

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.wroc.pl)
Lech Madeyski (Lech.Madeyski@pwr.wroc.pl, http://madeyski.e-informatyka.pl/)

Wrocław University of Technology
Institute of Applied Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
http://www.e-informatyka.pl/wiki/e-Informatica/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
othervise, without the prior written permission of the publishers.

Printed in the camera ready form

c© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2008

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

ISSN 1897-7979

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej.

Editorial Board
Editor-in-Chief

Zbigniew Huzar (Wrocław University of Technology, Poland)

Associate Editor-in-Chief

Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Macqarie University Sydney, Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Editorial
Zbigniew Huzar, Lech Madeyski . 7

Papers
Trustworthy Assembly of Components Using the B Refinement

Arnaud Lanoix, Jeanine Souquières . 9
Computation Independent Representation of the Problem Domain in MDA

Janis Osis, Erika Asnina, Andrejs Grave . 25
Integrating Human Judgment and Data Analysis to Identify Factors Influencing
Software Development Productivity

Adam Trendowicz, Michael Ochs, Axel Wickenkamp, Jürgen Münch,
Yasushi Ishigai, Takashi Kawaguchi . 41

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence
Diagrams

Philip Samuel, Rajib Mall . 61

Editorial

It is a pleasure to present to our readers
the second issue of the e-Informatica Software
Engineering Journal (ISEJ).

The mission of the e-Informatica Software
Engineering Journal is to be a prime interna-
tional journal to publish research findings and
IT industry experiences related to theory, prac-
tice and experimentation in software engineer-
ing. The scope of e-Informatica Software Engi-
neering Journal includes methodologies, prac-
tices, architectures, technologies and tools used
in processes along the software development
lifecycle, but particular interest is in empirical
evaluation.

The second issue of the e-Informatica Soft-
ware Engineering Journal includes four papers
carefully reviewed by Editorial Board members,
as well as by external reviewers, and then se-
lected by the editors. The first of the papers by
Lanoix and Souquières suggest to exploit exist-
ing notations, languages and tools to specify the
behavior of components and propose to use of B
assembling and refinement mechanisms to easy
the verification of the interoperability between

interfaces and the correctness of the compo-
nent assembly. The second paper by Osis et
al. proposes Topological Functioning Modeling
for Model Driven Architecture approach which
increases the degree of formalization, introduces
more formal analysis of the problem domain,
enables defining what the client needs, verifying
textual functional requirements, and checking
missing requirements in conformity with the
domain model. The third paper by Trendowicz
et al. proposes a novel approach for identifying
the most relevant factors influencing software
development productivity. The last paper by
Samuel and Mall presents a novel technique for
test case generation using dynamic slicing of
UML sequence diagrams.

We look forward to receiving quality contri-
butions from researchers and practitioners in
software engineering for the next issue of the
journal.

Editors
Zbigniew Huzar
Lech Madeyski

e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

Trustworthy Assembly of Components Using
the B Refinement

Arnaud Lanoix∗, Jeanine Souquières∗
∗LORIA – Nancy-Université, CNRS

Arnaud.Lanoix@loria.fr, Jeanine.Souquieres@loria.fr

Abstract
In component-based software development approaches, components are considered as black boxes,
communicating through required and provided interfaces which describe their visible behaviors.
In the best cases, the provided interfaces are checked to be compatible with the corresponding
required interfaces, but in general, adapters have to be introduced to connect them. We propose
to exploit existing notations and languages with their associated tools to specify working systems
out of components: UML composite structure diagrams to express the architecture in terms of
components and their interfaces, class diagrams, sequence diagrams and protocol state machines
to describe the behavior of each component. Component interfaces will then be expressed in B in
order to verify the interoperability. The use of B assembling and refinement mechanisms eases
the verification of the interoperability between interfaces and the correctness of the component
assembly.

1. Introduction

Recent works have shown that assembling com-
ponents independently produced and taking into
account the verification of their assembly with
appropriate tools is a promising approach devel-
opped since the nineties [14, 21]. The underlying
idea is to develop software systems by assembling
existing parts [8, 33], as it is common in other
engineering disciplines, such as electrical or me-
chanical engineering. Among the advantages of
such approaches, we can cite: (i) reusability of
trustworthy software components, (ii) reduction
of the development costs due to the reusabil-
ity, and (iii) flexibility of systems developed by
this approach. Assembling components needs
to be supported by design methods and verifi-
cation tools: on one hand, current technologies
of components [25, 28, 32, 34] do not take into
account safety requirements, on the other hand,
development and certification processes of critical
software, based on formal methods, is not well
suited to component-based approaches.

The development of component-based systems
introduces a fundamental evolution in the way
systems are acquired, integrated, deployed and
modified. Systems can be designed by examin-
ing existing components, like COTS or Commer-
cial Off-The-Shelf components, to see how they
meet the expected requirements and decide how
they can be integrated to provide the expected
functionalities. Next, the system is engineered by
assembling the selected components with some
locally developed pieces of code [10, 20].

Components are seen as black-boxes units
which only specify interfaces and explicit depen-
dencies. An interface describes services offered
and required by a component without disclosing
the component implementation. Component
interfaces are the only access to component infor-
mations and functionalities. The services offered
by a component are described by provided inter-
faces and the needed services are described by
required interfaces.

For different components to be deployed and
to work together, they must interoperate: their

10 Arnaud Lanoix, Jeanine Souquières

interfaces must be compatible through different
levels of compatibility depending on the require-
ments of the developed system. The syntactic
level covers signature aspects of attributes and
methods provided or required by the interfaces
whereas the semantic level concerns behavioral as-
pects of the considered methods and the protocol
level covers the allowed sequence of method calls.

The availability of formal languages and tool
support for specifying interfaces andchecking their
compatibility is necessary in order to verify the
interoperability of components. Our approach is
supported by a rigourous development method-
ology based on UML and the B method and is
introduced at the level of software architecture.
The idea to define component interfaces using B
has been introduced in an earlier paper [12]: se-
mantics and protocols of the component services
can be easily modeled using the B formal method.
The use of the B refinement [1] to prove that two
components are compatible at the signature and
semantics levels has been explored in [11]. To guar-
antee a trustworthy assembly of components, each
connection of a required interface with another
provided interface has tobe considered. In thebest
cases, the provided interface constitutes an imple-
mentation of the required interface. In general
cases, to construct a working system out of com-
ponents, adapters have to be defined. An adapter
is a piece of glue code that expresses the mapping
between a required and a provided interface. At
the signature level, it must express the mapping
between required and provided variables and how
the required methods are implemented in terms
of the provided ones. In [26], we have proposed a
first definition of an adapter in a simple case, with
only one required and one provided interface.

In this paper, we generalize the previous re-
sults, taking into account a more general assem-
bly of components with the use of both cases
of interfaces for different components to be con-
nected. We use the following notations:
– UML 2.0 [27] composite structure diagrams

serve to express the overall architecture of the
system in terms of components and interfaces.

– UML 2.0 class diagrams serve to express inter-
face data model with its different attributes
and operations.

– The usage protocol of each interface can be
modeled by a Protocol State Machine (PSM).

– UML 2.0 sequence diagrams serve to express
the interactions between the components to
be connected.

– The use of the formal method B [1] and its
associated tools serve to specify interfaces,
giving a special attention to correctness, in-
creasing confidence in the developed systems:
correctness of specifications, as well as correct-
ness of the followed process with verification
aspects.
In the following, we present the case study of

a simple access control system defined in terms
of components with a special focus on the iden-
tification component, itself defined in terms of
components. Section 3 exposes the trustworthy
assembly problem in a general manner. Section 3
presents a simple case of trustworthy component
assembly. Section 4 presents a more general
case of component assembly. Some related works
are discussed in Section 5 and Section 6 con-
cludes the paper.

2. Case Study: a Simple Access
Control System

We illustrate our purpose with the case study of a
simple access control system which manages the
access of authorized persons to existing build-
ings [2]. Persons who are authorized to enter
the building have to be identified. The needed
authentication informations may be stored on
an electronic access card or a sophisticated key
or a bar code pass, etc. Turnstiles block the
entrance and the exit of each building until an
authorization is given whereas identification sys-
tems are installed at each entrance and exit of
the concerned buildings. The means of identifica-
tion can be read to kept out the authentication
informations. It can be inserted and ejected and
must be taken by the user before a fixed time of
30 seconds, else it is retracted and kept by the
system.

A partial view of the architecture of the ac-
cess control system is given Figure 1 as a UML
2.0 composite structure diagram. Such diagrams

Trustworthy Assembly of Components Using the B Refinement 11

Identification

DB_Re

Entry_ReEntry_Pr

ID_Pr

ID_Re

Database

Entry
Turnstile

Exit
TurnstileAccessControl

Exit_Pr

Figure 1. Partial view of the architecture of the access control system

contain named rectangles corresponding to the
components of the system; here, we have depicted
four components: the AccessControl component
corresponding to the system requirements, an
Identification component corresponding to the
control of the identification, a Database com-
ponent which is a passive component knowing
informations about the authorization of each
concerned user and some Turnstile components.
They are connected by means of interfaces which
may be required or provided. Required interfaces
explicit the context dependencies of a compo-
nent and are denoted using the “socket” notation
whereas provided interfaces explain which func-
tionalities the considered component provides
and are denoted using the “lollipop” notation.

We will focus on the interactions between the
AccessControl and the Identification components.
Requirements concerning the Identification compo-
nent are expressed by the two interfaces of the Ac-
cessControl component. They have been outlined
in Figure 2; they are modeled by class diagrams
with their different attributes and methods:
– ID_Pr corresponds to its provided interface

related to the Identification component with
five operations: idInserted, idRead param-
eterized by some authentication informa-
tions represented by id, id Ejected, idTaken
and idRetracted.

– ID_Re corresponds to its required interface
which must be provided by an Identifica-
tion component with three operations, readId,
acceptedId and refusedId.

Enumerated data types are defined using the
stereotype “enum”. The usage protocol of each
interface is modeled by a Protocol State Machine
(PSM) as presented in Figure 2. A PSM specifies
the external behavior of the component, with the
order of the allowed method calls starting from
its initial state.
The B method. It is a formal software de-
velopment method based on set theory which
supports an incremental development process,
using refinement [1]. A development begins with
the definition of an abstract model, which can
be refined step by step until an implementation
is reached. The refinement of models is a key
feature for incrementally developing models from
textual descriptions, preserving correctness in
each step.

The method has been successfully applied in
the development of several complex real-life ap-
plications, such as the METEOR project [4]. It is
one of the few formal methods which has robust
and commercially available support tools for the
entire development life-cycle from specification
down to code generation [5]. The B method
provides structuring primitives that allow one
to compose machines in various ways. Large
systems can be specified in a modular way and
in an object-based manner [22, 24]. Proofs of
invariance and refinement are part of each devel-
opment. The proof obligations are generated au-
tomatically by support tools such as AtelierB [31]
or B4free [13], an academic version of AtelierB.
Checking proof obligations with B support tools

12 Arnaud Lanoix, Jeanine Souquières

<< interface >>
ID_Pr

ip_status :
ID_PR_STATUS
idInserted()
idRead(id : ID)
idEjected()
idTaken()
idRetracted()

<< enum >>
ID_PR_STATUS
IWait
IInserted
IRead
IEjected

ID_Pr_PSM

IWait IInserted

IReadIEjected

idInserted()

idRead(id0)

idEjected()
idTaken() idRetracted()

(a) Provided interface ID_Pr

<< interface >>
ID_Re

ir_status :
ID_RE_STATUS
readId()
acceptId()
refuseId()

<< enum >>
ID_RE_STATUS
WaitId
ReadId

ID_Re_PSM

WaitId ReadId

refuseId()

readId()

acceptId()

(b) Required interface ID_Re
Figure 2. Interfaces of AccessControl related to Identification

is an efficient and practical way to detect errors
introduced during development.
Example. For each interface given in Figure 2,
we give a B model as presented in Figure 3: each
model consists of a set of variables, invariant
properties of those variables and operations. The
state of the model, i.e. the set of variables values,
is modifiable by operations, which must preserve
its invariant:
– in the ID_Pr model, the variable id_status

has four possible states and its initial state
is IWait. After an idInserted() call, its state
is changed to IInserted,

– the ID_Re model expresses the required be-
haviors of the card reader. A variable, namely
ip_status, gives its state, which is initialized
with WaitId.
In an integrated development process, the B

models can be obtained by applying systematic
derivation rules from UML to B [23, 24].

Our purpose is to define the AccessControl
component using existing components available
on the market.

3. Component Trustworthy Assembly

Components must be assembled in an appro-
priate way. Interoperability means the ability
of components to communicate and to cooper-
ate despite differences in their implementation
language, their execution environment, or their
model abstraction [35]. Two components are
interoperable if all their interfaces are compati-

ble [11]. More precisely, it means that, for each
required interface of a considered component,
there exists a compatible interface which is pro-
vided by another existing component. Three
main levels of interfaces compatibility are con-
sidered and checked:
– the syntactic level covers static aspects and

concerns the interface signature. Each at-
tribute of the required interface must have
a counterpart in the provided one; for each
method of the required interface, there exists
an operation of the provided interface with
the same signature,

– the semantic level covers behavioral aspects,
– the protocol level deals with the expression

of functional properties (like the order in
which a component expects its methods to
be called).
A provided interface can propose more func-

tionalities (attributes, methods, behaviors, pro-
tocols, etc.) than the required one needs, but
all the functionalities used by the required in-
terface must be proposed by the provided one.
The process of proving interoperability between
components is described in [11].

Often, to construct a working assembly out
of components, adapters have to be defined, con-
necting the required interfaces to the provided
ones. An adapter is a new component that re-
alizes the required interface using the provided
interface. At the signature level, it expresses
the mapping between required and provided vari-
ables. At the behavioral and protocol levels, it
expresses how the required operations are imple-

Trustworthy Assembly of Components Using the B Refinement 13

MODEL
ID_Pr

SEES
Type

VARIABLES
ip_status

INVARIANT
ip_status ∈ ID_PR_STATUS

INITIALISATION
ip_status := IWait

OPERATIONS
idInserted =
PRE ip_status = IWait
THEN ip_status := IInserted
END ;

idRead(uid) =
PRE uid ∈ UID ∧ ip_status = IInserted
THEN ip_status := IRead
END ;

idEjected =
PRE ip_status = IRead
THEN ip_status := IEjected
END ;

idTaken =
PRE ip_status = IEjected
THEN ip_status := IWait
END ;

idRetracted =
PRE ip_status = IEjected
THEN ip_status := IWait
END

END

(a) Provided interface ID_Pr

MODEL
ID_Re

SEES
Type

VARIABLES
ir_status

INVARIANT
ir_status ∈ ID_RE_STATUS

INITIALISATION
ir_status := WaitId

OPERATIONS
readId =

PRE ir_status = WaitId
THEN ir_status := ReadId
END ;

acceptId =
PRE ir_status = ReadId
THEN ir_status := WaitId
END ;

refuseId =
PRE ir_status = ReadId
THEN ir_status := WaitId
END

END

(b) Required interface ID_Re

Figure 3. B Models for the interfaces of AccessControl

mented in terms of the provided ones. In [26],
we have studied the adapter specification and its
verification using B. We have given a B model
of the adaptation that must refine the B model
of the required interface including the provided
incompatible interface.

More generally, the component assembly
concerns the use of both types of interfaces
for different components to be connected. We
show that the component assembly is a gen-
eralization of the adaptation problem: a new
specific component is introduced to manage the
needed components. It realizes all the required
interfaces of the considered components using
their provided interfaces.
Example. Let us use a component Identifica-
tion1 whose description is given in Figure 4 to an-
swer the requirements of AccessControl presented
Section 2. It is a card reader equipped with two
lights, a green one and a red one. These lights
indicate if the authorization has been accepted

(the green light turns on) or denied (the red light
turns on). The two lights cannot be turned on
at the same time.

The component Identification1 is equipped
with two interfaces:
– Its provided interface Ident_Pr, related to

a system controller. Its two variables green
and red give the state of two lights: the green
light must be turned on if the authorization
has been accepted (acceptIdent), otherwise
the red light must be turned on (refuseIdent).
An invariance property expresses that the
two lights cannot be turned on at the same
time, as expressed in the B model given in
Figure 7a.

– Its required interface Ident_Re, related to
a system controller which is similar to the
ID_Pr provided interface of the AccessControl
component previously defined.
To ensure that the assembly of components

Identification1 and AccessControl is trustworthy

14 Arnaud Lanoix, Jeanine Souquières

Identification1

<< interface >>
Ident_Re

ip_status :
ID_PR_STATUS
idInserted()
idRead(id : ID)
idEjected()
idTaken()
idRetracted()

Ident_Re_PSM

IWait IInserted

IReadIEjected

idInserted()

idRead(id0)

idEjected()
idTaken() idRetracted()

<< interface >>
Ident_Pr

green : SWITCH
red : SWITCH
readIdent()
acceptIdent()
refuseIdent()

<< uses >>

<< realizes >>
<< enum >>
SWITCH

On
Off

Ident_Pr_PSM

Init Lights
Off

refuseIndent()

readIdent()
acceptIdent()

Green
On

Red
On

readIdent()

readIdent()

Figure 4. An existing component Identification1

[26], we must prove that the corresponding in-
terfaces are compatible, as seen in Figure 5. We
decompose this proof into two steps.

Access
Control

<< interface >>

Ident_Pr

...

<< interface >>

ID_Re

...

<< uses >><< realizes >>

<< realizes >>

Adapter1

<< uses >>

<< interface >>

Ident_Re

...

<< interface >>

ID_Pr

...

<< uses >>
<< realizes >>

<< realizes >>

Identification1

Figure 5. Identification1 and AccessControl assembly

3.1. Compatibility between Ident_Re
and ID_Pr

We have to prove that ID_Pr realizes Ident_Re.
This property can be expressed by the B refine-
ment concept. We show that the B model of
ID_Pr is a correct refinement of the B model of
Ident_Re. That means that the methods of the
provided interface implement directly the meth-
ods of the required interface. In this example,
the proof of this refinement is obvious.

We conclude that the required interface
Ident_Re of the component Identification1 is com-
patible with the provided interface ID_Pr of
the AccessControl component. The interoper-
ability is verified at the signature, semantic and
protocol levels.

3.2. Adaptation between ID_Re
and Ident_Pr

When looking at the required interface ID_Re
of the component AccessControl, as expressed
in Figure 2, it is obvious that it is not directly
compatible with the interface Ident_Pr of the
component Identification1, as shown in Figure 4.
We propose to introduce a new component, called
Adapter1, to map correctly these two incompati-
ble interfaces. In terms of UML, this new com-
ponent realizes ID_Re, using Ident_Pr.

The correctness of this adaptation can be
proved using the B method. It is expressed by
the schema presented Figure 6, in which Adapter1
is modeled by a refinement which:
– refines the B model of the required interface

ID_Re and
– includes the B model of the provided interface

Ident_Pr.

REFINESINCLUDES

MODEL
 Ident_Pr
OPERATIONS
 readIdent
 acceptIdent
 refuseIdent
END

REFINEMENT
 Adapter1
END

MODEL
 ID_Re
OPERATIONS
 readId
 acceptId
 refuseId
END

Figure 6. B adaptation between ID_Re and Ident_Pr

The B model of the component Adapter1 pro-
posed in Figure 7b expresses the mapping be-
tween the two interfaces. The invariant clause,
or gluing invariant, makes the correspondence
between the required and the provided attributes.

Trustworthy Assembly of Components Using the B Refinement 15

MODEL
Ident_Pr

SEES
Type

VARIABLES
green, red

INVARIANT
green ∈ SWITCH
∧ red ∈ SWITCH
∧ ¬(green = On ∧ red = On)

INITIALISATION
green, red := Off, Off

OPERATIONS
readIdent =

PRE green 6= red
THEN green := Off ‖ red := Off
END ;

acceptIdent =
PRE green = Off ∧ red = Off
THEN green := On
END ;

refuseIdent =
PRE green = Off ∧ red = Off
THEN red := On
END

END

(a) B Model of Ident_Pr

REFINEMENT
Adapter1

REFINES
ID_Re

SEES
Type

INCLUDES
Ident_Pr

INVARIANT
((green 6= red)
⇒ (ir_status = WaitId))
∧ ((green = red ∧ red = Off)
⇒ (ir_status = ReadId))

OPERATIONS
readId =

BEGIN
readIdent
END ;

acceptId =
BEGIN
acceptIdent
END ;

refuseId =
BEGIN
refuseIdent
END

END

(b) B Model of Adapter1

Figure 7. B models for the adaptation

The variable ir_status required by the access con-
trol is defined in terms of the two variables green
and red provided by the identification. The oper-
ation clause defines how the required methods, i.e.
readId, acceptId and refuseId are implemented by
the provided ones, readIdent, acceptIdent and re-
fuseIdent.

To prove this refinement, B4free generates
12 obvious proof obligations and 5 proof obli-
gations. As an example, we show in Figure 8
one of these proof obligations concerning the
refinement of the method acceptId: we have to
prove that red = Off (expressed by red$1 =
SW_Off on B4free), using the listed hypothe-
ses. This proof concerns the preservation of
the invariant of Adapter1 by the precondition
of the used method acceptIndent of Indent_Pr.
The 5 proof olbigations are automatically dis-
charged by B4free. As a consequence, Adapter1
implements ID_Re in terms of Ident_Pr. We are
able to assemble Identification1 to AccessControl
through Adapter1.

4. General Case of Component
Trustworthy Assembly

Let us define an identification component cor-
responding to the previous requirements given
section 3 in terms of three existing components,
namely CardReader, Timer and MultiLights. The
component CardReader is used to read the authen-
tication informations on an access card and the
component Timer to indicate the time limit.
Green and red lights are provided by the compo-
nent MultiLights.

The general case of component assembly con-
cerns the use of both type of interfaces for different
components to be connected. A new specific com-
ponent is defined to manage these components. It
realizes all the required interfaces of the considered
components using their provided interfaces.

4.1. Existing components

The functionality of each component is known
by its interface descriptions presented below as

16 Arnaud Lanoix, Jeanine Souquières

Figure 8. One of the proof obligations of the refinement of acceptId

CardReader
<< interface >>

Card_Pr

readCard()
ejectCard()
retractCard()

<< interface >>
Card_Re

cardInserted()
cardRead(id : ID)
cardTaken()

Card_Pr_PSM

Read Eject

Retract

readCard()

ejectCard()retractCard()

ejectCard()

Card_Re_PSM

Inserted Read

Taken

cardInserted()

card
Read(id)cardTaken()

cardRead(id)

Figure 9. Component CardReader and its interfaces Card_Pr and Card_Re

Timer << interface >>
Timer_Pr

status : SWITCH
start(time : Integer)
interrupt()

<< interface >>
Timer_Re

timeReached()
Timer_Pr_PSM

Off

On

start(time)
interrupt()

Figure 10. Component Timer and its interfaces Timer_Pr and Timer_Re

MultiLights

<< interface >>
MLight_Pr

color : COLOR
switch : SWITCH
choose(new : COLOR)
on()
off()

<< enum >>
COLOR

Blue
Green
Red
Yellow
Purple

MLight_Pr_PSM

Off

On

on()Off()

choose(color)

Figure 11. Component MultiLights and its provided interface MLight_Pr

Trustworthy Assembly of Components Using the B Refinement 17

UML 2.0 diagrams associated to B models for
behavioral and protocol specifications.

