

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.wroc.pl)
Lech Madeyski (Lech.Madeyski@pwr.wroc.pl, http://madeyski.e-informatyka.pl/)

Wrocław University of Technology
Institute of Applied Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
http://www.e-informatyka.pl/wiki/e-Informatica/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
othervise, without the prior written permission of the publishers.

Printed in the camera ready form

c© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2009

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

ISSN 1897-7979

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej. Order No. 757/2009 .

Editorial Board
Editor-in-Chief

Zbigniew Huzar (Wrocław University of Technology, Poland)

Associate Editor-in-Chief

Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Corvinus University of Budapest, Hungary)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Macqarie University Sydney, Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Editorial
Zbigniew Huzar, Lech Madeyski . 7

Regular Paper
A Component Model with Support of Mobile Architectures and Formal Description

Marek Rychlý . 9
Special Issue Papers

Bi-dimensional Composition with Domain Specific Languages
Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen 27

Aspect-Oriented Change Realizations and Their Interaction
Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog 43

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in
the Context of MDA

Oksana Nikiforova . 59
Automated Code Generation from System Requirements in Natural Language

Jan Franců, Petr Hnětynka . 73
Tool Based Support of the Pattern Instance Creation

Ľubomír Majtás . 89
Transformational Design of Business Processes in BPEL Language

Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech 103
Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results

Jeff Winter, Kari Rönkkö . 119
Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance
Modelling

Slawomir Samolej, Tomasz Szmuc . 139

Editorial

It is a pleasure to present to our readers
the third issue of the e-Informatica Software
Engineering Journal (ISEJ).

The mission of the e-Informatica Software
Engineering Journal is to be a prime interna-
tional journal to publish research findings and
IT industry experiences related to theory, prac-
tice and experimentation in software engineer-
ing. The scope of the journal includes method-
ologies, practices, architectures, technologies
and tools used in processes along the software
development lifecycle, but particular interest is
in empirical evaluation.

The third issue of the journal includes nine
papers. Eight of the papers are extended
versions of the best papers presented at the
CEE-SET’2008 conference (IFIP Central and
Eastern European Conference on Software En-
gineering Techniques) carefully selected by the
editors, while the ninth is a regular paper.

The first of the papers by Ionita et al.
presents how domain modelling may leverage
the hierarchical composition, supporting two or-
thogonal mechanisms for composing completely
autonomous parts. The vertical mechanism is
in charge of coordinating heterogeneous compo-
nents, tools or services at a high level of abstrac-
tion, by hiding the technical details. The result
of such a composition is called “domain” and is
characterised by a Domain Specific Language
(DSL). The horizontal mechanism composes do-
mains at the level of their DSLs, even if they
have been independently designed and imple-

mented. The second paper by Vrani et al. de-
scribes the approach to aspect-oriented change
realization based on a two-level change type
model in the web application domain. The third
paper by Nikiforova proposes two hemisphere
model driven approach for generation of UML
class diagram. The fourth paper by Franců and
Hnětynka presents an approach that allows au-
tomated generation of executable code directly
from the use cases written in a natural lan-
guage. The fifth paper by Majtás presents tool
based support of the pattern instance creation
on the model level in a semi automatic way. The
sixth paper by Ratkowski et al. demonstrates
a transformational approach to the design of
executable processes in Business Process Execu-
tion Language (BPEL). The seventh paper by
Winter and Rönkkö is about balancing agile and
formal usability test results. The eight paper by
Samolej and Szmuc focuses on a new software
tool for web-server systems development. The
tool consist of a set of predefined Hierarchical
Timed Coloured Petri Net (HTCPN) structures
– patterns. The last paper by Rychlý is a regular
one and presents the component model that ad-
dresses component mobility including dynamic
reconfiguration, allows to combine control and
functional interfaces, and separates a compo-
nent’s specification from its implementation.

We look forward to receiving quality contri-
butions from researchers and practitioners in
software engineering for the next issue of the
journal.

Editors
Zbigniew Huzar
Lech Madeyski

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

A Component Model with Support of Mobile

Architectures and Formal Description

Marek Rychlý∗
∗Department of Information Systems, Faculty of Information Technology,

Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic
rychly@fit.vutbr.cz

Abstract
Common features of current information systems have significant impact on software architectures
of these systems. The systems can not be realised as monoliths, formal specification of behaviour
and interfaces of the systems’ parts are necessary, as well as specification of their interaction.
Moreover, the systems have to deal with many problems including the ability to clone compo-
nents and to move the copies across a network (component mobility), creation, destruction and
updating of components and connections during the systems’ run-time (dynamic reconfiguration),
maintaining components’ compatibility, etc. In this paper, we present the component model that
addresses component mobility including dynamic reconfiguration, allows to combine control and
functional interfaces, and separates a component’s specification from its implementation. We focus
on the formal basis of the component model in detail. We also review the related research on the
current theory and practice of formal component-based development of software systems.

1. Introduction

Increasing globalisation of information society
and its progression create needs for extensive
and reliable information technology solutions.
Common requirements for current information
systems include adaptability to variable struc-
ture of organisations, support of distributed
activities, integration of well-established (third
party) software products, connection to a vari-
able set of external systems, etc. Those fea-
tures have significant impact on software archi-
tectures of the systems. The systems can not
be realised as monoliths, exact specification of
functions and interfaces of the systems’ parts
are necessary, as well as specification of their
communication and deployment. Therefore, the
information systems of organisations are realised
as networks of quite autonomous, but cooper-
ative, units communicating asynchronously via
messages of appropriate format [7]. Unfortu-

nately, design and implementation of those sys-
tems have to deal with many problems including
the ability to clone components and to move the
copies across a network (i.e. component mobil-
ity), creation, destruction and updating of com-
ponents and connections during the systems’
run-time (i.e. dynamic reconfiguration), main-
taining components’ compatibility, etc. [6]

Moreover, distributed information systems
are getting involved. Their architectures are
evolving during a run-time and formal spec-
ifications are necessary, particularly in criti-
cal applications. Design of the systems with
dynamic architectures (i.e. architectures with
dynamic reconfigurations) and mobile archi-
tectures (i.e. dynamic architectures with com-
ponent mobility) can not be done by means
of conventional software design methods. In
most cases, these methods are able to describe
semi-formally only sequential processing or sim-
ple concurrent processing bounded to one com-

10 Marek Rychlý

ponent without advanced features such as dy-
namic reconfiguration.

The component-based development (CBD,
see [17]) is a software development methodol-
ogy, which is strongly oriented to composability
and re-usability in a software system’s architec-
ture. In the CBD, from a structural point of
view, a software system is composed of com-
ponents, which are self contained entities ac-
cessible through well-defined interfaces. A con-
nection of compatible interfaces of cooperating
components is realised via their bindings (con-
nectors). Actual organisation of interconnected
components is called configuration. Component
models are specific meta-models of software ar-
chitectures supporting the CBD, which define
syntax, semantics and composition of compo-
nents.

Although the CBD can be the right way to
cope with the problems of the distributed in-
formation systems, it has some limitations in
formal description, which restrict the full sup-
port for the mobile architectures. Those restric-
tions can be delimited by usage of formal bases
that do not consider dynamic reconfigurations
and component mobility, strict isolation of con-
trol and business logic of components that does
not allow full integration of dynamic reconfigu-
rations into the components, etc.

This paper proposes a high-level component
model addressing the mentioned issues. The
model allows dynamic reconfigurations and com-
ponent mobility, defined combination of control
and business logic of components, and sepa-
ration of a component’s specification from its
implementation. The paper also introduces a
formal basis for description of the component
model’s semantics, i.e. the structure and be-
haviour of the components.

The remainder of this paper is organised as
follows. In Section 2, we introduce the compo-
nent model in more detail. In Section 3, we pro-
vide the formal basis for description of the com-
ponent model. In Section 5, we review main ap-
proaches that are relevant to our subject. In Sec-

tion 6, we discuss advantages and disadvantages
of our component model and its formal descrip-
tion compared with the reviewed approaches
and outline the future work. To conclude, in Sec-
tion 7, we summarise our approach and current
results.

2. Component Model

In this section, we describe our approach to the
component model. The component model is pre-
sented in two views: structural and behavioural.
At first, in Section 2.1, we introduce the compo-
nent model’s meta-model, which describes basic
entities of the component model and their rela-
tions and properties. The second view, in Sec-
tion 2.2, is focused on behaviour of the compo-
nent model’s entities, especially on the compo-
nent mobility.

2.1. Meta-model

The Figure 1 describes an outline of the compo-
nent model’s meta-model1 in the UML notation
[20]. Three basic entities represent the core enti-
ties of a component based architecture: a compo-
nent, an interface and a binding (a connector).

The component is an active communicat-
ing entity in a component based software sys-
tem. In our approach, the component con-
sists of component abstraction and compo-
nent implementation. The component abstrac-
tion (CompAbstraction in the meta-model) rep-
resents the component’s specification and be-
haviour given by the component’s formal de-
scription (semantics of services provided by
the component). The component implementa-
tion (CompImplementation) represents a specific
implementation of the component’s behaviour
(an implementation of the services). The imple-
mentation can be primitive or composite. The
primitive implementation (CompImplPrimitive)
is realised directly, beyond the scope of archi-
tecture description (it is “a black-box”). The

1 The figured diagram can not describe additional constraints, e.g. a composite component “contains” bindings
that interconnect only interfaces of the component’s subcomponents, not interfaces of its neighbouring components,
etc.

A Component Model with Support of Mobile Architectures and Formal Description 11

accessible via

to

contains

from

impl. by

consists of
is of

is of

input

is of

output
provides

ref.

ref.

InterfaceCompAbstraction

ReqInterface

CompImplComposite

CompImplementation

Binding

CompImplPrimitive

TypeOfBinding

NamedEntity
name : string

TypeOfInterface

<<enum>>
IntCtrlTypeEnum

start : void
stop : void
clone : void
attach : void
detach : void
getFuncInterf : void
bindFuncInterf : void

ProvInterface

ICProxyInward

ToIReference

ToIRefComp ToIRefInt

ToIControl
type : IntCtrlTypeEnum

TypeOfValue

ToIFuncParamIntCompProxy ICProxyOutward

ToIFunctional

bindings
*

output1

interfacescomponent

*1

input1..*

implementation1
*

subcomponents*

type
1*

type
1

*

inParams

*

type1

*

outParams
1..*proxies*

inner1 inner1
outer

1outer1

component

1

*
interface

1

*

Figure 1. The meta-model of the component model (the UML notation [20])

composite implementation (CompImplComposite)
is decomposable on a system of subcompo-
nents at the lower level of architecture de-
scription (it is “a grey-box”). Those subcom-
ponents are represented by component ab-
stractions (CompAbstraction and relation “con-
sists of”).

Interfaces of a component are described in
relation to the component’s abstraction (re-
lation “accessible via” from CompAbstraction).
We distinguish two types of interfaces: re-
quired and provided (ReqInterface and Prov-

Interface, respectively), according to the type
of services required or provided by the com-
ponent from or to its neighbouring compo-
nents, respectively, at the same level of hi-
erarchy of components (i.e. not from or to
subcomponents of a neighbouring component,
for example). Moreover, the composite com-
ponents’ implementations (CompImplComposite)
provide special internal interfaces, which are
available only for the component’s subcom-
ponents and make accessible the component’s
external interfaces (i.e. the interfaces de-
scribed in relation to CompAbstraction). The en-
tity ICProxyInward connects a composite com-
ponent’s external provided interface to the
component’s internal required interface, while
the entity ICProxyOutward connects a com-
posite component’s internal provided interface
to the component’s external required inter-

face (the relations “outer” and “inner” and
vice versa).

According to the functionality of inter-
faces, we can distinguish functional, con-
trol and reference interfaces (described by
TypeOfInterface). The functional interfaces
(ToIFunct-ional) represent business oriented
services with typed input and output parame-
ters (ToIFuncParam and TypeOfValue). The con-
trol interfaces (ToIControl and its attribute’s
type) provide services for obtaining references
to a component’s provided functional interfaces
(type getFuncInterfaces), for binding a compo-
nent’s required functional interfaces (type bind-

FuncInterface), and for changes of behaviour
(types start and stop) and architecture. The
services for changes of architecture are clone,
attach and detach for obtaining references to a
fresh copy of a component (type “cloning”), at-
taching of a new component as a subcomponent
and detaching of an old subcomponent, respec-
tively. The reference interfaces (ToIReference)
are able to transmit references to components
or interfaces, which is required to support com-
ponent mobility.

Finally, the binding describes connection of
required and provided interfaces of the identi-
cal types and of components at the same level
of the hierarchy into a reliable communication
link (entity Binding). The type of a binding
(TypeOfBinding) can specify a communication

12 Marek Rychlý

style (buffered and unbuffered connection), a
type of synchronisation (blocking and output
non-blocking), etc.

2.2. Behaviour and Support of
Mobile Architectures

The previous section introduces the structure
of the component model. A system described
by means of the component model is one com-
ponent with provided and required interfaces,
which represent the system’s input and output
actions, respectively. The component can be im-
plemented as a primitive component or as a com-
posite component. The primitive component is
realised directly, beyond the scope of architec-
ture description, while the composite component
is decomposable at the lower level of hierarchy
into a system of subcomponents communicating
via their interfaces and their bindings.

Behaviour of a primitive component has to
be defined by a developer, simultaneously with
definitions of the component’s interfaces. The
primitive component is defined as “a black-box”,
i.e. its behaviour can be described as a de-
pendence relation of input and output actions.
Behaviour of a composite component depends
on behaviour of its subcomponents, but it in-
cludes also a description of communication be-
tween connected interfaces of those subcompo-
nents and processing of specific control actions
in the component (e.g. requests for starting or
stopping of the component and their distribu-
tion to the component’s subcomponents, etc.).

In the following description, we focus on the
behaviour of control parts of components par-
ticularly related to the features of mobile ar-
chitectures, i.e. on creation and destruction of
components and connections and on passing of
components. Evolution of a system’s architec-
ture begins in the state where its initialisation
is finished.

A new component can be created as a copy of
an existing component by means of its control
interface clone. The resulting new component
is deactivated (i.e. stopped) and packed into a
message, which can be sent via outgoing con-
nections into different location (via interfaces of

type ToIRefComp) where it can be placed as a
subcomponent of a parent component (by means
of attach interface), connected to local neigh-
bouring components (by means of bindFunc-

Interf and getFuncInterf interfaces) and acti-
vated (by means of start interface). Destruction
of an old component can be done automatically
after deactivating of the component (by means
of stop interface), releasing of all its provided in-
terfaces and disconnecting from its parent com-
ponent (by means of detach interface).

Creation of new connections between two
compatible functional interfaces can be done by
means of passing of functional interfaces (via in-
terfaces of type ToIRefInt). At first, a reference
to provided functional interface (a target inter-
face) is obtained from a component (via control
interface getFuncInterf). This reference is sent
via outgoing connections into different location
(via interfaces of type ToIRefInt), but only in
the same parent component and at the same
level of hierarchy of components (i.e. crossing
the boundary of a composite component is not
allowed). The reference is received by a compo-
nent with compatible required functional inter-
face (a source interface) and a binding of this
interface to referenced interface is created (by
means of control interface bindFuncInterf). De-
struction of a connection can be done by rebind-
ing of a required interface participating in this
connection.

As it follows from the description of be-
haviour, the connections can interconnect only
interfaces of the same types. Moreover, dynamic
creation of new connections and destruction of
existing connection are permitted only for func-
tional interfaces (type ToIFunctional). Those re-
strictions, together with the restriction of pass-
ing of interfaces’ references described in the pre-
vious paragraph, prevent architectural erosion
and architectural drift [11], which are caused
by uncontrollable evolution of dynamic and mo-
bile architecture resulting into degradation of
the components’ dependencies over time. In the
component model, the architecture of control in-
terfaces and their interconnections, which allow
evolution and component mobility, is a static ar-
chitecture.

A Component Model with Support of Mobile Architectures and Formal Description 13

Despite those restrictions, combining of ac-
tions of functional interfaces with actions of
control interfaces is permitted inside primi-
tive components. This allows to build systems
where functional (business) requirements imply
changes of a systems’ architectures.

3. Formal Description

In this section, formal description of behaviour
of the component model’s entities is presented.
The Section 3.1 provides an introduction to the
process algebra π-calculus, which is used in de-
scription in Section 3.2. The description is based
on our previous research on distributed informa-
tion systems as systems of asynchronous concur-
rent processes [13] and the mobile architecture’s
features in such systems [15, 14].

3.1. The π-Calculus

The process algebra π-calculus, known also as a
calculus of mobile processes [10], is an extension
of Robin Milner’s calculus of communicating
systems (CCS). This section briefly summarises
the fundamentals of the π-calculus, a theory of
mobile processes, according to [16]. The follow-
ing theoretical background is required for the
component model’s formal description in Sec-
tion 3.2. The π-calculus allows modelling of sys-
tems with dynamic communication structures
(i.e. mobile processes) by means of two concepts:

a process – an active communicating en-
tity in a system, primitive or expressed in
π-calculus (denoted by uppercase letters in
expressions)2,
a name – anything else, e.g. a communica-
tion link (a port), variable, constant (data),
etc. (denoted by lowercase letters in expres-
sions)3.
Processes use names (as communication

links) to interact, and pass names (as variables,
constants, and communication links) to another

process by mentioning them in interactions. The
names received by a process can be used and
mentioned by it in further interactions (as com-
munication links). This “passing of names” per-
mits mobility of communication links.

Processes evolve by performing actions. The
capabilities for action are expressed via three
kinds of prefixes (“output”, “input” and “unob-
servable”, as it is described later). We can define
the π-calculus processes, their subclass and the
prefixes as follows.
Definition 1 (π-calculus). The processes,
the summations, and the prefixes of the
π-calculus are given respectively by

P ::= M | P | P ′ | (z)P | !P
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x(z) | τ
We give a brief, informal account of seman-

tics of π-calculus processes. At first, process 0 is
a π-calculus process that can do nothing, it is the
null process or inaction. If processes P and P ′

are π-calculus processes, then following expres-
sions are also π-calculus processes with formal
syntax according to the Definition 1 and given
informal semantics:
– x〈y〉.P is an output prefix that can send

name y via name x (i.e. via the communi-
cation link x) and continue4 as process P ,

– x(z).P is an input prefix that can receive any
name via name x and continue as process P
with the received name substituted for every
free occurrence5 of name z in the process,

– τ.P is an unobservable prefix that can evolve
invisibly to process P , it can do an internal
(silent) action and continue as process P ,

– P + P ′ is a sum of capabilities of P together
with capabilities of P ′ processes, it proceeds
as either process P or process P ′, i.e. when
a sum exercises one of its capabilities, the
others are rendered void,

– P | P ′ is a composition of processes P and P ′,
which can proceed independently and can in-
teract via shared names,

2 A parametric process is also called “an agent”.
3 The names can be called according to their meanings (e.g. a port/link, a message, etc.).
4 The prefix ensures that process P can not proceed until a capability of the prefix has been exercised.
5 See the Definition 2.

14 Marek Rychlý

– (z)P is a restriction of the scope6 of name z
in process P ,

– !P is a replication that means an infinite
composition of processes P or, equivalently, a
process satisfying the equation !P = P | !P .
The π-calculus has two name-binding opera-

tors. The binding is defined as follows.
Definition 2 (Binding). In each of x(z).P
and (z)P , the displayed occurrence of z is bind-
ing with scope P . An occurrence of a name in
a process is bound if it is, or it lies within the
scope of, a binding occurrence of the name, oth-
erwise the occurrence is free.

In our notations, we will omit a transmit-
ted name, the second parts of input and out-
put prefixes in a π-calculus expression, if it is
not used anywhere else in its scope (e.g. in-
stead of (x)((y)x〈y〉.0 | x(z).0), we can write
(x)(x.0 | x.0)).

Since the sum and composition operators are
associative and commutative (according to the
relation of structural congruence [10]) they can
be used with multiple arguments, independently
of their order. Also an order of application of the
restriction operator is insignificant. We will use
the following notations:
– for m ≥ 3, let

∏m
i=1 Pi = P1 | P2 | . . . | Pm be

a multi-composition of processes P1, . . . , Pm,
which can proceed independently and can in-
teract via shared names,

– for n ≥ 2 and x̃ = (x1, . . . , xn), let
(x1)(x2) . . . (xn)P = (x1, x2, . . . , xn)P =
(x̃)P be a multi-restriction of the scope of
names x1, . . . , xn to process P .
We will omit the null process if the meaning

of the expression is unambiguous according to
the above-mentioned equations (e.g. instead of
x〈y〉.0 | x(z).0, we can write x〈y〉 | x(z)). More-
over, the following equations are true for the null
process:

M + 0 = M P | 0 = P (x)0 = 0

The π-calculus processes can be
parametrised. A parametrised process, an ab-
straction, is an expression of the form (x).P .
We may also regard abstractions as components
of input-prefixed processes, viewing a(x).P as

an abstraction located at name a. In (x).P as in
a(x).P , the displayed occurrence of x is binding
with scope P .
Definition 3 (Abstraction). An abstraction
of arity n ≥ 0 is an expression of the form
(x1, . . . , xn).P , where the xi are distinct. For
n = 1, the abstraction is a monoadic abstrac-
tion, otherwise it is a polyadic abstraction.

When an abstraction (x).P is applied to
an argument y it yields process P {y/x}. Ap-
plication is the destructor of abstractions.
We can define two types of application:
pseudo-application and constant application.
The pseudo-application is defined as follows.
Definition 4 (Pseudo-application). If F def=
(x̃).P is of arity n and ỹ is length n, then
P {ỹ/x̃} is an instance of F . We abbreviate
P {ỹ/x̃} to F 〈ỹ〉. We refer to this instance op-
eration as pseudo-application of an abstraction.

In contract to the pseudo-application that is
only abbreviation of a substitution, the constant
application is a real syntactic construct. It al-
lows to describe a recursively defined process.
Definition 5 (Constant application). A re-
cursive definition of a process constant K is an
expression of the form K

∆= (x̃).P , where x̃ con-
tains all names that have a free occurrence in
P . A constant application, sometimes referred
as an instance of the process constant K, is a
form of process Kbãc.

Communication between processes (a com-
putation step) is formally defined as a reduction
relation → . It is the least relation closed under
a set of reduction rules.
Definition 6 (Reduction). The reduction re-
lation, → , is defined by the following rules:

R-Inter (x〈y〉.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}

R-Tau τ.P + M → P

R-Par
P1 → P ′

1
P1 | P2 → P ′

1 | P2

R-Res P → P ′
(z)P → (z)P ′

R-Struct
P1=P2 → P ′

2=P ′
1

P1 → P ′
1

R-Const Kbãc → P{ã/x̃} K
∆= (x̃).P

6 The scope of a restriction may change as a result of interaction between processes.

A Component Model with Support of Mobile Architectures and Formal Description 15

The communication is described by the main
reduction rule R-Inter. It means that a compo-
sition of a process proceeding as either process
M1 or the process, which sends name y via name
x and continues as process P1, and a process
proceeding as either process M2 or the process,
which receives name z via name x and continues
as process P2, can perform a reduction step. Af-
ter this reduction, the process is P1 | P2 {y/z}
(all free occurrences of z in P2 are replaced by y).

3.2. Description of the Component
Model

A software system can be described by means
of the component model as one component with
provided and required interfaces, which repre-
sent the system’s input and output actions, re-
spectively. According to the component model’s
definition, every component can be implemented
as a primitive component or as a composite com-
ponent. Since a primitive component is realised
as “a black-box”, its behaviour has to be de-
fined by its developer. This behaviour can be
formally described as a π-calculus process, which
uses names representing the component’s inter-
faces, but also implements specific control ac-
tions provided by the component (e.g. requests
to start or stop the component). On the con-
trary, a composite component is decomposable
at the lower level of hierarchy into a system of
subcomponents communicating via their inter-
faces and their bindings (the component is “a
grey-box”). Formal description of the composite
component’s behaviour is a π-calculus process,
which is composition of processes representing
behaviour of the component’s subcomponents,
processes implementing communication between
interconnected interfaces of the subcomponents
and internal interfaces of the component and
processes realising specific control actions (e.g.
the requests to start or stop the composite com-
ponent, but including their distribution to the
component’s subcomponents, etc.).

Before we define π-calculus processes imple-
menting the behaviour of a component’s indi-
vidual parts, we need to define the component’s
interfaces within the terms of the π-calculus, i.e.

as names used by the processes. The following
names can be used in external or internal view
of a component, i.e. for the component’s neigh-
bours or the composite component’s subcompo-
nents, respectively.
– external: s0, s1, c, rs

1, . . . , r
s
n, pg

1, . . . , p
g
m (of a

primitive or composite component),
– internal: a, r′s1 , . . . , r′sm, p′g1 , . . . , p

′g
n (of a com-

posite component only),
where n is a number of the component’s re-
quired functional interfaces, m is a number of
the component’s provided functional interfaces
(both from the external view) and the names
have the following semantics:

via s0 – a running component accepts a re-
quest for its stopping, which a composite
component distributes also to all its subcom-
ponents,
via s1 – a stopped component accepts a
request for its starting, which a composite
component distributes also to all its subcom-
ponents,
via c – a component accepts a request for its
cloning and returns a new stopped instance
of the component as a reply,
via rs

i – a component accepts a request for
binding given provided functional interface
(included in the request) to the required
functional interface ri,
via pg

j – a component accepts a request for
referencing to the provided functional inter-
face pj that is returned as a reply,
via a – a composite component accepts a
request for attaching its new subcomponent,
i.e. for attaching the subcomponent’s s0 and
s1 names (stop and start interfaces), which
can be called when the composite component
will be stopped or started, respectively, and
as a reply, it returns a name accepting the
request to detach the subcomponent.
We should remark that there is a relation-

ship between the names representing functional
interfaces in the external view and the names
representing corresponding functional interfaces
in the internal view of the composite compo-
nent. The composite component connects its ex-
ternal functional interfaces r1, . . . , rn (required)
and p1, . . . , pm (provided) accessible via names

16 Marek Rychlý

rs
1, . . . , r

s
n and pg

1, . . . , p
g
m, respectively, to internal functional interfaces p′1, . . . , p′n (provided) and

r′1, . . . , r′m (required) accessible via names p′g1 , . . . , p
′g
n and r′s1 , . . . , r′sm, respectively. Requests received

via external functional provided interface pj are forwarded to the interface, which is bound to
internal functional required interface r′j (and analogously for interfaces p′i and ri).

3.2.1. Interface’s References and Binding

At first, we define an auxiliary process Wire7, which can receive a message via name x (i.e. input)
and send it to name y (i.e. output) repeatedly till the process receives a message via name d (i.e.
disable processing).

Wire
∆= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

Binding of a component’s functional interfaces is done via control interfaces. These control
interfaces provide references to a component’s functional provided interfaces and allow to bind a
component’s functional required interfaces to referenced fictional provided interfaces of another
local components. Process CtrlIfs implementing the control interfaces can be defined as follows

SetIf
∆= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, r

s
1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m)

.(
n∏

i=1

(rd
i)(Plug〈rd

i 〉 | SetIfbri, rs
i , r

d
i c) |

m∏
j=1

!GetIf〈pj , p
g
j 〉)

where names r1, . . . , rn, rs
1, . . . , r

s
n, p1, . . . , pm, pg

1, . . . , p
g
m have been defined at the beginning of

Section 3.2. Let us assume CtrlIfs shares its names r1, . . . , rn and p1, . . . , pm with a process im-
plementing a component’s core functionality via its required and provided interfaces, respectively.
Pseudo-application GetIf〈pj , p

g
j 〉 enables process CtrlIfs to receive a name x via pg

j and to send pj

via name x as a reply (it provides a reference to an interface represented by pj). Constant application
SetIfbri, rs

i , r
d
i c enables process CtrlIfs to receive a name x via rs

i , which will be connected to ri
by means of a new instance of process Wire (it binds a required interface represented by ri to a
provided interface represented by x). To remove a former connection of ri, a request is sent via rd

i

(in case it is the first connection of ri, i.e. there is no former connection, the request is accepted by
pseudo-application Plug〈rd

i 〉).
In a composite component, the names representing external functional interfaces r1, . . . , rn,

p1, . . . , pm are connected to the names representing internal functional interfaces p′1, . . . , p′n,
r′1, . . . , r′m. Requests received via external functional provided interface pj are forwarded to the
interface, which is bound to internal functional required interface r′j (and analogously for interfaces
p′i and ri). This is described in process CtrlEI .

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

.
n∏

i=1

(d)Wirebri, p′i, dc |
m∏

j=1

(d)Wirebr′j , pj , dc

7 The process will be used also in the following parts of Section 3.2.

A Component Model with Support of Mobile Architectures and Formal Description 17

3.2.2. Control of a Component’s Life-cycle

Control of a composite component’s life-cycle8 can be described as process CtrlSS .

Dist
∆= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

where names s0 and s1 represent the component’s interfaces that accept stop and start requests,
respectively, and name a that can be used to attach a new subcomponent’s stop and start interfaces
(at one step).

The requests for stopping and starting the component are distributed to its subcomponents
via names p0 and p1. Constant application Lifebs1, s0, p1, p0c enables process CtrlSS to receive
a message m via s0 or s1. Message m is distributed to the subcomponents by means of constant
application Distbpx,m, rc via shared name px, which can be p0 in case the component is running or
p1 in case the component is stopped. When all subcomponents accepted message m, it is announced
via name r and the component is running or stopped and ready to receive a new request to stop
or start, respectively.

Pseudo-application Attach〈a, p0, p1〉 enables process CtrlSS to receive a message via a, a re-
quest to attach a new subcomponent’s stop and start interfaces represented by names c0 and c1,
respectively. The names are connected to p0 and p1 via new instances of processes Wire. Third
name received via a, cd, can be used later to detach the subcomponent’s previously attached stop
and start interfaces.

3.2.3. Cloning of Components and Updating of Subcomponents

Cloning of a component allows to transport the component’s fresh copy into different location, i.e.
its subsequent attaching as a subcomponent of other component. The processes of the cloning can
be described as follows

Ctrlclone
∆= (x).x(k).(s0, s1, c, r

s
1, . . . , r

s
n, p

g
1, . . . , p

g
m, r, p)

(k〈s0, s1, c, r, p〉 | r〈rs
1, . . . , r

s
n〉 | p〈pg

1, . . . , p
g
m〉

| Component〈s0, s1, c, r
s
1, . . . , r

s
n, p

g
1, . . . , p

g
m〉 | Ctrlclonebxc)

where pseudo-application Component〈s0, s1, c, r
s
1, . . . , r

s
n, p

g
1, . . . , p

g
m〉 with well-defined parameters

describes behaviour of the cloned component. When process Ctrlclone receives a request k via
name x, it sends names s0, s1, c, r, p via name k as a reply. The first three names represent “stop”,
“start” and “clone” interfaces of a fresh copy of the component. The process is also ready to send
names representing functional requested and provided interfaces of the new component, i.e. names
rs

1, . . . , r
s
n via name r names pg

1, . . . , p
g
m via name p, respectively, and to receive a new request.

The fresh copy of a component can be used to replace a compatible subcomponent of a compos-
ite component. The process of update, which describes the replacing of an old subcomponent with
a new one, is not mandatory part of the composite component’s behaviour and its implementation

8 A primitive component handles stop and start interfaces directly.

18 Marek Rychlý

depends on particular configuration of the component (e.g. if the component allows updating of its
subcomponents, a context of the replaced subcomponent, which parts of the component have to be
stopped during the updating, etc.). As an illustrative case, we can describe process Update as follows

Update
∆= (u, a, s0, sd, r

s
1, . . . , r

s
m, p

g
1, . . . , p

g
n)(k, s′d)

.(u〈k〉.k(s′0, s
′
1, c, r

′, p′).s0.a〈s′0, s′1, s′d〉.sd

.r′(r′s1 , . . . , r
′s
n).(x)(pg

1〈x〉.x(p).r′s1 〈p〉 . . . pg
n〈x〉.x(p).r′sn 〈p〉)

.p′(p′g1 , . . . , p
′g
m).(x)(p′g1 〈x〉.x(p).rs

1〈p〉 . . . p′gn 〈x〉.x(p).rs
m〈p〉)

.s′1.Updatebu, a, s′0, s′d, rs
1, . . . , r

s
m, p

g
1, . . . , p

g
nc)

Process Update sends via name u a request for a fresh copy of a cloned component. As a
return value, it receives a vector of names representing all functional interfaces in a process de-
scribing behaviour of the new component, which will replace an old subcomponent in its parent
component implementing the update process. Name a provides the parent component’s internal
control interface to attach the new subcomponent’s stop and start interfaces (the s′0 and s′1 names)
and an interface later used to detach the subcomponent (name s′d). Name s0 is used to stop the
replaced subcomponent and name sd is needed to detach the old subcomponent’s stop and start
interfaces. Finally, names rs

1, . . . , r
s
m, pg

1, . . . , p
g
n represent a context of the updated subcomponent,

i.e. connected interfaces of neighbouring subcomponents.

3.2.4. Primitive and Composite Components

In conclusion, we can describe the complete behaviour of primitive and composite components. Let’s
assume that process abstraction Compimpl with parameters s0, s1, r1, . . . , rn, p1, . . . , pm describes
behaviour of the core of a primitive component (i.e. excluding processing of control actions), as it is
defined by the component’s developer. Further, let’s assume that process abstraction Compsubcomps

with parameters a, r′s1 , . . . , r′sm, p′g1 , . . . , p
′g
n describes behaviour of a system of subcomponents in-

terconnected by means of their interfaces into a composite component (see Section 3.2.1). Names
s0, s1, r1, . . . , rn, p1, . . . , pm and names a, rs

1, . . . , r
s
m, pg

1, . . . , p
g
n are defined at the beginning of

Section 3.2.
Processes Compprim and Compcomp representing behaviour of the mentioned primitive and

composite components can be described as follows

Compprim
def
= (s0, s1, c, r

s
1, . . . , r

s
n, p

g
1, . . . , p

g
m)(r1, . . . , rn, p1, . . . , pm)

.(CtrlIfs〈r1, . . . , rn, r
s
1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m〉 | Ctrlclonebcc

| Compimpl〈s0, s1, r1, . . . , rn, p1, . . . , pm〉)

Compcomp
def
= (s0, s1, c, r

s
1, . . . , r

s
n, p

g
1, . . . , p

g
m)

.(a, r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

(CtrlIfs〈r1, . . . , rn, r
s
1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m〉

| CtrlIfs〈r′1, . . . , r′m, r′s1 , . . . , r′sm, p′1, . . . , p′n, p′g1 , . . . , p′gn 〉
| CtrlEI〈r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉 | Ctrlclonebcc

| CtrlSS〈s0, s1, a〉 | Compsubcomps〈a, r′s1 , . . . , r′sm, p′g1 , . . . , p′gn 〉)
where processes CtrlIfs represent behaviour of control parts of components related to their inter-
faces (see Section 3.2.1), processes Ctrlclone describe behaviour of a control part of components
related to cloning of these components (see Section 3.2.3), process CtrlSS represents behaviour of

A Component Model with Support of Mobile Architectures and Formal Description 19

a component’s control part handling its stop and start requests (see Section 3.2.2), and process
CtrlEI describes behaviour of communication between internal and external functional interfaces
of a component (see Section 3.2.1).

4. An Example

As an example, we describe a component based system for user authentication and access control.
At first the system receives an input from an user in form (username, password) and verifies the
user’s password in order to check the user’s identity. If the user’s password passes the verification,
the system creates a new session handle reserved for the user. The session handle is connected to
the system’s core. It enables the user to access the system’s core functionality and performs the
access control according to the user’s authorisation. Finally, the session handle is passed back to
the user as a return value of the whole process.

The system is composed of
• Login component verifying the user’s authentication and initiating the new session,
• Core component providing the system’s core functionality,
• and Session component enabling the user to access the Core component according to the

user’s authorisation.
For simplicity, let’s assume that component Session has only one input interface for the user’s

calls of the system’s core without any explicit authorisation checks and component Core imple-
ments simple shared memory – one storage for all users with two interfaces: for saving and loading
a value to and from the memory, respectively.

4.1. Definition of the Components’ Implementations

At first, we describe behaviour of cores of primitive components, i.e. the components’ implemen-
tations, which have to be defined by developer of the system (see Section 3.2.4). Description of
behaviour of the Core component’s implementation is:

Coreimpl
def
= (s0, s1, psave, pload)(val)Core′implbundef, psave, ploadc

Core′impl
∆= (val, psave, pload)(psave(val′).Core′implbval′, psave, ploadc

+ pload(ret).(ret〈val〉 | Core′implbval, psave, ploadc)
where process Coreimpl can save a message received via name psave and load the saved message
and send it as a reply on a request received via name pload.

