–20], organizational debt [21],
and cultural debt [13, 22] have not received sufficient consideration within the technical
debt domain. A 2022 systematic mapping review identified a scarcity of scientific studies
on NTD [1]. The review reported only 17 scientific studies on NTD and requested further
empirical investigation as well as other forms of literature reviews to cover NTD in SD.

Therefore, this study aims to investigate NTD by conducting a multi-vocal literature
review. According to Garousi et al. [23], when there is an absence of scientific evidence on
any topic, it is recommended to conduct a multivocal literature review, as grey literature
can provide valuable insights, perspectives, and empirical evidence that may not be available
through traditional peer-reviewed sources. Including grey literature can lead to a more
comprehensive understanding of the research topic. This multi-vocal literature review (MLR)
provides a state-of-the-art of various NTD types, their causes, and mitigation strategies.
The review extends and cross-validates the findings of a previously conducted systematic
mapping review [1], enhancing the strength of the research outcomes by investigating similar
research questions from different perspectives. By including scientific and grey literature,
this review offers additional insights by capturing diverse perspectives and theoretical and
practical insights. To achieve our study goals, we are investigating the research questions
designed and reported in [1] that serve as the guided foundation for this MLR.
– RQ1 – What is the current state-of-the-art research on the different NTD types in

software engineering?
– RQ2 – What are the reported causes of NTD in software engineering?
– RQ3 – What are the reported NTD mitigating strategies?
– RQ4 – What are the possible future directions for NTD in software development?

The present study is built upon previous research (doi.org/10.5220/0011772300003464)
on the topic of NTD in SD. In this current version of our work, we aim to expand the scope
of the prior investigation by offering a more comprehensive analysis. Specifically, we provide
a detailed thematic division of the identified instances of NTD, including their underlying
causes and potential solutions. Moreover, we conduct a thorough comparative analysis
with a study referenced as [1]. The purpose of this comparison is to demonstrate how our
research replicates, extends, and validates the existing body of work in this domain.

The rest of the study is structured as follows: The design and methodology of our
investigation used in the research are explained in Section 2. Section 3 discusses the findings,
and Section 4 is based on a discussion and conclusion. Section 5 examines threats to validity
and how they were resolved. Finally, Section 6 represents future work.

Article number 240101

2

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://doi.org/10.5220/0011772300003464


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

2. Research method

This section outlines the Multivocal literature review (MLR) technique adopted in this
study. We follow the established MLR guidelines and procedures proposed by Garousi et
al. [23]. The complete systematic MLR process is illustrated in Figure 1, which consists
of three phases: planning, conducting, and reporting. Each phase of the MLR study is
discussed in detail in the rest of the section. Our MLR search was conducted on October
10, 2022, and analysis and reporting were completed by December 2022.

2.1. Planning the MLR

The primary purpose of conducting an MLR study is to focus on the “classification and
thematic analysis of both scientific and grey literature on a software engineering topic” [23].
In this context, Garousi et al. [23] compared a systematic and a multivocal literature review
study. A typical systematic literature review is motivated by a specific research topic that
may be answered empirically. On the other hand, multivocal literature research examines
a larger spectrum of software engineering challenges using grey and scientific literature. The
following two processes (i.e., Motivation and Objectives and Research Questions) comprise
the MLR planning phase, as depicted in Figure 1.

Figure 1. Complete MLR process

Motivation

MLR is useful in finding what is happening in an under-discovered phenomenon. MLR
incorporates all accessible literature (including, but not limited to: blogs, white papers,
articles, and academic literature) [23]. Therefore, MLR is vital for expanding research by

Article number 240101

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

including non-scientific (grey) literature normally excluded in scientific studies. Academics
and industry have been interested in TD for the last twenty years. Whereas the NTD is
still in its infancy, it is necessary to investigate this niche and important research area
further. In this case, an MLR study is motivated to learn about different types of NTD
in software engineering and why they happen. What types of prevention or mitigation
strategies may be utilized to prevent them?

The main objectives of this study are to understand: 1. What NTD is and how it
can impact software engineering projects. 2. Identify the main types of NTD in software
engineering projects. 3. Identify the main causes of NTD in software engineering projects.
4. Determine how to prevent or mitigate NTD in software engineering projects. 5. Determine
the possibilities for future NTD research. These questions serve as the foundation for this
study.

2.2. Conducting the MLR

At first, we conducted a pilot search on debt in software engineering using Google Scholar.
The aim was to determine the existence of any secondary studies on the given topic. We
conducted this search using the following string: (“process debt” OR “social debt” OR
“people debt” OR “organizational debt” OR “culture debt”) AND (“Software”). The search
was conducted in October 2022, and Google Scholar yielded 3080 results. It was evident
from the search that the current focus of research is predominantly on TD, whereas not
a single review was found on NTD.

2.2.1. Search strategies and data sources

The designed search string defined the scope of our study. The designed string includes
the search terms “population” and “intervention” based on (PICO) criteria suggested by
Kitchenham et al. [24], where population refers to the application area, “software”, and
intervention represents NT‘D types. Based on intervention, we selected five key terms for
finalizing the search string (i.e., process debt, social debt, people debt, organizational debt,
and cultural debt). Finally, the term software ensures we do not include research from
other domains, like social sciences or economics. The finalized designed search string was
(“process debt” OR “social debt” OR “people debt” OR “organizational debt” OR “culture
debt”) AND (“software”).

The rationale for using the term “software” is that this study will cover studies
that discuss software, software development, and systems. So, the search will include all
documents with the word “software” in the title, abstract, and keyword. At the same time,
the terms process debt, people debt, social debt, and organizational debt were used to include
all NTD-associated sources. While we selected NTD (process, people, and social debts) from
the existing systematic mapping review [1] on the topic and extended the scope of the study
by adding two NTDs (cultural and organizational debts) as well. The overall motivation
for selecting these five NTD types is based on the proposed “Hexagonal socio-technical
systems framework” (adapted from Davis et al. 2014) [25] where they highlighted people,
process, culture, and organization (technology and infrastructure) elements as the most
critical sociotechnical aspects. As software development is an extensive interactive activity,
we added the social debt [3] to cover the communication, collaboration, and cooperation
challenges among people (directly or indirectly linked with the software development
process). To ensure a broad overview of the topic, the selection criteria for including papers

Article number 240101

4

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

in our study focus more on relevance. According to Lenarduzzi et al. [26], there are other
types of debts, including service debt, suitability debt, and environmental sustainability
debt, that can be studied under the umbrella of the NTD. However, in the current study,
we are restricting our scope to only include the strongly linked social-technical elements of
the software development process. Restricting the scope of our study has positive effects by
enabling focused exploration, increased rigor, and efficient resource allocation. It helped us
to concentrate on important research elements, leading to comprehensive findings. However,
there are drawbacks to consider, including limited generalizability and potential oversight
of relevant aspects.

The search string was designed to retrieve results from the Google search engine. We
preferred the Google search engine as it is faster and a good source for collecting grey
literature. We aimed to keep the search string simple to be as inclusive as possible with
a new topic like non-technical debt in software engineering. Therefore, we did not restrict
the search to particular years. We found 110 results with 11 Google pages, each with
11 links to further resources. Figure 2 shows the complete research conduction phases.

Figure 2. Research conduction process

2.2.2. Primary studies selection procedure and application of inclusion/exclusion criteria

In the first round, we excluded 36 records out of 110 based on the exclusion criteria given in
Table 1. The detailed breakdown of excluded records is duplicated records (n = 6), videos
(n = 7), advertisements (n = 11), catalogs (n = 8), and people research profiles (n = 4).
After the first round, we obtained 74 records out of 110 and included them in subsequent
steps.

Article number 240101

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 1. Inclusion and exclusion criteria

Inclusion Exclusion

Sources contributing to the understanding of
non-technical debt in software development, no
matter to what extent the topic is discussed

Sources not written in English

Empirical and non-empirical sources, either quali-
tative or quantitative, analyzing any NTD in SD

Videos, advertisements, catalogs or keynotes, news-
papers, duplicate sources

Blogs, white papers, and experiences report “peo-
ple, process, social, cultural and organizational debt

Position and research profiles, non-software engi-
neering domain sources

2.2.3. Quality assessment

To apply quality assessment criteria, the 40 primary studies [S1–S40] were divided into two
categories: grey literature (GL) and scientific literature (SL). We adopted the 11-factor
quality assessment criteria (Table 2) proposed by Dybå et al. [27] for scientific literature.
At the same time, we adopted the quality assessment checklist of grey literature (Table 3)
from Garousi et al. [23]. Each criterion was graded on a binary (“1” or “0”) grade, in which
“1” indicates “yes” to the question, while “0” means “no.” Both checklist criteria measured
the extent to which the quality of the 12 SL and 28 GL sources could be appropriately
assessed. Two research separately consider the 40 primary sources. This technique helps
to limit the degree of subjectivity and report the results more objectively. Researchers
combined their results and solved a few conflicts in the discussion session.

Table 2. Quality assessment check list for SL

1. Is the paper based on research (or is it merely a“lessons learned” report based on expert opinion)?
2. Is there a clear statement of the aims of the research?
3. Is there an adequate description of the context in which the research was carried out?
4. Was the research design appropriate to address the aims of the research?
5. Was the recruitment strategy appropriate to the aims of the research?
6. Was there a control group with which to compare treatments?
7. Was the data collected in a way that addressed the research issue?
8. Was the data analysis sufficiently rigorous?
9. Has the relationship between the researcher and participants been adequately considered?

10. Is there a clear statement of findings?
11. Is the study of value for research or practice?

For the scientific studies, based on the screening criterion, each of the 12 studies
received a score of 1; each study offered a clear research objective and background for
the investigation. However, one paper [7] lacked an adequate discussion of its research
methodology and did not employ proper sampling. No relevant control group was found for
comparing treatments in the primary studies. All primary publications adequately detailed
“data collecting” and “data analysis”, except [3]. While [7] lacks design and sampling phases.
While “research findings” and “research value” criteria were applicable and fulfilled by
all papers. Three papers [7, 16, 17] failed to discuss the researcher-participant connection
explicitly. None of the papers received a complete score on the quality evaluation, but
few publications received two or three negative responses. We divided grey literature into
three tiers. We have 9 primary sources in 1st tier GL, which cover high outlet control/high
credibility, including thesis, reports, and white papers. Two primary sources come under
the umbrella of 2nd tier GL, which covers moderate outlet control/moderate credibility,

Article number 240101

6

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 3. Quality assessment check list for GL

1. Is an individual author associated with a reputable organization?
2. Has the author published other work in the field?
3. Does the author have expertise in the area? (e.g., job title principal software engineer)
4. Does the source have a clearly stated aim?
5. Does the source have a stated methodology?
6. Do authoritative, documented references support the source?
7. Does the work cover a specific question?
8. Does the work refer to a particular population?
9. Is the work balanced in a presentation?

