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Abstract

Background: Continuous modifications, suboptimal software design practices, and
stringent project deadlines contribute to the proliferation of code smells. Detecting and
refactoring these code smells are pivotal to maintaining complex and essential software
systems. Neglecting them may lead to future software defects, rendering systems challenging
to maintain, and eventually obsolete. Supervised machine learning techniques have emerged
as valuable tools for classifying code smells without needing expert knowledge or fixed
threshold values. Further enhancement of classifier performance can be achieved through
effective feature selection techniques and the optimization of hyperparameter values.
Aim: Performance measures of multiple machine learning classifiers are improved by
fine tuning its hyperparameters using various type of meta-heuristic algorithms including
swarm intelligent, physics, math, and bio-based etc. Their performance measures are
compared to find the best meta-heuristic algorithm in the context of code smell detection
and its impact is evaluated based on statistical tests.
Method: This study employs sixteen contemporary and robust meta-heuristic algorithms
to optimize the hyperparameters of two machine learning algorithms: Support Vector
Machine (SVM) and k-nearest Neighbors (k-NN). The No Free Lunch theorem underscores
that the success of an optimization algorithm in one application may not necessarily extend
to others. Consequently, a rigorous comparative analysis of these algorithms is undertaken
to identify the best-fit solutions for code smell detection. A diverse range of optimization
algorithms, encompassing Arithmetic, Jellyfish Search, Flow Direction, Student Psychology
Based, Pathfinder, Sine Cosine, Jaya, Crow Search, Dragonfly, Krill Herd, Multi-Verse,
Symbiotic Organisms Search, Flower Pollination, Teaching Learning Based, Gravitational
Search, and Biogeography-Based Optimization, have been implemented.
Results: In the case of optimized SVM, the highest attained accuracy, AUC, and F -measure
values are 98.75%, 100%, and 98.57%, respectively. Remarkably, significant increases in
accuracy and AUC, reaching 32.22% and 45.11% respectively, are observed. For k-NN,
the best accuracy, AUC, and F -measure values are all perfect at 100%, with noteworthy
hikes in accuracy and ROC-AUC values, amounting to 43.89% and 40.83%, respectively.
Conclusion: Optimized SVM exhibits exceptional performance with the Sine Cosine
Optimization algorithm, while k-NN attains its peak performance with the Flower
Optimization algorithm. Statistical analysis underscores the substantial impact of
employing meta-heuristic algorithms for optimizing machine learning classifiers, enhancing
their performance significantly. Optimized SVM excels in detecting the God Class, while
optimized k-NN is particularly effective in identifying the Data Class. This innovative
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fusion automates the tuning process and elevates classifier performance, simultaneously
addressing multiple longstanding challenges.

Keywords: Code Smell, Machine Learning, Meta-heuristics, Support Vector
Machine, k-Nearest Neighbors, Optimization

1. Introduction

Using software is an integral part of our lives. They are embedded in every aspect of our
existence, like education, transportation, entertainment, communication, healthcare, and
security. Software systems have become complex and colossal with advancements in science
and technology [1]. Designing and developing them takes a mere 30− 40% of effort in the
complete life cycle of software; the rest is dedicated to maintaining them [2]. Maintaining it
includes continuously adding, deleting, and changing artefact functionalities to meet users’
needs and satisfaction, which requires more resources and effort [3]. The un-involvement
of the maintenance team in the development phase, time crunch, implementation of
substandard design practices, tight deadlines, and inexperience of developers provides
bedding ground for the spread of code smells throughout the system[4, 5]. A code smell is
not a syntax error but may lead to it. It is a structural flaw that violates fundamental design
principles and deteriorates code quality [6]. Furthermore, it makes code more complicated
to understand and maintain and prevents code from changing, contributing to technical
debts. So, it is best to identify and eradicate them whenever a new feature is added, while
fixing a bug or during code reviews. It can be corrected by small and disciplined changes
in code called refactoring. It is restructuring internal design but ensuring no change in
external behaviour. Refactoring improves code quality and reverses software entropy. It
makes the system more readable, understandable, efficient, flexible, and maintainable.
Identifying and detecting smells is the first step in refactoring, making the system more
robust and contemporary.

Code smell detection has several real-world applications in software development
and maintenance. Smell detection helps developers identify code areas that may benefit
from refactoring. By addressing code smells, developers can enhance code maintainability
and readability, reducing technical debt and making the code base more sustainable.
Incorporating smell detection as part of the quality assurance process ensures that newly
developed or modified code adheres to best practices. In legacy systems where code has
accumulated over time, identifying and mitigating code smells can be crucial for improving
the health of the code base. It is essential when introducing new features, fixing bugs,
or integrating modern technologies. Integrating code smell detection into Continuous
Integration (CI) and Continuous Deployment (CD) pipelines ensures that any new changes
introduced to the code base adhere to coding standards and best practices. Certain code
smells are indicative of potential sources of bugs or errors. By proactively addressing
these smells, developers can reduce the likelihood of introducing bugs and enhance the
overall reliability of the software. Some code smells, such as duplicated code or inefficient
algorithms, can impact the performance of the software. Detecting and addressing these
smells can lead to performance improvements in the application. Code smell detection tools
can be integrated into various development environments and IDEs, making it convenient
for developers to identify and address issues during the coding process. In summary,
code smell detection is a valuable practice with tangible benefits regarding code quality,

Article number 240107

2

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/


PREVIEW

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

maintainability, and team collaboration. It contributes to the overall improvement of
software development processes and the longevity of software systems.

Various code smell detection tools based on the visualization [7], machine based ap-
proach [8], and metric evaluation [9] are available in the market and they are of manual [10],
automatic [11], and semi-automatic [12] in nature. Although code smell detection tools
function effectively, subsequent research has shown essential flaws that jeopardize their
widespread use. The agreement between different detectors is also impaired. Tools’ strategies
rely heavily on setting up detection rules and threshold values. Engineers need in-depth
technical knowledge of code smells in order to define these rules [13]. Another problem is
that code smells picked up by current detectors can be interpreted differently by specialists.
More crucially, to identify smelly code components from non-smelly ones, the majority
of smells require the specific threshold values, and naturally, the choice of threshold
significantly impacts their count. Additionally, full consideration of size, domain, design,
and complexity is typically lacking, which casts doubt on the veracity of other performance
indicators [14]. The usage of code smell rules, using insufficient information, and metrics
threshold levels are all overcome by supervised machine learning approach.

A supervised machine learning algorithm feeds in independent variables, commonly
called training data, to determine the dependent variable’s value and improves by learning
through examples [15]. Performance measures are assessed, and the algorithm improves
response from the difference between expected and generated output. Techniques like
hyperparameter tuning [16], SMOTE [17], feature engineering [18], feature selection [19],
etc., can be used to enhance results further. When using a machine learning approach,
establishing rules and setting thresholds is left up to the algorithm rather than experts,
significantly reducing time and effort [20].

This study uses two supervised machine learning classifiers, Support Vector Machine
and k-nearest Neighbors, to identify smelly instances. These classifiers employ a set of
hyperparameters to enhance their results, and by choosing the appropriate values of hyper-
parameters, one may minimize error [21]. A hyperparameter is an external configuration
to the model whose value must be defined by an expert as it cannot be determined
from the data. The grid search technique can also improve the performance of machine
learning algorithms [22]. However, it has many disadvantages, and for an algorithm to
work successfully, a specialist must choose hyperparameter values. It takes specialized
knowledge, intuition, and frequent trial and error for the best outcomes. It becomes
impossible when the number of hyperparameters grows as evaluations grow exponentially.
Therefore, meta-heuristic algorithms are employed to choose the appropriate values for the
hyperparameters of machine learning algorithms to overcome this challenge and do away
with the requirement for experts [23].

Meta-heuristic algorithms are high-level, problem-independent techniques that use
gradient-free mechanisms and provide near-optimal solutions to highly complex real-world
problems within limited computing time [24]. They search for a solution(s) in a search space
that minimizes or maximizes an objective function while fulfilling certain constraints. The
success of a meta-heuristic algorithm depends on two processes: exploration and exploitation.
Diversification ensures that the whole search space is explored and not confined to specific
areas, whereas, in intensification, certain better regions are explored more thoroughly to
find a better solution. We have employed various meta-heuristic algorithms, which are
stochastic in nature, exploring the search space and exploiting it for the best solution [25].

The no Free Lunch theorem states that no single optimization technique can solve all
optimization problems [26]. This theorem underscores that the efficacy of an algorithm for
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one application may not necessarily translate to success in another optimization problem.
It led to the development of more than three hundred meta-heuristic algorithms for
conquering numerous optimization problems. Consequently, the prudent approach involves
implementing and comparing optimization algorithms to identify the most apt solution
for a given context. Their categorization will guide us in understanding their basic work
principles and strategies. They are categorized as follows:

– Evolutionary: These algorithms are inspired by Darwin’s theory of survival of the
fittest. The iterative selection, crossover, and mutation process make the stochastically
generated population fitter. Evolutionary Programming [27], Genetic Algorithms [28],
and Differential Evolution [29] are some evolutionary algorithms.

– Swarm: These algorithms utilize the social behaviour and hunting strategies of the
genus of animals. Animals or insects work together in an organized manner and
constantly interact to explore the entire search space and converge when necessary [30].
Examples of swarm-based algorithms are Particle Swarm Optimization [31], Ant Colony
Optimization [32], etc.

– Physics: These algorithms imitate physical principles of the universe, such as gravita-
tion, kinematics, fluid mechanics, and electromagnetism [33]. They can be categorized
into thermodynamics, classical mechanics, optics, etc. Some physics-based algorithms
are Multi-Verse Optimizer [34], Nuclear Reaction Optimization [35], etc.

– Human: These algorithms are inspired by the characteristics and behaviour of the
human population. Brain Storm Optimization [36] and Battle Royale Optimization [37]
are some examples.

– Others: Bio-inspired algorithms are based on interactions or biological processes ob-
served in nature. Examples are Virus Colony Search [38], Earthworm Optimization [39],
etc. Math-based algorithms such as Hill Climbing always move towards the peak to aim
for a better solution [40]. Moreover, the Sine Cosine Algorithm explores and exploits
search space using a mathematical model based on sine and cosine functions [41].

1.1. Motivation

Code smell detection has long been a focal point in software engineering research. This
study pioneers a transformative approach by integrating meta-heuristic algorithms to
amplify the performance of machine learning classifiers, offering a groundbreaking solution
to enduring challenges. Employing an optimization algorithm eliminates the need for an
expert and the painful task of finding the best hyperparameter values, automating and
simplifying the whole process. This innovative fusion elevates classifier performance and
presents a profound breakthrough in the field, addressing multiple long-standing issues
concurrently.

The following research underscores the influence of meta-heuristic algorithms to op-
timize machine learning classifiers for code smell detection. The research delves into a
comprehensive comparison of sixteen distinct meta-heuristic techniques, evaluating their
efficacy in identifying and addressing smells within source code. In this research, the focus
lies on the utilization of optimization algorithms to obtain optimal hyperparameter values
for SVM and k-NN. A diverse range of optimization algorithms, encompassing Arithmetic,
Jellyfish Search, Flow Direction, Student Psychology Based, Pathfinder, Sine Cosine, Jaya,
Crow Search, Dragonfly, Krill Herd, Multi-Verse, Symbiotic Organisms Search, Flower
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Pollination, Teaching Learning Based, Gravitational Search, and Biogeography-Based
Optimization, have been implemented.

A comprehensive comparative analysis examines the performance of machine learning
classifiers across three scenarios: absence of optimization, grid search application, and
optimization implementation. Key performance metrics, including Accuracy, ROC Area
Under the Curve (ROC-AUC), F -measure, and execution time, are meticulously docu-
mented for analytical purposes. The techniques are implemented 25 times, Acknowledging
the stochastic nature of meta-heuristic algorithms. The resultant best and average values
are considered for evaluation. Furthermore, a juxtaposition is drawn between these novel
meta-heuristic methods and classical algorithms, such as Differential Evolution, Particle
Swarm Optimization, Genetic Algorithm, and Simulated Annealing, enhancing the breadth
and depth of the comparative study.

The overall contribution of this paper is:

– Enhancing the performance of machine learning classifiers through the utilization of
diverse meta-heuristic algorithms.

– Demonstrating the profound influence of meta-heuristic algorithms in optimizing ma-
chine learning classifiers, specifically in the context of code smell detection.

– Identifying the optimal meta-heuristic technique for effectively detecting code smells
within source code.

– Disclosing the most readily detectable code smell instances.
– Establishing a foundational reference study for prospective qualitative and quantitative

comparative research across various domains.

The research paper is structured across seven distinct sections. Commencing with an
introductory segment, the paper outlines fundamental concepts, underscores the study’s
necessity, and articulates its contributions. The introduction is followed by an overview of
related research and the pivotal role of the current study. The third section comprehensively
details the experiment setup and methodology, accompanied by an illustrative workflow.
Results, their in-depth analysis, and statistical tests comprise the fourth section, followed
by an expansive discussion in the fifth. The sixth section meticulously examines potential
threats to validity, providing corresponding mitigation strategies. The paper culminates in a
conclusive seventh section, encapsulating final thoughts and avenues for future exploration.
Additionally, the machine learning algorithms employed and concise profiles of the sixteen
meta-heuristic algorithms employed are expounded upon within the appendices.

2. Related work

The use of machine learning and optimization algorithms represent highly sought-after
and crucial areas of research. Extensive investigations have been undertaken to enhance
the efficiency of machine learning algorithms employing diverse techniques, among which
the utilization of meta-heuristic algorithms holds significance. Optimization algorithms
serve a dual purpose within this landscape like facilitating feature selection and hyperpa-
rameter tuning for machine learning algorithms. Moreover, these algorithms find utility
in establishing detection rules for code smells, employing tailored threshold values and
metrics. Applying optimization algorithms extends to prioritizing refactoring for multiple
code smells, predicated on factors such as severity and risk in the context of extensive
software systems. The following section outlines pertinent research efforts in this domain.
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Hassaine et al. utilized a machine learning-inspired technique called an Immune-based
Detection Strategy that imitated the immune system of the human body [42]. IDS is based
on the Artificial Immune Systems (AIS) algorithm, which mimics the defense mechanisms
of the human immune system. The authors drew a parallel between the human body and
system design to develop a detection method that identifies smelly classes, equivalent
to pathogens, using some features of the classes in the form of metrics. Compared to
DECOR [43] and Bayesian Belief Networks, IDS outperformed in precision and computation
time.

Maiga et al. introduced SMURF – Support Vector Machines that consider practitioners’
feedback [44]. SMURF was compared with DETEX [43] and BDTEX [45]; it performed
better in accuracy, precision, and recall. Fontana et al. implemented multiple variations and
boosted versions of J48, Random Forest, Naive Bayes, JRip, SMO, and SVM, constituting
32 machine-learning algorithms to detect four code smells. They concluded that J48 and
Random Forest yield the highest performance, and support vector machines are the worst.
Boosting only sometimes helps; in some cases, it diminishes performance [46].

Kessentini et al. proposed a multi-objective genetic programming algorithm (MOGP)
to generate rules for automatically detecting code smells in Android applications. They
identified detection rules for ten smells and evaluated their technique on 184 Android
projects. Results projected that average correctness was more than 82% and an average
relevance of 77% based on the feedback of active developers of mobile apps [47]. Kaur et al.
designed a new meta-heuristic optimization algorithm inspired by sandpipers’ searching
and attacking behaviours, known as the Sandpiper Optimization Algorithm (SPOA). They
collaborated SPOA with B-J48 pruned machine-learning approach to detect five code
smells in three open-source software [48].

Jain et al. applied three hybrid feature selection techniques with ensemble machine learn-
ing algorithms to improve the performance in detecting code smells. Seven machine learning
classifiers with different kernel variations, along with three boosting designs, two stacking
methods, and bagging, were implemented. Combining filter-wrapper, filter-embedded, and
wrapper-embedded methods was executed for feature selection. After application of hybrid
feature selection, performance measure increased, accuracy by 21.43%, ROC AUC value by
53.24%, and F -measure by 76.06% [16].

In other work, Jain et al. implemented 32 machine learning algorithms with feature
selection that drastically eliminated the dimensionality curse and improved performance
measures. Two correlation methodologies, brute force and random forest, were used to
discard irrelevant features with three filter methods: mutual information, fisher score and
univariate ROC-AUC. Results showed that the accuracy of machine learning models had
surged up to 26.5%, F -measure by 70.9%, the area under the ROC curve had levelled up
to 26.74%, and average training time has reduced up to 62 secs as compared to measures
of models without feature selection [49].

Boussaa et al. proposed a promising technique to identify detection rules for code
smell detection. Two populations evolved simultaneously. The first produced a set of
detection rules for detecting code smells, and the second introduced artificial code smells
to support the main objective of the first population. When tested on four open-source
Java systems, this technique outperformed two single population-based meta-heuristics,
Genetic Programming and Artificial Immune Systems [50].