Description of behaviour of the Session component’s implementation is the following:

Sessionimpl
def
= (s0, s1, rsave, rload, phandle)Session′impl〈rsave, rload, phandle〉

Session′impl
def
= (rsave, rload, phandle)(save, load)(phandle(ret)

.ret〈save, load〉.Session′implbrsave, rload, phandle, save, loadc)

Session′′impl
∆= (rsave, rload, phandle, save, load)

(save(call).rsave〈call〉.Session′impl〈rsave, rload, phandle〉
+ load(call).rload〈call〉.Session′impl〈rsave, rload, phandle〉)

20 Marek Rychlý

where process Sessionimpl can receive via name phandle an user’s request, which is specified subse-
quently by inputs via names save or load, and pass it to process Coreimpl via names rsave or rload

(the required interfaces), respectively.
Finally, behaviour of the Login component’s implementation can be defined as follows:

Loginimpl
∆= (s0, s1, pinit, sysattach, sessionclone, core

g
save, core

g
load)

pinit(username, password, ret)
.(Loginverify〈username, password, ok, fail〉
| Login′implbsysattach, sessionclone, core

g
save, core

g
load, ret, ok, failc

| Loginimplbs0, s1, pinit, sysattach, sessionclone, core
g
save, core

g
loadc)

Login′impl
∆= (sysattach, sessionclone, core

g
save, core

g
load, ret, ok, fail)(new, d

′, t)

(fail.ret〈error〉 + ok.sessionclone〈new〉.new(s′0, s
′
1, clone

′, r′, p′)
.sysattach〈s′0, s′1, d′〉.r′(r′ssave, r

′s
load).p′(p′ghandle)

.coregsave〈t〉.t(save).r′ssave〈save〉.coregload〈t〉.t(load).r′sload〈load〉

.p′ghandle(handle).(s
′
1 | ret〈handle〉)

where process Loginimpl can receive an user’s initial request via name pinit as a triple of names
(username, password, ret) and after successful verification of the user’s name and password, the
process returns a new session’s handle via name ret. Name sysattach provides an interface to attach
new subcomponents into the system (see Section 3.2.2), name sessionclone is connected to a provided
interface for cloning of Session component (see Section 3.2.3), and names coregsave or coregload are
connected to provided control interfaces for getting references to interfaces save or load of compo-
nent Core (see Section 3.2.1), respectively. The definition contains pseudo-application of process
abstraction Loginverify〈username, password, ok, fail〉, which represents description of behaviour

of user’s authentication process (e.g. Loginverify
def
= (. . .).ok for authorising of all users).

4.2. Description of the Component Based System

Now, we can describe behaviour of individual components including their control parts, as well as
behaviour and structure of a composite component, which represents the whole component based
system. According to Section 3.2.4, behaviour of components Core and Session can be described
as follows:

Core
def
= (s0, s1, c, p

g
save, p

g
load).(psave, pload)

(CtrlIfs〈psave, pload, p
g
save, p

g
load〉 | Ctrlclonebcc

| Coreimpl〈s0, s1, psave, pload〉)

Session
def
= (s0, s1, c, r

s
save, r

s
load, p

g
handle).(rsave, rload, phandle)

(CtrlIfs〈rsave, rload, r
s
save, r

s
load, phandle, p

g
handle〉 | Ctrlclonebcc

| Sessionimpl〈s0, s1, rsave, rload, phandle〉)
Behaviour of component Login has to be described differently from the others, because it uses

control interfaces sysattach, sessionclone, core
g
save, core

g
load, which can not be referenced (contrary

to functional interfaces, see Section 2.2). This case can be compared with the description of Update

A Component Model with Support of Mobile Architectures and Formal Description 21

process in Section 3.2.3. The behaviour of component Login can be described as follows:

Login
def
= (s0, s1, c, p

g
init, sysattach, sessionclone, core

g
save, core

g
load).(pinit)

(CtrlIfs〈pinit, p
g
init〉 | Ctrlclonebcc

| Loginimplbs0, s1, pinit, sysattach, sessionclone, core
g
save, core

g
loadc)

Finally, behaviour and structure of a composite component, which represents the whole com-
ponent based system, can be described as follows:

System
def
= (s0, s1, c, p

g
init)(a, pinit, r

′
init, r

′s
init)

.(CtrlIfs〈pinit, p
g
init〉 | CtrlIfs〈r′init, r

′s
init〉 | CtrlEI〈pinit, r

′
init〉

| Ctrlclonebcc | CtrlSS〈s0, s1, a〉 | System′〈a, r′sinit〉)

System′ def
= (sysattach, r

s
init)

(pg
init, core

g
save, core

g
load, sess

s
save, sess

s
load, sess

g
handle, loginclone, coreclone)

(sessclone, s
login
0 , slogin

1 , dlogin, score
0 , score

1 , dcore, ssess
0 , ssess

1 , dsess)

(Login〈slogin
0 , slogin

1 , loginclone, p
g
init, sysattach, sessclone, core

g
save, core

g
load〉

| Core〈score
0 , score

1 , coreclone, core
g
save, core

g
load〉

| Session〈ssess
0 , ssess

1 , sessclone, sess
s
save, sess

s
load, sess

g
handle〉

| sysattach〈slogin
0 , slogin

1 , dlogin〉 | sysattach〈score
0 , score

1 , dcore〉

| sysattach〈ssess
0 , ssess

1 , dsess〉 | pg
init〈t〉.t(init).rs

init〈init〉)

5. Related Work

There have been proposed several component models [8]. In this section, we focus on two contempo-
rary component models supporting some features of dynamic architectures and formal descriptions.

5.1. Fractal

The component model Fractal [3] is a general component composition framework with support for
dynamic architectures. A Fractal component is formed out of two parts: a controller and a content.
The content of a composite component is composed of a finite number of nested components.
Those subcomponents are controlled by the controller (“a membrane”) of the enclosing component.
A component can be shared as a subcomponent by several distinct components. A component with
empty content is called a primitive component. Every component can interact with its environment
via operations at external interfaces of the component’s controller, while internal interfaces are
accessible only from the component’s subcomponents. The interfaces can be of two sorts: client
(required) and server (provided). Besides, a functional interface requires or provides functionalities
of a component, while a control interface is a server interface with operations for introspection
of the component and to control its configuration. There are two types of directed connections
between compatible interfaces of components: primitive bindings between a pair of components
and composite bindings, which can interconnect several components via a connector.

22 Marek Rychlý

Behaviour of Fractal components can be for-
mally described by means of parametrised net-
works of communicating automata language [2].
Behaviour of each primitive component is mod-
elled as a finite state parametrised labelled tran-
sition system (pLTS) – a labelled transition
system with parametrised actions, a set of pa-
rameters of the system and variables for each
state. Behaviour of a composed Fractal compo-
nent is defined using a parametrised synchroni-
sation network (pNet). It is a pLTS computed
as a product of subcomponents’ pLTSs and a
transducer. The transducer is a pLTS, which
synchronises actions of the corresponding LTSs
of the subcomponents. When synchronisation of
the actions occurs, the transducer changes its
state, which means reconfiguration of the com-
ponent’s architecture. Also behaviour of a Frac-
tal component’s controller can be formally de-
scribed by means of pLTS/pNet. The result is
composition of pLTSs for binding and unbind-
ing of each of the component’s functional inter-
faces (one pLTS per one interface) and pLTS for
starting and stopping the component.

5.2. SOFA and SOFA 2.0

In the component model SOFA [12], a part of
SOFA project (SOFtware Appliances), a software
system is described as a hierarchical composition
of primitive and composite components. A com-
ponent is an instance of a template, which is de-
scribed by its frame and architecture. The frame
is a “black-box” specification view of the com-
ponent defining its provided and required inter-
faces. Primitive components are directly imple-
mented by described software system – they have
a primitive architecture. The architecture of a
composed component is a “grey-box” implemen-
tation view, which defines first level of nesting
in the component. It describes direct subcompo-
nents and their interconnections via interfaces.
The connections of the interfaces can be realised
via connectors, implicitly for simple connections
or explicitly. Explicit connectors are described
in a similar way as the components, by a frame
and architecture. The connector frame is a set of
roles, i.e. interfaces, which are compatible with

interfaces of components. The connector archi-
tecture can be simple (for primitive connectors),
i.e. directly implemented by described software
system, or compound (for composite connectors),
which contains instances of other connectors and
components.

The SOFA uses a component definition lan-
guage (CDL) [9] for specification of compo-
nents and behaviour protocols (BPs) for formal
description of their behaviours. The BPs [21]
are regular-like expressions on the alphabet of
event tokens representing emitting and accepting
method calls. Behaviour of a component (its in-
terface, frame and architecture) can be described
by a BP (interface, frame and architecture proto-
col, respectively) as the set of all traces of event to-
kens generated by the BP. The architecture pro-
tocols can be generated automatically from ar-
chitecture description by a CDL compiler. A pro-
tocol conformance relation ensures the architec-
ture protocol generates only traces allowed by the
frame protocol. From dynamic architectures, the
SOFA allows only a dynamic update of compo-
nents during a system’s runtime. The update con-
sists in change of implementation (i.e. an archi-
tecture) of the component by a new one. Compat-
ibility of the implementations is guaranteed by
the conformance relation of a protocol of the new
architecture and the component’s frame protocol.

Recently, the SOFA team is working on
a new version of the component model. The
component model SOFA 2.0 [5] aims at re-
moving several limitations of the original ver-
sion of SOFA – mainly the lack of support
of dynamic reconfigurations of an architecture,
well-structured and extensible control parts of
components, and multiple communication styles
among components.

6. Discussion and Future Work

The component model proposed in this paper is
able to handle mobile architectures, unlike the
SOFA that supports only a subset of dynamic
architectures (implementing the update opera-
tion) or the Fractal/Fractive, which does not
support components mobility. As is described in

A Component Model with Support of Mobile Architectures and Formal Description 23

Section 3.2, the π-calculus provides fitting for-
malism for description of software systems based
upon the component model.

The proposed semantics of the component
model permits to combine control interfaces
and functional interfaces inside individual prim-
itive components where the control actions can
be invoked by the functional actions, i.e. by
a system’s business logic represented by busi-
ness oriented services. This allows to build sys-
tems where functional (business) requirements
imply changes of the systems’ architectures. Re-
gardless, in some cases, this feature can lead
to architectural erosion and architectural drift
[11], i.e. unpredictable evolution of the system’s
architecture. For that reason, the component
model forbids dynamic changes of connections
between control interfaces, which reduces archi-
tecture variability to patterns predetermined at
a design-time. Formal description of the com-
ponents integrating the control and functional
actions can be compared with the transducer in
the Fractal/Fractive approach (see Section 5.1).

The next feature of the component model is
partially independence of a component’s spec-
ification from its implementation (see the de-
scription of entities CompAbstraction and Comp-

Implementation in Section 2.1). This feature is
similar to the SOFA’s component-template re-
lationship. It allows to control behaviour of a
primary component’s implementation, define a
composite component’s border that isolates its
subcomponents, which is called “a membrane”
in the Fractal, etc. (for comparison, see Section
5.1 and Section 5.2)

The attentive reader will have noticed that
the process algebra π-calculus, as it is defined
in Section 3.1 and applied to the formal de-
scription of behaviour of the component model’s
entities in Section 3.2, allows to describe only
synchronous communication. Although, in most
cases, we need to apply the component model to
distributed software systems with asynchronous
communication. This limitation is a consequence
of the reduction relation’s definition (see Defini-
tion 6 in Section 3.1). The problem can be solved
by proposing of a “buffered” version of commu-

nication between interfaces (i.e. in process Wire
from Section 3.2.1) or, alternatively, by using of
an asynchronous π-calculus [16].

The next important extension of the
presented approach is application of typed
π-calculus [10, 16], which allows to distinguish
types of names. This feature is necessary to for-
mally describe constraints of the type system
of interfaces in behaviour of components. In the
component model’s metamodel, the type system
is defined by instances of entity TypOfInterface

and its descendants and related entities (see Sec-
tion 2.1).

However, the above mentioned modifications
are out of scope of this paper and a final ver-
sion of the component model’s formal descrip-
tion including the proposed extensions is part
of current work. Further ongoing work is re-
lated to the realisation of a supporting envi-
ronment, which allows integration of the com-
ponent model into software development pro-
cesses, including integration of verification tools
and implementation support. The idea is to use
results of the ArchWare project [1], especially
for theorem-proving and model-checking9. We
intend to use the Eclipse Modeling Framework
(EMF) [4, 19] for modeling and code generation
of tools based on the component model and the
Eclipse Graphical Modeling Framework (GMF)
[18] for developing graphical editors according
to the rules described in the component model’s
metamodel (based on EMF).

7. Conclusion

In this paper, we have presented an approach,
which contributes to specify component-based
software systems with features of dynamic and
mobile architectures. The proposed component
model splits a software system into primitive
and composite components according to decom-
posability of its parts, and the components’
functional and control interfaces according to
the types of required or provided services. The
components can be described at different levels
of abstraction, as their specifications and imple-
mentations.

9 See the tools presented in documents D3.5b and D3.6c at [1].

24 Marek Rychlý

Semantics of the component model’s entities
is formally described by means of the process
algebra π-calculus (known as a calculus of mo-
bile processes). Formal description of behaviour
of a whole system can be derived from the vis-
ible behaviour of its primitive components and
their compositions and communication, both de-
fined at a design-time. The result is a π-calculus
process, which describes the system’s architec-
ture, including its evolution and component mo-
bility, and communication behaviour of the sys-
tem. Thereafter, critical properties of the system
can be verified by means of π-calculus model
checker.

We are currently working on extending our
approach to use asynchronous communication
between components and a type system for their
interfaces. Future work is related to integration
of the component model into software develop-
ment processes, including application of veri-
fication tools and implementation support. In
the broader context, the research is a part of
a project focused on formal specifications and
prototyping of distributed information systems.

Acknowledgements This research has
been supported by the Research Plan No. MSM
0021630528 “Security-Oriented Research in In-
formation Technology”.

References

[1] ArchWare project. http://www.arch-ware.org/,
Nov. 2006.

[2] T. Barros. Formal specification and verification
of distributed component systems. PhD thesis,
Université de Nice – INRIA Sophia Antipolis,
Nov. 2005.

[3] E. Bruneton, T. Coupaye, and J.-B. Stefani.
The Fractal component model. Draft of spec-
ification, version 2.0-3, The ObjectWeb Consor-
tium, Feb. 2004.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Eller-
sick, and T. J. Grose. Eclipse Modeling Frame-
work. The Eclipse Series. Addison Wesley Pro-
fessional, Aug. 2003.

[5] T. Bureš, P. Hnětynka, and F. Plášil. SOFA
2.0: Balancing advanced features in a hierarchi-
cal component model. In Proceedings of SERA
2006, Seattle, USA, 2006. IEEE Computer So-
ciety.

[6] J. Král and M. Žemlička. Autonomous compo-
nents. In SOFSEM 2000: Theory and Practice
of Informatics, volume 1963 of Lecture Notes in
Computer Science. Springer, 2000.

[7] J. Král and M. Žemlička. Software confedera-
tions and alliances. In CAiSE Short Paper Pro-
ceedings, volume 74 of CEUR Workshop Pro-
ceedings, pages 229–232. CEUR-WS.org, 2003.

[8] K.-K. Lau and Z. Wang. A survey of software
component models (second edition). Pre-print
CSPP-38, School of Computer Science, Univer-
sity of Manchester, Manchester, UK, May 2006.

[9] V. Mencl. Component definition language. Mas-
ter’s thesis, Charles University, Prague, 1998.

[10] R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes, parts I and II. Journal of
Information and Computation, 100:41–77, Sept.
1992.

[11] D. E. Perry and A. L. Wolf. Foundations for
the study of software architecture. SIGSOFT
Software Engineering Notes, 17(4):40–52, Oct.
1992.

[12] F. Plášil, D. B́ılek, and R. Janeček.
SOFA/DCUP: Architecture for component
trading and dynamic updating. In 4th Interna-
tional Conference on Configurable Distributed
Systems, pages 43–51, Los Alamitos, CA, USA,
May 1998. IEEE Computer Society.

[13] M. Rychlý. Towards verification of systems
of asynchronous concurrent processes. In Pro-
ceedings of 9th International Conference Infor-
mation Systems Implementation and Modelling
(ISIM’ 06), pages 123–130. MARQ, Apr. 2006.

[14] M. Rychlý. Component model with support of
mobile architectures. In Information Systems
and Formal Models, pages 55–62. Faculty of Phi-
losophy and Science in Opava, Silesian Univer-
sity in Opava, Apr. 2007.

[15] M. Rychlý and J. Zendulka. Distributed in-
formation system as a system of asynchronous
concurrent processes. In MEMICS 2006 Second
Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science. Faculty
of Information Technology BUT, 2006.

A Component Model with Support of Mobile Architectures and Formal Description 25

[16] D. Sangiorgi and D. Walker. The π-Calculus:
A Theory of Mobile Processes. Cambridge
University Press, First paperback edition,
Oct. 2003.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley
Professional, second edition, Nov. 2002.

[18] The Eclipse Foundation. Eclipse Graphical
Modeling Framework (GMF). http://www.
eclipse.org/gmf/, Sept. 2007.

[19] The Eclipse Foundation. Eclipse Model-
ing Framework Project (EMF). http://www.
eclipse.org/modeling/emf/, Sept. 2007.

[20] Unified Modeling Language, version 1.5. Doc-
ument formal/03-03-01, Object Management
Group, 2003.

[21] S. Vǐsňovský. Modeling software components
using behavior protocols. PhD thesis, Dept. of
Software Engineering, Faculty of Mathematics
and Physics, Charles University, Prague, 2002.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Bi-dimensional Composition with
Domain Specific Languages

Anca Daniela Ionita∗, Jacky Estublier∗∗, Thomas Leveque∗∗, Tam Nguyen∗∗
∗University Politehnica of Bucharest, Automatic Control and Computers Faculty

∗∗LIG-IMAG, Grenoble, France
Anca.Ionita@mag.pub.ro, Jacky.Estublier@imag.fr, Thomas.Leveque@imag.fr,

Tam.Nguyen@imag.fr

Abstract
The paper presents how domain modeling may leverage the hierarchical composition, supporting
two orthogonal mechanisms (vertical and horizontal) for composing completely autonomous parts.
The vertical mechanism is in charge of coordinating heterogeneous components, tools or services
at a high level of abstraction, by hiding the technical details. The result of such a composition
is called “domain” and represents a high granularity unit of reuse, which may be easily devel-
oped in Mélusine framework. A domain is characterised by a Domain Specific Language (DSL)
and applications in that domain are defined by models executed by the DSL interpreter. Most
often, this is significantly simpler than writing a program using a general purpose language.
Unfortunately, DSLs have a narrow scope, while real world applications usually span over many
domains, raising the issue of domain (and DSL) composition. To overcome this problem, the
horizontal mechanism composes domains at the level of their DSLs, even if they have been in-
dependently designed and implemented. The paper presents a model and metamodel perspective
of the Mélusine bi-dimensional composition, assisted and automated with the Codèle tool, which
allows specification at a high level of abstraction, followed by Java and AspectJ code generation.

1. Introduction

In the widely adopted Component Based Soft-
ware Engineering (CBSE) approach, compo-
nents know each other, must have compatible
interfaces and must comply with the constraints
of the same component model, which reduces
the likelihood of reusing components, and there-
fore the capability to obtain a large variety of
assemblies. Therefore, alternative composition
mechanisms have to be explored, such as to pre-
serve the CBSE advantages (coming from hiding
the internal structure and reusing components
without any change) but to relax the rigidity of
the composition constraints:
– The components or, generally speaking, the

parts, should ignore each other, such that

they could have been designed and developed
independently, i.e. they do not call each other;

– Composed parts should be of any nature (ad
hoc, legacy, COTS, local or distant);

– Parts should be allowed to be heterogeneous
i.e. they do not need to follow a particular
model (component model, service etc.);

– Parts should be reused without having to per-
form any change in their code.
The bi-dimensional composition mechanism

presented here is intended to be a solution for
such situations. The idea is to obtain compos-
able elements that are not traditional compo-
nents, but much larger units, called domains,
which do not expose simple interfaces, but do-
main models, representing DSLs for specifying
the application models.

28 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

One of the important problems to be solved
was related to the heterogeneity of components,
tools or services that have to be reused. A pos-
sible solution was to imagine that the part to
be composed is wrapped into a “composable el-
ement” [22]. There was also a need to define
a composition mechanism that is not based on
the traditional method call, for composing parts
that ignore each other, and therefore do not
call each other. The publish/subscribe mecha-
nism [2] was an interesting candidate, since the
component that sends events ignores who (if
any) is interested in that event, but the receiver
knows and must declare what it is interested in.
If other events, in other topics, are sent, the re-
ceiver code has to be changed. Moreover, the
approach works fine only if the sender is an ac-
tive component. A more appropriate solution for
our requirements could be given by Aspect Ori-
ented Software Development (AOSD) [18], [13],
which eliminates some of the constraints above,
since the sender (the main program) ignores and
does not call the receiver (the aspects). Unfor-
tunately, the aspect knows the internals of the
main program, which defeats the encapsulation
principle [8] and aspects are defined at a low
level of abstraction (the code) [12], [24].

In our approach, heterogeneity is dealt with
by coordinating components, tools or services
from a higher abstraction level; this is what
we call vertical composition and is attained by
defining a domain DSL, which can natively spec-
ify entities specific to the domain and natively
grasp the semantics (behaviour) of these entities
within its interpreter; therefore, defining an ap-
plication in the domain turns out to be the sim-
ple definition of a model in the DSL language. As
usual, each domain is well instrumented with ed-
itors, interpreters, debuggers, analyzers, whose
development is rather expensive, even with the
help of the recent environments. Maybe more
important, the practitioners acquire expertise in
using these languages and benefit from a large
set of existing models, which constitute a part
of the company assets. Therefore, a large scale
reuse of these domains is essential for the ap-
plicability of such an approach and is promoted
through rich DSL semantics. Unfortunately, the

richer the semantics embedded in the DSL, the
simpler the models, but the narrower the lan-
guage scope. In this context, the main draw-
back of DSLs comes out from the fact that most
real life applications usually crosscut several do-
mains, but they cannot be simply described by
selecting a set of independent domain specific
models, each one describing how the application
behaves inside each covered domain.

Consequently there is also a need to compose
domains; this is what we call horizontal compo-
sition and is not based on calling component
interfaces, but on composing domain DSLs and
models. In contrast to method call, model com-
position does not impose that models stick to
common interfaces, or know each other, because
one can either merge or relate independent con-
cepts. Moreover, model composition allows the
definition of variability points [17], which makes
the mechanism more flexible than component
composition.

For building applications spanning different
domains, the challenge is to reuse the domain
tools, the existing models and the practitioner’s
expertise and know-how; this is far from trivial
and is not possible if one creates a new language
for the composite domain. As discussed above,
for obtaining a non-invasive method, a possibil-
ity is to adopt an implementation based on AOP
(Aspect Oriented Programming); the composed
domains and their models are totally unchanged
and the new code is isolated with the help of
aspects. However, since the AOP technique is
at code level, performing domain composition
has proved to be very difficult in practice; the
conceptual complexity is increased, due to the
necessity to deal with many technical details.
This problem has been treated in many research
works. The elevation of crosscutting modeling
concerns to first-class constructs has been done
in having [15], by generating weavers from do-
main specific descriptions, using ECL, an exten-
sion of OCL (Object Constraint Language). An-
other weaver constructed with domain model-
ing concepts is presented in [16], while [25] dis-
cusses mappings from a design-level language,
Theme/UML, to an implementation-level lan-
guage, AspectJ. Our solution is to clearly sep-

Bi-dimensional Composition with Domain Specific Languages 29

arate the specification of the composition from
its implementation, by designing at a high con-
ceptual level and then generating the code based
on aspects.

For managing the complexity in a user
friendly manner, the user defines the com-
position using wizards, for selecting among
pre-defined properties. Designers and program-
mers are assisted by the Mélusine engineering
environment for developing such autonomous
domains, for composing them and for creat-
ing applications based on them [22]. For fa-
cilitating an easier domain composition, by
generating Java and AspectJ code, Mélusine
was leveraged by Codèle, a tool that guides
the domain expert for performing the compo-
sition at the conceptual level, as opposed to
the programming level.

Chapter 2 describes the architecture and the
principles that stand behind the creation of do-
mains driven by their DSLs and the composition
at a high level of abstraction. Chapter 3 presents
the metamodels that allow code generation for
vertical and horizontal composition. Chapter 4
introduces some details related to the imple-
mentation choices, including some mappings for
code generation. Chapter 5 compares the ap-
proach with other related works and evaluates
its usefulness in respect with the domain com-
positions performed before the availability of the
code generation facility offered by Codèle.

2. Bi-dimensional Composition
Based on DSLs

The alternative composition idea presented
above is to create units of reuse that are au-
tonomous (eliminating dependencies on the con-
text of use) and composable at an abstract
level (eliminating dependencies on the imple-
mentation techniques and details). The solu-
tion presented here combines two techniques
(see Fig. 1): building autonomous domains using
vertical composition and abstract composition
of domains using horizontal composition, per-
formed between the abstract concepts of inde-
pendent domains, without modifying their code.

2.1. Developing Autonomous Domains:
Vertical Composition

Developing a domain can be performed follow-
ing a top-down or a bottom-up approach. From
a top down perspective, the required function-
alities of the domain can be specified through a
model, irrespective of its underlying technology.
Then, one identifies the software artifacts (avail-
able or not) that will be used to implement the
expected functionality and make them interop-
erate. From a bottom up perspective, the de-
signer already knows the software artifacts that
may be used for the implementation and will
have to interoperate; therefore, the designer has
to identify the abstract concepts shared by these
software artifacts and how they are supposed
to be consistently managed. Finally, one defines
how to coordinate the software artifacts, based
on the behavior of the shared concepts.

Figure 1. Bi-dimensional composition mechanism

In both cases, the composition is called verti-
cal, because the real software components, ser-
vices or tools are driven based on a high level
model of the application. The model elements
are instances of the shared concepts, which are
abstractions of the actual software artifacts. The
synchronization between these software artifacts
and the model means that the evolution of the
model is transformed into actions performed by
the software artifacts.

The set of shared concepts and their con-
sistency constraints constitute a domain model,
to which the application model must conform
to. In the Model Driven Engineering (MDE) vo-
cabulary, the domain model is the metamodel,

30 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

or a DSL for all the application models for that
domain [12].

The application models are interpreted by a
virtual machine, built according to the domain
DSL, which orchestrates the lower level services
or tools. The domain interpreter is realized by
Java classes that reify the shared concepts of the
domain model and whose methods implement
the behavior of these concepts. In many cases,
these methods are empty, because most, if not
all the behavior is actually delegated to other
software artifacts, with the help of aspect tech-
nology. Thus, the domain interpreter, also called
the domain virtual machine, separates the ab-
stract and conceptual part from the implemen-
tation, creating 3 layers architecture [12]. The
domains may be autonomously executed, they
do not have dependencies and they may be eas-
ily used for developing applications.

2.1.1. Domain Specific Languages in Mélusine

The domain specific languages defined in Mélu-
sine are rather small, covering a narrow domain
and typically, they are object oriented. As usual,
each language description contains two parts:
syntax and semantics. The abstract syntax (AS)
of the language contains the concepts and rules
necessary to define a valid model, while its Se-
mantic Domain (SD) is needed to provide the
meaning of the abstract syntax concepts. By
convention, the abstract syntax is defined by
a class diagram, while the Semantic Domain is
defined based on the methods pertaining to the
AS classes, plus some additional classes. The con-
crete syntax (CS) is provided by a specific editor.

The Product domain, one of our intensely
reused domains, is presented in the case study of
this paper. It was developed as a basic version-
ing system for various products, characterised
by a map of attributes, according to their type;
the versions are stored in a tree, consisting of
branches and revisions. The Product domain
DSL is shown in Fig. 2 and contains both AS
elements (light colored) and SD elements (dark
colored).

From a Language Engineering point of view,
this DSL is the definition of a language in which

models are written; from a Domain Modeling
point of view, it is a model of the application
domain [12]. Thus, the DSL is the symbiosis
of both views, since it is a language in which
models are written, but, being Domain Specific,
it contains the domain specific concepts, their
allowed relationships and their behaviors. The
DSL captures both the abstract syntax and the
semantic aspects and it has different purposes:
on one hand, it is used to develop models; on the
other hand it is used to develop the interpreter
and the editor of the domain and to compose do-
mains for enlarging their scope. These activities
involve an awareness of the concepts related to
the semantic domain, which is necessary, for in-
stance, for developing the interpreters, but also
for composing them, in order to be able to com-
pose domains.

Figure 2. DSL of Product domain

2.1.2. Domain Specific Models

For defining an application, one creates a model
that is going to be interpreted at run-time. Sup-
pose we use our Product domain to version the
software artefacts produced when developing an
application based on the J2EE architecture. A
Servlet in this application model conforms to the
ProductType concept from the Product DSL.

In practice, the models can be expressed in
several formalisms, and represented in a variety
of ways; indeed, models may be defined in UML,
or in Ecore, through generated editors (like in

Bi-dimensional Composition with Domain Specific Languages 31

most metamodeling environments), and stored
in different formats, currently XML based. We
have developed a number of filters, allowing one
to define models and metamodels in these dif-
ferent formalisms, using different environments
and editors. An example of editor for Product
domain is given in Fig. 3. However, since our
DSLs are written in Java, models always consist
in a set of Java objects at execution. Models, ex-
pressed in various formalisms, will be transpar-
ently converted to Java objects at the beginning
of interpretation phase. In most cases, when do-
mains are narrow enough, the complete models
semantics lies in the DSL. In this case, mod-
els are purely structural, and simple editors like
those generated by EMF are sufficient. This is
very important, because it allows non program-
mers to define executable models themselves. If
models require specific semantics, it has to be
described in Java.

Figure 3. Model editor for Product domain

2.2. Abstract Domain Composition:
Horizontal Composition

It may happen that the development of a new
application requires the cooperation of two con-
cepts, pertaining to two different domains, and
realized through two or more software compo-
nents, services or tools. In this case, the interop-
eration is performed through a horizontal com-
position between these abstract concepts, and
also through the domain virtual machines, ig-
noring the low level components, services and
tools used for the implementation. The mech-
anism consists in establishing relationships be-
tween concepts of the two DSLs and implement-
ing them using aspect technology, such as to

keep the composed domains unchanged. A very
strict definition of the horizontal relationship
properties is necessary, such as to be able to
generate most of the AOP code for implement-
ing them. This code belongs to the Composition
Virtual Machine and is separated from the vir-
tual machines of the composed domains.

This composition is called horizontal, be-
cause it is performed between parts situated at
the same level of abstraction. It can be seen as
a grey box approach, taking into account that
the only visible part of a domain is its DSL. It
is a non-invasive composition technique, because
the components and adapters are hidden and are
reused as they are. The composition result is a
new domain model and therefore, a new domain,
with its virtual machine, so that the process may
be iterated. As the domains are executable and
the composition is performed imperatively, its
result is immediately executable, even if situated
at a high level of abstraction.

Model composition is actually performed
by creating links between model elements (in-
stances of the DSL classes) so by instantiat-
ing the horizontal relationships defined at meta-
model level. The choices of links ends may be
made either automatically or manually (interac-
tive) with the help of the application designer.
Interactive selection is often used, since concepts
of existing models may not match to each other
perfectly (they may have different names, but
the same meaning or have the same name, but
behaviors that partially overlap) and no rule
can be defined for it. However, it may be a
tedious process, especially for composing large
models. In contrast, automatic selection can re-
lieve model designer from this burden and is
particularly appreciated when models are very
large. The default criterion for automatic selec-
tion can be based on name matching.

2.2.1. Horizontal Composition at Metamodel,
Model and Execution Levels

A real example of domain composition, realized
in our industrial applications, is illustrated in
Fig. 4. On the left, the Activity domain supports
workflow execution, while on the right, the Prod-

32 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

uct domain is meant to store typed products and
their attributes. Each domain has a DSL (see the
metamodel level). The upper part shows the vis-
ible concepts (the abstract syntax, in light grey)
used for defining the models with appropriate
editors; the lower part (in dark grey) shows the
hidden classes, introduced for implementing the
interpreters (the virtual machines) and for hold-
ing the state of the models during the execution
process.

Figure 4. Composition of Activity
and Product domains

For each domain, a model is made by instanti-
ating the concepts found in the light colored part
of the domain DSL. At model level, on the left,
Figure 4 shows an Activity model, conforming to
itsDSL above. Thismodel describes a very simple
software development process, which only con-
tains one activity – Programming; the box Pro-
gramming is an instance of theActivityDefinition
concept. Labels on the activity connectors, like
spec or source are instances of the DataVariable
concept. These data variables correspond to in-
stances of DataType: Specification and Program
(not shown in this figure). Similarly, on the right
side of Figure 4, at model level, there is a Product

model, containing two instances of ProductType:
JMLSpecification and JavaFile.

TheActivity model in this example is made of
a simple activity, in which a developer john re-
ceives a software specification spec, realizes the
activity Programming and produces the source
code source. However, the developer john may
need to work on various revisions of his specifi-
cation or of his source, so the Activity domain
needs to be composed with the Product domain,
for adding the versioning facility. These two do-
mains (Activity andProduct) are related together
by horizontal relationships at metamodel level,
for example, a horizontal relationship is defined
betweenDataType and ProductType and another
one between Data and Revision. At model level,
a link relates the type of spec – Specification
(found in the Activity model) – to JMLSpecifi-
cation, instantiated from ProductType (found in
the Product model). Another link relates Pro-
gram (the type of source) to the JavaFile prod-
uct type. These two links conform to the relation-
ships defined between theDataType andProduct-
Type concepts. At execution level, a data from
the Activity model, for example DATA_0097 is
related to a revision from Product model, for ex-
ampleVERSION-0050 (seeFig. 4). This link con-
forms to the relationship between Data and Re-
vision, situated at metamodel level.

Even if in the example above there was
a clear correspondence between Specification
from Activity model and JMLSpecification from
Product Model, in practice, there may be several
instances of a metamodel concept on both sides,
as exemplified in Table 1. For creating the link
at model level, one has to choose among these
instances, such as to select a single one-to-one
correspondence.

3. Metamodels for the Bi-dimensional
Composition

3.1. Metamodel for the Vertical
Composition

The methods defined in a domain concept are in-
troduced for providing some behavior (see Fig. 5

Bi-dimensional Composition with Domain Specific Languages 33

Table 1. Different mappings of metamodel concepts on their instances at model level
(for application development in Java and PHP respectively)

Domain Product Activity
Metamodel ProductType DataType

Model

(Java) (PHP)
Use Case Document Use Case Document Requirement
JML Specification UML Specification Specification
Java File PHP File Program
URL Bugzilla Vision Project BugReport

for the correspondent metamodel elements). In
most cases, only a part (if any) of the behavior is
implemented inside the method itself, because,
most often, its functionality involves the execu-
tion of some tools. The notion of Feature has
been defined to provide the code that contains
one or more method interceptions and calls the
services that actually implement the expected
behavior of that methods. Additionally, a fea-
ture can implement a concern attached to that
method, like security or persistency, which can
be an optional behavior, as in product line ap-
proaches.

Figure 5. Metamodel for the vertical composition

For the vertical composition, the non-ho-
mogeneous units of reuse correspond to the
generic notion of Service (see Fig. 5). At instan-
tiation, they may correspond to components,
tools, COTS etc. In our Product domain, the
persistency service may be supplied either by
SQL storage, or by a repository of another ver-
sioning system, like Subversion or CVS; the
choice can be done by the client. For the ex-
ample from Figure 4, the method getProducts
of the class ProductType is empty and it is its
associated feature that delegates the call to a
database where actual products are stored. How-
ever, a feature is not related directly to services,
but through abstract services – an abstraction

for a set of functionalities defined in a Java in-
terface, which are ultimately executed by com-
ponents/tools representing the services (i.e. im-
plementing its methods).

More than one feature can be attached to
the same method and each feature can address
a different concern. The word feature is used in
the product line approach to express a possible
variability that may be attached to a concept.
Our approach is a combination of the product
line intention with the AOP implementation.

Moreover, the purpose is to aid software en-
gineers as much as possible, in the design and
development of such kind of applications. By
using the Codèle tool, which “knows” the meta-
model from Figure 5, the software engineer sim-
ply creates instances of its concepts (Behav-
ior, Interception, Feature, Service etc.) and the
tool generates the corresponding code in the
Eclipse framework. As well as all Mélusine DSLs,
Codèle metamodels are implemented with Java,
whereas AspectJ, its aspect-oriented extension,
is used for delegating the implementation to dif-
ferent tools and/or components (instances of the
Service concept).

3.2. Metamodel for the Horizontal
Composition

In other similar approaches, as in model collabo-
ration [26], AOP was mentioned as a possible so-
lution for implementing collaboration templates
in service oriented architectures (SOA), orches-
tration languages or coordination languages. As
our approach is based on establishing relation-
ships, it can also be compared to [1], where the
properties of AOP concepts are identified (e.g.
behavioral and structural cross-cutting advices,
static and dynamic weaving). Our intention is to

34 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

Figure 6. Metamodel for the horizontal composition

identify such properties at a more abstract level,
such as aspects only constitute an implementa-
tion technique. The method we use for defining
and generating horizontal compositions between
domains is similar to transforming UML associ-
ations into Java [14], but using AOP, because
we are not allowed to change the domain code.