10. Is the statement in the sources as objective as possible?
11. Do the data support the conclusions?
12. Does the item have a clearly stated date?
13. Does it enrich or add something unique to the research?
14. Does it strengthen or refute a current position
15. 16. 1st tier GL: High outlet control/High credibility: thesis, reports, white papers
17. 2nd tier GL: Moderate outlet control/Moderate credibility: Q/A sites, Wiki articles, workshop
18. 3rd tier GL: Low outlet control/Low credibility: Blog posts

including Q/A sites, Wiki articles, and workshops. There is 17 3rd-tier GL that cover
low outlet control/low credibility. None of the GL sources received a complete score
on the quality evaluation but reached the minimum threshold, which indicates credible
sources as a whole. All the grey literature sources clearly stated their goal. Web blogs lack
a methodology section and documented references, whereas thesis and seminar reports
have written methodology sections. All sources provide information on specific NTD issues,
cover the software development population, and are balanced in the overall presentation.

2.2.4. Data extraction and analysis

After completion of the quality analysis, data extraction was performed in MS Excel
sheets based on the primary sources types, year of publication, NTD types found, NTD
causes, and mitigation strategies. After the data extraction, data analysis was done using
thematic analysis techniques [28]. The thematic analysis yielded primarily five themes,
each highlighting NTD types. Further codes (discussed in the result section) were created
against each NTD type, cause, and mitigation strategy.

3. Results

Our MLR study presents the results from analyzing the 40 primary sources [S1–S40] (see
Appendix A). The presented results begin with demographic information, i.e., (i) type of
literature, (ii) type of sources, and (iii) publication by year, and then proceed to a detailed
assessment based on the thematic analysis.

3.1. Demographics

Figure 3 shows the two broader categories of our primary sources, GL (n = 28) and SL
(n = 12). Figure 4 further shows the detailed breakdown of these two categories. The
highest number of resources are cited from web blogs (n = 17), and the second highest
number of resources are found in journals (n = 6), conferences (n = 6), and theses (n = 6).

Article number 240101

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Also, seminar reports (n = 3) and two workshops are reported on the topic. This clearly
shows high practitioners’ interest in the topic under study. Figure 5 shows that before 2018
fewer relevant studies were captured, whereas active research efforts have been evident
since 2019.

Figure 3. Type of literature

Journal

6

Conference

6

Web-blog 17

Thesis

6 Report

3
Workshop

2

Figure 4. Types of primary sources

Figure 5. Publication’s trend

3.2. NTD state of the art

In this section, we discuss five different types of NTD (i.e., people, process, social, cultural,
and organization) with the help of relevant examples. This section answers RQ1 – What is
the current state-of-the-art research on the different NTD types in software engineering?

3.2.1. Process debt

“Process debt refers to issues that, if present in software development, might delay or
impede specific development operations” [29]. A software process is represented by a series
of work phases applied to the design and development of a software product [30]. A process
that operated effectively and efficiently a year ago may not be as productive as before,
as changes in expectations, people, resources, and tools necessitate the modification of
processes to achieve optimal performance. During these changes, the number of process
bottlenecks, wasteful stages, and superfluous procedures add to process debt [31]. It occurs
when a process is poorly understood and controlled [2]. Likewise, process debts are related
to the creation of technical debt [7, 32]. Martini et al. [33] researched process debt in
fine detail and revealed a number of its causes and mitigation strategies. An example of
process debt is when teams hold stand-up meetings to report status so leaders know what
is happening [16]. Team members can quickly show their leader the project’s status. The

Article number 240101

8

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

debate focuses on recording rather than distributing information and addressing team
interdependencies, causing process debt [16].

3.2.2. People debt

“People debt refers to people’s problems in a software company that can slow or impede
developmental operations” [5]. Human (people) factors in SD can be investigated psy-
chologically, cognitively, managerially, and technically. These factors have organizational,
interpersonal, and individual impacts. When building systems, enterprises accumulate
people’s debt by ignoring their people’s needs. Unresolved people’s issues [34], such as two
people who had to be put on different teams because they could not work with each other,
the person promoted whose head’s only just been above water for the last six months is
the typical causes of people debt [35–37]. It refers to all the ideas, goals, and objectives
a corporation had for employees but abandoned. It also refers to missed opportunities
to improve employee lives and jobs. One common example of people debt is expertise
concentrated in too few people due to delayed training and/or hiring [2, 12, 16, 20]. Nokia’s
sharp fall, unveiled by an INSEAD study [38], resulted from a toxic culture of silence that
the employees were experiencing that caused them to be in denial about the progress of
their competition. Boeing’s catastrophic failure resulted from an environment of fear, where
engineers were unwilling to discuss problems and failures [34]. People’s debt is also directly
linked to the creation of TD [39].

3.2.3. Culture debt

“Cultural debt is making a technical decision that borrows against the organization’s
culture. Such decisions can introduce team divisions, deteriorate communication or even
weaken leadership effectiveness” [13, 22]. Corroding culture affects morale and alienates
partners, customers, and employees. The biggest threat to a company’s ability to seize
an opportunity isn’t the wrong people, product, pricing, competition, or market forces;
it’s Culture Debt [35, 40]. Leaders often say, “Their employees are their greatest asset.”
If the culture is correct, if it is shattered and you hire out of step with it, everything
will fail. These “biggest assets” will make unwise decisions and fail. The right people in
the right atmosphere will always win [21, 40]. Uber had cultural debt as before 2017, the
company’s services, such as ordering a car, tracking a vehicle, and driver software, were
packaged into one software. When part of the software crashed, the whole system went
down [41]. The company switched software to recover swiftly and stabilize the business.
The corporation bought 30 000 decentralized programs, which caused the technical debt. To
cover the technical debt, they employed inexperienced workers without much training. The
company’s cultural debt produced decentralized communication, inadequate leadership,
and disorganization.

3.2.4. Social debt

“Social debt is a cumulative and increasing cost in the current state of things, connected
to invisible and negative effects within a development community” [16]. Tamburri et al.
[3, 11, 18, 20] investigate social aspects of debt under the term “social debt.” It is associated
with unforeseen project costs, similar to technical debt, as it depicts the cost accumulation
of software projects due to community causes, i.e., suboptimal working environments

Article number 240101

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

and conditions [42, 43]. Community causes contribute to the accumulation of social debt,
which impacts the people who work on software development tasks and the quality of the
software they produce [3, 27]. This chain of events can potentially jeopardize the business
continuity of software development organizations. An example of social debt is a lack of
effective communication between different parts of the organization (for example, between
development and operations teams). Another example has an architecture team that is
disconnected from the SD team and, therefore, might suggest architectural solutions that
are not realistic, as they do not take into consideration the details and the requirements
elicited during the implementation phase [3, 36].

3.2.5. Organisational debt

Organizational debt is “the accumulation of changes that leaders should have made but
didn’t” [36]. It turns out that organizational debt can kill the company faster than other
debts [42]. Organizational debt is all the people/culture compromises made to “just get
it done” in the early stages of a startup. Growing companies must understand how to
recognize and “refactor” organizational debt [27, 43, 44]. Organizational change requires
individuals to change, whether introducing a new tool, restructuring business processes,
or even larger transformation. These changes add to organizational debt as well [44].
The common organizational debt example is doing what’s quick and convenient. It is
understood that it does not scale and is not the ultimate solution, but it works now [5].
Further organizational debt example is obsolete processes. The company implemented
a solution that worked at the time but now has better, more efficient options, but systems
and processes rely on the old ways. Organizational debt is also directly linked to the
generation of TD as well [34, 38, 45].

3.3. NTD accumulation causes

This section presents different identified common causes for accumulating the NTD. This
section answers RQ2 – What are the reported causes of NTD in software engineering?

3.3.1. Process debt causes

Our study identified 14 process debt causes that are divided into three themes named
process divergence, organizational and external dependencies (see Table 4). Among the
identified causes, six were found to be discussed in both GL and SL, which include inefficient
processes, outdated processes, sub-optimal processes, power distance, shortcuts, and quick
fix norms prevalent in software companies. On the other hand, the GL introduced three
new causes: lack of software culture, external trends, and technology and tools.
Process divergence. According to Martini et al. [7, 33], process designers develop defective
processes, process executors deviate from well-designed processes, and infrastructure flaws
can cause problems in process implementations. Process divergence is hard and can lead to
inadequate planning, prioritization, and incompetency. Further causes of process debt are
obsolete and suboptimal processes and lack of follow-up assessment, design, management,
and execution [6, 7]. When process experts optimize processes, they add to process debt
by missing some important steps. Unaccustomed staff causes confusion and process debt,
too [7]. Inefficient processes include wasted time, customer delays, approval waits, batching
delays, redundant steps, effort duplication, errors, and rework [15, 46, 48]. Obsolete or

Article number 240101

10

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 4. Process debt causes

Process debt themes Causes GL ref. SL ref.

Process divergence Process incompetence [33]
Inefficient processes [46] [15]
Outdate process [29] [47]
Changing process [48] [20]
Sub-optimal processes [6] [7]
Lack of follow-up assessment
Lack of prioritization
Cost of process changes

Organizational challenges Value neglecting
Lack of software culture [12]
Power distance [49] [50]
Shortcuts and quick fix norms [45] [48]

External dependencies Technology and tools [7]
External trends

old processes include using outdated or time-consuming manual processes when a simple
technological replacement could save time and costs [46, 48]. Inadequate defect analysis,
documentation, or test case management causes process debt. No one uses more efficient
methods when shortcuts and quick solutions are the norms. This diminishes productivity
when employees repeat the same “shortcut” when a permanent, more efficient approach
might have been established from the start. Changing a software process changes activity,
artifact, and role. One element’s change may affect others due to interdependencies.
Changing an activity (e.g., adopting agile) can influence final production. Unanalyzed
changes in the processes can impair development [7, 47]. The value a process brings to
stakeholders and the organization is sometimes unclear. Stakeholders disregard the process
when such messages aren’t properly communicated, causing process debt [6, 48]. Existing
processes are hampered by different enterprises, units, teams, domains, and events. If
these conditions and circumstances aren’t considered, process debt and costly effects arise
[7, 47]. Understanding contexts and scenarios in process design are vital; for example, when
processes are built just for the software development team and neglect partnering hardware
teams, it causes misunderstandings and generates process debt.
Organisational challenges. Power distance, lacking software culture, and neglecting
values add to the accumulation of process debt. Power distance refers to the degree to which
lower-ranking members of an organization “accept and expect the unequal distribution
of authority”. In the context of software development is the perceived distance between
less powerful teammates and power-holder teammates, such as experienced teammates
or decision-makers [12, 50]. The absence of a software culture in many organizations
is a significant problem. This indicates that processes carefully crafted for use in other
contexts may not be the most effective in all software development environments [7, 29].
Another issue is interacting with organizations with different cultures, interests, and power.
It can lead to the negligence of important values; examples are processes not followed by
open-source organizations developing a software system component used by the development
team (e.g., the lack of a correct library versioning) or other stakeholders that may be
interested in receiving data to compute analytics without knowing about the burden for
the developers [49].
External dependencies. The influence of external trends, technology, and tools directly
affects debt accumulation. How an organization adopts new processes is influenced by

Article number 240101

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

external trends such as greater global competition, changing demographics, changing
customer concerns, and volatile stock markets. Process debt can occur when an organization
adopts processes that are not fit for the organization based on these external trends. Having
the technology to support the processes, automate them, and make their steps easier is
also essential. Additional process debt can be caused by a lack of technology and tools,
such as when an outdated configuration management solution does not deliver quickly [7].