Similarly, Kessentini et al. parallelly used genetic programming to generate code smell
detection rules and genetic algorithms to produce code smell examples. Cooperative P-EA
outperforms single population evolution and random search [51]. Sahin et al. implied
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code smell detection as a bilevel problem [52]. They used genetic programming for the
upper-level problems, i.e. detection rules and generated artificial code smells for lower-level
problems. However, there was no parallelism in this bilevel approach; levels were executed
serially. This technique outperformed Genetic Programming, Competitive Coevolutionary
Search [50] and non-search-based methods.

Mansoor et al. used multi-objective genetic programming (MOGP) to find the most
optimized detection rules to maximize the detection of smells and minimize false detection
problems. Five code smells were inspected on seven large open-source systems, and the
algorithm achieved 87% precision and 92% recall [53]. Saranya et al. proposed Euclidean
distance-based Genetic Algorithm and Particle Swarm Optimization (EGAPSO) to develop
detection rules that outperformed other detection methods like Genetic Algorithm, DECOR,
Parallel Evolutionary Algorithm, and Multi-Objective Genetic Programming. The approach
was tested on open-source projects like the Gantt Project and Log4j to identify the five
code smells [54].

Kannan developed hybrid particle swarm optimization with mutation (HPSOM) to
formulate detection rules using appropriate metrics and thresholds. He then compared
its performance with other evolutionary techniques like the parallel evolutionary algo-
rithm, genetic algorithm, genetic programming, and particle swarm optimization. HPSOM
outperformed all of them by achieving a precision of 94% and recall of 92%. He worked
with nine open-source projects and detected five code smells: blob, data class, spaghetti
code, functional decomposition, and feature envy [55]. Moatasem et al. used a whale
optimization algorithm to formulate ideal detection rules for nine code smells. Equations
were tested on five medium and large-size open-source projects. Results were better than
other search-based algorithms; 94.24% precision and 93.4% recall were observed [56].

Amal et al. evaluated a refactoring series to make the system more robust using a
genetic algorithm and artificial neural network (ANN) [57]. They compared their techniques
with other search-based refactoring techniques, such as the IGA technique presented by
Ghannem et al. [58] and a design defect detection and correction tool called JDeodorant [59].
Dea et al. used distributed evolutionary algorithms where many evolutionary algorithms
with different adaptations (fitness functions, solution representation, and change operators)
are implemented in parallel to get a series of refactoring. Cooperative D-EA outperforms
single population evolution and random search based on a benchmark of eight sizable
open-source systems where more than 86% of code smells are fixed using the suggested
refactoring [60].

Saranya et al. used the Strength Pareto Evolutionary Algorithm (SPEA) to prioritize
the list of refactorings. Blob, Functional Decomposition, Shotgun Surgery, Data Class,
Schizophrenic Class, and Swiss Army Knife were considered and tested on two open-source
systems, Xerces-J and J Hot Draw. SPEA outperformed Chemical Reaction Optimization
(CRO) and Non-dominated Sorting Genetic Algorithm in prioritizing code smell correction
tasks [61].

Large-scale systems have a volume of code smells, and prioritizing them according
to risk, impact, importance, and severity is an efficient way to eliminate them. Ouni et
al. used chemical reaction optimization to find a series of refactoring to remove smells
according to the risk and other factors involved. Seven code smells were tested on five
medium to large-scale open-source systems. The proposed technique outsmarted existing
methods compared to Genetic Algorithm, Simulated Annealing, and Particle Swarm
Optimization [62]. Using the Sandpiper Optimization Algorithm, Kaur et al. detected
the severity of five harmful code smells, namely blob, feature envy, data class, functional
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decomposition, and spaghetti code. The approach was tested on four open-source Java
software: Gantt-Project, Log4j, and two different versions of Xerces. Studies showed that
many code smells could be refactored with a severe decrease in refactoring effort [63].

This work utilizes the influence of sixteen powerful meta-heuristic algorithms to optimize
machine learning algorithms. This approach addresses problems such as evaluating the
best hyperparameter values of machine learning algorithms to elevate their performance.
This fusion eliminates needing an expert, reduces time and effort, and effectively deciphers
complex software engineering challenges.

3. Research methodology

The following section delves into the research questions, studies answers, description of
code smells analyzed, datasets used, and complete experimentation settings.

3.1. Research questions addressed

This study aims to investigate the following research questions:

– RQ 1: Does using meta-heuristic algorithms for optimizing machine learning classifiers
boost their performance for detecting code smell in complex software systems?

– RQ 2: How significant is the impact of optimization of machine learning algorithms
with meta-heuristic techniques on its overall performance?

– RQ 3: Given the meta-heuristic algorithms, which yields the best performance in
optimizing classifiers to detect code smell and why?

– RQ 4: How does our approach perform compared to existing machine learning based
techniques?

3.2. Code Smells investigated

This study entails the optimization of two distinct machine learning classifiers by utilizing
a comprehensive array of sixteen selected meta-heuristic algorithms, a strategy aimed at
refining performance metrics. The primary focus of this optimization effort is detecting
four distinct types of code smells, each of which bears distinctive characteristics and
implications. Specifically, two class-level code smells [64] under scrutiny are the Data Class
and the God Class. Data Class is a passive container for data, housing attributes, getters,
and setters intended for use by other encapsulating classes. This class does not engage
in the execution of substantial operations on its stored data. It impacts data abstraction
and encapsulation properties of the system. It can be refactored with the Encapsulate
Collection, Move Method, Extract Method, Encapsulate Field, and Hide Method.

God Class is characterized by its tendency for extensive functionality implementation,
leveraging attributes sourced from various other classes. This behaviour results in a notably
intricate and expansive class structure that is difficult to understand and maintain. It
promotes code duplication and complex methods. It affects cohesion, coupling, complexity,
and size of the system. It can be refactored with Extract Class, Extract Subclass, Extract
Interface, and Duplicate Observed Data. Further delving into the method-level code
smells [65], two distinct categories are investigated: Feature Envy and Long Method.
Feature Envy manifests when a method tends to access attributes originating from external
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classes while interacting with data derived from these classes. It harms the coupling and
data abstraction properties of code. It can be treated with Extract Method and Move
Method refactoring.

The long method is overly extensive and draws information from other methods. These
methods often seek to centralize a class’s intelligence and encompass many features. It
impacts coupling, cohesion complexity, and the size of the whole system. One can eliminate
the Long Method with the Extract Method, Replace Temp with Query, Introduce Parameter
Object, Preserve Whole Object, Replace Method with Method Object, and Decompose
Conditional refactoring techniques. While individually diverse in their manifestations, these
code smells collectively embody some of the most insidious and prevalent issues encountered
within software code bases [66]. Their systematic detection and subsequent remediation
are pivotal to enhancing software quality, maintainability, and comprehensibility.

3.3. Datasets used

In this research, we have used four datasets curated by Fontana et al. [46] to facilitate
the classification of specific code smells. These datasets have been assembled from 74
compilable Java systems sourced from the Qualitas Corpus [67]. Collectively, these systems
span a diverse spectrum of application domains and exhibit a wide range of sizes, thereby
endowing our research with a robust and comprehensive foundation. Datasets included an
intra-system setup to prevent machine learning models from succumbing to over-fitting.
List of all heterogeneous systems is included in the Table 1 of supplementary file 1. They
developed the Design Features and Metrics for Java (DFMCFJ) tool, underpinned by the
Eclipse JDT Library, which extracts a rich array of object-oriented metrics at multiple
granularities, spanning project, package, class, and method levels.

Each dataset comprises 420 data points, partitioned into 280 negative samples, signifying
the absence of code smell, and 140 positive samples, denoting presence. Datasets are rooted
in a comprehensive assessment of object-oriented metrics, spanning multiple strata of code
design, such as coupling, complexity, cohesion, and size. Details of all metrics used in
datasets are mentioned in the Table 2 of supplementary file. The datasets are judiciously
leveraged by stratified sampling techniques, thus generating balanced and labeled datasets.
It is imperative to note that each entry within these datasets is expressly associated with
either a method or a class. Each row is labeled with the help of Advisor (Code smell
detection tools such as PMD, iPlasma, Fluid Tool, and Antipattern Scanner) and validated
by trained MSc students after thorough discussion.

The metrics encompass a comprehensive view of code design focused on method-level
code smells, extending across project, package, class, and method levels. The method-level
datasets harnessed 82 distinct metrics. Conversely, the datasets dedicated to class-level
code smells have a set of metrics spanning project, package, and class levels, totaling 61
in number. This approach ensures that our research is firmly grounded in a wealth of
empirical data, encompassing a multifaceted view of code characteristics. Thus, it is poised
to yield comprehensive insights into code smell detection. Datasets are made available by
Fontana et al.2.

1Details of Datasets – https://drive.google.com/file/d/1Jt3jnRDUKgCvN-ZUM6xwtZTut8GuIFcL/vie
w?usp=sharing

2Datasets – https://drive.google.com/file/d/15aXc_el-nx4tQwU3khunQ-I5ObSA1-Zb/
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Figure 1. Work Flow

3.4. Experimentation setup

This research aims to enhance the performance of two prominent machine learning classifiers:
Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN). This enhancement is
pursued by utilizing sixteen distinct meta-heuristic algorithms, expertly calibrated to
fine-tune the hyperparameters governing these classifiers. A comprehensive assessment and
comparative analysis of the efficacy and impact of these meta-heuristic algorithms within
machine learning is pursued. This research unfolds within the computational domain of
Python [68], with the scikit-learn [69] framework serving as the foundational infrastructure.
To visually represent the holistic research process, we have encapsulated the workflow of
our study in Fig 1.

The data pre-processing ensures the cleanliness and readiness of datasets before they
are divided into training and test sets [70]. This preliminary data grooming is essential,
as it directly influences the quality and appropriateness of the data employed for model
training. It ameliorates model performance, reduces training duration, mitigates over-fitting
risks, and enhances model interpretability [71]. The following steps are taken to prepare
datasets. The missing data values are replaced with a zero value due to intra-system
settings. A scaling operation establishes an equitable ground for our independent variables.
This normalization strategy serves the dual purpose of bridging any inherent gaps between
features and curbing the potential introduction of bias.

The next step in the data refinement entails identifying and eliminating constant,
quasi-constant, and duplicated features. These categories encapsulate features that either
exhibit an unchanging value across instances (constant features), furnish redundant or
repetitive information (duplicate features), or verge on maintaining nearly identical values
for every instance (quasi-constant features) [72]. The independent variables should not be
correlated and reasonably correlate with the dependent variable. Thus, correlated indepen-
dent variables are precisely identified and eliminated. Pearson’s correlation coefficient [73]
is employed for the same, a well-established statistical metric renowned for its adeptness in
quantifying the linear relationship between two variables.

The dataset is randomly partitioned into two sets for training and testing purposes.
The training dataset is formulated, constituting 80% of the entire dataset, while the test
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Figure 2. Flowchart: Steps involved in working of Meta-heuristic Algorithms

dataset accounts for the remaining 20%. K-fold cross-validation is employed to assess a
predictive model’s performance and generalization ability. It scrutinizes the efficacy and
proficiency of machine learning models when confronted with previously unseen data. This
method divides the dataset into K parcels of identical size, denoted as ”folds”. We set the
value of K to 10, signifying ten equivalent folds [74]. The model is iteratively trained on
k− 1 folds while reserving one fold for validation. This cyclic process iterates K times, each
fold having a turn as the validation set. The final model’s performance is the aggregation
of performance scores garnered across all K iterations. Machine learning algorithms are
implemented, and their hyperparameters are obtained from meta-heuristic optimization
techniques. Employing meta-heuristic algorithms explores and scrutinizes the parameter
space to identify the optimal hyperparameters that give the peak performance of the
machine learning classifier. The working of meta-heuristic algorithms is presented in Fig 2,
which is explained in the following section:

1. Define the optimization problem: At its core, the optimization task revolves
around minimizing errors in machine-learning classifiers. This entails identifying optimal
hyperparameter values, a prerequisite before the classifier’s training phase, and directing
and shaping its behaviour. The Support Vector Machine (SVM) has two critical
hyperparameters, ’C’ and ’gamma,’ for optimization. Simultaneously, the k-Nearest
Neighbors (k-NN) classifier undergoes refinement by selecting optimal ’n_neighbors’
and ’p’ values. In the case of SVM, the Radial Basis Function (RBF) kernel is a natural
choice, endowed with a track record of superior performance.

2. Set parameter values for meta-heuristic algorithm:The parameter values, such
as population size, iteration count, generation specifications, etc., are initialized. These
selected parameter values for meta-heuristic algorithms and the hyperparameter spec-
trum of machine learning classifiers are thoughtfully detailed in Table 1. Arriving at
these optimal values is underpinned by an exhaustive investigative process involving
comprehensive research, literature survey, and methodical empirical experimentation.
These chosen values are supported by foundational research. Furthermore, the machine
learning algorithm’s hyperparameter range is selected by drawing insights from research,
experimentation, and practical experience.

3. Generate initial population: During this phase, the algorithm initializes the popu-
lation of the candidate solution, a process that can involve randomized generation or
employ alternative strategies [75]. For optimization, a comprehensive ensemble of sixteen
meta-heuristic optimization algorithms is harnessed. These encompass Arithmetic, Jel-
lyfish Search, Flow Direction, Student Psychology Based, Pathfinder, Sine Cosine, Jaya,
Crow Search, Dragonfly, Krill Herd, Multi-Verse, Symbiotic Organisms Search, Flower
Pollination, Teaching Learning Based, Gravitational Search, and Biogeography-Based
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Optimization. The objective is determining the optimal hyperparameter values for
classifiers to augment the performance. The behaviour, working principle, and learning
equation of each meta-heuristic algorithm are mentioned in the Appendix B.

4. Fitness evaluation: In this phase, the fitness of each candidate solution undergoes
scrutiny. This undertaking entails training the machine learning classifier, which utilizes
the hyperparameters intrinsic to each candidate solution. Subsequently, their perfor-
mance is appraised primarily on a validation dataset. A designated performance metric,
accuracy or F -measure, is wielded as the discerning fitness function, serving as the
threshold to quantify the efficacy of each solution.

5. Updating Position Vectors: The candidate solutions are updated based on the
information obtained in the fitness evaluation step and the rules of the meta-heuristic
algorithm. This involves adjusting the position of each search agent, updating the
best-performing agent, or selecting new agents to replace under-performing ones.

6. Termination Criteria: The position updation continues until a stopping criterion
is met. This could involve checking if the maximum number of iterations has been
reached, if the best-performing solution has not improved in a certain number of
iterations, or if the solutions have converged to a certain level of accuracy. For this
study, stopping criteria are set to 50 iterations because experimentation found that this
number is sufficient to converge to an appropriate solution. As optimization algorithms
are stochastic, the process is repeated 25 times to achieve the best and average values.

7. Output: If the termination criteria have been met, the algorithm finds the best-
performing hyperparameters found; otherwise, it returns to step 4 and continues the
optimization process.

8. Training: In this step, the machine learning classifier is trained with the best hyperpa-
rameter values derived from the above step. Our study has chosen SVM and k-NN for
optimization, and its working is mentioned in the Appendix A.

9. Evaluation: The performance measures of machine learning classifiers, such as accuracy,
F -measure, and ROC-AUC, are evaluated for analysis and comparison purposes.

By using meta-heuristic algorithms to search for the best hyperparameter values, we
can avoid the time-consuming and error-prone process of manual tuning [76]. The aim
is to minimize the error component, that is, the difference between the predicted and
actual value of the target variable. Accuracy, ROC Area Under the Curve (ROC-AUC),
F -measure, and execution time are recorded for analysis after optimization. Deviation from
the standard and time for one iteration is an average of 25 executions. Further, the final
performance is compared with the scenario when no such optimization technique is used,
the grid search method is used, and classic meta-heuristic algorithms such as Differential
Evolution, Particle Swarm Optimization, Genetic Algorithm, and Simulated Annealing
are used. Results are presented in tabular form in the next section with a qualitative and
quantitative analysis.