The component CardReader. This com-
ponent reads identification informations from
an access card. It is equipped with two inter-
faces, as presented in Figure 9, a provided one
named Card_Pr with three methods (readCard(),
ejectCard() and retractCard()) and a required one
named Card_Re which receives messages from
its controller by the way of three methods.

The component Timer. As presented in Fig-
ure 10, this component has two interfaces. The
provided one, Timer_Pr, offers two functionalities:
it can be started with a fixed time and interrupted
before the timeout is reached. When the timeout is
reached, the timer sends this information through
its required interface Timer_Re.

The component MultiLights. This compo-
nent presented in Figure 11 is a light box that
proposes several color lights. It offers, by the way
of its provided interface MLight_Pr, the following
functionalities: the chosen light can be turned on
or turned off. When the light is turned off, one
can choose a light color from predefined ones.

4.2. The component Identification2

A component Identification2 can be defined by
assembling these three existing components, as
depicted in Figure 12 in order to fulfill the
requirements. The required and provided in-
terfacesIdent_Re and Ident_Pr of Identification2
have to be defined in terms of the compo-
nents CardReader, Timer and MultiLights through
their interfaces Card_Re, Card_Pr, Timer_Re,
Timer_Pr and MLight_Pr.

A “new” component Controller is introduced
to manage the interactions between all these
interfaces. Identification2 delegates to Controller
its interfaces Ident_Re and Ident_Pr:
– Controller realizes for Identification2 the inter-

face Ident_Pr, and
– Controller uses through Identification2 the in-

terface Ident_Re.
Figure 13 shows the sequence of operation

calls between all the components to be assembled
to produce Identification2: there is the adaptation
protocol between all the interfaces, that shows

Identification2

CardReader

Timer

MultiLights

Card_Pr

Card_Re

MLight_Pr

Timer_Pr

Timer_Re

Controller

Ident_Re

Ident_Pr

Figure 12. Architecture of the component
Identification2

for all the required operations, the reaction in
terms of provided operations calls.

To prove that the assembly of CardReader,
Timer and MultiLights through Controller is cor-
rect, we must prove that Controller:
– realizes the provided interface Ident_Pr dele-

gated by Identification2, realizes the required
interface Card_Re of CardReader, and realizes
the required interface Timer_Re of Timer,

– uses the provided interfaces Card_Pr,
Timer_Pr and MLight_Pr of the three exist-
ing components, and the required interface
Ident_Re delegated by Identification2.
This UML 2.0 architecture can be expressed

by the B architecture given in Figure 14 with
two levels of refinement:
– the B abstract model, Controller_abs, which

extends all the interfaces to be realized,
– the B refinement model, Controller, which

– includes all the interfaces to be used, and
– refines the abstract model Controller_abs.
The B refinement model of Controller is given

in Figure 15:
– the available components are included, i.e.

Ident_Re, Card_Pr, Timer_Re and MLight_Pr
– its gluing invariant expresses how to obtain

the required attributes green and red from the
attributes color and switch of the provided
interfaces,

– the operations clause describes all the needed
methods in terms of the used ones. The se-
quence diagram, given in Figure 13, which

18 Arnaud Lanoix, Jeanine Souquières

AccessControl
Controller CardReader Timer MultiLights

Identification2

readIdent()
readCard()

cardRead(id)
idRead(id)

acceptIdent()
start(30)

choose (Green)
on()

ejectCard()idEjected()

refuseIdent()
start(30)

choose (Red)
on()

ejectCard()idEjected()

cardInserted()
idInserted()

cardTaken()

idTaken() interrupt()
off()

off()retractCard()
timeReached()

idRetracted()

alt

alt

Figure 13. Sequence diagram for the Identification2 component

EXTENDS

REFINES
EXTENDS INCLUDES

INCLUDES

INCLUDES

INCLUDES
EXTENDS

MODEL
 Ident_Pr
OPERATIONS
 readIdent
 acceptIdent
 refuseIdent
END

MODEL
 Controller_abs
END

REFINEMENT
 Controller
END

MODEL
 Timer_Re
OPERATIONS
 timeReached
END

MODEL
 Card_Re
OPERATIONS
 cardInserted
 cardRead(id)
 cardTaken
END

MODEL
 Card_Pr
OPERATIONS
 readCard
 ejectCard
 retractCard
END

MODEL
 MLight_Pr
OPERATIONS
 choose(new)
 on
 off
END

MODEL
 Ident_Re
OPERATIONS
 idInserted
 idRead(id)
 idEjected
 idTaken
 idRetracted
END

MODEL
 Timer_Pr
OPERATIONS
 start(time)
 interrupt
END

Figure 14. B architecture of the component Controller

Trustworthy Assembly of Components Using the B Refinement 19

gives the protocol of the adaptation can help
us to express these needed methods.
As an example, let us consider the needed

method acceptIdent() of the Ident_Pr interface
of Identification2. This method is called when
an inserted card has been authorized to enter
the building. The required result, as expressed
in the sequence diagram of Figure 13 must be
that a green light is turned on during a fixed
time and the card is ejected. This requirement
is expressed in the B operation acceptIdent by:
1. a timer is started: start(30),
2. the light’s color is fixed to green if it is neces-

sary (method choose(green)) before the light
is turned on (method on),

3. the card is ejected, ejectCard, and
4. the environment is informed, isEjected.

We prove using B4free that the proposed com-
ponent Controller is a correct implementation of
the required functionalities in terms of the three
existing components. With the B prover, we
check
– that Controller refines all the required inter-

faces. This guarantees that the required be-
havioral and protocol aspects are preserved
by the assembling. Of course, the signature
level is also considered,

– the correctness of the use of the provided in-
terfaces by the inclusion of their B interface
models.
The example of adapters presented in this

paper is a part of the case study of an access
control system, as presented in section 2. The
AccessControl system is equipped with other in-
terfaces not presented in this paper as shown
in Figure 1: DB_Re, to be connected with a
database and Entry_Pr, Entry_Re, and Exit_Pr,
to manage turnstiles. Existing components are
used to answer the requirements of the Access-
Control system. The Database component pro-
vides an interface Database_Pr to access to the
stored informations and the Turnstile component
has two interfaces Turn_Pr and Turn_Re to lock
and unlock the turnstile. The access control
system has been completely developped using
our component-based approach. AccessControl
must be connected to other components through
specific adapters. In this paper, we have pre-

sented Adapter1 and Controller. Other adapters
Entry1, Entry2, Exit1 and Database1 (decomposed
into three steps of refinement to ease the proof,
giving three versions of the adapter) are similarly
defined. The Table 1 gives an idea about all the
proof obligations generated and discharged for
the different components and adapters.

Table 1. POs of AccessControl

Obvious
POs

Interactives

POs POs

ID_Pr 11 0 0
ID_Re 7 0 0
Entry_Re 5 0 0
Exit_Pr 3 0 0
DB_Re 12 10 4
Ident_Pr 13 1 0
Ident_Re 11 0 0
Card_Pr 6 1 0
Card_Re 6 1 0
Timer_Pr 5 0 0
Timer_Re 0 0 0
MLight_Pr 11 0 0
Turn_Pr 5 0 0
Turn_Re 3 0 0
Database_Pr 3 0 0
Adapter1 12 5 0
Controller_abs 10 0 0
Controller 45 6 2
Entry1 9 2 0
Entry2 3 0 0
Database1-1 6 2 2
Database1-2 6 2 2
Database1-3 5 8 2
TOTAL 203 38 12

5. Related Works

In an earlier paper [19], we have investigated the
necessary ingredients a component specification
must have in order to be useful for assembly of a
software system out of components. These ingre-
dients are independent of concrete component
models. We have proposed a method consisting
of four steps to guide this process.

Several proposals for verifying the interop-
erability between components have been made.
In [15], Estevez and Fillottrani analyze how to
apply algebraic specifications with refinement to

20 Arnaud Lanoix, Jeanine Souquières

REFINEMENT
Controller

REFINES
Controller_abs

SEES
Type

INCLUDES
Ident_Re, Card_Pr, Timer_Pr, MLight_Pr

INVARIANT
((color = Green ∧ switch = SW_On) ⇒ green = SW_On)
∧ (¬(color = Green ∧ switch = SW_On) ⇒ green = SW_Off)
∧ ((color = Red ∧ switch = SW_On) ⇒ red = SW_On)
∧ (¬(color = Red ∧ switch = SW_On) ⇒ red = SW_Off)

OPERATIONS
/∗ Ident_Pr ∗/
readIdent =

BEGIN
readCard
END ;

acceptIdent =
BEGIN
start (30) ;
IF color = Green THEN on
ELSE choose(Green) ; on
END ;
ejectCard ; idEjected
END ;

refuseIdent =
BEGIN
start (30) ;
IF color = Red THEN on
ELSE choose(Red) ; on
END ;
ejectCard ; idEjected
END ;

/∗ Timer_Re ∗/
timeReached =

BEGIN
retractCard ; off ; idRetracted
END ;

/∗ Card_Re ∗/
cardInserted =

BEGIN
idInserted
END ;

cardRead(uid) =
BEGIN
idRead(uid)
END ;

cardTaken =
BEGIN
off ; interrupt ; idTaken
END

END

Figure 15. B Model of the component Controller

component development, with a restriction to
the use of modules that are described as class
expressions in a formal specification language.
They present several refinement steps for compo-
nent development, introducing in each one design
decisions and implementation details.

Our work focuses on the verification of inter-
operability of components through their inter-
faces using B assembling and refinement mecha-
nisms.

Zaremski and Wing [36] propose an approach
to compare two software components. They de-
termine whether one required component can be
substituted by another one. They use formal
specifications to model the behavior of compo-
nents and exploit the Larch prover to verify the
specification matching of components.

In [9], a subset of the polyadic π-calculus is
used to deal with the component interoperability
at the protocol level. π-calculus is a well suited
language for describing component interactions.
Its main limitation is the low-level description of
the used language and its minimalistic semantic.
In [17, 18], protocols are specified using a tem-
poral logic based approach, which leads to a rich
specification for component interfaces. Henzinger
and Alfaro [3] propose an approach allowing the

verification of interfaces interoperability based
on automata and game theories: this approach
is well suited for checking the interface compat-
ibility at the protocol level. In [6], the three
levels of interface compatibilities are considered
on web service interfaces described by transition
systems.

Several proposals for component adaptation
have already been made. The need of adaptation
and assembly mechanisms was recognized in the
late nineties [8, 14, 20]).

Some practice-oriented studies have been de-
voted to analyze different issues when one is
faced with the adaptation of a third-party com-
ponent [16]. A formal foundation to the notion
of interoperability and component adaptation
was set up in [35]. Component behavior specifi-
cations are given by finite state machines which
are well known and support simple and efficient
verification techniques for the protocol compat-
ibility. Braccalia & al. [7] specify an adapter
as a set of correspondences between methods
and parameters of the required and provided
components. An adapter is formalized as a set
of properties expressed in π-calculus. From this
specification and from both interfaces, they gen-
erate a concrete implementable adapter.

Trustworthy Assembly of Components Using the B Refinement 21

Reussner and Schmit consider a certain class
of protocol interoperability problems in the con-
text of concurrent systems. For bridging com-
ponent protocol incompatibilities, they generate
adapters using interfaces described by finite state
machines [29, 30].

Automatic generation of adapters is limited
as one has to ensure the decidability of the in-
terfaces inclusion problem, which is necessary to
perform automated interoperability checks; one
could only generate adapters for specific classes
of assembly.

In our approach, we are not only concerned
with specific classes of interoperability but with
adapters in general. We propose to give general
schemes to specify and verify adapters, not to
generate them automatically.

6. Conclusion and Perspectives

The success of the component-based paradigm
has received considerable attention in the soft-
ware development field in industry and academia
like in other engineering domains. We have pre-
sented an approach which contributes to specify
component-based systems with high safety re-
quirements. Our approach concerns the first
steps of the system development life-cycle, from
the requirements phase to the specification one,
and aims at using existing languages and tools.
We focus on the integration of components and
the assembly mechanisms: components are con-
sidered as black-boxes described by their visible
behavior and their required and provided inter-
faces. To construct a working system out of
existing components, adapters are introduced.
An adapter is a piece of glue code that expresses
the mapping between required and provided vari-
ables and how required methods are implemented
in terms of the provided ones. We have presented
a general schema of assembly with both cases of
interfaces.

The use of the B formal method and its refine-
ment and assembling mechanisms to model the
component interfaces and the adapters allows us
to define rigorously the interoperability between
components and to check it with support tools.

The B prover guarantees that the adapter is
a correct implementation of the required func-
tionalities in terms of the existing components.
Within this approach, the verification of the inter-
operability between the connected components is
done at three levels, the signature, the semantic
and the protocol levels.

We are currently working on extending this
approach when additional abnormal behaviors
are introduced to increase dependability of our
component architecture and to preserve the nor-
mal cases. We have introduced two kinds of
dependability mechanisms, one for security and
one for safety. To extend the proposed approach,
we study the definition of adapter schemas corre-
sponding to different cases of component architec-
ture. The idea is not to automatically generate
the adapters, but to propose schemas to develop
and verify the adaptation.

References

[1] J.-R. Abrial. The B Book. Cambridge University
Press, 1996.

[2] AFADL’2000. Etude de cas : système de con-
trôle d’accès. In Journées AFADL, Approches
formelles dans l’assistance au développement de
logiciels, 2000. actes LSR/IMAG.

[3] L. Alfaro and T.A. Henzinger. Interface au-
tomata. In 9th Annual Aymposium on Foun-
dations of Software Engineering, FSE, pages
109–120. ACM Press, 2001.

[4] P. Behm, P. Benoit, and J.M. Meynadier. ME-
TEOR: A Successful Application of B in a Large
Project. In Integrated Formal Methods, IFM99,
volume 1708 of LNCS, pages 369–387. Springer
Verlag, 1999.

[5] D. Bert, S. Boulmé, M-L. Potet, A. Requet, and
L. Voisin. Adaptable Translator of B Specifica-
tions to Embedded C Programs. In Integrated
Formal Method, IFM ’03, volume 2805 of LNCS,
pages 94–113. Springer Verlag, 2003.

[6] D. Beyer, A. Chakrabarti, and T.A. Henzinger.
Web service interfaces. In Proceedings of the
14th International World Wide Web Conference
(WWW 2005), pages 148–159. ACM Press, 2005.

[7] A. Bracciali, A. Brogi, and C. Canal. A formal
approach to component adaptation. In Journal
of Systems and Software, volume 74, pages 45–54.
Elsevier Science Inc., 2005.

[8] A.W. Brown and K.C. Wallnan. Engineering
of component-based systems. In Proceedings of

22 Arnaud Lanoix, Jeanine Souquières

the 2nd IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS
’96), page 414. IEEE Computer Society, 1996.

[9] C. Canal, L. Fuentes, E. Pimentel, J-M. Troya,
and A. Vallecillo. Extending CORBA in-
terfaces with protocols. Computer Journal,
44(5):448–462, 2001.

[10] C. Canal, J.M. Murillo, and P Poizat. Software
adaptation. L’Objet, 12(1):9–31, 2006.

[11] S. Chouali, M. Heisel, and J. Souquières. Proving
Component Interoperability with B Refinement.
Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), 160:157–172, 2006.

[12] S. Chouali and J. Souquières. Verifying the
compatibility of component interfaces using the
B formal method. In International Conference
on Software Engineering Research and Practice
(SERP’05), pages 850–856. CSREA Press, 2005.

[13] Clearsy. B4free, 2004. http://www.b4free.
com.

[14] I. Crnkovic, S. Larsson, and M. Chaudron.
Component-based development process and com-
ponent lifecycle. In 27th International Confer-
ence Information Technology Interfaces (ITI).
IEEE, 2005.

[15] E. Estevez and P. Fillottrani. Algebraic Speci-
fications and Refinement for Component-Based
Development using RAISE. Journal of Computer
Science and Technologie, 2(7):28–33, 2002.

[16] D. Garlan, R. Allen, and J. Ockerbloom. Ar-
chitectural Mismatch: Why Reuse is so Hard.
IEEE Software, 12(6):17–26, 1999.

[17] J. Han. A comprehensive interface definition
framework for software components. In The
1998 Asia Pacific software engineering confer-
ence, pages 110–117. IEEE Computer Society,
1998.

[18] J. Han. Temporal logic based specification of
component interaction protocols. In Proceedings
of the Second Workshop on Object Interoperabil-
ity ECOOP’2000, pages 12–16. Springer-Verlag,
2000.

[19] D. Hatebur, M. Heisel, and J. Souquières. A
Method for Component-Based Software and Sys-
tem Development. In Proceedings of the 32nd
Euromicro Conference on Software Engineering
And Advanced Applications, pages 72–80. IEEE
Computer Society, 2006.

[20] G. Heineman and H. Ohlenbusch. An evaluation
of component adaptation techniques. Technical
Report WPI-CS-TR-98-20, Department of Com-

puter Science, Worcester Polytechnic Institute,
February 1999.

[21] M. Heisel, T. Santen, and J. Souquières. Toward
a formal model of software components. In Proc.
4th International Conference on Formal Engi-
neering Methods - ICFEM’02, number 2495 in
LNCS, pages 57–68. Springer-Verlag, 2002.

[22] H. Ledang and J. Souquières. Modeling class op-
erations in B: application to UML behavioral di-
agrams. In ASE’2001: 16th IEEE International
Conference on Automated Software Engineering,
pages 289–296. IEEE Computer Society, 2001.

[23] H. Ledang and J. Souquières. Contributions
for modelling UML state-charts in B. In Third
International Conference on Integrated Formal
Methods – IFM’2002, pages 109–127, Turku, Fin-
land, 2002.

[24] E. Meyer and J. Souquières. A systematic
approach to transform OMT diagrams to a
B specification. In Proceedings of the For-
mal Method Conference, number 1708 in LNCS,
pages 875–895. Springer-Verlag, 1999.

[25] Microsoft. .Net. http://www.microsoft.com/
net.

[26] I. Mouakher, A. Lanoix, and J. Souquières. Com-
ponent Adaptation: Specification and Verifica-
tion. In Proc. of the 11th Int. Workshop on
Component Oriented Programming (WCOP’06),
satellite workshop of ECOOP 2006, pages 23–30,
2006.

[27] Object Management Group (OMG). UML Su-
perstructure Specification, 2005. version 2.0.

[28] Object Mangagement Group (OMG). Corba
Component Model Specification, 2006. version
4.0.

[29] R.H. Reussner, H.W. Schmidt, and I.H. Po-
ernomo. Reasoning on software architectures
with contractually specified components. In
A. Cechich, M. Piattini, and A. Vallecillo, editors,
Component-Based Software Quality: Methods
and Techniques, pages 287–325, 2003.

[30] H.W. Schmidt and R.H. Reussner. Generating
adapters fo concurrent component protocol syn-
chronisation. In I. Crnkovic, S. Larsson, and
J. Stafford, editors, Proceeding of the 5th IFIP
International conference on Formal Methods for
Open Object-based Distributed Systems, pages
213–229, 2002.

[31] Steria – Technologies de l’information. Obliga-
tions de preuve: Manuel de référence, version
3.0, 1998.

Trustworthy Assembly of Components Using the B Refinement 23

[32] Sun Microsystems. JSR 220: Enterprise Java-
Beans, 2006. Version 3.0, Final Realase.

[33] C. Szyperski. Component Software. ACM Press,
Addison-Wesley, 1999.

[34] W3C. Web Services. http://www.w3.org/
2002/ws.

[35] D.D.M. Yellin and R.E. Strom. Protocol specifi-

cations and component adaptors. ACM Transac-
tions on Programming Languages and Systems,
19(2):292–333, 1997.

[36] A.M. Zaremski and J.M. Wing. Specification
matching of software components. ACM Trans-
action on Software Engeniering Methodolology,
6(4):333–369, 1997.

e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

Computation Independent Representation of
the Problem Domain in MDA

Janis Osis∗, Erika Asnina∗, Andrejs Grave∗
∗Faculty of Computer Science and Information Technology, Institute of Applied Computer Systems,

Riga Technical University
janis.osis@cs.rtu.lv, erika.asnina@cs.rtu.lv, andrejs.grave@cs.rtu.lv

Abstract
The object-oriented analysis suggests semiformal use-case driven techniques for problem domain
modeling from a computation independent viewpoint. The proposed approach called Topological
Functioning Modeling for Model Driven Architecture (TFMfMDA) increases the degree of for-
malization. It uses formal mathematical foundations of Topological Functioning Model (TFM).
TFMfMDA introduces more formal analysis of the problem domain, enables defining what the
client needs, verifying textual functional requirements, and checking missing requirements in
conformity with the domain model. A use case model of the application to be build is defined
from the TFM using a goal-based method. Graph transformation from the TFM to a conceptual
model enables definition of domain concepts and their interrelation. This paper also outlines
requirements to the tool to support TFMfMDA.

1. Introduction

The purpose of this work is to introduce more for-
malism into the problem domain modeling within
OMG Model Driven Architecture R© (MDA R©) [19]
in object-oriented software development. The
main idea is to introduce a more formal defini-
tion of consistency between real world phenom-
ena and an application that will work within
these phenomena without introducing complex,
hard to understand mathematics used while
composing Computation Independent Models
(CIMs). For that purpose, formalism of a Topo-
logical Functioning Model (TFM) is used [22].
A TFM provides a holistical representation
of system’s complete functionality from the
computation-independent viewpoint.

This paper is organized as follows. Section 2
describes related work. Section 3 describes key
principles of MDA, and discusses suggested solu-
tions of computation independent modeling and
their weaknesses in the object-oriented analysis

within MDA. Section 4 discusses a developed
approach, i.e. Topological Functioning Modeling
for Model Driven Architecture (TFMfMDA), that
makes it possible to use a formal model, i.e. a
TFM, as a computation independent one without
introducing complex mathematics. Besides that,
it allows verifying of functional requirements at
the beginning of analysis. TFMfMDA is illus-
trated by an application example in Section 5.
Section 6 shows TFMfMDA conformity to the
MDA Foundation Model. Section 7 describes
requirements to the tool that should partially
support automation of TFMfMDA. Conclusions
state further directions of the research.

2. Related Work

Our work completely supports Jackson’s work,
which states that “...the principal parts of a soft-
ware development problem are the machine, the
problem world, and the requirements...” [15].

26 Janis Osis, Erika Asnina, Andrejs Grave

Knowledge about

the problem

domain

Client’s

requirements

System

Requirements

Specification

Use Case

Model

Conceptual

Model

Intuitive identification

Functional

characteristics

of the problem

domain

Characteristics

of the

application at

the high level

of abstraction

Assisting questions, goals,

categories of concepts and

concept relations

The CIM level

Figure 1. The current state of creation of the CIM in OOA

We also assume that the first step in the re-
quirements gathering should be analysis of the
“problem world” or “business” [10]. Therefore
within TFMfMDA, the TFM describes function-
ality of the “problem world”, while requirements
describe functionality of the solution.