3.3.2. People debt causes

Our MLR identified 10 people’s debt causes that are divided into three themes named
behavioral, work, and 3C challenges (see Table 5). It is evident that people’s debt is heavily
investigated in the SL compared to GL, where seven cases are reported. On the other hand,
GL offers two new causes named people´s poor behavior and remote work. Only two of
the people’s debts are identified in both SL and GL named race to ship as many features
and poor inter-team coordination.

Table 5. People debt causes

People debt themes Causes GL ref. SL ref.

Behavioural challenges Frustrated and poor-performing teams [12]
Poor customer responsiveness [12]
People’s poor behaviour [36]

Work challenges Remote Work [51]
Race to ship as many features [51] [16]
Leaving people [36, 51]

3C challenges Insufficient collaboration [5]
Insufficient communication [5, 16]
“Shortcuts” in communication [5]
Poor inter-team coordination [38] [5, 16]

Behavioural challenges. A team member’s poor conduct negatively impacts the per-
formance of other team members. Inversely, poor performance can also contribute to
behavioral issues, particularly when team members become dissatisfied and angry about
their poor performance or believe that an unfair standard has been established, which
leads to poor productivity [12]. Low productivity has several detrimental repercussions on
the workplace, including the financial impact on profitability and structural consequences
on employee morale [12, 36]. Further poor behaviors of the people, such as excessive
self-indulgence, a lack of self-control, exploiting others, and low motivation and effort, can
be correlated with various antisocial, immoral, and imprudent behaviors that impede the
software development process [36]. While poor customer responsiveness is based on the
service provider’s inability to provide in-time service, this is based on both the speed of
interaction and the speed of the service fulfillment [12, 36].
Work challenges. In remote work without face-to-face connection, individuals miss a sense
of shared purpose and are more indifferent to their employers. People’s poor behaviors and
attitudes toward work, not maintaining a positive attitude, shortcuts in communication, and
remote working are also important reasons for people’s debt [51]. Numerous disadvantages
are linked with remote employment, as it directly impacts individuals’ health. Loneliness is
one of the primary obstacles that distant workers may need to overcome. When employees
are not accustomed to working alone throughout the day, people could ask a coworker a brief

Article number 240101

12

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

inquiry or run into someone in the hallway to discuss casually while working in the office.
Many employees miss a sense of shared purpose without face-to-face connection and are
more indifferent to their employers. Another working challenge is the ambitious managers
who want to ship as many features as possible, which makes the development of the feature
crawl over time. Also, when people leave, no one knows to whom the work should be
transitioned. The combination of strict deadlines and excessive workloads causes software
professionals to burn out and quit their careers prematurely [16]. Software engineers quit
their jobs due to inadequate compensation in terms of money, technical difficulties, and
growth opportunities. This has a detrimental effect on team performance; for example, the
departure of team members is when no one understands who the task should be transferred
to and who should fill the vacated position [36].
Communication, collaboration, and coordination (3C) challenges. During software
development, “shortcuts in communication with people” refers to the incapacity of team
members to interact effectively and appropriately [38]. This can occur when team members
bypass proper communication channels, engage in extremely brief communication intervals,
or avoid communication. Shortcuts in communication are taken to save time. Nevertheless,
adopting communication shortcuts can impact multiple phases of the software development
life cycle. For instance, omitting steps when speaking with the client to collect software
requirements could result in a missed or insufficient requirements analysis. Failure to foster
a collaborative environment at work results not only in a loss of benefits but also in a slew
of disadvantages. The inability to create a team-friendly environment frequently results in
an isolated and broken workflow, rarely leading to team efficiency or production [5]. When
team members lack coordination, production can suffer, processes become more difficult,
and work finishing can take longer [16].

3.3.3. Culture debt causes

Our MLR identified 7 cultural debt causes that are divided into two themes named
organizational culture and management challenges (see Table 6). It is evident that cultural
debt is heavily investigated in the GL and reported 6 causes. At the same time, unique
causes identified in SL are named un-participatory culture. Here it is also worth mentioning
that our MLR extended to cover cultural debt, which was not included in a recent NTD
review conducted by Ahmad and Gustavsson [1]. This expansion is motivated by recognizing
that a positive and productive work environment is essential for maximizing the effectiveness
of processes and people involved in SD.

Table 6. Cultural debt causes

Culture debt themes Causes GL ref. SL ref.

Org-culture challenges Un-mindfulness in adopting culture [52]
Un-participatory culture [47]
Individualistic culture [22, 53]
Weak organisational culture [13, 21]

Management challenges Managers lacking understanding of culture [13]
Underinvestment in core HR functions [13]
Hiring wrong people [13, 54]

Organisational culture challenges. Culture debt results from improperly implementing
policies and procedures. Deferred investments because of budget uncertainty, inadequate

Article number 240101

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

governance, organizational restructuring, and the need to act rapidly to meet emergent
threats are common cultural debt drivers in organizations [13, 53]. Unparticipatory culture
oppressed active decision-making and goal-setting. Unparticipative environments make
employees feel less ownership over their work. They’re more likely to ignore a problem or
opportunity than assume someone else’s responsibility. Individualistic cultures stress the
needs of the individual over the needs of the group. In this type of culture, people are
seen as independent and autonomous [21, 22]. Social behavior tends to be dictated by the
attitudes and preferences of individuals. However, people with strong individualistic values
and beliefs within an individualistic culture would have smaller social support networks,
lower emotional competence, lower intentions to seek help from various sources, and poorer
mental health [13, 22]. Individualism has also drawbacks where employees become too
self-reliant, and a lack of emphasis on cooperation and teamwork leads to inefficiency in
production [22]. Another big challenge faced is weak culture. It refers to values and beliefs
not strongly and widely shared within the organization [13]. This implies that individual
members of the organization rely more on personal principles, norms, and values. Further,
the poorly implemented solution causes organizational culture to poorly identify the actions
required, schedule the actions to identify the resources required, put measures in place to
counter adverse consequences, and review the plans, etc. [13, 53].
Management challenges. When management teams don’t know what culture they are
trying to build in their organizations, it leads to cultural debt. Decision-makers have
a cumulative impact on organizational culture. Managers can not guide the employees on
how the company functions and is seen as a whole when they lack a proper understanding
of the culture [13, 53]. Having adequate investments for managerial tasks is very important.
Investing in management is important for cultural strength. Fewer management investments
are a major reason for cultural debts in the software industry [13, 21]. Lack of investment
in management causes degradation in revenue, branding, and workplace environment
[13, 22]. The wrong hiring made by managers can have a serious and long-term impact
on an organization. If a wrong hire is made, it can cause disruption in the team, increase
recruitment and training costs, and decrease morale and productivity. It can also lead to
a lack of trust in the leadership and a decrease in the quality of work. Additionally, the
wrong hire can result in bad decision-making and cause the organization to miss out on
potential opportunities [13].

3.3.4. Social debt causes

In the social debt category, we identified 17 causes that are divided into three themes
named social confines, community smells, and organizational challenges (see Table 7). SL
literature reported the majority of these cases, whereas GL reported only two new causes
of social debt, named social isolation and decision in-communicability.
Social confines. Too much time alone at work and fewer collaborative talks contribute to
social isolation [42, 51]. This hampers collaboration, idea-sharing, and teamwork. Social
pressure is when one person or group influences another; for example, argument, persuasion,
conformity, and demands are some social pressure examples [42]. Two types of social
pressures exist 1. Workplace peer pressure, such as comparisons and competition with peers
and 2. Psychological pressure: pressure caused by own thinking, such as overthinking, etc.
Social pressure encourages improved performance and perfection. Seeing others succeed
motivates others to achieve well. But extra and consistent social pressure on teams can
lead to low self-esteem, lack of confidence, confusion about one’s place in a social group,

Article number 240101

14

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 7. Social debt causes

Social debt themes Causes GL ref. SL ref.

Social confines Social isolation [52]
Social pressure on teams [47]
Poor social structures [50]

Organisational challenges Uncooperativeness of the development community [20]
Organizational barriers
Uninformed socio-technical decisions
Architectural changes
Decision incommunicability [36]
Global distance [5]
Lack of proper communication in organizations [16]
Omissions in social interactions [43]

Community smells Power distance [42]
Priggish members
Prima donnas
Radio silence or bottleneck
Haring villainy
Solution defiance

etc. A social structure is a network of (social) relationships, habits, and ways of thinking
among people working toward a common goal. It helps people with the same organizational
aim to communicate information. Communication deteriorates, work outputs are delayed,
and profitability is damaged when a company’s social structure fails. To run effectively,
it is necessary to frequently examine the social and organizational structure to ensure it
matches the business’s needs [42, 55].
Organisational challenges. The development community’s unwillingness to work with
technical experts causes organizational problems. Software development professionals rarely
get along with techies. Unaware developers can create a “us vs. them” situation [3]. They
blame each other for problems [3]. Organizational barriers impede employee knowledge flow
and can lead to commercial failure [16, 20]. Organizational barriers include rules, policies,
hierarchical positions, facilities, and complex systems. Employees must send queries in the
organization’s preferred language, medium, and manner of communication. The policy
describes how employees should behave and communicate to stay employed [16, 18]. Unin-
formed socio-technical choices include poorly communicated organizational decisions and
misinterpreted team findings. These ill-informed assessments can affect an organization’s
social and technical interdependence and the development community. It might lead to
a lack of shared attention on communication and collaboration in achieving technical
performance and job quality [3, 42]. Poor organizational or sociocultural conditions prevent
the development network from communicating directly with key stakeholders [43]. Incommu-
nicability is linked to communication and affected by social and organizational issues (e.g.,
organizational filtering protocols or nondisclosure agreements). Incommunicability traits,
including community and smells, that impose communication obstacles (e.g., corporate
silos or limited software practitioner communication cause social debt [5]. Organizational
architecture increases societal debt. Architecture decisions can be determined “by osmosis,”
using information from every communication link in the development and operations
network [12]. Critical information loss is almost inevitable. In the ensuing communication
chain, important information, logic, and needs can be lost [20]. Inadequate communication,
omission of social connections, and other issues contribute to social debt [5, 16].