To provide an effective support for domain
composition, Mélusine requires a specific formal
definition and semantics. The metamodel from
Fig. 6 shows that domain composition relies on
Horizontal Relationship, made of connections.
A relationship not only represents a set of com-
munication links between instances, but also ex-
presses the interaction between them. The execu-
tion of an operation from an instance pertaining
to one side of the relationship has consequences
on the instances from the other side. In Codèle,
such a piece of interaction is called connection
and is established between a source concept, per-
taining to the source domain, and a destina-
tion concept in the target domain. First, a con-
nection performs the interception of the behav-

ior (method) pertaining to the source concept,
and then some computation, depending on its
type: Synchronization, StaticInstantiation, Dy-
namicInstantiation. Since concepts are reified as
classes and operations are defined as their meth-
ods, a connection may be expressed based on the
AOP mechanism: the method from one side is
captured, allowing for the interaction with the
methods from the other side. As a concept may
have many methods, each one being able to par-
ticipate to one or many connection(s), a horizon-
tal relationship may manage many connections.

3.2.1. Composition Specific Semantics

From the experience gained while defining con-
nections, some composition templates have been
identified, such that some types of connections
may be generalized and generated automati-
cally. Connections are categorized according to
their purpose:
– Synchronization – the most popular kind of

connections, modifying the state of the in-

Bi-dimensional Composition with Domain Specific Languages 35

stance at the destination end, with respect
to the changes performed for the instance at
the source end;

– Instantiation – in charge of creating an in-
stance of the horizontal relationship (a link
between elements of the models to be com-
posed) and, eventually, also with the creation
of the instance at the destination end.
For establishing a link between two instances

participating in a horizontal relationship, two is-
sues must be considered: 1) the moment of cre-
ating the link, and 2) the alternatives for set-
ting the destination instance. These semantics
are taken into account when instantiating HRs
at model level (see Fig. 4).

1) The moment of creating the link. Most of-
ten, a link is established when creating the in-
stance that must be the origin of the link. These
instances (representing elements of the models
to be composed) are created either before ex-
ecution (if they conform to AS concepts and
are part of a domain specific model defined for
a domain to be composed) or during the exe-
cution (if they conform to concepts introduced
for interpreting these models). Therefore, it is
possible to establish links either before or dur-
ing the execution; the two situations actually
correspond to the two types of horizontal rela-
tionships: static and dynamic respectively. For
doing so, the method for creating the source
instance (e.g. the constructor) is captured by
the AOP machine and extended with the cre-
ation or the reification of the link; for the links
defined before execution (between elements of
domain specific models of the domains to be
composed) the link is reified when the model
elements are reified, just before starting the ex-
ecution. In our example from Fig. 4, the links
created between models (i.e. before the execu-
tion) are called static, while the links created to
relate these models at execution are called dy-
namic. For example, the link between Specifica-
tion and JML Specification is static, whereas the
link between DATA_0097 and VERSION-0050
is dynamic.

2) The alternatives for setting the destina-
tion instance. For deciding the link destination
end, there are two kinds of mapping functions:

– Creation (returning a new instance) and
– Selection (returning an existing instance).

Either to create or to select a destination
instance, one should define some criteria, often
based on the properties of the source instance.
For example, the mapping function may create a
destination instance, providing the source name
as parameter (creation mapping) or it may look
for the destination instance with the same name
as the source instance (selection mapping). Be-
sides the two alternatives above, the mapping
function may adopt two kinds of processes:
– Automatic: the destination element is found

automatically, if the searching criterion is
provided;

– Interactive: the destination element is found
with human intervention, if the searching cri-
terion is not provided.
For the Automatic case, by default, Codèle

supports a searching criterion based on a key
attribute, like name or identifier. The default
criterion is used if no user-defined searching cri-
terion is provided.

The combination of the mapping kinds and
processes presented above gives diverse ways to
set the destination instance and the dynamic
interaction may follow several valid possibili-
ties, as also presented in the metamodel from
Fig. 6:
– Automatic.New: the mapping function auto-

matically creates and returns a new instance;
– Automatic.Selection: the mapping function

automatically returns an existing instance;
– Automatic.Selection.New: the mapping func-

tion automatically searches for an existing
instance and, if not found, creates a new one;

– Interactive.Selection: the destination in-
stance is selected by a human, and

– Interactive.Selection.New: first, a human
tries to select an existent destination in-
stance; if he or she does not find anything
appropriate, it is possible to ask for the cre-
ation of a new one.
The above options may be valid or not.

If a link is created at execution time, all the
above options may be used for setting the link
destination. However, if a link is created be-
fore execution, the only valid option is Auto-

36 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

matic.Selection, because the link already exists
and it must be simply reified.

4. Implementation Issues

4.1. Implementation Choices

Our approach follows the language/interpreter
technology. However, to be later composable
with other domain interpreters, the DSL inter-
preter must follow conventions in the way the
concepts defined in the metamodel are mapped
to the target programming language.

First, the target implementation language
must be able to express the DSL opera-
tional semantics. Since the metamodels are
object-oriented, it is convenient to use an
object-oriented programming language, like
Java or C++, or an executable metamodel-
ing language, like Kermeta [25] or XMF (eXe-
cutable Metamodelling Facility) [6]. Executable
metamodeling languages allow not only the
description of the model structure (the ab-
stract syntax), but also of the behavior. Sec-
ond, each concept in the metamodel must
be mapped to one class in the target im-
plementation language. Third, the target im-
plementation language must provide support
for aspect programming, to allow inserting the
code responsible for the composition seman-
tics into the original metamodel implementa-
tion (the set of corresponding classes, respon-
sible for model interpretation) without chang-
ing the interpreter. In this context, one de-
cided to use Java for implementing our inter-
preters, together with its aspect-oriented exten-
sion, AspectJ.

Models, defined using the DSL abstract syn-
tax concepts, are technically reified as Java
classes and then interpreted. This implies that
the model is created before execution, while the
instances of semantic domain concepts are only
created during the execution. More precisely, at
design time, the modeler only needs the abstract
syntax concepts for creating a model – referred
to as domain specific model; he or she does not
need to be aware of the concepts related to the

interpretation. Models are represented, at exe-
cution, as instances of the AS classes, and are
interpreted using the semantic domain. At run
time, the model is simply reified as instances
of the interpreter classes and then interpreted.
However, during execution, the interpreter mod-
ifies/creates/deletes instances of the abstract
syntax concepts, and also creates instances of
the DSL concepts corresponding to the semantic
domain.

4.2. Code Generation

The Eclipse mappings currently used in Mélu-
sine environment for the vertical composition
are presented in Table 2. Actually, users never
see, and even ignore, that AspectJ code is gener-
ated; for instance, they do not create an AspectJ
project, but simply define and generate a fea-
ture associated with a concept. A similar idea is
presented in [30], where Xtend and Xpand lan-
guages are used for specifying mappings from
problem to solution spaces and the code gener-
ation is considered to be less error-prone than
the manual coding.

To implement horizontal relationships in As-
pectJ, each horizontal relationship is also trans-
formed into an AspectJ code. The mappings to-
wards Eclipse artifacts used for Mélusine hori-
zontal composition are indicated in Table 3.

4.3. Codèle Tool

This section introduces Codèle, as an implemen-
tation for the composition methodology previ-
ously presented. For supporting domain compo-
sition, we have developed the Codèle toolbox, in
which dedicated editors allow one to: (i) Define
horizontal relationships, (ii) Use horizontal re-
lationships to define static model composition,
(iii) Use horizontal relationships to define dy-
namic model composition.

From this information, Codèle automatically
generates AspectJ captures and the code that
implements the composition strategy. Imple-
menting horizontal relationships in AspectJ is
simple. Each connection is transformed into an
AspectJ code that calls a method in a class gen-

Bi-dimensional Composition with Domain Specific Languages 37

Table 2. Mapping on Eclipse artifacts for the vertical composition metamodel

Metamodel element Eclipse artifact Elements generated inside the artifacts
Domain Project Interfaces for the domain management
Concept Class Skelton for the methods
Behavior Method Empty body by default
Feature AspectJ Project The AspectJ aspect and a class for the behavior
Abstract service Project Java interface defining the service interface
Service Project An interface and an implementation skeleton
Interception AspectJ Capture The corresponding AspectJ code

Table 3. Mapping between horizontal composition concepts and Eclipse artifacts

Metamodel element Eclipse artifact Elements generated inside the artifacts
Domain Project Predefined interfaces and classes
Concept Class None
Behavior Method None

HorizontalRelationship AJ Class and Java classes

– an AspectJ file containing the code for all the
interceptions

– a Java file for each instantiation connections
– a Java file for each synchronization connections

Interception AspectJ Capture Lines in the AspectJ file for the interception, and
a Java file for the connection code

erated by Codèle; users never “see” it. In prac-
tice, the code for horizontal relationships seman-
tics represents about 15% of the total code.

Under a unified graphical interface, Codèle
implements different subsystems:
– Relationships Editor, which is responsible to

create horizontal relationships, according to
the properties presented above; see an exam-
ple in Fig. 7, for defining a relationship be-
tween DataType from Activity domain, and
ProductType from Product domain;

– Captures Generator, which generates As-
pectJ code, and creates a Java class in which
the user can define the connection semantics;

– Dynamic Model Composition Editor, for dy-
namic link creation and life cycle;

– Static Model Composition Editor for the
composition of two models, in their abstract
form; see an example in Fig. 8.
In our example, the DataType – Product-

Type horizontal relationship has been selected,
for which one displays the corresponding in-
stances, like Specification in the Activity do-
main, and JMLSpecification or JavaFile in the
Product domain. As this horizontal relationship
has been declared Static, the developer is asked
to provide the pairs of model entities that must
be linked together, according to that horizontal

Figure 7. Defining horizontal relationships
at metamodel level

relationship. Otherwise, they would have been
selected automatically, at run time. The bottom
panel lists the pairs that have been defined. For
example, the data type called Program in the

38 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

Activity domain is now related to JavaFile in
the Product domain. The system finds this in-
formation by introspecting the models and is in
charge of creating these relationships at model
level.

Figure 8. Defining static links at model level

Mélusine system, including the domain com-
position technology, was developed in 2000 and
was used in a number of applications, both aca-
demic and industrial. A little less than one mil-
lion lines were developed for this system, and
dozens of domain compositions were performed.
The work reported in this paper started with
an analysis of these domain compositions, with
the goal to find recurring concepts and patterns,
and ended in the development of the Codèle tool.
Since then, Codèle is integrated in different envi-
ronments. In some environments, like FOCA [27]
where domains are manually composed, Codèle
is used only for model composition. In other sys-
tems, like Mélusine, Codèle is fully used, on a
daily basis.

5. Evaluation of the Composition
Approach

5.1. Related Works

The works on model/metamodel composition
can be classified according to several criteria:
the composition mechanism and the theme of
research. According to the composition mecha-
nism, these works could be split in two major
categories: the heavyweight composition mech-
anism, which consists in model and metamodel
merging [29], [23], [20]; and the lightweight
mechanism, which involves establishing syn-

chronization relationships [11] or weaving two
models/metamodels, without changing their
structures. The second mechanism is interesting
because it is possible to compose models and
metamodels and still use their existent tools.

According to the theme of research,
model/metamodel composition is approached in
three major areas: Model Management, Aspect
Oriented Modeling and Metamodeling.

Model Management is a topic born in the
MDE (Model Driven Engineering) context. This
community is interested in platforms manipulat-
ing and managing models, focusing on generic
operators to be applied on models, which can be
divided in three groups:
• match [3, 4], relate [21], compare [20] – for dis-

covering correspondences between models;
• merge [21], [20], [7], compose [3], weaving [7]

– for integrating models and
• sewing [7] – for relatingmodelswithout chang-

ing their structure.
Several platforms have been developed, like

AMMA [28], Rondo [10], EOL [23] and MO-
MENT [19]. One can qualify these Model Man-
agement approaches as heavyweight.

Aspect Oriented Modeling (AOM) applies the
separation of concern principle of AOP in the
modeling phase. Weaving consists in compos-
ing aspect models to a base model. The rela-
tionship between aspect model and base model
is relative. A model can be both an aspect and
the base; thus, two kinds of weaving have been
identified: aspect/base weaving (called asymmet-
ric), and base/base weaving (called symmetric).
The first one is borrowed from AOP and usu-
ally uses a lightweight composition mechanism,
while the second one is inspired from SOP (Sub-
ject Oriented Programming) and uses a heavy-
weight mechanism. Theme/UML [7] is an ap-
proach merging both kinds of weaving; the com-
position between the base models (called sub-
ject) is done with two kinds of composition re-
lationships: merge or override. Merge integrates
a subject with another one, while override re-
places an existing subject with a new one. In
all cases, these strategies change the composed
model structure. The aspects in Theme/UMLare
designed in terms of aspect templates.

Bi-dimensional Composition with Domain Specific Languages 39

Metamodelling also treats model compo-
sitions, supported by metamodeling environ-
ments, like XMF (eXecutable Metamodelling
Facility) [6] or GME (Generic Modeling Envi-
ronment) [9]. XMF has a purpose that is simi-
lar to ours – lightweight model composition con-
sisting of composing and executing models con-
forming to different metamodels. This is pos-
sible through synchronized mappings, written
in XSync – a specific language of XMF, based
on actions. Unfortunately, the metamodels also
have to be written in a specific language –
XCore, which is an extension of MOF. There-
fore, we would not be able to reuse our meta-
models (implemented in Java) nor our models,
nor use AOP technique – which is a central re-
quirement for model and metamodel reuse.

GME environment also supports the compo-
sition of models conforming to the same meta-
model (using so-called references) and to differ-
ent metamodels (using union and inheritance).
However, it allows the creation of a composite
metamodel, which may be used for defining new
models; there is no possibility to reuse the exist-
ing models “as-is” and to keep the metamodels
unchanged – an important requirement for our
domain composition approach.

The canonical scheme for model composi-
tion proposed in [5] uses a weaving model, con-
sisting in correspondences between model ele-
ments. Then, several transformations based on
ATL (ATLAS Transformation Language) are
used for obtaining the composite model. The
composition semantics resides in these transfor-
mations. The weaving model may also be ex-
tended for creating a specific composition, using
AMW (Atlas Model Weaver). This facility could
be used for defining our horizontal relationships;
however, our purpose was to obtain a composi-
tion tool based on wizards, which is easier to
learn and only contains the concepts specific for
our composition approach.

5.2. Specificities for Mélusine
Composition

In order to make the domain composition task
as simple as possible, the metamodels presented

above took into account the specificities of Mélu-
sine domains. Consequently, the composition we
realized is specific for this situation, as opposed
to other approaches, which try to provide mech-
anisms for composing heterogeneous models in
general contexts, generally without specifying
how to implement them precisely.

The technique used at each composition level
is different. At code level one uses AOP tech-
nique; at model and metamodel levels one es-
tablishes relationships. The main reason for this
choice was to compose domains without chang-
ing their models or the associated tools and en-
vironments.

The elaboration of metamodels that support
code generation in Codèle tool was possible af-
ter years of performing Mélusine domain com-
positions. This experience also led to the defini-
tion of a methodology for developing horizon-
tal relationships, described in [11]. Moreover,
through trials and errors, one found recurring
patterns of code for defining vertical and hori-
zontal relationships and it was possible to iden-
tify some of their functional and non functional
characteristics. Codèle embodies and formalizes
this knowledge through simple panels, such that
users “only” need to write code for the non stan-
dard functionalities. Practice showed that, in av-
erage, more than half of the code is generated,
in an error prone manner, managing the low
level technical code – including AOP captures,
aspect generation and so on. The user’s added
code fully ignores the generated one and the ex-
istence of AOP; it describes the added function-
ality at the logical level. Experience with Codèle
has shown a dramatic simplification for writing
relationships, and the elimination of the most
difficult bugs; there are also some cases where
the generated code was sufficient, allowing appli-
cation composition without any programming.

However, many other non-functional charac-
teristics could be identified and generated in the
same way, and Codèle can (should) be extended
to support them. We have also discovered that
some, if not most, non-functional characteris-
tics cannot be defined as a domain (security,
performance, transaction etc.), and therefore
these non-functional properties cannot be added

40 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

through horizontal relationships. For these prop-
erties, we have developed another technique,
called model annotation, described in [27].

6. Conclusion

The division of applications in parts can be per-
formed by reusing large functional areas, called
domains, which are primary elements for divid-
ing the problem in parts, and atoms on which
our composition technique is applied.

A domain is usually implemented by reusing
existing parts, found on the market or inside
the company, which are components or tools of
various size and nature. We call vertical com-
position the technique which consists in relat-
ing the abstract elements found in the domain
model, with the existing components found in
the company. Reuse imposes that vertical re-
lationships are implemented, without changing
the domain concepts, or the existing compo-
nents. In our approach, one develops indepen-
dent and autonomous domains, which become
the primary units for reuse, whose interfaces are
their domain models (DSLs).

Domain composition is performed by com-
posing their DSLs, without any change in
their abstract syntax or semantics. This is
called horizontal composition, defining relation-
ships between modeling elements pertaining
to the composed domains. In this way, the
tools/environments in charge of editing, analyz-
ing and executing the models, as well as the
knowledge of practitioners, are kept unchanged.
Tools, environments and models can be reused
“as-is” and thus they can continue to be used
by the existing applications that rely on them,
which is a critical property in real operational
contexts.

An important goal of our approach was to
raise the level of abstraction and the granularity
level at which large applications are designed,
decomposed and recomposed. Moreover, these
large elements are highly reusable, because the
composition only needs to “see” their abstract
models, not their implementation. Finally, by
relating domain concepts using wizards, most

compositions can be performed by domain ex-
perts, not necessarily by highly trained technical
experts, as it would be the case if directly using
AOP techniques.

References

[1] E. Barra Zavaleta, G. Génova Fuster, and
J. Llorens Morillo. An approach to aspect mod-
elling with uml 2.0. In Proceedings of the UML
2004 Workshop on Aspect-Oriented modeling,
Lisbon, Portugal, 2004.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 2003.

[3] P. Bernstein. Applying model management to
classical meta data problems. In Proceedings
of the Conference on Innovative Database Re-
search (CIDR), Asilomar, CA, USA, 2003.

[4] G. Brunet, M. Chechik, S. Easterbrook, S. Ne-
jati, N. Niu, and M. Sabetzadeh. A mani-
festo for model merging. In Proceedings of
the 2006 international workshop on Global inte-
grated model management, pages 5–12, Shang-
hai, China, 2006. ACM.

[5] J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M.-P.
Gervais, F. Jouault, D. Kolovos, I. Kurtev, and
R. F. Paige. A canonical scheme for model com-
position. In Proceedings of the European Confer-
ence in Model Driven Architecture (EC-MDA),
Bilbao, Spain, 2006.

[6] T. Clark and al. Applied metamodelling –
a foundation for language driven development
version 0.1. Xactium, Editor, 2004.

[7] S. Clarke. Extending standard UML with model
composition semantics. Science of Computer
Programming, 44(1):71–100, 2002.

[8] T. Dave. Reflective software engineering – from
MOPS to AOSD. Journal of Object Technology,
1(4), 2002.

[9] J. Davis. GME: the generic modeling environ-
ment. In Proceedings of the Conference on Ob-
ject Oriented Programming Systems Languages
and Applications (OOPSLA ’03), Anaheim, CA,
USA, 2003.

[10] M. Didonet Del Fabro and F. Jouault. Model
transformation and weaving in the amma plat-
form. In Proceedings of the Workshop on Gener-
ative and Transformational Techniques in Soft-
ware Engineering (GTTSE), Braga, Portugal,
2005.

[11] J. Estublier, A. D. Ionita, and G. Vega. Re-
lationships for domain reuse and composition.

Bi-dimensional Composition with Domain Specific Languages 41

Journal of Research and Practice in Informa-
tion Technology, 38(4):135–162, 2006.

[12] J. Estublier, G. Vega, and A. Ionita. Composing
domain-specific languages for wide-scope soft-
ware engineering applications. In Proceedings
of the MoDELS/UML Conference, pages 69–83,
Jamaica, 2005. Lecture Notes in Computer Sci-
ence.

[13] R. Filman, T. Elrad, S. Clarke, and M. Ak-
sit. Aspect-Oriented Software Development.
Addison-Wesley, ISBN10: 0321219767, 2004.

[14] G. Génova, C. Ruiz del Castillo, and J. Lloréns.
Mapping UML associations into Java code.
Journal of Object Technology, 2(5):135–162,
2003.

[15] J. Gray, T. Bapty, S. Neema, D. Schmidt,
A. Gokhale, and N. B. An approach for support-
ing aspect-oriented domain modeling. In Pro-
ceedings of GPCE. LNCS 2830, Springer Verlag,
2003.

[16] W. Ho, J.-M. Jezequel, F. Pennaneac’h,
and N. Plouzeau. A toolkit for weaving
aspect-oriented UML designs. In Proceed-
ings of the First International Conference on
Aspect-Oriented Software Development, pages
99–105, Enschede, The Netherlands, 2002.

[17] A. D. Ionita, J. Estublier, and G. Vega. Vari-
ations in model-based composition of domains.
In Proceedings of the Software and Service Vari-
ability Management Workshop, Helsinki, Fin-
land, April 2007.

[18] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In
Proceedings of the European Conference on
Object-Oriented Programming, pages 220–242,
1997.

[19] D. Kolovos, R. Paige, and F. Polack. Eclipse
development tools for epsilon. In Proceedings
of the Eclipse Summit Europe, Eclipse Modeling
Symposium, Esslingen, Germany, 2006.

[20] D. Kolovos, R. Paige, and F. Polack. Merging
models with the epsilon merging language (eml).
In Proceedings of MoDELS’06, pages 215–229.
LNCS 4199, 2006.

[21] I. Kurtev and M. Didonet Del Fabro. A DSL
for definition of model composition operators.
In Proceedings of the Models and Aspects Work-
shop at ECOOP, Nantes, France, 2006.

[22] T. Le-Anh, J. Estublier, and J. Villalobos.
Multi-level composition for software federa-
tions. In Proceedings of the SC’2003 Conference,
Warsaw, Poland, April (2003). IEEE Computer
Society Press.

[23] S. Melnik, E. Rahm, and P. A. Bernstein.
Rondo: A programming platform for generic
model management. In Proceedings of the Inter-
national Conference on Special Interest Group
on Management of Data (SIGMOD), San Diego,
California, June, 2003.

[24] M. Monga. Aspect-oriented programming as
model driven evolution. In Proceedings of the
linking aspect technology and evolution (LATE)
workshop, Chicago, 2005.

[25] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel.
Weaving executability into object-oriented
meta-languages. In Proceedings of the MoD-
ELS/UML Conference, Jamaica, 2005. Lecture
Notes in Computer Science.

[26] A. Occello, O. Casile, A. Dery-Pinna, and
M. Riveill. Making domain-specific models col-
laborate. In Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling, Mon-
tréal, Canada, 2007.

[27] G. Pedraza and J. Estublier. An extensible ser-
vice orchestration framework through concern
composition. intl workshop on non-functionnal
properties in domain specific languages. In Pro-
ceedings of the NFPDML conference, Toulouse
France, 2008.

[28] T. Reiter and al. Model integration through
mega operations. In Proceedings of the
Workshop on Model-driven Web Engineering
(MDWE), Sydney, 2005.

[29] M. Sabetzadeh and S. Easterbrook. Easter-
brook: An algebraic framework for merging in-
complete and inconsistent views. In Proceedings
of the 13th IEEE International Requirements
Engineering Conference, pages 306–318, 2005.

[30] M. Voelter and I. Groher. Product line
implementation using aspect-oriented and
model-driven software development. In
Proceedings of the 11th International Software
Prouct Line Conference (SPLC), Kyoto, Japan,
2007.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Aspect-Oriented Change Realizations
and Their Interaction

Valentino Vranić∗, Radoslav Menkyna∗, Michal Bebjak∗, Peter Dolog∗∗
∗Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava, Slovakia
∗∗Department of Computer Science, Aalborg University, Denmark

vranic@fiit.stuba.sk, radu@ynet.sk, mbebjak@gmail.com, dolog@cs.aau.dk

Abstract
With aspect-oriented programming, changes can be treated explicitly and directly at the pro-
gramming language level. An approach to aspect-oriented change realization based on a two-level
change type model is presented in this paper. In this approach, aspect-oriented change realizations
are mainly based on aspect-oriented design patterns or themselves constitute pattern-like forms
in connection to which domain independent change types can be identified. However, it is more
convenient to plan changes in a domain specific manner. Domain specific change types can be
seen as subtypes of generally applicable change types. These relationships can be maintained in a
form of a catalog. Some changes can actually affect existing aspect-oriented change realizations,
which can be solved by adapting the existing change implementation or by implementing an
aspect-oriented change realization of the existing change without having to modify its source
code. As demonstrated partially by the approach evaluation, the problem of change interaction
may be avoided to a large extent by using appropriate aspect-oriented development tools, but for
a large number of changes, dependencies between them have to be tracked. Constructing partial
feature models in which changes are represented by variable features is sufficient to discover
indirect change dependencies that may lead to change interaction.

1. Introduction

Change realization consumes enormous effort
and time during software evolution. Once imple-
mented, changes get lost in the code. While in-
dividual code modifications are usually tracked
by a version control tool, the logic of a change
as a whole vanishes without a proper support in
the programming language itself.

By its capability to separate crosscutting
concerns, aspect-oriented programming enables
to deal with change explicitly and directly at
programming language level. Changes imple-
mented this way are pluggable and — to the
great extent — reapplicable to similar applica-
tions, such as applications from the same prod-
uct line.

Customization of web applications repre-
sents a prominent example of that kind. In
customization, a general application is being
adapted to the client’s needs by a series of
changes. With each new version of the base ap-
plication, all the changes have to be applied to
it. In many occasions, the difference between
the new and old application does not affect the
structure of changes, so if changes have been im-
plemented using aspect-oriented programming,
they can be simply included into the new appli-
cation build without any additional effort.

Even conventionally realized changes may in-
teract, i.e. they may be mutually dependent or
some change realizations may depend on the
parts of the underlying system affected by other
change realizations. This is even more remark-

44 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

able in aspect-oriented change realization due to
pervasiveness of aspect-oriented programming
as such.

We have already reported briefly our initial
work in change realization using aspect-oriented
programming [1]. In this paper1, we present
our improved view of the approach to change
realization based on a two-level change type
model. Section 2 presents our approach to
aspect-oriented change realization. Section 3 de-
scribes briefly the change types we have discov-
ered so far in the web application domain. Sec-
tion 4 discusses how to deal with a change of a
change. Section 5 proposes a feature modeling
based approach of dealing with change interac-
tion. Section 6 describes the approach evalua-
tion and outlooks for tool support. Section 7
discusses related work. Section 8 presents con-
clusions and directions of further work.

2. Changes as Crosscutting
Requirements

A change is initiated by a change request made
by a user or some other stakeholder. Change
requests are specified in domain notions simi-
larly as initial requirements are. A change re-
quest tends to be focused, but it often consists of
several different — though usually interrelated
— requirements that specify actual changes to
be realized. By decomposing a change request
into individual changes and by abstracting the
essence out of each such change while generaliz-
ing it at the same time, a change type applicable
to a range of the applications that belong to the
same domain can be defined.

We will present our approach by a series of
examples on a common scenario2. Suppose a
merchant who runs his online music shop pur-
chases a general affiliate marketing software [11]
to advertise at third party web sites denoted
as affiliates. In a simplified schema of affiliate
marketing, a customer visits an affiliate’s site
which refers him to the merchant’s site. When
he buys something from the merchant, the pro-

vision is given to the affiliate who referred the
sale. A general affiliate marketing software en-
ables to manage affiliates, track sales referred
by these affiliates, and compute provisions for
referred sales. It is also able to send notifications
about new sales, signed up affiliates, etc.

The general affiliate marketing software has
to be adapted (customized), which involves a
series of changes. We will assume the affiliate
marketing software is written in Java, so we can
use AspectJ, the most popular aspect-oriented
language, which is based on Java, to implement
some of these changes.

In the AspectJ style of aspect-oriented pro-
gramming, the crosscutting concerns are cap-
tured in units called aspects. Aspects may con-
tain fields and methods much the same way the
usual Java classes do, but what makes possi-
ble for them to affect other code are genuine
aspect-oriented constructs, namely: pointcuts,
which specify the places in the code to be af-
fected, advices, which implement the additional
behavior before, after, or instead of the captured
join point (a well-defined place in the program
execution) — most often method calls or execu-
tions — and inter-type declarations, which en-
able introduction of new members into types, as
well as introduction of compilation warnings and
errors.

2.1. Domain Specific Changes

One of the changes of the affiliate marketing
software would be adding a backup SMTP server
to ensure delivery of the notifications to users.
Each time the affiliate marketing software needs
to send a notification, it creates an instance of
the SMTPServer class which handles the con-
nection to the SMTP server.

An SMTP server is a kind of a resource that
needs to be backed up, so in general, the type
of the change we are talking about could be
denoted as Introducing Resource Backup. This
change type is still expressed in a domain spe-
cific way. We can clearly identify a crosscutting
concern of maintaining a backup resource that

1 This paper represents an extended version of our paper presented at CEE-SET 2008 [28].
2 This is an adapted scenario published in our earlier work [1].

Aspect-Oriented Change Realizations and Their Interaction 45

has to be activated if the original one fails and
implement this change in a single aspect without
modifying the original code:
public class SMTPServerM extends SMTPServer {
...
}
...
public aspect SMTPServerBackupA {
public pointcut SMTPServerConstructor(URL url,

String user,
String password):

call(SMTPServer.new (..)) && args(url, user,
password);

SMTPServer around(URL url, String user,
String password):

SMTPServerConstructor(url, user, password)
{
return getSMTPServerBackup(proceed(url, user,

password));
}
private SMTPServer
getSMTPServerBackup(SMTPServer obj)
{
if (obj.isConnected()) {
return obj;

} else {
return new SMTPServerM(obj.getUrl(),

obj.getUser(),
obj.getPassword());

}
}

}

The around() advice captures constructor
calls of the SMTPServer class and their ar-
guments. This kind of advice takes complete
control over the captured join point and its
return clause, which is used in this example
to control the type of the SMTP server be-
ing returned. The policy is implemented in the
getSMTPServerBackup() method: if the original
SMTP server can’t be connected to, a backup
SMTP server class SMTPServerM instance is
created and returned.

We can also have another aspect — say
SMTPServerBackupB — intended for another
application configuration that would implement
a different backup policy or simply instantiate a
different backup SMTP server.

2.2. Generally Applicable Changes

Looking at this code and leaving aside SMTP
servers and resources altogether, we notice that

it actually performs a class exchange. This
idea can be generalized and domain details ab-
stracted out of it bringing us to the Class
Exchange change type [1] which is based on
the Cuckoo’s Egg aspect-oriented design pat-
tern [20]:
public class AnotherClass extends MyClass {
...
}
...
public aspect MyClassSwapper {
public pointcut myConstructors():
call(MyClass.new ());

Object around(): myConstructors()
{
return new AnotherClass();

}
}

2.3. Applying a Change Type

It would be beneficial if the developer could get a
hint on using the Cuckoo’s Egg pattern based on
the information that a resource backup had to
be introduced. This could be achieved by main-
taining a catalog of changes in which each do-
main specific change type would be defined as a
specialization of one or more generally applica-
ble changes.

When determining a change type to be ap-
plied, a developer chooses a particular change
request, identifies individual changes in it, and
determines their type. Figure 1 shows an exam-
ple situation. Domain specific changes of the D1
and D2 type have been identified in the Change
Request 1. From the previously identified and
cataloged relationships between change types we
would know their generally applicable change
types are G1 and G2.

A generally applicable change type can be a
kind of an aspect-oriented design pattern (con-
sider G2 and AO Pattern 2). A domain specific
change realization can also be complemented
by an aspect-oriented design pattern (or several
ones), which is expressed by an association be-
tween them (consider D1 and AO Pattern 1).

Each generally applicable change has a
known domain independent code scheme (G2’s
code scheme is omitted from the figure). This
code scheme has to be adapted to the context

46 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

Figure 1. Generally applicable and domain specific changes

of a particular domain specific change, which
may be seen as a kind of refinement (consider
D1 Code and D2 Code).

3. Catalog of Changes

To support the process of change selection,
the catalog of changes is needed in which the
generalization–specialization relationships be-
tween change types would be explicitly estab-
lished. The following list sums up these relation-
ships between change types we have identified in
the web application domain (the domain specific
change type is introduced first):
– One Way Integration: Performing Action Af-

ter Event,
– Two Way Integration: Performing Action Af-

ter Event,
– Adding Column to Grid: Performing Action

After Event,
– Removing Column from Grid: Method Sub-

stitution,
– Altering Column Presentation in Grid:

Method Substitution,
– Adding Fields to Form: Enumeration Modifi-

cation with Additional Return Value Check-
ing/Modification,

– Removing Fields from Form: Additional Re-
turn Value Checking/Modification,

– Introducing Additional Constraint on Fields:
Additional Parameter Checking or Perform-
ing Action After Event,

– Introducing User Rights Management: Bor-
der Control with Method Substitution,

– User Interface Restriction: Additional Re-
turn Value Checking/Modifications,

– Introducing Resource Backup: Class Ex-
change.
We have already described Introducing Re-

source Backup and the corresponding generally
applicable change, Class Exchange. Here, we will
briefly describe the rest of the domain specific
change types we identified in the web applica-
tion domain along with the corresponding gen-
erally applicable changes. The generally appli-
cable change types are described where they are
first mentioned to make sequential reading of
this section easier. In a real catalog of changes,
each change type would be described separately.

3.1. Integration Changes

Web applications often have to be integrated
with other systems. Suppose that in our ex-
ample the merchant wants to integrate the af-
filiate marketing software with the third party
newsletter which he uses. Every affiliate should
be a member of the newsletter. When an affili-
ate signs up to the affiliate marketing software,
he should be signed up to the newsletter, too.
Upon deleting his account, the affiliate should
be removed from the newsletter, too.

This is a typical example of the One Way
Integration change type [1]. Its essence is the
one way notification: the integrating application
notifies the integrated application of relevant
events. In our case, such events are the affiliate
sign-up and affiliate account deletion.

Such integration corresponds to the Per-
forming Action After Event change type [1].
Since events are actually represented by meth-
ods, the desired action can be implemented in
an after advice:

Aspect-Oriented Change Realizations and Their Interaction 47

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a):...;
after(/∗ captured arguments ∗/):

methodCalls(/∗ captured arguments ∗/)
{

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/)
{
/∗ action logic ∗/

}
}

The after advice executes after the captured
method calls. The actual action is implemented
as the performAction() method called by the ad-
vice.

To implement the one way integration, in the
after advice we will make a post to the newslet-
ter sign-up/sign-out script and pass it the e-mail
address and name of the newly signed-up or
deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate with
several systems.

The Two Way Integration change type can
be seen as a double One Way Integration. A typ-
ical example of such a change is data synchro-
nization (e.g., synchronization of user accounts)
across multiple systems. When a user changes
his profile in one of the systems, these changes
should be visible in all of them. In our exam-
ple, introducing a forum for affiliates with syn-
chronized user accounts for affiliate convenience
would represent a Two Way Integration.

3.2. Introducing User Rights
Management

In our affiliate marketing application, the mar-
keting is managed by several co-workers with
different roles. Therefore, its database has to
be updated from an administrator account with
limited permissions. A restricted administrator
should not be able to decline or delete affiliates,
nor modify the advertising campaigns and ban-
ners that have been integrated with the web sites
of affiliates. This is an instance of the Introduc-
ing User Rights Management change type.

Suppose all the methods for managing cam-
paigns and banners are located in the campaigns

and banners packages. The calls to these meth-
ods can be viewed as a region prohibited to
the restricted administrator. The Border Con-
trol design pattern [20] enables to partition an
application into a series of regions implemented
as pointcuts that can later be operated on by
advices [1]:
pointcut prohibitedRegion():
(within(application.Proxy)
&& call(void ∗. ∗ (..)))
|| (within(application.campaigns. +)
&& call(void ∗. ∗ (..)))
|| within(application.banners. +)
|| call(void Affiliate . decline (..))
|| call(void Affiliate . delete (..));

What we actually need is to substitute the
calls to the methods in the region with our own
code that will let the original methods execute
only if the current user has sufficient rights. This
can be achieved by applying the Method Substi-
tution change type which is based on an around
advice that enables to change or completely dis-
able the execution of methods. The following
pointcut captures all method calls of the method
called method() belonging to the TargetClass
class:
pointcut allmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) &&
target(t) && args(a);

Note that we capture method calls, not ex-
ecutions, which gives us the flexibility in con-
straining the method substitution logic by the
context of the method call. The call() pointcut
captures all the calls of TargetClass.method(),
the target() pointcut is used to capture the ref-
erence to the target object, and the method ar-
guments (if we need them) are captured by an
args() pointcut. In the example code, we assume
method() has one integer argument and capture
it with this pointcut.

The following example captures the
method() calls made within the control flow
of any of the CallingClass methods:
pointcut specificmethodCalls(TargetClass t, int a):

call(ReturnType TargetClass.method(a))
&& target(t) && args(a)
&& cflow(call(∗ CallingClass .∗(..)));

48 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

This embraces the calls made directly in these
methods, but also any of the method() calls
made further in the methods called directly or
indirectly by the CallingClass methods.

By making an around advice on the specified
method call capturing pointcut, we can create a
new logic of the method to be substituted:
public aspect MethodSubstition {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a):

methodCalls(t, a) {
if (. . .) {

. . . } // the new method logic
else

proceed(t, a);
}

}

3.3. User Interface Restriction

It is quite annoying when a user sees, but can’t
access some options due to user rights restric-
tions. This requires a User Interface Restriction
change type to be applied. We have created a
similar situation in our example by a previous
change implementation that introduced the re-
stricted administrator (see Sect. 3.2). Since the
restricted administrator can’t access advertising
campaigns and banners, he shouldn’t see them
in menu either.