Analysis of the “business” context is also un-
derstood in goal-oriented requirements gathering
approaches. Unfortunately, most of them are
solution-orientated. Successful exceptions are
KAOS methodology that analyzes the “problem
world” and deals with conflicts by global repre-
sentation of goals and agents [7], the i∗ modeling
framework that investigates agents that are as-
sumed to be strategic and whose intentionality
are only partially revealed [24], and, in some
degree, the Requirement Abstraction Model [13]
that links product requirements to organization’s
strategies. However, all these approaches operate
rather with organization’s strategic goals than
with organization’s functionality.

3. Construction of the CIM
within MDA

Within MDA, the CIM usually includes sev-
eral distinct models that describe system re-
quirements, business processes and objects, an
environment the system will work within, etc.
Object-oriented analysis (OOA) is a semiformal
specification technique that contains three steps:
a) use case modeling, b) class modeling, and
c) dynamic modeling. Use case usage is not

systematic in comparison with systematic ap-
proaches that enable identifying of system re-
quirement majority. Creation of use case models
and determination of concepts and concept rela-
tions usually are rather informal than semiformal.
Figure 1 shows several of the existing approaches
of creating the mentioned models. Some ap-
proaches apply assisting questions [16, 18], cate-
gory lists of concepts and concept relations (or
noun-verb analysis) [17], or goals [6, 18] in order
to identify use cases and concepts from the de-
scription of the system (in the form of informal
description, expert interviewing, etc.). Other
approaches draft a system requirements speci-
fication using classical requirements gathering
techniques. Then these requirements are used
for identification of use cases and creation of
conceptual models. The most complete way is
identification of use cases and concepts having
knowledge of the problem world as well as a
system requirements specification [2].

Use case modeling starts with some ini-
tial estimation (a tentative idea) about
where the system boundary lies. For ex-
ample, in the Unified Process [2], use cases are
driven by requirements to the solution (but the
business model is underestimated, and, thus, sys-
tem boundaries are being identified intuitively),
any requirement gathering technique can be
applied, and requirements traceability to use
cases is ad hoc defined. The B.O.O.M. ap-
proach [23] uses business-scope and system-scope
use cases to make the solution more consistent
with the problem world. The business-scope

Computation Independent Representation of the Problem Domain in MDA 27

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

Functional
characteristics
of the problem

domain

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Characteristics of
the application at
the high level of
abstraction

Figure 2. Creation of the CIM using TFMfMDA

use cases are used as a requirements gathering
technique. Unfortunately, they are IT project
driven not business driven. This means that
analysis of the existing and planned business
logic is also solution-oriented. Besides that, the
traceability between system-scope use cases and
business-scope use cases is captured with use-case
packages that have their bottlenecks (intuitive
and ad hoc creation; changes in business pro-
cesses cannot be traceable in a natural way, etc.).
Alistair Cockburn’s approach [6] structures use
cases with goals at different abstraction levels:
system scope, goal specification, and interaction
details. Despite benefits of such structuring, this
approach also does not have proper problem do-
main analysis, and the multilevel character of
the technique is not easy for everyone.

This means that the priority of problem do-
main modeling is very low. Thus, system func-
tioning and its structure are based on intuitive
understanding of the environment the system will
work within. Until now use cases relate to the
narrow area, where the real world interacts di-
rectly with the system (the solution), and, hence,
focuses requirement analyst’s attention on events
that happen within the solution boundaries, but
the properties of the surrounding real world can
remain underestimated, e.g., software system
requirements can conflict with rules that exist
in the organization. Besides that, fragmentary
nature of use cases does not give any answer
on questions about: a) identifying all of the use
cases for the system; b) conflicts among use cases;
c) gaps that can be left in system requirements;
d) how changes can affect behavior that other use

cases describe [10, 11]. Use case checklists cannot
completely help here, because reviews of lists of
use cases are made only based on knowledge of
the solution domain without formal connection
to system’s functionality in the problem world.

We consider that understanding and model-
ing the problem domain should be the primary
stage in the software development, especially in
case of embedded and complex business systems,
which failure can lead to huge losses. This means
that use cases must be applied as a part of a
technique, whose first activity is construction
of a well-defined problem domain model. Such
an approach – Topological Functioning Modeling
for Model Driven Architecture (TFMfMDA) is
suggested in this paper. This research can be
considered as a step towards MDA completeness
and, therefore, towards MDA maturity.

4. Topological Functioning Modeling
for MDA

This section discusses the proposed TFMfMDA
approach. TFMfMDA main steps illustrated by
bold lines in Figure 2 are discussed further in the
paper. The approach is based on the formalism of
a Topological Functioning Model and uses some
capabilities of universal category logic [4, 3, 22].

As previously discussed, there are two in-
terrelated branches at the beginning of system
analysis: The first one is analysis of the problem
world (the business or enterprise level), and the
second one is analysis of the possible solution (the
application level). Having knowledge about the

28 Janis Osis, Erika Asnina, Andrejs Grave

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at
the high level of
abstraction

Figure 3. Construction of the TFM within TFMfMDA

complex system that operates in the real world,
a topological functioning model of this system
could be composed (Figure 2). This composed
TFM is used to verify functional requirements
and may be partially changed by them. TFM
functional features are associated with business
goals of the system; this provides identification of
business-scope use cases as well as system-scope
use cases in conformity with problem world’s ac-
tualities. As a result, functional requirements are
not only in conformity with the business-scope
system’s functionality but also can be traceable
to the system-scope use case model. Problem
domain concepts are selected and described in
UML Class Diagram.

The TFM has a rigor mathematical base. It
is represented in the form of topological space
(X,Θ), where X is a finite set of functional fea-
tures of the system under consideration, and Θ is
the topology that satisfies axioms of topological
structures and is represented in the form of a
directed graph. “In combinatorial topology, the
goal is to represent a topological space as an
union of simple pieces. The word ‘combinato-
rial’ is used to suggest that the properties of the
topological space rely on how the simple pieces
are arranged. A graph is a simple combinatorial
topological space.” [5]. The necessary condi-
tion for construction of the topological space
is a meaningful exhaustive verbal, graphical, or
mathematical description of the system. The
adequacy of the model describing functioning of
a system can be achieved by analyzing mathe-
matical properties of such an abstract object [22].

A TFM has as topological properties,
namely, connectedness, closure, neighborhood,

and continuous mapping, as functional proper-
ties, namely, cause–effect relations, cycle struc-
ture, inputs and outputs. These properties set
model capabilities such as formal separation of
subsystems, formal abstraction and refinement
of the TFM, and analysis of similarities and
differences of functioning systems. The last
point relates to the structure of cycles in the
TFM. It is proved that every business and tech-
nical system is a subsystem of its environment.
The common characteristic of functionality of
all systems (technical, business, or biological)
is a main feedback circuit, whose visualiza-
tion is an oriented cycle. Therefore, topolog-
ical modeling states that at least one directed
closed loop must be in every topological model
of system functioning. This cycle visualizes
the “main” functionality that has vital impor-
tance to the system’s life. Usually feedback is
expressed as an expanded hierarchy of cycles.
Therefore, proper analysis of cycles is manda-
tory in composing the TFM, because it supports
careful analysis of system’s operation and inter-
action with its environment [21]. Composition
of the TFM is discussed in Section 4.1.

4.1. Construction of the Topological
Functioning Model

This section discusses construction of the TFM
that represents the problem world in business
context (Figure 3). Its steps illustrated in Fig-
ure 4 are the following: a) Definition of physi-
cal or business functional characteristics, b) In-
troduction of the topology, and c) Separation
of the TFM.

Computation Independent Representation of the Problem Domain in MDA 29

Definition of physical or
business functional

characteristics

Introduction of the
topology

Separation of the
topological functioning

model

Informal
System Description

Objects
Functional Features
External Systems

Cause-and-effect
Relations

Topological Functioning
Model

Information
about changes

Figure 4. The method of construction of the TFM

Definition of physical or business func-
tional characteristics consists of the follow-
ing activities: 1) Definition of objects and their
properties from the description of the problem
world is performed by noun analysis, i.e. by es-
tablishing as meaningful nouns and their direct
objects as handling synonyms and homonyms; 2)
Identification of external systems (objects that
are not subordinated to the system rules) and
partially-dependent systems (objects that are
partially subordinated to the system rules, e.g.
workers’ roles); and 3) Definition of functional
features is performed by verb analysis, i.e. by
founding meaningful verbs in the description.
Each functional feature is a unique tuple <A,
R, O, PrCond, E>, where A is an object ac-
tion, R is a result of this action, O is an ob-
ject (objects) that receives the result or that
is used in this action (for example, a role, a
time period, a catalog, etc.), PrCond is a set
PrCond = {c1 . . . ci}, where ci is a precondition
or an atomic business rule (optional), and E is
an entity responsible for action performing. Each
precondition and atomic business rule must be
either defined as a functional feature or assigned
to the already defined functional feature. Two
forms of textual descriptions are defined. The
first is the more detailed form: <action>-ing the
<result> [to,into,in,by,of,from] a(n) <object>,
[PrCond,] E. An example is “Check-ing out the
availability of a copy, PrCond = {a valid reader
account}, E = a librarian”. The latter is the
more abstract form: <action>-ing a(n) <ob-
ject>, [PrCond,] E. An example is “Check-ing

out a copy, PrCond = {a copy is available},
E = a librarian”.

Introduction of the topology Θ is the
establishing of cause–effect relations between
functional features. Cause-effect relations are
represented as arcs of a digraph that are ori-
ented from a cause vertex to an effect vertex.
A structure of such relations can form a causal
chain, wherein each relation is important.

Morevoer, cause–effect relations can form cy-
cles. Therefore, cause–effect relations should be
carefully checked whether they form cycles or
subcycles in order to completely identify exist-
ing functionality of the system. The main cycle
(cycles) of system functioning (i.e. functionality
that is vitally necessary for system life) must
be found and analyzed before starting further
analysis. In case of studying a complex system, a
TFM can be separated into a series of subsystems
according to identified cycles.

Separation of the topological function-
ing model is performed by applying the closure
operation over a set of system’s inner functional
features [22]. A topological space is a system
represented by Z = N

⋃
M . Where N is a set

of system’s inner functional features, and M is
a set of functional features of other systems in-
teracting with the system or those of the system
itself, which affect external systems. The TFM
(X,Θ) is separated from the topological space of
the problem world by the closure operation over
the set N as it is shown by the equation

X = [N] =
n⋃
η=1

Xη.

30 Janis Osis, Erika Asnina, Andrejs Grave

Where Xη is an adherence point of the set N
and capacity of X is the number n of adherence
points of N . An adherence point of the set N
is a point, whose each neighborhood includes at
least one point from the set N . The neighbor-
hood of a vertex x in a digraph is the set of all
vertices adjacent to x and the vertex x itself. It
is assumed here that all vertices adjacent to x lie
at the distance d = 1 from x on ends of output
arcs from x. Moreover, a TFM can be separated
into a series of subsystems by the closures of
chosen subsets of N . The closure is illustrated
in Section 5.

4.2. Functional Requirements
Conformity to the TFM

The next step is verification of functional require-
ments (hereafter: requirements) whether they are
in conformity with the constructed TFM. TFM
functional features specify functionality that ex-
ists in the problem world, and functional require-
ments specify functionality that must exist in the
solution [14]. Thus, it is possible to map require-
ments onto TFM functional features (Figure 5).

Mappings are specifyed using arrow predi-
cates. An arrow predicate is a construct bor-
rowed from the universal categorical logic. Uni-
versal categorical (arrow diagram) logic for com-
puter science was explored in detail in Zinovy
Diskin’s et al. work [8].

Within TFMfMDA, five types of mappings
together with corresponding arrow predicates
are defined. One to One. Inclusion predicate
(Figure 6a) is used if the requirement A com-
pletely specifies what will be implemented in
accordance with the functional feature B. Many
to One. Covering predicate (Figure 6b) is used
if the requirements A1, A2, . . . , An overlap the
specification of what will be implemented in
accordance with the functional feature B. In
case of the covering requirements, their specifi-
cation should be precised. Disjoint (component)
predicate (Figure 6c) is used if the requirements
A1, A2, . . . , An together completely specify the
functional feature B and do not overlap each
other. One to Many. Projection (Figure 6d) is
used if some part of the functional requirement

A incompletely specifies the functional feature
Bi. Separating family of functions (Figure 6e)
is used if one requirement A completely spec-
ifies several functional features B1, . . . , Bn. It
can be because: a) the requirement joins several
ones and can be split up, or b) the functional
features are more detailed than the requirement.
One to Zero. One requirement specifies new
or undefined functionality. In this particular
case it is necessary to define possible changes
of the problem domain’s functioning (see Fig-
ure 4 “Information about changes”). Zero to
One. The requirements specification does not
contain any requirement related to the defined
functional feature. This means that it can be
a missed requirement and, hence, it could be
not implemented in the application. Thus, it is
mandatory to take a decision about implemen-
tation of the discovered functionality together
with the client.

The result of this activity are both verified re-
quirements and the TFM, which describes needed
(and possible) functionality of the system and its
environment.

4.3. Construction of the Use Case Model

The next step is transition from the model of the
problem world constrained by the requirements
to the use case model, supporting the possibility
of more formal tracing of requirements to use
cases (Figure 7).

This activity includes the following steps:
a) Identification of system’s users and their goals,
b) Identification and refinement of system use
cases, and c) Prioritization of use cases (and
requirements).

Identification of system’s users and
their goals. At this stage, the TFM repre-
sents functionality of the problem world con-
strained by the requirements. System’s users
can be those, who interacts within the business
system (workers) and with the business system
(actors). Actors are external companies, clients,
etc. Workers are system’s inner entities (hu-
mans, roles, etc.) Identification of system users’
direct goals is related to the identification of the
corresponding set of functional features that are

Computation Independent Representation of the Problem Domain in MDA 31

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at the
high level of
abstraction

Figure 5. Making functional requirements in conformity with the TFM

A B

 A
1 ... Ai

 ...

A
nB

[cov]

f
1 f

i

fn

 A
1 ... Ai ...

A
n

B

[disj]
A B

i

 A

 B1 ... Bn

f1 fn
[1-1]

a) b) c) d) e)

Figure 6. Functional requirements mapping onto TFM functional features

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in
 c

on
fo

rm
ity

w

ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at the
high level of
abstraction

Figure 7. Construction of the use case model within TFMfMDA

necessary for satisfaction of these goals. A goal
as a means for identification of use case has been
chosen because it can be achieved performing
some process that can be long running. The
time gap cannot do this. For each goal, an input
functional feature (input transaction), an output
functional feature (output transaction), and a
functional feature chain between them can be
defined. Both actors and workers can be users of
the application. Identification of system-scope
goals helps in verifying additional requirements,
e.g., for discovering “missing” requirements.

Identification and refinement of system
use cases. Functional features mapped by func-
tional requirements that are grouped together
by a goal describe functionality necessary for
achievement of this goal, and, hence, describe
a system-scope use case. System’s users that
establish the goal are (UML) actors that com-
municates with such use cases. This principle
enables formal identification of a use case model
from the TFM. However, this principle provides
also additional possibilities for refinement of the
system use cases. An inclusion use case is some

32 Janis Osis, Erika Asnina, Andrejs Grave

R
e
fi
n
e

A
b
s
tr
a
c
t

1-1

Topological
functioning model

Refined topological
functioning model

Graph of
domain objects

Conceptual
Model

b)

Knowledge
about the

system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

goal-based
identification

graph transformation
The CIM level

a)

Functional
characteristics
of the problem

domain

Characteristics
of the application at
the high level
of abstraction

in

c
o

n
fo

rm
it
y

w
it
h

Figure 8. The step (a) and the process (b) of construction of the conceptual model

common sequence for several use cases. In the
TFM, it is an intersection of sets of functional
features that belongs to more than one system
goals. Each common functional feature must be
analyzed. The common functional feature in the
main flow of a use case is a candidate to an in-
clusion use case. An extension use case shows an
alternative way of the scenarios execution. In the
TFM, it is functional features in a sub-cycle or
a branch, existing within the system goal. The
point of branch beginning is an extending point.
Identified use cases can be represented in UML
Activity Diagram by transforming functional fea-
tures into diagram’s activities, and cause–effect
relations into diagram’s control flows.

Prioritization of use cases. Prioritization
of use cases and, thus, functional requirements
can be done in accordance with client’s desires
or using requirements attribute systems, e.g.
MoSCoW or GRASP [2]. Within TFMfMDA,
priorities of implementation of use cases are de-
fined in conformity with the TFM main cycle as
follows (in accordance with the Rational Unified
Process): a) critical (must be implemented other-
wise the application will not be acceptable) – if a
use case implements any functional feature that
belongs to the main functional cycle; b) impor-
tant (it would significantly affect the usability of
the application) – if a use case implements any
functional feature that is a cause or an effect of
a functional feature that belongs to the main
cycle; and c) useful (it has a low impact on the
acceptability of the application) – if a use case
does not implement any functional feature of the
main cycle or functional feature that affects or
is affected by a functional feature that belongs
to the main cycle.

4.4. Construction of the Conceptual
Model

The last step of TFMfMDA is identification of the
conceptual model. After requirements mapping,
the TFM represents functionality that must be
implemented in the application, and includes all
concepts that are necessary for proper system’s
functioning (Figure 8a).

In order to obtain a conceptual model, it is
necessary to detail each TFM functional feature
to the level when it describes only objects of one
type. This more precise model must be trans-
formed one-to-one into a graph of domain objects.
Then vertices with objects of the same type must
be merged keeping all cause–effect relationships
to graph vertices, which contain objects of other
types (this is illustrated by the example in Sec-
tion 5). The result is a graph of domain objects
with indirect associations (Figure 8b). In order
to make these relations more precise, the graph
can be transformed into a sketch [8], then refined,
and represented as a refined conceptual model.
This transformation also indicates possible in-
heritance relations among types, and common
operations, which can further be transformed
into use case interfaces.

5. An Example of Application

This section gives an example of apllying
TFMfMDA. Let us consider the small fragment
of an informal description of the system from
the project, within which the application for a
library was developed. In this fragment, nouns
are denoted by italic, verbs are denoted by

Computation Independent Representation of the Problem Domain in MDA 33

bold, and action pre- (or post-) conditions are
underlined.

“When an unregistered person arrives, the
librarian creates a new reader account and a
reader card. The librarian gives out the card
to the reader. When the reader completes the
request for a book, hi gives it to the librarian.
The librarian checks out the requested book
from a book fund to a reader, if the book copy
is available in a book fund. When the reader
returns the book copy, the librarian takes it
back and returns the book to the book fund.
He imposes the fine if the term of the loan is
exceeded, the book is lost, or is damaged. When
the reader pays the fine, the librarian closes
the fine. If the book copy is hardly damaged, the
librarian completes the statement of utilization,
and sends the book copy to the Utilizer.”

Construction of the TFM. The identified
objects (or concepts) are the following: a) in-
ner objects are a librarian (L), a book copy (a
synonym is a book), a reader account, a reader
card, a request for a book, a fine, a loan term,
a statement of utilization, book fund, and b)
external objects are a person (P), a reader (R),
and an utilizer (U).

The identified functional features are repre-
sented as <number: a description of the func-
tional feature, a precondition, a repsonsible en-
tity and subordination>, where “In” denotes
“inner”, and “Ex” denotes “external” subordi-
nation. They are the following: 1: Arriving a
person, {}, P, Ex; 2: Creating a reader account,
{unregistered person}, L, In; 3: Creating a
reader card, {}, L, In; 4: Giving out the reader
card to a reader, {}, L, In; 5: Getting a reader
status, {}, R, Ex; 6: Completing a request for
a book, {}, R, In; 7: Sending a request for a
book, {}, L, In; 8: Checking out the book copy
from a book fund, {}, L, In; 9: Checking out
the book copy to a reader, {completed request
AND book copy is available}, L, In; 10: Giving
out a book copy, {}, L, In; 11: Getting a book
copy, {}, R, Ex; 12: Returning a book copy, {},
R, Ex; 13: Tacking back a book copy, {}, L, In;
14: Checking the term of loan of a book copy,
{}, L, In; 15: Evaluating the condition of a
book copy, {}, L, In; 16: Imposing a fine, {the

loan term is exceeded OR the lost book OR the
damaged book}, L, In; 17: Returning the book
copy to a book fund, {}, L, In; 18: Paying a
fine, {imposed fine}, R, In; 19: Closing a fine,
{paid fine}, L, In; 20: Completing a statement
of utilization, {hardly damaged book copy}, L,
In; 21: Sending the book copy to Utilizer, {},
L, In; 22: Utilizing a book copy, {}, U, Ex.

In order to define system’s functionality –
the set X, we perform the closuring operation
over the set of system’s inner functional features
N ={2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
19, 20}. The set of external functional features
and system’s functional features that affect the
external systems M = {1, 4, 5, 18, 21, 22}. The
neighborhood of each element of the set N is as
follows: X2 = {2, 3}, X3 = {3, 4}, X6 = {6, 7},
X7 = {7, 17}, X8 = {8, 9}, X9 = {9, 10},
X10 = {10, 11}, X11 = {11, 5}, X12 = {12, 13},
X13 = {13, 14}, X14 = {14, 15, 16}, X15 =
{15, 16, 17, 20}, X16 = {16, 19}, X17 = {17, 8},
X19 = {19}, X20 = {20, 21}. The obtained set is
X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 19, 20, 21}.

The identified cause–effect relations between
the functional features are illustrated in Fig-
ure 9a. The main functional cycle is defined
by an expert and includes the following func-
tional features “17-8-9-10-11-5-12-13-14-15-17”.
It is denoted by bold lines in Figure 9a. These
functional features describe checking out and
taking back a book. They are assumed to be
main, because have a major impact on business
system’s operation. The example of the first
order subcycle is “5-6-7-17-8-9-10-11-5”.

Functional requirements conformity
to the TFM. Let us assume that the drafted
functional requirements (FR) are as follows.
FR1: The system shall perform registration
of a new reader; FR2: The system shall per-
form check out of a book copy; FR3: The
system shall perform check in of a book copy;
FR4: The system shall perform imposing of a
fine to a reader; and FR5: The system shall
perform handling of an unsatisfied request (the
description: the unsatisfied request should be
added to the wait list; when a book copy is
returned to the book fund, the system checks

34 Janis Osis, Erika Asnina, Andrejs Grave

2425 23

11

22

20

21 16

19

15

18
13

14
12

9
7

8

6

1 2 3 4 5

10

1711

22

2021

16

19

15

18 13

14

12

9

7

8

6

1 2 3 4 5

10

17

a) b)

26

FR1

2

FR2 FR3 FR4 FR5

3 4 7 98 1514 17 16 19 23 24 25

[1-1] [1-1][1-1] [1-1] [1-1]

13 26

c)
Figure 9. The topological space (a) and the modified topological space (b) of the library functioning;

the correspondence between requirements and TFM functional features (c)

what request can be satisfied and, in success,
informs the readers by SMS).

FR1 maps onto the functional features 2, 3,
and 4, i.e. FR1 = {2, 3, 4}; FR2 = {7, 8, 9},
FR3 = {13, 14, 15, 17}, FR4 = {16}. The func-
tional requirement FR5 describes new functional-
ity that must be implemented in the application
and introduced in the business activities of the
system. System’s functionality described in the
TFM by the functional features 18, 19, 20, and
21 is not specified by requirements. This means
that more careful analysis of the requirements
and problem world is needed, because they can
be missed. The better way in this situation
is to specify these features in the requirements
specification (and as use cases). The final de-
cision must be taken together with the client
that is warned beforehand about possible nega-
tive aftereffects. In this context, the interesting
one is the functional feature 19, which describes
closing of an imposed fine. It should be imple-
mented. Therefore, FR4 is modified as “The
system shall perform imposing and closing of a
fine to a reader”. Hence, FR4 = {16, 19}.