Article number 240101

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Community smells. Priggish members refer to pedant teammates demanding of others
pointlessly precise conformity or exaggerated propriety, which frustrates teammates and
affects the software development process [18, 42]. Prima donnas work in isolation and
don’t welcome changes or support from teammates. The outcome prevents the organization
from innovative solutions or processes and effective communication and collaboration
[3, 42]. Another form is a lone wolf, where individuals work regardless of their peers due
to poor communication. The negative results of such work are unsanctioned architecture
decisions across the development process, code errors, and project delays [20, 42]. Radio
silence or bottleneck can occur when tasks and communications are formally performed in
a complex organization [42]. For example, a team member working as a unique information
intermediary for different teams leads to communication overload and massive delays
[42]. Sharing villainy is an environment where the goal of sharing reliable knowledge or
information is challenging. When organizations cannot offer a decent working environment
and lack encouraging knowledge sharing, the result is that the team finds it difficult to
complete project activities [42]. Solution defiance can be called team conflicts and a lack of
respecting others’ opinions regarding a potential solution. Each organization has teams
that might be more diverse in various ways. Teams conflict in decision-making meetings
when a team or individual is too rigid in their technical expertise, organizational cultural
beliefs, values, and norms [55].

3.3.5. Organisational debt causes

Organizational debt leads to TD because of deferred investments due to budget uncertainty,
poor governance and architecture, and organizational restructuring. On the other side, TD
can also cause organizational debt. Non-technical debt refers to the broader organizational
inefficiencies and operational shortcomings that hinder the organization’s performance.
Here’s how system challenges can be related to non-technical debt in the organization.
The inability to integrate systems, poor maintenance practices, the inherent complexity
of systems, and complex, difficult-to-operate systems are considered causes of organiza-
tional debt. These factors can contribute to inefficiencies, increased costs, and hindered
productivity within an organization. These system challenges can directly contribute to
organizational debt. For a clear division of organizational debt themes, we have divided
organizational challenges into two main types, i.e., organisational structure and system
challenges [36]. Details of the organisational debt causes are provided in Table 8.
Organisational structure challenges. Small and inflexible organizations lack the knowl-
edge and capacity to upgrade and modernize [52]. Poor maintenance, inadequate investment,
system complexity, and changing mission requirements affect them [44]. Bad organizational
and architectural choices lead to bad decisions, performance evaluations, and compensation
structures [58]. A very large and flat organizational structure has obstacles like a lack of
hierarchical or flat structures: motivational issues, blurred decision-making processes, a lack
of knowledge of areas of responsibility, and inconsistent processes and procedures. Flat
organizations eliminate expectations. Some workers depart because they can’t advance [36].
Internal politics (office or workplace politics) is inevitable. It refers to persons competing
for prestige or power in the workplace. Politics decreases individual and organizational
output. Politics harms the workplace [2]. Team members use their available informational
resources through information sharing. Information sharing promotes innovation, efficiency,
and new ideas by reducing repetition. Everyone benefits when employees share their
knowledge and generate searchable content. Uneven information exchange across teams can

Article number 240101

16

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 8. Organizational debt causes

Organizational debt themes Causes GL ref. SL ref.

Organizational structure challenges Sluggish or inflexible organizations [52]
Bad organizational, architectural choices [52]
Lack of skills to upgrade organizations [44]
Extensive and flat organization [36]
Internal politics [36]
Uneven information sharing among teams [2]
Lack of management commitment [56]
Unclear changes [57]
Un structured Information [57]
Lack of healthy communication [41]
Organizational culture hindering progress [41]

Organizational-systems challenges Inability to integrate systems [52]
Poor maintenance [52]
The inherent complexity of the systems [52]
Complex, difficult to operate systems [2]

harm the organization by hiding information from management [56]. Lack of management
commitment generates an inefficient organization that hinders information sharing and
cooperation. Lack of software implementation and maintenance resources affects quality
[57]. When people don’t grasp why change is needed, anxiety, scepticism, and resistance
rise, and most significant changes are justified by financial returns (e.g., acquisitions add
revenues; cost reductions increase margins). However, the rationale for large-scale change
must be clear and convincing for all important stakeholders [41]. Unstructured information
is difficult for people and computers to interpret. Unstructured information often causes
workarounds that modern businesses don’t understand. A lack of communication can
produce misunderstandings, missed opportunities, conflict, disinformation, and mistrust,
making staff feel defeated. Poor organizational communication causes friction, frustration,
and confusion, producing a stressful climate where individuals aren’t driven to collaborate
or be productive. Culture impacts people’s performance. Organizational culture is seen as
a technique to get things done or as typical organizational features that shape member
behavior and improve (or hinder) strategic achievement and performance [52]. Ambiguity,
poor communication, and inconsistency are common cultural challenges. These can create
a hostile and unpleasant workplace, leading to harassment, bullying, and high turnover.
Culture drives growth and performance. Unhealthy workplace culture impairs engagement,
retention, and performance. It hinders business when procedures and processes are struc-
tured to fit a legacy technology’s capabilities. If you lack current collaborative tools like
video conferencing or group chat, you may choose a local team over one with the best skills.
Organisational system challenges. A lack of or poorly designed integration can cause
duplicate data, sluggish order processing, fulfillment delays, disgruntled customers, and
profit loss. A lack of system integration hinders system performance and treasury operations
with human work [52]. System integration challenges are caused by insufficient expertise,
required money or investments, resources, inadequate communication/planning, after-go-live
maintenance, and sophisticated technical concerns. Lack of integration produces information
silos that obscure company performance. Inefficiencies hinder decision-making and raise
redundancies [2]. Poor maintenance means failing to keep organizations working. Routine
maintenance is preventive, predictive, or scheduled [52]. Maintenance is key to quality
assurance and a company’s long-term profitability. Unmaintained resources can cause

Article number 240101

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

instability and slow production. Malfunctioning machinery or breakdowns can be expensive.
A software system’s complexity isn’t an accident. This intrinsic complexity originates
from four elements: the complexity of the problem area, the difficulty of managing the
development process, software flexibility, and discrete system behavior difficulties [52].
Software complexity makes development management more difficult. Complex systems
have many interacting parts. Hence they lack predictable causation. These components
might alter over time, generating unpredictability in relationships. This causes unforeseen
difficulties, defects, security failures, or crashes that are hard to examine. Detailed system
descriptions, risk evaluations, and demand specifications are often wrong for systems where
unexpected events occur [2].

Hence, the inability to integrate systems, poor maintenance practices, the inherent
complexity of systems, and complex, difficult-to-operate systems are recognized causes of
organizational debt. These factors directly contribute to inefficiencies, increased costs, and
hindered productivity within an organization, thus adding to the burden of organizational
debt. The inability to integrate systems effectively results in data inconsistencies, manual
workarounds, and limited information flow, leading to higher costs, reduced productivity,
and an accumulation of organizational debt over time. Poor maintenance practices, such
as neglecting software updates and security patches, lead to degraded system perfor-
mance, increased downtime, and higher maintenance costs, all of which contribute to
organizational debt. The inherent complexity of systems, particularly legacy systems,
requires specialized knowledge, training, and support, adding overhead costs and creating
difficulties in system configuration, customization, and troubleshooting. Similarly, complex
and difficult-to-operate systems with poor user interfaces and convoluted workflows impede
employees’ ability to perform tasks efficiently, resulting in errors, reduced productivity, and
frustration. The time spent navigating these complex systems and seeking workarounds
adds to inefficiencies and organizational debt.

3.4. NTD mitigation strategies

In this section, we are examining mitigation approaches for NTDs from the current literature.
We will discuss each type of NTD management approach separately. This section answers
RQ3 – What are the reported NTD mitigating strategies?

3.4.1. Process debt mitigation

We identified 5 process debt mitigation strategies (see Table 9). Only one mitigation
strategy was identified in GL named measurement of process, whereas the remaining 4
are from SL. It is important to note that SLR [1] aims to provide information on how to
prevent process debt and address architecture issues, requirement mismatches, process
divergence, and organizational challenges. The current MLR, on the other hand, provides
more specific recommendations and considerations for mitigation strategies. It highlights
the importance of process documentation, monitoring, automation, market adaptation,
and process design in managing process debt. It emphasizes the need for organizational
restructuring involving end users. The MLR also suggests following conceptual models and
tracking process productivity. The MLR offers broader principles and concepts for effective
process debt management. It highlights the importance of process productivity tracking
and conceptual models, which are not explicitly mentioned in [1].

Article number 240101

18

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Effective process debt management strategies are strongly tied to improving software
development processes, such as process documenting, process monitoring, regular auditing,
early detection of risks, and measuring process appropriateness [5, 29]. Process automation
can minimize process debt [33], and by embracing new and valuable technologies and
tools, process automation can lead to functional augmentation and virtualization, making
the process more understandable [33]. It is also a good idea to employ new processes
to avoid process debt if market trends and needs change. Following the agile approach,
for example, meeting early time to market, accepting dynamic requirements changes,
engaging end users throughout the development process, and so on, all while revamping
and improving overall organizational structures, aid in avoiding process debt. The changes
to the development process are linked to the restructuring of the entire organization [2].
These redesigns are generally associated with organizational transformation, necessitating
large-scale, broad-scale modifications.

Table 9. Process debt mitigation strategies

Mitigation Strategies GL ref. SL ref.

Measurement of process [29] [5]
Automation of process [2]
Continuous process assessment [33]
Conceptual model for understanding the process debt
Adopting new process

An example is an organization’s transition from a traditional software process to an
agile software development process [33]. It is critical to have someone in charge of managing
processes and supervisors who appreciate the importance of processes. Its primary purpose
should be a continual evaluation that aids in proper process monitoring. On the other
hand, a process must be designed with a specific purpose and value rather than just as
a mandatory management tool imposed by the business. A thorough study is essential
before selecting a process [16]. Researchers recommend following conceptual models to avoid
process divergence and maintain track of process productivity in software development
projects to understand process debt better [33].

3.4.2. People debt mitigation strategies

We identified 5 people’s debt mitigation strategies (see Table 10). In the GL, two new
mitigation strategies were identified, named work clubs’ ideas for people’s psyche and
well-being and adopting the tradition of handling people’s debt. Both GL and SL are
reporting on educating business people about engineering people’s decisions. In contrast, the
remaining two strategies named continued monitoring and communication and managing
dependencies, are reported in SL sources. Here it is important to note that the current
MLR, in comparison to [1], delves deeper into the interpersonal and social aspects of
managing people’s debt, highlighting the significance of collaboration, resource provision,
appreciation, education, and social support in creating a positive and supportive work
environment.