3.5. Performance measures

Following are the performance measures for classification problems that have been used to
analyze and compare machine learning algorithms:

Article number 240107

12

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/


PREVIEW

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Table 1. Parameter values used for meta-heuristics algorithms and range of hyperparameters for
machine learning classifiers

Ref Meta-heuristic Algorithms Year Category Parameters

[77] Arithmetic Optimization 2021 Math size = 5, alpha = 5, mu = 0.5

[78] Jellyfish Search Optimization 2021 Swarm jellyfishes = 5, eta = 4, beta = 3, gamma = 0.1, c_0 = 0.5

[79] Flow Direction Optimization 2021 Physics size = 5, beta = 8

[80] Student Psychology Based Optimization 2020 Human size = 5, generations = 50

[81] Pathfinder Optimization 2019 Swarm size = 5, generations = 50

[82] Sine Cosine Optimization 2016 Math solutions = 5, a_linear_component = 2, r1 = 2

[83] Jaya Optimization 2016 Swarm size = 5, generations = 50

[84] Crow Search Optimization 2016 Swarm size = 5, ap = 0.02, fL = 0.02

[85] Dragonfly Optimization 2016 Swarm size = 3, generations = 50

[86] Krill Herd Optimization 2016 Swarm size = 5, generations = 50, mutation_rate = 0.1, eta = 1, c_t = 1, mu = 1, elite = 0

[87] Multi-Verse Optimization 2015 Physics universes = 5

[88] Symbiotic Organisms Search 2014 Bio size = 5, eta = 1, generations = 50, mutation_rate = 0.1

[89] Flower Pollination Optimization 2012 Evolutionary flowers = 3, gamma = 0.5, lamb = 1.4, p = 0.8, beta = 1.5

[90] Teaching Learning Based Optimization 2012 Human size = 5, generations = 50

[91] Gravitational Search Optimization 2009 Physics swarm_size = 5

[92] Biogeography-Based Optimization 2008 Bio size = 5, mutation_rate = 0.1, elite = 0, eta = 1, gens = 50

[93] Support Vector Machine – – C = [10, 1000], gamma = [0.05, 10], kernel = rbf

[94] k-Nearest Neighbors – – n_neighbors = [3, 50], p = [1, 2]

3.5.1. Accuracy

It is the sum of all correctly predicted code smells divided by the total number of smells
present in the code. It can be calculated by the formula:

Detected Code Smells

Total Code Smells Present

3.5.2. F -measure

F -measure is the weighted harmonic mean of recall and precision.

F -measure = 2 ∗ precision ∗ recall

precision + recall

Precision is the number of smells predicted as smelly and are also actually smelly. It is
calculated as:

(Present Code Smells)
⋂

(Detected Code Smells)
(Detected Code Smells)

Recall is the number of instances that are actually smelly and are also predicted correctly
as smelly. It is calculated as:

(Present Code Smells)
⋂

(Detected Code Smells)
(Present Code Smells)

3.5.3. ROC-AUC

Receiver Operating Characteristics (ROC) is a plot of the False Positive Rate (on the x-axis)
versus the True Positive Rate (on the y-axis) for every possible classification threshold.
The area calculated under the ROC curve is known as ROC-AUC.
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ROC −AUC = 1 + TPrate − FPrate

2
It represents the probability that a machine learning model ranks a randomly chosen

positive observation higher than a randomly chosen negative observation, and thus it is a
useful metric even for skewed datasets [95].

4. Results and analysis

Leveraging meta-heuristic algorithms to attain the optimal hyperparameter values for
machine learning algorithms is a prominent strategy for achieving peak performance. In
this study, the Support Vector Machine and k-Nearest Neighbors undergo optimization
by using sixteen meta-heuristic methods. The following evaluation encompasses a compre-
hensive comparison and scrutiny of their respective performance measures, facilitating the
identification of the most effective optimization algorithm. This analysis accounts for four
distinct code smells, categorized into class-level and method-level varieties. The research
findings present results via tables and in-depth analytical modules.

Tables 3 through 6 comprehensively examine the performance measures for the Support
Vector Machine (SVM) in conjunction with various meta-heuristic algorithms across all
four distinct code smells. Tables 8 to 11 meticulously present the performance metrics
of k-Nearest Neighbors (k-NN) when optimized with various meta-heuristic algorithms,
encompassing all four distinct code smells. Notably, all sixteen meta-heuristic algorithms
are executed twenty-five times to derive the average values for all performance measures.
Across these twenty-five iterations, the most exceptional performance measure is recorded
for each code smell. This measure is compared against the original performance metrics
obtained when no optimization technique is applied. This comparative analysis seeks to
elucidate the precise impact that optimization algorithms wield over machine learning
processes.

It is important to note that in cases where the F -measure is not always measurable,
the difference related to this metric is omitted from consideration. Additionally, standard
deviation values are computed, providing insights into the degree of variation within the
data. Furthermore, the time required per iteration is documented, offering a glimpse into
the computational efficiency of these optimization algorithms. As part of this comprehensive
evaluation, the performance of the selected meta-heuristic algorithms is juxtaposed with
that of four widely recognized and fundamental techniques: Genetic Algorithm, Differential
Evolution, Particle Swarm Optimization, and Simulated Annealing. The best performance
measures are denoted in bold to highlight the most outstanding results. Subsequently, this
narrative will delve into a detailed and systematic analysis of how optimization impacts
the performance of classifiers in the context of each specific code smell.

4.1. Support Vector Machine

Table 2 presents an extensive evaluation of the performance metrics, including accuracy,
ROC-AUC, and F -measure, of the Support Vector Machine (SVM). This evaluation
encompasses instances without optimization and when grid search is executed. In grid
search, range of hyperparameter selected is as follows – C: [0.1, 1, 10, 100, 1000], gamma: [1,
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0.1, 0.01, 0.001, 0.0001]. Without optimization, the God Class exhibits the highest values,
recording accuracy and ROC-AUC of 73.89% and 84.88%, respectively. When employing
grid search, best metrics are noted as 75% for accuracy and 73.69% for ROC-AUC. Notably,
the Data Class demonstrates some gains in accuracy of 3.61%. With grid search ROC-AUC
value always decreased, even up to 11.19%. It’s noteworthy that grid search fails to improve
results in all cases, even decreased in some, underscoring the necessity for alternative
techniques to achieve optimal outcomes.

4.1.1. Data class

The Data Class detection outcomes are carefully presented in Table 3. Among the
meta-heuristic algorithms, Symbiotic Organisms Search Optimization emerges as the
unequivocal champion, consistently exhibiting the maximum, optimal average, and most
substantial improvements in all three performance metrics. Symbiotic Organisms Search
Optimization attains a peak accuracy of 97.64% and the finest average accuracy of 97.64%
while achieving an impressive increase of 29.72% (41) when juxtaposed with non-optimized
results. Furthermore, this algorithm achieves highest ROC-AUC of 100% and a remarkable
99.96% as the best average value, with a minimal deviation of 0.15; these achievements
correspond to a notable surge of 37.22% (42) compared to the non-optimized baseline. For
F -measure, both Jellyfish Search and Symbiotic Organisms Search Optimization emerge
as front runners, securing the highest maximum and optimal average value of 96%. Among
the algorithmic contenders, Dragonfly Optimization appears the swiftest, boasting an
execution time of 6.97 seconds per iteration. In contrast, Pathfinder Optimization is the
most time-consuming option for detecting Data Class.

4.1.2. Feature envy

Table 4 encapsulates the findings identifying Feature Envy through SVM and diverse
meta-heuristic algorithms. Crow Search Optimization stands out with its highest recorded
accuracy of 86.11%. In parallel, Dragonfly Optimization attains the highest ROC-AUC
and F -measure, registering remarkable values of 99.33% and 94.29%, respectively. When
considering the average performance metrics, Symbiotic Organisms Search Optimization
emerges as the frontrunner, achieving the best average accuracy of 94.36% and the highest
average F -measure, 92.37%. These achievements come with minimal deviations of 1.34
and 1.18, respectively. Pathfinder Optimization secures the best average ROC-AUC value,
an impressive 98.57%. Furthermore, Dragonfly Optimization is characterized by the most
substantial improvements in accuracy and ROC-AUC values, attaining increments of
32.08% (41) and 30.61% (42), respectively, compared to the non-optimized baseline. It is
also the swiftest optimization algorithm, with an execution time of merely 7.09 seconds
per iteration. In stark contrast, Pathfinder Optimization ranks as the slowest algorithm
in execution time, with an enduring 242.03 seconds per iteration. The results underscore
Dragonfly Optimization as the most proficient algorithm for Feature Envy detection
when coupled with SVM.

4.1.3. God class

Table 5 furnishes the outcomes pertinent to identifying the God Class, showcasing the
results obtained when utilizing SVM with diverse meta-heuristic algorithms. Sine Cosine
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Optimization is the most proficient performer, consistently achieving the highest values
across all three performance metrics. Sine Cosine Optimization attains a remarkable
maximum accuracy of 98.75%, with the best average accuracy standing at 98.75%, as well.
This impressive achievement represents a substantial improvement of 24.86%(41) compared
to the non-optimized baseline. Furthermore, the algorithm achieves a maximum ROC-AUC
of 100%, with the best average ROC-AUC reaching 100%. Notably, Student Psychology
Based and Jaya Optimization also attain maximum and best average ROC-AUC values of
100%. Symbiotic Organisms Search Optimization also secures the best ROC-AUC value of
100%, effectively tying with its counterparts. Highest gain in ROC-AUC value observed is
15.12%. Regarding the F -measure, the maximum and best average value achieved is 98.57%.
Notably, Krill Herd Optimization consistently ranks as the poorest-performing algorithm
across all cases, exhibiting subpar results. Regarding computational efficiency, Dragonfly
Optimization is the fastest algorithm in this context, with an execution time of 9.17 seconds
per iteration. The results highlight Sine Cosine Optimization as the preeminent algorithm
for detecting the God Class when combined with SVM.

4.1.4. Long method

Table 6 presents the findings of detecting Long Method using the Support Vector Ma-
chine (SVM) in conjunction with various meta-heuristic algorithms. Among these algo-
rithms, Symbiotic Organisms Search Optimization stands out as the top-performing
meta-heuristic, consistently exhibiting the highest values across all three performance met-
rics. Symbiotic Organisms Search Optimization attains an impressive maximum accuracy
of 96.39%, a maximum ROC-AUC of 100%, and a maximum F -measure of 94.57%. It’s
also worth noting that Flower Pollination Optimization achieves a perfect ROC-AUC score
of 100%. When considering the best average performance, Symbiotic Organisms Search
Optimization secures the highest average accuracy of 95.34%, with a deviation of 0.75.
Additionally, it achieves a best average ROC-AUC of 99.36% with a deviation of 0.40 and
a best average F -measure of 93.50% with a deviation of 0.53. These findings underscore
the algorithm’s consistent and robust performance. Regarding improvements over the
non-optimized baseline, Symbiotic Organisms Search Optimization achieves the maximum
hike in accuracy and ROC-AUC, with increases of 32.22% (41) and 33.78% (42), respec-
tively. Conversely, Krill Herd Optimization consistently ranks as the poorest-performing
algorithm across all scenarios. Regarding computational efficiency, Dragonfly Optimization
is the fastest technique, with an execution time of 8.17 seconds per iteration. To summarize,
these results emphasize the superiority of Symbiotic Organisms Search Optimization for
detecting Long Method when paired with SVM.

4.2. k-Nearest neighbors

Table 7 comprehensively presents the performance metrics encompassing the best and
average values for accuracy, ROC-AUC, and F -measure concerning k-Nearest Neighbors
(k-NN). The results are categorized into two scenarios: one when no optimization is applied
and another when grid search is employed. In grid search, the hyperparameter spectrum is
as follows – k: [ranges from 1 to 60], p: [1, 1.2, 1.5, 2]. In the absence of optimization, it is
evident that the God Class stands out with the best accuracy of 71.81%, ROC-AUC of
68.25% and an F -measure of 49.33%. Upon the introduction of the grid search, the Long
Method emerged as the leader in accuracy, achieving a notable 77.78%. Simultaneously, the
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God Class maintains prominence with the best ROC-AUC and F -measure values, amounting
to 67.33% and 51.86%, respectively. While examining the magnitude of improvements by
grid search, it becomes apparent that the uplift in performance measures is not particularly
substantial. The most noteworthy enhancements include a 10.69% increase in accuracy
for Data Class and 9.72% for Long Method. ROC-AUC always decreased if grid search is
applied. A significant boost of 26.33% in F -measure for the Long Method is observed, but
F -measure degraded by 8.19% for Data Class. In summary, the findings suggest that grid
search, while functional, may not induce significant improvements in performance measures
across all scenarios. Results indicate that there is a need for alternative strategy to boost
performance.

4.2.1. Data class

The outcomes related to detecting the Data Class are thoughtfully presented in Table 8.
Among the array of employed meta-heuristic algorithms, it’s evident that Flower Pollina-
tion Optimization emerges as the most effective. It remarkably attains the maximum
accuracy score of 100%, thereby exhibiting a substantial increase of 43.89% (41) compared
to scenarios without optimization. Regarding average accuracy, Pathfinder seizes the top
position, achieving a commendable accuracy of 97.62% with a negligible deviation of
0.05. Furthermore, for ROC-AUC values, Pathfinder, Sine Cosine, Jaya, Crow Search,
Teaching Learning Based, Multi-Verse, and Flower Pollination Optimization jointly secure
the highest value at 100%, reflecting an impressive hike of 40.83% (42). Pathfinder and
Sine Cosine Optimization maintain this elevated performance level by achieving the best
average ROC-AUC of 100%, with no deviations observed. Regarding the F -measure metric,
Flower Pollination Optimization stands out, boasting a maximum value of 100% and a best
average performance score of 96.45%. Finally, from an efficiency perspective, Dragonfly
Optimization demonstrates its prowess by completing each iteration in a mere 4.90 seconds,
rendering it the fastest among the considered optimization algorithms.

4.2.2. Feature envy

Table 9 presents the comprehensive results for detecting the Feature Envy with optimized
kNN. Remarkably, Symbiotic Organisms Search Optimization emerges as a standout
performer, achieving the maximum accuracy and F -measure scores of 96.39% and 92.67%,
respectively. Additionally, it boasts the best average accuracy and F -measure, securing
impressive values of 96.30% and 92.32%. Notably, Symbiotic Organisms Search Optimization
demonstrates a significant increase in accuracy, registering a top hike of 33.06% (41).
Conversely, Multi-Verse Optimization excels in the ROC-AUC metric, showcasing the
highest promenade of 35% (42). The ROC-AUC metric further reveals that Multi-Verse
and Jaya Optimization jointly achieve the maximum and best average ROC-AUC scores at
98.78% and 98.11%, respectively, with a minimal deviation of 0.30. From an operational
efficiency standpoint, Dragonfly Optimization exhibits remarkable swiftness, completing
each iteration in a mere 4.27 seconds, thereby asserting itself as the fastest-performing
algorithm in the context of this study. In conclusion, optimizing k-NN with Symbiotic
Organisms Search Optimization is the most effective approach for detecting the Feature
Envy.
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4.2.3. God class

The results for detecting the God Class are meticulously outlined in Table 10. Notably,
Flow Direction Optimization delivers outstanding performance, clinching the maximum
accuracy, best average accuracy, and the highest hike in accuracy, reaching impressive scores
of 97.64%, 97.64% (with zero deviations), and a remarkable 25.83% hike (41). Moreover,
the ROC-AUC metric showcases exceptional results, with a maximum ROC-AUC score of
100% and the most significant hike, reaching 31.75% (42). These outstanding achievements
are credited to Arithmetic, Jellyfish Search, Flow Direction, Pathfinder, Jaya, Crow Search,
Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching Learning Based,
Gravitational Search, and Biogeography-Based Optimization. In addition, Jellyfish Search,
Flow Direction, Pathfinder, Multi-Verse, Teaching Learning Based, and Biogeography-Based
Optimization collectively secure a best average ROC-AUC of 100%, accompanied by zero
deviations. Regarding the F -measure, Flow Direction Optimization stands out with a
maximum and average value of 96%, with no deviations. In terms of operational efficiency,
Jaya Optimization demonstrates impressive speed, completing each iteration in 5.08 seconds.
Additionally, it’s worth noting that both Differential Evolution and Simulated Annealing
achieve perfect scores of 100% for both best and average ROC-AUC values. In conclusion,
utilizing k-NN in conjunction with Flow Direction Optimization is the most effective
approach to detecting the God Class despite a slightly slower execution time.

4.2.4. Long method

Table 11 comprehensively presents the outcomes concerning detecting the Long Method
code. Notably, Biogeography-Based Optimization stands out with the maximum accuracy,
the best average accuracy, and the most significant accuracy hike, attaining remarkable
scores of 96.39%, 96.39%, and 28.33% hike (41), respectively. Moreover, the ROC-AUC
metric showcases exceptional results, with a maximum ROC-AUC score of 100% and
the most substantial hike, reaching 34.38% (42). These exceptional achievements are
attributed to Jellyfish Search, Student Psychology Based, Sine Cosine, Jaya, Crow Search,
Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching Learning Based,
Gravitational Search, and Biogeography-Based Optimization. Furthermore, Jellyfish Search,
Student Psychology Based, and Symbiotic Organisms Search Optimization collectively
secure the best average ROC-AUC of 100%. Regarding the F -measure, Biogeography-Based
Optimization achieves the maximum value of 94%, while Multi-Verse Optimization secures
the best average F -measure of 88.44%. Dragonfly Optimization is the fastest, completing
each iteration in 5.84 seconds. It’s worth highlighting that the other elementary algorithms
also deliver commendable performance in this context. In summary, when it comes to
detecting the Long Method, using k-NN in conjunction with Biogeography-Based or
Multi-Verse Optimization emerges as the most effective approach, offering excellent
accuracy and ROC-AUC outcomes.