Menu items are retrieved by a method and
all we have to do to remove the banners and
campaigns items is to modify the return value of
this method. This may be achieved by applying
a Additional Return Value Checking/Modifica-
tion change which checks or modifies a method
return value using an around advice:
public aspect AdditionalReturnValueProcessing {

pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around():

methodCalls(/∗ captured arguments ∗/) {
retValue = proceed(/∗ captured arguments ∗/);
processOutput(/∗ captured arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

In the around advice, we assign the original re-
turn value to the private attribute of the as-
pect. Afterwards, this value is processed by the
processOutput() method and the result is re-
turned by the around advice.

3.4. Grid Display Changes

It is often necessary to modify the way data
are displayed or inserted. In web applications,
data are often displayed in grids, and data in-
put is usually realized via forms. Grids usually
display the content of a database table or colla-
tion of data from multiple tables directly. Typi-
cal changes required on grid are adding columns,
removing them, and modifying their presenta-
tion. A grid that is going to be modified must be
implemented either as some kind of a reusable
component or generated by row and cell pro-
cessing methods. If the grid is hard coded for a
specific view, it is difficult or even impossible to
modify it using aspect-oriented techniques.

If the grid is implemented as a data driven
component, we just have to modify the data
passed to the grid. This corresponds to the Ad-
ditional Return Value Checking/Modification
change (see Sect. 3.3). If the grid is not a data
driven component, it has to be provided at least
with the methods for processing rows and cells.

Adding Column to Grid can be performed af-
ter an event of displaying the existing columns
of the grid which brings us to the Performing
Action After Event change type (see Sect. 3.1).
Note that the database has to reflect the change,
too. Removing Column from Grid requires a
conditional execution of the method that dis-
plays cells, which may be realized as a Method
Substitution change (see Sect. 3.2).

Alterations of a grid are often necessary due
to software localization. For example, in Japan
and Hungary, in contrast to most other coun-
tries, the surname is placed before the given
names. The Altering Column Presentation in
Grid change type requires preprocessing of all
the data to be displayed in a grid before actually
displaying them. This may be easily achieved by
modifying the way the grid cells are rendered,

Aspect-Oriented Change Realizations and Their Interaction 49

which may be implemented again as a Method
Substitution (see Sect. 3.2):
public aspect ChangeUserNameDisplay {

pointcut displayCellCalls(String name, String value):
call(void UserTable.displayCell (..)) ||

args(name, value);
around(String name, String value):

displayCellCalls (name, value) {
if (name ==

"<the name of the column to be modified>") {
. . . // display the modified column

} else {
proceed(name, value);

}
}

}

3.5. Input Form Changes

Similarly to tables, forms are often subject to
modifications. Users often want to add or re-
move fields from forms or pose additional con-
straints on their input fields. Note that to be
possible to modify forms using aspect-oriented
programming they may not be hard coded in
HTML, but generated by a method. Typically
they are generated from a list of fields imple-
mented by an enumeration.

Going back to our example, assume that the
merchant wants to know the genre of the music
which is promoted by his affiliates. We need to
add the genre field to the generic affiliate sign-up
form and his profile form to acquire the informa-
tion about the genre to be promoted at different
affiliate web sites. This is a change of the Adding
Fields to Form type. To display the required in-
formation, we need to modify the affiliate table
of the merchant panel to display genre in a new
column. This can be realized by applying the
Enumeration Modification change type to add
the genre field along with already mentioned Ad-
ditional Return Value Checking/Modification in
order to modify the list of fields being returned
(see Sect. 3.3).

The realization of the Enumeration Modifi-
cation change type depends on the enumeration
type implementation. Enumeration types are of-
ten represented as classes with a static field for
each enumeration value. A single enumeration
value type is represented as a class with a field

that holds the actual (usually integer) value and
its name. We add a new enumeration value by
introducing the corresponding static field:
public aspect NewEnumType {

public static EnumValueType
EnumType.NEWVALUE =

new EnumValueType(10, "<new value name>");
}

The fields in a form are generated according
to the enumeration values. The list of enumera-
tion values is typically accessible via a method
provided by it. This method has to be addressed
by an Additional Return Value Checking/Mod-
ification change.

For Removing Fields from Form, an Ad-
ditional Return Value Checking/Modification
change is sufficient. Actually, the enumeration
value would still be included in the enumeration,
but this would not affect the form generation.

If we want to introduce additional vali-
dations on form input fields in an applica-
tion without a built-in validation, which consti-
tutes an Introducing Additional Constraint on
Fields change, an Additional Parameter Check-
ing change can be applied to methods that pro-
cess values submitted by the form. This change
enables to introduce an additional validation or
constraint on method arguments. For this, we
have to specify a pointcut that will capture all
the calls of the affected methods along with their
context similarly as in Sect. 3.2. Their argu-
ments will be checked by the check() method
called from within an around advice which will
throw WrongParamsException if they are not
correct:
public aspect AdditionalParameterChecking {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws

WrongParamsException:
methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws

WrongParamsException {
if (arg1 != <desired value>)

throw new WrongParamsException();
}

}
Adding a new validator to an application

that already has a built-in validation is realized

50 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

by simply including it in the list of validators.
This can be done by implementing the Perform-
ing Action After Event change (see Sect. 3.1),
which would add the validator to the list of val-
idators after the list initialization.

4. Changing a Change

Sooner or later there will be a need for a change
whose realization will affect some of the already
applied changes. There are two possibilities to
deal with this situation: a new change can be im-
plemented separately using aspect-oriented pro-
gramming or the affected change source code
could be modified directly. Either way, the
changes remain separate from the rest of the ap-
plication.

The possibility to implement a change of
a change using aspect-oriented programming
and without modifying the original change is
given by the aspect-oriented programming lan-
guage capabilities. Consider, for example, ad-
vices in AspectJ. They are unnamed, so can’t
be referred to directly. The primitive pointcut
adviceexecution(), which captures execution
of all advices, can be restricted by the within()
pointcut to a given aspect, but if an aspect con-
tains several advices, advices have to be an-
notated and accessed by the @annotation()
pointcut, which was impossible in AspectJ ver-
sions that existed before Java was extended with
annotations.

An interesting consequence of aspect-oriented
change realization is the separation of cross-
cutting concerns in the application which im-
proves its modularity (and thus makes easier
further changes) and may be seen as a kind of
aspect-oriented refactoring. For example, in our
affiliate marketing application, the integration
with a newsletter — identified as a kind of One
Way Integration — actually was a separation
of integration connection, which may be seen
as a concern of its own. Even if these once
separated concerns are further maintained by
direct source code modification, the important
thing is that they remain separate from the
rest of the application. Implementing a change

of a change using aspect-oriented programming
and without modifying the original change is
interesting mainly if it leads to separation of
another crosscutting concern.

5. Capturing Change Interaction by
Feature Models

Some change realizations can interact: they may
be mutually dependent or some change realiza-
tions may depend on the parts of the underly-
ing system affected by other change realizations.
With increasing number of changes, change in-
teraction can easily escalate into a serious prob-
lem: serious as feature interaction.

Change realizations in the sense of the ap-
proach presented so far actually resemble fea-
tures as coherent pieces of functionality. More-
over, they are virtually pluggable and as such
represent variable features. This brings us to
feature modeling as an appropriate technique
for managing variability in software develop-
ment including variability among changes. This
section will show how to model aspect-oriented
changes using feature modeling.

5.1. Representing Change Realizations

There are several feature modeling nota-
tions [26] of which we will stick to a widely
accepted and simple Czarnecki–Eisenecker basic
notation [5]. Further in this section, we will show
how feature modeling can be used to manage
change interaction with elements of the notation
explained as needed.

Aspect-oriented change realizations can be
perceived as variable features that extend an
existing system. Fig. 2 shows the change re-
alizations from our affiliate marketing scenario
a feature diagram. A feature diagram is com-
monly represented as a tree whose root repre-
sents a concept being modeled. Our concept is
our affiliate marketing software. All the changes
are modeled as optional features (marked by an
empty circle ended edges) that can but do not
have to be included in a feature configuration —
known also as concept instance — for it to be

Aspect-Oriented Change Realizations and Their Interaction 51

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator Account

Hide Options Unavailable
to Restricted Administrator

Affiliate
Marketing

SMTP Server
Backup B

Figure 2. Affiliate marketing software change realizations in a feature diagram

valid. Recall adding a backup SMTP server dis-
cussed in Sect. 2.1. We considered a possibility
of having another realization of this change, but
we don’t want both realizations simultaneously.
In the feature diagram, this is expressed by alter-
native features (marked by an arc), so no Affili-
ate Marketing instance will contain both SMTP
Server Backup A and SMTP Server Backup B.

A change realization can be meaningful only
in the context of another change realization. In
other words, such a change realization requires
the other change realization. In our scenario,
hiding options unavailable to a restricted ad-
ministrator makes sense only if we introduced
a restricted administrator account (see Sect. 3.3
and 3.2). Thus, the Hide Options Unavailable
to Restricted Administrator feature is a subfea-
ture of the Restricted Administrator Account
feature. For a subfeature to be included in a
concept instance its parent feature must be in-
cluded, too.

5.2. Identifying Direct Change
Interactions

Direct change interactions can be identified in a
feature diagram with change realizations mod-
eled as features of the affected software con-
cept. Each dependency among features repre-
sents a potential change interaction. A direct
change interaction may occur among alterna-
tive features or a feature and its subfeatures:
such changes may affect the common join points.
In our affiliate marketing scenario, alternative
SMTP backup server change realizations are an
example of such changes. Determining whether
changes really interact requires analysis of de-

pendant feature semantics with respect to the
implementation of the software being changed.
This is beyond feature modeling capabilities.

Indirect feature dependencies may also rep-
resent potential change interactions. Additional
dependencies among changes can be discovered
by exploring the software to which the changes
are introduced. For this, it is necessary to have
a feature model of the software itself, which is
seldom the case. Constructing a complete fea-
ture model can be too costly with respect to ex-
pected benefits for change interaction identifica-
tion. However, only a part of the feature model
that actually contains edges that connect the
features under consideration is needed in order
to reveal indirect dependencies among them.

5.3. Partial Feature Model Construction

The process of constructing partial feature
model is based on the feature model in which
aspect-oriented change realizations are repre-
sented by variable features that extend an ex-
isting system represented as a concept (see
Sect. 5.1).

The concept node in this case is an abstract
representation of the underlying software sys-
tem. Potential dependencies of the change real-
izations are hidden inside of it. In order to reveal
them, we must factor out concrete features from
the concept. Starting at the features that rep-
resent change realizations (leaves) we proceed
bottom up trying to identify their parent fea-
tures until related changes are not grouped in
common subtrees. Figure 3 depicts this process.

The process will be demonstrated on Yon-
Ban, a student project management system de-

52 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

[Application
Concept]

[Feature A]

[Change 1]

[Feature D]

[Feature E]

[Feature B]

[Change 6][Feature C]

[Change 5][Change4]

[Change 3][Change 2]

Figure 3. Constructing a partial feature model

veloped at Slovak University of Technology. We
will consider the following changes in YonBan
and their respective realizations indicated by
generally applicable change types:
– Telephone Number Validating (realized as

Performing Action After Event): to validate
a telephone number the user has entered;

– Telephone Number Formatting (realized as
Additional Return Value Checking/Modifi-
cation): to format a telephone number by
adding country prefix;

– Project Registration Statistics (realized as
One Way Integration): to gain statistic in-
formation about the project registrations;

– Project Registration Constraint (realized as
Additional Parameter Checking/Modifica-
tion): to check whether the student who
wants to register a project has a valid e-mail
address in his profile;

– Exception Logging (realized as Performing
Action After Event): to log the exceptions
thrown during the program execution;

– Name Formatting (realized as Method Sub-
stitution): to change the way how student
names are formatted.
These change realizations are captured in the

initial feature diagram presented Fig. 4. Since
there was no relevant information about direct
dependencies among changes during their speci-
fication, there are no direct dependencies among

the features that represent them either. The con-
cept of the system as such is marked as open (in-
dicated by square brackets), which means that
new variable subfeatures are expected at it. This
is so because we show only a part of the analyzed
system knowing there are other features there.

Following this initial stage, we attempt to
identify parent features of the change realiza-
tion features as the features of the underly-
ing system that are affected by them. Fig-
ure 5 shows such changes identified in our case.
We found that Name Formatting affects the
Name Entering feature. Project Registration
Statistic and Project Registration Constraint
change User Registration. Telephone Number
Formatting and Telephone Number Validating
are changes of Telephone Number Entering. Ex-
ception Logging affects all the features in the
application, so it remains a direct feature of the
concept. All these newly identified features are
open because we are aware of the incompleteness
of their subfeature sets.

We continue this process until we are able to
identify parent features or until all the changes
are found in a common subtree of the feature
diagram, whichever comes first. In our example,
we reached this stage within the following —
and thus last — iteration which is presented in
Fig. 6: we realized that Telephone Number En-
tering is a part of User Registration.

Aspect-Oriented Change Realizations and Their Interaction 53

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

Figure 4. Initial stage of the YonBan partial feature model construction

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 5. Identifying parent features in YonBan partial feature model construction

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 6. The final YonBan partial feature model

5.4. Dependency Evaluation

Dependencies among change realization features
in a partial feature model constitute potential
change realization interactions. A careful analy-
sis of the feature model can reveal dependencies
we have overlooked during its construction.

Sibling features (direct subfeatures of the
same parent feature) are potentially interdepen-
dent. This problem can occur also among the
features that are — to say so — indirect siblings,

so we have to analyze these, too. Speaking in
terms of change implementation, the code that
implements the parent feature altered by one of
the sibling change features can be dependent on
the code altered by another sibling change fea-
ture or vice versa. The feature model points us
to the locations of potential interaction.

In our example, we have a partial feature
model (recall Fig. 6) and we understand the
way the changes should be implemented based
on their type (see Sect. 5.3). Project Registra-

54 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

tion Constraint and Project Registration Statis-
tic change are both direct subfeatures of User
Registration. The two aspects that would im-
plement these changes would advise the same
project registration method, and this indeed
can lead to interaction. In such cases, prece-
dence of aspects should be set (in AspectJ,
dominates inter-type declaration enables this).
Another possible problem in this particular situ-
ation is that the Project Registration Constraint
change can disable the execution of the project
registration method. If the Project Registra-
tion Statistic change would use an execution()
pointcut, everything would be all right. On the
other hand, if the Project Registration Statistic
change would use a call() pointcut, the regis-
tration statistic advice would be still executed
even when the registration method would not
be executed. This would cause an undesirable
system behavior where also registrations can-
celed by Project Registration Constraint would
be counted in statistic. The probability of a mis-
take when a call() pointcut is used instead of
the execution() pointcut is higher if the Project
Registration Statistic change would be added
first.

Telephone Number Formatting and Tele-
phone Number Validating are another exam-
ple of direct subfeatures. In this case, the as-
pects that would implement these changes ap-
ply to different join points, so apparently, no
interaction should occur. However, a detailed
look uncovers that Telephone Number Format-
ting change alters the value which the Telephone
Number Validating change has to validate. This
introduces a kind of logical dependency and to
this point the two changes interact. For instance,
altering Telephone Number Formatting to for-
mat the number in a different way may require
adapting Telephone Number Validating.

We saw that the dependencies between
changes could be as complex as feature depen-
dencies in feature modeling and accordingly rep-
resented by feature diagrams. For dependencies
appearing among features without a common
parent, additional constraints expressed as log-
ical expressions [27] could be used. These con-
straints can be partly embedded into feature di-

agrams by allowing them to be directed acyclic
graphs instead of just trees [10].

Some dependencies between changes may ex-
hibit only recommending character, i.e. whether
they are expected to be included or not included
together, but their application remains mean-
ingful either way. An example of this are fea-
tures that belong to the same change request.
Again, feature modeling can be used to model
such dependencies with so-called default depen-
dency rules that may also be represented by log-
ical expressions [27].

6. Evaluation and Tool Support
Outlooks

We have successfully applied the aspect-oriented
approach to change realization to introduce
changes into YonBan, the student project man-
agement system discussed in previous section.
YonBan is based on J2EE, Spring, Hibernate,
and Acegi frameworks. The YonBan architecture
is based on the Inversion of Control principle
and Model-View-Controller pattern.

We implemented all the changes listed in
Sect. 5.3. No original code of the system had to
be modified. Except in the case of project reg-
istration statistics and project registration con-
straint, which where well separated from the rest
of the code, other changes would require exten-
sive code modifications if they have had been
implemented the conventional way.

As we discussed in Sect 5.4, we encountered
one change interaction: between the telephone
number formatting and validating. These two
changes are interrelated — they would probably
be part of one change request — so it comes as
no surprise they affect the same method. How-
ever, no intervention was needed in the actual
implementation.

We managed to implement the changes easily
even without a dedicated tool, but to cope with
a large number of changes, such a tool may be-
come crucial. Even general aspect-oriented pro-
gramming support tools — usually integrated
with development environments — may be of
some help in this. AJDT (AspectJ Development

Aspect-Oriented Change Realizations and Their Interaction 55

Tools) for Eclipse is a prominent example of such
a tool. AJDT shows whether a particular code
is affected by advices, the list of join points af-
fected by each advice, and the order of advice
execution, which all are important to track when
multiple changes affect the same code. Advices
that do not affect any join point are reported
in compilation warnings, which may help detect
pointcuts invalidated by direct modifications of
the application base code such as identifier name
changes or changes in method arguments.

A dedicated tool could provide a much more
sophisticated support. A change implementation
can consist of several aspects, classes, and in-
terfaces, commonly denoted as types. The tool
should keep a track of all the parts of a change.
Some types may be shared among changes, so
the tool should enable simple inclusion and ex-
clusion of changes. This is related to change in-
teraction, which can be addressed by feature
modeling as we described in the previous sec-
tion.

7. Related Work

The work presented in this paper is based
on our initial efforts related to aspect-oriented
change control [8] in which we related our ap-
proach to change-based approaches in version
control. We concluded that the problem with
change-based approaches that could be solved
by aspect-oriented programming is the lack of
programming language awareness in change re-
alizations.

In our work on the evolution of web applica-
tions based on aspect-oriented design patterns
and pattern-like forms [1], we reported the fun-
damentals of aspect-oriented change realizations
based on the two level model of domain specific
and generally applicable change types, as well as
four particular change types: Class Exchange,
Performing Action After Event, and One/Two
Way Integration.

Applying feature modeling to maintain
change dependencies (see Sect. 4) is similar to
constraints and preferences proposed in SIO
software configuration management system [4].

However, a version model for aspect dependency
management [23] with appropriate aspect model
that enables to control aspect recursion and
stratification [2] would be needed as well.

We tend to regard changes as concerns,
which is similar to the approach of facilitating
configurability by separation of concerns in the
source code [9]. This approach actually enables a
kind of aspect-oriented programming on top of a
versioning system. Parts of the code that belong
to one concern need to be marked manually in
the code. This enables to easily plug in or out
concerns. However, the major drawback, besides
having to manually mark the parts of concerns,
is that — unlike in aspect-oriented programming
— concerns remain tangled in code.

Others have explored several issues gener-
ally related to our work, but none of these
works aims at actual capturing changes by as-
pects. These issues include database schema evo-
lution with aspects [12] or aspect-oriented ex-
tensions of business processes and web services
with crosscutting concerns of reliability, secu-
rity, and transactions [3]. Also, an increased
changeability of components implemented using
aspect-oriented programming [17], [18], [22] and
aspect-oriented programming with the frame
technology [19], as well as enhanced reusabil-
ity and evolvability of design patterns achieved
by using generic aspect-oriented languages to
implement them [24] have been reported. The
impact of changes implemented by aspects has
been studied using slicing in concern graphs [15].

While we do see potential of aspect-orien-
tation for configuration and reconfiguration of
applications, our current work does not aim at
automatic adaptation in application evolution,
such as event triggered evolutionary actions [21],
evolution based on active rules [6], adaptation
of languages instead of software systems [16],
or as an alternative to version model based
context-awareness [7], [13].

8. Conclusions and Further Work

In this paper, we have described our approach
to change realization using aspect-oriented pro-

56 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

gramming and proposed a feature modeling
based approach of dealing with change interac-
tion. We deal with changes at two levels dis-
tinguishing between domain specific and gen-
erally applicable change types. We described
change types specific to web application domain
along with corresponding generally applicable
changes. We also discussed consequences of hav-
ing to implement a change of a change.

The approach does not require exclusive-
ness in its application: a part of the changes
can be realized in a traditional way. In fact,
the approach is not appropriate for realization
of all changes, and some of them can’t be re-
alized by it at all. This is due to a techni-
cal limitation given by the capabilities of the
underlying aspect-oriented language or frame-
work. Although some work towards addressing
method-level constructs such as loops has been
reported [14], this is still uncommon practice.
What is more important is that relying on the
inner details of methods could easily compro-
mise the portability of changes across the ver-
sions since the stability of method bodies be-
tween versions is questionable.

Change interaction can, of course, be an-
alyzed in code, but it would be very benefi-
cial to deal with it already during modeling.
We showed that feature modeling can success-
fully be applied whereby change realizations
would be modeled as variable features of the
application concept. Based on such a model,
change dependencies could be tracked through
feature dependencies. In the absence of a fea-
ture model of the application under change,
which is often the case, a partial feature model
can be developed at far less cost to serve the
same purpose.

For further evaluation, it would be interest-
ing to develop catalogs of domain specific change
types of other domains like service-oriented ar-
chitecture for which we have a suitable applica-
tion developed in Java available [25]. Although
the evaluation of the approach has shown the
approach can be applied even without a dedi-
cated tool support, we believe that tool support
is important in dealing with change interaction,
especially if their number is high.

By applying the multi-paradigm design with
feature modeling [27] to select the generally ap-
plicable changes (understood as paradigms) ap-
propriate to given application specific changes
we may avoid the need for catalogs of domain
specific change types or we can even use it to
develop them. This constitutes the main course
of our further research.

Acknowledgements The work was sup-
ported by the Scientific Grant Agency of Slovak
Republic (VEGA) grant No. VG 1/0508/09.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolu-
tion of web applications with aspect-oriented
design patterns. In M. Brambilla and
E. Mendes, editors, Proc. of ICWE 2007 Work-
shops, 2nd International Workshop on Adap-
tation and Evolution in Web Systems Engi-
neering, AEWSE 2007, in conjunction with 7th
International Conference on Web Engineering,
ICWE 2007, pages 80–86, Como, Italy, July
2007.

[2] E. Bodden, F. Forster, and F. Steimann. Avoid-
ing infinite recursion with stratified aspects. In
R. Hirschfeld et al., editors, Proc. of NODe
2006, LNI P-88, pages 49–64, Erfurt, Germany,
Sept. 2006. GI.

[3] A. Charfi, B. Schmeling, A. Heizenreder, and
M. Mezini. Reliable, secure, and transacted
web service compositions with AO4BPEL. In
4th IEEE European Conf. on Web Services
(ECOWS 2006), pages 23–34, Zürich, Switzer-
land, Dec. 2006. IEEE Computer Society.

[4] R. Conradi and B. Westfechtel. Version models
for software configuration management. ACM
Computing Surveys, 30(2):232–282, June 1998.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programing: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[6] F. Daniel, M. Matera, and G. Pozzi. Combin-
ing conceptual modeling and active rules for the
design of adaptive web applications. In Work-
shop Proc. of 6th Int. Conf. on Web Engineering
(ICWE 2006), New York, NY, USA, 2006. ACM
Press.

[7] F. Dantas, T. Batista, N. Cacho, and A. Gar-
cia. Towards aspect-oriented programming for
context-aware systems: A comparative study. In
Proc. of 1st International Workshop on Soft-
ware Engineering for Pervasive Computing Ap-

Aspect-Oriented Change Realizations and Their Interaction 57

plications, Systems, and Environments, SEP-
CASE’07, Minneapolis, USA, May 2007. IEEE.

[8] P. Dolog, V. Vranić, and M. Bieliková. Rep-
resenting change by aspect. ACM SIGPLAN
Notices, 36(12):77–83, Dec. 2001.

[9] Z. Fazekas. Facilitating configurability by sepa-
ration of concerns in the source code. Journal of
Computing and Information Technology (CIT),
13(3):195–210, Sept. 2005.

[10] R. Filkorn and P. Návrat. An approach for
integrating analysis patterns and feature dia-
grams into model driven architecture. In P. Voj-
táš, M. Bieliková, and B. Charron-Bost, edi-
tors, Proc. 31st Conference on Current Trends
in Theory and Practice of Informatics (SOF-
SEM 2005), LNCS 3381, Liptovský Jan, Slo-
vakia, Jan. 2005. Springer.

[11] S. Goldschmidt, S. Junghagen, and U. Harris.
Strategic Affiliate Marketing. Edward Elgar
Publishing, 2003.

[12] R. Green and A. Rashid. An aspect-oriented
framework for schema evolution in
object-oriented databases. In Proc. of the
Workshop on Aspects, Components and
Patterns for Infrastructure Software (in
conjunction with AOSD 2002), Enschede,
Netherlands, Apr. 2002.

[13] M. Grossniklaus and M. C. Norrie. An
object-oriented version model for context-aware
data management. In M. Weske, M.-S. Hacid,
and C. Godart, editors, Proc. of 8th Interna-
tional Conference on Web Information Systems
Engineering, WISE 2007, LNCS 4831, Nancy,
France, Dec. 2007. Springer.

[14] B. Harbulot and J. R. Gurd. A join point for
loops in AspectJ. In Proc. of 5th International
Conference on Aspect-Oriented Software Devel-
opment, AOSD 2006, pages 63–74, Bonn, Ger-
many, 2006. ACM.

[15] S. Khan and A. Rashid. Analysing require-
ments dependencies and change impact using
concern slicing. In Proc. of Aspects, Depen-
dencies, and Interactions Workshop (affiliated
to ECOOP 2008), Nantes, France, July 2006.

[16] J. Kollár, J. Porubän, P. Václavík,
J. Bandáková, and M. Forgáč. Functional
approach to the adaptation of languages
instead of software systems. Computer Science
and Information Systems Journal (ComSIS),
4(2), Dec. 2007.

[17] A. A. Kvale, J. Li, and R. Conradi. A case
study on building COTS-based system us-
ing aspect-oriented programming. In 2005
ACM Symposium on Applied Computing, pages

1491–1497, Santa Fe, New Mexico, USA, 2005.
ACM.

[18] J. Li, A. A. Kvale, and R. Conradi. A case study
on improving changeability of COTS-based sys-
tem using aspect-oriented programming. Jour-
nal of Information Science and Engineering,
22(2):375–390, Mar. 2006.

[19] N. Loughran, A. Rashid, W. Zhang, and
S. Jarzabek. Supporting product line evolu-
tion with framed aspects. In Workshop on As-
pects, Componentsand Patterns for Infrastruc-
ture Software (held with AOSD 2004, Interna-
tional Conference on Aspect-Oriented Software
Development), Lancaster, UK, Mar. 2004.

[20] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[21] F. Molina-Ortiz, N. Medina-Medina, and

L. García-Cabrera. An author tool based on
SEM-HP for the creation and evolution of adap-
tive hypermedia systems. In Workshop Proc.
of 6th Int. Conf. on Web Engineering (ICWE
2006), New York, NY, USA, 2006. ACM Press.

[22] O. Papapetrou and G. A. Papadopoulos.
Aspect-oriented programming for a component
based real life application: A case study. In 2004
ACM Symposium on Applied Computing, pages
1554–1558, Nicosia, Cyprus, 2004. ACM.

[23] E. Pulvermüller, A. Speck, and J. O. Coplien.
A version model for aspect dependency man-
agement. In Proc. of 3rd Int. Conf. on Gener-
ative and Component-Based Software Engineer-
ing (GCSE 2001), LNCS 2186, pages 70–79, Er-
furt, Germany, Sept. 2001. Springer.

[24] T. Rho and G. Kniesel. Independent evolu-
tion of design patterns and application logic with
generic aspects — a case study. Technical Re-
port IAI-TR-2006-4, University of Bonn, Bonn,
Germany, Apr. 2006.

[25] V. Rozinajová, M. Braun, P. Návrat, and
M. Bieliková. Bridging the gap between
service-oriented and object-oriented approach in
information systems development. In D. Avi-
son, G. M. Kasper, B. Pernici, I. Ramos,
and D. Roode, editors, Proc. of IFIP 20th
World Computer Congress, TC 8, Information
Systems, Milano, Italy, Sept. 2008. Springer
Boston.

[26] V. Vranić. Reconciling feature model-
ing: A feature modeling metamodel. In
M. Weske and P. Liggsmeyer, editors, Proc.
of 5th Annual International Conference on
Object-Oriented and Internet-Based Technolo-
gies, Concepts, and Applications for a Net-
worked World (Net.ObjectDays 2004), LNCS

58 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

3263, pages 122–137, Erfurt, Germany, Sept.
2004. Springer.

[27] V. Vranić. Multi-paradigm design with feature
modeling. Computer Science and Information
Systems Journal (ComSIS), 2(1):79–102, June
2005.

[28] V. Vranić, M. Bebjak, R. Menkyna, and
P. Dolog. Developing applications with as-

pect-oriented change realization. In Proc. of
3rd IFIP TC2 Central and East European Con-
ference on Software Engineering Techniques
CEE-SET 2008, LNCS, Brno, Czech Republic,
2008.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Two Hemisphere Model Driven Approach for
Generation of UML Class Diagram

in the Context of MDA

Oksana Nikiforova∗
∗Faculty of Computer Science and Information Technology, Riga Technical University

oksana.nikiforova@rtu.lv

Abstract
The Model Driven Architecture (MDA) separates the system business aspects from the system
implementation aspects on a specific technology platform. MDA proposes a software development
process in which the key notions are models and model transformation, where the input models
are platform independent and the output models are platform specific and can be transformed
into a format that is executable. In this paper principles of MDA and model transformations are
applied for generation of UML class diagram from two hemisphere model, which is presented in the
form of business process model related with concept model. Two hemisphere model is developed
for the problem domain concerned with an application for driving school and UML class diagram
is generated using the approach offered in the paper.

1. Introduction

One of the modern research goals in software
engineering is to find a software development
process, which would provide fast and quali-
tative software development. Most of currently
proposed methodologies and approaches try to
make the development process easier and still
more qualitative. For achievement of this goal
the role of explicit models becomes more and
more important. Lately, the most popular ap-
proach is Model Driven Architecture [18]. MDA
is the central component in the OMG’s strat-
egy for maximizing return on investment, reduc-
ing development complexity and future-proofing
against technological change [29]. MDA tools
do not support the complete code-generation
capabilities from the initial business infor-
mation, and the most problematic stage is
system modelling based on knowledge about
problem domain [22].

The main idea of MDA is to achieve for-
mal system representation at the highest level

of abstraction. Nowadays MDA tools support
translation of platform independent system pre-
sentation into software components and code
generation and researchers try to “raise” it as
high as possible to fulfill the main statement
of the MDA [13]. One of the most important
and problematic stages in MDA realization is
derivation of PIM elements from a problem do-
main and PIM construction in the form that
is suitable for the PSM. It is necessary to find
the way to develop PIM using formal represen-
tation, so far keeping the level of abstraction
high enough. PIM model should represent sys-
tem static and dynamic aspects. Class diagram
shows static structure of the developed system.
But UML is a modelling language and does not
have all the possibilities to specify context and
the way of modelling, which is always required
to be defined in a methodology. Therefore, the
construction of class diagram has to be based
on well defined rules for its elements generation
from the problem domain model presented in the
suitable form.

60 Oksana Nikiforova

Class diagram discussed in the paper con-
tains classes, relations among them, attributes
and operations of classes. Dynamic aspects,
which are another meaningful component of sys-
tem presentation at the platform independent
level is not the object of the current research.
To obtain the class diagram the initial busi-
ness knowledge represented with two hemisphere
model may be used. The transformation of this
model into class diagram is discussed in the pa-
per. The transformation should be defined in
formal way and should be acceptable for use in
transformation tool. The structure of a transfor-
mation tool is discussed in [13] with definition of
models, necessary for transformation and transi-
tion between these models. Transformation tools
take a source model as an input, and create
another model, called target model, as an out-
put [13]. Therefore, implementation of transfor-
mation needs well-defined set of notational ele-
ments of source and target models and definition
for transformation of elements of one model into
elements of another one. The paper describes
class diagram development based on two hemi-
sphere model. Therefore, according to Kleppe’s
definition source model is defined in terms of two
hemisphere model (business process and concept
model) and target model is defined in terms of
UML class diagram [28]. The structure of the
paper is as follows. The next section presents
main principles of model driven architecture, de-
fines models to be developed within it, describes
transformations to be formalized to be able to
develop the tool for support of that transforma-
tions. Section 3 presents an information about
using of two hemisphere model to fulfil the main
statement of MDA corresponds to formal trans-
formations between models. An essence of two
hemisphere model is shown in several aspects
of its historical evolution and refinement and
transformations of two hemisphere model into
elements of class diagram are described accord-
ing to the present state of author’s investiga-
tions. The transformations presented in the pa-
per are verified in section 4, where the approach
offered in the paper is applied for several prob-
lem domains. Due to limitations on volume of
the paper the section shows only general results

on these applications. Section 5 concludes on the
research presented in the paper and gives several
remarks on author’s future work in the area of
model transformations.

2. Main Principles of Model Driven
Architecture

MDA introduces an approach to system specifi-
cation that separates the views on three different
layers of abstraction: high level specification of
how system is working (Computation Indepen-
dent Model or CIM), the specification of system
functionality, i.e. of what the system is expected
to do (Platform Independent Model or PIM) and
the specification of the implementation of that
functionality on a specific technology platform
(Platform Specific Model or PSM). In OMG
Model Driven Architecture these models are pri-
mary artefacts in software developments process
and all the activities are concentrated on going
from CIM to PIM, from PIM to PSM and from
PSM to code. The very important role there is
played by the quality of PIM, i.e. its capability
to adequately represent system under develop-
ment [18].

2.1. Models within the MDA

CIM presents the requirements for the system
to be modelled in a platform independent model,
describing the situation in which the system will
be used. Such a model is sometimes called a do-
main model or a business model. It may hide
much or all information about the use of au-
tomated data processing systems. A CIM is a
model of a system that shows the system in
the environment in which it will operate, and
thus it helps in presenting exactly what the sys-
tem is expected to do. It is useful, not only as
an aid to understanding a problem, but also
as a source of a shared vocabulary for use in
other models [18]. PIM is describing that part
of information system specification, which is
close to code, but is independent of platform
specific features. PIM is representing informa-
tion system in that way that will remain un-

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 61

changed on any programming platform. Never-
theless PIM usually is accommodated to spe-
cific architecture style [18]. Platform Indepen-
dent Model is the model that resolves busi-
ness requirements through purely problem-space
terms and it does not include platform specific
concepts. The PIM provides formal specifica-
tion of the structure and functionality of the
system that abstracts away technical details.
There has to be rules for PIM checking if it
defines all problem domain concepts in the cor-
rect way [18]. Platform Specific Model is a so-
lution model that resolves both functional and
non-functional requirements through the use of
platform specific concepts. The platform def-
inition can include wide range of conceptions
in the context of MDA. It can be operation
system, programming language, any technolog-
ical platform, such as CORBA, Java 2 Enter-
prise Edition, also any specific vendor platform
(for example, Microsoft .NET) [18]. Platform
can imply any of engineering and technologi-
cal characteristics, which are not important for
program unit fundamental business functional-
ity [18].

2.2. Model Transformations
within the MDA

Generally, system model refinement and evolu-
tion in the framework of MDA is presented in
Figure 1.

CIM presents specification of the system at
problem domain level and can be transformed
into initial elements of PIM. PIM provides for-
mal specification of the system structure and
functions that abstracts from technical details,
and thus presents solution aspects of the sys-
tem to be developed. Development of the solu-
tion domain model is based on derivation of all
the necessary elements from problem domain de-
scription (Transformation 1 in Fig. 1). The PIM
received as a result of Transformation 1 has to
be refined (Transformation 2 in Fig. 1) to get
a form suitable for PSM generation, i.e. PIM-
refined enables model transformation (Transfor-
mation 3 in Fig. 1) to the platform level, named
Software Domain in Figure 1.

An MDA idea is promising – raising up the
level of abstraction, on which systems are devel-
oped, we could develop more complex systems
more qualitatively. Core of solution domain de-
velopment strategies focuses on the transforma-
tion of system model from the aspects of busi-
ness level into the application level (Transfor-
mation 2 in Fig. 1). The main idea of MDA is to
achieve formal system representation at the as
high level of abstraction as possible. Nowadays
MDA tools support translation of solution el-
ements into software components (Transforma-
tion 3 in Fig. 1) and code generation (Trans-
formation 4 in Fig. 1), and researchers try to
“raise” it up as high as possible to fulfil the main
statement of the MDA [18].

Transformations 1 and Transformation 2 are
defined within different solutions [33], [36], [16],
[30], [12], but there is no any solution, where
complete transformation CIM → PIMinitial →
PIMrefined would be defined [22].