The new functionality introduced by FR5
can be described by new identified objects
(the system, a wait list and SMS), and the
following functional features – 23: Adding
the request_for_a_book in a wait list, {un-
available book}, L, In; 24: Checking the re-

quest_for_a_book in a wait list, {a book copy
is returned to the book fund}, system, In; 25: In-
forming the reader by SMS, {a request in the wait
list can be satisfied}, system, In; 26: Avoiding a
request for a book, {book copy is not available},
system, In.

Introducing this functionality into the TFM,
we must recheck all the existing cause–effect rela-
tions between the previously identified functional
features taking into account possible changes in
causes and effects. The set N = {2, 3, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24}.
The set M = {1, 4, 5, 18, 21, 22, 25, 26}. After
the closuring, the set X = {2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23,
24, 25, 26}. The result is the model represented
in Figure 9b. The final correspondence between
the functional features and requirements is illus-
trated in Figure 9c. All the identified mappings
of the requirements onto the functional features
have the type “one-to-many”.

Construction of the use case model. In
order to define use cases, system’s users and their
goals together with necessary functional features
are identified. System’s users (Librarian, and
System) are transformed into UML actors, goal
names into use case names, and functional fea-
tures into steps of the corresponding use cases.
The resulting use case model, functional features
to be implemented, and implementation prior-

Computation Independent Representation of the Problem Domain in MDA 35

ities of use cases defined accordingly to TFM
functioning cycles are illustrated in Figure 10a.
Figure 10b shows how two of the use cases can be
described in UML Activity Diagram using infor-
mation from the TFM, where functional features
are transformed into activities, but cause–effect
relations into control flows.

Construction of the conceptual model.
The step of the TFM refinement is skipped, be-
cause each functional feature takes a deal with
objects of the only one type. Figure 11 shows
transformation of the TFM to the graph of do-
main objects. Additionally, Figure 12a reflects
this graph after the gluing all graph vertices that
represent functional features with objects of the
same types. This reflects the idea proposed in
[20, 21, 22] that the holistic representation of the
domain by means of the TFM enables identify-
ing of all necessary domain concepts, and, even,
enables defining their necessity for successful im-
plementation of the system.

6. MOF-based Metamodel of
TFMfMDA

In compliance with [1], the Foundation Model of
MDA requires that a metamodel of each model-
ing language used within MDA must be defined
in Meta Object Facility (MOF) terms for con-
formance purposes. Therefore, a metamodel of
TFMfMDA concepts was defined as well as an
UML profile for TFMfMDA [4].

The MOF is a core standard of MDA. Its ar-
chitecture has four metalevels. They are named
M3, M2, M1 and M0 [12]. Conceptually the level
M3 is the MOF itself, i.e. a set of constructs used
to define metamodels. M2 describes instances
of constructs from M3. M1 includes instances
of metamodel constructs from M2. Finally, the
level M0 describes objects and data that are
instances of elements from M1. TFMfMDA con-
structs are made in conformity with these met-
alevels as illustrated in Figure 12b. The meta-
model for TFMfMDA is described at the level
M2 [22]. These metamodel illustrated in Fig-
ure 13 specifies how TFMfMDA concepts related
to each other.

A topological functioning model is an in-
stance of the type TFMTopologicalFunctioning-
Model that includes at least two functional fea-
tures of the type TFMFunctionalFeature. They
can be united in functional feature sets (TFM-
FunctionalFeatureSet). This means that a func-
tional feature represented in the TFM can vi-
sualize a functional feature set. One functional
feature can contain only one set and one func-
tional feature can belong only to the one set.
A functional feature can be subordinated to a
business system itself or to an external system
(Subordination). Functional features can form
functioning cycles (TFMCycle) of different order.
Functional features are connected by cause–effect
relations. A causal functional feature must have
at least one effect. An effect functional feature
must have at list one cause. Functional features
are mapped by functional requirements (TFM-
FunctionalRequirement) via the correspondence
(TFMCorrespondance). The correspondence is
many to many in general. It can be complete or
incomplete, overlapping or disjoint. Functional
features can be associated with several goals
(TFMUserGoal) that are established by direct
users (TFMUserRole) of the business system.
The users can be external entities that interact
with the business system (TFMBusinessActor)
or workers that interact within the business sys-
tem (TFMBusinessWorker). A user goal can be
specialized to a business goal (TFMUserBusi-
nessGoal) and to a system goal (TFMUserSys-
temGoal). The latter includes functional features
to be implemented. This means that it includes
functionality that is specified in the functional
requirements specification. A user goal and, thus,
corresponding functional requirements, are as-
sociated with functioning cycles, whose order
affect a benefit value (Benefit) of implementing
requirements.

7. Requirements to the Tool to
Support TFMfMDA

As previously mentioned, TFMfMDA introduces
certain formalism into the problem domain
modeling from the computation independent

36 Janis Osis, Erika Asnina, Andrejs Grave

Important

Register a reader

Close a fine

Check out a book

Librarian

Impose a fine

System

Return a book

<<extend>>

Inform of available book

<<extend>>

Critical

Important

ImportantImportant

Critical

a)

{7, 8, 9, 23, 26}

{13, 14, 15, 17}

{24, 25}

{16}{19}

{2, 3, 4}

Take back a
book copy

Check the term of loan of
a book copy

Evaluate the condition
of a book copy

Impose a
fine

Return the book
copy to a book fund

[the loan term is exceeded]

[lost book OR damaged book]

16

15

13

14

17

b)

The fragment

of the TFM

Figure 10. The use case model (a), and the fragment of the TFM described in UML Activity Diagram
that specifies functionality of use cases “Return a book” and “Impose a fine” (b)

:request

for a book

:wait list

:SMS

:wait list

:statement

of

utilization

:utilizer
:fine

:fine

:book

copy

:book

copy

:book

copy

:book

copy

:request

for a book

:book

fund

:request

for a book

:reader

account
:reader

card :reader

:book

copy

:book

fund

:reader

:book

copy

:book

copy

Figure 11. The graph of types of domain objects

MOF Model
(meta-metamodel)

TFMfMDA metamodel(metamodels)

Topological functioning model(models)

Functioning description(data)
(real world information)

M3

M2

M1

M0

a)

Reader Account

SMS

Wait List

1
0..n

1
0..n

Fine

Reader
Card

1
1

1
1

Request
For Book

Utilizer

Book Fund1
0..1

1
0..1

0..n
1

0..n
1

10..n 10..n

Reader
11 11

0..n1 0..n1

Statement Of
Utilization

0..n0..n 0..n0..n

0..n

1

0..n

1

Book Copy

0..n

1

0..n

1

0..n
0..n

0..n
0..n

0..1

0..1

0..1

0..1

a) b)

Figure 12. The initial conceptual model (a), TFMfMDA at the MOF metalevels (b)

Computation Independent Representation of the Problem Domain in MDA 37

TFMBusinessActor TFMBusinessWorker

Subordination

inner
external

<<enumeration>>Benefi t

critical
important
useful

<<enumerat ion>>

TFMUserSystemGoal
<<stereotype>>

TFMUserBusi
nessGoal

0..n

1

+theRealization

0..n

+theContext

1

TFMFunctionalRequirement

code : String
content : String
benefit : Benefit

TFMUserRole

name : String
isWorker : Boolean

TFMCorrespondence

isComplete : Boolean
isOverlapping : Boolean

0..n 0..n

+theSource

0..n

+theFunctionalRequirement

0..n

TFMUserGoal

label : String
name : String
input : TFMFunctionalFeature
output : TFMFunctional Feature
benefit : Benefit

1..n
+theUserGoal

1..n

+establisher

TFMCycle

order : UnlimitedNatural
isMain : Boolean = false

0..1

+theBenefit

0..1

TFMFunctionalFeature

label : String
name : String
subordination : Subordination
/ isImplemented : Boolean
precond : String

0..n
0..n

+/theEffect

0..n

{must have at least one cause}

+/theCause
0..n

{must have at least one effect}
0..n

0..n

+theFunctionalFeature
0..n

+theTarget
0..n

2..*

+owner

+theNode

2..*

1..n+owner

+theAction

1..n

TFMFunctionalFeatureSet

<<stereotype>>

0..1+owned element0..1

+owner

n

n

+/superset

n

{union, subset owner}

+/subset

n

{union, subset owned element}

TFMTopologicalFunctioningModel

drawDigraph()
checkCycleStructure()
checkConnectedness()

1..n +owner

+theCycle

1..n

2..n

+owner

+theNode
2..n

nn

Figure 13. The MOF-based metamodel of TFMfMDA

viewpoint. Unfortunately, a use of complex
graph-based constructs requires additional ef-
forts. Therefore, the main purpose of the
TFMfMDA tool is model management, which
relates to model verification, traceability han-
dling, automation of TFMfMDA steps, etc. This
section discusses the requirements to the tool for
TFMfMDA support.

The tool should support the client-server ar-
chitecture. In case of the client-server architec-
ture, the server should keep information of mod-
els; the client part should enable the connection
with the server and use of the kept information.
The tool should be realized as an Eclipse plug-in
[9]. Eclipse is an open development platform
that consists of different components, which
helps in developing Integrated Development En-
vironments (IDEs). For implementation of the
tool the following Eclipse components can be
used: Workbench UI, Help system, and Plug-in
Development Environment (PDE). The Work-
bench UI is a component that is responsible for
plug-in integration with Eclipse User Interface
(UI). It defines extension points, using which a
plug-in can communicate with the Eclipse UI.
Help System is a component that provides com-
plete integration of help information into the

Eclipse help system. PDE is the environment
that enables automation of activities related to
the plug-in development.

The tool should enable work with textual
information (an informal description of the sys-
tem, a description of functional requirements)
and graph-based constructs (a TFM, a concep-
tual model, and a use case model). All changes
must be propagated automatically to all the
related models. A general scheme of tool’s ac-
tivities is illustrated in Figure 14. The scheme
describes TFMfMDA steps considered above in
this paper. The first three steps reflects con-
struction of the TFM. The fourth step reflects
check of functional requirements and activities
of enhancing the TFM. The fifth step illustrates
creation of the use case model. Additionally, the
sixth step shows composing of the conceptual
model.

The challenge is realization of work with infor-
mal descriptions (Figure 15). The informal text
should be handled on the server side because of
several causes, namely, using of the knowledge
base, the multi-user environment, and “learning”
possibilities of the tool. The server side should
support detection of nouns, noun phrases, and
verbs. The detected information should be sent to

38 Janis Osis, Erika Asnina, Andrejs Grave

System

description

IV V VI

Tool for TFM transformations

(Eclipse plugin)

Topological

model,

Functional

requirements

Topological

Model, Goals

Topological

Model
Use case

Model

Topological

Model

Conceptual

class model

Verification of

functional

requirements,

enhancing of

Topological

model
Use case model

verification

Verification of

conceptual

class model

Export XMI

DocumentsUse case

model

UML class

diagram

Verification of

Verification of

Figure 14. The general scheme of the tool supporting TFMfMDA

System
description

Natural language processing server

Knowledge base

Part-of-
speech
tagger

Noun
chunker

Functional
features

recognizer
Text

Nouns,
Noun

phrases,
Functional
features

System objects,
functional
features

System description
Text with highlighted
nouns, noun phrases,

functional features

Tool for contructing TFM
(Eclipse plugin)

Figure 15. Handling the informal description of the system

the client side in XML file form. On the client side,
it can be highlighted to the user in different ways
(differentcolors, fonts, etc.). Thetoolmustprovide
convenient interface for handling this information
and creating TFM functional features.

Introduction of the topology between TFM
functional features should be realized as a mix
of graphical and textual representations of the
functional features. The tool should offer a user
to union or split up functional features, and to
define cause–effect relations among them using
tabular representations, but the result should be
also represented in the graph form.

The TFMfMDA tool must provide a separate
editor for each step. Each editor should have
related views that help to represent information
actual in this step for a user. All automated
steps that require human participation should
be realized as wizards.

8. Conclusions

The paper discusses about TFMfMDA and its
application to certain formalism introducing in
the process of creation of the CIM. TFMfMDA
specifies complex systems using graph constructs
and their transformations. Note that formal
transformations of graphs are not limited with
the number of vertices in graphs. The num-
ber of graph vertices can be decreased using
formal abstraction of the graph. The primary
goal of TFMfMDA is to specify functionality of
the system in the problem domain. Certainly,
the careful modeling of the problem domain re-
quires additional expenses, but further it will be
worthwhile, because it gives the formal CIM, de-
creases further expenses as decrease the number
of development iterations, and facilitates change
implementation.

Computation Independent Representation of the Problem Domain in MDA 39

TFMfMDA application has the following ad-
vantages. First, careful cycle analysis can help
in identifying all (possible at that moment) func-
tional and causal relations between objects in
complex business systems. Implementation pri-
orities of requirements can be set not only in
accordance with client’s whishes, but also in ac-
cordance with functioning cycles of the TFM.
The latter makes it possible to take a decision
about change acceptability in functionality of the
problem domain before implementation of the
changes in the application, and helps to check
completeness of functional requirements. Second,
TFMfMDA solves some use case limitations us-
ing formal mathematical means, e.g., it provides
use case completeness, avoids conflicts among
use cases, and shows their affect on each other.
Besides that it does not limit a use of any re-
quirements gathering techniques.

The tool built accordingly to the require-
ments would partially automate TFMfMDA
steps described above. However, TFMfMDA
requires human participation, thus, the further
research is related to enhancing TFMfMDA with
capabilities of natural language handling in or-
der to make it possible to automate more steps
of TFMfMDA and to decrease effect of human
participation in decision making.

References

[1] A proposal for an MDA foundation model.
ORMSC White Paper ormsc/05-04-01, OMG,
www.omg.org/docs/ormsc/05-04-01.pdf,
Apr. 2005. V00-02.

[2] J. Arlow and I. Neustadt. UML2 and the Unified
Process: Practical Object-Oriented Analysis and
Design. Addison-Wesley, Pearson Education,
second edition, 2005.

[3] E. Asnina. Formalization aspects of problem
domain modeling within model driven architec-
ture. In O. Vasilecas, editor, Databases and
Information Systems. 7th International Baltic
Conference on Databases and Information Sys-
tems. Communications, Materials of Doctoral
Consortium, pages 93–104, Vilnius, Lithuania,
2006. Vilnius Gediminas Technical University,
Technika.

[4] E. Asnina. Formalization of Problem Domain
Modeling within Model Driven Architecture. PhD
thesis, Riga Technical University, RTU Publish-
ing House, Riga, Latvia, 2006.

[5] W.F. Basener. Topology and Its Applications.
John Wiley and Sons, Inc., New Jersey, USA,
2006. page 339.

[6] A. Cockburn. Structuring use cases with goals.
http://alistair.cockburn.us/crystal/
articles/sucwg/.

[7] A. Dardenne, A. van Lamsweerde, and
S. Fickas. Goal-directed requirements acquisi-
tion. The Science of Computer Programming,
20(November):3–50, 1993.

[8] Z. Diskin, B. Kadish, F. Piessens, and M. John-
son. Universal arrow foundations for visual mod-
eling. In Proc. Diagramms’2000: 1st Int. Confer-
ence on the theory and application of diagrams,
pages 345–360. Springer LNAI, 2000. No. 1889.

[9] Eclipse. Eclipse – an open development platform.
http://www.eclipse.org.

[10] S. Ferg. What’s wrong with use cases? http:
//www.ferg.org/papers/, February 2003.

[11] D. Firesmith. Use cases: the pros and cons.
http://www.ksc.com/article7.htm.

[12] D. Frankel. Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley Publish-
ing, Inc., Indiana, 2003.

[13] T. Gorschek and C. Wohlin. Requirements
abstraction model. Requirements Engineering,
11:79–101, 2006.

[14] M. Jackson. The real world. http://www.ferg.
org/papers/, July 2003.

[15] M. Jackson. Problem frames and software engi-
neering. Information and Software Technology,
47(November):903–912, 2005.

[16] I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software En-
gineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[17] C. Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design and Iterative Development. Prentice Hall
PTR, 3rd edition, 2005.

[18] D. Leffingwell and D. Widrig. Managing
Software Requirements: a use case approach.
Addison-Wesley, 2nd edition, 2003.

[19] OMG, http://www.omg.org/. MDA Guide Ver-
sion 1.0.1, June 2003.

[20] J. Osis. Extension of software development pro-
cess for mechatronic and embedded systems. In
Proceeding of the 32nd International Conference

40 Janis Osis, Erika Asnina, Andrejs Grave

on Computer and Industrial Engineering, pages
305–310. University of Limerick, Limerick, Ire-
land, August 2003.

[21] J. Osis. Software development with topological
model in the framework of MDA. In Proceedings
of the 9th CaiSE/IFIP8.1/EUNO International
Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’2004)
in connection with the CaiSE’2004, volume 1,
pages 211–220, Riga, Latvia, 2004. Riga Techni-
cal University, RTU.

[22] J. Osis. Formal computation independent model
within the MDA life cycle. International Trans-

actions on Systems Science and Applications,
1(2):159–166, 2006.

[23] H. Podeswa. UML for the IT Business Analyst:
A practical Guide to Object-Oriented Require-
ments Gathering. Thomson Course Technology
PTR, Boston, 2005.

[24] E.S.K. Yu. Towards modelling and reasoning sup-
port for early-phase requirements engineering. In
International Symposium on Requirements En-
gineering, pages 226–235, Annapolis, Maryland,
1997.

e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

Integrating Human Judgment and Data Analysis
to Identify Factors Influencing Software

Development Productivity

Adam Trendowicz∗, Michael Ochs∗, Axel Wickenkamp∗, Jürgen Münch∗, Yasushi Ishigai∗∗,
Takashi Kawaguchi∗∗∗

∗Fraunhofer Institute for Experimental Software Engineering (Germany)
∗∗Information-Technology Promotion Agency, Software Engineering Center (Japan)

∗∗∗Toshiba Information Systems Corporation (Japan)
adam.trendowicz@iese.fraunhofer.de, michael.ochs@iese.fraunhofer.de,
axel.wickenkamp@iese.fraunhofer.de, juergen.muench@iese.fraunhofer.de,

ishigai@ipa.go.jp, kawa@tjsys.co.jp

Abstract
Managing software development productivity and effort are key issues in software organizations.
Identifying the most relevant factors influencing project performance is essential for implementing
business strategies by selecting and adjusting proper improvement activities. There is, however, a
large number of potential influencing factors. This paper proposes a novel approach for identifying
the most relevant factors influencing software development productivity. The method elicits relevant
factors by integrating data analysis and expert judgment approaches by means of a multi-criteria
decision support technique. Empirical evaluation of the method in an industrial context has
indicated that it delivers a different set of factors compared to individual data- and expert-based
factor selection methods. Moreover, application of the integrated method significantly improves
the performance of effort estimation in terms of accuracy and precision. Finally, the study did not
replicate the observation of similar investigations regarding improved estimation performance on
the factor sets reduced by a data-based selection method.

1. Introduction

Many software organizations are still propos-
ing unrealistic software costs, work within tight
schedules, and finish their projects behind sched-
ule and budget, or do not complete them at all
[32]. This illustrates that reliable methods for
managing software development effort and pro-
ductivity are a key issue in software organiza-
tions.

At the same time, software cost estimation
is considered to be more difficult than cost esti-
mation in other industries. This is mainly due
to the fact that software organizations typically
develop new products as opposed to fabricating
the same product over and over again. Moreover,

software development is a human-based activ-
ity with extreme uncertainties from the outset.
This leads to many difficulties in cost estimation,
especially during early project phases. To ad-
dress these difficulties, considerable research has
been directed at gaining a better understanding
of the software development processes, and at
building and evaluating software cost estimation
techniques, methods, and tools [8, 34].

One essential aspect when managing develop-
ment effort and productivity is the large number
of associated and unknown influencing factors
(so-called productivity factors) [33]. Identifying
the right productivity factors increases the ef-
fectiveness of productivity improvement strate-
gies by concentrating management activities di-

42 A. Trendowicz et al.

rectly on those development processes that have
the greatest impact on productivity. On the
other hand, focusing measurement activities on
a limited number of the most relevant factors
(goal-oriented measurement) reduces the cost of
quantitative project management (collecting, an-
alyzing, and maintaining the data). The com-
putational complexity of numerous quantitative
methods grows exponentially with the number
of input factors [7], which significantly restricts
their acceptance in industry.

In practice, two strategies for identifying
relevant productivity factors, promoted in the
related literature, are widely applied. In
expert-based approaches, one or more software
experts decide about a factor’s relevancy [33].
In data-based approaches, existing measurement
data covering a certain initial set of factors are
analyzed in order to identify a subset of factors
relevant with respect to a certain criterion [9, 14].
These factor selection strategies have, however,
significant practical limitations when applied in-
dividually. Experts usually base their decisions
on subjective preferences and experiences. In con-
sequence, they tend to disagree by a wide margin
and omit relevant factors while selecting irrele-
vant ones [33]. The effectiveness of data-based
methods, on the other hand, largely depends on
the quantity and quality of available data. They
cannot, for instance, identify a relevant factor
if it is not present in the initial set of factors
contained by the underlying data set. Moreover,
data analysis techniques are usually sensitive to
messy (incomplete and inconsistent) data. Yet,
assuring that all relevant factors are covered by a
sufficient quantity of high-quality measurement
data is simply not feasible in practice.

In this paper, we propose an integrated ap-
proach to selecting relevant productivity factors
for the purpose of software effort estimation. We
combine expert- with data-based factor selection
methods, using a novel multi-criteria decision
aid method called AvalOn. The presented ap-
proach is then evaluated in the context of a large
software organization.

The remainder of the paper is organized as
follows. Section 2 provides an overview of fac-
tor selection methods. Next, in Section 3, we

present the integrated factor selection method,
followed by the design of its empirical evaluation
(Section 4) and an analysis of the results (Sec-
tion 5). The paper ends with conclusions (Sec-
tion 6) and further work perspectives (Section 7).

2. Related Work

2.1. Introduction to Factor Selection

Factor selection can be defined as a process that
chooses a subset of M factors from the original
space of N factors (M ≤ N), so that the factor
space is optimally reduced according to a certain
criterion. In principle, selection process may be
based on data analysis, expert’ assessments, or
both experts and data.

In expert-based factor selection, the factor
space is practically infinite and not know a pri-
ori. There are, in principle, three major types
of expert-based factor selection. In the most
basic case, experts simply identify a set of most
relevant factors without distinguishing the rel-
evance level (factor selection). In addition to
selecting the most relevant factors, experts may
rank factors (provide order) with respect to their
relevancy (factor ranking). Such a ranking does
not, however, provide information about the rela-
tive distance between certain factors with respect
to their relevancy. The most informative way of
selecting factors is to quantify their relevancy on
the ratio or interval scale. The most common
approach is to define factor relevancy on the Lik-
ert scale [30] and ask experts to quantify these
factors accordingly. In general, quantification
could also be done on more than one criterion. In
order to select the most relevant factors, quantifi-
cations on various criteria have to be aggregated.