People’s debt management is difficult and uncontrollable since it is linked to human
behavior, psyche, and well-being. But the people’s challenges can be handled by encouraging
collaboration among team members [59]. This could include having regular meetings where
each person can discuss their progress and areas of improvement. Encourage team members

Article number 240101

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

to work together to find solutions to problems and foster open communication among
team members [2, 60]. Clear communication between stakeholders and developers makes
gathering adequate and clear requirements easy. Open communication also leads to better
collaboration and monitoring of interdependencies between teams [2]. This could include
having team members provide honest feedback to each other and discussing their thoughts
on how to improve the development process. Ensure all team members are on the same
page regarding the project’s goals. Everyone should understand what needs to be done
and when it needs to be done [60]. This can help prevent the team from getting bogged
down in the details and conflicts. Ensure everyone has the necessary resources to do their
tasks [34]. This could include ensuring everyone can access the right tools and technology
and providing support and guidance when needed [2]. Appreciate each team member for
their hard work and dedication. This could include recognizing individual contributions
and celebrating team successes. This can help motivate people to continue to do their best
[15, 42]. Educating people adequately is also compulsory to avoid people’s debt, such as
educating businessmen about engineering people’s decisions and to lessen business people’s
pressure on engineers by educating and communicating to them the technical perspectives
[2]. People’s well-being is strongly connected to their social ties and support; long periods of
isolation at work are linked to stress, depression, and low morale. To keep people out debt,
joint work groups or venues are recommended for daily discussion and social well-being. It
is also important to continuously identify, prioritize, understand, and handle people’s debt
in organizations. So, there is a need to adapt to the tradition of people’s debt understanding
and handling.

Table 10. People debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Continued monitoring and communication [59, 60]
Work clubs’ idea for people psyche and wellbeing [39]
Adopting tradition of handling people debt [34]
Managing dependencies [37]
Educating business people about engineering people decisions [2] [42]

3.4.3. Culture debt mitigation strategies

We identified 4 culture debt mitigation strategies (see Table 11). Both GL and SL are
reporting on three common mitigation strategies: handling issues collaboratively, delivering
accurate information for intended multicultural audiences, clear communication, and
an orderly business environment. While GL identified an additional mitigation strategy,
creating the right mindset in the company. All of these findings are new to the existing
literature as cultural debt is out of scope in [1].

To effectively handle cultural debt, organizations should focus on creating the correct
mindset among their members. This includes fostering a growth mindset that embraces
challenges and establishes trust within the working relationships. It is important for team
members to feel comfortable discussing ideas, disagreements, and solutions. Encouraging
diversity of thought is crucial for promoting creative problem-solving and innovation
within teams [12, 13]. Encouraging team members to share different perspectives and
ideas to see a problem from all angles and establishing clear communication between team
members is one of the most effective ways to address cultural differences [54]. Respecting

Article number 240101

20

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

each other’s cultural backgrounds and values may include being mindful of language and
communication styles and understanding different approaches to problem-solving and
decision-making, specifically by solving difficulties collaboratively across teams [22, 57]
and enabling knowledge exchange with multicultural audiences [53, 56]. Creating more
natural workplaces through clear communication and an organized workplace also aids
in regulating cultural debt. Investing in management for a better working culture and
emphasizing organizational transparency provides a good culture [31].

Table 11. Cultural debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Creating right mind set in company [12, 13]
Handle issues collaboratively [50] [47]
Deliver accurate information for intended multicultural audience [57] [53, 56]
Clear communication, orderly business environment [22] [5]

3.4.4. Social debt mitigation strategies

We identified 8 social debt mitigation strategies (see Table 12). Both GL and SL are
reporting on three common mitigation strategies: social network analysis for debt anal-
ysis, collaborative communication, and guidelines for managing team composition and
improving the description of architectural decisions. SL separately reports metrics for
software architecture communicability and frameworks to follow for social debt mitigation,
including the CAFFEA framework, architectural tactics, DAHLIA, and socio-technical
quality framework. GL additionally reports combined work environments (hybrid) for social
debt mitigation.

The current MLR expands the scope on topics not covered in study [1]. It emphasizes
the significance of organizational strategies, frameworks, models, and guidelines that are
crucial for monitoring and mitigating social debt. It recognizes the value of collaborative
work environments and social network analysis as integral components of these strategies.
It highlights the importance of fostering open communication, promoting collaboration,
respecting diverse opinions, and implementing effective conflict-resolution strategies as
essential measures for managing social debt. Additionally, the MLR acknowledges the signif-
icance of employing specific tools to diagnose and manage social debt within development
communities.

In line with these findings, several organizational strategies, frameworks, models, tools,
and guidelines help monitor and mitigate social debt. Social debt mitigation strategies
are linked to collaborative work environments [32, 51] and social network analysis [20,
50]. Honest and open team communication and intense collaboration [11, 43]. Software
development teams can manage social problems by encouraging open communication and
collaboration, respecting the opinions of others, and using effective conflict resolution
strategies [18, 19].

Open communication allows teams to share ideas and identify potential problems, while
collaboration encourages everyone to work together to find solutions. Respect for the opin-
ions of others is essential for teams to progress without disagreements or misunderstandings
[19, 43].

Finally, effective conflict resolution strategies, such as brainstorming or seeking outside
help, allow teams to work through disagreements and ensure everyone is on the same

Article number 240101

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 12. Social debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Frameworks:
1. CAFFEA framework
2. Architectural tactics
3. DAHLIA
4. Socio-technical quality framework

[43, 50]

Combined work environments (hybrid) [32, 51]

Metric for software architecture communicability [11]

Social network analysis for debt analysis [18] [20]

Collaborative communication [19] [43]

Guidelines: 1. Managing team composition 2. Improving the description of architec-
tural decisions

[18] [42, 50]

Tools:
1. GEEZMO
2. CodeFace4Smell
3. YOSHI

Models:
1. Statistical
2. Social networks

page. Practitioners must have the tools to diagnose and manage social debt in their
development communities [18]. Some of the tools reported to detect and manage social
debt are GEEZMO which alarms managers and supervisors about circumstances affecting
teammates’ mood; CodeFace4Smell detects organizational silos, black cloud, Lone wolf, and
Radio silence social debt causes; DAHLIA, with key aspects, includes decision popularity,
decision awareness to investigate some of the reasons of social debt [42].

3.4.5. Organisational debt mitigation strategies

We identified five organizational debt mitigation strategies (see Table 13). Among the
strategies identified, only one was reported in both the SL and GL studies, namely moni-
toring, communication, and documentation. The remaining four strategies were exclusively
documented in the GL, including adhering to the organizational model, maintaining and
revising organizational charts and cloud architecture, and enhancing organizational culture.
Notably, our study, the current MLR, focuses specifically on organizational debt mitigation
strategies, which were not encompassed in a recent review on NTD [1].

Table 13. Organisational debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Monitoring, communication and documentation [45] [43]
Following organizational model [53, 57]
Maintaining and revising organizational charts [36, 44]
Cloud architecture [57]
Improving organizational culture [41, 49]

The mitigation strategies emphasize on the importance of monitoring decisions and
changes that need to be identified, prioritized, measured, and monitored. Such a monitoring

Article number 240101

22

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

process facilitates faster decision-making and drives business improvement by expediting
reporting. Real-time exception detection plays a crucial role in enabling organizations to
respond promptly to emerging challenges and opportunities [57]. These findings highlight
the significance of robust document management and adherence to an organizational
structure based on validated frameworks.

Effective communication within an organization is essential for building trust, fostering
teamwork, improving relationships, enhancing problem-solving abilities, and resolving
conflicts [53, 57]. Robust document management practices ensure that all individuals
within the company, regardless of their department or team, understand the storage,
review process, and up-to-date status of documents. This ensures clarity and alignment
and, if necessary, enables timely actions to be taken. Adhering to an organizational
structure based on validated frameworks and updating organizational charts can streamline
processes, enhance decision-making, manage multiple locations, drive employee performance,
and prioritize customer service and satisfaction [43]. Social network analysis tools offer
effective means to forecast, manage, and address debt within organizations [20]. Automating
debt identification and testing tools enable continuous monitoring of debt sources and
provide opportunities to proactively overcome them. In the dynamic software business,
organizational adaptability and flexibility are crucial for survival and success [18, 36, 44].

Further cloud-based services ensure the continuity of organizational processes, reduce
costs and foster increased collaboration. Cloud-based services are scalable and provide
automatic software updates. It is not only efficient but also beneficial to the environment,
and it provides automatic software integration [57]. The organizational culture can be
improved by creating and communicating meaningful values to employees, conducting
proper selection procedures, improving orientation and on-boarding for teams, enabling
and empowering employees in skills and decisions, engaging employees in training, coaching
according to their needs and domains, and communicating effectively and efficiently within
teams [41, 55, 61].

4. Future work

Our MLR proposes several potential future directions that can further advance understand-
ing of NTD and develop effective mitigation strategies. This section outlines key areas
for future research in the field of NTD and answers RQ4. First, it would be interesting
to apply social capital theory and control theory that can provide deeper insights into
how social environments and relationships influence the accumulation of social and people
debt. By leveraging these theories, researchers can explore the types of resources available
through social networks and how they can be utilized to reduce debt. Second, develop
a comprehensive taxonomy for categorizing and identifying distinct NTD types. This
taxonomy can serve as a foundation for classifying NTD and enable the development of
specialized approaches to tackle the unique challenges posed by each type. Stakeholders
can benefit from this taxonomy by better understanding NTD types, their effects, and
effective mitigation strategies. Third, investigating the effects of different NTD types on TD
accumulation is crucial for comprehending how NTD leads to the creation of TD. Empirical
studies are needed to explore the relationship between NTD and TD, considering factors such
as poor planning, rushed coding, inadequate testing, and lack of refactoring. This research
can shed light on how various issues contribute to the development of TD. Fourth, it’s
worth exploring other types of debts that can be studied under the umbrella of NTD, such

Article number 240101

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

as service debt, sustainability debt, and environmental sustainability debt. Investigating
service debt can provide insights into trade-offs related to service-oriented architectures,
service-level agreements, and service dependencies. Understanding and managing service
debt can contribute to the development of strategies and practices that ensure reliable
and efficient service delivery. Exploring sustainability debt could focus on the long-term
sustainability and maintainability of software systems. It aims to identify approaches that
design and develop more sustainable software systems, both in terms of their technical
aspects and their impact on the environment and society. Investigating environmental
sustainability debt encompasses the ecological impact of software development activities,
including energy consumption, resource utilization, and carbon emissions. Research in
this area can contribute to the development of eco-friendly software engineering practices,
reducing the environmental footprint of software systems. By pursuing these future re-
search directions, researchers and practitioners can advance the understanding of NTD,
develop effective mitigation strategies, and promote more sustainable and efficient software
development practices.