One of the most important and problematic
stages in MDA realization is derivation of PIM
elements from a problem domain, and PIM con-
struction in the form that is suitable for the
PSM. Solutions that are focused on Transfor-
mation 1 can’t insure that a PIM contains all
the necessary information, and that the presen-
tation of the PIM is formal enough to be able
to transform it into the correct PSM, that is to
support already the Transformation 3 [22]. It is
necessary to find the way to develop PIM using
formal representation, so far keeping the level
of abstraction high enough, i.e. to implement
Transformation 2 in formal way. The central ele-
ment of PIM is the presentation of system struc-
ture, which would be independent from further
implementation and usually is presented in the
form of class diagram in UML notation [28], as
well as adequate presentation of system dynam-
ics. Different modelling tools are used for that.
The paper discusses the class diagram develop-
ment aspects, which satisfies the main statement
of MDA and are based on transformation from
two hemisphere model into elements of class di-
agram defined in UML.

Currently, transformations between UML
models are still a subject of intensive investiga-

62 Oksana Nikiforova

Definition of MDA principles in terms of 2HMD

approach for software architecture development

Process model and conceptual model of

problem domain

Selected processes and their

information flow structure

Derivation of automated processes from process

model and definition of structure of their information

flow based on concepts in conceptual model

Application of 2HMD transformation algorithm

for defined processes and concepts

Elements of class diagram generated based on

application of 2HMD transformation algorithm

Problem

domain

Software

domain

CIM

PSM

Transformation 1: Derivation of solution

elements at business level from problem

domain

Transformation 3: Transformation of solution

elements at application level into software

elements at platform level

Presentation of problem domain elements

suitable for further transformation

Presentation (and required transformations)

of solution elements at application level

Presentation (and required transformations)

of software elements at platform level

Definition of MDA principles in terms of MDA

Solution

domain

PIM initial

Transformation 2: Transformation of solution

elements at business level into solution elements

at application level

Presentation (and required transformations)

of solution elements at business level

PIM refined

Business

level

Application

level

Platform

level

Implementation

level

Presentation (and required transformations)

of software components

Transformation 4: Transformation of software

elements at platform level

into software elements at implementation level

Code

Specification

level

Figure 1. General structure of model transformation in the framework of MDA

tion. Principles of simple language for transfor-
mations are presented in [13]. Several propos-
als [6] are made in response to OMG request
for proposals to MOF Query/View/Transforma-
tion [6]. The great attention is devoted to UML
class diagram development, because class dia-
gram in UML-based CASE systems serves as
a main source of knowledge for development of
software system: database specification, graphi-
cal user interface, application code, etc. [35].

Class diagram is the most often used
model for visual representation of static as-
pects of classes [35]. Class diagrams in
object-oriented software development are typ-
ically used: as domain models to explore do-
main concepts; as conceptual/analysis mod-
els to analyse requirements; as systems de-
sign models to depict detailed design of
object-oriented software [1]. But UML is
a modelling language and does not have
all the possibilities to specify context and
the way of modelling, which is required al-
ways to be defined in a methodology. There
fore the construction of class diagram has
to be based on well defined rules for its

elements generation from the problem do-
main model presented in the form suitable
for that.

2.3. Structure of a Tool for Model
Transformation

The MDA process shows the role that the var-
ious models, PIM, PSM, and code play within
the MDA framework. A transformation tool
takes a PIM and transforms it into a PSM.
A second (or the same) transformation tool
transforms the PSM to code. These transforma-
tions are essential in the MDA development pro-
cess. The transformation tool takes one model
as input and produces a second model as its
output. There is a distinction between the trans-
formation itself, which is the process of gener-
ating a new model from another model, and the
transformation definition. The transformation
tool uses the same transformation definition
for each transformation of any input model.
A transformation is defined in [13] as the auto-
matic generation of a target model from a source
model, according to a transformation definition.

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 63

Target modelSource model

Process Model Concept Model Class

Diagram

Transformation

definition

Transformation

tool
Two-hemisphere model

Figure 2. Schema of model transformation tool

And a transformation definition is defined in [13]
as a set of transformation rules that together de-
scribe how a model in the source language can be
transformed into a model in the target language.

The recent tendency of automation of infor-
mation handling process is essential in industry
of information technology [9]. It gives a possi-
bility to spare human and time resources. The
implementation of tool, which automates trans-
formation into class diagram, gives a possibility
to receive static structure of the system with-
out spending of a lot of time on design. For
any transformation the initial data and needed
result should be defined before. A transforma-
tion tool or approach takes a model on input, so
called source model, and creates another model,
so called target model, on output, see Fig. 2 [13].
The two hemisphere model has been marked
as input with mapping rules, the class diagram
and transformation trace has been received on
output. Transformation trace shows the plan
how an element of the two hemisphere model
is transformed into the corresponding element
of the class diagram, and which parts of the
mapping are used for transformation of every
part of the two hemisphere model [18]. Figure 2
shows how a transformation tool takes input –
the two hemisphere model and receives output
– the class diagram. Therefore implementation
of model transformation (in our case transfor-
mation from two hemisphere model into class
diagram) needs well-defined set of notational el-
ements of source model, well-defined set of no-
tational elements of target model and definition
for transformation of elements of one model into
elements of another one.

According to key notes of the paper the lan-
guage for description of source model is defined
as a notation for construction of two hemisphere
model [21] and the language for description of

target model is defined as a notation for con-
struction of UML class diagram (see Fig. 2).

3. Models and Model Transformations
in terms of Two Hemisphere Model

According to [32] the significant aspect of real
world behaviour seen from the process point of
view, where process is understood as the col-
lection of actions, chronologically ordered and
influencing objects and is more then “just an
amorphous heap of the action”. Similarly to the
structural modelling of the real world [32]. Two
hemisphere model corresponds to both funda-
mental things – functional aspects of the sys-
tem defined in terms of business processes and
the structural ones defined in terms of concept
model. The details in the right column of the
table in Figure 1 correspond to the two hemi-
sphere approach, which addresses the construc-
tion of information about problem domain by
use of two interrelated models at problem do-
main level, namely, the process model and the
conceptual model. The conceptual model is used
in parallel with process model to cross-examine
software developers understanding of procedural
and semantic aspects of problem domain.

3.1. Essence of Two Hemisphere Model

Two hemisphere model driven approach [21] pro-
poses using of business process modelling and
concept modelling to represent systems in the
platform independent manner and describes how
to transform business process models into UML
models. For the first time the strategy was pro-
posed in [20], where the general framework for
object-oriented software development had been
presented and the idea about usage of two in-
terrelated models for software system develop-

64 Oksana Nikiforova

ment has been stated and discussed. The strat-
egy supports gradual model transformation from
problem domain models into program compo-
nents, where problem domain models reflect two
fundamental things: system functioning (pro-
cesses) and structure (concepts and their rela-
tions). The title of the proposed strategy [21]
is derived from cognitive psychology [2]. Hu-
man brain consists of two hemispheres: one is
responsible for logic and another one for con-
cepts. Harmonic interrelated functioning of both
hemispheres is a precondition of an adequate
human behaviour. A metaphor of two hemi-
spheres may be applied to software develop-
ment process because this process is based on
investigation of two fundamental things: busi-
ness and application domain logic (processes)
and business and application domain concepts
and relations between them. Two hemisphere
approach proposes to start process of software
development based on two hemisphere problem
domain model, where one model reflects func-
tional (procedural) aspects of the business and
software system, and another model reflects cor-
responding concept structures. The co-existence
and inter-relatedness of these models enables use
of knowledge transfer from one model to an-
other, as well as utilization of particular knowl-
edge completeness and consistency checks [21].
Figure 3 shows the essence of two hemisphere
model for an example of an application for driv-
ing school.

A notation of the business process model,
which reflects functional perspectives of the
problem and application domains, is optional,
however, it must reflect the following compo-
nents of business processes: processes; perform-
ers; information flows; and information (data)
stores [21]. For current research is used busi-
ness process model constructed with GRAPES
[11] notation. Current functional requirements
always are present in the business process model
that helps to maintain their consistency. As a re-
sult sophisticated models are used without dis-
turbing software developers’ and business ex-
perts’ natural ways of thinking [21]. Some recent
surveys show that about 80 percent of compa-
nies are engaged in business process improve-

ment and redesign [10]. This implies that many
companies are common with business process
modelling techniques [10] or at least they employ
particular business process description frame-
works [31]. On the other hand practice of soft-
ware development shows that functional require-
ments can be derived from problem domain task
descriptions even about 7 times faster than if
trying to elicit them directly from users [17].
Both facts mentioned above and existence of
many commercial business modelling tools are a
strong motivation to base software development
on the business process model rather than on
any other soft or hard models [21]. The concept
model (graph G2 in Fig. 3) is used in parallel
with business process model to cross-examine
software developers understanding of problem
and platform independent models. According to
Larman [16] real-world classes with attributes
relevant to the problem domain and their rela-
tionships are presented in concepts model. It is a
variation of well known entity relationship (ER)
diagram notation [4] and consists of concepts
(i.e. entities or objects) and their attributes. Ap-
plication of two hemisphere model for generation
of class diagram gives a possibility to avoid rela-
tions between classes in concept model at busi-
ness level (of problem domain). Due to transfor-
mation of process model into elements of object
communication expressed in terms of UML com-
munication diagram it becomes possible to de-
fine the relations between classes already accord-
ing system realization at software level (of imple-
mentation domain). Therefore relations between
concepts are not shown in concept model in
Fig. 3). The notational conventions of the busi-
ness process diagram gives a possibility to ad-
dress concepts in concept model to information
flows (e.g. events) in process model (see Fig. 3).
All elements of the two-hemisphere model stated
as source model in Figure 2 are as follows:
– Business process diagram/ Process – busi-

ness process usually means a chain of tasks
that produce a result which is valuable to
some hypothetical customer. A business pro-
cess is a gradually refined description of a
business activity (task). Task is an atomic
business process unit, which actually de-

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 65

form group

(director)

blanks of available groups

look for appropriate group

add applicant to group

apply for learning

(applicant)

applicant data

appropriate groupapplicant data

group blank with applicant data

assign start date of learning

assign teacher for group assign instructor for applicant

group blank

with applicant data

group blank with applicant data

and teacher

group blank

with applicant data
teacher data

form list of instructors

(director)

form list of teachers

(director)

instructor data

driving card

prepare group register

assign learning dates

group register for submission

driving card

with learning dates

learn driving

(pupil)

learn theory

(pupil)

group register

with learning dates

Applicant data Group blank

Teacher data Instructor data

Group register

pupil

examination data

teacher

group data

learning dates

Driving card

pupil

examination data

instructor

learning dates

name

load

car

name

ID

address

time

address

name

load

Business process model Concept model

Figure 3. Example of two hemisphere model (application for driving school)

scribes some step or function and is done by
a Performer [11].

– Business process diagram/Performer – per-
former is an attribute of a task of business
process and serve as a resources required to
perform the activities [11].

– Business process diagram/Event – events are
an input/output object (or more precisely –
the arrival of an input object and departure
of an output object) of certain business pro-
cess. These objects can be material things or
just information [11].

– Concept model/Concept – conceptual classes
that are software (analysis) class candidates
in essence. A conceptual class is an idea,
thing, or object. A conceptual class may be
considered in terms of its symbols – words
or images, intensions – definitions, and ex-
tensions – the set of examples [16].

– Concept model/Concept/Attribute – an at-
tribute is a logical data value of an object [16].

The investigation of two hemisphere model
driven approach under the MDA framework in
[25] shows that approach could be applied for
generation of several elements of class diagram.
This paper shows the strategy of two hemisphere
model application for generation of UML class
diagram in a more precise way. The elements
of the class diagram stated as target model in
Figure 2 are as follows (only the main elements
of the class diagram are listed here):
– Class diagram/Class – a class is the descrip-

tor for a set of objects with similar structure,
behaviour, and relationships [28].

– Class diagram/Actor – an actor specifies a
role played by a user or any other system
that interacts with the subject [28].

– Class diagram/Class/Attribute – an at-
tribute is a logical data value of an ob-
ject [28].

– Class diagram/Class/Operation – an opera-
tion is a specification of a transformation or

66 Oksana Nikiforova

G1

G3

Process Model Concept Model

G2

Intermediate model

G4

G5

Communication diagram

Class Diagram

Figure 4. Transformations from two hemisphere model into class diagram
under two hemisphere model driven approach

query that an object may be called to exe-
cute [28].

– Class diagram/Relationship – a relationship
between instances of the two classes. There
is an association between two classes if an
instance of one class must know about the
other in order to perform its work [28].

It is necessary to find the way how source model
elements can be transformed into target model
elements according to the definition of transfor-
mations in the framework of MDA.

3.2. Description of Transformations
between Models within Two
Hemisphere Model Driven Approach

The two hemisphere model driven approach
[20], [21], [27] proposes to apply transformations
from business process model into scenarios for
object interactions by using so called intermedi-
ate model, which is received in a direct trans-
formation way from process model. Appropriate
interacting objects are extracted from concept
model. Class diagram is based on concept model
and is formed according to information about
object interaction. All defined transformations
from two hemisphere model into elements of
class diagram are shown in Figure 4. The schema
presents the way how elements of business pro-
cess model (graph G1 in Fig. 4) and concept

model (graph G2 in Fig. 4) are transformed into
elements of class diagram (graph G5 in Fig. 4),
using intermediate model (graph G3 in Fig. 4)
and UML communication diagram (graph G4 in
Fig. 4) [25].

Analysis of two hemisphere model proposed
in [22] and application of two hemisphere model
for knowledge architecture development in the
task of study program development presented
in [22] makes to think that notational conven-
tions of UML communication diagram is more
suitable for definitions of formal transformations
of two hemisphere model into object interac-
tion and then into class diagram, than using of
UML sequence diagram. Although the aspect of
time sequence, which is a component of UML se-
quence diagram and is not shown in communica-
tion diagram, is missed in this case. And author
of the paper now is investigating the possibility
to save time aspect in transition from two hemi-
sphere model into class diagram through the de-
fined transformations [26].

Intermediate model (graph G3 in Fig. 4 and
Fig. 5) is used to simplify the transition between
business process model and model of object in-
teraction, which is presented in the form of UML
communication diagram (graph G4 in Fig. 4 and
Fig. 5).

Intermediate model is a graph generated
from business process models using methods of

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 67

event1Perform action 1 /

Performer 1
Perform action 2 Perform action 3

Perform action 5 /

Performer 5

Perform action 4 /

Performer 4

event3

event2

event4

Process model

G1

Perform

action1
Perform
action2

Perform

action4

Perform
action2

Perform
action3

Perform

action5

Intermediate model

Performer 1=

Actor1

Performer 4=

Actor4
Performer 5=

Actor5

event1

event3 event4

event2

G3

Figure 5. Transformations from business process model into intermediate model

DataTypeA

(AKA ConceptA)

attribute a1

attribute a2

DataTypeB

(AKA ConceptB)

attribute b1

attribute b2

Concept model

G2

Perform

action1
Perform

action2

Perform
action4

Perform

action2
Perform

action3

Perform

action5

Intermediate model

Performer 1=

Actor1

Performer 4=

Actor4
Performer 5=

Actor5

event1

event3 event4

event2

G3

Communication diagram

Actor1

Actor4 Actor5

Event1:ClassA

Event3:ClassB Event4:ClassB

Event2:ClassA

perform

action1()

perform action2() perform

action3()

perform

action2()

message

{perform action4}

message

{perform action5}

G4

Figure 6. Transformations from intermediate model and concept model
into object communication diagram

direct graph transformations based on principles
of graph theory [8]. The nodes of the graph G1
in Figure 5 are transformed into the arcs of the
graph G3 of Figure 5, and the arcs of the graph
G1 in Figure 5 are transformed into the nodes
of the graph G3 of Figure 5 [25].

In a case of abstract names of arcs andnodes of
graphs in Figure 5 business process “perform ac-
tion 1” is transformed into an arc “perform action
1” of intermediatemodel (graphG3onFig. 5) and
events are transformed into nodes of intermediate
model. Constructed intermediatemodel serves as
a base for communication model. The communi-
cation diagram is represented as a graph G4 in
Figure 4 and Figure 6.

The next transformation defines the method
“perform action 1()” in communication diagram
(graph G4 on Fig. 6) from the same arc of inter-

mediate model, where the class-receiver of this
method is defined as ClassA, because ConceptA
defines a data type for event1 in concept model.
Therefore if each process is examined as a mes-
sage, and each data flow as an object, a draft
communication diagram could be received by
replacing all events of intermediate model with
concerned class exemplars and the actions of in-
termediate model with messages or operations.

The last transformation of this business pro-
cess defines the responsible class of this method
in class diagram (graph G5 in Fig. 4 and Fig. 7)
based on information that the type of the event
“event 1” is defined by class in. The element “per-
former 1” is transformed as a node of interme-
diate model, and as “actor 1” of communication
model. This element is defined as “actor 1” in
class diagram. Data types for elements “event 1”

68 Oksana Nikiforova

ClassA ClassB

attribute a1

attribute a2
attribute b1

attribute b2

perform action2()

perform action3()
Class

diagram

Actor1

Actor4

Actor5

G5

perform action1()

perform action2()

DataTypeA

(AKA ConceptA)

attribute a1

attribute a2

DataTypeB

(AKA ConceptB)

attribute b1

attribute b2

Concept model

G2

Communication diagram

Actor1

Actor4 Actor5

Event1:ClassA

Event3:ClassB Event4:ClassB

Event2:ClassA

perform

action1()

perform action2() perform

action3()

perform

action2()

message

{perform action4}

message

{perform action5}

G4

Figure 7. Transformations from intermediate model and object communication diagram into class diagram

G1

G3

Process Model Concept Model

G2

Intermediate model

G4

G5

driving card

group blank

with applicant data

Communication diagram

Class Diagram

assign instructor for applicant

group blank

with applicant data

driving card

Group blank

time

address

Driving card

pupil

examination data

instructor

learning dates

assign instructor for applicant

: Driving_card

: Group_blank

assign_instructor_for_applicant ()

Group_blank

time

address

Driving_card

pupil

instructor

learning_dates

examination_data

assign_instructor_for_applicant ()

Figure 8. An example of transformation of process and concept elements into class elements

and “event 3” is defined as “DataType A” or
“Concept A” of concept model.

These transformations are based on the hy-
pothesis that elements of the class diagram
(graph G5 in Fig. 7) can be received from the
two hemisphere model by applying defined tech-
niques of graph transformation [8]. The next step
of transition is a class diagram. Here all messages
of object communication (graph G4 in Fig. 7) are
encapsulated as operations of classes using main
principles of class diagram development based

on information of object communication and all
events and concepts defined as objects in graph
G4 are defined as classes in class diagram (graph
G5 in Fig. 7). Class diagram presents the set of
attributes based on attributes defined in concept
model.

In a very simple example, transformation de-
scribed above looks like it is shown in Figure 8,
where transformation of fragment of two hemi-
sphere model for driving school into a fragment
of the exact class is represented.

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 69

There is one process “assign instructor to ap-
plicant”, which has an input event “group blank
with applicant data”, where concept “Group
blank” with its attributes defines data type for
the event, and an output event “driving card”,
where concept “Driving card” with its attributes
defines data type for the event. These interre-
lated elements define a two hemisphere model,
which serve as a base for transformation into
intermediate model, with the same names of el-
ements, but different position – arcs of process
model are transformed into nodes of interme-
diate model, and nodes of business process are
transformed into the arcs of intermediate model.
Intermediate model allows to define communi-
cation diagram, where initial process “assign in-
structor to applicant” is defined as a method.
And object-sender and object-receiver are de-
fined in accordance with discussion above. Based
on a communication of objects defined, it is pos-
sible to construct class diagram according to
rules of object-oriented system modelling [20].

Experiments with different combinations of
of incoming and outgoing arcs in the model of
business process and a variety of different data
types defined in a concept model, where the data
type can be the same for incoming and outgoing
events or different, give a possibility to define
different types of relationships between classes.
The results of full investigations of all the possi-
ble combinations of two hemispheremodel, which
gives a possibility to define relationships between
classes, are shown in [24]. The paper has a discus-
sion of a possibility to share class responsibilities
and to encapsulate class attributes and methods
according defined transformations from arcs and
nodes of two hemisphere model. The paper of-
fers the description of tool for the usage of two
hemisphere model for class diagram generation
based on the defined transformations.

4. Verification of Transformation
within Two Hemisphere Model
Driven Approach

When the structures of input and output data
are known, it is possible to automate a pro-

cess of input data transformation into output
data.Class diagram generation should consist of
four steps according to the application of two
hemisphere model (see Fig. 9):
1. construction of two hemisphere model;
2. generation of model elements and their in-

terrelations in some structured form;
3. application of the transformation rules de-

fined (processing algorithm);
4. definition of class specification in well struc-

tured form suitable for class diagram con-
struction (for example, XML format).
One of the tools for business process mod-

elling, which gives a possibility to construct two
interrelated models (business process and the
concept ones), is GRADE [7]. Indeed, GRADE
generates text descriptions of model with per-
manent structure, therefore it is chosen as a tool
for development of two hemisphere model and
further generation of textual files. It defines all
the elements of themodel and their relations from
one into another. Generated text files serves as
an input information into the tool developed and
described in [27] in order to support the pro-
cessing algorithm and XML file, which contains
structure of the class diagram required. XML
format of class specification gives a possibility
to receive visual representation of class diagram
in any tool, which supports import from XML
for class diagram development. An ability to de-
velop an automated tool for generation of class
structure in XML format demonstrated in [27]
proves, that transformations discussed in the pa-
per are enough formal for programming. The tool
is applied for generation of class diagram from
two hemisphere model developed for problem do-
main of pupil application for learning in a driving
school shown in Figure 3. Classes, attributes, op-
erations and relations among classes, which could
be determined from the business process diagram
and the data structure, were defined applying
discussed transformations from business process
and conceptmodel to class diagram. Figure 9 rep-
resents the structure of class diagram obtained.

One of the limitations of the approach is an
impossibility to define the full specification of
methods with its arguments. This could be one
of the potential directions for future investiga-

70 Oksana Nikiforova

Applicant data

name

ID

address

Group blank

time

address

Teacher data

Instructor data

Group register

pupil

teacher

group data

learning dates

examination data

Driving card

pupil

instructor

learning dates

examination data

name

load

name

load

car

apply_for_learning()

add_applicant_to_group()

form_group()

look_for_appropriate_group()

add_applicant_to_group()

assign_start_date_of_learning()

assign_teacher_for_group()

form_list_of_teachers()

form_list_of_instructors()

assign_instructor_for_applicant()

assign_learning_dates()

prepare_group_register()

assign_learning_dates()Applicant

Director

Figure 9. Initial structure of class diagram defined based on transformations from two hemisphere model

tion of application of two hemisphere model for
generation of class diagram elements. In order to
verify the transformations offered in the paper,
the transformations defined for two hemisphere
model driven approach in addition to an exam-
ple of driving school are applied in some more
examples: (1) problem area of hotel room reserva-
tion, where initial business process model is con-
structed in GRAPES notation [11] with CASE
tool GRADE [7], the two hemisphere model is
developed by authors and results of these exper-
iments are shown in [23]; this case approve the
possibility to define class diagram by applica-
tion of the transformations offered in the paper;
(2) problem area of insurance system, where ini-
tial model is constructed in GRAPES notation
with CASE tool GRADE [7], the two hemisphere
model is constructed by developers of GRADE
tool as demo example and results of these ex-
periments are shown in [25]; this case approve
an independence of the transformations offered
in the paper from the constructor of two hemi-
sphere model. The problem area of hotel room
reservation also is approbated by construction of
initial business process model in IDEF0 [14] no-
tation with CASE tool BPWin. Unfortunately, it
does not provide construction of concept or object
model. Therefore attributes of classes, received
for hotel room reservation system with initial in-
formation in IDEF0 notation are missing in the
class diagram. Even in this case automation of
distributing methods among classes is important
contribution within software development. Ex-

periments on applying discussed transformations
from two hemisphere model into class diagram
in different problem domain prove that transfor-
mations are independent from problem domain.
Experiments on applying transformation from
two hemisphere model, constructed in various
CASE tools and notations, prove that transfor-
mations from two hemisphere model into class
diagram are independent from used notation of
business process modelling, as well as CASE tool,
used for initial model creation.

5. Conclusion

The Model Driven Architecture is the central
component in the OMG’s strategy for maximis-
ing return on investment, reducing development
complexity and future-proofing against tech-
nological change [29]. But still the “complete
code-generation capabilities” are no supported
in MDA tools and the more problematic stage is
exactly platform independent system modelling
based onknowledge about problemdomain. Since
beginning of eighties a numerous accounts of
model generated software systems have been of-
fered to attack problems regarding software pro-
ductivity and quality [3]. CASE tools developed
up that time were oversold on their “complete
code-generation capabilities” [15]. Nowadays,
similar arguments are exposed toObjectManage-
ment Group (OMG) Model Driven Architecture
(MDA) [34], using and integrating Unified Mod-

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 71

elling Language (UML) models [28] at different
levels of abstraction. Manipulation with models
enables software development automation within
CASE tools supported by MDA [5], [13], [19].
The paper discusses abilities on usage of prob-
lem domain knowledge presentation in terms of
two hemisphere model, which contains two in-
terrelated models of system aspects – process
and concept presentation. The proposed trans-
formations are applied to two hemisphere model
of application for driving school and classes with
attributes and different kinds of relationships are
identified based on elements of process and con-
cept models. The ability to define all the types
of transformations in a formal way gives a pos-
sibility to automate the process of class diagram
development from correct and precise two hemi-
sphere model. On one hand, it enables knowl-
edge representation in a form understandable for
both business users and systemanalyst,moreover
cover complete and consistent presentation of dif-
ferent system aspects. And on the another hand,
it supports the formal transformations of model
elements into elements of UML class diagram,
which often is a starting point during software
development by using nowadays CASE tools, es-
pecially in the ones following an idea of MDA.
The central hypothesis of this research is that it
is possible to apply the graph theory technique for
model transformation in the framework of MDA,
where the source model is defined in terms of a
business process model, associated with a con-
cept model, and the target model is defined in
terms of a class diagram. Analysis of the system
models presented as a set of graphs developed on
the basis of the initial two hemisphere model en-
ables derivation of the class diagram, which is the
central component of PIM and is sufficiently de-
tailed in order for the PSM to be generated. Two
hemisphere model gives a possibility to define
classes with attributes and operations they have
to perform, as well as different types of relations
can be defined between classes, based on analysis
of different combinations of type definition for
incoming and outgoing flows of processes of two
hemisphere model. At the moment authors try to
investigate the possibility of exact definitions of
method’s arguments based on information in two

hemisphere model and to investigate abilities of
usage of two hemisphere model for dynamic com-
ponent of platform independent model expressed
in terms of object interaction and state transi-
tion. A deeper analysis of notational conventions
of nowadays available notations for business pro-
cess modelling is required and could be stated as
one of further researches directions.

Acknowledgements The research reflected
in the paper is supported by the research grant
No. FLPP-2009/10 of Riga Technical University
“Development of Conceptual Model for Tran-
sition from Traditional Software Development
into MDA-Oriented.” And partially the research
reflected in the paper is supported by Grant of
Latvian Council of Science No. 09.1245 “Meth-
ods, models and tools for developing and gover-
nance of agile information systems”.

References

[1] S. Ambler. The Elements of UML Style. Cam-
bridge University Press, 2003.

[2] J. Anderson. Cognitive Psychology and Its Im-
plications. W.H. Freeman and Company, New
York, 1995.

[3] R. Balzer. A 15 year perspective on automatic
programming. IEEE Transactions on Software
Engineering, 11(11):1257–1268, 1985.

[4] P. Chen. The entity relationship model – to-
wards a unified view of data. ACM Transactions
on Database Systems, 1(1):9–36, 1976.

[5] D. Frankel. Model Driven Architecture: Apply-
ing MDA to Enterprise Computing. Woley Pub-
lishing, Inc., Indianapolis, Indiana, 2003.

[6] T. Gardner and C. A. Griffin. Review of OMG
MOF 2.0 Query/Views/Transformations Sub-
missions and Recommendations Towards the Fi-
nal Standards. Object Management Group.
OMG documents ad/03-08-02, available at http:
//www.omg.org.

[7] GRADE Development Group. GRADE tools.
[8] J. Gross and J. Yellen. Graph Theory and Its

Applications. Discrete Mathematics and Its Ap-
plications. Chapman and Hall/CRC, 2nd edi-
tion, 2006.

[9] M. Guttman and J. Parodi. Real-Life MDA:
Solving Business Problems with Model Driven
Architecture. San Francisco, CA: Morgan Kauf-
mann Publishers, 2007.

72 Oksana Nikiforova

[10] P. Harmon. Business process management.
In Lecture Notes in Computer Science, volume
5240/2008. Springer Berlin/Heidelberg, 2008.

[11] INFOLOGISTIK GmbH. GRADE Business
Modeling, Language Guide, 1998.

[12] I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
Addison-Wesley, 2002.

[13] A. Kleppe, J. Warmer, and W. Bast. MDA Ex-
plained: The Model Driven Architecture – Prac-
tise and Promise. Addison Wesley, 2003.

[14] Knowledge Based Systems Inc. IDEF Inte-
grated Definition Methods. Available at http:
//www.idef.com/.

[15] J. Krogstie. Integrating enterprise and is de-
velopment using a model driven approach. In
Proceedings of 13th International Conference on
Information Systems Development-Advances in
Theory, Practice and Education, pages 43–53.
Springer Science+Business media, New York,
2005.

[16] C. Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design. Prentice Hall, New Jersey, 2000.

[17] S. Lausen. Task descriptions as func-
tional requirements. IEEE Software, 20:58–65,
March/April 2003.

[18] MDA Guide Version 1.0.1, June 2003. Available
at http://www.omg.org/docs/omg/03-06-01.
pdf.

[19] S. Mellor and M. Balcer. Executable UML.
A Foundation for Model-Driven Architecture.
Addison-Wesley, Boston, 2002.

[20] O. Nikiforova. General framework for object-ori-
ented software development process. Scien-
tific Proceedings of Riga Technical University,
13:132–144, 2002.

[21] O. Nikiforova and M. Kirikova. Two-hemisphere
driven approach: Engineering based software de-
velopment. Advanced Information Systems En-
gineering, pages 219–233, June 2004.

[22] O. Nikiforova, M. Kirikova, and N. Pavlova.
Principles of model driven architecture in
knowledge modeling for the task of study pro-
gram evaluation. Databases and Information
Systems IV, pages 291–304, 2007.

[23] O. Nikiforova and N. Pavlova. Development
of the tool for generation of uml class dia-
gram from two-hemisphere model. Proceed-
ings of The third International Conference on
Software Engineering Advances, International
Workshop on Enterprise Information Systems,
pages 105–112, October 2008.

[24] O. Nikiforova and N. Pavlova. Foundations
on generation of relationships between classes

based on initial business knowledge. Proceeding
of the 17th International Conference on Infor-
mation Systems Development, Information Sys-
tems Development: Towards a Service Provision
Society, August 2008. In press.

[25] O. Nikiforova and N. Pavlova. Open work
of two-hemisphere model transformation defini-
tion into uml class diagram in the context of
mda. Preprint of the Proceedings of the 3rd
IFIP TC 2 Central and East Europe Conference
on Software Engineering Techniques, CEE-SET
2008, pages 133–146, October 2008.

[26] O. Nikiforova and N. Pavlova. Modeling of
object interaction with two-hemisphere model
driven approach. 2009. Submitted to the
13th East-European Conference on Advances in
Databases and Information Systems.

[27] O. Nikiforova, N. Pavlova, and J. Grigorjevs.
Several facilities of class diagram generation
from two-hemisphere model in the framework
of MDA. Proceedings of 23rd IEEE Interna-
tional Symposium on Computer and Informa-
tion Sciences, pages 1–6, 2008. Available at
http://ieeexplore.ieee.org/.

[28] Object Management Group. Unified Model-
ing Language Specification. Available at http:
//www.omg.org.

[29] T. Pokorny. The Model Driven Architecture: No
Easy Answers, 2005.

[30] T. Quatrany. Visual Modeling with Rational
Rose 2000 and UML. Addison-Wesley, second
edition, 2000.

[31] C. Raistrick, P. Francis, J. Wright, C. Carter,
and I. Wilkie. Model Driven Architecture with
Executable UML. Cambridge University Press,
2004.

[32] V. Repa. Modelling business processes in public
administration. Advances in Information Sys-
tems Development. Bridging the Gap between
Academia and Industry, 1:107–118, 2006.

[33] J. Rumbaugh. Omt: The developing process.
Object Oriented Programming, (8):14–18, 1995.

[34] J. Siegel. Developing in OMG’s Model-
Driven Architecture, 2001. OMG document
omg/01-12-01. Available at http://www.omg.
org/mda/papers.htm.

[35] T. Skersys and S. Gudas. Class model devel-
opment using business rules. Advances in In-
formation Systems Development. Bridging the
Gap between Academia and Industry, 1:203–216,
2006.

[36] D. Tkach, W. Fang, and A. So. Visual mod-
eling technique: object technology using visual
programming. Addison Wesley, 1996.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Automated Code Generation from System
Requirements in Natural Language

Jan Franců∗, Petr Hnětynka∗
∗Faculty of Mathematics and Physics, Department of Software Engineering, Charles University in Prague

jfrancu@gmail.com, hnetynka@dsrg.mff.cuni.cz

Abstract
An initial stage of a software development is specification of the system requirements. Typically,
these requirements are expressed in UML and consist of use cases and domain model. A use case is
a sequence of tasks, which have to be performed to achieve a specific goal. The tasks of the use case
are written in a natural language. The domain model describes objects used in the use cases. In this
paper, we present an approach that allows automated generation of executable code directly from
the use cases written in a natural language. Usage of the generation significantly accelerates the
system development, e.g. it makes immediate verification of requirements completeness possible
and the generated code can be used as a starting point for the final implementation. A prototype
implementation of the approach is also described in the paper.

1. Introduction

Development of software is covered by several
stages from which one of the most important
is the initial stage – collecting system require-
ments. These requirements can be captured in
many forms, however, use of the Unified Mod-
eling Language (UML) has become an industry
standard at least for large and medium-size en-
terprise applications. Development with UML
[8] is based on modeling the developed system at
multiple levels of abstraction. Such a separation
helps developers to reflect specific aspects of the
designed system on different levels and therefore
to get a “whole picture” of the system.

Development with the UML starts with def-
inition of goals of the system. Then, main char-
acteristics of the system requirements are iden-
tified and described. A behaviour of the devel-
oped system is specified as a set of use cases.
A use case is a description of a single task per-
formed in the designed system [3]. The task itself
is further divided into a sequence of steps that
are performed by communicating entities. These

entities are either parts of the system or users
of the system. A step of a use case is specified
by natural language sentences. The use cases of
the system are completed by a domain model
that describes entities, which together form the
designed system and which are referred to in the
use cases.

Bringing a system from the design stage to
the market is a very time-consuming and also
money-consuming task. A possibility to gener-
ate an implementation draft directly from the
system requirements would be very helpful for
both requirement engineers and developers and
it would significantly speed up development of
the system and decrease time required to de-
liver the system to the market and also decrease
amount of money spent. The system use cases
contain work-flow information and together with
the domain model capture all important infor-
mation and therefore seem to be sufficient for
such a generation. But the problem is that the
use cases are written in a natural language and
there is a gap to overcome to generate the sys-
tem code.

74 Jan Franců, Petr Hnětynka

1.1. Goals of the paper

In this paper, we describe an approach, which al-
lows to generate an implementation of a system
from the use cases written in a natural language.
The process proposed in the paper enables soft-
ware developers to take an advantage of the
carefully written system requirements in order
to accelerate the development and to provide
immediate feedback for the project’s require-
ment engineers by highlighting missing parts
of the system requirements. The process fits in
the incremental development process where in
each iteration developers can eliminate short-
comings in design. In addition, the process can
be customized to fit in any enterprise application
project.

Described approach is implemented in a
proof-of-the-concept tool and tested on a case
study.

To achieve the goals, the paper is structured
as follows. Section 2 provides an overview of the
UML models and technologies required for use
case analysis. Section 3 shows how our genera-
tion tool is employed in the application develop-
ment process. Section 4 describes the tool and
all generation steps in detail while Section 5
presents particular examples of the generated
code. Section 6 evaluates our approach and the
paper is concluded in Section 7, where future
plans are also shown.

2. Specification of Requirements

The Unified Modeling Language (UML) is a
standardized specification language for the soft-
ware development. Development with UML is
based on modeling a system at multiple lev-
els of abstraction in separated models. Each
model represented as a set of documents clar-
ifies the abstraction on a particular level and
captures different aspects of the modeled sys-
tem. The UML-based methodologies standard-
ize whole development process and ensure that
the designed system will meet all the require-
ments. UML also increases possibilities to reuse
existing models and simplifies reuse of code.

The developers can use several existing model-
ing tools/frameworks (e.g. [10]) to support this
process.

In this paper, we work with the UML doc-
uments created during the initial stage of the
system development, i.e. with the requirement
specification. Results of the stage are captured
in use cases and domain model.

2.1. Use Cases

A use case in the context of UML is a description
of a process where a set of entities cooperates
together to achieve a goal of the use case. The
entities in the use case can refer to the whole sys-
tem, parts of the system, or users. Each use case
has a single entity called system under discus-
sion (SuD); from the perspective of this entity,
the whole use case is written. An entity primar-
ily communicating with SuD is called a primary
actor (PA). Other entities involved in the use
case are called supporting actors (SA).