In data-based factor selection, the factor
space is given a priori and limited by the avail-
able measurement data. The data are analyzed
in order to identify a limited set of the most rel-
evant factors. Most of the dedicated data-based
factor selection methods belong to one of the
major areas of the data mining domain, where
they are a subclass of the general problem of
dimensionality reduction [12] (Figure 1).

Integrating Human Judgment and Data Analysis . . . 43

Figure 1. Dimensionality reduction methods

The purpose of dimensionality reduction
methods is to reduce a potentially large num-
ber of cases and attributes (dimensions) in data
in order to limit data noise and the computa-
tional time of the analysis. Since the compu-
tational complexity of numerous data mining
algorithms grows exponentially with the number
of dimensions (so-called NP-complete problems),
dimensionality reduction allows applying them in
practice (they finish within a reasonable amount
of time). In this paper, we focus on reducing
the number of attributes.

Attribute-oriented dimensionality reduction
methods either extract or select factors based
on an initial set. Factor extraction is a pro-
cess that extracts a set of M new factors from
the original N factors (M < N) through some
functional mapping (e.g., sum or product). An
example factor extraction method is Principal
Component Analysis (PCA), which creates new
factors as linear transformation of the initial fac-
tors. Factor selection is a process that extracts
a set of M original factors from the original N
factors (M ≤ N).

Moreover, besides a simple subset of factors
(factor selection), dimensionality reduction meth-
ods may provide an ordered (factor ranking) or
weighted (factor weighting) set of factors. Fac-
tor ranking orders factors with respect to their
relevancy, however, no information regarding the
distance in rank between subsequent factors is
provided (ordinal instead of interval scale).

Factor weighting methods represent the most
robust dimensionality reduction approach. They
quantify the relative relevance of each i-th factor
fi by providing a ratio-scale weight w(fi), where
usually w ∈ [0, 1]. In this context, factor rank-

ing is weighting on an integer scale (a factor’s
weight represents its rank) and factor selection is
weighting on a dichotomous 0-1 scale (a factor’s
weight represent its selection or exclusion).

In general, a dimensionality reduction algo-
rithm consists of four basic steps (Figure 2):
subset generation, subset evaluation, stopping
criterion, and result validation [11].

Subset generation refers to a search (factor
selection) or construction (factor extraction) pro-
cedure. Basically, it generates subsets of features
for evaluation. In case of search procedures,
there are various directions and strategies for
searching through the factor space. The most
popular search direction, greedy search, comes
in three flavors (dependent on the starting point
in the search space). Search can start with an
empty set and add factors iteratively (forward
selection) or it can start with a full set (N fac-
tors) and be reduced iteratively (backward elimi-
nation) until the factor subset meets a certain
criterion. Hybrid, bidirectional search is also
possible. Factors can also be searched randomly
(random search).

The search strategy decides about the scope
of the search. Exhaustive (complete) search per-
forms a complete search through the factor space.
Although it guarantees finding the optimal sub-
set of factors, it is usually impractical due to
the high computational costs (the problem is
known to be NP-hard [2]). Heuristic search, as
the name suggests, employs heuristics in con-
ducting the search. It avoids being complete,
but at the same time risks losing optimal sub-
sets. Non-deterministic search, unlike the first
two types of strategies, searches for the next set
at random (i.e., a current set does not directly

44 A. Trendowicz et al.

Figure 2. General dimensionality reduction process

grow or shrink from any previous set following
a deterministic rule).

The selected subset of factors is always rel-
ative to a certain evaluation criterion. Evalua-
tion criteria can be broadly categorized into two
groups based on their dependency on the method
applied on the selected factors.

In a filter approach, the goodness of a factor
subset is evaluated according to criteria indepen-
dent of the method that will later be applied
on those factors (i.e., without the involvement
of this method). The most common indepen-
dent criteria are distance measure, information
measure, dependency measure, consistency mea-
sure, and similarity measure. Distance measures
are also known as separability, divergence, or
discrimination measures. For a given objective
factor Z, a factor X is preferred to another factor
Y if X induces a greater difference between the
conditional probabilities of Z’s values than Y ; if
the difference is zero, then X and Y are indistin-
guishable. An example is the Euclidean distance
measure. Information measures typically deter-
mine the information gain related to a certain
factor. The information gain from a factor X
is defined as the difference between the prior
uncertainty and expected posterior uncertainty
using X. Factor X is preferred to factor Y if the
information gain from factor X is greater than

that from factor Y . An example is the entropy
measure [23]. Dependency measures or correla-
tion measures qualify the ability to predict the
value of one variable from the value of another.
The coefficient is a classical dependency measure
and can be used to find the correlation between
a factor and an objective factor Z. If the correla-
tion of factor X with Z is higher than the correla-
tion of factor Y with Z, then factorX is preferred
to Y . A slight variation of this is to determine
the dependence of a factor on other factors; this
value indicates the degree of redundancy of the
factor. All evaluation functions based on depen-
dency measures can be theoretically divided into
distance and information measures, but they are
usually kept as a separate category, because con-
ceptually, they represent a different viewpoint.
Finally, consistency measures are relatively new
and have been in much focus recently. They rely
heavily on the training dataset and the use of the
Min-Factors bias in selecting a subset of factors.
Min-Factors bias prefers consistent hypotheses
definable over as few factors as possible. These
measures find out the minimally sized subset
that satisfies the acceptable inconsistency rate
that is usually set by an expert.

In the wrapper approach, the goodness of
the proposed factor subset is assessed by apply-
ing on it and evaluating the performance of the

Integrating Human Judgment and Data Analysis . . . 45

same method that will by applied on the subset
selected eventually. In case of estimation, the
well-known Mean Magnitude of Relative Error
(MMRE) or the Prediction Level (Pred.25) [10]
can be applied.

In an embedded approach, factor selection is
a part of the learning (model building) process.
One classical example is selecting factors along
the paths of the Classification and Regression
Tree (CART) model [6].

2.2. Factor Selection for Effort
Estimation

The purpose of factor selection methods in
software effort estimation is to reduce a large
number of potential productivity factors (cost
drivers) in order to improve estimation perfor-
mance while maintaining (or reducing) estima-
tion costs. Moreover, information on the most
relevant influence factors may be used to guide
measurement and improvement initiatives. In
practice (authors’ observation), relevant cost
drivers are usually selected by experts and the
selection process is often limited to uncritically
adopting factors published in the related liter-
ature. Software practitioners adopt the com-
plete effort model along with the integrated
factors set (e.g., COCOMO [4]) or build their
own model on factors adapted from an existing
model. In both situations, they risk collecting
a significant amount of potentially irrelevant
data and getting limited performance of the
resulting model.

Factors uncritically adopted from other con-
texts most often do not work well leading to
much disappointment. They usually contain
many irrelevant factors that do not contribute
to explaining development productivity variance
and increase the cost of data collection, analy-
sis, and maintenance. On the other hand, even
though context-specific factors are selected by
experts, they tend to disagree largely with re-
spect to the selected factors and their impact
on productivity (relevancy).

During the last two decades, several
data-based approaches have been proposed to
support software organizations that are already

collecting data on arbitrarily selected factors in
selecting relevant factors. Various data analysis
techniques were proposed to simply reduce the
factor space by excluding potentially irrelevant
factors (factor selection). The original version
of the ANGEL tool [27] addressed the problem
of optimal factor selection by exhaustive search.
However, for larger factor spaces (>15–20), anal-
ysis becomes computationally intractable due to
its exponential complexity. Alternative, less com-
putationally expensive factor selection methods
proposed in the literature include Principal Com-
ponent Analysis (PCA) [31], Monte Carlo simu-
lation (MC) [16], general linear models (GLM)
[18], and wrapper factor selection [14, 9]. The
latter approach was investigated using various
evaluation models (e.g., regression [9], case-based
reasoning [14]), and different search strategies
(forward selection [9, 14], as well as random se-
lection and sequential hill climbing [14]). In all
studies, a significant reduction (by 50%–75%)
of an initial factor set and improved estimation
accuracy (by 15%–379%) were reported. Chen
et al. [9] conclude, however, that despite sub-
stantial improvements in estimation accuracy,
removing more than half of the factors might
not be wise in practice, because it is not the
only decision criterion.

An alternative strategy for removing irrele-
vant factors would be assigning weights according
to a factor’s relevancy (factor weighting). The
advantage of such an approach is that factors are
not automatically discarded and software practi-
tioners obtain information on the relative impor-
tance of each factor, which they may use to decide
about the selection/exclusion of certain factors.
Auer et al. [3] propose an optimal weighting
method in the context of the k-Nearest Neighbor
(k-NN) effort estimator; however, exponential
computational complexity limits its practical ap-
plicability for large factor spaces. Weighting in
higher-dimensionality environments can be, for
instance, performed using one of the heuristics
based on rough set analysis, proposed recently
in [15]. Yet, their application requires additional
overhead to discretize continuous variables.

A first attempt towards an integrated fac-
tor selection approach was presented in [5],

46 A. Trendowicz et al.

where Bayesian analysis was used to combine
the weights of COCOMO II factors based on
human judgment and regression analysis. Yet,
both methods were applied on sets of factors
previously limited (arbitrarily) by an expert.
Moreover, experts weighted factor relevancy on a
continuous scale, which proved to be difficult in
practice and may lead to unreliable results [35].
Most recently, Trendowicz et al. proposed an in-
formal, integrated approach to selecting relevant
productivity factors [35]. They used an analysis
of existing project data in an interactive manner
to support experts in identifying relevant factors
for the purpose of effort estimation. Besides
increased estimation performance, the factor se-
lection contributed to increased understanding
and improvement of software processes related
to development productivity and cost.

3. An Integrated Factor Selection
Method

In this paper, we propose an integrated method
for selecting relevant productivity factors. The
method employs a novel multi-criteria decision
aid (MCDA) technique called AvalOn to com-
bine the results of data- and expert-based factor
selection.

3.1. Expert-based Factor Selection

Expert-based selection of relevant productivity
factors is a two-stage process [36]. First, a set
of candidate factors is proposed during a group
meeting (brainstorming session). Next, factor
relevancy criteria are identified and quantified
on a Likert scale. Example criteria may include
a factor’s impact, difficulty, or controllability.
Impact reflects the strength of a given factor’s
influence on productivity. Difficulty represents
the cost of collecting factor-related project data.
Finally, controllability represents the extent to
which a software organization has an impact
on the factor’s value (e.g., a customer’s charac-
teristics are hardly controllable). Experts are
then asked to individually evaluate the identified
factors according to specified criteria and corre-

sponding measurement scales. In a simple case
(when expert involvement has to be limited due
to related manpower costs), a simple factor’s
ranking with respect to its impact on cost (sig-
nificance) might be performed.

3.2. Data-based Factor Selection

Data-based selection of relevant productivity fac-
tors employs one of the available factor weight-
ing techniques. As compared to simple factor
selection or ranking techniques, weighting pro-
vides experts with the relative distance between
subsequent factors regarding their relevance. Se-
lected weighting should be applicable to regres-
sion problems, i.e., to the continuous dependent
variable (here: development productivity). We
recommend excluding factor extraction as well
as embedded and wrapper approaches. Factor
extraction methods create new set of abstract
factors that are not understandable by experts
and require additional analysis to gain insight
into the relationship between the original factors.
There are several arguments for preferring the
filter strategy over the wrapper and embedded
approaches. Filters (e.g., those based on mutual
information criteria) provide a generic selection
of variables, not tuned (biased) for/by a given
learning machine. Moreover, filtering operates
independently of the prediction method, reduc-
ing the number of features prior to estimation.
Therefore, they can be used as a preprocessing
step for reducing space dimensionality and over-
coming over-fitting. Finally, filters tend to be
far less computationally intensive than wrappers,
which run the estimation method in each fac-
tor selection cycle.

As far as the search strategy is concerned,
although forward selection (FSS) is computa-
tionally more efficient than backward selection
(BSS), weaker subsets are found by FSS because
the importance of variables is not assessed in
the context of other variables not included yet
[12]. A BSS method may outsmart FSS by
eliminating, in the first step, the factor that by
itself provides the best performance (explana-
tion of productivity variance, effort estimation
accuracy, etc.) in order to retain these two

Integrating Human Judgment and Data Analysis . . . 47

factors that together perform best. Still, if a
very small set of optimal factors (e.g., single
best factor) is preferred, or a huge set of initial
factors has to be analyzed, BSS would proba-
bly be a better alternative [1]. Since software
engineering data do not usually cover a large
number of factors [35] and usually contains nu-
merous interactions, the BSS strategy should
be preferred. One may consider applying the
optimal weighting approach as presented in [3].
Due to its significant computational complexity
and optimal factor weighting, it might, however,
not always be feasible (large factor spaces).

Given the size of the factor space, opti-
mal weighting [3] (small size) or weighting
heuristics [15] (large size) should be consid-
ered. In this paper, we employ the Regres-
sion ReliefF (RRF) technique [24]. RRF is
well suited for software engineering data due
to its robustness against sparse and noisy data.
The output of RRF (weighting) reflects the
ratio of change to productivity explained by
the input factors.

3.3. An Integrated Factor Selection
Method

Integrated factor selection combines the results
of data- and expert-based selections by means of
the AvalOn MCDA method. It is the hierarchi-
cally (tree) structured model that was originally
used in COTS (Commercial-of-the-shelf) soft-
ware selection [20, 22, 21]. AvalOn incorporates
the benefits of a tree-structured MCDA model
such as the Analytic Hierarchy Process (AHP)
[25] and leverages the drawbacks of pair-wise
(subjective) comparisons. It comprises, at the
same time, subjective and objective measurement
as well as the incorporation of uncertainty under
statistical and simulation aspects. In contrast to
the AHP model, which only knows one node type,
it distinguishes several node types representing
different types of information and offering a vari-
ety of possibilities to process data. Furthermore,
AvalOn offers a weight rebalancing algorithm mit-
igating typical hierarchy-based difficulties origi-
nating from the respective tree structure. Finally,
it allows for any modification (add, delete) of the

set of alternatives while maintaining consistency
in the preference ranking of the alternatives.

3.3.1. Mathematical background of the AvalOn
method

As in many MCDA settings [36], a preference
among the alternatives is processed by summing
up weight · preference of an alternative. In
AvalOn (3), this is accomplished for the node
types root, directory, and criterion by deploying
the following abstract model in line with the
meta-model structure presented in Equation 1.∑

j∈subnodes(i)
wj · prefj(a) (1)

where i is a node in the hierarchy, a the al-
ternative under analysis, subnodes(i) the set of
child/subnodes of node i, prefj(a) ∈ [0..1] the
preference of a in subnode j, and wj ∈ [0..1] the
weight of subnode j. Hence prefi(a) ∈ [0..1].

In each model, a value function (val) is de-
fined, building the relation between data from
{metrics x alternatives} and the assigned prefer-
ence values. val may be defined almost in an arbi-
trary way, i.e., it allows for preference mappings
of metric scaled data as well as categorical data.

In this way, val can model the whole range
of scales from semantic differential via Likert to
agreement scales. Please note that when calcu-
lating prefi(a) on the lowest criterion level, the
direct outputs of the function val in the subn-
odes, which are models in this case, are weighted
and aggregated. The full details of the general
model definition for val is described in [26]. In
this context, two examples for val, one metric
scaled (figure on the left) and one categorical (fig-
ure on the right), are given in Figure 4. On the
x-axis, there are the input values of the respec-
tive metric, while the y-axis shows the individual
preference output val. A full description of the
AvalOn method can be found in [26, 22].

3.3.2. Application of the AvalOn method

AvalOn allows for structuring complex in-
formation into groups (element directory in

48 A. Trendowicz et al.

Figure 3. Meta-model for factor selection

Figure 4. Example val models

the meta-model) and criteria (element cri-
terion in the meta-model). Each directory
as well as each criterion may be refined
into sub-directories and sub-criteria. Each
(sub)-criterion may then be refined into indi-
vidual model(s) and sub-models. The models
transform the measurement data coming from
each alternative into initial preference values.
The models providing the preferences based
on each measurement by alternative are asso-
ciated with a set of previously defined metrics.
Bottom-up, the data coming from each alterna-
tive for potential selection (here: productivity
factors) are then processed through the mod-
els and aggregated from there into the criteria
and directory level(s). Finally, in the root node
(here: AvalOn.sub1), the overall preference of
the productivity factors based on their data
about individual metrics is aggregated using

a weighting scheme that is also spread hierar-
chically across the tree of decision (selection)
criteria. The hybrid character of the setting in
this paper can be modeled by combining expert
opinion and objective data from, e.g., prelim-
inary data analyses, into criteria and models
within different directories, and defining an ad-
equate weighting scheme.

3.3.3. Result Views of the AvalOn Meta-Model

The AvalOn meta-model offers a tool-based vari-
ety of result views of the preferences of the alter-
natives [26]. Major views are available for every
node of type root, directory, criterion, and model
in the criteria hierarchy. In detail views are: (i)
overall preference (Figure 5), (ii) node and subn-
ode preference profile (Figure 6), (iii) overall pref-
erence range/uncertainty (Figure 7), (iv) prefer-

Integrating Human Judgment and Data Analysis . . . 49

Figure 5. Overall preference

ence weight sensitivity (Figure 8), and (v) pair-
wise preference comparability (Figure 9).

The overall preference view plainly shows the
total preference of the alternatives in a selected
node of the hierarchy. The node and subnode
preference profile visualizes the preferences of
the alternatives in the selected node on the left
line and the individual preferences of the alter-
natives in the subnodes of the selected node on
the lines to the right hand side of it.

The overall preference range (uncertainty)
view provides graphical information about the
variability range of the preferences of the al-
ternatives in a selected node of the hierarchy
when evaluation and decision have to be made
under uncertainty. In addition, a t-test [28]
can be performed in order to verify or falsify
whether two alternatives do have a significant
difference in their individual preferences. The
weight sensitivity of the preference of the al-
ternatives in the selected node analyzes the
change of the total preferences of the alterna-
tives when changing the current weight (marked
by the vertical line in Figure 8) of one specific
subnode. Whenever lines of alternatives inter-
sect at a specific point they are of identical
preference, and by continuing in the change

direction ofthe subnode weight, the preference
between the alternatives will be changed (for
two alternatives: turned around).

The pairwise preference comparability view
shows for each pair of alternatives – in a di-
rect comparison – whether one of the alterna-
tives is to be preferred over the other (green ar-
eas), whether the two alternatives are indifferent
(white area), or whether they are incomparable
(yellow area). This method deploys ORESTE+
[26], which is a metric relaxation of the ordinal
ORESTE procedure.

4. Empirical Study

The integrated factor selection method proposed
in this paper was evaluated in an industrial
context. We applied the method for the pur-
pose of software effort estimation and com-
pared it with isolated expert- and data-based
selection methods. Data-based factor selec-
tion employed the RRF technique [24] imple-
mented in the WEKA data mining software [37].
Expert-based factor selection was performed as a
multiple-expert ranking (see Section 3.1 regard-
ing the ranking process).

50 A. Trendowicz et al.

Figure 6. Node and subnode preference profile

Figure 7. Overall preference range/uncertainty

Integrating Human Judgment and Data Analysis . . . 51

Figure 8. Preference weight-sensitivity

Figure 9. Pairwise preference comparability

52 A. Trendowicz et al.

4.1. Study Objectives and Hypotheses

The objective was to evaluate, in a compara-
tive study, expert- and data-based approaches
and the integrated approach for selecting the
most relevant productivity factors in the con-
text of software effort estimation. For that pur-
pose, we defined two research questions and re-
lated hypotheses:

Q1. Do different selection methods provide
different sets of productivity factors?

H1. Expert-based, data-based, and inte-
grated methods select different (probably par-
tially overlapping) sets of factors.

Q2. Which method (including not reducing
factors at all) provides the better set of factors
for the purpose of effort estimation?

H2. The integrated approach provides a set
of factors that ensure higher performance of ef-
fort estimation than factors provided by expert-
and data-based selection approaches when ap-
plied individually.

Some effort estimation methods such as step-
wise regression [10] or OSR [9] already include
embedded mechanisms for selecting relevant pro-
ductivity factors. In our study, we wanted to eval-
uate in addition how preliminary factor selection
done by an independent method influences the
performance of such estimation methods. This
leads us to a general research question:

Q3. Does application of an independent fac-
tor selection method increase the prediction per-
formance of an estimation method that already
has an embedded factor selection mechanism?
Answering such a generic question would require
evaluating all possible estimation methods. This,
however, is beyond the scope of this study. We
limit our investigation to the OSR estimation
method [9] and define a corresponding research
hypothesis:

H3. Application of an independent factor se-
lection method does not increase the prediction
performance of the OSR method.

Finally, in order to validate and replicate
the results of the most recent research regarding
the application of data-based factor selection to
analogy-based effort estimation (e.g., [9, 14]), we
define the following question:

Q4. Does application of a data-based factor
selection method increase the prediction perfor-
mance of an analogy estimation method?

H4. Application of a data-based factor selec-
tion method increases the prediction performance
of a k-NN estimation method.

4.2. Study Context and Empirical Data

The empirical evaluation was performed in the
context of Toshiba Information Systems (Japan)
Corporation (TJSYS). The project measurement
data repository contained a total of 76 projects
from the information systems domain. Figure 10
illustrates the variance of development produc-
tivity measured as function points (unadjusted,
IFPUG) per man-month.

Expert assessments regarding the most rel-
evant factors were obtained from three experts
(see Table 1). During the group meeting (brain-
storming session), an initial set of factors was
identified. It was then grouped into project-,
process, personnel-, and product-related factors
as well as context factors. The first four groups
refer to the characteristics of the respective enti-
ties (software project, development process, prod-
ucts, and stakeholders). The latter group covers
factors commonly used to limit the context of
software effort estimation or productivity mod-
eling. The application domain, for instance, is
often regarded as a context factor, i.e., an effort
model is built for a specific application domain.
Finally, experts were asked to select the 5 most
important factors from each category and rank
them from most relevant (rank = 1) to least
relevant (rank = 5).

4.3. Study Limitation

Unfortunately, the measurement repository avail-
able did not cover all relevant factors selected by
the experts. It was also not possible to collect
the data ex post facto. This prevented us from
doing a full comparative evaluation of the three
factor selection methods considered here for the
purpose of software effort estimation. In order
to at least get an indication of the methods’ per-
formance, we decided to compare them (instead

Integrating Human Judgment and Data Analysis . . . 53

Figure 10. Development productivity variance; data presented in a normalized form
Table 1. Experts who participated in the study

Expert 1 Expert 2 Expert 3
Position/Role Project manager Developer Quality manager
Experience [#working years] 8 15 3
Experience [#performed projects] 30 15 40

of all identified factors) on the factors identified
by experts for which measurement data were
available. This would represent the situation
where those factors cover all factors available in
the repository and identified by experts.

4.4. Study Design and Execution

4.4.1. Data Preprocessing

Measurement data available in the study suf-
fered from incompleteness (44.3% missing data).
An initial preprocessing was thus required in
order to apply the data analysis techniques
selected in the study. We wanted to avoid
using simple approaches to handling missing
data such as list-wise deletion or mean imputa-
tion, which significantly reduce data quantity
and increase noise. Therefore, we decided to ap-
ply the k-Nearest Neighbor (k-NN) imputation
method. It is a common hot deck method, in
which k nearest projects minimizing a certain
similarity measure (calculated on non-missing
factors) are selected to impute missing data. It
also proved to provide relatively good results
when applied to sparse data in the context
of software effort prediction [19]. Moreover,
other more sophisticated (and potentially more
effective) imputation methods required remov-

ing factor collinearities beforehand. Such a
preprocessing step would, however, already be a
kind of factor selection and might thus bias the
results of the actual factor selection experiment.
We adopted the k-NN imputation approach
presented in [13].