5. Discussion

The following section addresses the research questions and discusses the important findings
of the research study.
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Table 2. Performance Measures of Support Vector Machine (SVM)

Without Optimization Grid Search

Code Smells Accuracy ROC-AUC F -measure Accuracy ROC-AUC F -measure

Data Class 67.92 62.78 0 71.53 55.83 21.67

Feature Envy 64.17 68.72 18 61.94 67.25 0

God Class 73.89 84.88 0 75 73.69 0

Long Method 64.17 66.22 18 64.31 61.92 13

Table 3. Performance Measures of SVM optimized with meta-heuristic algorithms for Data Class

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 91.67 75.88 7.76 23.75 95.83 90.33 2.84 33.05 83.90 16.87 24.77 15.31

Jellyfish Search Optimization 97.50 97.50 0.00 29.58 98.67 98.67 0.00 35.89 96.00 96.00 0.00 36.65

Flow Direction Optimization 90.28 90.28 0.00 22.36 94.00 94.00 0.00 31.22 88.06 88.06 0.00 203.12

Student Psychology Based Optimization 96.39 93.72 9.04 28.47 99.33 97.92 3.83 36.55 94.67 90.88 18.55 47.70

Pathfinder Optimization 90.56 90.51 0.22 22.64 97.83 97.83 0.00 35.05 84.71 84.71 0.00 214.55

Sine Cosine Optimization 94.17 94.17 0.00 26.25 98.89 98.89 0.00 36.11 88.00 88.00 0.00 32.08

Jaya Optimization 90.28 87.10 7.28 22.36 96.11 94.72 3.76 33.33 77.90 65.44 28.56 13.54

Crow Search Optimization 85.83 74.39 7.09 17.91 96.83 89.96 3.20 34.05 87.71 34.63 24.08 25.38

Dragonfly Optimization 95.42 93.95 3.96 27.50 99.17 98.44 0.59 36.39 95.14 88.18 11.68 6.97

Krill Herd Optimization 82.78 80.98 1.41 14.86 90.17 89.05 0.99 27.39 78.81 75.53 1.93 21.30

Multi-Verse Optimization 91.53 86.73 9.48 23.61 98.11 98.11 0.00 35.33 86.71 71.32 30.66 29.21

Symbiotic Organisms Search Optimization 97.64 97.64 0.00 29.72 100.00 99.96 0.15 37.22 96.00 96.00 0.00 85.12

Flower Pollination Optimization 95.42 89.70 10.25 27.50 97.50 97.01 0.97 34.72 91.33 72.40 34.80 8.14

Teaching Learning Based Optimization 96.39 96.39 0.00 28.47 99.17 99.17 0.00 36.39 91.33 91.33 0.00 51.06

Gravitational Search Optimization 95.28 76.20 8.46 27.36 99.44 98.24 1.63 36.66 91.24 32.44 32.99 20.07

Biogeography-Based Optimization 94.03 83.57 12.92 26.11 97.56 96.79 1.76 34.78 91.14 41.58 41.08 37.80

Differential Evolution 66.67 66.67 0.00 -1.25 67.64 60.72 8.49 4.86 0.00 0.00 0.00 14.03

Particle Swarm Optimization 63.06 63.06 0.00 -4.86 65.44 60.03 7.23 2.66 0.00 0.00 0.00 36.5154

Genetic Algorithm 65.42 59.74 1.61 -2.50 68.42 56.70 5.16 5.64 9.00 5.76 4.32 9.23011

Simulated Annealing 66.67 64.37 0.68 -1.25 58.00 54.36 1.53 -4.78 10.00 0.80 2.71 13.14

5.1. Does using meta-heuristic algorithms for optimizing machine learning
classifiers boost their performance to detect code smell in complex
software systems?

The described experiment has been executed to address RQ 1, yielding noteworthy ad-
vancements in performance metrics. In the case of Support Vector Machine (SVM), the
highest accuracy is 98.75%, achieved by the Sine Cosine Optimization algorithm when
applied to detect God Class. The Symbiotic Organisms Search elevates the accuracy by
32.22% when deployed for Long Method. Regarding ROC-AUC metrics, a flawless 100% is
reached by Symbiotic Organisms Search across multiple code smell detection, specifically
for Data Class, God Class, and Long Method.

In the case of God Class, the ROC-AUC value of 100% is also secured by Student
Psychology Based, Sine Cosine, and Jaya Optimization methods. Similarly, Flower Pollina-
tion Optimization achieves an impeccable 100% ROC-AUC for Long Method. The average
ROC-AUC stands at 100% and is simultaneously attained by Student Psychology Based,
Sine Cosine, and Jaya Optimization for God Class. For detecting Data Class, Symbiotic
Organisms Search orchestrates a 45.11% hike in ROC-AUC value.

Turning our focus to F -measure, the Sine Cosine Optimization achieved 98.57% to
combat God Class. Dragonfly Optimization is acknowledged as the fastest in algorithmic

Article number 240107

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/


PREVIEW

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Table 4. Performance Measures of SVM optimized with meta-heuristic algorithms for Feature Envy

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 79.58 78.74 0.96 15.41 82.86 71.12 4.25 14.14 13.33 11.73 4.33 14.77

Jellyfish Search Optimization 85.69 83.88 6.14 21.52 93.06 93.06 0.00 24.34 82.05 82.05 0.00 39.67

Flow Direction Optimization 85.83 84.90 0.41 21.66 97.67 97.67 0.00 28.95 67.00 65.86 0.57 228.73

Student Psychology Based Optimization 84.58 80.31 5.24 20.41 92.50 91.69 2.12 23.78 51.00 46.92 13.84 51.60

Pathfinder Optimization 88.19 88.19 0.00 24.02 98.57 98.57 0.00 29.85 58.33 58.33 0.00 242.03

Sine Cosine Optimization 84.44 84.44 0.00 20.27 98.33 98.33 0.00 29.61 55.67 55.67 0.00 16.10

Jaya Optimization 84.44 79.33 6.26 20.27 96.94 96.94 0.00 28.22 61.33 49.07 24.53 14.49

Crow Search Optimization 86.11 58.20 8.91 21.94 92.50 82.43 4.76 23.78 81.13 13.18 27.95 19.21

Dragonfly Optimization 96.25 88.27 10.85 32.08 99.33 97.00 1.96 30.61 94.29 82.00 29.10 7.09

Krill Herd Optimization 65.42 65.42 0.00 1.25 57.83 57.69 0.34 -10.89 0.00 0.00 0.00 29.36

Multi-Verse Optimization 91.67 86.42 10.50 27.50 97.00 97.00 0.00 28.28 88.95 46.26 44.44 14.31

Symbiotic Organisms Search Optimization 95.56 94.36 1.34 31.39 99.00 98.25 0.75 30.28 93.81 92.37 1.18 88.54

Flower Pollination Optimization 77.22 74.97 3.61 13.05 93.61 91.26 7.35 24.89 41.33 24.80 20.25 8.98

Teaching Learning Based Optimization 84.72 83.57 0.34 20.55 97.56 97.56 0.00 28.84 61.33 59.41 0.39 54.32

Gravitational Search Optimization 79.03 65.16 3.43 14.86 92.56 89.52 4.94 23.84 64.57 2.58 12.65 16.40

Biogeography-Based Optimization 84.31 73.36 6.32 20.14 95.50 91.32 6.78 26.78 60.67 26.11 28.73 27.83

Differential Evolution 61.94 61.94 0.00 -2.23 67.00 65.80 2.75 -1.72 0.00 0.00 0.00 16.26

Particle Swarm Optimization 71.67 71.67 0.00 7.50 61.67 59.53 3.48 -7.05 0.00 0.00 0.00 51.15

Genetic Algorithm 72.78 72.78 0.00 8.61 71.73 61.39 5.22 3.01 0.00 0.00 0.00 13.05

Simulated Annealing 63.06 63.06 0.00 -1.11 62.17 60.33 1.04 -6.55 0.00 0.00 0.00 17.17

Table 5. Performance Measures of SVM optimized with meta-heuristic algorithms for God Class

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 71.67 71.67 0.00 -2.22 97.78 91.59 5.23 12.90 33.00 1.79 6.77 16.56

Jellyfish Search Optimization 93.89 90.32 9.66 20.00 95.11 94.95 0.54 10.23 92.29 92.29 0.00 33.53

Flow Direction Optimization 95.56 95.56 0.00 21.67 98.57 98.57 0.00 13.69 91.33 91.33 0.00 237.48

Student Psychology Based Optimization 94.03 91.14 7.66 20.14 100.00 100.00 0.00 15.12 89.24 71.39 35.70 29.86

Pathfinder Optimization 90.42 90.42 0.00 16.53 97.94 97.94 0.00 13.06 85.95 85.87 0.11 226.15

Sine Cosine Optimization 98.75 98.75 0.00 24.86 100.00 100.00 0.00 15.12 98.57 98.57 0.00 15.41

Jaya Optimization 93.75 84.90 11.80 19.86 100.00 100.00 0.00 15.12 91.24 58.39 43.79 13.98

Crow Search Optimization 78.75 70.94 1.76 4.86 95.56 81.78 5.45 10.68 57.00 6.95 15.14 20.07

Dragonfly Optimization 95.00 82.34 12.14 21.11 100.00 94.02 2.84 15.12 92.29 76.71 28.44 9.17

Krill Herd Optimization 59.72 59.72 0.00 -14.17 56.00 56.00 0.00 -28.88 0.00 0.00 0.00 24.75

Multi-Verse Optimization 95.14 80.67 12.52 21.25 95.44 93.96 1.21 10.56 93.24 50.13 44.50 27.49

Symbiotic Organisms Search Optimization 97.78 96.94 0.57 23.89 100.00 99.98 0.10 15.12 97.14 96.23 0.69 106.65

Flower Pollination Optimization 94.44 83.59 14.48 20.55 99.44 97.07 5.23 14.56 93.00 59.52 44.64 10.01

Teaching Learning Based Optimization 97.78 96.08 6.53 23.89 99.44 99.13 0.50 14.56 96.00 83.57 30.87 73.37

Gravitational Search Optimization 92.64 63.33 8.30 18.75 99.00 97.97 2.31 14.12 0.00 0.00 0.00 25.58

Biogeography-Based Optimization 93.06 67.63 7.50 19.17 97.56 95.50 3.40 12.68 90.86 21.65 38.53 30.62

Differential Evolution 67.92 67.92 0.00 -5.97 65.83 64.44 3.78 -19.05 0.00 0.00 0.00 16.41

Particle Swarm Optimization 69.17 69.17 0.00 -4.72 51.67 51.00 0.82 -33.21 0.00 0.00 0.00 35.02

Genetic Algorithm 65.42 65.42 0.00 -8.47 80.75 64.19 9.19 -4.13 0.00 0.00 0.00 14.94

Simulated Annealing 60.83 60.83 0.00 -13.06 66.33 60.05 3.80 -18.55 0.00 0.00 0.00 20.14
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Table 6. Performance Measures of SVM optimized with meta-heuristic algorithms for Long Method

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 89.17 72.67 6.09 25.00 98.61 86.32 7.11 32.39 64.33 2.77 12.60 18.61

Jellyfish Search Optimization 80.83 80.42 2.04 16.66 92.50 92.50 0.00 26.28 50.00 46.00 13.56 34.12

Flow Direction Optimization 91.94 90.92 0.30 27.77 97.22 97.22 0.00 31.00 88.38 86.70 0.62 228.81

Student Psychology Based Optimization 87.64 85.27 6.41 23.47 96.00 95.44 1.12 29.78 76.38 54.99 34.30 31.70

Pathfinder Optimization 87.22 87.22 0.00 23.05 97.00 97.00 0.00 30.78 84.88 84.88 0.00 229.40

Sine Cosine Optimization 87.08 87.08 0.00 22.91 97.50 97.50 0.00 31.28 65.00 65.00 0.00 16.19

Jaya Optimization 91.53 79.59 12.42 27.36 98.11 98.11 0.00 31.89 88.48 60.16 41.27 16.09

Crow Search Optimization 69.17 69.17 0.00 5.00 95.50 86.61 9.58 29.28 18.33 0.93 3.68 28.30

Dragonfly Optimization 94.03 82.51 10.45 29.86 97.33 92.87 2.64 31.11 91.14 76.57 22.64 8.17

Krill Herd Optimization 66.67 66.67 0.00 2.50 72.83 72.83 0.00 6.61 0.00 0.00 0.00 22.72

Multi-Verse Optimization 91.39 68.72 17.00 27.22 95.13 95.13 0.00 28.91 91.94 36.78 45.04 15.22

Symbiotic Organisms Search Optimization 96.39 95.34 0.75 32.22 100.00 99.36 0.40 33.78 94.57 93.50 0.53 82.00

Flower Pollination Optimization 90.42 77.42 12.49 26.25 100.00 96.90 9.68 33.78 87.43 66.45 37.34 9.72

Teaching Learning Based Optimization 94.03 94.03 0.00 29.86 99.33 98.89 0.16 33.11 92.13 77.39 33.77 75.38

Gravitational Search Optimization 71.67 71.67 0.00 7.50 97.22 95.11 4.45 31.00 36.67 1.47 7.19 19.51

Biogeography-Based Optimization 91.81 67.87 11.86 27.64 99.33 97.81 2.38 33.11 90.10 21.57 38.38 32.01

Differential Evolution 64.17 64.17 0.00 0.00 66.00 63.51 5.55 -0.22 0.00 0.00 0.00 10.36

Particle Swarm Optimization 67.92 67.92 0.00 3.75 64.33 62.29 3.10 -1.89 0.00 0.00 0.00 43.82

Genetic Algorithm 69.17 69.17 0.00 5.00 80.11 62.16 8.20 13.89 0.00 0.00 0.00 16.86

Simulated Annealing 70.42 70.42 0.00 6.25 63.50 60.47 0.91 -2.72 0.00 0.00 0.00 20.20

Table 7. Performance Measures of k-Nearest Neighbors (k-NN)

Without Optimization Grid Search

Code Smells Accuracy ROC-AUC F -measure Accuracy ROC-AUC F -measure

Data Class 56.11 59.17 29.86 66.81 59.03 21.67

Feature Envy 63.33 63.78 43.24 63.89 61.83 50.98

God Class 71.81 68.25 49.33 74.17 67.33 51.86

Long Method 68.06 65.62 15.67 77.78 65 42

velocity, while Pathfinder Optimization is the slowest. Conclusively, the apex of optimization
is occupied by the Sine Cosine Algorithm, demonstrably exemplifying its pre-eminence
by securing the highest scores, both in terms of maximum and average values, across a
spectrum of performance metrics.

For k-Nearest Neighbors (k-NN), a perfect 100% accuracy and 43.89% surge in accuracy
is recorded, executed by the Flower Pollination Optimization method when applied to
detect Data Class. It also scores a perfect 100% F -measure and the best average F -measure
at 96.45%. When applied to detect God Class, the highest average accuracy is 97.64%
attained by the Flow Direction Optimization algorithm.