Each use case is a textual document writ-
ten in a natural language. The book [3] recom-
mends the following structure of the use case: (1)
header, (2) main scenario, (3) extensions, and
(4) sub-variations.

The header contains the name of the use
case, SuD entity, primary actor and support-
ing actors. The main scenario (also called the
success scenario) defines a list of steps (also
called actions) written as sentences in a natu-
ral language that are performed to achieve the
goal of the use case. An action can be extended
with a branch action, which reflects possible
diversions from the main scenario. There are
two types of the branch actions: extensions and
sub-variations. In an extension, actions are per-
formed in addition to the extended action, while
in a sub-variation, actions are performed instead
of the extended action. The first sub-action of a
branch action is called a conditional label and
describes necessary condition under which the
branch action is performed.

The above described structure is not the only
possible one – designers can use any structure
they like. In our approach, we assume the use
cases satisfy these recommendation as it allows

Automated Code Generation from System Requirements in Natural Language 75

Figure 1. The Marketplace project entities

UseCase: Buyer buys a selected item
SuD: Clerk
PA: Buyer
Supporting actor: Computer System

Main success scenario specification:
1 Buyer submits to the clerk a reference to a selected offer.
2 Clerk submits the reference to the system.
3 Clerk reports the system response to the seller and requests billing

and shipping information, payment method and payment details.
4 Buyer submits to the clerk the requested billing and shipping information,

payment method and payment details.
5 Clerk enters the billing and shipping information, payment method

and payment details.
6 Clerk reports the system response (with the unique acknowledgment)

to the buyer.

Extensions:
3a System failed to validate the offer.
3a1 Use case abort.

Figure 2. Use case example

us to process the use case automatically and
generate the system implementation. Such an
assumption does not limit the whole approach
in a significant way, hence the book [3] is widely
considered as a “bible” for writing the use cases
(in addition, we already have an approach for
using use cases in fact with any structure – see
Sect. 7).

In the rest of the paper we use as an exam-
ple a Marketplace project for on-line selling and
buying. A global view of the application entities
is depicted on Figure 1. There are several actors,
which communicate with the system. Sellers en-
ter offers to the system and Buyers search for
interesting offers. Both of them mainly commu-
nicate directly with the Computer system – in
few cases, they have to communicate through a
Clerk who passes information to the Computer
system. There is also a Supervisor which main-

tains the Computer system. A Credit verification
agency verifies Seller’s and Buyer’s operations
and finally a Trade commission confirms the of-
fers.

The use case on Figure 2 is a part of the
Marketplace specification (the whole specifica-
tion has 19 use cases) and it describes commu-
nication between the Buyer (as PA), Clerk (as
SuD), and Computer system. It is prepared ac-
cording to the recommendations.

2.2. Domain Model

A domain model describes entities appearing
in the designed system. Typically, the domain
model is captured as a UML class diagram and
consists of three types of elements: (1) concep-
tual classes, (2) attributes of conceptual classes,
and (3) associations among conceptual classes.

76 Jan Franců, Petr Hnětynka

Conceptual classes represent objects used in
the system use cases. The attributes are fea-
tures of the represented objects and associations
describe relations among the classes. Figure 3
shows the Marketplace domain model.

As described in [8], noun phrases appearing
in the use cases can be used for determining class
names during creation of the domain model (in
further detail, such a relation between the class
diagrams and use cases is investigated in [1]).

Figure 3. Marketplace domain model

2.3. Procasor Tool and Procases

The Procasor [6] is a tool for automated trans-
formation of natural language (English) use
cases into a formal behaviour specification. The
transformations are described in [9] and further
extended in [4] where almost all restrictions of a
use case step syntax were removed.

As a formalism into which the natural lan-
guage use cases are transformed the Procasor
uses procases [9] that are a special form of be-
haviour protocols [14]. In addition to procases, a
UML state machine diagram is also generated.

A procase is a regular expression-like specifi-
cation, which can describe behaviour of a single
entity as well as of the whole system [13]. The
procases generate so called traces that represent
all possible valid sequences of actions described
by the use cases. Figure 7 shows a procase de-
rived from the use case shown in Figure 2.

A procase is composed of operators (i.e.+, ;),
procedure calls ({,}), action tokens, and support-
ing symbols (i.e. round parenthesis for specifying
operators’ precedence). Each action token rep-

resents a single action that has to be performed
and its notation is composed of several parts.
First, there is a single character representing a
type of the action. The possible types are ? resp.
! for request receiving resp. sending action, #
for internal actions (unobservable by others than
SuD) and % for special actions. The action type
is followed by the entity name onwhich the action
is performed. Finally, the name of the action itself
is the last part (separated by a dot). In a case,
there is no entity name, the action is internal. For
example, ?B.submitSelectOffer is the submitSe-
lectOffer action where SuD waits for a request
from the B (Buyer) entity.

The procases use the same set of operation
as regular expressions. These are: * for itera-
tion, ; for sequencing, and + for alternatives.
In this paper, we call the alternative operator
as a branch action, its operands (actions) as
branches, and the iteration operator with its
operand as a loop action.

A special action is NULL which means no
activity and is used in places with no activity
but the procase syntax requires an action spec-
ified there (e.g. with the alternative operator).
Another special action is the first action inside
a non-main scenario branch, which is alled con-
dition branch label and expresses the condition
under which the branch is triggered. Finally,
the %ABORT special action represents a failure
ending of the procase.

Procedure calls (written as a sequence of ac-
tions in curly brackets) represent a behaviour
(mostly composed of inner actions) of the re-
quest receive action after which they are placed
(the action is called trigger action).

2.4. Goals Revisited

As described in the sections above, the Proca-
sor tool parses the use cases written in a natural
language and generates a formal specification of
behaviour of the designed system. A straightfor-
ward idea is then why to stop just with the gen-
erated behaviour description and not to gener-
ate also an implementation of the system which
implements the work-flow captured in the use
cases.

Automated Code Generation from System Requirements in Natural Language 77

Figure 4. Development process overview

The goal of this paper is to present an ex-
tension of the Procasor tool that based on the
use cases generates executable implementation
of the designed system.

3. Generating Process

The development process with our generating
tool is as follows. First, requirement engineers
collect all requirements and describe them in the
form of use cases. Then the Procasor tool au-
tomatically generates procases. In parallel, the
requirement engineers create a project domain
model. As a next step of validating the use cases,
the generated procases can be reviewed. Then,
our generator is employed and produces an imple-
mentation of the developed system. The gener-
ated implementation consists of threemain parts:
(i) use case objects where work-flow captured in
a use case is generated, (ii) pages which are used
to communicate with users of the system, and
(iii) entity objects where the business logic is
kept.

The generated implementation is only an ini-
tial draft and serves primarily for testing the
use cases and domain model. But it can be also
used as a skeleton for the actual implementation
and/or to allow customers to gain first impres-
sions of the application. The whole development
process is illustrated in Figure 4.

At this point a common mistake has to be
emphasized (which is also emphasized in [8]).

The system requirements cannot be understood
as final and unchangeable. Especially in incre-
mental development, the requirements are cre-
ated in several iterations and obviously the first
versions are incomplete. Therefore if the gen-
erator is used on such input, it can generate a
completely wrong implementation. But this im-
plementation can be used to validate the use
cases, repair them and regenerate the implemen-
tation.

4. Generating Tool in Detail

The generator of the implementation takes as
an input the procases generated by the Procasor
and the created domain model of the designed
system. From these inputs, it generates the ex-
ecutable implementation.

The generation is automated and it consists
of three steps:
1. First, procases generated from the Procasor

are rearranged into a form, in which they
still follow the procases syntax but are more
suitable for generating the implementation
(Sect. 4.1).

2. Then, a relation between words used in the
use cases and elements in the domain model
is obtained and parameters (i.e. their num-
bers and types) of the methods are identified
(Sect. 4.2).

3. Finally, the implementation of the designed
system is generated (Sect. 4.3).

78 Jan Franců, Petr Hnětynka

4.1. Procase Preprocessing

The procases produced by the Procasor do not
contain procedure calls brackets (see 2.3), which
are crucial for successful transformation of the
procases into the code. Except several marginal
cases, eachuse case is a request-response sequence
between SuD and PA (for enterprise applica-
tions). In the procase, a single request-response
element is represented as a sequence of actions
from which the first one is the request receive
action (i.e. starts with ?) and then followed by
zero or more other actions (i.e. sending request
action, internal actions, etc.). In otherwords, SuD
receives the request action, then performs a list of
other actions, and finally returns the result (i.e.
end of the initial request receive action). Hence,
the sequence of actions after the request receive
action can bemodeled as a procedure content and
enclosed in the procedure call brackets.

The following example is a simple procase in
a form produced by the Procasor:

?PA.a; #b; !SA.c; ?PA.d; #e; #f
After identifying the procedure calls, the

procase is modified into the following form:
?PA.a{#b; !SA.c}; ?PA.d{#e; #f}

At the end, the code generated from this pro-
case consists of two procedures – first one gener-
ated from the ?PA.a action and internally call-
ing the procedures resulted from #b and !SA.c,
and the second one generated from ?PA.d and
calling #e and #f.

The approach described in the paragraph
above works fine except for several cases. In par-
ticular, these are: (1) first action of the use case
is not a request receive action, (2) a request re-
ceive action is in a branch(es), and (3) a request
receive action is anywhere inside a loop.

In the case when the first action of the use
case is not a request receive action, a special
action INIT is prepended to the use case and
the actions till the first request receive action
are enclosed in the procedure call brackets. In
the generated code, a procedure generated from
the INIT action is called automatically before
the other actions.

Two other cases cannot be solved directly
and require more complex preprocessing. To
solve these cases, we have enhanced procases
with so called conditional events, which allow
“cutting” branches of the procase and arrange
them in a sequence, but which do not modify
the procase syntax.

The conditional events allow to mark
branches of the alternatives by a boolean vari-
able (written in the procase just as a name with-
out any prefix symbol followed by a colon, e.g.
D:). The variables can be set to true via the ac-
tion written as the variable name prefixed with
the $ symbol (e.g. $D) or to false by its name
with the $ and ∼ symbols (e.g. ∼$D). At the
beginning of each procase, all variables are un-
declared.

These events modify the behaviour of the
procase in a way that only traces containing
the action, which sets the variable to true, con-
tinue with the branches marked by this variable.
When the value of the variable is false, the traces
continue with the unmarked branches as in un-
changed procase.

4.1.1. Branch transformation

First, we show how to rearrange a procase with
the request receive action placed in a branch.
The general approach of identifying procedures
as described above does not work as it would
result in nested procedures. To avoid them, it is
necessary to rearrange the procase in order to
place affected branches sequentially.

We illustrate the branch transformation on
the following example:

?a; #b; (#c; ?d?d?d; #e+ #f ; (#g; #h+ #i)); #j

The problematic action is ?d placed in a branch
and the whole example is visualized in Fig. 5(a).

The approach of rearranging branches is as
follows. Instead of the affected request receive
action, the declaration of a conditional event
variable is placed. The original action with all
subsequent actions till the end of the branch are
moved outside the alternative and marked with
the chosen variable – depicted in Fig. 5(a ⇒ b).

Automated Code Generation from System Requirements in Natural Language 79

Figure 5. First part of the Branch transformation

The NULL action is added as a second branch
of the newly created marked branch.

Now, the actions that followed after the orig-
inal branch action (till the first request receive
action) have to be appended to all other branches
of this branch action except the branch with the
variable declaration – depicted in Fig. 5(b⇒ c).
In addition, these actions are placed at the end of
the newly created branch. In a case the variable
declaration is placed in more than one branch
(i.e. the request receive actions were in more
branches), appending of subsequent actions (till
the first request receive action) has to be done
for all these branches and variables – depicted in
Fig. 6(d ⇒ e). This appending guarantees that
the resulting procase in Fig. 6(f) generates the
same traces as the original one. Now, the general
approach of identifying procedures can be applied
and yields the following procase:
?a {#b; (#c; $D + #f ; (#g; #h; #j + #i; #j))};

(D : ?d {#e; #j}+NULL)

Another example is in Figure 7, which shows
the procase of the use case in Fig. 2 that also
contains problematic request receive action. Fig-
ure 8 depicts the procase after the branch trans-
formation, i.e. it is completely equivalent to the
former one and does not contain the problematic
branch.

4.1.2. Loop transformation

The transformation of the procases with the re-
quest receive action located in a loop action is
quite similar to the previous case. Again, the
transformation guarantees that the resulting pro-
case generates the same traces as the original one.

The following procase is an example with the
request receive action inside the loop:

?PA.a; #b; (#c; ?PA.d?PA.d?PA.d; #e) ∗#f

And the resulting transformed procase:
?PA.a {#b; (#c; $D + #f)};

(D : ?PA.d {#e; (#c+ #f ;∼ $D)}+NULL)∗

4.1.3. Unresolved cases

In a case the request receive action is located in
two or more nested loops or in a loop nested in
branches, the previous two transformations do
not work. The procase is then marked as unre-
solved, excluded from the further processing and
has to be managed manually. On the other hand,
such use cases are very unreadable (see [8] for sug-
gestions about avoiding extensions of extensions
or complex nested loops which results into this
problematic procases) and therefore the skipped
use cases are candidates for rewriting in a more
simple and readable way.

80 Jan Franců, Petr Hnětynka

Figure 6. Second part of the Branch transformation

?B.submitSelectOffer;
!CS.submitSelectOffer;
!B.reportSystemResponse;
(
?B.submitBillingShippingInformationPaymentMethodPaymentDetail;
!CS.enterBillingShippingInformationPaymentMethodPaymentDetail;
!B.reportSystemResponse

+
#validateSystemFail;
%ABORT

)
Figure 7. Procase example before the branch transformation

4.2. Determining Arguments

Once the procases have been preprocessed into
sequences of actions grouped as procedure calls,
the next step is to determine arguments of the
identified procedures, types of these arguments,
and how their values are assigned. The argu-
ments are subsequently used as arguments for
methods in the final generated code.

In our approach, we are using a fact men-
tioned in [8] that noun phrases appearing in the
use cases are directly related with the domain
model elements names. The process of determin-
ing arguments is as follows.

First, all noun phrases (which may refer to
the data manipulated in the use case step) are
extracted by the Procasor from the use case step
sentence. In addition, we also take into account
verbs from the sentence as they can refer to the
relations between the conceptual classes in the
domain model.

The list of extracted words is then matched
against keywords of the domain model (by the
keywords we mean names of the classes, at-
tributes, and associations) in order to discover
which words are actual attributes and to obtain
their types. There are many options to match
the keywords – currently in our implementa-

Automated Code Generation from System Requirements in Natural Language 81

?B.submitSelectOffer {
!CS.submitSelectOffer;
!B.reportSystemResponse;
(
#validateSystemFail;
%ABORT

+
$SBSIPMPD

)
};
(SBSIPMPD:
?B.submitBillingShippingInformationPaymentMethodPaymentDetail {
!CS.enterBillingShippingInformationPaymentMethodPaymentDetail;
!B.reportSystemResponse1

}
+
NULL

)

Figure 8. Procase example from Fig. 7 after the branch transformation

tion we use a simple case-insensitive equality of
strings. Such a matching approach can be seen
as insufficient but on the other hand, projects
commonly follow a chosen terminology (many
times explicitly captured in the requirement
documents) and therefore our approach is sat-
isfactory in most of the cases.

The determined arguments are compared (by
the name and type) with arguments of previous
procedures (if they exist) and the already used
arguments are copied (their values). If the previ-
ous procedures are located in a branch parallel
with the NULL action they are excluded from
processing as they may not be called before the
processed one.

Now, the process behaves differently based
on a type of the entity, on which the action is
called. The types are (i) human user entities
(UE) such as buyer, seller, etc. and (ii) parts
of the system or other computer systems (i.e.
system entity – SE).

For the trigger action and actions with
UE SuD, the unmatched determined types are
used as arguments (i.e. parameters which have
to be inputted by users). For actions with
SE SuD the unmatched determined types are
also added as arguments but with default val-
ues (during the development of the final ap-
plication, developers have to provide correct
values for them).

4.3. Generating Application

Structure of the generated application employs
multiple commonly used design patterns for en-
terprise applications. Based on these patterns,
the generated code is structured into three lay-
ers – presentation layer, middle (business) layer,
and data layer. In the following text, we re-
fer to objects of the presentation layer as pages
because the most commonly used presentation
layer in contemporary large applications em-
ploys web pages, but any type of the user in-
terface can be generated in a similar way.

The middle layer consists of so called use
case objects which contain the business logic of
the application. Also, the middle layer contains
entity objects where the internal logic (imple-
mentation of the basic actions) is generated. The
use case objects implement the ordering of the
actions and call the entity objects.

We do not describe generation of the data
layer, as it is well captured in common UML
tools and frameworks (generation of classes from
class diagrams etc. – see Sect. 6).

The generation depends on the type of en-
tity – pages are generated for UE while for SE a
non-interactive code only. Thus, a page is gen-
erated for every action performed by UE (pro-
cedure call triggering actions and procedure call
internal actions).

82 Jan Franců, Petr Hnětynka

If the use case has SuD as UE then ele-
ments generated from the actions located inside
a procedure call are named with the suffix “X”
to allow their easier identification during future
development, as in most cases they have to be
modified by developers.

Based on combination of the communicating
actors (UE vs. SE), the generation distinguishes
four cases how the code is generated from a pro-
cedure call:
1. If PA and/or SA is UE, then a page is gen-

erated for every procedure call triggering ac-
tion, which is triggered by this UE.

2. If PA and/or SA is SE, an action implemen-
tation method is generated in the actor en-
tity object and the action method body con-
tains a call to the corresponding use case ob-
ject.

3. If SuD is UE, then a method in the cor-
responding use case object is generated for
each procedure call of SuD. The method
body calls the actor entity object and redi-
rects to “X” pages, which manage the in-
ternal procedure call actions. Internal pro-
cedure call actions are generated in a sim-
ilar way to the request receive action with
UE PA – the “X” page and a method inside
the “X” use case object are generated. The
method inside the “X” use case object is gen-
erated as a simple delegation method to the
corresponding entity object and redirection
to the particular page.

4. And finally if SuD is SE, then inside the cor-
responding use case object, a method with
the body containing the internal procedure
call actions is generated.
Figure 9 shows the procase of the Clerk-

-buys-selected-Offer-on-behalf-of-Buyer use case
and Figure 10 overviews all generated elements
from the use case.

The following sections describe each type of
the generated objects in more details.

4.3.1. Pages

As generated, pages are intended for testing the
use cases and are expected to be reimplemented
during the further development. A single page is

generated for each action interacting with UE.
In a case of UE PA, there is a page for every
triggering action and, in addition for UE SuD,
there is also a page for every procedure call in-
ternal action. If the action has arguments which
can be inputted then for each of them an input
field is generated. Values are assigned by humans
during testing of the generated system.

For the UE PA actions, the corresponding
pages have a button (an input control element)
that allows to continue to the next page, i.e. to
continue in the use case (there is only a single
button as there is no other choice to continue).
On the pages belonging to the UE SuD actions,
there are several buttons, which reflect the pos-
sibilities of continuation in the original use case.
For a sequence of the actions, the page contains
the “continue” button; if the next action is a
branch action then the page contains a button
for each branch (the default button is for the
main scenario branch – the buttons for the rest
of the branches are labeled by the branch con-
dition label; if the next action is a loop action
then the page has a button to enter the loop
and another button to skip the loop (following
the definition of loop operation).

4.3.2. Use Case Objects

The use case objects contain the business logic
(work-flow) of the use case, i.e an order of
actions in the main scenario and all possible
branches. Bodies of the generated methods differ
according to SuD.

UE SuD: As described above, a method
in the corresponding use case object is gener-
ated for each procedure call of UE SuD. For
each trigger action, the method body contains
a call to the particular entity object and redi-
rection to a page of the subsequent action.
For internal procedure call actions, a similar
method body is created in “X” use case ob-
ject.

SE SuD: A body of the method generated
for the procedure call trigger action contains the
internal procedure calls. For the SuD internal
actions, methods are called on the use case SuD
entity object and for request send actions, meth-

Automated Code Generation from System Requirements in Natural Language 83

?CL.submitItemDescription {
(

#priceAssessmentAvailable;
!Sl.providePriceAssessment

+
#validateDescription;
(

#validationPerformedSystemFails;
%ABORT

+
NULL

)
)

};
?CL.enterPriceContactBillingInformation {

#validateContactInformation;
!SU.validateSeller

};
?SU.permitSeller {

!TC.validateOffer;
(

#listOffer;
!Sl.respondUniquelyIdentifiedAuthorizationNumber

+
#tradeCommissionRejectsOffer;
%ABORT

)
}

Figure 9. Clerk-buys-selected-Offer-on-behalf-of-Buyer use case

ods are called on the action triggered entity ob-
jects.

The branch actions are generated as a se-
quence of the condition statements (i.e. if () ...
else if () ...) with as many elements as branches
in the branch action. In each if statement, par-
ticular actions are generated, while the last else
statement contains the main scenario actions.
A similar construction but with a loop statement
(while) is created for the loop action.

The number of iteration in the loop state-
ment and choice of the particular branch in
the condition statements cannot be determined
from the use case. Therefore, the statements are
generated with predefined but configurable con-
stants inside the use case object.

4.3.3. Entity Objects

The internal logic of actions is not captured
by the use cases neither by the domain model.

Therefore, the entity objects are generated with
almost empty methods containing only calls to a
logger and they have to be finished by develop-
ers. For testing purposes, the logging methods
seem to be the most suitable ones as designers
can immediately check the traces of the gener-
ated system.

4.4. Navigation

Navigation (transitions) between the pages is an
important part of the application internal logic
as it determines the part of the system work flow
(the order of procedure calls and sequence of ac-
tions). The navigation is derived from the pro-
cases as a set of navigation rules. The pages/ob-
jects have associated these rules that contain un-
der which circumstances a transition has to be
chosen.

In general, the navigation rules are created
from the branch actions, loops, and special ac-

84 Jan Franců, Petr Hnětynka

Figure 10. Overview of elements generated from the procase in Fig. 9

tions that can change transitions (aborts, etc.).
In a case of the use case with SE SuD, the
rules are applied to determine transitions be-
tween calls of the actions. In a case of UE
SuD, the rules determine how the pages are
generated, i.e. which buttons are placed on
them.

5. Generated Application Example

To prove that our approach is feasible, we
have implemented the proposed generator. As
a particular technology for the generated ap-
plications, we have chosen the Java EE plat-
form with Enterprise Java Beans (EJB) as the
business layer and Java Server Faces (JSF) as
the presentation layer. These technologies have
been chosen as they are commonly used for
large enterprise applications today and thus

they can be used as starting point for con-
tinuing the application implementation. The
generator itself has been written in plain
Java.

The generator produces code together with
an Ant build file, which can immediately compile
and deploy the application to the JBoss applica-
tion server [7], which allows users to inspect and
modify code and iteratively test the application.

Based on the chosen technologies and used
design patterns the first two application layers
are mapped into the following five tiers. The
pages results in two tiers: (i) JSF pages and (ii)
backing beans (BB). The middle layer then re-
sults into three tiers: (iii) business delegator tier
(BD), (iv) Enterprise Java Bean tier (EJB), and
finally (v) manager tier (MGR). Generation of
the data persistence layer is not currently sup-
ported but it is a simple task, which we are plan
to add soon (see Sect. 7).

Automated Code Generation from System Requirements in Natural Language 85

In the rest of this section, we describe in
more detail all the generated elements produced
from a single use case. As a particular example,
the Clerk submits an offer on behalf of a Seller
use case from the Marketplace example is used.
It has the following content.
UseCase: Clerk submits an offer on behalf of

a Seller (part)
SuD: Computer System
PA: Clerk

Main success scenario:
1 Clerk submits information describing an item.
2 System validates the description.

Extensions:
2a Validation performed by the system fails.
2a1 Use case aborted.

Sub-variations:
2b Price assessment available.
2b1System provides the seller with a price

assessment.

The Procasor and the preprocessing step of
our generator produce the following procase:

?CL.submitItemDescription {
(

#priceAssessmentAvailable;
!Sl.providePriceAssessment

+
#validateDescription;
(

#validationPerformedSystemFails;
%ABORT

+
NULL

)
)

}

5.1. JSF Pages

All action pages are generated as described
in 4.3.1. To allow easy testing, each page dis-
plays the use case together with the correspond-
ing procase – both with the highlighted cur-
rently processed action and acting entity. The
following listing shows a core of the generated
JSF page for the use case above.
<h:form>
<h:outputText value="itemDescription : " />
<h:inputText id="itemDescription"

value="#{ComputerSystem_
ClerkSubmitsAnOfferOnBehalfOfASeller_
ClerkBBean.itemDescription}" />

</br>
<h:outputText value="sellerBillingInformation : " />
<h:inputText id="sellerBillingInformation"
value="#{ComputerSystem_

ClerkSubmitsAnOfferOnBehalfOfASeller_
ClerkBBean.sellerBillingInformation}" />

</br>
<h:commandButton value="submitForm"
action="#{ComputerSystem_

ClerkSubmitsAnOfferOnBehalfOfASeller_
ClerkBBean.submitItemDescription}" />

</h:form>

The JSF page has a simple form with
an input field for the action argument
and a submit button. The triggering ac-
tion submitItemDescription has an argument
itemDescription which is bound to the use case
backing bean variable.

5.2. Backing Beans

According to the JSF framework, the pages are
supported by backing beans, which are Java
classes containing all variables that can be set
by the pages and handling all actions possibly
activated by the pages. For the variables, BBs
provide setter/getter methods. Also, BBs pro-
vide methods for calls to the next tier – business
delegators.

The following listing shows the BB’s method,
which is called when a user submits the form on
the page.
public String submitItemDescription() {
try {
return computerSystem_
ClerkSubmitsAnOfferOnBehalfOfASellerBD
.submitItemDescription(getSessionObject()
. getSellerBillingInformation (), itemDescription,
getSessionObject());

} catch (DelegateException e) {
e.printStackTrace();

}
return "abort";

}
Before the method call starts, the value of

the form’s input field is automatically set via
the BB’s setter method. The value is then used
in the method as a parameter of the call to the
BD tier.

86 Jan Franců, Petr Hnětynka

5.3. Business Delegator

Business delegators are Java classes created on
the basis of the Business Delegate pattern [17].
In the generated application, each use case has
its own BD, which provides calls to the use case
EJBs. Internally, methods of BDs use the Ser-
vice Locator pattern [17] to locate EJBs.

The method shown in the listing only dele-
gates calls to the use case EJB. The getBean
method contains code for obtaining a use case
bean LocalHome interface, creating the bean,
and returning the use case bean stub. The stub
is then used for the actual call.
public String submitItemDescription(String
sellerBillingInformation,
String itemDescription, ComputerSystem_
ClerkSubmitsAnOfferOnBehalfOfASellerSO
sessionObject) {
try {
return getBean().submitItemDescription(
sellerBillingInformation,
itemDescription, sessionObject);

} catch (BeanException e) {
throw new DelegateException(
this .getClass (). getName() +
". submitItemDescription()", e);

}
}

5.4. EJB

The use case objects are generated as stateless
session beans. There is no change against the
general process described in 4.3.2.

The shown EJB method contains internal
logic, i.e. actions located inside the triggered
procedure call are executed in this method.
The method body structure corresponds to
the procase procedure call. Each action is
generated as method delegating call to the
particular MGR.
public String submitItemDescription(String
sellerBillingInformation,
String itemDescription, ComputerSystem_
ClerkSubmitsAnOfferOnBehalfOfASellerSO
sessionObject) {
if (Constants.computerSystem_
ClerkSubmitsAnOfferOnBehalfOfASeller_
priceAssessmentAvailable) {

getSellerManager().providePriceAssessment();
}
else {

getComputerSystemManager()
. validateDescription(itemDescription);

if (Constants.computerSystem_
ClerkSubmitsAnOfferOnBehalfOfASeller_
validationPerformedSystemFails) {

return NavigationConstants.ABORT;
}

}
return NavigationConstants.CONTINUE;

}

5.5. Entity Managers

The entity objects are generated as entity man-
ager classes and they are accessed from the
beans, again using the Service locator pat-
tern [17]. The methods of the managers print
logs to a console (as explained in Section 4.3.3).
We do not show here the generated MGR as its
methods contain only these logger calls.

5.6. Additional Elements

In addition to the described elements, there are
several additional generated objects that are
used across the tiers. Namely, they are Value
objects and Session objects. The former ones are
generated and used for each type of arguments
of the use case actions, while the later ones hold
the value objects among different calls in a use
case.

The INIT procedure call is generated as the
init method of the corresponding use case EJB.
The special action %ABORT is not modeled as
an exception but rather as a predefined constant
returned from the particular methods.

6. Evaluation and Related Work

To verify our generator, we used it on the Mar-
ketplace application described in Sect. 2.1. The
generated implementation was compiled and di-
rectly deployed to an application server. The
implementation consists of approx. 70 classes
with 13 EJBs. The complete application has 92
action, from which only 16 actions were gen-
erated with wrong arguments and had to be
repaired manually (we are working on an en-

Automated Code Generation from System Requirements in Natural Language 87

hanced method of argument detection – see
Sect. 7).

Testing of the generated application discov-
ered a necessity to add one use case, two missing
extensions in another use case, and also sug-
gested restructuring other two use cases. All
these defects could be detected directly from the
use cases but with generated application, they
became evident immediately.

Our tool can be also viewed as an ideal
application of the Model-driven Architectures
(MDA) [11] approach. In this view, the uses
cases and domain model serve as a platform in-
dependent model, which via several transforma-
tions are transformed directly into an executable
code, i.e. platform specific model.

Currently, the existing tools usually generate
just data structures (source code files, database
tables, or XML descriptors) from the UML class
diagrams but no interaction between entities
(i.e. they handle just the class diagrams) and
as far as we know, there is no tool/project
that generates the implementation from the de-
scription in a natural language. Below, there
are several projects or tools that take as an
input not only class diagrams but still they
work with diagrams and not with a natural
language.

The AndroMDA [2] is the generator frame-
work which transforms the UML models into
an implementation. It supports transformations
into several technologies and it is possible to
add new transformations. In general, it works
with the class diagrams and based on the class
stereotypes, it generates the source code. More-
over, it can be extended to work with other di-
agram types. A similar generator (made as an
Eclipse extension) is openArchitectureWare [12],
which is a general model-to-model transforma-
tion framework.

In [15], the sequence diagrams together with
class diagram are used to generate fragments of
code in a language similar to Java. The genera-
tion is based on the order of messages captured
in the sequence diagram and the structure of
the class diagram. There is also a proposed al-
gorithm for checking consistency between these
two types of diagrams.

Similarly in [5], Java code fragments are
generated from the collaboration and class dia-
grams. The authors use enhanced collaboration
diagrams in order to allow better management
of variables in the generated code.

In [16], the use cases are automatically
parsed and together with a domain model are
used to produce a state transition machine,
which reflects behaviour of the system. From the
high level view, the used approach is very similar
to our solution but they allow for processing only
very restricted use cases and thus the approach
is quite limited.

7. Conclusion and Future Work

The approach proposed in the paper allows for
automated generation of executable code di-
rectly from a requirement specification written
as use cases in a natural language. Also, we have
developed a prototype, which generates JEE ap-
plications via the proposed approach.

Applications generated by our tool are im-
mediately ready to be deployed and launched
and they are suitable for testing the use cases
(i.e. if the requirement specification is complete
and well structured) and as a starting point for
the development of the real implementation.

The proposed generator has several issues,
which suit for further improvements. An impor-
tant issue is connected with associations among
the classes in the domain model. The current im-
plementation correctly handles just one-to-one
associations. The one-to-many or many-to-many
associations result in the code to lists or ar-
rays and therefore the determination of the ar-
guments is more complex. We plan to solve as-
sociation limitation by analysis of sentence to
determine whether a method argument is the
list or object itself. Also, we plan to add a
categorization of verbs to allow better manage-
ment of arguments of the procedures. We plan
to employ some platform independent template
framework which will enable to generate more
configurable system implementation for several
platforms. The planned output of the generator
then would be a XML file which will be an input

88 Jan Franců, Petr Hnětynka

for the employed framework. Finally, we plan to
add generation of the data layer to applications.

The required structure of the use cases
(based on recommendations in [3]) can be seen
as another limitation but we already have an
approach, which allows processing of use cases
with almost any structure (see [4]) and we are
incorporating it to the implementation.

Acknowledgements The authors would
like to thank Vladimir Mencl, Jiri Adamek, and
Pavel Parizek for valuable comments. This work
was partially supported by the Czech Academy
of Sciences project 1ET400300504.

References

[1] B. Anda and D. I. Sjober. Investigating the
role of use cases in the construction of class dia-
grams. Empirical Software Engineering, Volume
10(3), Jul. 2005.

[2] AndroMDA. http://galaxy.andromda.org.
[3] A. Cockburn. Writing Effective Use Cases.

Addison-Wesley, Jan. 2000.
[4] J. Drazan and V. Mencl. Improved processing

of textual use cases: Deriving behavior specifi-
cations. In Proceedings of SOFSEM 2007, Har-
rachov, Czech Republic, Jan. 2007.

[5] G. Engels, R. Huecking, S. Sauer, and A. Wag-
ner. UML collaboration diagrams and their
transformation to Java. In Proceedings of UML
’99, Fort Collins, USA, Oct. 1999.

[6] M. Fiedler, J. Francu, V. Mencl, J. Ondrusek,
and A. Plsek. Procasor environment: Interac-

tive environment for requirement specification.
http://dsrg.mff.cuni.cz/~mencl/procasor-env.

[7] JBoss application server. http://jboss.org.
[8] C. Larman. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall
PTR, 2nd edition, 2001.

[9] V. Mencl. Deriving behavior specifications from
textual use cases. In Proceedings of WITSE ’04,
Linz, Austria, Sep. 2004.

[10] Objecteering software. Objecteering 6. http:
//www.objecteering.com.

[11] OMG. Model driven architecture (MDA). OMG
document ormsc/01-07-01, Jul. 2001.

[12] openArchitectureWare.
http://www.openarchitectureware.org.

[13] F. Plasil and V. Mencl. Getting “whole picture”
behavior in a use case model. In Proceedings of
IDPT, Austin, Texas, USA, Dec. 2003.

[14] F. Plasil and S. Visnovsky. Behavior protocols
for software components. IEEE Transactions
on Software Engineering, Volume 28(11), Nov.
2002.

[15] L. Quan, L. Zhiming, L. Xiaoshan, and
H. Jifeng. Consistent code generation from
UML models. UNU-IIST Rep. No. 319, The
United Nations University, Apr. 2005.

[16] S. S. Somé. Supporting use cases based require-
ments engineering. Information and Software
Technology, 48(11):43–58, 2006.

[17] Sun Microsystems. Core J2EE patterns: Best
practices and design strategies. http://java.sun.
com/blueprints/corej2eepatterns.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Tool Based Support of
the Pattern Instance Creation

Ľubomír Majtás∗
∗Faculty of Informatics and Information Technologies, Institute of Informatics and Software Engineering,

Slovak University of Technology
majtas@fiit.stuba.sk

Abstract
Patterns introduce very useful way of improving the quality of the software development process.
Nowadays modeling tools and techniques provide some kind of support for modeling with pattern
instances, but these are often based on manual pattern creation and connection to the rest of
the model. Our approach presents the support of pattern instance creation on the model level in
semi automatic way that simplifies the whole process. The main idea of this approach is that the
developer should assign the domain dependent parts of pattern and specify the requirements over
the pattern variants. The rest of the pattern instance is to be created by the machine.

1. Introduction

Pattern introduction [1] had large asset for more
areas. Probably the most familiar pattern’s ful-
fillment in the software engineering was intro-
duced by the work of GoF [12], where the au-
thors identified and in detail described 23 de-
sign patterns. Their description of each pat-
tern contains the verbal description of its main
idea, the example of its appropriate usage (in-
cluding the source codes), the description of
solution it offers and discussion about its al-
ternatives and consequences of its usage. The
main part of description is presentation of the
pattern model according to the OMT/UML
diagrams. The authors provided patterns’ ex-
planations by examples and textual descrip-
tion so the catalog means a useful knowledge
base for software professionals. On the other
hand they did not try to present any “com-
puter friendly” knowledge that could be basis for
automation of typical pattern processes which
are:
– Creating of pattern custom instances,
– Validating existing pattern instances,

– Identification of pattern instances in existing
codes.

To solve this drawback, there were presented
many other works that extend the original cat-
alog by the different models that are trying to
capture the core structure of patterns, e.g. [11],
[13], [7].

In this paper we would like to introduce the
approach that would support developers in their
work with pattern instances. Nowadays model-
ing tools and techniques provide some kind of
support for modeling with pattern instances,
but these are often based on manual pattern
instance creation and connection to the rest of
the model. Our approach presents the support
of pattern instance creation at the model level
in semi automatic way that simplifies the whole
process. The core idea of the approach is that the
developer should assign the domain dependent
parts of pattern and specify the requirements
over the pattern variants. The rest of the pat-
tern instance should be generated automatically.
In this paper we will analyze the processes tak-
ing place while creating the pattern instance. We
will identify the places where can be this process

90 Ľubomír Majtás

automated. Finally we will provide our approach
of automation in a way that will support but not
limit the developers.