5. Implications

Our MLR not only demonstrates the scarcity of research efforts on NTD, but it also
demonstrates the direct relationship of NTD to TD in software development projects. It
directs researchers to investigate further the relationship of NTD to TD in terms of causes,
mitigation techniques, and consequences. This study elucidates the dangers of ignoring NTD
while studying and developing TD. The highest number of grey literature studies shows the
practitioners’ increasing interest in the topic. However, it also forecasts that practitioners
lack a holistic view of the different types of NTD and struggle to find a correlation between
them. Most practitioners are aware of the TD and NTD relationship to it. Still, they do not
understand how different NTD are connected. Therefore our study implicates the need for
further investigation of TD to NTD and NTD to NTD relationships by conducting more
industrial case studies. Our study also emphasizes practitioners’ education and training
about NTD and coping strategies for handling NTD in software development. Thus, we
urge the companies to participate in research projects in the future to target research goals
regarding the prevention and mitigation of NTD that are relevant to the software industry.

6. Threats to validity

We are addressing threats to external validity, threats to construct validity, and threats
to conclusion validity. A data collection process was designed to support data recording
to minimize the construct validity threat. Two researchers were involved in the whole
process, which helped to lessen this threat even more. Because our MLR primary studies
were largely based on online sources (grey literature), their applicability to the broader
area of practices and general disciplines of TD and NTD is limited. We tried to minimize
external validity threats by following the guidelines proposed by [23]. Conclusion validity
is related to researchers’ bias or misinterpretation of data. This is a major risk and cannot
be eliminated. However, we took several steps to minimize this threat, such as having two
researchers involved in the analysis, which helps limit subjective opinions. Further, a full
audit and trial of 40 sources were maintained, and conclusions were drawn collaboratively.

Article number 240101

24

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

7. Discussion and conclusion

The topic of debt is relatively new compared with other domains, such as software quality
and testing. However, despite significant studies published on the TD concept, NTD has
remained less explored. Among the different types of debt proposed in work by Lenarduzzi
et al. [5], social debt has been investigated by [3] and process debt by [33]. While in a recent
review conducted by Ahmad and Gustavsson [1], they extended the scope of previous
studies by including an investigation of people’s debt as well. However, they identified
a scarcity of scientific studies on NTD [1]. They reported only 17 scientific studies on NTD
and requested further empirical investigation and other forms of literature reviews on the
topic. This MLR investigated NTD to extend the recently conducted systematic mapping
review [1]. To achieve our study goals, we are investigating the research questions designed
and reported in [1] that serve as the guided foundation for this MLR.

While TD resides within the system codebase [61], NTD seems more pervasive and
intertwined with people, organizations, their working processes, and cultural issues. Soft-
ware development is a socio-technical phenomenon based on socio-technical decisions.
A socio-technical decision generates technical and any or all NTD types (i.e., people,
process, culture, social, and organizational). TD outcomes are measured in monetary
values, while consequences can measure NTD outcomes. We intentionally used the word
‘‘consequence“ rather than ‘‘value” for NTD as its measurement is beyond the scope of
monetary values. Therefore, more research is needed to understand how the effects of NTD
can be measured or quantified in software projects. The results show that NTD seems
harder to fix than TD. NTD contributes to TD accumulation, and its effects are both short-
and long-term. NTD and TD are strongly intertwined with human dimensions – software
architectures and their impact on businesses and cultures [3, 33, 42]. This highlights the
complexity of managing debt in software development and underscores the need for further
exploration and understanding of NTD to effectively mitigate its impact. NTD reflects
and weighs heavily on the human and social aspects since it is caused by factors such as
cognitive distance (lack of or excessive communication), mismatched architecture, and
cultural and organizational systems [42]. This signal that NTD must be dealt with alongside
TD to avoid severe consequences of software project failure.

Non-technical debt (NTD) significantly influences the human and social aspects of
software projects, stemming from factors such as cognitive distance, architectural discrep-
ancies, and cultural and organizational systems [42]. This highlights the need to address
NTD alongside technical debt (TD) to mitigate the potentially severe consequences of
project failure. In comparison to the existing review [1], our study uncovered a range of
significant causes for process debt. These causes encompass process divergence, inefficient
and outdated processes, changing process requirements, sub-optimal practices, lack of
follow-up assessment, prioritization issues, costs associated with process changes, neglect
of value considerations, power distance, reliance on shortcuts and quick fixes, as well as
the influence of technology, tools, and external trends. This expanded our understanding
of process debt causes and extended the scope of knowledge in this domain beyond the
technology-focused causes identified in the systematic mapping review [1].

Regarding process debt mitigation, the SLR aims to provide general insights into
preventing process debt and addressing architecture-related issues, requirement mismatches,
process divergence, and organizational challenges [1]. In contrast, our study offers more
specific recommendations and considerations for effective mitigation strategies. It highlights
the importance of process documentation, monitoring, automation, market adaptation, and

Article number 240101

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

thoughtful process design in managing process debt. Additionally, our study emphasizes
the need for organizational restructuring that involves end users and suggests following
conceptual models and tracking process productivity. These broader principles and concepts
for effective process debt management supplement the recommendations provided by the
recent review [1], as they explicitly address aspects such as process productivity tracking
and the use of conceptual models.

For the people debt, the leading causes found were directly associated with inefficient
collaboration, insufficient communication [51], shortcuts in communication [5, 42], and
lack of inter-team coordination [16]. Therefore, it is clear that many issues linked to the
causes of people’s debt are based on a lack of communication and coordination. Behavioral
challenges associated with people’s debt arise from poor conduct and performance, decreas-
ing productivity and customer responsiveness. Work challenges emerge from remote work
disadvantages, such as a lack of shared purpose, poor attitudes, and ambitious managers
causing feature development delays. Communication, collaboration, and coordination
challenges manifest as shortcuts, inadequate teamwork, and coordination issues, imped-
ing workflow and prolonging work completion. These challenges collectively impact the
software development process, team performance, and productivity, necessitating effective
solutions and strategies to mitigate their negative effects. The current MLR extends the
understanding of people’s debt in software development by highlighting specific behavior,
work, and communication challenges compared to the recent review [1], which focuses on
identifying factors such as knowledge gaps, inadequate management, and morale issues
contributing to people’s debt. For the mitigation of people’s debt challenges, the current
MLR, in comparison to review [1], delves deeper into the interpersonal and social aspects
of managing people’s debt, highlighting the significance of collaboration, resource provision,
appreciation, education, and social support in creating a positive and supportive work
environment.

The MLR expands the scope on topics of social debt not covered in the recent review
[1]. It emphasizes the significance of organizational strategies, frameworks, models, and
guidelines that are crucial for monitoring and mitigating social debt. It recognizes the value
of collaborative work environments and social network analysis as integral components of
these strategies. It highlights the importance of fostering open communication, promoting
collaboration, respecting diverse opinions, and implementing effective conflict-resolution
strategies as essential measures for managing social debt. Additionally, the current study
acknowledges the significance of employing specific tools to diagnose and manage social
debt within development communities.

We noticed that cultural and organizational terms were interchangeably used in the
development communities, even though these terms have different meanings and contexts.
While they can also have the exact reasons and mitigation strategies in specific contexts,
i.e., carelessness in adopting policies, practices, and culture can lead to cultural debt in
software development communities. It is also linked to the different causes of organizational
debt, i.e., sluggish or inflexible systems, aging or legacy systems, and bad architectural
choices associated with carelessness in adopting culture. This also leads to insufficient skills
to upgrade and modernize the systems and infrastructure. In return, it leads to an inability
to integrate systems and upgrade given organizational setups [52]. While we also noticed
that there are two kinds of cultural perspectives in software development communities.
(I) Work culture and (II) The employee’s cultural background.

There is also a relationship between cultural and organizational impacts on selecting
sub-optimal processes, which leads to the process debt in the result [33]. Therefore, poor

Article number 240101

26

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

cultural and organizational choices are directly proportional to the selection of inefficient
software development processes. Here it’s important to note that both organizational
and cultural debt that our MLR includes in the scope for investigation is not included
in a recent NTD review conducted by Ahmad and Gustavsson [1]. The same pattern is
reported in triggering social debt, i.e., lack of suitable communication among important
sides of the organization [16] and missing social connections or reduced communication.
The same applies to organizational debt, as the main reason for organizational debt causes
is associated with uneven information sharing among teams [2] and a lack of healthy
communication [48]. The second most important pattern we found is the relation of
organizational debt with culture and software process, as poor organizational cultures
are linked with hindering software development progress [41, 48]. Intuitively, smells that
exist in community members’ interactions hinder communication. Finally, cooperation is
compromised by the smells existing in communities’ structures. Businesses with inefficient
processes and outdated software are also linked with organizational debt [41, 57]. So the
analysis shows that “pinpointing” and separating different types of debt, i.e., technical
debt and non-technical debt in SD, is challenging as they are greatly interlinked. NTD
contributes to TD, and both cause equal damage. We further noticed that “All NTD
contributes to TD,” highlighting the interrelated nature of the technical and non-technical
debt. It is also evident From the literature [3, 7, 11, 12, 16, 18, 20, 33, 55, 55, 62] that one
type of NTD causes another type of NTD, i.e., culture debt, and organization debt can
lead to process debt [7, 16, 33], people debt can lead to organizational debt, and culture
debt [2, 53], and social debt can lead to people debt [13]. While they may be distinct types
of debt, they are not mutually exclusive. In fact, non-technical debt can contribute to
technical debt, as seen in the example above. Non-technical debt can create constraints
that limit the ability to address technical debt or cause technical debt to be incurred in
the first place. There is a clear connection between NTD and large-scale agile development.
The challenges regarding testing strategies, specifically integration, regression, and user
acceptance testing found in large-scale agile development, are reported as “test debt”. At
the same time, sprint-related challenges in agile projects are categorized as non-technical
debt as well [1].

Acknowledgment

This research was performed within the Non-Technical Debt in Large-Scale Agile Software
Development (NODLA) Project, funded by the Knowledge Foundation, Sweden.

References

[1] M.O. Ahmad and T. Gustavsson, “The Pandora’s Box of social, process, and people debts
in software engineering,” Journal of Software: Evolution and Process, 2022, p. e2516.

[2] J. Yli-Huumo, The role of technical debt in software development, Ph. D. Thesis, Lappeenranta
University of Technology, 2017.

[3] D.A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt in software engineering:
Insights from industry,” Journal of Internet Services and Applications, Vol. 6, 2015, pp. 1–17.

[4] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its
management,” Journal of Systems and Software, Vol. 101, 2015, pp. 193–220.

[5] A. Melo, R. Fagundes, V. Lenarduzzi, and W.B. Santos, “Identification and measurement
of requirements technical debt in software development: A systematic literature review,”
Journal of Systems and Software, 2022, p. 111483.