For ROC-AUC metrics, a flawless 100% is not a solitary accomplishment but a shared
distinction among several optimization methodologies. Specifically, optimizers for Data
Class include Pathfinder, Sine Cosine, Jaya, Crow Search, Multi-Verse, Flower Pollination,
and Teaching Learning Based Optimization, concurrently ascending to this pinnacle. Each
eminent algorithm also accomplishes a 40.83% ROC-AUC increase. Similarly, the God
Class bears witness to the Arithmetic, Jellyfish Search, Flow Direction, Pathfinder, Jaya,
Crow Search, Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching
Learning Based, Gravitational Search, and Biogeography-Based Optimization, all attaining
a flawless 100% ROC-AUC value. The Long Method equally experiences perfection in
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Table 8. Performance Measures of kNN optimized with meta-heuristic algorithms for Data Class

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 95.28 92.47 2.16 39.17 99.33 98.87 0.27 40.16 94.29 90.56 2.79 40.59

Jellyfish Search Optimization 92.92 92.47 0.60 36.81 98.57 98.34 0.22 39.40 86.00 85.84 0.37 24.40

Flow Direction Optimization 96.25 96.20 0.24 40.14 99.58 99.37 0.21 40.41 95.14 95.12 0.11 266.47

Student Psychology Based Optimization 96.53 95.43 0.78 40.42 99.17 98.63 0.43 40.00 94.57 92.35 2.52 47.77

Pathfinder Optimization 97.64 97.62 0.05 41.53 100.00 100.00 0.00 40.83 95.71 95.28 0.35 186.47

Sine Cosine Optimization 95.42 94.88 0.64 39.31 100.00 100.00 0.00 40.83 94.29 93.77 0.54 14.72

Jaya Optimization 94.31 93.98 0.44 38.20 100.00 99.78 0.21 40.83 91.24 90.82 0.63 7.06

Crow Search Optimization 96.53 95.73 1.09 40.42 100.00 98.62 0.69 40.83 96.57 92.21 2.26 24.05

Dragonfly Optimization 96.25 93.67 1.57 40.14 99.58 98.72 1.02 40.41 92.67 89.16 2.70 4.90

Krill Herd Optimization 67.92 67.92 0.00 11.81 55.72 55.72 0.00 -3.45 0.00 0.00 0.00 38.23

Multi-Verse Optimization 94.17 93.18 1.23 38.06 100.00 99.78 0.18 40.83 93.21 92.35 0.90 13.71

Symbiotic Organisms Search Optimization 96.25 95.09 1.57 40.14 97.92 97.64 0.49 38.75 93.00 91.45 1.68 61.71

Flower Pollination Optimization 100.00 96.68 6.00 43.89 100.00 99.97 0.10 40.83 100.00 96.45 4.35 8.95

Teaching Learning Based Optimization 97.64 95.01 1.33 41.53 100.00 99.98 0.08 40.83 96.57 91.98 2.08 46.49

Gravitational Search Optimization 91.53 89.69 2.41 35.42 98.83 98.31 0.33 39.66 91.63 88.99 1.91 13.00

Biogeography-Based Optimization 95.14 94.37 0.83 39.03 99.44 97.84 0.67 40.27 91.67 89.74 2.06 27.12

Differential Evolution 77.50 70.93 5.07 21.39 84.50 77.03 5.22 25.33 66.19 61.22 5.42 8.33

Particle Swarm Optimization 83.19 80.14 3.69 27.08 87.36 86.55 0.94 28.19 81.35 77.25 4.44 7.31

Genetic Algorithm 79.86 75.53 2.81 23.75 86.39 81.49 2.67 27.22 69.19 57.34 4.50 26.45

Simulated Annealing 78.47 75.73 2.22 22.36 81.94 80.59 0.83 22.77 69.81 59.71 15.37 17.41

Table 9. Performance Measures of kNN optimized with meta-heuristic algorithms for Feature Envy

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 91.81 86.67 3.51 28.48 96.17 93.72 1.14 32.39 80.67 74.26 9.51 18.81

Jellyfish Search Optimization 88.19 88.05 0.51 24.86 98.33 98.07 0.23 34.55 75.67 73.96 73.96 32.04

Flow Direction Optimization 87.22 86.80 0.99 23.89 95.56 95.39 0.20 31.78 75.24 74.07 1.55 285.53

Student Psychology Based Optimization 88.33 83.99 3.63 25.00 95.83 93.62 1.26 32.05 70.67 56.63 8.68 49.74

Pathfinder Optimization 94.17 94.13 0.19 30.84 98.47 98.03 0.22 34.69 88.17 88.17 0.00 193.51

Sine Cosine Optimization 90.69 90.67 0.05 27.36 96.00 95.49 0.27 32.22 79.57 79.40 0.44 10.53

Jaya Optimization 90.69 90.50 0.45 27.36 98.75 98.11 0.30 34.97 79.00 78.59 0.86 5.91

Crow Search Optimization 83.33 80.06 3.45 20.00 94.61 93.24 0.74 30.83 63.00 47.13 14.07 25.11

Dragonfly Optimization 85.83 82.16 2.89 22.50 96.67 95.19 0.98 32.89 67.00 54.67 11.83 4.27

Krill Herd Optimization 74.86 70.57 2.03 11.53 78.67 74.72 1.68 14.89 48.72 39.52 6.13 9.61

Multi-Verse Optimization 89.31 88.69 1.01 25.98 98.78 97.42 0.55 35.00 80.00 78.50 2.52 11.45

Symbiotic Organisms Search Optimization 96.39 96.30 0.30 33.06 98.19 97.52 1.50 34.41 92.67 92.32 0.61 76.47

Flower Pollination Optimization 94.03 91.57 1.65 30.70 98.50 97.33 1.04 34.72 89.81 74.44 21.30 9.05

Teaching Learning Based Optimization 92.92 91.00 1.90 29.59 97.58 96.77 0.77 33.80 90.38 87.76 2.34 47.05

Gravitational Search Optimization 88.19 86.73 2.56 24.86 96.58 94.98 0.91 32.80 82.48 79.49 7.66 17.54

Biogeography-Based Optimization 90.00 86.07 2.88 26.67 95.67 94.78 0.46 31.89 81.63 77.94 4.76 33.56

Differential Evolution 77.50 74.86 2.74 14.17 83.39 81.83 1.33 19.61 61.50 50.18 9.69 10.79

Particle Swarm Optimization 74.03 73.33 0.62 10.70 81.11 80.78 0.35 17.33 51.43 49.78 0.91 7.21

Genetic Algorithm 75.42 73.42 1.73 12.09 82.97 79.57 2.96 19.19 45.00 28.24 14.53 33.69

Simulated Annealing 74.17 71.87 1.41 10.84 76.81 75.51 0.96 13.03 35.67 21.11 11.39 12.22
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Table 10. Performance Measures of kNN optimized with meta-heuristic algorithms for God Class

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 93.89 88.99 5.47 22.08 100.00 99.84 0.27 31.75 86.00 70.50 15.13 33.46

Jellyfish Search Optimization 93.89 93.84 0.22 22.08 100.00 100.00 0.00 31.75 87.67 87.19 1.30 29.67

Flow Direction Optimization 97.64 97.64 0.00 25.83 100.00 100.00 0.00 31.75 96.00 96.00 0.00 240.65

Student Psychology Based Optimization 94.03 92.92 1.24 22.22 98.61 98.51 0.16 30.36 87.33 85.03 5.18 47.80

Pathfinder Optimization 92.92 92.92 0.00 21.11 100.00 100.00 0.00 31.75 91.43 90.81 0.60 185.17

Sine Cosine Optimization 90.69 90.69 0.00 18.88 99.67 99.27 0.19 31.42 82.67 82.67 0.00 12.47

Jaya Optimization 96.39 94.99 0.79 24.58 100.00 99.73 0.29 31.75 90.00 89.27 1.19 5.08

Crow Search Optimization 91.53 87.58 3.61 19.72 100.00 99.76 0.31 31.75 81.00 73.71 10.30 17.61

Dragonfly Optimization 92.92 85.54 6.06 21.11 99.44 98.68 0.45 31.19 82.67 60.81 22.08 5.57

Krill Herd Optimization 72.36 67.23 2.60 0.55 85.23 78.59 3.37 16.98 51.79 40.31 7.24 10.90

Multi-Verse Optimization 94.03 93.53 0.56 22.22 100.00 100.00 0.00 31.75 91.24 90.25 1.13 13.27

Symbiotic Organisms Search Optimization 91.81 91.57 0.43 20.00 100.00 99.99 0.05 31.75 82.33 79.56 2.51 62.28

Flower Pollination Optimization 93.89 88.12 5.63 22.08 100.00 99.64 0.33 31.75 89.00 81.72 7.94 10.41

Teaching Learning Based Optimization 88.06 86.82 1.61 16.25 100.00 100.00 0.00 31.75 80.71 74.73 6.24 46.68

Gravitational Search Optimization 95.42 93.20 1.62 23.61 100.00 99.93 0.16 31.75 93.71 90.12 4.46 17.06

Biogeography-Based Optimization 92.64 87.37 6.18 20.83 100.00 100.00 0.00 31.75 79.33 61.85 19.78 66.86

Differential Evolution 96.39 95.79 0.94 24.58 100.00 100.00 0.00 31.75 92.67 90.75 4.02 10.06

Particle Swarm Optimization 96.53 96.53 0.00 24.72 100.00 99.96 0.11 31.75 92.67 92.67 0.00 6.88

Genetic Algorithm 96.39 94.17 0.72 24.58 100.00 99.77 0.26 31.75 93.14 90.45 2.29 33.48

Simulated Annealing 96.39 93.43 3.92 24.58 100.00 99.33 1.33 31.75 93.00 87.15 10.04 15.01

Table 11. Performance Measures of kNN optimized with meta-heuristic algorithms for Long
Method

Performance Measures Accuracy ROC-AUC F -measure Time of one

Optimization Algorithms Best(%) Avg(%) Std 41 Best(%) Avg(%) Std 42 Best(%) Avg(%) Std Iteration (sec)

Arithmetic Optimization 88.33 80.65 4.68 20.27 99.67 99.25 0.25 34.05 81.81 69.82 10.86 15.23

Jellyfish Search Optimization 90.69 90.36 0.85 22.63 100.00 100.00 0.00 34.38 84.24 83.62 1.29 30.59

Flow Direction Optimization 84.44 84.44 0.00 16.38 96.94 96.72 0.27 31.32 63.00 63.00 0.00 272.84

Student Psychology Based Optimization 90.69 89.53 2.63 22.63 100.00 100.00 0.00 34.38 84.90 80.72 5.87 31.00

Pathfinder Optimization 84.31 83.89 0.66 16.25 99.67 99.39 0.36 34.05 68.67 68.67 0.00 203.61

Sine Cosine Optimization 89.44 89.14 0.53 21.38 100.00 99.92 0.13 34.38 79.00 78.43 1.02 28.44

Jaya Optimization 84.86 82.86 1.05 16.80 100.00 99.26 0.84 34.38 76.71 74.30 1.86 14.56

Crow Search Optimization 87.78 81.33 4.72 19.72 100.00 99.29 0.47 34.38 70.33 58.02 11.43 27.80

Dragonfly Optimization 88.06 83.47 2.12 20.00 99.29 98.12 0.68 33.67 50.00 18.40 13.60 5.84

Krill Herd Optimization 89.17 80.89 5.65 21.11 97.50 92.91 2.43 31.88 80.57 66.27 10.47 7.82

Multi-Verse Optimization 94.17 93.88 0.42 26.11 100.00 99.73 0.24 34.38 89.00 88.44 0.59 31.89

Symbiotic Organisms Search Optimization 90.42 89.38 0.93 22.36 100.00 100.00 0.00 34.38 71.67 68.65 2.76 69.10

Flower Pollination Optimization 88.89 83.81 6.06 20.83 100.00 99.38 0.30 34.38 76.57 67.91 10.68 28.75

Teaching Learning Based Optimization 91.67 90.16 1.74 23.61 100.00 99.98 0.08 34.38 86.24 83.22 4.89 66.39

Gravitational Search Optimization 89.31 87.77 1.31 21.25 100.00 99.82 0.25 34.38 82.24 75.16 7.31 35.45

Biogeography-Based Optimization 96.39 90.43 6.41 28.33 100.00 99.68 0.20 34.38 94.00 83.42 12.64 65.35

Differential Evolution 86.67 84.17 1.57 18.61 96.33 94.94 0.91 30.71 69.00 61.91 13.58 11.08

Particle Swarm Optimization 87.08 86.06 0.30 19.02 95.00 93.77 2.21 29.38 69.67 63.29 3.58 22.47

Genetic Algorithm 86.94 80.01 6.70 18.88 94.03 91.60 1.33 28.41 76.00 61.67 19.06 47.63

Simulated Annealing 94.03 93.21 0.98 25.97 98.11 98.04 0.24 32.49 92.07 91.03 1.51 31.66
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ROC-AUC, with Jellyfish Search, Student Psychology Based, Sine Cosine, Jaya, Crow
Search, Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching Learning
Based, Gravitational Search, and Biogeography-Based Optimization, all registering a 100%
ROC-AUC.

The average ROC-AUC yields a harmonious 100% outcome with no deviations for
several scenarios: Pathfinder and Sine Cosine Optimization for Data Class, Jellyfish Search,
Flow Direction, Pathfinder, Multi-Verse, Teaching Learning Based, and Biogeography-Based
Optimization for God Class, and Jellyfish Search, Student Psychology Based, and Symbiotic
Organisms Search Optimization for Long Method. Regarding the computational time,
Dragonfly Optimization is the fastest, while the Flow Direction Optimization method is
the slowest in its computational stride. The paramount optimizer, defined by maximum
and average performance measures, emerges as the Flower Pollination Optimization,
underscoring its dominance in k-NN optimization.

Summary of RQ 1: Employing swarm-based techniques to optimize the hyperpa-
rameter values of machine learning classifiers is definitely a beneficial process. It not only
improves the performance of a classifier but eliminates the need for an expert, automating
the code smell detection process.

5.2. How significant is the impact of optimization of machine learning
algorithms with meta-heuristic techniques on its overall performance?

To answer RQ 2, we have conducted statistical tests on experiment results to evaluate the
impact of optimization. The Wilcoxon signed-rank test is a non-parametric statistical test
used to assess whether the distribution of paired differences between two related groups is
symmetric about zero [96]. Experimentation data do not follow a normal distribution, have
paired observations, and data can be ranked. Therefore, the Wilcoxon signed-rank test
is the best hypothesis statistical test to measure the impact of employing meta-heuristic
algorithms for optimizing machine learning algorithms.

To perform the test, a null hypothesis (H0) is set up as – the median difference between
paired observations is zero (no difference) and the alternative hypothesis (H1) as the
median difference between paired observations is not zero. Data is gathered for the paired
observations we want to compare, and the differences between paired observations are
calculated. The absolute values of the differences are ranked, and the test statistic (W)
using the ranked differences is calculated. For n pairs, the degree of freedom is n− 1. The
test statistic (p-value) to the critical value from the Wilcoxon signed-rank distribution
table is compared. If the p-value is less than the chosen significance level, reject the null
hypothesis, indicating a significant difference. If the p-value is greater than the significance
level, fail to reject the null hypothesis. The test statistic, degrees of freedom, p-value, and
decision regarding the null hypothesis are reported [97].

Table 12–15 results depict the value of z, p, and r from the Wilcoxon signed rank sum
test. Values before optimization are paired with best and average values acquired after
optimization. The degree of freedom for this test is 15. The confidence level is 95%, and
the significance level is 0.05. The null hypothesis is rejected if the p-value is less than 0.05,
implying the difference is significant. Based on the results, it can be seen that the p-values
for all five performance measures are below 0.05, indicating a significant difference between
performance measures before and after optimization. r denotes effect size depicting the
magnitude of difference and can be calculated as z√

n
, where n is the number of paired
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Table 12. Wilcoxon Signed Rank Sum Test Results for Best Values attained by SVM

Performance
Measures

Accuracy F -measure ROC-AUC

Code Smell z p r z p r z p r

Data Class 3.5180 .000435 0.88 3.5168 .000437 0.88 3.5174 .000436 0.88
Feature Envy 3.5168 .000437 0.88 3.4651 .000530 0.87 3.3616 .000775 0.84
God Class 3.3099 .000933 0.83 2.6983 .006969 0.67 3.2966 .000979 0.82
Long Method 3.5168 .000437 0.88 3.5180 .000435 0.88 3.4128 .000643 0.85

Table 13. Wilcoxon Signed Rank Sum Test Results for Average Values attained by SVM

Performance
Measures

Accuracy F -measure ROC-AUC

Code Smell z p r z p r z p r

Data Class 3.5162 .000438 0.88 3.5162 .000438 0.88 3.5168 .000437 0.88
Feature Envy 3.3611 .000776 0.84 3.4133 .000642 0.85 2.7923 .005234 0.70
God Class 2.3786 .017378 0.59 2.6389 .008317 0.66 3.2958 .000982 0.82
Long Method 3.5162 .000438 0.88 3.5162 .000438 0.88 2.7923 .005234 0.70

Table 14. Wilcoxon Signed Rank Sum Test Results for Best Values attained by kNN

Performance
Measures

Accuracy F -measure ROC-AUC

Code Smell z p r z p r z p r

Data Class 3.5197 .000432 0.88 3.4980 .000469 0.87 3.4656 .000529 0.87
Feature Envy 3.5174 .000436 0.88 3.5162 .000438 0.88 3.5162 .000438 0.88
God Class 3.5197 .000432 0.88 3.6973 .000218 0.92 3.5168 .000437 0.88
Long Method 3.5168 .000437 0.88 3.6537 .000258 0.91 3.5162 .000438 0.88

observations. The effect is considered high if r is greater than 0.5 and 0.8 is recorded r
value in the experimentation, yielding promising results.

Summary of RQ 2: Optimizing machine learning algorithms with swarm-intelligent
algorithms significantly impacts their performance.

5.3. Given the meta-heuristic algorithms, which yields the best performance
in optimizing classifiers to detect code smell and why?

To address RQ 3, the experiment’s outcomes are examined and compared to determine the
most effective meta-heuristic techniques for optimizing machine learning algorithms for
code smell detection. It is important to acknowledge that the ’No-Free Lunch’ theorem
has significantly influenced the landscape of optimization algorithms, driving continuous
innovations over the years. This theorem underscores that no single algorithm universally
excels in every problem domain. Instead, their efficacy varies, with each demonstrating
superior performance in specific problem statements [98]. Implementation remains the most
effective means of identifying the optimal technique for a given problem.