2. Process of the Pattern Instance
Creation

Process of the pattern instance creation means
the application of the solution offered by the pat-
tern to the environment of the developed soft-
ware system. The inputs of this process are the
actual environment of the developed software
and the general description of the pattern. As
the output we consider modified software sys-
tem extended by correctly created instance of
the pattern.

We distinguish two activities that are nec-
essary to follow out while creating the pattern
instance [15]: abstract and general pattern in-
stance needs to be concretized and specialized.
At the first moment both activities seem to be
similar, but it is not so. Each one moves the
first idea of the pattern application to the final
instance, while it is necessary to follow up both,
to be able to declare the pattern instance as the
correct one. Differences between these activities
are presented in the Figure 1, where the degrees
of generality and abstraction are being presented
in two dimensional space (degree of generality
horizontally, degree of abstraction vertically).

The created instance is becoming more con-
crete when it contains more building blocks cre-
ating the correct instance. To the beginning
abstract idea of the pattern application there
are subsequently being added classes, their at-
tributes, methods and relations until instance
becomes complete. Specialization of the instance
means the movement of the general pattern de-
scription to the context of the developed system.
The specialization follows such modifications of
the pattern instance that make the instance do-
main specific and subsequently specific for the
current software system. As the examples of the
specialization steps we can consider definitions
of roles’ participants count, naming of the par-
ticipants or creating the relations between par-
ticipants according to the domain.

In our approach we look for possibilities for
automation of the pattern instance creation. We
see higher potential in the process of concretiza-
tion than in process of specialization. The spe-
cialization is based on the ability of developer to
move the pattern to the particular target soft-
ware environment. It can be seen as a domain
based pattern description, what we consider as
almost impossible to be performed by the ma-
chine. There can be found only minimal space
for automation of this process. On the other
hand, there is a potential for tool based support
of concretization process. When the pattern in-
stance is correctly specialized, its concretization
is often based more on pattern structure descrip-
tion than on developer’s skills. It means that
there is a space for automation of this process.

2.1. Pattern Roles, Domain Dependency

Patterns are often being described as a collection
of cooperating roles. These roles can be often
divided into two groups: roles dealing with the
domain of the created software system (domain
roles) and roles performing the pattern’s infras-
tructure (infrastructure roles). The domain roles
can be considered as the “hot spots” while they
can be modified, added or deleted according
to the requirements of the particular software
environment. The roles performing the pattern
infrastructure are not changing frequently be-
tween the pattern instances. Their purpose is
to glue the domain roles together to be able to
perform desired common functionality.

One of the main contributions of the whole
pattern approach is that it allows thinking at the
higher level of abstraction. Developers do not
have to always keep in mind all details about
the solution, they can work with the pattern in-
stance as with single unit hiding unnecessary
complexity. When the developer thinks about
applying the pattern to the project, first thing
he needs to decide is how to connect pattern
instance to the context of the software. He does
so be specifying the domain roles’ participants.
The other issues are often second-rate at that
moment. Table 1 describes selected patterns and

Tool Based Support of the Pattern Instance Creation 91

Figure 1. Two dimensional space of generality and abstraction [15]

Table 1. Specialization of the domain dependent pattern roles

Pattern Domain dependent roles Description
Composite Leaf and its Operations Leafs and their operations provide all domain depen-

dent functionality. Everything else is just infrastruc-
ture allowing the hierarchical access to the leaf in-
stances.

Chain of
Responsibility

HandleRequest, Ancestor The domain dependent is the business logic process-
ing the event and the ancestor to which should be the
unprocessable event passed.

Decorator Concrete Component,
Concrete Decorator

The domain dependent are the Concrete Component
(which often exists before Decorator pattern applica-
tion) and functionality of Concrete Decorator partici-
pants that provide extended functionality to the Con-
crete Component.

Flyweight Concrete Flyweight Concrete Flyweight provides all domain dependent
functionality. The rest is infrastructure for storing in-
stances in memory and providing access to them.

Proxy Real Subject, Proxy The domain dependent is the Real Subject (which of-
ten exists before Proxy pattern application) and func-
tionality of Proxy participants that provide access to
the Real Subject.

their roles from the perspective of the domain
dependency.

2.2. Pattern Variability

As the pattern variability we understand the
possibility to provide patterns functionality in
slightly different ways. Each variant of the pat-
tern has its own pros and cons and therefore the
decision which variant to select does not need to
be easy. Selecting the proper variant is part of
pattern instantiation process, when we are cus-

tomizing instance according our needs. By the
variability we do not understand definition of
participants playing defined roles.

General understanding of the patterns does
not always satisfy the ideas of their authors.
Many developers understand design patterns
only as constant templates with strictly speci-
fied purpose of each class, attribute or method.
However the original idea was to discuss a prob-
lem and offer a solution. Examples provided
with pattern description were never meant as
the only best solutions. Their purpose was to

92 Ľubomír Majtás

Table 2. Examples of possible variants of pattern instances

Pattern Variability description
Abstract Factory Class structures do not differ much. Majority of variants are dealing with

realizations of ConreteFactories: they can be implemented normally or as
Singletons, they can employ Factory Method or Prototype patterns.

Adapter There are more different variations how can Target, Adapter and Adaptee
communicate together.

Bridge Possible variants: Omitting the Implementer interface in case of the only
one ConcreteImplementor.

Chain of
responsibility

References to the successor can be maintained commonly in Handler or
custom for each ConcreteHandler. Handler can be a class with default for-
warding functionality or just an interface.

Flyweight The Flyweight interface can be omitted.

provide hint, to show one of many possible ways
of idea realization.

When we look closer on the patterns from
the GoF catalog, we can distinguish differences
of examples generality between patterns. On the
one side stands Singleton. It is very simple with
accurate example that is not keeping much space
for different variations while it prescribes all de-
sired functionality. On the other side we can
see patterns such as Memento. Their examples
are very general; they do not provide expected
functionality but only briefly draft the solutions.
Their concrete instances can be far different
from the presented examples. In the middle of
these extremes stands majority of the patterns.
Their examples are able to provide desired func-
tionality while they are keeping a space for their
customization. Typical representatives are Com-
posite, Observer or Decorator.

From the perspective of tool based support
of instantiation, it is very difficult to create sup-
port for instantiation of pattern with very gen-
eral examples. It would be very difficult (if it is
even possible) to automatically instantiate fully
functional Memento that would fit to the rest of
the system. On the other hand there are mini-
mal difficulties for pattern with strictly defined
structure keeping minimal space for variability.
Pattern such as Singleton can be automatically
instantiated with minimal efforts. The simple
template based instantiation would be sufficient.
For the majority of patterns the simple template
based approach cannot cover all known variabil-
ity, such approach cannot be considered as suf-
ficient. In this case we need to employ approach
that is based on templates that are created ac-

cording the user needs. In Table 2 we present
examples of possible variabilities of selected GoF
design patterns.

2.3. Pattern Instantiation Support
in CASE Tools

Many existing CASE tools are trying to pro-
vide some kind of support in pattern instan-
tiation process. The level of such support dif-
fers. Often they allow inserting of example pat-
tern instances to the model. The others can
run wizards through which developer can spec-
ify the participant count of the selected roles
and specify the name for each one. In general
the support is based on single template, where
the developer can or cannot specify the partic-
ipants before the creation of the instance. Ad-
vanced CASE tools are tacking the informa-
tion about pattern occurrence (often by UML
Collaboration element). This helps the further
developers to identify the pattern with min-
imal effort and thereby it reduces the risk
of instance damage that can happen by im-
proper modifications in later project phases
(e.g. maintenance). However, these tools do not
try to automate the process pattern instan-
tiation – participants of all roles need to be
specified by developers. Alike the support for
other kinds of customizations is often omitted;
it is left to developers’ knowledge and expe-
rience to modify the instance according their
needs.

Employing the automation of pattern instan-
tiation in CASE tools can lead to the following
benefits:

Tool Based Support of the Pattern Instance Creation 93

– Developers do not need to perform typical
modifications manually. By minimizing the
effort that needs the developer to perform
to create pattern instance or by giving him
possibility to select the proper pattern vari-
ant they can save time and avoid mistakes,
so the instantiation process becomes more ef-
fective.

– Developers do not need to know all pattern
complexity or inner structure. They can fo-
cus on the domain dependent context of the
pattern; they “do not need to care” about
the rest. This can help the inexperienced de-
velopers with pattern application, and in this
way support them to utilize patterns in their
everyday work.

– Developers can be informed about possible
variants. Sometimes developers do not have
to know about existence of different pat-
tern variant. When they are informed im-
mediately about more possibilities they can
choose most proper variant without former
knowledge about it. Developers are able to
get best from the pattern application.

3. Our Approach of the Tool Based
Support

In the previous sections we have described why
should we consider the tool based support for
the pattern instance creation and where are the
spots for the automation. In this section we
will describe how can be such automation pro-
vided. We focus on two different ways of sup-
port. The first one is dealing with the process of
instance creation, it lets the developer to define
domain based participants and automatically
supplement infrastructure participants to form a
valid instance. The second one provides support
for pattern variability; it informs the developer
about possible variants of the pattern, asks for
desired ones and automatically reasons the valid
configuration according the developer’s choice.
The result of this step is the role based model of
the proper pattern configuration, which comes
as an input for the first mentioned support.

3.1. Pattern Inner Structure Description

To be able to provide machine based pattern
processing, we require precise models of the pat-
terns’ inner structures. We are using custom role
based models which are defining the collabora-
tions between the roles that perform the prede-
fined functionality. As the roles we do not con-
sider only ones typically played by classes but
also ones which participants are attributes or
methods. Only the definitions of the roles do
not capture whole pattern inner structure and
therefore cannot be used as the blueprint for the
machine based pattern instance creation. The
very important parts of the pattern structure
are the definitions of the inner structure con-
straints. These constraints associate roles that
are somehow linked together. Example of such
constraints can be clearly seen in the Abstract
Factory pattern where the roles createProduct()
of Abstract Factory and Abstract Product are
linked together. It means that there has to be
the same count of participants of this role where
each participant of the createProduct() role is
responsible for creation of the appropriate par-
ticipant of the Abstract Product. The exact def-
initions of constraints are very important in the
process of machine based pattern instantiation
while they help to specify the count of all par-
ticipants and set the proper links between them.
We have identified and capture in our models the
following relationships which are bases of con-
straints:
1. Inheritance – inheritance between classes,
2. Association – associations between classes,
3. Overriding – in case of inheritance where the

one method role overrides the other method
role,

4. Method delegation – one role invokes other
role to delegate the functionality,

5. Instance creation – role creates the instances
of other role,

6. Class linked with its members – role which
participants are regularly classes and can be
played by more than one participant needs
to be explicitly linked with its method and
attribute roles.

94 Ľubomír Majtás

Some roles are part of definition of more than
one constraint. For example in the Abstract Fac-
tory pattern the count of participant of role Con-
crete Product is dependent on count of partic-
ipants of roles Concrete Factory and Abstract
Product. We say that the dimension [13] of the
role Concrete Factory is two because it is part
of two different constraints.

3.2. Algorithm of the Pattern Instance
Creation

Our process of pattern instance creation is based
on supplementing the incomplete pattern in-
stance defined by developer. As the inputs the
algorithm requires proper role based pattern
model (according to the previous section) and
the partially created pattern instance contain-
ing some participants of the domain role. The
algorithm progressively adds the missing partic-
ipant to comply the pattern’s inner structure
description and all constraints of the pattern.
The output of the algorithm is the model of pat-
tern instance containing all participants that are
meeting all constraints.

The algorithm stores information about all
participants which are part of the pattern in-
stance at the moment. Moreover it stores in-
formation about instances of all constraints
connecting the linked corresponding partici-
pants. Some roles are present in more con-
straints (their dimension is more than one)
what causes that instances of constraints
overlap over the participants of such roles.
Therefore the algorithm stores the informa-
tion about instances of constraints in the
n-dimensional structure where n is the maxi-
mum dimension of all pattern roles (the GoF
pattern do not have roles with dimension
more than 2). We call this structure Partici-
pant Constraint Matrix (PCM). Each dimen-
sion of this matrix corresponds to one pat-
tern constraint. Lines in this dimension rep-
resent the instances of constraints. These in-
stances of constraints link corresponding par-
ticipants according to the constraint. Lines
cross in the places of more dimensional par-
ticipants. Examples of partially filled Par-

ticipant Constraint Matrix are depicted in
the Figures 2, 3 and 4.

In the following section we describe the steps
of the algorithm creating the pattern instance.
We will describe the algorithm also on example,
each step will contain example of execution re-
sults of this step. In our example we will create
the instance of the pattern Composite. As the
input we get the incomplete instance containing
only partial definitions of two participants of the
domain role Leaf: Leaf1 containing the Opera-
tion1() and Leaf2 containing the Operation2().
The algorithm will create the correct instance
according these inputs. The algorithm takes the
following steps:
1. Add participants of non constrained roles.

Create the participants of the roles that are
not concerned in any constraint. For each
role create exactly one participant and name
it as the role. Create the links that are re-
lated to the new participants.
Example: Add the participants of roles Com-
ponent, Composite, Composite’s childs and
links between them: generalization and asso-
ciation.

2. Create the empty Participant Constraint Ma-
trix. Create the empty PCM according to the
definition of pattern constraints.

3. Initialize the PCM according to the current
of the pattern instance. Fill the PCM with
already created the participants.
Example: Fill the PCM as depicted in the
Figure 2.

4. while (the PCM contains empty fields)
a) Add participant to fill one empty field of

PCM. Select one empty field of the PCM
and create the participant that will fit
to this field. When selecting the empty
fields, start with class participants and
continue with association and method
participants. Prefer empty fields with
lower dimension.
Example: In the first iteration create the
participant of role Component’s Opera-
tion().

b) Add information related to the added
participant. Fill the information about
the new participant and add connections

Tool Based Support of the Pattern Instance Creation 95

Figure 2. Initial Pattern Constraint Matrix for incomplete instance of pattern Composite

Figure 3. Extended of Pattern Constraint Matrix after adding Component’s Operation()

Figure 4. Pattern Constraint Matrix for complete instance of pattern Composite

96 Ľubomír Majtás

with the other participants that are re-
lated to the new one, e.g. generalization,
overriding, association, delegation, etc.
Example: Connect the participant with
Leaf’s Operation1() with overriding re-
lationship. Name the participant Oper-
ation1() because the overriding relation-
ship needs the same name of the linked
participants. Extended PCM by this step
is depicted in the Figure 3.

After successful execution of the algorithm
the pattern model of the instance is created. It
complies with all rules and constraints coming
from the pattern description. The created model
keeps information about the role that partici-
pants play and therefore can be used for further
source code generation of the pattern instance.
PCM for the complete pattern instance is de-
picted in the Figure 4.

3.3. Pattern Variability

As mentioned in previous sections patterns are
not simple units with the only one valid tem-
plate. Most of them are highly customizable al-
lowing changes in their example templates in
many different ways. In this section we describe
the approach of employing the variability to the
instantiation process. The result of this step is
role based model describing the customized pat-
tern template that stands as an input for previ-
ous algorithm.

3.3.1. Variability Modeling

To capture possible variability, we are employ-
ing feature modeling technique that was origi-
nally designed for the product-line engineering
[6]. It is important for capturing and manag-
ing commonalities and variabilities in product
lines throughout all stages of product-line engi-
neering. In early stages it is used for scoping of
product line (i.e. deciding which features should
be supported by a product line). In product-line
design, the variation captured from feature mod-
els are mapped to product-line architecture com-
mon for all parallel product lines. In the prod-
uct development, feature models can drive re-

quirements elicitation and analysis, help in es-
timating development cost and effort, and pro-
vide a basis for automated product configura-
tion. Feature models are also important in gen-
erative software development which is trying
to automate application engineering based on
system families.

In our approach we use the feature models
to capture possible variants of the patterns. The
model depicted in the Figure 5 presents selected
variabilities of the Composite pattern. It says
for example that participant of the role Compo-
nent can be either the interface or the abstract
class or that the processing method of the Com-
posite’s children role can be omitted, present
only in the Composite or in the whole struc-
ture. The feature model also presents relations
between the features. For example it is not pos-
sible to omit these processing methods when the
Composite’s children is private attribute. Such
configuration would disable the whole pattern’s
functionality because the structure would be-
come unmodifiable.

The presented model is considered only as an
example. It does not cover all the variabilities
such as the way of Composite’s children collec-
tion realization.

3.3.2. Configuration Reasoning

When creating a pattern instance, developer
needs to specify his requirements dealing the
variability. The target is to specify whole fea-
ture selection (also called product configura-
tion), which is a group of desired functional ca-
pabilities that constitute a complete configura-
tion of an application and adhere to the con-
straints specified in the feature model. We do
not want to force the user to provide information
about each feature whether he wishes to employ
it or not. We give him a chance to specify which
features he wishes to employ and the rest of the
configuration is set by the tool. The final con-
figuration has to fulfill all constraints defined by
the feature model, so if the developer’s require-
ments do not meet these constraints or do not
allow creation of valid configuration, the devel-
oper has to be asked to change his preferences.

Tool Based Support of the Pattern Instance Creation 97

Figure 5. Feature model example capturing the Composite pattern variability

To reason a valid configuration we trans-
form the feature model and partial configuration
based on developers preferences to Constraint
Specification Problem (CSP) environment and
apply existing CSP solver to reason final con-
figuration or to notify us about impossibility
to finish this task. To create the CSP from
a feature model we apply transformation rules
specified in [2]. As the CSP solver we chose
Choco CSP [4] which is an open source Java
based software.

3.3.3. Final Model

When the configuration is set up, we are able to
provide concrete role based model of the pattern
instance. The variants represented in the feature
model have several possible impacts to the final
instance, while they can:
– Prescribe the role based model

– Specify the occurrence of the role, whether
participants of the role should be part of
pattern instance or not.

– Specify the position of the role. For exam-
ple specify, whether the operation should

be present in parent class or only in child
classes.

– Define the implementation aspects relevant
for code generation
– Specify the form of participants’ real-

izations. For example they can specify
whether class rolewould be played by class
or interface or whether list will be realized
as array, linked list,map or something else.

– Specify the participants’ visibilities: Pub-
lic/Private/Protected.

The definition of the roles occurrence or positions
prescribes the output role based model. It is pro-
vided by reduction of the general pattern tem-
plate containing all variability roles. This tem-
plate contains all roles including the conditions
when should be these role applied (which feature
needs to be part of the configuration to activate
the variability role). The Figure 6 contains such
template for theComposite pattern according the
features presented in the Figure 5. The variability
roles are filled grey and the activating features are
placed next to them as a bold text. According the
current configuration, the variability roles with
features that are not contained in the configura-

98 Ľubomír Majtás

Figure 6. Role based template of the Composite pattern extended by variability roles

tion will be omitted, the rest will form the final
role based model according the input configura-
tion.

As an example, when we take the Compos-
ite’s feature model from the Figure 5 and select
the following variants: Parent tracking – Get-
Parent() realization in Component and the Chil-
dren list manipulation – No processing methods.
The final role base model representing the con-
figuration received from the previous inputs is
depicted in the Figure 7.

3.4. Overall Instantiation Process

Presented approaches form a complex process
of computer aided pattern instantiation deliber-
ating the pattern variability. It consists of the
following steps:

1. Inquire the user about pattern he wishes to
instantiate;

2. Inquire the desired domain participants;
3. Inquire the desired variants of the pattern;
4. Reason pattern configuration;
5. Create the role based model for the reasoned

configuration;
6. Supplement all missing participants from the

incomplete user specification according the
actual role based model;

7. Create the instance of the pattern.
In general the user is inquired for the domain

dependent information and customizations while
the tool creates thepattern instance satisfying the
user needs. The architecture scheme of the overall
approach is sketched in the Figure 8. The general
input for the entire process is role based pattern
model containing all variability roles. Variabil-

Tool Based Support of the Pattern Instance Creation 99

Figure 7. Example of output role based model according the custom configuration

ity support module reduces this model into the
concrete role based model for the custom pattern
configuration inferred from developer’s variants
selection. Pattern instance creationmodule takes
this model and according to it and developer’s
specification of domain dependent participants
creates the final pattern instance. This final in-
stance reflects the developer’s variants selection
and pattern domain specialization.

3.5. Realization

The presented approach was partially imple-
mented and verified. It was realized as the
plug-in of the Rational Software Modeler which
is based on open source platform Eclipse. The
Figure 9 contains screenshots of the model be-
fore and after the execution of the overall pat-
tern instantiation process. As the inputs for this
scenario we have used the inputs of the examples
presented in former sections.

4. Related Work

Different approaches of automating the pattern
utilization in software projects were introduced

by the other authors. Ó Cinnéide et. al. [5]
have presented a methodology for the creation of
behavior-preserving design pattern transforma-
tions and applied this methodology to GoF de-
sign patterns. The methodology is taking place
in refactoring process when it provides descrip-
tions of transformations to modify the spots
for pattern instance placement (so called pre-
cursors) by the application of so called mi-
cropatterns to the final pattern instances. While
Ó Cinnéide’s approach is supposed to guide the
developers to pattern employment in the phase
of refactoring (based on source code analysis),
Briand et. al. [3] are trying identify the spots for
pattern instance in design phase (based on UML
model analysis). They provide semi-automatic
suggestion mechanism based on decision tree
combining evaluation the automatic detection
rules with user queries.

There exist several approaches introducing
their own tool based support for the pattern
instantiation. El Boussaidi et. al. [10] present
model transformations based on Eclipse EMF
and JRule framework. Wang et. al. [16] pro-
vide similar functionality by XSLT based trans-
formations of the models stored in XMI-Light
format. Both approaches can be considered as

100 Ľubomír Majtás

Figure 8. Architecture overview of the overall approach

the single template driven while they are fo-
cusing most on the transformation process and
do not set a space for the pattern customiza-
tions. More advanced method was introduced
by Mapelsden et. al [14]. Their approach sup-
ports instance configuration by specifying the
role participants including those playing more
dimensional roles. All of these approaches are
based on strict forward participants generation
– participants of all roles are created accord-
ing the single template. Our approach accen-
tuates on collaboration between the developer
and the CASE tool. We do not intent to create
all pattern participants. We let the developer
define the ones he needs and subsequently we
infer and create the rest ones to form a valid
instance. We do not force the developer to our
solution, we let the template and the final in-
stance be customized according the developers’
needs.

All the former approaches were focusing on
the creation of pattern instances. The ones pre-
sented by Dong et. al. presume the presence of
the pattern instances in the model. They are
providing the support for the evolution of the
existing pattern instances resulting from the ap-
plication changes. The first one [8] implemen-
tation employs QVT based model transforma-
tions, the other one [9] does the some by the
XSLT transformations over the model stored as
XMI. However, both are working with the single
configuration pattern template allowing only the
changes in presence of hot spots participants.
Other possible variabilities are omitted.

We have not found any approach regarding
the feature modeling application in pattern in-
stantiation area. The feature models were suc-
cessfully employed in other areas, for example
in automation attempt of enterprise application
configuration presented by White et. al. [17].

5. Conclusion and the Future Work

In this paper we have presented our approach
dealing with a tool based support for pattern
instance creation. Our key concept was to cre-
ate such methodology that would help the devel-
opers with application of the pattern solution
to their software but allow them to customize
the pattern according their needs. We were try-
ing to handle two different courses while more
generative parts often mean less space for cus-
tomization and vice versa. We believe that our
approach balances these opposing courses into
final solution in a way that forms useful a tool
for developers interested in pattern employment.

In the future we would like to extent the cre-
ated pattern instance model with behavioral in-
formation. The correctly created instance would
be represented class diagram together with se-
quence diagram. The main building blocks of
such behavioral model will be method invoca-
tion and delegation, instance creation together
with structural blocks such as condition or it-
eration over collection. Also we would like to
prepare definitions of more GoF design pattern
to evaluate the algorithm on the larger scale.

Tool Based Support of the Pattern Instance Creation 101

Figure 9. Screenshots of models before and after the overall process execution

We are thinking about other patterns that can
be input for the algorithm. It could be applica-
ble on all patterns that are at the design level
of abstraction and their inner structure can be
described by relation based constraints. Candi-
dates for such patterns are for example the J2EE
design patterns.

References

[1] C. Alexander, S. Ishikawa, and M. Silverstein. A
Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, August 1977.

[2] D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated reasoning on feature models. In
LNCS, Advanced Information Systems Engi-
neering: 17th International Conference, CAiSE
2005. Springer, 2005.

[3] L. C. Briand, Y. Labiche, and A. Sauve. Guid-
ing the application of design patterns based on
UML models. In ICSM ’06: Proceedings of the
22nd IEEE International Conference on Soft-
ware Maintenance, pages 234–243, Washington,
DC, USA, 2006. IEEE Computer Society.

[4] Choco constraint programming system. http:
//choco.sourceforge.net/.

[5] M. Ó Cinnéide and P. Nixon. Automated
software evolution towards design patterns.
In Proceedings of the 4th International Work-
shop on Principles of Software Evolution, pages
162–165, Vienna, Austria, 2001. ACM.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker.
Staged configuration through specialization and
multilevel configuration of feature models.
Software Process: Improvement and Practice,
10(2):143–169, 2005.

[7] J. Dietrich and C. Elgar. A formal description of
design patterns using owl. In ASWEC ’05: Pro-
ceedings of the 2005 Australian conference on
Software Engineering, pages 243–250, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[8] J. Dong and S. Yang. Qvt based model transfor-
mation for design pattern evolutions. In IMSA
’06 : Proceedings of the 10th IASTED interna-
tional conference on Internet and multimedia
systems and applications, pages 16–22, 2006.

[9] J. Dong, S. Yang, and K. Zhang. A model trans-
formation approach for design pattern evolu-
tions. In ECBS ’06: Proceedings of the 13th An-
nual IEEE International Symposium and Work-
shop on Engineering of Computer Based Sys-
tems, pages 80–92, Washington, DC, USA, 2006.
IEEE Computer Society.

102 Ľubomír Majtás

[10] G. El Boussaidi and H. Mili. A model-driven
framework for representing and applying de-
sign patterns. In COMPSAC ’07: Proceed-
ings of the 31st Annual International Computer
Software and Applications Conference, pages
97–100, Washington, DC, USA, 2007. IEEE
Computer Society.

[11] R. B. France, D.-K. Kim, S. Ghosh, and E. Song.
A UML-based pattern specification technique.
IEEE Trans. Softw. Eng., 30(3):193–206, 2004.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Pro-
fessional, 1995.

[13] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun.
Precise modeling of design patterns in UML.
In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering,
pages 252–261, Washington, DC, USA, 2004.
IEEE Computer Society.

[14] D. Mapelsden, J. Hosking, and J. Grundy. De-
sign pattern modelling and instantiation using
dpml. In CRPIT ’02: Proceedings of the Forti-

eth International Conference on Tools Pacific,
pages 3–11, Darlinghurst, Australia, Australia,
2002. Australian Computer Society, Inc.

[15] M. Smolárová, P. Návrat, and M. Bieliková.
A technique for modelling design pat-
terns. In JCKBSE ’98: Proceedings of the
Knowledge-Based Software Engineering, pages
89–97. IOS Press, 1998.

[16] X.-B. Wang, Q.-Y. Wu, H.-M. Wang, and
D.-X. Shi. Research and implementation of
design pattern-oriented model transformation.
In ICCGI ’07: Proceedings of the International
Multi-Conference on Computing in the Global
Information Technology, page 24, Washington,
DC, USA, 2007. IEEE Computer Society.

[17] J. White, D. C. Schmidt, K. Czarnecki,
C. Wienands, G. Lenz, E. Wuchner, and
L. Fiege. Automated model-based configura-
tion of enterprise java applications. In EDOC
’07: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Con-
ference, page 301, Washington, DC, USA, 2007.
IEEE Computer Society.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Transformational Design of Business Processes
in BPEL Language

Andrzej Ratkowski∗, Andrzej Zalewski∗, Bartłomiej Piech∗∗
∗Institiute of Control and Computation Engineering, Warsaw University of Technology

∗∗Department of Electronics and Information Technology, Warsaw University of Technology
a.ratkowski@elka.pw.edu.pl, a.zalewski@ia.pw.edu.pl, b.piech@elka.pw.edu.pl

Abstract
A transformational approach to the design of executable processes in Business Process Execution
Language (BPEL) is presented. It has been built upon the transformations of business processes
accompanied by a formal approach based on process algebras used to verify the behavioral equiv-
alence of business processes. The initial business process can be denoted in BPEL, then a series
of transformations is executed upon it. The process resulting from the transformation is verified
whether it preserves behaviour denoted by the process being transformed. The transformations
improve non-functional properties of the process (performance, modifiability, granularity, main-
tainability) but do not change its original behaviour. The transformations are steered by Archi-
tecture Trade-off Analysis Method (ATAM) that shows the direction of changes and helps an
architect to decide which of them to apply. An example of the application of our approach in
real-life business process design has also been presented. The paper presents general idea of the
design process, theoretical basis of the method as well as experimental verification of the approach
and a tool implemented to support the method.

1. Introduction

The following paper presents the concept of de-
sign method that is a subject of PhD thesis writ-
ten by Andrzej Ratkowski under Prof. Krzysztof
Sacha’s supervision. The article is an extension
of a previous paper [26].

The ability to define and execute business
processes seems to be one of the most important
advances introduced by the research and com-
mercial developments on Service-Oriented Ar-
chitectures (SOA). The worlds of business mod-
elling and software systems development have
never been closer to each other – it is now pos-
sible to express software requirements in terms
of services and business processes composed of
them. BPEL have become a standard for defin-
ing executable business processes. This in turn
triggered an extensive research on the model-

ing and verification techniques suitable for those
processes.

The approaches presented above, as well as
the verification techniques, can indicate absence
or existence of certain flows in BPEL processes.
However, these are not methods of business pro-
cesses design – they do not provide any guid-
ance on how to improve the quality attributes
of designed systems like maintainability, per-
formance, reusability etc. This is what the ap-
proach is aimed at.

In this paper we advocate an idea of trans-
formational design of BPEL business processes
in which specified behaviour remains preserved,
while quality attributes get improved. There are
three basic roots of our approach:
1. software refactoring – the approach intro-

duced by Opdyke in [24], further devel-
oped in [20], in which the transformations

104 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

of source code are defined so as to improve
its quality attributes;

2. business process design – in the realm of
SOA informal or semiformal methods domi-
nate the research carried out so far – comp.
Service Responsibility and Interaction De-
sign Method (SRI-DM) [21];

3. business process equivalence – there have
already been developed several notions of
the equivalence between business processes
based on Petri Nets [19] and Process Alge-
bras [29].
The transformations of Business Processes

are in the core of our approach and repre-
sent similar concept as popular software refac-
torings. Our original notion of business pro-
cess equivalence has been introduced on a for-
mal Process Algebra model of business pro-
cesses (explained and discussed in section Be-
havioural Equivalence) and it has been proved
that the defined transformations create pro-
cesses equivalent to the one being trans-
formed. These transformed processes are com-
pliant in terms of their behaviour, however,
they have quality attributes changed. These
transformations may be steered by the qual-
ity scenarios and assessments performed us-
ing Architecture Trade-off Analysis Method
(ATAM) [18].

This provides a foundation for the trans-
formational design method in which a starting
BPEL process is subject to a series of trans-
formations yielding as a result behaviourally
compatible model with improved non-functional
properties like modifiability, maintainability,
performance, reusability etc.

2. State of the Art

Many business processes design and mainte-
nance methods are based on Business Process
Management (BPM) concepts [31]. According to
BPM, process life-cycle consist of five phases:
1. design – existing business processes are anal-

ysed and “to-be” processed are designed. The
results of this phase are: process flows, main
actors, resources and so on;

2. modeling – the purpose of this part is to
model and make conclusions on process exe-
cution before its practical application;

3. execution – in execution phase processes are
put into practice and run in physical envi-
ronment;

4. monitoring – running processes are moni-
tored, functional and non-functional proper-
ties are measured;

5. optimization – this phase is responsible for
improvement of processes.

The BPM concept is broadly applied in the pro-
cesses domain, however, we believe that there is
no specialised application in SOA context. Cur-
rent paper tries to fill this gap.

In the field of general process modeling there
are approaches based on Unified Modeling Lan-
guage (UML) like presented in [28]. The authors
present suitability of UML activity diagrams for
business process.

In the context of Service Oriented Archi-
tecture there exist special methods devoted to
design business processes like mentioned pre-
viously Service Responsibility and Interaction
Design Method (SRI-DM) [21]. The SRI-DM
method is based on transformation from UML
use-cases towards services with proper divided
functionality and sequence diagrams that ex-
press desired process.

The approach similar to proposed in the cur-
rent paper is presented in [15]. The authors pro-
pose modeling business process as a Petri net
and such transformations of the net to reach op-
timal value of some goal function. The proposed
approach is based on optimization techniques.

The research of the current paper is con-
centrated on converting BPEL processes to one
of the formal models that can be subject to
model-checking techniques. A survey of such ap-
proaches can be found in [3]. It reveals that all
of the most important formal models of con-
current systems have been applied: Petri nets
(basic model, high-level, coloured) – comp. [14],
[32], Process Algebras – comp. [12], [11], Lotos –
comp. [9], [30], Promela and LTL – comp. [13],
[16], Abstract State Machines – comp. [8], [27],
Finite State Automata – comp. [11]. These con-
versions make it possible to detect deadlock and

Transformational Design of Business Processes in BPEL Language 105

Figure 1. Process transformation algorithm

livelock as well as reachability analysis with au-
tomated model checkers.

3. Process Transformation Design
Approach

The algorithm of process transformation design
is depicted in Figure 1.
1. As it was mentioned in the introduction, the

algorithm starts with the original process
that is delivered by business oriented staff
and the primal process bring up only func-
tional aspects of the process. Functional as-
pects of the process are: necessary activities,
order of activities, relation between them,
exchanged data, basic external services invo-
cation and so on. The process is called refer-
ence process. In following iterations the origi-
nal process is slightly changed by refactoring
transformations [25], [20] like:
– service split – split one complex services

into two or more smaller ones that cover
the primary one functionality,

– service aggregation – opposite to service
split – composing two or more services in
one larger service,

– parallelization – making serial activities
to run parallel,

– asynchronization – reconstruction of
communication protocol from syn-
chronous to asynchronous.

The above transformations are called
refactorings and they are only exam-
ples of possible refactorings. Obviously,
in a given process only some subset of

transformations is possible and a smaller
subset is rational.

2. A few independent refactorings on a cur-
rent process make a few alternative pro-
cesses which should be equivalent to the orig-
inal process or at least changes in behaviour
should be known.

3. Behaviour preservation is checked by means
of behavioural equivalence verification step.
In this step formal methods of Process Alge-
bra (PA) [6] are used. The result of verifica-
tion is either elimination of not-equivalent al-
ternative or accepting changes in behaviour
that the transformation makes. The way the
transformation changes behaviour is exactly
known owing to PA formalism.

4. After eliminating or accepting, all alterna-
tives that are left are evaluated against in-
teresting non-functional properties like:
– performance,
– safety,
– maintainability,
– availability,
– or any important property.
The measure of each property is calculated
by using specified metrics, models [7] or sim-
ulations.

5. In the following step one alternative is se-
lected amongst others. The selection is based
on Architecture Trade-off Analysis Method
(ATAM) [18]. In short, the method exam-
ines sensitivity of non-functional parameters
to design properties and marks out trade-off
points. Trade-off points are decision variables
that affect more than one quality attributes.
Changing the value of trade-off points in-

106 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

creases some quality attributes and decreases
others. In case of SOA, services granulation
is an example of such trade-off point. When
services are bigger and not numerous then we
have good performance and weak maintain-
ability and reusability. If we split the system
into more services, performance will decrease
but maintainability and reusability will in-
crease.

6. After selecting one alternative process, the
selected process becomes new reference pro-
cess and the algorithm returns to the begin-
ning.

The above steps lead from process that is correct
from functional point of view to process that has
best or acceptable good non-functional quality
attributes.

All steps of the algorithm are guided by a hu-
man designer and supported by automatic tools
that may:
– suggest possible transformations of a refer-

ence process,
– verify behavioural equivalence,
– compute quality metrics of alternatives,
– point out trade-off points.
The conclusion is that the transformational
approach does not try to make a to-
tally automatic process design, because, in
our opinion, it is impossible without hu-
man ability involvement. Instead, the trans-
formational method supports a human de-
signer’s creative work in tasks difficult for
a human.

4. Behavioural Equivalence

Behavioural equivalence verification is based on
Process Algebra transformation and manipula-
tion of BPEL processes [6].

4.1. Process Algebra for Behavioural
Equivalence

Process Algebra (PA) [6] is formal semantic that
express concurrent and distributed processing.
It is specially devoted for parallel, loosely cou-
pled and asynchronous communication so it is

tailored to BPEL analysis. During our research
we used LOTOS [2] realisation of PA.

Using the LOTOS notation, one can model
any process or chain of communicating pro-
cesses, simulate processes execution and, what
is the most important in the context of refactor-
ing, verify equivalence of two different processes.
The equivalence is verified by simulation, bisim-
ulation or preordering analysis [6].