Article number 240101

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[6] P. Kruchten, R.L. Nord, and I. Ozkaya, “Technical debt: From metaphor to theory and
practice,” IEEE Software, Vol. 29, No. 6, 2012, pp. 18–21.

[7] A. Martini and J. Bosch, “The danger of architectural technical debt: Contagious debt and
vicious circles,” in 12th Working IEEE/IFIP Conference on Software Architecture. IEEE,
2015, pp. 1–10.

[8] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing technical debt in software
engineering,” in Dagstuhl Reports, Vol. 6, No. 4. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2016.

[9] W. Cunningham, “The WyCash portfolio management system,” ACM SIGPLAN OOPS
Messenger, Vol. 4, No. 2, 1992, pp. 29–30.

[10] N. Rios, R.O. Spínola, M. Mendonça, and C. Seaman, “The most common causes and effects
of technical debt: First results from a global family of industrial surveys,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2018, pp. 1–10.

[11] D.A. Tamburri, “Software architecture social debt: Managing the incommunicability factor,”
IEEE Transactions on Computational Social Systems, Vol. 6, No. 1, 2019, pp. 20–37.

[12] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage
technical debt? – An empirical study,” Journal of Systems and Software, Vol. 120, 2016,
pp. 195–218.

[13] A. Chen, Cultural Debt, 2022. [Online]. https://www.careerfair.io/reviews/cultural-debt
[14] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise perspective on technical

debt,” in Proceedings of the 2nd Workshop on Managing Technical Debt, 2011, pp. 35–38.
[15] J. Yli-Huumo, A. Maglyas, and K. Smolander, “The effects of software process evolution

to technical debt – Perceptions from three large software projects,” Managing Software
Process Evolution: Traditional, Agile and Beyond – How to Handle Process Change, 2016,
pp. 305–327.

[16] A. Martini, V. Stray, and N.B. Moe, “Technical, social and process debt in large-scale
agile: An exploratory case-study,” in Agile Processes in Software Engineering and Ex-
treme Programming – Workshops: XP Workshops. Montréal, QC, Canada: Springer, 2019,
pp. 112–119.

[17] Z. Li, P. Liang, and P. Avgeriou, “Architectural debt management in value-oriented archi-
tecting,” in Economics-Driven Software Architecture. Elsevier, 2014, pp. 183–204.

[18] D. Tamburri, From Technical to Social Debt: Analyzing Software Development Communities
using social networks analysis, 2015. [Online]. https://www.slideshare.net/DamianTam
burri/from-technical-to-social-debt-analyzing-software-development-communities-using-
socialnetworks-analysis

[19] T. Mejía, Social Debt: the difficult commitment, 1998. [Online]. https://www.socialwatch.or
g/book/export/html/10623

[20] D.A. Tamburri and E. Di Nitto, “When software architecture leads to social debt,” in 12th
Working IEEE/IFIP Conference on Software Architecture. IEEE, 2015, pp. 61–64.

[21] C.B. Jaktman, “The influence of organizational factors on the success and quality of a product-
line architecture,” in Proceedings 1998 Australian Software Engineering Conference. IEEE,
1998, pp. 2–11.

[22] B. Sutton, Overcoming Cultural and Technical Debt, 2019. [Online]. https://sloanreview.mit.
edu/audio/overcoming-cultural-and-technical-debt/

[23] V. Garousi, M. Felderer, and M.V. Mäntylä, “Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering,” Information and Software
Technology, Vol. 106, 2019, pp. 101–121.

[24] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey et al., “Systematic literature
reviews in software engineering – A systematic literature review,” Information and Software
Technology, Vol. 51, No. 1, 2009, pp. 7–15.

[25] M.C. Davis, R. Challenger, D.N. Jayewardene, and C.W. Clegg, “Advancing socio-technical
systems thinking: A call for bravery,” Applied Ergonomics, Vol. 45, No. 2, 2014, pp. 171–180.

Article number 240101

28

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.careerfair.io/reviews/cultural-debt
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.socialwatch.org/book/export/html/10623
https://www.socialwatch.org/book/export/html/10623
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[26] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F.A. Fontana, “A systematic literature
review on technical debt prioritization: Strategies, processes, factors, and tools,” Journal of
Systems and Software, Vol. 171, 2021, p. 110827.

[27] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A systematic
review,” Information and Software Technology, Vol. 50, No. 9–10, 2008, pp. 833–859.

[28] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in
Psychology, Vol. 3, No. 2, 2006, pp. 77–101.

[29] L. McGuire, What Is Process Debt, and Why Is It a Problem, 2022. [Online]. https:
//www.formstack.com/blog/process-debt

[30] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2011.
[31] S.W. Wenger E, McDermott RA, Cultivating Communities of Practice: a Guide to Managing

Knowledge. Harvard Business School Publishing, 2002. [Online]. https://hbswk.hbs.edu/arch
ive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-
cultivating-communities-of-practice

[32] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting it all together: Using
socio-technical networks to predict failures,” in 2009 20th International Symposium on
Software Reliability Engineering. IEEE, 2009, pp. 109–119.

[33] A. Martini, T. Besker, and J. Bosch, “Process debt: A first exploration,” in 2020 27th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2020, pp. 316–325.

[34] D. Blomstrom, How to Recognise and Reduce HumanDebt, 2022. [Online]. https://www.info
q.com/articles/human-debt

[35] P. Vinayak, Everything you need to know about Cultural debt, 2021. [Online]. https://e2ehir
ing.com/blogs/everything-you-need-to-know-about-cultural-debt

[36] M. Bellotti, Hunting Tech Debt via Org Charts. Knowing where to look for problems, 2021.
[Online]. https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145

[37] L. Pirzadeh, “Human factors in software development: A systematic literature review,”
Master’s thesis, 2010.

[38] INSEAD, “Company strategic planning/Interviews/INSEAD,” 2015.
[39] G. Marlow, People debt is like technical debt – eqsystems.io, 2017. [Online]. https://eqsyst

ems.io/2017/04/people-debt-like-technical-debt
[40] B. Coleman, Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup

Is Probably Victim to It, 2019. [Online]. https://www.inc.com/bernard-coleman/culture-
debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html

[41] M. Hosking, Transformation troubles and non-technical debt, 2017. [Online]. https://www.li
nkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

[42] E.A.C. Espinosa, Understanding Social Debt in Software Engineering, Ph.D. dissertation,
The University of Alabama, 2021.

[43] T. Dreesen, P. Hennel, C. Rosenkranz, and T. Kude, ““The second vice is lying, the first is
running into debt.” Antecedents and mitigating practices of social debt: An exploratory study
in distributed software development teams,” in Proceedings of the 54th Hawaii International
Conference on System Sciences, 2021, p. 6826.

[44] J. Trouw, Organisational debt an analogy, 2021. [Online]. https://www.linkedin.com/pulse
/organisational-debt-analogy-jaap-trouw

[45] S. Blank, “Organizational debt is like technical debt – but worse,” 2015. [Online]. https:
//www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-
but-worse-2/?sh=6ea3ce447b35

[46] S. Priestnall, What is Process Debt?, 2020. [Online]. https://www.linkedin.com/pulse/what-
process-debt-steve-priestnall

[47] J.A. Miko, Collaboration strategies to reduce technical debt, Ph.D. dissertation, Walden
University, 2017.

[48] M. Eaden, When Testers Deal With Process Debt: Ideas to Manage It and Get Back to
Testing Faster, 2017. [Online]. https://www.ministryoftesting.com/articles/8d79968d?s_id
=15650023

Article number 240101

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.formstack.com/blog/process-debt
https://www.formstack.com/blog/process-debt
https://hbswk.hbs.edu/archive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-cultivating-communities-of-practice
https://hbswk.hbs.edu/archive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-cultivating-communities-of-practice
https://hbswk.hbs.edu/archive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-cultivating-communities-of-practice
https://www.infoq.com/articles/human-debt
https://www.infoq.com/articles/human-debt
https://e2ehiring.com/blogs/everything-you-need-to-know-about-cultural-debt
https://e2ehiring.com/blogs/everything-you-need-to-know-about-cultural-debt
https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145
https://eqsystems.io/2017/04/people-debt-like-technical-debt
https://eqsystems.io/2017/04/people-debt-like-technical-debt
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-but-worse-2/?sh=6ea3ce447b35
https://www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-but-worse-2/?sh=6ea3ce447b35
https://www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-but-worse-2/?sh=6ea3ce447b35
https://www.linkedin.com/pulse/what-process-debt-steve-priestnall
https://www.linkedin.com/pulse/what-process-debt-steve-priestnall
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[49] L.P. Gates, Are We Creating Organizational Debt, 2017. [Online]. https://insights.sei.cmu.e
du/blog/are-we-creating-organizational-debt/

[50] R. Kazman, “Managing social debt in large software projects,” in IEEE/ACM 7th In-
ternational Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th
Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems
(WDES). IEEE, 2019, p. 1.

[51] K. Ladewig, The dark side of working from home, 2019. [Online]. https://medium.com/swl
h/social-debt-17bf03a269a

[52] S. Vinsennau, Decouple to innovate how federal agencies can unlock IT value and agility by
remediating technical debt, 2016. [Online]. https://www.accenture.com/_acnmedia/PDF-
85/Accenture-Decoupling-to-Innovate.pdf

[53] B. Falchuk, What’s the Greatest Threat to Your Organization? Culture Debt, 2019. [Online].
https://bryanfalchuk.com/blog/culture-debt

[54] B. Coleman, Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup
Is Probably Victim to It, 2019. [Online]. https://www.inc.com/bernard-coleman/culture-
debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html

[55] F. Palomba, D.A. Tamburri, F.A. Fontana, R. Oliveto, A. Zaidman et al., “Beyond technical
aspects: How do community smells influence the intensity of code smells?” IEEE Transactions
on Software Engineering, Vol. 47, No. 1, 2018, pp. 108–129.

[56] D. O’Keeffe, “An empirical case study of technical debt management: A software services
provider perspective,” M. Sc. thesis, University of Dublin, 2017.

[57] A. Dignan, How to Eliminate Organizational Debt – Building Strong Organizations, 2017.
[Online]. https://culturestars.com/how-to-eliminate-organizational-debt

[58] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational structure on software
quality: an empirical case study,” in Proceedings of the 30th International Conference on
Software Engineering, 2008, pp. 521–530.

[59] J. Cusick and A. Prasad, “A practical management and engineering approach to offshore
collaboration,” IEEE Software, Vol. 23, No. 5, 2006, pp. 20–29.

[60] C.R. De Souza and D.F. Redmiles, “The awareness network, to whom should i display my
actions? and, whose actions should i monitor?” IEEE Transactions on Software Engineering,
Vol. 37, No. 3, 2011, pp. 325–340.