We assumed a missing at random (MAR)
missingness mechanism, which means [17] that
the cause of the missing data is completely
unrelated to the missing values; it may be
related to the observed values of other variables.
This assumption is weaker than missing com-
pletely at random (MCAR); however, it is more
realistic and seems not to have a significant
impact on the accuracy of the k-NN imputation
method [29].

In order to assure maximal performance of
the imputation, before applying it, we removed
factors and projects with a large missing data
ratio so that the total ratio of missing data
was reduced to around one third; however,
with minimal loss of non-missing data. We
applied the following procedure: We first re-
moved factors where 90% of the data were
missing and next, projects where more than
55% of the data were still missing. As a
result, we reduced the total rate of missing
data to 28.8%, while losing a minimal quantity
of information (removed 19 out of 82 factors
and 3 out of 78 projects). The remaining 28.8%

54 A. Trendowicz et al.

of missing data were imputed using the k-NN
imputation technique.

4.4.2. Empirical Evaluation

Let us first define the following abbreviations for
the factor sets used in the study:

FM: factors covered by measurement
data.
FMR: relevant FM factors selected
by the RReliefF method (factors with
weight > 0).
FMR10: the 10% most relevant FMR fac-
tors.
FE: factors selected by experts.
FI: factors selected by the integrated
method.
FT: all identified factors (FM ∪ FE).
FC: factors selected by experts for which
measurement data are available (FM ∩
FE).
FCE25: the 25% most relevant FC factors
selected by experts.
FCR25: the 25% most relevant FC factors
selected by the RRF method.
FCI25: the 25% most relevant FC factors
selected by the integrated method.
Hypothesis H1. In order to evaluate

H1, we compared factor sets selected by the
data-based, expert-based, and integrated meth-
ods (FMR, FE, and FI). For the 10 most relevant
factors shared by all three factor sets, we com-
pared the ranking agreement using Kendall’s
coefficient of concordance [28].

Hypothesis H2. In order to evaluate H2,
we evaluated the estimation performance of two
data-based estimation methods: k-Nearest Neigh-
bor (k-NN) [27] and Optimized Set Reduction
(OSR) [7]. We applied them in a leave-one-out
cross validation on the following factor sets: FM,
FC, FCE25, FCR25, and FCI25.

Hypothesis H3. In order to evaluate H3,
we compared the estimation performance of OSR
(which includes an embedded, data-based factor
selection mechanism) when applied on the FM
and FMR10 factor sets.

Hypothesis H4. In order to evaluate H4,
we compared the estimation performance of

the k-NN method when applied on the FM
and FMR10 factor sets.

To quantify the estimation performance in H2,
H3, and H4, we applied the common accuracy
and precision measures defined in [10]: magni-
tude of relative estimation error (MRE), mean
and median of MRE (MMRE and MdMRE), as
well as prediction at level 25% (Pred.25). We also
performed an analysis of variance (ANOVA) [28]
of MRE to see if the error for one approach was
statistically different from that of another one.
We interpret the results as being statistically
significant if the results could be due to chance
less than 2% of the time (p < 0.02).

5. Results of the Empirical Study

Hypothesis H1: Expert-based, data-based
and integrated methods select different (probably
partially overlapping) sets of factors.
After excluding the dependent variable (devel-
opment productivity) and project ID, the mea-
surement repository contained data on 61 fac-
tors. Experts identified a total of 34 relevant
factors, with only 18 of them being already mea-
sured (FC). The RRF method selected 40 factors
(FMR), 14 of which were also selected by experts.
The integrated approach selected 59 factors in
total, with only 14 being shared with the former
two selection methods. Among the FC factors,
as many as 8 were ranked by each method within
the top 10 factors (Table 2). Among the top
25% FC factors selected by each method, only
one factor was in common, namely customer
commitment and participation. There was no sig-
nificant agreement (Kendall = 0.65 at p = 0.185)
between data- and expert-based rankings on the
FC factors. The integrated method introduced
significant agreement on ranks produced by all
three methods (Kendall = 0.72 at p = 0.004).

Interpretation (H1): Data- and expert-
based selection methods provided different (par-
tially overlapping) sets of relevant factors. Sub-
jective evaluation of the shared factors suggests
that both methods vary regarding the assigned
factor’s importance; yet this could not be con-
firmed by statistically significant results. The

Integrating Human Judgment and Data Analysis . . . 55

Table 2. Comparison of the ranks on FC factors (top 25% marked in bold)

Productivity factor FCE FCR FCI
Customer commitment and participation 3 3 3
System configuration (e.g., client-server) 5 2 5
Application domain (e.g., telecommunication) 1 6 1
Development type (e.g., enhancement) 7 1 4
Application type (e.g., embedded) 2 7 2
Level of reuse 9 4 9
Required product quality 6 10 7
Peak team size 8 9 8

integrated method introduced a consensus be-
tween individual selections (significant agree-
ment) and as such might be considered as a way
to combine the knowledge gathered in experts’
heads and in measurement data repositories.

Hypothesis H2: The integrated approach
provides a set of factors that ensure higher perfor-
mance of effort estimation than factors provided
by expert- and data-based selection approaches
when applied individually.
A subjective analysis of the estimates in Table 3
suggests that the k-NN provided improved esti-
mates when applied on a reduced FC factors set
(FCE25, FCR25, and FCI25), whereas OSR does
not consistently benefit from independent factor
reduction (by improved estimates). The analysis
of the MRE variance, however, showed that the
only significant (p = 0.016) improvement in esti-
mation performance of the k-NN predictor was
caused by the integrated factor selection method.
The OSR predictor improved its estimates signif-
icantly (p < 0.02) only on the FCE25 factors set.

Interpretation (H2): The results obtained
indicate that a factor set reduced through an in-
tegrated selection contributes to improved effort
estimates. Yet, this does not seem to depend
on any specific way of integration. The k-NN
predictor, which uses all input factors, improved
on factors reduced by the AvalOn method. The
OSR method, however, improved slightly on the
factors reduced by experts. This interesting ob-
servation might be explained by the fact that
OSR, which includes an embedded, data-based
factor selection mechanism, combined this with
prior expert-based factor selection. Still, the ef-
fectiveness of such an approach largely depends
on the experts who determine (pre-select) in-

put factors for OSR (expert-based selection is
practically always granted higher priority).

Hypothesis H3: Application of an indepen-
dent factor selection method does not increase
the prediction performance of the OSR method.
A subjective analysis of OSR’s estimation error
(Table 3 and Table 4) suggests that it performs
generally worse when applied on the factors cho-
sen by an independent selection method. This
observation was, however, not supported by the
analysis of the MRE variance. The exception was
the FC set reduced by experts (FCE25), on which
a slight, statistically significant improvement of
the OSR’s predictions was observed.

Interpretation (H3). The results obtained
indicate that no general conclusion regarding the
impact of independent factor selection on the
prediction performance of OSR can be drawn.
Since no significant deterioration of estimation
performance was observed, application of OSR
on the reduced set of factors can be considered
useful due to the reduced cost of measurement.
Yet, improving OSR’s estimates might require a
selection method that is more effective than the
selection mechanism embedded in OSR.

Hypothesis H4: Application of a data-based
factor selection method increases the prediction
performance of a k-NN estimation method.
A subjective impression of improved estimates
provided by the k-NN predictor (Table 4) when
applied on the reduced factor set (FMR10) was,
however, not significant in the sense of different
variances of MRE (p = 0.39). Yet, estimates
provided by the k-NN predictor improved signif-
icantly when used on the FC data set reduced
by the integrated selection method (p = 0.016).
The two individual selection methods did not

56 A. Trendowicz et al.

Table 3. Comparison of various factor selection methods

Predictor Factors Set MMRE MdMRE Pred.25

k-NN

FM 73.7% 43.8% 21.3%
FC 52.6% 40.0% 26.7%
FCE25 46.3% 38.5% 33.3%
FCR25 48.3% 36.9% 29.3%
FCI25 47.5% 33.3% 30.7%

OSR

FM 59.7% 50.8% 17.3%
FC 65.9% 59.2% 18.7%
FCE25 30.7% 57.9% 24.0%
FCR25 66.2% 52.1% 14.7%
FCI25 65.1% 57.9% 14.7%

Table 4. Results of data-based factor selection
Predictor Factors Set MMRE MdMRE Pred.25 ANOVA

k-NN FM 73.7% 43.8% 21.3%
p = 0.39FMR10 56.8% 40.7% 22.7%

OSR FM 59.7% 50.8% 17.3%
p = 0.90FMR10 68.1% 59.1% 16.0%

significantly improve performance of the k-NN
predictor.

Interpretation (H4): Although a subjec-
tive analysis of the results (Table 3 and Table 4)
suggests improved estimates provided by the
k-NN predictor when applied on reduced factors
sets, no unambiguous conclusion can be drawn.
The performance of k-NN improved significantly
only when applied on factors identified from the
FC set by the integrated selection method (the
FCI25 set). This might indicate that k-NN’s per-
formance improvement depends on the applied
factor selection method (here, the integrated
method was the best one).

Threats to Validity. We have identified
two major threats to validity that may limit
the generalizability of the study results. First,
the estimation performance results of the factor
selection methods investigated, compared on
the FC set, might not reflect their true char-
acteristics, i.e., as compared on the complete
set of identified factors (threat to hypothesis
H2). Yet, a lack of measurement data prevented
us from checking on this. Second, the RRF
method includes the k-NN strategy to search
through the factor space and iteratively modify
factor weights. This might bias the results
of k-NN-based estimation by contributing to
better performance of k-NN (as compared to

OSR) on factors selected by RRF (threat to
hypotheses H3 and H4).

6. Summary

In this paper, we proposed an integrated ap-
proach for selecting relevant factrs influencing
software development productivity. We com-
pared the approach in an empirical study against
selected expert- and data-based factor selection
approaches.

The investigation performed showed that
expert- and data-based selection methods iden-
tified different (only partially overlapping) sets
of relevant factors. The study indicated that
the AvalOn method finds a consensus between
factors identified by individual selection meth-
ods. It combines not only the sets of relevant
factors, but also the individual relevancy levels
of selected factors. We showed that in contrast
to data- and expert-based factor selection meth-
ods, the integrated approach may significantly
improve the estimation performance of estima-
tion methods that do not include an embedded
factor selection mechanism. Estimation methods
that include such a mechanism may, however,
benefit from integrating their capabilities with
expert-based factor selection.

Integrating Human Judgment and Data Analysis . . . 57

The study did not replicate the observation
of similar investigations regarding improved esti-
mation performance on the factor sets reduced
by a data-based selection method. Neither of the
estimation methods employed in the study (k-NN
and OSR) improved significantly when applied
on factor sets reduced by the RReliefF method.
Although k-NN improved in terms of aggregated
error measures (e.g., MMRE) the difference in
the MRE variance was insignificant. The results
obtained for the OSR method may indicate that
the change of its prediction performance when
applied on a reduced set of factors depends on
the selection method used.

Finally, we also observed that the function
point adjustment factor (FPAF) was not consid-
ered among the most relevant factors, although
factor selection was driven by a variance on devel-
opment productivity calculated from unadjusted
function point size. Moreover, some of the factors
considered as relevant (e.g., performance require-
ments) belong to components of the FPAF. This
might indicate that less relevant sub-factors of
the FPAF and/or the adjustment procedure itself
may hide the impact of relevant factors. Con-
sidering sub-factors of FPAF individually might
therefore be more beneficial.

In conclusion, factor selection should be
considered as an important aspect of soft-
ware development management. Since individ-
ual selection strategies seem to provide incon-
sistent results, integrated approaches should
be investigated to support software practi-
tioners in limiting the cost of management
(data collection and analysis) and increasing
the benefits (understanding and improvement
of development processes).

7. Further Work

Further work shall focus on several aspects. First,
a full evaluation of the three selection strate-
gies presented on a complete data set (including
data on all factors identified by experts) shall
be performed.

Daily industrial practice requires an incre-
mental approach to identify relevant productiv-

ity factors. After identifying a single most rele-
vant factor or small group of (probably related)
most relevant factors, corresponding project data
should be collected in order to quantitatively
validate the true impact on productivity. The
identified factors may, for instance, be applied
within an estimation model (such as CoBRA [35])
in order to see how much productivity variance
they are able to explain across the considered
development projects. This shall be the next
subject of our further investigation.

Finally, methods for identifying and explic-
itly considering factor dependencies need to be
investigated. Such information might not only
improve performance in effort estimation and pro-
ductivity modeling, but they also improve un-
derstanding of the interaction between organi-
zational processes influencing development pro-
ductivity.

Acknowledgments. We would like to thank
Toshiba Information Systems (Japan) Corpora-
tion and all involved experts who greatly con-
tributed to the study. We would also like to
thank the Japanese Information-technology Pro-
motion Agency for supporting the study. Fi-
nally, we would like to thank Sonnhild Namingha
and Marcus Ciolkowski for reviewing the paper.

References

[1] D.W. Aha and R.L. Bankert. A comparative eval-
uation of sequential feature selection algorithms.
In Doug Fisher and Hans-J. Lenz, editors, Artifi-
cial Intelligence and Statistics, Chapter 4, pages
199–206. Springer-Verlag, 1996.

[2] E. Amaldi and V. Kann. On the approximation
of minimizing non zero variables or unsatisfied
relations in linear systems. Theoretical Computer
Science, Volume 209(1-2):237–260, 1998.

[3] M. Auer, A. Trendowicz, B. Graser, E.J. Haun-
schmid, and S. Biffl. Optimal project feature
weights in analogy-based cost estimation: Im-
provement and limitations. IEEE Transactions
on Software Engineering, 32(2):83–92, February
2006.

[4] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[5] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani,
B.K. Clark, E. Horowitz, R. Madachy, D. Reifer,
and B. Steece. Software Cost Estimation with
CoCoMo II. Prentice-Hall, 2000.

58 A. Trendowicz et al.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone. Classification and Regression Trees.
Advanced Books & Software. Chapman and Hall,
New-York, 1984.

[7] L.C. Briand, V.R. Basili, and W. Thomas. A
pattern recognition approach for software engi-
neering data analysis. IEEE Transactions on
Software Engineering, 18(1):931–942, November
1992.

[8] L.C. Briand and I. Wieczorek. Software resource
estimation. In J.J. Marciniak, editor, Encyclo-
pedia of Software Engineering, volume 2, pages
1160–1196. John Wiley & Sons, 2002.

[9] Z. Chen, T. Menzies, D. Port, and B. Boehm.
Finding the right data for software cost mod-
eling. IEEE Software, 22(6):38–46, Novem-
ber/December 2005.

[10] S. Conte, H. Dunsmore, and V.Y. Shen. Software
Engineering Metrics and Models. CA: Benjamin
Cummings, 1986.

[11] M. Dash and H. Liu. Feature selection methods
for classifications. An International Journal on
Intelligent Data Analysis, 1(3):131–156, 1997.

[12] I. Guyon and A. Elisseeff. An introduction to
variable and feature selection. Journal of Ma-
chine Learning Research, 3:1157–1182, 2003.

[13] P. Jönsson and C. Wohlin. An evaluation of
k-nearest neighbour imputation using likert data.
In Proceedings of the 10th IEEE International
Software Metrics Symposium, pages 108–118.
IEEE Computer Society, 2004.

[14] C. Kirsopp, M. Shepperd, and J. Hart. Search
heuristics, case-based reasoning and software
project effort prediction. In Proceedings of the
Genetic and Evolutionary Computation Confer-
ence, pages 1367–1374, 2002.

[15] J. Li and G. Ruhe. A comparative study of at-
tribute weighting heuristics for effort estimation
by analogy. In Proceedings of the International
Symposium on Empirical Software Engineering,
pages 66–74, 2006.

[16] T. Liang and A. Noore. Multistage software esti-
mation. In Proceedings of the 35th Southeastern
Symposium on System Theory, pages 232–236,
2003.

[17] R.J.A. Little and D.B. Rubin. Statistical Analy-
sis with Missing Data. John Wiley & Sons, New
York, 2nd edition, 2002.

[18] K.D. Maxwell, L. Van Wassenhove, and S. Dutta.
Software development productivity of european
space, military, and industrial applications.
IEEE Transactions on Software Engineering,
22(10):706–718, October 1996.

[19] I. Myrtveit, E. Stensrud, and U.H. Olsson. An-
alyzing data sets with missing data: An em-
pirical evaluation of imputation methods and
likelihood-based methods. IEEE Transactions on
Software Engineering, 27(11):999–1013, Novem-
ber 2001.

[20] M. Ochs. Using sw risk management for deriving
method requirements for risk mitigation in cots
assessment & selection. In Proceeding of the In-
ternational Conference on Software Engineering
and Knowledge Engineering, 2003.

[21] M. Ochs, D. Pfahl, G. Chrobok-Diening, and
B. Nothhelfer-Kolb. A cots acquisition process:
definition and application experience. In Pro-
ceedings of the 11th European Software Control
and Metrics Conference, 2000.

[22] M. Ochs, D. Pfahl, G. Chrobok-Diening, and
B. Nothhelfer-Kolb. A method for efficient
measurement-based cots assessment & selection
– method description and evaluation results. In
Proceedings of the 7th International Syposium
on Software Metrics, 2001.

[23] J.R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[24] M. Robnik-Sikonja and I. Kononenko. Theoreti-
cal and empirical analysis of ReliefF and RRre-
liefF. The Machine Learning Journal, 53:23–69,
2003.

[25] T.L. Saaty. The Analytic Hierarchy Process.
McGraw-Hill, New York, 1990.

[26] D. Schillinger. Entwicklung eines simulations-
fähigen COTS Assessment und Selection Tools
auf Basis eines für Software adequaten hierar-
chischen MCDM Meta Modells. PhD thesis,
Deptartment of Computer Science, TU Kaiser-
slautern, Kaiserslautern, Germany, 2006. Super-
visors: Prof. Dr. D.H. Rombach, M. Ochs.

[27] M. Shepperd and C. Schofield. Estimating soft-
ware project effort using analogies. IEEE Trans-
actions on Software Engineering, 23(12):736–743,
November 1997.

[28] D.J. Sheskin. Handbook of Parametric and Non-
parametric Statistical Procedures. Chapman &
Hall/CRC, 2nd edition, 2000.

[29] Q. Song and M. Shepperd. A short note on
safest default missingness mechanism assump-
tions. Empirical Software Engineering, 10(2),
2005.

[30] P. Spector. Summated Rating Scale Construction.
Sage Publications, 1992.

[31] G.H. Subramanian and S. Breslawski. Dimen-
sionality reduction in software development ef-
fort estimation. Journal of Systems and Software,
21(2):187–196, 1993.

Integrating Human Judgment and Data Analysis . . . 59

[32] The Standish Group. CHAOS chronicles. Techni-
cal report, The Standish Group, West Yarmouth,
MA, 2003.

[33] A. Trendowicz. Factors influencing software
development productivity – state of the art
and industrial experiences. Technical Report
08.07/E, Fraunhofer IESE, Kaiserslautern, Ger-
many, 2007.

[34] A. Trendowicz. Software effort estimation –
overview of current industrial practices and exist-
ing methods. Technical Report 06.08/E, Fraun-
hofer IESE, Kaiserslautern, Germany, 2008.

[35] A. Trendowicz, J. Heidrich, J. Münch, Y. Ishi-
gai, K. Yokoyama, and N. Kikuchi. Develop-
ment of a hybrid cost estimation model in an
iterative manner. In Proceedings of the 28th In-
ternational Conference on Software Engineering,
pages 331–340, 2006.

[36] P. Vincke. Multicriteria Decision-aid. John
Wiley & Sons, Chichester, 1992.

[37] I.H. Witten and E. Frank. Data Mining: Practi-
cal machine learning tools and techniques. Mor-
gan Kaufmann, San Francisco, 2005.

e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

A Novel Test Case Design Technique Using
Dynamic Slicing of UML Sequence Diagrams

Philip Samuel∗, Rajib Mall∗
∗Department of Computer Science and Engineering, Indian Institute of Technology,

Kharagpur(WB), India-721302
philips@cusat.ac.in, rajib@cse.iitkgp.ernet.in

Abstract
We present a novel methodology for test case generation based on UML sequence diagrams. We
create message dependence graphs (MDG) from UML sequence diagrams. Edge marking dynamic
slicing method is applied on MDG to create slices. Based on the slice created with respect to each
predicate on the sequence diagram, we generate test data. We formulate a test adequacy criterion
named slice coverage criterion. Test cases that we generate achieves slice coverage criterion. Our
approach achieves slice test coverage with few test cases. We generate effective test cases for
cluster level testing.

1. Introduction

Ever since Weiser [51] introduced program slicing,
researchers have shown considerable interest in
this field probably due to its application poten-
tial. Slicing is useful in software maintenance and
reengineering [14, 33], testing [18, 26, 40], decom-
position and integration [23], decompilation [10],
program comprehension [36, 19], and debugging
[37]. Most of the works reported on slicing con-
cerns improvements and extensions to algorithms
for slice construction [35, 20, 31, 50, 6]. Even
though dynamic slicing is identified as a powerful
tool for software testing [31, 40], reported work
on how dynamic slicing can be used in testing
is rare in the literature. In 1993, Kamkar et al.
[26] reported how dynamic slicing can be applied
to interprocedural testing. This work is reported
in the context of testing procedural code. To the
best of our knowledge, no work is reported in
the literature that describes how dynamic slicing
can be used for test case generation in the object
oriented context. In this paper, we propose a
method to generate test cases by applying dy-
namic slicing on UML sequence diagrams.

As originally introduced, slicing (static slic-
ing) considers all possible executions of a pro-
gram. Korel and Laski [30] introduced the con-
cept of dynamic slicing. Dynamic slicing consid-
ers a particular execution and hence significantly
reduces the size of the computed slice. A dy-
namic slice can be thought of as that part of a
program that “affects” the computation of a vari-
able of interest during a program execution on
a specific program input [31]. A dynamic slice
is usually smaller than a static slice, because
run-time information collected during execution
is used to compute the slice. In a later work,
Korel has shown that slicing can be used as a
reduction technique on specifications like UML
state models [32].

The goal of software testing is to ensure qual-
ity. Software testing is necessary to produce
highly reliable systems, since static verification
techniques suffer from several handicaps in de-
tecting all software faults [5]. Hence, testing will
be a complementary approach to static verifica-
tion techniques to ensure software quality. As
software becomes more pervasive and is used
more often to perform critical tasks, it will be

62 Philip Samuel, Rajib Mall

required to be of very high quality. Unless more
efficient ways to perform effective testing are
found, the fraction of development costs devoted
to testing will increaseto unacceptable levels [44].

The most intellectually challenging part of
testing is the design of test cases. Test cases are
usually generated based on program source code.
An alternative approach is to generate test cases
from specifications developed using formalisms
such as UML models. In this approach, test cases
are developed during analysis or design stage it-
self, preferably during the low level design stage.
Design specifications are an intermediate artifact
between requirement specification and final code.
They preserve the essential information from the
requirement, and are the basis of code implemen-
tation. Moreover, in component-based software
development, often only the specifications are
available and the source code is proprietary. Test
case generation from design specifications has
the added advantage of allowing test cases to be
available early in the software development cycle,
thereby making test planning more effective. It
is therefore desirable to generate test cases from
the software design or analysis documents, in
addition to test case design using the code.