The investigation involved systematically applying sixteen meta-heuristic algorithms
for hyperparameter optimization on two distinct machine learning algorithms, enhancing
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Table 15. Wilcoxon Signed Rank Sum Test Results for Average Values attained by kNN

Performance
Measures

Accuracy F -measure ROC-AUC

Code Smell z p r z p r z p r

Data Class 3.5168 .000437 0.88 3.4656 .000529 0.87 3.4651 .000530 0.87
Feature Envy 3.5162 .000438 0.88 3.5162 .000438 0.88 3.4645 .000531 0.87
God Class 3.4651 .000530 0.87 3.5369 .000405 0.88 3.4645 .000531 0.87
Long Method 3.5162 .000438 0.88 3.5185 .000434 0.88 3.5162 .000438 0.88

Table 16. The best performing optimization algorithm for each code smell

Code Smell SVM k-NN

Data Class Symbiotic Organisms Search Optimization Flower Pollination Optimization

Feature Envy Dragonfly Optimization Symbiotic Organisms Search Optimization

God Class Sine Cosine Optimization Flow Direction Optimization

Long Method Symbiotic Organisms Search Optimization Biogeography-Based and Multi-Verse Optimization

their performance metrics. A comprehensive evaluation is conducted across three scenar-
ios: instances without optimization, cases employing grid search, and evaluations utilizing
meta-heuristic algorithms. Performance metrics are thoughtfully juxtaposed with other algo-
rithms, ensuring an accurate and effective comparison. These assessments are supplemented
by comparisons with foundational algorithms, namely Genetic Algorithm, Differential
Evolution, Particle Swarm Optimization, and Simulated Annealing. The empirical results
affirm that the foundational algorithms, while competent, do not outshine the implemented
optimizers across the board. Instead, they exhibit comparable proficiency in a few cases.
The comprehensive evaluation of their performance measures, in conjunction with other
algorithms, is methodically documented after the respective tables. Table 16 highlights the
highest-performing optimization algorithms for each case based on experimentation.

Finding the most optimized value for hyperparameters of machine learning algorithms
is in the category of non-separable, constrained, and multimodal problems. Non-separable
problems refer to scenarios where the relationships and dependencies within the data are
too intricate to be accurately represented by simple linear decision boundaries [99]. In
classification tasks, linear separability implies that classes can be perfectly distinguished
by a straight line, plane, or hyperplane, but non-separable problems defy such simplicity.
Dealing with non-separable data requires complex decision boundaries, often necessitating
the application of nonlinear models like kernelized support vector machines. Specialized
algorithms like meta-heuristics or evolutionary approaches may be needed to navigate such
landscapes.

Constrained problems refer to scenarios where the solution space of a problem is subject
to certain conditions or limitations [100]. These constraints restrict the set of feasible
solutions and play a critical role in shaping the optimization landscape. Optimization
algorithms designed for constrained problems must navigate the complex interplay between
the objective function and the imposed constraints. Classical optimization methods, like
Lagrange multipliers and penalty methods, are often employed to handle equality and
inequality constraints.

Multimodal problems refer to scenarios where the objective function or fitness landscape
has multiple distinct optimal solutions, known as modes [101]. Each mode represents a
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set of parameter values that yield an optimal or near-optimal solution to the problem
where the algorithm can converge. The presence of multiple modes introduces challenges
because traditional optimization methods, which aim to find a single global optimum,
may struggle to explore and exploit the diverse modes. Handling multimodal problems
requires specialized optimization techniques designed to explore and exploit multiple modes
efficiently.

Meta-heuristic algorithms are easy to implement and do not require much domain-specific
knowledge. They can optimize both continuous, discrete problems, and multiple objective
problems. The performance of a meta-heuristic algorithm hinges upon some of the pivotal
factors. The first factor is the precise configuration of parameters, encompassing critical
attributes such as the optimal count of search agents, the judicious establishment of
the discovery rate, the velocity of the fitness function, etc. Furthermore, a paramount
significance revolves around the delicate equilibrium between exploration and exploitation
rates. Though they can find the global optima for complex, nonlinear, and non-convex
functions, they are prone to get trapped in local optima if the population size is small and
the search space is vast. Augmenting this complexity, randomness into the search process
emerges as a potent mechanism. By introducing controlled stochasticity, these optimizers
foster heightened performance and enhanced exploration of solution spaces, ultimately
yielding superior results [102]. The Symbiotic Organisms Search Optimization,
Teaching Learning Based Optimization, and Sine Cosine Optimization emerge
as stellar exemplars of detecting code smells, adeptly navigating the intricate terrain of
algorithmic design. They orchestrate a harmonious symphony of parameter tuning, dynamic
mode switching, and controlled randomness infusion, culminating in attaining superlative
outcomes. Conversely, Krill Herd Optimization is the least effective algorithm for code
smell detection.

Summary of RQ 3: The no-free Lunch theorem implies that there is no one-size-fits-all
solution; what works best for one optimization problem might not work for another
problem. So, the best way to find the most optimal techniques is to implement them
and compare their results. Table 16 summarizes the list of best-performing optimization
techniques for each case. They performed better because they balanced exploration and
exploitation well, avoided early convergence, introduced appropriate randomness, and
discovered global optimum solutions required to conquer non-separable, constrained, and
multi-modal problems.

5.4. How does our approach perform compared to existing machine learning
based techniques?

To answer RQ 4, we have compared our work with Fontana et al. [46]. This is the most
extensive study that detects code smells using machine learning and employs the same
datasets, allowing for a fair comparison. They created balanced datasets to detect the four
most common and perilous code smells. They applied 32 variations of machine learning
classifiers, including their boosted versions, for detection. It included pruned, unpruned,
and reduced error pruning techniques of J48, a C4.5 decision tree. JRip, Random Forest,
Naive Bayes, and SMO with RBF and Polynomial kernel were also included. With that, C
and ν SVM were implemented with Linear, Polynomial, RBF, and Sigmoid kernel settings.
Implementation was done in Weka, and machine learning classifiers were treated as black-
box implementations. No pre-processing or feature selection technique was used except
in the case of SVM, where standardization and normalization were done. They employed
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10-fold cross-validation techniques and reported average values. Tree-based algorithms like
J48 and random forest performed best, whereas SVMs were the worst performers.

For Data Class, C-SVM with RBF has an accuracy of 96%, F -measure of 97.01%, and
ROC-AUC of 99.15%. Symbiotic Organisms Search Optimization is the best performer
in detecting Data Class with SVM and outperformed accuracy and AUC delivered by
Fontana et al., reported accuracy is 97.64%, F -measure is 96%, and ROC-AUC is 100%.
In the case of Feature Envy, results projected by Fontana et al. were far less superior.
The dragonfly optimizer performed best with 96.25% accuracy, 94.29% F -measure, and
99.33% ROC-AUC, whereas Fontana et al. yielded 94.14% accuracy, 95.62% F -measure,
and 98.02% ROC-AUC. For God Class, the Sine Cosine algorithm outperformed all the
above-mentioned meta-heuristic algorithms and results of Fontana et al. Accuracy, F -mea-
sure, and ROC-AUC achieved for God Class in the case of Fontana et al. are 95.76%,
96.87%, and 99.24%, respectively, whereas optimized SVM achieved 98.75% accuracy,
98.57% F -measure, and 100% ROC-AUC, all on the higher side. Symbiotic Organisms
Search Optimization obtained 96.39% accuracy and 100% ROC-AUC for the Long Method,
which is higher compared to the performance measured attained by Fontana et al., i.e.,
96.38% accuracy and 99.15% ROC-AUC. One exception is the F -measure, which is 94.57%
for optimized SVM and 97.22% for the unoptimized version.

Summary of RQ4: Unlike F -measure in two out of four cases, utilizing swarm-based
algorithms for optimizing SVM is a better option as it delivers elevated performance.

6. Threats to validity

In this section, threats to validity are discussed that might arise concerns and how they
are mitigated.

6.1. Threats to internal validity

The assessment of metrics within the datasets [46] is conducted using a proprietary tool
known as Design Features and Metrics for Java (DFMC4J). This tool operates by parsing
Java code through the Eclipse JDT Library; however, it is important to note that the
accuracy of its calculations has not been externally validated, potentially introducing
imprecision in metric computations for source code elements. Moreover, the identification of
code smell candidates is carried out manually by students rather than seasoned professionals,
thereby introducing an inherent margin of error. To mitigate this concern, a comprehensive
training program was administered to the students, and the final decisions were made
following meticulous deliberation. In addition to this, code smell detection tools like iPlasma,
PMD, and Fluid tools were also enlisted to corroborate the presence of code smell instances.

6.2. Threats to external validity

The datasets were meticulously crafted from a collection of 74 open-source Java systems
sourced from the Qualitus Corpus [67]. Nonetheless, it’s imperative to acknowledge that
open-source software might not encompass the entirety of conceivable scenarios, potentially
limiting the generalization of findings to industrial contexts. Extending our investigation to
encompass industrial, commercial, and private projects is a future endeavor. These systems
employ older Java versions and don’t include emerging new Java language constructs [103].
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The systems included are from 2003-2011, which might not represent the current scenario.
These issues can be addressed in future work by employing datasets that include the latest
Java constructs, industrial projects, more code smells, severity prospects, etc.

It is important to underscore that this empirical study focuses solely on datasets
originating from Java source code, and its findings may not seamlessly translate to other
programming languages given the distinct nature of metric values and design paradigms
across languages. As part of our ongoing research, we aim to explore additional programming
languages to augment the breadth of our insights. Furthermore, while Fowler [6] delineates
twenty-two distinct code smells, this study delves into the analysis of only four, a limited
subset for generalization. Future investigations could encompass the remaining smells to
yield more comprehensive and conclusive outcomes. Similarly, the utilization of merely two
classifiers in this study warrants consideration, as the implications derived may not be
universally applicable.

6.3. Threats to conclusion validity

The computation of F -measure by certain machine learning algorithms faced limitations,
impacting the derived conclusions concerning F -measure values. This issue is of considerable
significance, warranting both immediate attention and subsequent in-depth investigation.
While maintaining nearly identical parameters, including population size and generations,
across various meta-heuristic algorithms facilitates fair comparisons, it’s worth noting that
these parameters might inadvertently affect certain algorithms due to their diverse search
agent requirements. Additionally, the uniformity of stopping criteria is 50 iterations for
each algorithm might not ensure fairness, given the inherent variability in convergence
rates among different algorithms.

7. Conclusions and future work

Our investigation delves into the merits of diverse meta-heuristic algorithms as tools for
optimizing supervised machine learning techniques. Additionally, we have conducted a
comparative analysis of results between machine learning classifiers, both pre and post
optimization. The findings from our study are summarized as follows:

1. The top-performing meta-heuristic algorithm is Symbiotic Organisms Search Optimiza-
tion. Conversely, Krill Herd Optimization exhibited the lowest performance in the
context of code smell detection.

2. In the case of Support Vector Machine, the apex metrics include an accuracy rate
of 98.75%, a perfect ROC-AUC score of 100%, and an F -measure of 98.57%. The
maximum improvement in accuracy and ROC-AUC observed is 32.22% and 45.11%,
respectively.

3. The best k-Nearest Neighbor, outcomes are marked by a flawless accuracy rate,
ROC-AUC, and F -measure value of 100%. The accuracy and ROC-AUC surged by
43.89% and 40.83%, respectively, through applying optimization algorithms.

4. SVM showcased its optimum performance when coupled with Sine Cosine Optimiza-
tion, whereas k-NN exhibited superior results when joined with Flower Pollination
Optimization.
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5. A Rigorous statistical test underscores the profound impact of meta-heuristic algorithms
in fine-tuning hyperparameters of machine learning algorithms, thereby enhancing their
overall performance.

6. SVM excels in detecting God Class and k-NN masters in identifying Data Class
instances, all achieved through optimizing machine learning classifiers via meta-heuristic
algorithms.

Here are the prospective avenues for further research stemming from this study:

1. Future work could utilize improved versions of meta-heuristic algorithms, characterized
by improved convergence speed, exploration capabilities, and diminished sensitivity to
hyperparameters.

2. Exploring multi-objective, binary, hybrid, chaotic and alternative variants of meta-heuristic
techniques hold the premise for achieving heightened efficiency, adaptability and flexi-
bility in optimization processes.

3. An extensive array of over two hundred meta-heuristic algorithms exist, whereas our
study has selectively implemented specific types. Future research endeavors could extend
to comparative assessments with a broader spectrum of optimization algorithms.

4. The implementation and evaluation of novel optimization algorithms, including but not
limited to Central Force Optimization, Vortex Search Algorithm, Thermal Exchange
Optimization, and Artificial Electric Field Algorithm, offer intriguing prospects for
further inquiry.

5. Expanding the scope to optimize various other machine learning classifiers such as
Random Forest, Decision Tree, JRip, and Naive Bayes, among others, holds potential
for diversifying the application domains of these techniques.

6. The drive to optimize machine learning classifiers for detecting various other code smells
or anti-patterns presents an engaging research avenue.

7. Investigating code smells in programming languages beyond Java constitutes a com-
pelling direction for future research, broadening the applicability of the findings.

8. The exploration of feature engineering and selection methodologies utilizing meta-heuristic
algorithms emerges as an avenue with the potential to augment the performance of
machine learning classifiers.
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A. Appendix: Machine learning algorithms used

Code smell detection exploits classification methodology as output is binary, that is, if
the class/method is affected by a particular smell or not. We have implemented SVM and
k-NN binary classifiers.

A.1. Support Vector Machine

SVM is one of the most versatile machine learning algorithms for classification and regression
problems. It assumes that two adjacent instances in input space must have the same output
value [93]. It calculates an optimal hyperplane that separates classes in multi-dimensional
space. The class of a new instance is marked by its position on which side of the hyperplane.
Let’s take N training samples A = {a1, , a2, ..., aN} where ai means i− th training sample
and has f features. It is associated with one of the two classes bi ∈ {0, 1}. So, complete
training set is {(a1, b1), (a2, b2), ..., (aN , bN )} where ai training sample belongs to class bi.
The equation of hyperplane to be optimized is:

LP = 1
2 ||w||

2 + C
N∑

i=1
εi −

N∑
i=1

αi[bi(wT ai + y)− 1 + εi] (A.1.1)

here, w is the weight vector, normal to the hyperplane, y is the threshold, and a is the
input data point in d dimensional space. The algorithm aims to select the best values for
threshold and weight such that the hyperplane is as far as possible from the closest data
points. εi is the slack variable greater than equal to 0, and it is to be minimised. Each
εi represents the distance between the i − th data point and the corresponding margin
hyperplane. C is the regularization parameter that controls the trade-off between the slack
variable penalty and the size of the margin. αi ≥ 0 and i = 1, 2, ...N . αi is the Lagrange
multipliers, and each αi corresponds to one data point (ai, bi) and LP becomes the primal
equation that is to be optimized [104].

A.2. k-Nearest neighbor

k-NN is one of the most popular machine learning algorithm and is known for its simplicity.
It can be executed for both classification and regression problems. It analyses the parametric
estimation of unknown probabilities, which are otherwise difficult to predict. The main
idea behind this algorithm is that the class of a new data point is decided by its majority
of k-neighbors. k-NN considers k nearest instances to determine the class of query instance
and selects one with the highest frequency [105]. The distance metric is used to calculate
the relative distance between instances in n-dimensional space, where n is the number of
features. Minkowski distance is calculated as:

p

√√√√ n∑
i=1
| xi − yi| p

It is a generalized distance metric. For Manhattan distance, p is equal to 1. For Euclidean
distance, p is equal to 0, and for Chebyshev distance, p → ∞ [106]. Meta-heuristic
algorithms are used to retrieve the best values for k and p.
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B. Appendix: Meta-heuristic algorithms used

Meta-heuristic algorithms are general-purpose algorithms that do not rely on specific
problem structures but search the solution space using heuristic rules inspired by natural
phenomena, such as evolution, swarm intelligence, or physics. The current study uses the
following meta-heuristic techniques to optimize machine learning algorithms.

B.1. Arithmetic optimization [77]

B.1.1. Behavior

Basic math operations like Addition (+), Subtraction (-), Multiplication (×) and Division
(÷).

B.1.2. Phase changing variable

The algorithm strikes a balance between the exploration and exploitation phases using the
MOA (Math Optimizer Accelerated) operator, which is calculated using the formula below:

MOA(Ct) = Min + Ct(
Max−Min

Mt
) (B.1.1)

here, Ct is t-th or current iteration and its value is between 1 and the maximum number
of iterations, Mt. Max and Min are an accelerated function’s maximum and minimum
values, respectively. If the random number r1 is less than MOA, the exploration phase
begins; otherwise, the algorithm proceeds with the exploitation phase.