[61] K. Casey, What causes technical debt – and how to minimize it, 2020. [Online]. https:
//enterprisersproject.com/article/2020/6/technical-debt-what-causes

[62] L.M. Hilty and B. Aebischer, “ICT for sustainability: An emerging research field,” ICT
Innovations for Sustainability, 2015, pp. 3–36.

Appendix A. Primary studies

List of primary studies

[S1] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage
technical debt?–an empirical study,” Journal of Systems and Software, Vol. 120, 2016,
pp. 195–218.

[S2] A. Martini and J. Bosch, “Revealing social debt with the caffea framework: An antidote to
architectural debt,” in IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE, 2017, pp. 179–181.

[S3] K. Ladewig, The dark side of working from home | The Startup, 2019. [Online]. https:
//medium.com/swlh/social-debt-17bf03a269a

[S4] S. Sachdev, Cultural Debt. [Online]. https://www.careerfair.io/reviews/cultural-debt
[S5] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing technical debt in software

engineering,” in Dagstuhl Reports, Vol. 6, No. 4. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2016.

Article number 240101

30

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://insights.sei.cmu.edu/blog/are-we-creating-organizational-debt/
https://insights.sei.cmu.edu/blog/are-we-creating-organizational-debt/
https://medium.com/swlh/social-debt-17bf03a269a
https://medium.com/swlh/social-debt-17bf03a269a
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://bryanfalchuk.com/blog/culture-debt
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://culturestars.com/how-to-eliminate-organizational-debt
https://enterprisersproject.com/article/2020/6/technical-debt-what-causes
https://enterprisersproject.com/article/2020/6/technical-debt-what-causes
https://medium.com/swlh/social-debt-17bf03a269a
https://medium.com/swlh/social-debt-17bf03a269a
https://www.careerfair.io/reviews/cultural-debt


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[S6] A. Melo, R. Fagundes, V. Lenarduzzi, and W.B. Santos, “Identification and measurement
of requirements technical debt in software development: A systematic literature review,”
Journal of Systems and Software, 2022, p. 111483.

[S7] D.A. Tamburri, “Software architecture social debt: Managing the incommunicability factor,”
IEEE Transactions on Computational Social Systems, Vol. 6, No. 1, 2019, pp. 20–37.

[S8] T. Mejía, Social Debt the difficult commitment= , 1998. [Online]. https://www.socialwatch.
org/book/export/html/10623

[S9] S. Vinsennau, Decouple To Innovate How Federal agencies can unlock IT value and agility
by remediating technical debt, 2016. [Online]. https://www.accenture.com/_acnmedia/PDF-
85/Accenture-Decoupling-to-Innovate.pdf

[S10] G.S. Tonin, Technical debt management in the context of agile methods in software develop-
ment, Ph.D. dissertation, University of Sao Paulo, 2018.

[S11] T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The influence of technical debt on
software developer morale,” Journal of Systems and Software, Vol. 167, 2020, p. 110586.
[Online]. https://www.sciencedirect.com/science/article/pii/S0164121220300674

[S12] M. Bellotti, Hunting Tech Debt via Org Charts. Knowing where to look for problems, 2021.
[Online]. https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145

[S13] J. Yli-Huumo, The role of technical debt in software development, Ph.D. dissertation,
Lappeenranta University of Technology, 2017.

[S14] S. Priestnall, What is Process Debt?, 2020. [Online]. https://www.linkedin.com/pulse/what-
process-debt-stevepriestnall

[S15] Z. Dargó, “Technical debt management: Definition of a technical debt reduction software
engineering methodology for smes,” Master’s thesis, Aalto University, School of Science,
2019.

[S16] J.A. Miko, Collaboration Strategies to Reduce Technical Debt, Ph.D. dissertation, Walden
University, College of Management and Technology, 2017.

[S17] B. Sutton and P. Michelman, Overcoming Cultural and Technical Debt, MITSloan Manage-
ment Review, 2019. [Online]. https://sloanreview.mit.edu/audio/overcoming-cultural-and-
technical-debt/

[S18] D.A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What is social debt in software
engineering?” in 2013 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2013, pp. 93–96.

[S19] D.A. Tamburri, P. Kruchten, P. Lago, and H.v. Vliet, “Social debt in software engineering:
insights from industry,” Journal of Internet Services and Applications, Vol. 6, 2015, pp. 1–17.

[S20] D. O’Keeffe, “An empirical case study of technical debt management: A software services
provider perspective,” Master’s thesis, University of Dublin, 2017.

[S21] B. Coleman, Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup
Is Probably Victim to It, 2019. [Online]. https://www.inc.com/bernard-coleman/culture-
debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html

[S22] A. Dignan, How to Eliminate Organizational Debt – Building Strong Organizations, 2017.
[Online]. https://culturestars.com/how-to-eliminate-organizational-debt

[S23] D.A. Tamburri and E. Di Nitto, “When software architecture leads to social debt,” in 2015
12th Working IEEE/IFIP Conference on Software Architecture. IEEE, 2015, pp. 61–64.

[S24] A. Martini, V. Stray, and N.B. Moe, “Technical-, social-and process debt in large-scale
agile: an exploratory case-study,” in Agile Processes in Software Engineering and Extreme
Programming–Workshops: XP 2019 Workshops, Montréal, QC, Canada, May 21–25, 2019,
Proceedings 20. Springer, 2019, pp. 112–119.

[S25] A. Martini, T. Besker, and J. Bosch, “Process debt: A first exploration,” in 2020 27th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2020, pp. 316–325.

[S26] S. Zimmeck, Social Debt: Why Software Developers Should Think Beyond Tech, 2019. [Online].
https://sebastianzimmeck.medium.com/social-debt-why-software-developers-should-think-
beyond-tech-df665d8401a5

Article number 240101

31

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.socialwatch.org/book/export/html/10623
https://www.socialwatch.org/book/export/html/10623
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://www.sciencedirect.com/science/article/pii/S0164121220300674
https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145
https://www.linkedin.com/pulse/what-process-debt-stevepriestnall
https://www.linkedin.com/pulse/what-process-debt-stevepriestnall
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://culturestars.com/how-to-eliminate-organizational-debt
https://sebastianzimmeck.medium.com/social-debt-why-software-developers-should-think-beyond-tech-df665d8401a5
https://sebastianzimmeck.medium.com/social-debt-why-software-developers-should-think-beyond-tech-df665d8401a5


Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[S27] P. Phelan, Is “Cultural Debt” hurting your organization’s growth? (Part 1), 8W8 Global
Business Builders. [Online]. https://www.8w8.com/is-cultural-debt-hurting-your-organizati
ons-growth-part-1/

[S28] J. Trouw, Organisational debt an analogy= https://www.linkedin.com/pulse/organisational
debt analogy, 2021. [Online]. https://www.linkedin.com/pulse/organisational-debt-analogy-
jaap-trouw

[S29] D. Tamburri, From Technical to Social Debt: Analyzing Software Development Communities
using social networks analysis, 2015. [Online]. https://www.slideshare.net/DamianTam
burri/from-technical-to-social-debt-analyzing-software-development-communities-using-
socialnetworks-analysis

[S30] J. Holvitie, D. Tamburri, A. Goldman, S. Fraser, W. Snipes et al., “Social debt in software
engineering: Towards a crisper definition,” Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Seminar 16162, 2016. [Online]. https://www.dagstuhl.de/16162

[S31] R. Kazman, “Managing social debt in large software projects,” in 2019 IEEE/ACM 7th
International Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th
Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems
(WDES). IEEE, 2019, pp. 1–1.

[S32] T. Dreesen, P. Hennel, C. Rosenkranz, and T. Kude, ““the second vice is lying, the first is
running into debt.” antecedents and mitigating practices of social debt: An exploratory study
in distributed software development teams,” in Proceedings of the 54th Hawaii International
Conference on System Sciences, 2021, p. 6826.

[S33] F. Palomba, A. Serebrenik, and A. Zaidman, “Social debt analytics for improving the
management of software evolution tasks,” in 16th Edition of the BElgian-NEtherlands
Software EVOLution Symposium (BENEVOL 2017). CEUR-WS.org, 2017, pp. 18–21.

[S34] M. Eaden, When Testers Deal With Process Debt: Ideas to Manage It And Get Back To
Testing Faster, 2017. [Online]. https://www.ministryoftesting.com/articles/8d79968d?s_id
=15650023

[S35] E.A. Caballero Espinosa, Understanding Social Debt in Software Engineering, Ph.D. disser-
tation, The University of Alabama, 2021.

[S36] W. Cunningham, “The wycash portfolio management system,” ACM SIGPLAN OOPS
Messenger, Vol. 4, No. 2, 1992, pp. 29–30.

[S37] I. Kavas, “Don’t go back to the office without fixing your process debt,” Forbes, 2021.
[Online]. https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-
office-without-fixing-your-process-debt/?sh=1afbfe9b74a4

[S38] Organisational Debt and Why It Makes Digital Transformation Hard, CloudThing, 2022.
[Online]. https://cloudthing.com/organisational-debt/

[S39] N. Almarimi, A. Ouni, and M.W. Mkaouer, “Learning to detect community smells in open
source software projects,” Knowledge-Based Systems, Vol. 204, 2020, p. 106201. [Online].
https://www.sciencedirect.com/science/article/pii/S0950705120304226

[S40] M. Hosking, Transformation troubles and non-technical debt, 2017. [Online]. https://www.li
nkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

Article number 240101

32

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.8w8.com/is-cultural-debt-hurting-your-organizations-growth-part-1/
https://www.8w8.com/is-cultural-debt-hurting-your-organizations-growth-part-1/
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.dagstuhl.de/16162
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023
https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-office-without-fixing-your-process-debt/?sh=1afbfe9b74a4
https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-office-without-fixing-your-process-debt/?sh=1afbfe9b74a4
https://cloudthing.com/organisational-debt/
https://www.sciencedirect.com/science/article/pii/S0950705120304226
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

	A Multivocal Literature Review on Non-Technical Debt in Software Development: An Insight into Process, Social, People, Organizational, and Culture Debt
	Introduction
	Research method
	Planning the MLR
	Motivation

	Conducting the MLR
	Search strategies and data sources
	Primary studies selection procedure and application of inclusion/exclusion criteria
	Quality assessment
	Data extraction and analysis


	 Results
	Demographics
	NTD state of the art
	Process debt
	People debt
	Culture debt
	Social debt
	Organisational debt

	NTD accumulation causes
	Process debt causes
	People debt causes
	Culture debt causes
	Social debt causes
	Organisational debt causes

	NTD mitigation strategies
	Process debt mitigation
	People debt mitigation strategies
	Culture debt mitigation strategies
	Social debt mitigation strategies
	Organisational debt mitigation strategies


	Future work
	Implications
	Threats to validity
	Discussion and conclusion
	Acknowledgment
	References

	Primary studies
	List of primary studies