Now, UML is widely used for object oriented
modeling and design. Recently, several meth-
ods have been proposed to execute UML models
[47, 39, 46, 17, 13, 11]. Executable UML [39, 46]
allows model specifications to be efficiently trans-
lated into code. Executable UML formalizes
requirements and use cases into a set of verifi-
able diagrams. The models are executable and
testable and can be translated directly into code
by executable UML model compilers. Besides
reducing the effort in the coding stage, it also
ensures platform independence and avoids obso-
lescence. This is so because the code often needs
to change when ported to new platforms or fine
tuning the code on efficiency or reliability consid-
erations. It also allows meaningful verification of
the models by executing them in a test and debug
environment. Our test generation approach can
also work on executable UML models.

UML-based automatic test case generation
is a practically important and theoretically chal-
lenging topic. Literature survey indicates, testing

based on UML specifications is receiving an in-
creasing attention from researchers in the recent
years. In using UML in the software testing pro-
cess, here we focus primarily on the sequence di-
agrams where sequence diagrams model dynamic
behavior. This is because most of the activities in
software testing seek to discover defects that arise
during the execution of a software system, and
these defects are generally dynamic (behavioral)
in nature [52]. Software testing is fundamentally
concerned with behavior (what it does), and not
structure (what it is) [25]. Customers under-
stand software in terms of its behavior, not its
structure. Further, UML is used in the design
of object-oriented software, which is primarily
event-driven in nature. In such cases, the concept
of a main program is minimized and there is no
clearly defined integration structure. Thus there
is no decomposition tree to impose the question
of integration testing order of objects. Hence, it
is no longer natural to focus on structural testing
orders. Whereas, it is important to identify in
what sequence objects interact to achieve a com-
mon behavior. In this context, UML sequence
diagrams forms an useful means by which we
can generate effective test cases for cluster level
testing.

In this paper, we concentrate on UML se-
quence diagrams to automatically generate test
cases. This paper is organized as follows: A brief
discussion on sequence diagrams is given in the
next section. In Section 3 we discuss few basic
concepts. Section 4 describes our methodology
to generate test cases from sequence diagrams
and explains our methodology with an example.
Section 5 discusses an implementation of our test
methodology. Related research in the area of
UML based testing is discussed in the Section 6
and conclusions are given in Section 7.

2. UML Sequence Diagrams

UML Sequence diagrams capture time dependent
(temporal) sequences of interactions between ob-
jects. They show the chronological sequence of
the messages, their names and responses and
their possible arguments. A sequence diagram

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 63

 Note
response()

message1(argu)
startmessage()

Life line

Activation

:object1 :object2 :object3

alt

asynchronous message4()

Interaction Operator

message2()
[x<25]message3()

[y>10]

[else]

Interaction Constraint

message5() Seperator
Interaction operand

Combined fragment
(alternative)

Condition

Figure 1. A sequence diagram showing various notations

has two dimensions: the vertical dimension rep-
resents time, and the horizontal dimension rep-
resents different instances. Normally time pro-
ceeds from top to bottom [43]. Message sequence
descriptions are provided in sequence diagrams
to bring forth meanings of the messages passed
between objects. Sequence diagrams describe in-
teractions among software components, and thus
are considered to be a good source for cluster
level testing. In UML, a message is a request for
a service from one UML actor to another, these
is typically implemented as method calls. We
assume that each sequence diagram represents a
complete trace of messages during the execution
of a user-level operation.

An example of a UML sequence diagram is
shown in Figure 1. The vertical dashed line in
the diagram is called a lifeline. A lifeline repre-
sents the existence of the corresponding object
instance at a particular time. Arrows between
the lifelines denote communication between ob-

ject instances using messages. A message can
be a request to the receiver object to perform
an operation(of the receiver). A synchronous
message is shown with a filled arrowhead at the
end of a solid line. An asynchronous message is
depicted with an open arrowhead at the end of a
solid line. Return messages are usually implied.
We can explicitly show return messages using
an open stick arrowhead with a dashed line as
shown in Figure 1. An object symbol shown with
a rectangle is drawn at the head of the lifeline.
An activation (focus of control) shows the period
during which an instance is performing a proce-
dure. The procedure being performed may be
labeled in text next to the activation symbol or
in the margin.

UML 2.0 also allows an element called note,
for adding additional information to the sequence
diagram. Notes are shown with dog-eared rect-
angle symbols linked to object lifeline through
a dashed line as shown in Figure 1. Notes are

64 Philip Samuel, Rajib Mall

convenient to include pseudocode, constraints,
pre-conditions, post-conditions, text annotations
etc. in sequence diagram. However, in our ap-
proach we restrict the notes to contain only ex-
ecutable statements. Messages in the sequence
diagram are chronologically ordered. So we have
numbered them based on their timestamps. Fur-
ther, we have numbered the notes in an arbitrary
manner.

In UML 2.0, a set of interactions can be
framed together and can be reused at other lo-
cations. Different interaction fragments can be
combined to form a combined fragment. A com-
bined interaction fragment defines an expression
of interaction fragments. A combined interac-
tion fragment is defined by an interaction op-
erator and corresponding interaction operands.
Through the use of combined fragments, the user
will be able to describe a number of traces in
a compact and concise manner. A combined
fragment with an operator alt (for alternative)
is shown in Figure 1.

3. Basic Concepts

In this section, we discuss a few basic concepts
that are useful to understand the rest of this
paper.

Class, Cluster and System Level Test-
ing: In object oriented systems, generally testing
is done at different levels of abstraction: class
level, cluster level and system level [9, 49, 28].
Class level testing tests the code for each opera-
tion supported by a class as well as all possible
method interactions within the class. Class level
testing also includes testing the methods in each
of the states that a corresponding object may
assume. At cluster level testing, the interactions
among cooperating classes are tested. This is
similar to integration testing. The system level
testing is carried out on all the clusters making
up the complete system.

Executable UML: Executable UML [39,
46] allows model specifications to be efficiently
translated into code. Executable UML can for-
malize requirements and use cases into a rich set
of verifiable diagrams. The models are executable

and testable and can be translated directly into
code by executable UML model compilers. The
benefits of this approach go well beyond sim-
ply reducing or eliminating the coding stage; it
ensures platform independence, avoids obsoles-
cence (programming languages may change, the
model doesn’t) and allows full verification of the
models by executing them in a test and debug
environment.

Test Case: A test case is the triplet (I, D,
O) where I is the state of the system at which
the test data is input, D is the test data input
to the system, and O is the expected output of
the system [2, 38, 42]. The output produced by
the execution of the software with a particular
test case provides a specification of the actual
software behavior.

4. Dynamic Slicing based Test Case
Generation from Sequence
Diagrams

In this section we describe our proposed method-
ology for automatic test case generation from
UML sequence diagrams using dynamic slicing.
We first define a few terms and the relevant test
coverage criteria.

4.1. Definitions

The following definitions would be used in the
description of our methodology.

Message Dependency Graph (MDG):
We define MDG as a directed graph with (N,
E), where N is a set of nodes and E is a set of
edges. MDG shows the dependency of a given
node on the others. Here a node represents either
a message or a note in the sequence diagram and
edges represent either control or data dependency
among nodes. Here we have assumed that notes
are attached to objects and the statements on the
notes are executed when its corresponding life-
line is activated. MDG does not distinguish be-
tween control or data dependence edges. It does
however distinguish between stable and unstable
edges. Definitions of stable and unstable edges
are given subsequently. The induced subgraph

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 65

{n=x*y} 12

{r=p+q} 13

object1 object3

[x>20]msg1
msg2

[p−q>=0]msg3
[y<50]msg4

[p>=20 and q<50]msg5

[n<400]msg6
[p<=120]msg7

[y>120]msg8

[r<150]msg9

[p>40]msg10

[a+y>20]msg11

object2

Figure 2. An example sequence diagram

of MDG of the sequence diagram in Figure 2 on
the Node Set(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) is
shown in Figure 3. of Subsection 4.7.

Slicing Criteria: Slices are constructed
based on a slicing criterion. Weiser’s slicing crite-
rion [51] consisted of a set of variables of interest
and a point of interest within the original pro-
gram. Statements which cannot affect the values
of variables at a point of interest in the program
are removed to form the slice. In our case, the
slicing criterion (m, V) specifies the location
(identity) of a message m in its corresponding
MDG and V is a set of variables that are used by
the conditional predicate on the message at m.

Dynamic Slice: A dynamic slice of a se-
quence diagram is defined with respect to its
corresponding MDG. Consider a predicate in
MDG on a message m in a sequence diagram. A
dynamic slice is the induced subgraph of MDG,
induced by the set of nodes in MDG that affect
a predicate at m for a given execution. We call
this slice as a dynamic slice of sequence diagram.
Those nodes of MDG that do not affect the pred-

icate at m are removed to form the slice, for the
slicing criterion (m, V).

UseVar(x): It is the set of all nodes in MDG
that uses the value of variable x. For example,
in the expression (n = x ∗ y) there is a use of the
value of the variable x.

AllotVar(x): It is the set of all nodes inMDG
that defines the variable x. In addition, consider a
conditional guardspecifiesacondition inamessage
using variable x. If x is used to specify another
condition in another message, such conditional
guards are also treated as members of AllotVar(x).
We use the term allotment to indicate that a vari-
able x is either defined or if x is used to specify
guards in the rest of paper. For example, consider
nodes 4 and 8 inMDGas shown in Figure 3. These
nodes correspond to messages [y < 50]msg4 and
[y > 120]msg8 respectively in Figure 2. For a par-
ticular input value for the variable y, only one of
these messages will take place. Hence, both nodes
4 and 8 are treated as members of AllotVar(y). A
use of y will require only one of the AllotVar(y),
not both.

66 Philip Samuel, Rajib Mall

Stable Edge

Unstable Edge

3

4

6

7

11

13

10

9

8

12

5

Figure 3. The induced subgraph of dependency graph of the sequence diagram in Figure 2
on the node set (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Dependence Edge: If node i is a member
of usevar(x) and a node j is a member of Allot-
Var(x), then there is a directed edge from node i
to node j, this edge is also called a dependence
edge.

Dependency Path: A dependency path F
from some node vi, to a node vk is a sequence of
nodes and edges in MDG from vi to vk.

Unstable Edge: Let M,Mi,Mj be three
nodes in MDG. An outgoing dependence edge
(M,Mi) in MDG is said to be unstable if there
exists an outgoing dependence edge (M,Mj)
with Mi not equal to Mj such that the
statements Mi and Mj both are members of
AllotVar(x). For example, in Figure 2, the mes-
sages [y < 50]msg4 and [y > 120]msg8 will form
unstable edges with respect to the message [a+
y > 20]msg11. These edges corresponds to (4,
11) and (8, 11) respectively in the MDG shown
in Figure 3.

Stable Edge: An edge in a dependency
graph is said to be stable, if it is not an unstable
edge.

Slice Condition: Consider a slice S of a
sequence diagram for the slicing criterion (m, V).
The slice condition of the slice S is the conjunc-
tion of all the individual predicates present in
the dynamic slice for a given execution.

Slice Domain: The slice domain of slice S
is the set of all input data values for which the
slice condition of S is satisfied.

Boundary: A slice domain is surrounded by
a boundary. A boundary is a set of data points.
A boundary might consist of several segments
and each segment of the boundary is called a
border [16]. Each border is determined by a
single simple predicate in the slice condition. A
border crossing occurs for some input where the
conditional predicate changes its Boolean value
from true to false or vice versa.

4.2. Test Coverage

A software test data adequacy criterion (or cov-
erage criterion) is used to find out whether a
set of test cases is sufficient, or “adequate”, for
testing a given software. Some of the relevant
test criteria are introduced in this section.

4.2.1. Slice Coverage Criterion

Several test coverage criteria such as message
path criteria, full predicate coverage etc., have
been proposed in the literature [2]. Several other
criteria such as slice coverage criterion can easily
be formulated based on these criteria. We extend

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 67

slice coverage criterion from path based criteria.
Slice criteria is defined with respect to a depen-
dency graph. We define slice coverage criterion
for sequence diagram as follows: Consider a test
set T and an MDG corresponding to a sequence
diagram SD. In order to satisfy the slice coverage
criterion, it is required that T must cause all the
dependency paths in MDG for each slice to be
taken at least once. Slice coverage ensures that
all the dependency paths of an MDG (Message
Dependency Graph) are covered.

4.2.2. Full Predicate Coverage

Full predicate coverage criterion requires that
each clause should be tested independently [42].
In other words, each clause in each predicate
on every message must independently affect the
outcome of the predicate. Given a test set T and
sequence diagram SD, T must cause each clause
in every predicate on each message in SD to take
on the values of TRUE and FALSE while all other
clauses in the predicate have values such that the
value of the predicate will always be the same as
the clause being tested. This ensures that each
clause in a condition is separately tested.

4.2.3. Boundary Testing Criterion

Testers have frequently observed that domain
boundaries are particularly fault-prone and
should therefore be carefully checked [24].
Boundary testing criterion is applicable whenever
the test input domain is subdivided into subdo-
mains by decisions (conditional predicates). Let
us select an arbitrary border for each predicate
p. We assume that the conditional predicates
on the sequence diagram are relational expres-
sions (inequalities). That is, all conditional pred-
icates are of the following form: E1opE2, where
E1andE2 are arithmetic expressions, and op is
one of {<,≤, >,≥}. Jeng and Weyuker [24] have
reported that an inequality border can be ade-
quately tested by using only two points of test
input domain, one named ON point and the
other named OFF point. The ON point can be
anywhere on the given border. It does not even
have to lie exactly on the given border. All that

is necessary is that it satisfies all the conditions
associated with the border. The requirement
for the OFF point is that it be as close to the
ON point as possible, but it should lie outside
the border.

The boundary testing criterion can now be
defined as follows: The boundary testing crite-
rion is satisfied for inequality borders if each
selected inequality border b is tested by two
points (ON-OFF) of test input domain such that,
if for one of the points the outcome of a selected
predicate q is true, then for the other point the
outcome of q is false. Also the points should
satisfy the slice condition associated with b and
the points should be as close as possible to each
other [16].

Definitions of boundary testing criteria for
equality and non-equality borders are defined
in [24, 16]. For conciseness, we do not consider
them here. However they can easily be consid-
ered in our approach. We use boundary testing
as an extension of slice coverage criterion. The
number of test cases to be generated for achiev-
ing slice coverage criterion can be very large if
we use a random approach. We reduce this by
using boundary testing along with slice coverage.
For example consider a the predicate (n < 400)
shown in Figure 2. In the example section we
have shown two test data that can be used to
test it and they are [21, 20] and [21, 19] where,
the test data has the values of [x, y] for the pred-
icate (n < 400). The slice condition consists of
(x > 20), (y < 50), (n = x ∗ y) and the test data
is generated subject to slice condition. Instead of
generating a set of test cases randomly and select-
ing the test cases from this set that satisfies this
slice condition, we generate two test cases based
on a simple predicate using boundary testing.

4.3. Overview of Our Approach

In our approach, the first step is to select a con-
ditional predicate on the sequence diagram. The
order in which we select predicates is the chrono-
logical order of messages appearing in a sequence
diagram. For each message in the sequence dia-
gram, there will be a corresponding node in the
MDG. For each conditional predicate, we create

68 Philip Samuel, Rajib Mall

the dynamic slice for the slicing criteria (m, V) and
with respect to each slice we generate test data.
The generated test data for each predicate corre-
sponds to the true or false values of the conditional
predicate and these values are generated subject
to the slice condition. This helps to achieve slice
coverage. The different steps of our approach are
elaborated in the following subsections.

4.4. Dynamic Slice of Sequence
Diagrams

In our approach, a dynamic slice of a sequence
diagram is constructed from its corresponding
MDG (Message dependency graph). An MDG
is created statically and it needs to be created
only once. For each message in the sequence
diagram, there will be a corresponding node in
the MDG. From MDG, we create the dynamic
slice corresponding to each conditional predicate,
for the slicing criteria (m, V). For creating dy-
namic slices we use an edge marking method.
Edge marking methods are reported in [22, 40]
for generating dynamic slices in the context of
procedural programs. Their edge marking meth-
ods uses program dependence graph. We gen-
erate a message dependence graph from UML
sequence diagram and apply the edge marking
technique on it. Edge marking algorithm is based
on marking and unmarking the unstable edges
appropriately as and when dependencies arise
and cease at run time. After an execution of
the node x at run-time, an unstable edge(x, y)
is marked if the node x uses the value of the
variable v at node y and node y is a member
of AllotVar(v). A marked unstable edge(x, y)
is unmarked after an execution of a node z if
the nodes y and z are in AllotVar(v), and the
value of v computed at node y does not affect the
present value of v at node z. In our approach we
generate test data that satisfies all constraints
corresponding to a slice.

Before execution of a message sequence M,
the type of each of its edges in MDG is appro-
priately recorded as either stable or unstable.
The dependence associated with a stable edge
exists at every point of execution. The depen-
dence associated with an unstable edge keeps on

changing with the execution of the node. We
mark an unstable edge when its associated de-
pendence exists, and unmark when its associated
dependence ceases to exist. Each stable edge is
marked and each unstable edge is unmarked at
the time of construction of the MDG. We mark
and unmark edges during the execution of the
message sequences, as and when a dependencies
arise or cease, and a stable edge is never un-
marked. Let dslice(n) denote the dynamic slice
with respect to the most recent execution of the
node n. Let (n, x1), (n, x2), . . . , (n, xn) be all the
marked outgoing dependence edges of n in the
updated MDG after an execution of the node n.
It is clear that the dynamic slice with respect to
the present execution of the node is dslice(n) =
x1, x2, . . . , xn ∪ dslice(x1) ∪ · · · ∪ dslice(xn).

We now present the edge marking dynamic
slicing algorithm for sequence diagrams in pseu-
docode form. Subsequently this method is ex-
plained using an example.

Edge Marking Dynamic Slicing Algo-
rithm for Sequence Diagrams
• Do before execution of the message sequence:-

– Unmark all the unstable edges.
– Set dslice(n) = NULL for every node n of

the MDG.
• For each node n of the message sequence Do

– For every variable used at n, mark the unsta-
ble edge corresponding to its most recent
allotment. (Suppose there is a predicate
x > 50 which is true for the given execu-
tion step and inputs then the edge to that
predicate is marked. If the predicate is false
then it remains unmarked.)

– Update dslice(n).
– If n is a member of AllotVar(x) and n is not

a UseVar(x) node, then do the following:-
◦ Unmark every marked unstable edge

(n1, n2) with n1 ∈ UseV ar(x) and n2
is a node that does not affect the present
allotment of the variable var. Hence, the
marked unstable edge (n1, n2) represent-
ing the dependence of node n1 on node
n2 in the previous execution of node
n1 will not continue to represent the
same dependence in the next execution
of node n1.

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 69

For example, let x = 30, y = 45, p = 55, q =
40, a = 10 be a data set for the diagram given
in Figure 2. For the slicing criteria (11, y), ini-
tially let edges (11, 4) and (11, 8) are unmarked
unstable edges as seen in Figure 3. During the
execution of node 11, for the given data set,
we mark the unstable edge (11, 4) whereas the
unstable edge (11, 8) remains unmarked as the
value of y at present is 45. Hence the dynamic
slice of node 11 for the slicing criteria (11, y) is
4 ∪ dslice6 and do not include 8. Let at some
other execution, the data set is x = 30, y = 55,
p = 45, q = 40, a = 10. In this case the dynamic
slice of node 11 for the slicing criteria (11, y) is
8 ∪ dslice6 and do not include 4.

4.5. Generation of Predicate Function

Consider an initial set of data I0 that is randomly
generated for the variables that affect a predicate
p in a slice S. As already mentioned in our ap-
proach, we compute two points named ON and
OFF for a given border satisfying the boundary
testing criterion. We transform the relational
expressions of the predicates to a function F
(Predicate Function). If the predicate p is of
the form (E1 op E2), where E1 and E2 are arith-
metic expressions, and op is a relational operator,
then F = (E1 – E2) or (E2 – E1) depending on
whichever is positive for the data I0. Next we
successively modify the input data I0 such that
the function F decreases and finally turns nega-
tive. When F turns negative, it corresponds to
the alternation of the outcome of the predicate.
Hence as a result of the above predicate transfor-
mation, the change in the outcome of predicate
p now corresponds to the problem of minimiza-
tion of the function F. This minimization can be
achieved through repeated modification of input
data value.

4.6. Test Data Generation

The basic search procedure we use for finding
the minimum of the predicate function F is the
alternating variable method [29, 16] which con-
sists of minimizing F with respect to each input
variable in turn. Each input data variable xi is in-

creased/decreased in steps of Uxi, while keeping
all the other data variables constant. Here Uxi
refers to a unit step of the variable xi. The unit
step depends on the data type being considered.
For example, the unit step is 1 for integer values.
The method works with many other types of
data such as float, double, array, pointer etc.
However the method may not work when the
variable assumes only a discrete set of values.
Each predicate in the slice can be considered to
be a constraint. If any of the constraint is not
satisfied in the slice, for some input data value,
we say that a constraint violation has taken place.
We compute the value of F when each input
data is modified by Uxi. If the function F has
decreased on the modified data, and constraint
violation has not occurred, then the given data
variable and the appropriate direction is selected
for minimizing F further. Here appropriate di-
rection refers to whether we increase or decrease
the data variable xi. We start searching for a
minimum with an input variable while keeping
all the other input variables constant until the
solution is found (the predicate function becomes
negative) or the positive minimum of the predi-
cate function is located. In the latter case, the
search continues from this minimum with the
next input variable.

4.7. An Example

Consider an example sequence diagram as shown
in Figure 2. We have selected this example as
it demonstrates the concepts in our approach.
We illustrate our methodology by explaining the
test data generation for the predicate (n < 400)
shown in Figure 2. Its corresponding MDG is
shown in Figure 3. Let the slicing criterion be (6,
n). For this slicing criterion, the slice contains of
the set of nodes that corresponds to predicates
(x > 20), (y < 50), (n = x ∗ y). The function F
will be the expression (n− 400). Let I0 be the
initial data: [25, 40] where (x = 25, y = 40). The
condition (n < 400) is false for I0 as (1000 < 400).
The function F will be the expression (n− 400)
and F(I0) = 600. We should minimize F, in
order to alter the boolean outcome of predicate
(n < 400), which is false initially.

70 Philip Samuel, Rajib Mall

First we decrease the value of data x in steps.
In the first step, we take x = 24 and the value
of F is calculated as 560 for [x, y] = [24, 40].
Observe that the function F reduces by reducing
x. Therefore in the next step, the size of the
step is doubled and hence the value of variable x
is decreased by 2. As we minimize F further in
several iterations, we finally arrive at two data
points with [x, y] = [21, 20], F is positive and
the condition (n < 400) is still false. So we take
two data sets Iin as [x, y] = [21, 20] that makes
F positive (or zero) and another data set Iout as
[x, y] = [21, 19] that makes F negative.