B.1.3. Exploration equations

Exploration is done using either a division or multiplication search strategy due to their
high dispersion property. The next position in exploration phase is determined using the
following equations and conditions:

MOP (Ct) = 1− Ct
1/α

Mt
1/α

(B.1.2)

xi,j(Ct + 1) =


best(xj)/(MOP + esp)((UBj − LBj)

µ + LBj) if r2 < 0.5
best(xj)×MOP ((UBj − LBj)µ + LBj)

otherwise

(B.1.3)

here, MOP means Math Optimizer Probability. r2 = random number that decides operator;
Ct = current iteration; Mt = maximum iteration; MOP (Ct) = value of the coefficient at
t-th iteration; α = 5 is sensitive parameter that defines the exploitation accuracy over the
iterations; xi(Ct + 1) = i-th solution of the next iteration; xi,j(Ct) is i-th solution in the
j-th position for the current iteration; best(xj) is best-obtained solution so far in the j-th
position; esp = small integer number; LBj and UBj are the lower bound and upper bound
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of the j-th position, respectively; µ = 0.5 is a controlling parameter that adjusts the search
process.

B.1.4. Exploitation equations

Subtraction and addition operators can quickly converge to a result in specific number of
iterations due to their low dispersion property, thus perfect for exploitation.The random
number r3 is employed to select operator. The next position in the exploitation phase is
determined using the following equations and conditions:

xi,j(Ct + 1) =


best(xj)−MOP ((UBj − LBj)µ + LBj)

if r3 < 0.5
best(xj) + MOP ((UBj − LBj)µ + LBj)

otherwise

(B.1.4)

Exploitation search operators, addition and subtraction, try to avoid plunging in local
optima, and the stochastic nature of µ always allows exploration till the last iteration,
introducing diversity in solutions.

B.2. Jellyfish search optimization [78]

B.2.1. Behavior

Swarming behaviour of jellyfish for foraging purposes. The solution is represented by area
and its corresponding objective function depicting the quantity of food in that location.

B.2.2. Initialization

The population is initialized using a logistic map, Xi+1 = ρXi(1−Xi) where 0 ≤ X0 ≤ 1.
Xi is the chaotic logistic value of the i-th jellyfish’s location and X0 is a randomly generated
location. X0, Xi ∈ [0, 1], X0 /∈ {0.0, 0.25, 0.5, 0.75, 1.0}, and ρ = 4. If a jellyfish exceeds
the boundaries of the search space, it will be relocated within the boundaries using the
following equation:

X ′
i,d =

{
(Xi,d − Ub,d) + Lb(d) if Xi,d > Ubd

(Xi,d − Lb,d) + Ub(d) if Xi,d < Lbd

(B.2.1)

here, Xi,d = location of the i-th jellyfish in d-dimensional search space; X ′
i,d = updated

location after checking boundary constraints. Lbd and Ubd are the lower and upper bounds
of search space. Jellyfish are attracted to places that have more nutrients or food. The new
updated position of jellyfish can be evaluated using the following equations:

Xi(t + 1) = Xi(t) + r1 ×
−−−→
trend (B.2.2)

−−−→
trend = X∗ − β × r2 × µ (B.2.3)
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here, (β > 0) = distribution coefficient related to the length of the
−−−→
trend;

−−−→
trend = direction

of ocean currents evaluated by averaging all the vectors from each jellyfish in the ocean to
the jellyfish currently in the best location; X∗ = jellyfish currently with the best location
in the swarm; ec = β × r2 is the attraction factor; µ = mean location of all the jellyfishes;
t = current iteration; r1, r2 = random numbers between [0, 1].

B.2.3. Exploration equations

The new position in passive motion is determined using the following equation:
Xi(t + 1) = Xi(t) + η × rand(0, 1)× (Ub − Lb) (B.2.4)

here, Lb and Ub are the lower and upper bounds of the search space; η = motion coefficient,
related to the length of motion around each jellyfish’s location.

B.2.4. Exploitation equations

The active motion of i-th jellyfish is determined by the relative position of randomly
selected j-th jellyfish. The following equations depict their movements:

Xi(t + 1) = Xi(t) + r3 ×
−−−−−−−→
Direction (B.2.5)

−−−−−−−→
Direction =

{
Xi(t)−Xj(t) if f(Xi) < f(Xj)
Xj(t)−Xi(t) if f(Xi) ≥ f(Xj)

(B.2.6)

here, f(Xi), f(Xj) = objective function values of i-th and j-th jellyfish, respectively;
−−−−−−−→
Direction = vector of the active motion; r3 = random number between [0, 1]; t = current
iteration.

B.2.5. Phase changing variable

Time control function c(t) is employed to decide the active and passive motion of jellyfish
inside the bloom and also their movements toward ocean currents. It is calculated using
the following formulae:

c(t) = |(1− t

tmax
)× (2× r4 − 1)| (B.2.7)

here, t = current iteration; tmax = maximum iterations. r4 ∈ [0, 1] = random number. The
control function c(t) fluctuates between 0 and 1 and decreases as iteration progresses. If
the value of (c(t) > C0), the jellyfish follows the ocean current, otherwise, the jellyfish
moves inside the jellyfish bloom. To determine the movement of jellyfish inside the swarm,
the function [1− c(t)] is employed. If (r4 > [1− c(t)]), passive motion is favored otherwise,
active motion is favored. That is how the algorithm converges to find an optimal solution
and stops when the end criteria are met.
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B.3. Flow direction optimization [79]

B.3.1. Behavior

The drainage basin system.

B.3.2. Initialization

It uses the D8 algorithm [107] to determine the flow direction of direct runoff (amount of
water remaining on the ground surface after precipitation and mislaying such as interception,
evapotranspiration, and infiltration). Direct runoff can be calculated using the formula:

rd =
M∑

m=1
(Rm − φδt) (B.3.1)

here, φ = average amount of water loss during rainfall; Rm = rainfall; δt = time interval;
M = total number of time steps.

Flows are population in drainage basin/search space with height as its objective function.
Each flow, flows in a direction towards the lowest altitude with velocity V . The most
optimal objective function is the basin’s outlet point. Each flow with β neighbors has a
neighborhood radius of δ and total population members are α. The initial position of flow
is calculated using the following formula:

Flow_X(i) = lb + rand ∗ (ub− lb) (B.3.2)
here, ub and lb are upper and lower limits of the decision variables and rand is a random
number between [0, 1] with uniform distribution. The position of the neighboring j-th flow
can be determined using the following relation:

Nghbr_X(j) = Flow_X(i) + randn ∗ δ (B.3.3)
here, randn is a random value with a normal distribution, a mean of zero, and a standard
deviation of 1.

B.3.3. Phase changing variable

δ determines the phase of the algorithm. The small value of δ means exploitation, and
the large value means exploration. δ starts with a significant value and is reduced over
the iterations to support finding global solution and avoiding trapping in local optima.
Randomness is introduced for that.

δ = (rand ∗ Xrand − rand ∗ F low_X(i)) ∗ ||Best_X − F low_X(i)|| ∗ W (B.3.4)

here, rand = random number; Xrand = random position calculated using B.3.1; W =
non-linear weight with a random number from zero to infinity and is calculated using the
following relation:

W = ((1− iter

Maxiter
)(2∗randn)) ∗ (rand ∗ iter

Maxiter
) ∗ rand (B.3.5)

here, rand is a random vector with uniform distribution.
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B.3.4. Learning equations

Over the iteration, W has large variation, Flow_X(i) is closer to Best_X, and the
Euclidian distance between Best_X and Flow_X(i) is reduced to zero, bringing us closer
to optimal solution. Each flow with V velocity moves towards the best neighbor. If the
best neighbor has a better fitness value than that of a current flow, the flow velocity vector
is updated using formula:

V = randn ∗ S0 (B.3.6)
here, S0 is the slope vector between the neighbor and the current position of the flow.
Random number randn reinforces exploration. The slope between neighbors i and j can
be evaluated using the following calculation:

S0(i, j, d) = Flow_fit(i)−Nghbr_fit(j)
||Flow_x(i, d)−Nghbr_x(j, d)|| (B.3.7)

here, d is dimension of the problem. The new position can be calculated using following
equation:

NewF _X(i) = flow_X(i) + V ∗ F low_X(i) − Nghbr_X(j)
||F low_x(i) − Nghbr_x(j)|| (B.3.8)

It is also possible that the fitness function of all neighbors is not less than the current
flow, and then the algorithm randomly chooses another flow. The following relation shows
how to simulate the flow direction under these conditions:

NewF _X(i) =



F low_X(i) + randn ∗ (F low_X(r) − F low_X(i))
if F low_fit(r) < F low_fit(i)

F low_X(i) + 2randn ∗ (Best_X − F low_X(i))
otherwise

(B.3.9)

here, r and randn are random integers.

B.4. Student psychology Based Optimization [80]

B.4.1. Behavior

The psychology of students making genuine efforts to improve their marks.

B.4.2. Learning equations

Students’ overall marks are enhanced if the marks in each subject they are offered improves.
Depending on their interest in a subject, the student may give more effort to improve
overall marks. Students are categorized into four types based on their psychology:

(i) Best Student – The student who has the maximum overall marks is said to be the
best student. They will try to maintain their position by putting in more effort than
any randomly chosen student. Improvement of the best student can be evaluated using
following equation:

Xbestnew = Xbest + (−1)k × rand× (Xbest −Xj) (B.4.1)
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here, Xbest = marks obtained by best student; Xj = marks of randomly selected j-th
student; rand ∈ [0, 1] = random number; k = 1 or 2.

(ii) Good Student – The student who will try to give more effort in the subject of their
interest to improve overall performance is a good student. They are subject-wise good
students and are random because psychologies differ for each student.

Xnewi = Xbest + [rand× (Xbest −Xi)] (B.4.2)
Xnewi = Xi + [rand× (Xbest −Xi)] + [rand× (Xi −Xmean)] (B.4.3)

here, Xi = marks of i-th student in that subject; Xmean = average marks of the class
in that subject. If the student tries to give more or a similar effort to that of the best
student, its improvement can be calculated using Eq B.4.2. If the student gives more
effort than an average student and the effort provided by the best student, their marks
can be evaluated using Eq B.4.3.

(iii) Average Student – While giving average effort to the subject, they will provide more
effort to other exciting subjects. Their improvement can be calculated using the below
formulae:

Xnewi = Xi + [rand× (Xmean −Xi)] (B.4.4)
(iv) Students trying randomly to improve – They give random efforts to the subject

irrespective of the students mentioned above. Their performance can be evaluated using
the following formulae:

Xnewi = Xmin + [rand× (Xmax −Xmin)] (B.4.5)
here, Xman and Xmin are the upper and lower bound on marks of the subject, respec-
tively.

B.5. Pathfinder optimization [81]

B.5.1. Behavior

Swarms for foraging, breeding, and hunting purposes.

B.5.2. Learning Equations

Each individual is a candidate solution in a d-dimensional space having a position vector
as the fitness function. The algorithm is modeled to find prey as follows:

xt+1
i = xt

i + R1 · (xt
j − xt

i) + R2 · (xt
p − xt

i) + η, i ≥ 2 (B.5.1)
here, t = current iteration; xi = position vector of the i-th search agent; xj = position vector
of the j-th search agent; xp = position of pathfinder (leader); R1 = αr1 and R2 = βr2;
r1, r2 ∈ [0, 1] = random numbers. α and β are randomly selected in the range of [1, 2]; α =
coefficient of interaction that decides the magnitude of movement between two neighbors;
β = coefficient of attraction that decides the movement of the herd with the leader; η is
the vibration, which can be calculated using the following formulae:

η = (1− t

tmax
) · u1 ·Dij , Dij = ||xi − xj || (B.5.2)
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here, u1 ∈ [−1, 1] = random vector; Dij = distance between two members; tmax = maximum
iteration. The position of the pathfinder is updated according to the following equation:

xt+1
p = xt

p + 2r3 · (xt
p − xt−1

p ) + A (B.5.3)
here, u2 and r3 are random vectors between [−1, 1] and [0, 1], respectively.

B.5.3. Phase Changing Variable

A is fluctuation factor, responsible for switching in the exploration and exploitation phases.
It is calculated as follows:

A = u2 · e
−2t

tmax (B.5.4)
The position of the pathfinder provides the global optimum solution and converges

with increasing iterations.

B.6. Sine Cosine Optimization [82]

B.6.1. Behavior

Sine and cosine functions.

B.6.2. Learning Equations

The following equation decides the improved position and phase in Sine Cosine Optimization:

Xt+1
i =

{
Xt

i + r1 × sin(r2)× |r3P t
i −Xt

i |, r4 < 0.5
Xt

i + r1 × cos(r2)× |r3P t
i −Xt

ii|, r4 ≥ 0.5
(B.6.1)

and
r1 = a− t

a

T
(B.6.2)

here, Xt
i = position of the current solution in the i-th dimension at the t-th iteration; P t

i

= position of the destination point in the i− th dimension; r1, r2, r3 and r4 are random
numbers. The r1 is adaptive change calculated using Eq. B.6.2, which is responsible for
selecting the next search area; higher the value of r1, the greater is the search area. t =
current iteration; T = maximum number of iterations; a is a constant value. r2 parameter
decides the extent of the movement towards or away from the target and is in range [0, 2π].
r3 is in the range [−2, 2] and is a random weight score for the target that randomly asserts
(r3 > 1) or refutes (r3 < 1) the influence of the target in determining the distance. r4 is
used to switch between the sine and cosine functions and lies between [0, 1]. The algorithm
explores the search space when the sine and cosine functions range in (1, 2] and [−2,−1).
However, exploits when the range is in the interval of [−1, 1].
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B.7. Jaya Optimization [83]

B.7.1. Behavior

The value of function f(x), trying to get closer to f(x)best, the best value and avoid
f(x)worst, the worst value of function to be optimized.

B.7.2. Learning Equations

If n is the number of candidate solutions (k = 1, 2, ..., n) and m is number of design
variables (j = 1, 2, ..., m), then Xj,k,i is the value of j-th variable for the k-th candidate
during i-th iteration. It is updated based on the following equation:

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,b,i − |Xj,k,i|)− r2,j,i(Xj,w,i − |Xj,k,i|) (B.7.1)

here, Xj,b,i and Xj,w,i is the best and worst value for j-th variable. r1,j,i and r2,j,i is the
random number between [0, 1]. If updated solution is better, it is accepted and becomes
input for next iteration.

B.8. Crow Search Optimization[84]

B.8.1. Behavior

Crow’s mindful and intelligent behavior of stealing and hiding food.

B.8.2. Learning Equations

Crows live in flocks and remember the hiding place of their food. They follow each other
to steal the food and change their hiding places to avoid theft using probability. To begin
with, positions of N crows are randomly initialized in d-dimensional search space. With
iteration t, crow i will have memory of its hiding place, mi,t. This is the best position that
crow i has obtained so far.

Crows follow each other to search for the other food sources. Two cases arises, that is,
if crow knows it is being followed or not. If crow j doesn’t know that it is being followed
by crow i, crow i will change its position according to first case. If crow j knows it is being
followed by crow i, then random position is assigned. Following are the modeled equations:

xi,t+1 =
{

xi,t + ri × fli,t × (mj,t − xi,t) ri ≥ APj,t

random position otherwise
(B.8.1)

here, ri ∈ [0, 1] is a random number and fli,t is the flight length of i-th crow at t-th iteration.
If value of fl is small, local search is favored otherwise global search is supported. APj,t

and mj,t is the awareness probability and memory of j-th crow at iteration t, respectively.
AP helps in switching phases as high value of AP helps in exploration, while small value
of AP guides toward exploitation. Memory function is updated as follows:

mi,t+1 =
{

F (xi,t+1) F (xi,t+1) < F (mi,t)
mi,k otherwise

(B.8.2)
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here, F (.) represents the objective function.

B.9. Dragonfly Optimization [85]

B.9.1. Behavior

Swarming behavior of dragonflies – hunting (static swarm) and migration (dynamic swarm).

B.9.2. Learning Equations

Position of each search agent is updated with two vectors, step (∆X) and position (X).
Step vector represents direction of the movement of dragonflies and is calculated by adding
all the properties:

∆Xt+1 = sSi + aAi + cCi + fFi + eEi + w∆Xt (B.9.1)
here, s, a, c, f, and e are the weights associated with Separation (Si = −

∑N
j=1 X −Xj),

Alignment (Ai =
∑N

j=1 Vj

N ), Cohesion (Ci =
∑N

j=1 Xj

N −X), Attraction (Fi = X+ −X), and
Distraction (Ei = X− + X) of i-th search agent. N = total number of neighboring agents;
X = current agent; Xj = position of the j-th neighbor; Vj = velocity of the j-th neighbor;
X+ = position of the food; X− = position of the enemy; w = inertia weight; t = iteration
count. Position vector, Xt+1 = Xt + ∆Xt+1 is calculated next.