The test cases we generate for the predicate
(n < 400) are (object1, [21, 19], object2) and (ob-
ject1, [21, 20], object1) correspond to different
truth values of the predicate (n < 400). Here
test cases has the form (sender object, [test data],
receiver object). Test data has the values of [x,
y] for the predicate (n < 400). These test cases
are generated satisfying the slice condition of the
slice. With our proposed method we generate
test cases for each such conditional predicates on
the sequence diagram.

5. An Implementation

To the best of our knowledge, no full-fledged
ready made tool exists that are publicly available
to execute UML models. Hence, for generating
dynamic slices in our experimentation, we have
simulated the executions. We made a proto-
type tool that implements our method. Figure 4
shows the important classes that we used to
generate test cases from sequence diagram in
our implementation. SliceGenerator class cre-
ates the message dependency graph. It makes
the sets defSet and useSet for each variable in
the sequence diagram. It forms slices based on
the slicing criteria for each of the messages in
the sequence diagram. SliceRecord class keeps a
record of slices.

DocumentParser class parses the XML file
corresponding to a UML sequence diagram. We
used the Document Object Model (DOM) API
that comes with the standard edition of the Java
platform, for parsing XML files. The package

org.w3c.dom.*, provides the interfaces for the
DOM. The DOM parser begins by creating a
hierarchical object model of the input XML doc-
ument. This object model is then made available
to the application for it to access the informa-
tion it contains in a random access fashion. This
allows an application to process only the data of
interest and ignore the rest of the document.

XmlBoundary is the class of the program from
which the execution starts. It accepts an XML
file of sequence diagram from a user. Then it
extracts the parent tag of the XML file and passes
the tag (called head) to the TestCaseController
class. TestCaseController class coordinates the
different activities of the program. TestCase-
Boundary class is responsible for displaying the
list of test cases for a collaboration diagram. The
source and destination objects as well as the slice
condition is printed along with test data.

In our prototype implementation, we have
considered only integer and Boolean variables as
part of the conditional expression in sequence
diagrams. Other data types however can eas-
ily be considered. Further, for the prototype
implementation we have assumed that the nec-
essary constraints are available in notes instead
of class/object diagrams. Extracting data types
of attributes, or constraints from class/object
diagrams for our implementation can be easily
done. The GUI was developed using the swing
component of Java. A GUI screen along with a
sample sequence diagram is shown in Figure 5.
The GUI gives the flexibility to view the sequence
diagram, its XML representation and the gener-
ated test cases. Figure 6 shows the UTG display
of the XML file of example given in Figure 5. The
corresponding test cases generated are shown in
Figure 7. Our tool allows storing the test cases
as text files for later processing.

We have implemented our method for generat-
ing test cases automatically from UML sequence
diagrams in a prototype tool named UTG. Here,
UTG stands for UML behavioral Test case Gener-
ator. UTG has been implemented using Java and
can easily integrate with any UML CASE tools
like MagicDraw UML [41] that supports XML
(Extensible Markup Language) format. Since
UTG takes UML models in XML format as input,

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 71

Generator
Slice TestData

Record

TestCase
Controller

XmlBoundary

TestCase
Boundary

Document
Parser

Slice
Record

Stack

Figure 4. Class diagram of UTG for generating test cases from sequence diagrams

Figure 5. The GUI screen of UTG with an example sequence diagram

UTG is independent of any specific CASE tool.
We have used the tool with several UML designs
and the tool was found effective in generating
test cases. The generated test cases were found
to achieve the desired coverage.

6. Related Work

Bertolino and Basanieri [4] proposed a method
to generate test cases following the sequence
of messages between components in a sequence
diagram. They develop sequence diagrams for

each use case and use category partition method
to generate test data. They characterize a test
case as a combination of all suitable choices of
the involved settings and interactions in a se-
quence of messages. In another interesting work,
Basanieri, et al. [3] describe the CowSuite ap-
proach which provides a method to derive the
test suites and a strategy for test prioritization
and selection. CowSuite is mainly based on the
analysis of the use case diagrams and sequence
diagrams. From these two diagrams they con-
struct a graph structure which is a mapping of
the project architecture and this graph is ex-

72 Philip Samuel, Rajib Mall

Figure 6. A screen shot of UTG with a portion of the XML file corresponding to example in Figure 5

plored using depth-first search algorithm. They
use category partition method [45] for generat-
ing test cases. They construct test procedures
using the information retrieved from the UML
diagrams.

Briand and Labiche [7] describe the TOTEM
(Testing Object-orienTed systEms with the Uni-
fied Modeling Language) system test method-
ology. Functional system test requirements are
derived from UML analysis artifacts such as use
cases, their corresponding sequence and collabo-
ration diagrams, class diagrams and from OCL
used in all these artifacts. They represent sequen-
tial dependencies among use cases by means of
an activity diagram constructed for each actor in
the system. The derivation of use case sequences
from the activity diagram is done with a depth
first search through a directed graph capturing
the activity diagram. They generate legal se-
quences of use cases according to the sequential
dependencies specified in the activity diagram.
Abdurazik and Offutt [1] proposed novel and use-
ful test criteria based on collaboration diagrams
for static checking and dynamic testing based on
collaboration diagrams. They recommended a
criterion for dynamic testing that involved mes-
sage sequence paths. They adapt traditional data

flow coverage criteria (eg. all definition – uses)
in the context of UML collaboration diagrams.

Linzhang, et al. [34] proposed a gray-box test-
ing method using UML activity diagrams. They
propose an algorithm to generate test scenarios
from activity diagrams. The information regard-
ing input/output sequence, parameters, the con-
straint conditions and expected object method
sequence is extracted from each test scenario.
They recommend applying category-partition
method to generate possible values of all the in-
put/output parameters to find the inconsistency
between the implementation and the design.

Among all UML diagrams, test case gen-
eration from state chart diagram has possibly
received maximum attention from researchers
[8, 21, 27, 28, 42, 48]. Offutt and Abdurazik [42]
developed an interesting technique for generating
test cases from UML state diagrams which is in-
tended to help perform class-level testing. Their
method takes a state transition table as input,
and generates test cases for the full predicate
coverage criterion. It processes each outgoing
transition of each source state, generates a test
case that makes the transition taken, and then
generates test cases that make the transition un-
taken. A test case is designed corresponding to

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 73

Figure 7. A screen shot of UTG with dependency graph and generated test cases corresponding
to the example of Figure 5

each variable in a transition predicate. To avoid
redundant test case value assignments, those vari-
ables that have already been assigned values are
not considered in the subsequent test case value
assignment process. After all test case values are
generated, an additional algorithm is run on the
test cases to identify and remove redundant test
cases. Kansomkeat, et al. [27] have proposed an
alternate method for generating test sequences
using UML state chart diagrams. They trans-
form the state chart diagram into an intermediate
diagram called Testing Flow Graph (TFG) which
is used to generate test sequences. TFG is a flat-
tened hierarchy structure of states. The testing
criterion they proposed is the coverage of states
and transitions of TFG.

Kim, Y.G. et al. [28] proposed a method
for generating test cases for class testing using
UML state chart diagrams. They transform state
charts to extended finite state machines (EF-
SMs) to derive test cases. The hierarchical and
concurrent structure of states is flattened and
broadcast communications are eliminated in the
resulting EFSMs. Next data flows are identi-
fied by transforming EFSMs into flow graphs to
which conventional data flow analysis techniques

are applied. Hartmann et al. [21] augment the
UML description with specific notations to cre-
ate a design-based testing environment. The
developers first define the dynamic behavior of
each system component using a state diagram.
The interactions between components are then
specified by annotating the state diagrams, and
the resulting global FSM that corresponds to
the integrated system behavior is used to gener-
ate the tests.

Scheetz et al. [48] developed an approach for
generating system (black box) test cases using an
AI (Artificial Intelligence) planner. They used
UML class diagrams and state diagrams to rep-
resent the conceptual architecture of a system
under test. They developed a representation
method at the application domain level that al-
lows statement of test objectives at that level,
and their mapping into a planner representa-
tion. Their method maps the initial and goal
conditions into a problem description for the
planner. The planner generates a plan based
on this input. In the next step, they carry out
a conversion of the plan to produce executable
test cases. The purpose of a test case in a goal
directed view is to try to change the state of the

74 Philip Samuel, Rajib Mall

overall system to the goal state. The planner
decides which operators will best achieve the
desired goal states. Cavarra, et al. [8] use UML
class diagrams, state diagrams, and object dia-
grams to characterize the behavior of a system.
These UML diagrams are translated into formal
behavioral descriptions, written in a language
of communicating state machines and used as a
basis for test generation. From this they form a
test graph, consisting of all traces leading to an
accept state, together with branches that might
lead to invalid state.

Andrews et al. [2] describe several useful test
adequacy criteria for testing executable forms of
UML. The criteria proposed for class diagrams in-
clude association-end multiplicity criterion, gen-
eralization criterion and class attribute criterion.
The interaction diagram criteria like condition
coverage, full predicate coverage, each message
on link, all message paths and collection cover-
age criteria are used to determine the sequences
of messages that should be tested. They also
describe a test process. Ghosh et al. [15] present
a testing method in which executable forms of
Unified Modeling Language (UML) models are
tested. In systematic design testing, executable
models of behaviors are tested using inputs that
exercise scenarios. This can help reveal flaws
in designs before they are implemented in code.
Their method incorporates the use of test ade-
quacy criteria based on UML class diagrams and
interaction diagrams. Class diagram criteria are
used to determine the object configurations on
which tests are run, while interaction diagram
criteria are used to determine the sequences of
messages that should be tested. These criteria
can be used to define test objectives for UML
designs. Engels et al. [12] discuss how consis-
tency among different UML models can be tested.
They propose dynamic meta modeling rules as
a notation for the consistency conditions and
provide the concept for an automated testing
environment using these rules.

In contrast with the above discussed ap-
proaches we generate actual test cases from se-
quence diagrams. Our approach can work on
executable forms of UML design specifications
and is meant for cluster level testing where object

interactions are tested. Corresponding to each
conditional predicate on the sequence diagram,
we construct dynamic slice from its MDG and
with respect to the slice we generate test data.
Our test data generation scheme is automatic.

Kamkar et al. [26] explains how interproce-
dural dynamic slicing can be used to increase the
reliability and precision of interprocedural data
flow testing. Harman and Danicic [18] presents
an interesting work that illustrates how slicing
will remove statements which do not affect a pro-
gram variable at a location thereby simplifying
the process of testing and analysis. They also
provide a program transformation algorithm to
make a program robust. Slicing has been used
as a reduction technique on specifications like
state models [32]. Anyhow this work [32] do not
provide a scheme for test generation.

Korel [29] generated test data based on ac-
tual execution of a program under test. He used
function minimization methods and dynamic
data flow analysis. If during a program run an
undesirable execution flow is observed (e.g., the
“actual” path does not correspond to the selected
control path), then function minimization search
algorithms are used to automatically locate the
values of input variables for which the selected
path is traversed. This helps in achieving path
coverage. In addition, dynamic data flow anal-
ysis is used to determine those input variables
that are responsible for the undesirable program
behavior, leading to significant speedup of the
search process. Hajnal et al. [16] extended
the work done by Korel [29]. They reported
the use of boundary testing that requires the
testing of one border only along a selected path.
The test input domain may be surrounded by
a boundary and each segment of the boundary
is called a border. The task to generate two
test data points considering only one border for
each path, is much easier. Their testing strategy
can also handle compound predicates. Jeng and
Weyuker [24] have reported that an inequality
border can be tested by only two points of test
input domain, one named ON point and another
named OFF point. For borders in a discrete
space containing no points lying exactly on the
border, their strategy allows the ON point to

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 75

be chosen from beneath the border as long as
the distance between the ON and OFF points
is minimized. These works [26, 18, 29, 16, 24]
discussed above have focused on unit testing of
procedural programs.

7. Conclusion

We have presented a novel method to generate
test cases by dynamic slicing UML sequence
diagrams. Our approach is meant for cluster
level testing where object interactions are tested.
Our approach automatically generates test data,
which can be used by a tool to carry out au-
tomatic testing of a program. Generation of
MDG is the only static part in our approach.
We identify the conditional predicates associated
with messages in a sequence diagram and create
dynamic slice with respect to each conditional
predicate. We generate test data with respect
to each constructed slice and the test data is
generated satisfying slice condition. We have
formulated a test adequacy criterion named slice
coverage criterion. We have implemented our
methodology to develop a prototype tool which
was found effective in generating test cases. The
test cases generated can also be used for con-
formance testing of the actual software where
the implementation is tested to check whether
it conforms to the design. The slicing approach
was found to be especially advantageous when
the number of messages in the sequence diagram
is large. We need to consider only the slices for
finding test cases instead of having to look at
the whole sequence diagram. If the sequence
diagram is large it becomes very complex and
difficult to find test cases manually. If we know
where to look for errors it becomes a great sim-
plification and saves a lot of time and resources.
The slices help to achieve this simplification.
The generated test cases were found to achieve
slice coverage.

Acknowledgements. The authors would
like to thank Pratyush Kanth and Sandeep Sa-
hoo for implementing our approach presented
in this paper.

References

[1] A. Abdurazik and J. Offutt. Using UML collab-
oration diagrams for static checking and test gen-
eration. In Proceedings of the 3rd International
Conference on the UML, Lecture Notes in Com-
puter Science, volume 1939, pages 383–395, York,
U.K., October 2000. Springer-Verlag GmbH.

[2] A. Andrews, R. France, S. Ghosh, and G. Craig.
Test adequacy criteria for UML design mod-
els. Software Testing Verification and Reliability,
13:97–127, 2003.

[3] F. Basanieri, A. Bertolino, and E. Marchetti.
The cow suit approach to planning and deriving
test suites in UML projects. In Proceedings of
the Fifth International Conference on the UML,
LNCS, volume 2460, pages 383–397, Dresden,
Germany, October 2002. Springer-Verlag GmbH.

[4] A. Bertolino and F. Basanieri. A practical ap-
proach to UML-based derivation of integration
tests. In Proceedings of the 4th International
Software Quality Week Europe and International
Internet Quality Week Europe, Brussels, Bel-
gium, 2000. QWE.

[5] R.V. Binder. Testing object-oriented software:
a survey. Software Testing Verification and Re-
liability, 6(3/4):125–252, 1996.

[6] D. Binkley and K. Gallagher. Program Slicing,
volume 43 of Advances in Computers. Academic
Press, 1996.

[7] L. Briand and Y. Labiche. A UML-based ap-
proach to system testing. In Proceedings of
the 4th International Conference on the UML,
LNCS, volume 2185, pages 194–208, Toronto,
Canada, January 2001. Springer-Verlag GmbH.

[8] A. Cavarra, C. Crichton, and J. Davies. A
method for the automatic generation of test
suites from object models. Information and Soft-
ware Technology, 46(5):309–314, 2004.

[9] H.Y. Chen, T.H. Tse, and T.Y. Chen. Taccle: a
methodology for object-oriented software testing
at the class and cluster levels. ACM Transac-
tions on Software Engineering and Methodology,
10(4):56–109, January 2001.

[10] C. Cifuentes and A. Fraboulet. Intraprocedural
static slicing of binary executables. In IEEE In-
ternational Conference on Software Maintenance
(ICSM’97), pages 188–195. IEEE Computer So-
ciety Press, Los Alamitos, USA, 1997.

[11] T.T. Dinh-Trong. Rules for generating code
from UML collaboration diagrams and activ-
ity diagrams. Master’s thesis, Colorado State
University, Fort Collins, Colorado, 2003.

76 Philip Samuel, Rajib Mall

[12] G. Engels, J.H. Hausmann, R. Heckel, and
S. Sauer. Testing the consistency of dynamic
UML diagrams. In Proceedings of the Sixth In-
ternational Conference on Integrated Design and
Process Technology(IPDT), USA, 2002. Society
for Design and Process Science.

[13] G. Engels, R. Hucking, S. Sauer, and A. Wagner.
UML collaboration diagrams and their trans-
formations to Java. In Proceedings of the 2nd
International Conference on the UML, LNCS,
volume 1723, pages 473–488, Berlin / Heidelberg,
October 1999. Springer.

[14] K.B. Gallagher and J.R. Lyle. Using program
slicing in software maintenance. IEEE Trans-
actions on Software Engineering, 17(8):751–761,
August 1991.

[15] S. Ghosh, R. France, C. Braganza, N. Kawane,
A. Andrews, and O. Pilskalns. Test adequacy
assessment for UML design model testing. In
Proceedings of the 14th International Symposium
on Software Reliability Engineering (ISSRE’03),
pages 332–343. IEEE Computer Society, Novem-
ber 2003.

[16] A. Hajnal and I. Forgacs. An applicable test
data generation algorithm for domain errors. In
ACM SIGSOFT Software Engineering Notes,
Proceedings of ACM SIGSOFT International
Symposium on Software Testing and Analysis,
volume 23, 1998.

[17] D. Harel and E. Gery. Executable object
modeling with statecharts. IEEE Computer,
30(7):31–42, 1997.

[18] M. Harman and S. Danicic. Using program slic-
ing to simplify testing. Software Testing Verifi-
cation and Reliability, 5(3):143–162, September
1995.

[19] M. Harman, C. Fox, R.M. Hierons, D. Bink-
ley, and S. Danicic. Program simplification as
a means of approximating undecidable propo-
sitions. In 7th IEEE Workshop on Program
Comprehension, pages 208–217. IEEE Computer
Society Press, Los Alamitos, USA, 1999.

[20] M. Harman and K.B. Gallagher. Program
slicing. Information and Software Technology,
40:577–581, December 1998.

[21] J. Hartmann, C. Imoberdorf, and M. Meisinger.
UML-based integration testing. In ACM SIG-
SOFT Software Engineering Notes, Proceedings
of International Symposium on Software testing
and analysis, volume 25, August 2000.

[22] J. Horgan and H. Agrawal. Dynamic program
slicing. In Proceedings of the ACM SIGPLAN’90
Conference on Programming Languages Design
and Implementation, volume 25, pages 246–256,

White Plains, New York, 1990. SIGPLAN No-
tices, Analysis and Verification.

[23] S. Horwitz, J. Prins, and T. Reps. Integrat-
ing non-interfering versions of programs. ACM
Transactions on Programming Languages and
Systems, 11(3):345–387, July 1989.

[24] B. Jeng and E.J. Weyuker. A simpli-
fied domain-testing strategy. ACM Transac-
tions on Software Engineering and Methodology
(TOSEM), 3(3), 1994.

[25] P.C. Jorgensen and C. Erickson. Object-oriented
integration testing. Communications of the
ACM, 37(9), September 1994.

[26] M. Kamkar, P. Fritzson, and N. Shahmehri. In-
terprocedural dynamic slicing applied to inter-
procedural data flow testing. In Proceedings of
the Conference on Software Maintenance, pages
386–395. IEEE Computer Society, Washington,
DC, USA, 1993.

[27] S. Kansomkeat and W. Rivepiboon. Auto-
mated-generating test case using UML state-
chart diagrams. In Proceedings of SAICSIT 2003,
pages 296–300. ACM, 2003.

[28] Y.G. Kim, H.S. Hong, D.H. Bae, and S.D. Cha.
Test cases generation from UML state diagrams.
Proceedings: Software, 146(4):187–192, 1999.

[29] B. Korel. Automated software test data genera-
tion. IEEE Transactions on Software Engineer-
ing, 16(8):870–879, 1990.

[30] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155–163,
October 1988.

[31] B. Korel and J. Rilling. Dynamic program slicing
methods. Information and Software Technology,
40:647–659, 1998.

[32] B. Korel, I. Singh, L.H. Tahat, and B. Vaysburg.
Slicing of state-based models. In Proceedings of
the 19th International Conference on Software
Maintenance (ICSM), pages 34–43. IEEE, 2003.

[33] A. Lakhotia and J.C. Deprez. Restructuring
programs by tucking statements into functions.
Information and Software Technology Special Is-
sue on Program Slicing, 40:677–689, 1998.

[34] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun,
L. Xuandong, and Z. Guoliang. Generating test
cases from UML activity diagrams based on
gray-box method. In Proceedings of the 11th
Asia-Pacific Software Engineering Conference
(APSEC’04), pages 284–291. IEEE, 2004.

[35] A. De Lucia. Program slicing: methods and
applications. In First IEEE International Work-
shop on Source Code Analysis and Manipulation,
pages 142–149. IEEE, November 2001.

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 77

[36] A. De Lucia, A.R. Fasolino, and M. Munro. Un-
derstanding function behaviours through pro-
gram slicing. In 4th IEEE Workshop on Program
Comprehension, pages 9–18. IEEE Computer
Society Press, Los Alamitos, USA, 1996.

[37] J.R. Lyle and M. Weiser. Automatic program
bug location by program slicing. In 2nd Inter-
national Conference on Computers and Applica-
tions, pages 877–882. IEEE Computer Society
Press, Los Alamitos, USA, 1987.

[38] R. Mall. Fundamentals of Software Engineering.
Prentice Hall, 2nd edition, 2003.

[39] S.J. Mellor and M.J. Balcer. Executable UML:
A Foundation for Model Driven Architecture.
Addison-Wesley: Reading, MA, 2002.

[40] G.B. Mund, R. Mall, and S. Sarkar. An effi-
cient program slicing technique. Information
and Software Technology, 44:123–132, 2002.

[41] No Magic Inc. MagicDraw UML, Version 9.5,
Golden, CO, www.magicdraw.com.

[42] J. Offutt and A. Abdurazik. Generating tests
from UML specifications. In Proceedings of the
2nd International Conference on UML, Lecture
Notes in Computer Science, volume 1723, pages
416–429, Fort Collins, TX, 1999. Springer-Verlag
GmbH.

[43] OMG. Unified Modeling Language Specifica-
tion, Version 2.0. Object Management Group,
www.omg.org, August 2005.

[44] L. Osterweil. Strategic directions in software
quality. ACM Computing Surveys (CSUR),
28(4), December 1996.

[45] T.J. Ostrand and M.J. Balcer. The category-par-
tition method for specifying and generating fuc-

tional tests. Communications of the ACM, 31(6),
June 1998.

[46] C. Raistrick, P. Francis, J. Wright, C. Carter,
and I. Wilkie. Model Driven Architecture with
Executable UML. Cambridge University Press,
2004.

[47] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and
N. Omorogbe. The architecture of a uml vir-
tual machine. In Proceedings of the 16th ACM
SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications,
volume 36, pages 327–341. ACM SIGPLAN No-
tices, ACM Press, USA, October 2001.

[48] M. Scheetz, von A. Mayrhauser, and R. France.
Generating test cases from an object oriented
model with an AI planning system. In Pro-
ceedings of the 10th International Symposium
on Software Reliability Engineering, ISSRE 99,
pages 250–259. IEEE Computer Society Press,
1999.

[49] M.D. Smith and D.J. Robson. A framework
for testing object-oriented programs. Journal of
Object-Oriented Programming, 5(3):45–53, June
1992.

[50] F. Tip. A survey of program slicing tech-
niques. Journal of Programming Languages,
3(3):121–189, June 1995.

[51] M. Weiser. Program slicing. IEEE Transactions
on Software Engineering, 10(4):352–357, 1984.

[52] C.E. Williams. Software testing and the UML.
In Proceedings of the International Symposium
on Software Reliability Engineering, (ISSRE’99),
Boca Raton, FL, November 1999.