Swarming weights (s, a, c, f, e, and w) are tuned adaptively and the radii of neigh-
borhoods are increased proportional to the number of iterations to strike the balance
between exploration and exploitation. To add to the randomness and exploration of the
dragonflies movement, Le´vy flight is being introduced in the new position as follows:
Xt+1 = Xt + LF ×Xt.

B.10. Krill Herd Optimization [86]

B.10.1. Behavior

Swarming and foraging behaviour of Krills.

B.10.2. Learning Equations

The position of a krill is dependent on three crucial factors – movement induced by other
krills (Ni), foraging motion (Fi), and random diffusion (Di). This is modeled by the
following equation:

dxi

dt
= Ni + Fi + Di (B.10.1)

(i) Motion induced by other krills- The direction of motion induced for the i-th krill
is:

Nnew
i = Nmaxαi + ωnNold

i (B.10.2)
here, Nmax = maximum speed induced; ωn = inertia weight of motion induced in
the range [0, 1]; Nold

i = last motion induced. αi = αlocal
i + αtarget

i ; αlocal
i = local effect
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provided by the neighbors; αtarget
i = target direction effect provided by the best krill.

The impact of the neighboring krills in a krill movement is evaluated as follows:

αlocal
i =

n∑
j=1

K̂i,j x̂i,j (B.10.3)

here, K̂i,j = normalized value of the similarity vector of the i-th krill; x̂i,j = normalized
value of related positions for the i-th krill; n = total number of neighboring krills. K̂i,j

is evaluated as:

K̂i,j = Ki −Kj

Kworst −Kbest
(B.10.4)

here, Ki and Kj are the fitness value of i-th and j-th neighboring krill. Kworst and Kbest

are the worst and best value of fitness for a krill so far, respectively. x̂i,j is evaluated as:

x̂i,j = xj − xi

||xj − xi||+ ε
(B.10.5)

here, xi and xj are the positions of i-th krill and neighboring j-th krill. ||xj − xi|| is
the distance between j-th and i-th krill. ε is a small positive number added to avoid
singularities. A sensing distance (ds) is evaluated for each krill using formulae:

dsi = 1
5N

n∑
j=1
||xi − xj || (B.10.6)

here dsi = sensing distance for the i-th krill; N = number of krills. Factor 5 is empirically
obtained. If the distance of two krills is less than the defined sensing distance, they are
neighbors. αtarget

i is the effect of a krill with the best fitness on the i-th krill and leads
to global optima. It is evaluated as follows:

αtarget
i = CbestK̂i,bestx̂i,best (B.10.7)

here, K̂i,best = best objective function value of the i-th krill; x̂i,best = best position
value of the i-th krill. Cbest is the effective coefficient of the krill with the best fitness
to the i-th krill and is evaluated as:

Cbest = 2(rand + I

Imax
) (B.10.8)

here, rand ∈ [0, 1] = random number; I = current iteration; Imax = maximum number
of iterations.

(ii) Foraging motion- The foraging motion of the i-th krill is a factor of two parameters,
first is the food location, and the second is the previous experience with the food
location and is calculated as:

Fi = Vf βi + wf F old
i (B.10.9)

here, where Vf = parameter for tuning the foraging speed; βi = centroid location of
the i-th krill; wf = inertia weight of the foraging speed in the range [0, 1]; F old

i =
last foraging motion value for the i-th krill. The centroid location of the i-th krill is
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evaluated as follows:
βi = βfood

i + βbest
i (B.10.10)

here, βbest
i = best objective function value for the i-th individual; βfood

i is centroid
attractive of the i-th krill and is determined as follows:

βfood
i = CfoodK̂i,foodx̂i,food (B.10.11)

Cfood = 2(1− I

Imax
) (B.10.12)

here, K̂i,food and x̂i,food is the normalized value of the objective function and the
normalized value of the i-th centroid. The center of the individual’s food for each
iteration is calculated as:

xfood =
∑n

i=1
1

Ki
xi∑n

i=1
1

Ki

(B.10.13)

The effect of the best objective function value of the i-th krill is evaluated as:
βbest

i = K̂i,ibestx̂i,ibest (B.10.14)

here, K̂i,ibest and x̂i,ibest is the best previous objective function value, and the best
previously visited centroid of the i-th krill. The movement induced by other krills and
forging movement decrease with increasing iterations.

(iii) Physical diffusion- Physical diffusion is the net movement of each krill from high-density
to low-density regions. Physical diffusion for the i-th krill is determined as:

Di = Dmax(1− I

Imax
)ρ (B.10.15)

here, Dmax = parameter for tuning the diffusion speed; ρ refers to an array containing
random values between [1, 1].

(iv) Updating the krills- The motion is induced by other krills, foraging motion, and
physical diffusion change each krill’s position toward the best objective function using
the following equation:

xi(I + 1) = xi(I) +4t
dxi

dt
(B.10.16)

4t = Ct

n∑
i=1

(UBi − LBi) (B.10.17)

here, 4t = sensitive constant; n = total krills; LBi and UBi are the lower and upper
bounds of the i-th individual. Ct = constant value between [0, 2] used as a scale factor
of the speed vector.

B.11. Multi-Verse Optimization [87]

B.11.1. Behavior

The multi-verse theory, which implies that multiple universes have their own physical laws
and an inflation rate that causes their expansion in space.
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B.11.2. Learning Equations

Universes interact through white holes, black holes, and wormholes. White holes play a
significant role in the birth of the universe and have a high inflation rate. Black holes
have a colossal gravitational force that gulps everything inside, even light. Wormholes are
tunnels through which objects can travel among universes or galaxies. The fitness function
of each universe/solution is proportional to the inflation rate. Initially, universes are sorted
according to their inflation rates and one is selected randomly through the roulette wheel
mechanism to be a white hole. This is done by the following equation:

xj
i =

{
xj

k r1 < NI(Ui)
xj

i r1 ≥ NI(Ui)
(B.11.1)

here, U [n, d] = matrix represents the complete universe with all elements; d = total number
of parameters; n = number of universes. xj

i = j-th parameter in the i-th universe; NI

is normalized inflation rate of the i-th universe; r1 ∈ [0, 1] = random number; xj
k = j-th

parameter of the k-th universe chosen by roulette wheel. This allows universes to exchange
objects and improve inflation rates. Things are also randomly exchanged between universes
through wormholes, and it is assumed that wormholes are established between others and
the best universe formed yet. This mechanism can be formulated as follows:

xj
i =



{
Xj + TDR× ((ubj − lbj)× r4 + lbj) r3 < 0.5
Xj − TDR× ((ubj − lbj)× r4 + lbj) r3 ≥ 0.5

r2 < WEP

xj
i

r2 ≥WEP

(B.11.2)

here, Xj is the j-th parameter of the best universe obtained so far. ubj and lbj are the

upper and lower bound values of the j-th variable. xj
i is the j-th parameter of the i-th

universe, and r2, r3, r4 are random numbers between [0, 1]. WEP and TDR are coefficients
used in the equation and can be calculated using the formula:

WEP = min + l × (max−min

L
) (B.11.3)

TDR = 1− l1/p

L1/p
(B.11.4)

here, WEP (Wormhole Existence Probability) increases linearly over iterations to support
exploitation; l = maximum number of iteration; l = current iteration; max and min are 1
and 0.2 by default; TDR (Traveling Distance Rate) defines the distance rate by which an
object can be transferred to the best universe obtained yet; p = 6 is exploitation precision,
the higher its value, the faster the exploitation.
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B.12. Symbiotic Organisms Search [88]

B.12.1. Behavior

The symbiotic relationships that exist between paired organisms to survive in the ecosystem.

B.12.2. Learning Equations

Each organism in an algorithm is a solution in the d-dimensional search space, and they
are refined through three phases applied serially. The three phases are explained as follows:

(i) Mutualism – Mutualism relationship benefits both the interacting organisms. Let Xi

is an organism in search space, and Xj is a random candidate interacting with i-th
organism to increase mutual survival advantage. Their positions are updated according
to the following equations:

X∗
i = Xi + rand(0, 1) ∗ (Xbest −MutualV ector ∗BF1) (B.12.1)

X∗
j = Xj + rand(0, 1) ∗ (Xbest −MutualV ector ∗BF2) (B.12.2)

MutualV ector = Xi + Xj

2 (B.12.3)

here, rand is a random function that produces a number between 0 and 1. Xbest is the
best position searched by all organisms yet or best fitness value. BF1 and BF2 are the
benefit factor of i-th and j-th organism, respectively. Their values are either 1 or 2.

(ii) Commensalism – Commensalism only benefits one organism, and the other one
remains unaffected. The interaction between Xi and Xj is updated as follows:

X∗
i = Xi + rand(−1, 1) ∗ (Xbest −Xj) (B.12.4)

here, only Xi is benefited from the interaction while Xj neither benefits nor gets harmed
from it. (Xbest −Xj) represents that benefit.

(iii) Parasitism – In this phase, only one candidate benefits and the relationship harms the
other candidate. Parasite Vector is created in search space by copying Xi to interact
with host Xj . Parasite Vector replaces Xj if it has better fitness value; otherwise, Xj

survives.

Xj =
{

PV if f(PV ) > f(Xj)
Xj if f(PV ) ≤ f(Xj)

(B.12.5)

here, PV is a parasite vector and f(.) represents fitness function.

B.13. Flower Pollination Optimization [89]

B.13.1. Behavior

The reproduction mechanism of flowers through pollination in nature.

B.13.2. Exploration Equations

When pollinators such as bees that can fly far and may portray Lévy flight behavior,
contributes to cross-pollination and are considered global pollination. For single objective
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problems, it can be assumed that each plant has only one flower, and each flower has only
one pollen, referred to as a solution xi. Global pollination ensures the reproduction of the
most fittest flowers and can be represented as g∗. Consistency of a flower is its reproduction
probability and can be calculated using the following formula:

xt+1
i = xt

i + L(xt
i − g∗) (B.13.1)

here, xt
i is the solution vector at iteration t for pollen i and g∗ is the best solution found

yet. L is the step size drawn from Lévy flight distribution, it can be evaluated as:

L ∼
λΓ(λ)sin(πλ/2)

π

1
s1+λ

, (s >> s0 > 0) (B.13.2)

here, Γ(λ) is the standard gamma function with an index λ. This distribution works for
large step sizes, s > 0.

B.13.3. Exploitation Equations

Local pollination is when self-pollination happens through abiotic means. For local pollina-
tion, flower consistency is calculated as follows:

xt+1
i = xt

i + ε(xt
j − xt

k) (B.13.3)
here, xt

j and xt
k are pollens from the different flowers of the same plant species. If xt

j and
xt

k are selected from the same population and ε is from a uniform distribution in [0, 1],
this equation will represent the local random walk. The switch between local and global
pollination is controlled by parameter p which ranges between [0, 1].

B.14. Teaching Learning Based Optimization [90]

B.14.1. Behavior

The traditional teaching-learning phenomenon of a classroom.

B.14.2. Learning Equations

The teacher tries to train learners in the best way possible to increase their level of
knowledge. All the learners are the population and the teacher is the best solution. Design
variables are different subjects taught in the class, and the result is analogous to the fitness
value. Teaching is done in two phases:

(i) Teacher Phase – Learners learn from best learner, i.e. teacher. Teacher tries to elevate
the mean of class, best to his abilities. Let, Mi be the mean of class result and Ti be
the teacher at any iteration i. Ti will try to improve Mi to Mnew. So, new solution is
updated according to the following equation:

Xnew,i = Xold,i + ri(Mnew − TF Mi) (B.14.1)
here, ri ∈ [0, 1] = random number; TF is a teaching factor that can have value
either 1 or 2. It is a heuristic step and decided randomly with equal probability as
TF = round[1 + rand(0, 1){2− 1}].
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(ii) Learner Phase – Learners learn from teachers or among themselves through pre-
sentations, discussions or formal communication. A learner will gain knowledge if
another learner has more knowledge than him. For leaner Xi in the class, the updating
mechanism is as follows:

newXi =
{

Xi + rand · (Xi −Xk) f(Xi) < f(Xk)
Xi + rand · (Xk −Xi) otherwise

(B.14.2)

here, newXi = new positions of the i-th learner Xi; Xk = random learner from the
class; f(Xi) = fitness values of the learner Xi; f(Xk) = fitness values of the learner
Xk; rand ∈ [0, 1] = random number.

B.15. Gravitational Search Optimization [91]

B.15.1. Behavior

Newton’s law of gravity and the second law of motion.

B.15.2. Learning Equations

Each agent has its Position X, Active Gravitational Mass (Ma), Passive Gravitational
Mass (Mp), and Inertial Mass (Mi). The position is the solution of the problem and masses
are evaluated using the fitness function. Gravitational force applies to all agents; thus
global movement of all agents is forced towards heavier masses supporting exploitation
and an optimum solution in the search space. The system of N agents with their initial
positions is defined as follows:

Xi = (x1
i , x2

i , ......, xd
i , ........, xn

i ) for i = 1, 2, ......, N. (B.15.1)
here, xd

i is the position of the i-th search agent in the d-th dimension. At any given time t,
the gravitational force acting between agent i and agent j is:

F d
ij(t) = G(t)Mpi(t)×Maj(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (B.15.2)

here, Mpi = passive gravitational mass of the i-th object; Maj = active gravitational mass
of the j-th agent; ε is a constant; G(t) = gravitational constant at time t; Rij(t) is the
Euclidean distance between two agents i and j, can be calculated as:

Rij(t) =

√√√√ n∑
k=1

(Xik(t)−Xjk(t))2 (B.15.3)

To support exploration, a random factor is added to the total force acting on an agent.
It can be represented as:

F d
i (t) =

N∑
j=1,j 6=i

randj F d
ij(t) (B.15.4)
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here, randj is a random number between [0, 1]. According to the law of motion, acceleration
of the i-th agent in the d-th dimension at time t is:

ad
i (t) = F d

i (t)
Mii(t)

(B.15.5)

here, Mii is the inertial mass of the i-th agent. The next velocity and position of i-th agent
can be updated using following formulas:

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (B.15.6)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (B.15.7)

here, randi is a uniform random number in between [0, 1]. The gravitational constant will
be reduced over time to control the search accuracy. If it is assumed that gravitational and
inertial masses are equal, they can be updated as follows using the map of fitness:

Mai = Mpi = Mii = Mi, i = 1, 2, ..., N. (B.15.8)

Mi(t) = mi(t)∑N
j=1 mj(t)

(B.15.9)

mi(t) = fiti(t)− worst(t)
best(t)− worst(t) (B.15.10)

best(t) = min
j∈{1,2,...,N}

fitj(t) (B.15.11)

worst(t) = max
j∈{1,2,...,N}

fitj(t) (B.15.12)

here, fiti(t) is the fitness value of the i-th agent at time t. The number of agents over
iteration reduces to maintain a robust balance between exploration and exploitation, so
only heavy mass agents apply their force on other agents stored as Kbest. It is the function
of time, and has an initial value of K0 which decreases with time. Initially, all search agents
apply the force, and with each iteration, Kbest is linearly reduced and in the end, there
will be just one agent applying force to the others. Therefore, force is updated as:

F d
i (t) =

∑
j∈Kbest,j 6=i

randj F d
ij(t) (B.15.13)

here, Kbest is the set of first K agents with the best fitness value and biggest mass.

B.16. Biogeography-Based Optimization [92]

B.16.1. Behavior

The migration of species between islands.

B.16.2. Learning Equations

Habitats with good and favorable living conditions have high Habitat Suitability Index
(HSI), represents good solutions and have high emigration rate and low immigration rate.
Islands with low HSI represent poor solutions but have a high immigration rate due to their
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sparse species count and low emigration rate. Immigration and emigration rates are fitness
functions of a habitat. The factors influencing HSI are called Suitability Index Variables
(SIVs) and are considered to be the independent variables of the habitat. The algorithm
has two main steps, migration and mutation.

(i) Migration – It is a probabilistic operator that improves a habitat Hi. Each habitat’s
migration rate is used to share features between habitats. For each habitat Hi, its
immigration rate (λi) is used to decide whether or not to immigrate. If immigration is
selected, the emigrating habitat Hj is selected probabilistically based on the emigration
rate (µi). Rates and Migration are defined as follows:

µi = Ei

N
(B.16.1)

λi = I(1− i

N
) (B.16.2)

Hi(SIV )← Hj(SIV ) (B.16.3)
here, N is the total population size.

(ii) Mutation – It is a probabilistic operator that randomly modifies a habitat’s SIV based
on the habitat’s a priori species count probability. The purpose of mutation tends to
increase diversity among the population. For low HSI solutions, mutation gives them a
chance to enhance the quality of solutions, and for high HSI solutions, the mutation
can improve them even more than they already have.
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