To be able to use PA in stated problem it
is necessary to use some kind of mapping from
BPEL activities to PA terms. There are a few
existing BPEL to PA mappings [10, 4], but none
of them exactly fit to the needs of transforma-
tional process design. Firstly, because they de-
mand full semantic checking in equivalence ver-
ification, that is too precise for refactoring. In
case of the refactoring equivalence verification, if
one process is transformed, its semantic changes
but its behaviour does not. Another aspect is
that an important property of mapping BPEL
to PA for refactoring is that it has to make sim-
ple models with possibly the smallest statespace
– during the design procedure there are a few
changing scenarios and each of them has to be
verified – the time spent for one verification is
limited. This is the motivation for us to develop
new mapping. Mappings of BPEL activities to
PA formulas are presented in Table 1.

The mappings do not take into account data
values or condition probability. This is moti-
vated by simplification (and better verification
performance) of the model. From another point
of view, making some assumptions, there is no
actual need to examine values of variables in
equivalence verification.

There is an artificial mapping of activity
which is not explicit part of BPEL but is nec-
essary for equivalence verification. This is ac-
tivity dependency mapping. Let us assume that
there are two activities in BPEL process that
are not directly attached to each other (by e.g.
<sequence> or <switch>) but by shared vari-
able, like in the following example:
<receive variable="PurchaseOrder"

name="ReceivePurchase" />
...
<assign name="assignOrder">
<copy>

Transformational Design of Business Processes in BPEL Language 107

Table 1. Sample mappings BPEL activities to PA formulas. Part 1

BPEL LOTOS Process Algebra
empty

<empty
name="emptyName" [...]

</empty>

process empty_emptyName[dummy] :=
exit

endproc

external service invocation

<invoke inputVariable="ivName"
outputVariable="ovName"
name="invName" [...]>

[...]
</invoke>

process invoke_invName[ivName,ovName] :=
ivName;ovName;exit
endproc

receive message

<receive variable="vName"
name="receiveName" [...]>

[...]
</receive>

process receive_receiveName
[vName] :=

vName;exit
endproc

reply

<reply variable="vName"
name="replyName" [...] >

[...]
</reply>

process reply_replyName[vName] :=
vName;exit

endproc

assign variable value

<assign name="asgName"
<copy>
<from variable="fromVar">
<from to="toVar">

</copy>
</assign>

process assign_asgName[fromVar, toVar] :=
fromVar;toVar;exit

endproc

parallel execution

<flow name="flowName">
< ... name="activityA"/>
< ... name="activityB"/> [...]

</flow>

process flow_flowName[dummy] :=
activityA || activityB ...

endproc

sequential execution

<sequence name="seqName">
< ... name="activityA"/>
< ... name="activityB"/>
[...]

</sequence>

process sequence_seqName[linkSyn] :=
activityA >> linkSyn;activityB >> ...

endproc

Note: linkSyn should be placed according to po-
tential link synchronization usage.

108 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Table 2. Sample mappings BPEL activities to PA formulas. Part 2

BPEL LOTOS Process Algebra
conditional execution

<switch name="switchName">
<case ...>
< ... name="activityA"/>

</case>
<case ...>
< ... name="activityB"/>

</case>
</switch>

process switch_switchName[dummy] :=
hide ended in (

activityA [] activityB ...
)

endproc

pick

<pick name="pickName">
<onMessage partnerLink="ncname"

portType="qname"
operation="opA" variable="ncname">

activityA
</onMessage>
<onMessage partnerLink="ncname"
portType="qname"
operation="opB" variable="ncname">

activityB
</onMessage>

</pick>

process pick_pickName[dummy] :=
activityA[]activityB

endproc

link

<flow name="flowName">
<links>
<link name="XtoY"/>

</links>
<sequence name="X">
<source linkName="XtoY"/>
<invoke name="A" .../>
<invoke name="B" .../>

</sequence>
<sequence name"Y">
<target linkName="XtoY"/>
<invoke name="E" .../>

</sequence>
</flow

process flow_flowName[dummy] :=
hide XtoY in
(sequence_X[XtoY]

|[XtoY]|
sequence_Y[XtoY])

endproc

Transformational Design of Business Processes in BPEL Language 109

<from variable="PurchaseOrder"/>
<to variable="ShippingRequest"/>

</copy>
</assign>

Then activity dependency mapping will be:
process act_dependency[dummy]
receive_ReceivePurchase[PurchaseOrder]

|[PurchaseOrder]|
assign_assignOrder[PurchaseOrder,

ShippingRequest]
endproc

The activity dependency expresses indirect
dependency of two activities of which, one needs
output data from another, no matter what struc-
tural dependency (sequence or parallel) in the
process are.

4.2. BPEL Behavioural Equivalence

There are a few approaches to determine be-
havioural equivalence (or in other words be-
haviour preservation) of refactored processes. In
[24] the author proposes such definition, that
two systems are equivalent when the response
for each request is the same from both systems.
According to [22] communication-oriented sys-
tems are equivalent if they send messages in the
same order.

In case of transformational design we assume
that every service fulfills stateless postulate. It
means that when BPEL process invokes exter-
nal service then in every invocation response for
some request is always the same, it is indepen-
dent of history. This assumption leads to a con-
clusion that state of external services (and all
environment) is encapsulated inside the invok-
ing service.

To make this assumption usable and to prove
how it can be used we needed some PA theory.

B
x−→ B′ (1)

The above formula means that process B
reaches state B′ after receiving an event (mes-
sage) x.

Now PA semantics is defined using inference
rules that has form:

premises

conclusions
(sidecondition) (2)

For example parallel execution (without syn-
chronization) || has 2 symmetric rules:

B1 x−→ B1′

B1||B2 x−→ B1′||B2
and

B2 x−→ B2′

B1||B2 x−→ B1||B2′

(3)

an preceding (sequential composition) >> has 2
rules:

B1 x−→ B1′

B1 >> B2 x−→ B1′ >> B2
and

B2 σ−→ B2′

B1 >> B2 i−→ B2

(4)

where σ is successful termination and i is unob-
servable (hidden) event.

If external service S is stateless then:

∀y ∈ Y S y−→ S (5)

where Y is a set of all events. This means that
every event, generated externally or from the
subjected service, does not change the state and
answer from the service.

To analyse a BPEL process using PA terms,
the BPEL process has to be translated into PA
using mapping mentioned in previous section.
The product of translation is a set of PA pro-
cesses that are sequentially ordered by BPEL
steering instructions – sequences, flows, switches
and so on. Additionally, a part of mapping is ac-
tivity dependency processes. This artifact sym-
bolizes data dependency between elements.

Let us symbolize it with dependency operator:

A]x]B (6)

which means that state B can be started after A
is successfully terminated and event x is emitted
(or received).

Below we can see some example, that shows
what is our behavioural equivalence based on.

The given process has a set of operations con-
nected with dependency sequence:

(A]x]C]z]D) (7)

C waits for A result and D for C result.

110 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Beside the above dependency, the pro-
cess has also structural sequence defined by
<sequence> instruction A → B → C → D,
where B is instruction which is not connected by
activity dependency. We can relax the structural
sequence and consider the process as:

(A]x]C]z]D)||B (8)

That means that we can treat (A]x]C]z]D) and
B as two parallel independent activities.

The proof that (8) is true for stateless
services.
1. If there is no external service (8) is true by

the definition because there is no interaction
between (A]x]C]z]D) and B,

2. If there is stateless external service S, then:
∀y(A]x]C]z]D)||S y−→ ((A]x]C]z]D))′||S (9)

and
∀yS||B y−→ S||B′ (10)

which leads to:

(A]x]C]z]D) y−→ (A]x]C]z]D)′
⇒ (A]x]C]z]D)||B y−→ (A]x]C]z]D)′||B (11)

and
B

y−→ B′

⇒ (A]x]C]z]D)||B y−→ (A]x]C]z]D)||B′
(12)

The equation (12) is parallel execution
inference rules (3) which is proof of (8)

If S was stateful, then
∃y(A]x]C]z]D)||S y−→ (A]x]C]z]D)′||S′ (13)

then
(A]x]C]z]D)||B y−→ (A]x]C]z]D)′||B′ (14)

this would mean that there are some interactions
between (A]x]C]z]D) and B, and that they can
not be treated independently.

The above theory makes it possible to di-
vide the whole BPEL process into parts, that
are only dependant by activity dependency and
also makes possible to check if every refac-
tored process is contained in these dependen-
cies. This technique is related to program slic-
ing [1] used broadly in source code refactor-
ing. The BPEL service with defined activ-
ity dependencies and without structured con-

straints (sequences, flows, conditional and so
on) is called minimal dependency process and
is used to check the behavioural equivalence.
After refactoring, the new (refactored) process
has to be translated to PA and its PA image
must fulfill preorder relationship with the mini-
mal dependency process. Refactored process has
to be subgraph of minimal dependency process
states graph.

5. Transformation Steering

The process of transformations is steered by
a method based on the Architecture Trade-off
Analysis Methods (ATAM) [18]. The ATAM
helps to identify trade-off points, that are pa-
rameters that have impact on a few quality as-
pects of the analyzed system. The impact of
trade-off points is positive on one aspect and
negative on another. So to designate proper
value of such parameter there a trade-off has to
be reach on this parameter.

ATAM helps to decide which alternative
should be selected during the process design. In
that way ATAM steers transformation in a de-
sign algorithm.

6. Process Design Example

In order to illustrate how transformational de-
sign works in practice, a simple example is
presented below. The example is inspired by
BPEL specification [17]. The quality of pro-
cess is measured in two aspects: performance
and reusability. The performance metric is re-
sponse time under a given load, and reusability
is measured by number of interfaces that whole
service provides.

6.1. Reference process

The business process is a typical purchase of
goods service. The service is composed of three
activities: invoicing, order shipping and produc-
tion scheduling. The activities of the process are
organized as follows:

Transformational Design of Business Processes in BPEL Language 111

1. the process receives purchase order, receives
product type, quantity and desired shipping
method,

2. shipping service is requested and the price of
shipping is received,

3. an invoice is requested from an invoicing ser-
vice, the invoice contains product price and
shipping price,

4. the production of goods is scheduled by re-
quest to a scheduling service.

Each activity is executed in sequence. Next ac-
tivity starts after the previous is finished. The
reference process and surrounding services are
depicted in Fig. 2.

Figure 2. Purchase order reference process

6.2. Process Alternatives

For the current reference process, the designer
proposes three alternatives that seem to be
equivalent. Alternative (1) is a process that first
makes request for shipping service and after-
wards, parallelly requests shipping service and
invoice service.

Alternative (2) starts all three requests paral-
lelly – invoicing, shipping and scheduling service.

Alternative (3) is a bit more sophisticated –
the reference service is split into three services.
One of them invokes shipping service, the second
one parallelly invokes invoicing and scheduling

services, the third service composes two subser-
vices. The alternatives are presented in Fig. 3.

6.3. Equivalence verification

In the current stage of algorithm, alternatives
are verified to be behavioural equivalents to ref-
erence process. The technique of verification is
described in section 5. The result of the verifi-
cation is as follows:
– alternative 1 is behaviourally equivalent un-

conditionally,
– alternative 2 is not equivalent, because a re-

quest to invoicing service and shipping ser-
vice depends on data received from shipping
service. When all three requests startsat the
same time, we can not guarantee, that the
data from shipping service is received before
a request to scheduling and invoicing services
is made.

– alternative 3 is behaviourally equivalent.
Upon the above information, the designer de-
cides to remove alternative 2 from the alterna-
tives set.

6.4. Alternatives Evaluation –
Performance

As it was mentioned at the beginning of the sec-
tion, alternatives are evaluated in performance
and reusability aspects. Performance is defined
as a mean response time estimation. The web
service and connections between services can be
modeled, with queueing theory, as M/M/1//inf
system. It means that requests arrive to the sys-
tem independently with exponential interval dis-
tribution and response time is also exponentially
distributed. Thanks to the above assumptions,
average response time of whole system can be es-
timated as a sum of average responses from its
components: services and links between them.
To make evaluation simpler, we assume that ev-
ery network connection has the same average la-
tency RN . So average response time of the ref-
erence process is:

RRP = RBPELRP +Rshipping +Rinvoicing

+Rscheduling + 7RN
(15)

112 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Figure 3. Possible alternatives for reference process

Transformational Design of Business Processes in BPEL Language 113

An important fact in the above equation, is
that average response times of invoicing, ship-
ping and scheduling are simply added, because
requests to services are made consequently, one
by one. Let us assume additionally values of each
parameter:
– RBPELRP = 2 ms (average time of processing

of main BPEL process),
– Rshipping = 3 ms (avg. resp. time from ship-

ping service),
– Rinvoicing = 5 ms (avg. resp. time from in-

voicing service),
– Rscheduling = 4 ms (avg. resp. time from ser-

vice),
– RN = 1 ms (avg. network latency).
That gives RRP = 21 ms.

For alternative 1 average response time is:
RA1 = RBPELA1 +Rshipping

+ max(Rinvoicing, Rscheduling) + 7RN
(16)

the difference between alternative 1 and refer-
ence process is that invoice and scheduling ser-
vices are requested parallelly, so response time
from the parallel part is a maximum of response
times from invoicing and scheduling. When we
assume that RBPELA1 = RBPELRP then: RA1 =
17 ms.

Finally alternative 3 average response time is:

RA3 = RBPELA31 +RBPELA32

+RBPELA33 +Rshipping

+ max(Rinvoicing, Rscheduling) + 11RN
(17)

that gives: RA3 = 25 ms.

6.5. Alternatives Evaluation –
Reusability

As a reusability metrics is taken the total num-
ber of interfaces that a service delivers. Refer-

ence process and alternative 1 delivers four inter-
faces: one to main composed process and three
to elementary services: invoicing, shipping and
scheduling. Alternative 3 delivers 6 interfaces:
three to basic services, one to composite ser-
vice and two new interfaces to two sub services
– shipping request and invoicing scheduling re-
quest.

All the above data are gathered in Table 3.

6.6. Best Alternative Selection

By means of ATAM method it is possible to
identify the trade-off point, which is in following
example services quantity. If composite service
consist of more basic services, then it is more
reusable, however, performance suffers.

In the current stage the new reference pro-
cess has to be designated. Apparently alterna-
tive 1 is the best choice. Alternative 1 is bet-
ter than the current reference process in per-
formance measure and not worse in reusability.
Alternative 3 is better in reusability than alter-
native 1 but much worse in performance, even
worse than reference process.

7. Tool Support

As it was mentioned previously, an important
goal of the research is to deliver a tool that will
support usage of transformational process de-
sign. The tool is currently under development.
In the current section a current status of tool
development is described. The tool is based on
open-source NetBeans IDE [23]. It is planned
that whole design process will be held in Net-
Beans. BPEL editor, which is already imple-
mented in the IDE, is used. Beside BPEL editor,
a graphical editor is necessary as it will guide

Table 3. Quality metrics for reference process and alternatives

Reference
process

Alternative 1 Alternative 3

Average response
time

21 ms 17 ms 25 ms

Reusability 4 4 6
Services quantity 1 1 3

114 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

the process design iteration – its layout will be
similar to Figure 1. The editor will be the main
window of the tool. A designing user will be able
to click on every alternative and look inside us-
ing native BPEL editor. In the main window
there will also be all the important data about
quality of alternatives.

7.1. BPEL Refactoring

To automate refactoring process in BPEL lan-
guage it was necessary to create the tool which
provides these features. It was proposed to au-
tomate such types of transformation: renam-
ing (variable, partnerLink, and correlationSet),
aggregation, asynchronization, parallelization,
split. After selecting a part of the code in BPEL
file one of the mentioned transformations can
be realized (if it is possible). Such tool has not
been already implemented – this is why I de-
cided to implement an idea of creating the ap-
plication as a plug-in to Netbeans IDE which
automates refactoring process. There are nu-
merous engineering challenges connected with
the detailed design of tool support for BPEL
transformations. These have been presented
in detail below.

7.1.1. Renaming

It is the simplest type of refactoring – changes the
name one of the three elements in BPEL (vari-
able, partnerLink, and correlationSet) and all
the occurrences of this element in other language
constructions. It seems to be an easy transfor-
mation but it is relevant. It would be difficult to
do it manually because BPEL contains a lot of
constructions with reference to other elements.
For instance reference to variable may occur in
such elements: receive, reply, invoke, onMessage,
throw, copy from, copy to and in XPath expres-
sions:wait, onAlarm, if, else if,while, repeatUntil,
forEach. As we can see it is much easier to use
an automatic tool which finds all the occurrences
of the chosen element in BPEL code. The of-
fered application provides these features. We can
change the name one of the mentioned elements
and do not have to worry about occurrences in

other BPEL constructions – program will do it
for us automatically.

7.1.2. Aggregation

Composing one or more services into larger one
seems to be easy. It is because somebody may
think that it is enough to move logic from one
service to another and that is all. It is a wrong
approach because there are a lot of other ele-
ments which we have to focus on.

First of all, we must find the BPEL file that
contains the logic of the invoked process which
is automatically done by the proposed tool.

Secondly, it is needed to move elements
such as variable, partnerLink, correlationSet
and namespaces to the process that is invoking,
because all the elements are used in logic which
we want to encapsulate.

Lastbutnot least, itmayhappen that theused
variables, partnerLinks or namespaces in invoked
process have the same name as in process which is
invoking the first one. This situation is considered
in the proposed tool – when the situation occurs,
application changes the name of the specified el-
ement in all constructions where reference to this
element occur in order to prevent name collision.
A similar situation may happen in namespaces
because the onewewant to add is already defined.
In this case it is also needed to change the name
of the added namespace in every place where it
occurs. Also a very important thing is to ensure
that variable used as input in invoked process
(attribute variable in receive element) after the
transformationwill be the same as input in invoke
element before transformation. A similar situa-
tion occurs whenwe have synchronous invocation
with output variable it has to be checked whether
variable used in reply element will be the same
as an output variable in invoke element before
refactoring. This situation is also supported by
the application.

7.1.3. Asynchronization

In this type of refactoring the offered tool also
provides a few conveniences that automate pro-
cess of transformation. First of them is finding

Transformational Design of Business Processes in BPEL Language 115

as many operations as it is possible which are
invoked after selected element and they are in-
dependent. After that we can change the invoca-
tion method from synchronous to asynchronous.
If there are no independent operations transfor-
mation will be terminated.

To change the invocation from synchronous
to asynchronous some changes in WSDL and
BPEL file in invoked process are needed. We
have to delete (in WSDL file) an output element
in operation construction (to make invocation
asynchronous) and add a new input element for
a reply to the primary process (we can not use
the same input element for the reply because the
types of used variables may be different). More-
over in BPEL file we must change synchronous
element reply to element invoke to make con-
nection asynchronous – we need to define ad-
ditional partnerLink element to make the con-
nection possible. The application supports all of
these transformations.

To finish the transformations it is necessary
to provide some modifications in the primary
process. This is because of the type of invoca-
tion (asynchronous) which we introduce earlier
by changing a partner WSDL file. After all in-
dependent operations we need to place element
receive to collect a response from partner pro-
cess and delete an attribute outputVariable in
the invoke element.

The last thing to remember is to define cor-
relation element to ensure that response will be
transferred to the right instance of the primary
process. This is why proposed tool makes some
modifications in WSDL file of partner process.
To be more accurate application defines prop-
erty element and two propertyAlias elements.
Thanks to that it is possible to define corre-
lationSet and correlation elements in primary
process file which guarantee that message will
be delivered to right process instance. After all
mentioned operations, which proposed tool sup-
ports, refactoring is finished.

7.1.4. Split

Splitting the service without using the auto-
matic tool may also be difficult. To extract a

part of the service and then create another ser-
vice to be invoked inside the primary service we
have to create two new files – a BPEL file and
a WSDL file. Moreover, we must fill them with
all the necessary information which is indispens-
able to make a network connection with the new
process. As well it is requisite to change the pri-
mary process so that the connection with the
new process will be possible. All the mentioned
operations are supported by our tool.

First of all, the application chooses two vari-
ables – one as input variable and second as out-
put variable for synchronous invocation of the
new process. Choosing variables is not compli-
cated operation because as input variable is cho-
sen first which occurs in selected code to extract
and it is used for one of the operations. In case
of the occurrence more than one variable, all of
which are not initiated in a chosen logic, the
transformation will be terminated. Selection of
the output variable is very similar to the selec-
tion of the input variable – if exists exactly one
variable, which is initiated in the selected logic
and used later after the selected code, it will be
chosen as output variable.

Next, BPEL and WSDL files are created.
In a WSDL file all the necessary constructions
are created, such as: message, portType, oper-
ation, partnerLinkType and namespaces which
defines complex types of the variables. Then
using definition created in a WSDL file it is
possible to make a new BPEL file and cre-
ate constructions: variable, partnerLink, names-
paces, etc. and place selected logic in new
file. All of the operations are supported by
the application.

At the end it is necessary to modify the pri-
mary process. To make a connection with the
new process the application adds invoke activ-
ity (with all attributes) instead of the extracted
logic and element partnerLink (also with all at-
tributes). After all these transformations split-
ting the process into parts is possible.

7.2. Tools for Equivalence Verification

The algorithm of equivalence verification consist
of three steps:

116 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Figure 4. Structure of verification process

1. translating BPEL process to minimal depen-
dency process (MDP) – this step is made
only once at the beginning of the refactoring
process,

2. translating BPEL process to its PA image,
3. checking preorder relationship of PA image

with minimal dependency process.
As a part of the developed tool, translation

BPEL to PA was made by means of an XSLT
processor, as the PA processor was used Concur-
rence Workbench for New Century (CWB-NC)
[5]. The structure of verification system is in the
Figure 4.

The transformation from BPEL to its PA
image is a quite trivial action as it was used
XSLT preprocessor. The XSLT processor auto-
matically maps BPEL instructions into their PA
equivalences as it is listed in Tables 1 and 2.

The second type of mapping – from BPEL
to its MDP image is more sophisticated. As it is
needed to resolve indirect dependencies between
BPEL activities there graph manipulation tech-
niques are applied.

8. Summary and Further Work

A method for transformational design of SOA
business processes in BPEL has been presented.
It has been founded on the formal framework
of process algebras as well as the concept of
process equivalence originally developed by the
authors. The transformations are aimed at im-
proving certain properties like e.g. modifiability
and performance while preserving the behaviour
specified by the starting business process model.

The whole framework has been accompanied
by a prototype tool which has been integrated
with NetBeans environment in the form of a
plug-in. The challenges resolved during tool de-
velopment have by no means turned out to be
trivial. Therefore, they have also been discussed
in the paper which should become a valuable
resource of the real implementation experiences
in the field of transforming BPEL as well as for
the continuation of the work presented here.

The approach has been validated on an ex-
emplary design case. The result of such a case
study are promising though some more compli-
cated cases would provide a chance for a more
in-depth validation of the whole approach.

References

[1] D. Binkley and K. B. Gallagher. Program slic-
ing. Advances in Computers, 43:1–50, 1996.

[2] T. Bolognesi and E. Brinksma. Introduction to
the ISO specification language LOTOS. Com-
put. Netw. ISDN Syst., 14(1):25–59, 1987.

[3] F. Breugel and M. Koshkina. Models and veri-
fication of BPEL. 2006.

[4] J. Cámara, C. Canal, J. Cubo, and A. Vallecillo.
Formalizing WSBPEL business processes using
process algebra. Electr. Notes Theor. Comput.
Sci., 154(1):159–173, 2006.

[5] R. Cleaveland. Concurrency workbench of the
new century, 2000. http://www.cs.sunysb.edu/
~cwb/.

[6] R. Cleaveland and S. Smolka. Process algebra.
1999.

[7] A. D’Ambrogio and P. Bocciarelli. A
model-driven approach to describe and pre-
dict the performance of composite services. In
WOSP ’07: Proceedings of the 6th international

Transformational Design of Business Processes in BPEL Language 117

workshop on Software and performance, pages
78–89, New York, NY, USA, 2007. ACM.

[8] D. Fahland and W. Reisig. ASM-based seman-
tics for BPEL: The negative control flow. In
Abstract State Machines, pages 131–152, 2005.

[9] A. Ferrara. Web services: a process algebra
approach. In ICSOC ’04: Proceedings of the
2nd international conference on Service ori-
ented computing, pages 242–251, New York, NY,
USA, 2004. ACM Press.

[10] A. Ferrara. Web services: a process algebra
approach. In ICSOC ’04: Proceedings of the
2nd international conference on Service ori-
ented computing, pages 242–251, New York, NY,
USA, 2004. ACM Press.

[11] H. Foster, J. Kramer, J. Magee, and S. Uchi-
tel. Model-based verification of web service
compositions. In 18th IEEE International
Conference on Automated Software Engineering
(ASE), 2003.

[12] H. Foster, S. Uchitel, J. Magee, J. Kramer, and
M. Hu. Using a rigorous approach for engineer-
ing web service compositions: A case study. In
SCC ’05: Proceedings of the 2005 IEEE Interna-
tional Conference on Services Computing, pages
217–224, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] X. Fu, T. Bultan, and J. Su. Analysis of in-
teracting BPEL web services. In WWW ’04:
Proceedings of the 13th international conference
on World Wide Web, pages 621–630, New York,
NY, USA, 2004. ACM.

[14] S. Hinz, K. Schmidt, and C. Stahl. Transform-
ing BPEL to Petri Nets. In Proceedings of the
BPM 2005, pages 220–235, Nancy, France, Sept.
2005. Springer-Verlag.

[15] I. Hofacker and R. Vetschera. Algorithmical ap-
proaches to business process design. Computers
& OR, 28(13):1253–1275, 2001.

[16] G. J. Holzmann. The SPIN Model Checker:
Primer and Reference Manual. Addison-Wesley
Professional, September 2003.

[17] IBM, BEA, and Microsoft. Business process
execution language for web services. http://
citeseer.ist.psu.edu/669609.html, 2003.

[18] R. Kazman, M. H. Klein, M. Barbacci, T. A.
Longstaff, H. F. Lipson, and S. J. Carrière. The
architecture tradeoff analysis method. In Pro-
ceedings of ICECCS, pages 68–78, 1998.

[19] A. Martens. Simulation and equivalence be-
tween BPEL process models. In Proc. of Intl.
Conference DASD’05, 2005.

[20] F. Martin. Refactoring: improving the design of
existing code. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[21] D. E. Millard, H. C. Davis, Y. Howard,
L. Gilbert, R. J. Walters, N. Abbas, and G. B.
Wills. The service responsibility and interaction
design method: Using an agile approach for web
service design. pages 235–244, 2007.

[22] I. Moore. Automatic inheritance hierarchy
restructuring and method refactoring. In
OOPSLA ’96: Proceedings of the 11th ACM
SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applica-
tions, pages 235–250, New York, NY, USA,
1996. ACM.

[23] NetBeans IDE. http://www.netbeans.org/.
[24] W. F. Opdyke. Refactoring Object-Oriented

Frameworks. PhD thesis, Urbana-Champaign,
IL, USA, 1992.

[25] A. Ratkowski and A. Zalewski. Performance
refactoring for service oriented architecture.
ISAT ’2007: Information Systems Architecture
And Technology, 2007.

[26] A. Ratkowski and A. Zalewski. Transforma-
tional design of business processes in SOA. In
Proceedings of CEE-SET, 2008.

[27] W. Reisig. Modeling and Analysis Techniques
for Web Services and Business Processes. In
FMOODS 2005, Athens, Greece, June 15–17,
2005. Proceedings, volume 3535, pages 243–258.
Springer Verlag, May 2005.

[28] N. Russell, W. van der Aalst, Arthur, and
P. Wohed. On the suitability of UML 2.0
activity diagrams for business process mod-
elling. In APCCM ’06: Proceedings of the 3rd
Asia-Pacific conference on Conceptual mod-
elling, pages 95–104, Darlinghurst, Australia,
Australia, 2006. Australian Computer Soci-
ety, Inc.

[29] G. Salaün, L. Bordeaux, and M. Schaerf. De-
scribing and reasoning on web services using
process algebra. In ICWS ’04: Proceedings of
the IEEE International Conference on Web Ser-
vices, page 43, Washington, DC, USA, 2004.
IEEE Computer Society.

[30] G. Salaün, A. Ferrara, and A. Chirichiello. Ne-
gotiation among web services using LOTOS/-
CADP. In ECOWS, pages 198–212, 2004.

[31] W. van der Aalst, A. ter Hofstede, and
M.Weske. Business process management: A sur-
vey. In Business Process Management, Lec-
ture Notes in Computer Science, pages 1–12.
Springer, Berlin, Heidelberg, 2003.

[32] Y. Yang, T. Tan, J. Yu, and F. Liu. Transforma-
tion BPEL to CP-Nets for verifying web services
composition. In Proceedings of NWESP ’05,
page 137, Washington, DC, USA, 2005. IEEE
Computer Society.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Satisfying Stakeholders’ Needs – Balancing Agile
and Formal Usability Test Results

Jeff Winter∗, Kari Rönkkö∗
∗School of Engineering, Dept. of Interaction & System Design, Blekinge Institute of Technology

jeff.winter@bth.se, kari.ronkko@bth.se

Abstract
This paper deals with a case study of testing with a usability testing package (UTUM), which
is also a tool for quality assurance, developed in cooperation between industry and research. It
shows that within the studied company, there is a need to balance agility and formalism when
producing and presenting results of usability testing to groups who we have called Designers and
Product Owners. We have found that these groups have different needs, which can be placed on
opposite sides of a scale, based on the agile manifesto. This becomes a Designer and a Product
Owner Manifesto. The test package is seen as a successful hybrid method combining agility with
formalism, satisfying organisational needs, and fulfilling the desire to create a closer relation
between industry and research.

1. Introduction

Product quality is becoming the dominant suc-
cess criterion in the software industry, and Os-
terweil states that the challenge for research is to
provide the industry with the means to deploy
quality software, allowing companies to compete
effectively [23]. Quality is multi-dimensional,
and impossible to show through one simple mea-
sure, and research should focus on identifying
various dimensions of quality and measures ap-
propriate for it [23]. A more effective collab-
oration between practitioners and researchers
would be of great value [23]. Quality is also
important owing to the criticality of software
systems (a view supported by Harrold in her
roadmap for testing [14]) and even to changes
in legislation that make executives responsible
for damages caused by faulty software.

One approach to achieving quality has been
to rely on complete, testable and consistent re-
quirements, traceability to design, code and test
cases, and heavyweight documentation. How-
ever, a demand for continuous and rapid results

in a world of continuously changing business de-
cisions often makes this approach impractical or
impossible, pointing to a need for agility. At a
keynote speech at the 5th Workshop on Soft-
ware Quality, held at ICSE 2007 [45], Boehm
stated that both agility and quality are becom-
ing more and more important. Many areas of
technology exhibit a tremendous pace of change,
due to changes in technology and related infras-
tructures, the dynamics of the marketplace and
competition, and organisational change. This is
particularly obvious in mobile phone develop-
ment, where their pace of development and pen-
etration into the market has exploded over the
last 5 years. This kind of situation demands an
agile approach [6].

This article is based on two case studies of a
usability evaluation framework called UIQ Tech-
nology Usability Metrics (UTUM) [39], the re-
sult of a long research cooperation between the
research group “Use-Oriented Design and Devel-
opment” (U-ODD) [37] at Blekinge Institute of
Technology (BTH), and UIQ Technology (UIQ)
[38]. With the help of Martin et al.’s study [21]

120 Jeff Winter, Kari Rönkkö

and our own case studies, it presents an ap-
proach to achieving quality, related to an organi-
zational need for agile and formal usability test
results. We use concepts such as “agility under-
stood as good organizational reasons” and “plan
driven processes as the formal side in testing”,
to identify and exemplify a practical solution to
assuring quality through an agile approach. The
research question for the first case study was:
– How can we balance demands for agile re-

sults with demands for formal results when
performing usability testing for quality as-
surance?

We use the term “formal” as a contrast to
the term “agile” not because we see agile pro-
cesses as being informal or unstructured, but
since “formal” is more representative than “plan
driven” to characterise the results of testing
and how they are presented to certain stake-
holders. We examine how the results of the
UTUM test are suitable for use in an agile
process. eXtreme Programming (XP) is used
as an illustrative example in this article, but
note that there is no strong connection to any
particular agile methodology; rather, there is a
philosophical connection between the test and
the ideas behind the agile movement. We ex-
amine how the test satisfies requirements for
formal and informal statements of usability
and quality.

In the first study, we identify two groups
of stakeholders that we designated as Designers
(D) and Product Owners (PO), with an inter-
est in the different elements of the test data. A
further case study was performed to discover if
these findings could be confirmed. It attempted
to answer the following research questions:
– Are there any presentation methods that are

generally preferred?
– Is it possible to find factors in the data that

allow us to identify differences between the
separate groups (D & PO) that were tenta-
tively identified in the case study presented
in the previous chapter?

– Are there methods that the respondents
think are lacking in the presentation meth-
ods currently in use within UTUM?

– Do the information needs, and preferred
methods change during different phases of a
design and development project?

– Can results be presented in a meaningful way
without the test leader being present?

The structure of the article is as follows. An
overview of two testing paradigms is provided.
A description of the test method comes next,
followed by a presentation of the methodology,
and the material from the case studies, examin-
ing the balance between agility and formalism,
the information needs of different stakeholders,
the relationship between agility, formality and
quality, and the need for research/industry co-
operation. The article ends with a discussion of
the work, and conclusions.

2. Testing – Prevailing Models vs.
Agile Testing

Testing is performed to support quality assur-
ance, and an emphasis on software quality re-
quires improved testing methodologies that can
be used by practitioners to test their software
[14]. Since we regard the test framework as an
agile testing methodology, this section presents
a discussion of testing from the viewpoints of
both the software engineering community and
the agile community.

Within software engineering, there are many
types of testing, in many process models, (e.g.
the Waterfall model [30], Boehm’s Spiral model
[4]). Testing is often phase based, and the typical
stages of testing (see e.g. [33], [25]) are Unit test-
ing, Integration testing, Function testing, Per-
formance testing, Acceptance testing, and Instal-
lation testing. The stages from Function testing
and onwards are characterised as System Test-
ing, where the system is tested as a whole rather
than as individual pieces [25]. Usability testing
(otherwise named Human Factors Testing) has
been characterised as investigating requirements
dealing with the user interface, and has been
regarded as a part of Performance testing [25].
The prevailing approach to testing is reliant on
formal aspects and best practice.

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 121

Agile software development changes how soft-
ware development organisations work, especially
regarding testing [34]. In agile development, ex-
emplified here by XP [1], a key tenet is that
testing is performed continuously by developers.
Tests should be isolated, i.e. should not inter-
act with the other tests that are written, and
should preferably be automatic, although not
all companies applying XP automate all tests
[21]. Tests come from both programmers and
customers, who create tests that serve to in-
crease their confidence in the operation of the
program. Customers specify functional tests to
show that the system works how they expect
it to, and developers write unit tests to en-
sure that the programs work how they think
it does. These are the main testing methods in
XP, but can be complemented by other types of
tests when necessary. Some XP teams may have
dedicated testers, who help customers translate
their test needs into tests, who can help cus-
tomers create tools to write, run and main-
tain their own tests, and who translate the cus-
tomer’s testing ideas into automatic, isolated
tests [1].

The role of the tester is a matter of debate. It
is primarily developers who design and perform
testing. However, within industry, there are seen
to be fundamental differences between the peo-
ple who are “good” testers and those who are
good developers. In theory, it is often assumed
that the tester is also a developer, even when
teams use dedicated testers. Within industry,
however, it is common that the roles are clearly
separated, and that testers are generalists with
the kind of knowledge that users have, who
complement the perspectives and skills of the
testers. A good tester can have traits that are in
direct contrast with the traits that good devel-
opers need (see e.g. Pettichord [24] for a discus-
sion regarding this). Pettichord claims that good
testers think empirically in terms of observed
behaviour, and must be encouraged to under-
stand customers’ needs. Thus, although there
are similarities, there are substantial differences
in testing paradigms, how they treat testing,
and the role of the tester and test designer. In
our testing, the test leaders are specialists in the

area of usability and testing, and generalists in
the area of the product and process as a whole.

3. The UTUM Usability Evaluation
Framework

UTUM is a usability evaluation framework for
mass market mobile devices, and is a tool for
quality assurance, measuring usability empiri-
cally on the basis of metrics for satisfaction,
efficiency and effectiveness, complemented by a
test leader’s observations. Its primary aim is to
measure usability, based on the definition in ISO
9241-11, where usability is defined as “the extent
to which a product can be used by specified users
to achieve specified goals with effectiveness, ef-
ficiency and satisfaction in a specified context
of use” [17]. This is similar to the definition of
quality in use defined in ISO 9126-1, where us-
ability is instead defined as understandability,
learnability and operability [18]. The intention
of the test is also to measure “The User eXperi-
ence” (UX), which is seen as more encompassing
than the view of usability that is contained in
e.g. the ISO standards [39], although it is still
uncertain how UX differs from the traditional
usability perspective [41] and exactly how UX
should be defined (for some definitions, see e.g.
([15], [16], [42]).

In UTUM testing, one or more test leaders
carry out the test according to predefined re-
quirements and procedure. The test itself takes
place in a neutral environment rather than a lab,
in order to put the test participant at ease. The
test is led by a test leader, and it is performed to-
gether with one tester at a time. The test leader
welcomes the tester, and the process begins with
the collection of some data regarding the tester
and his or her current phone and typical phone
use. Whilst the test leader is preparing the test,
the tester has the opportunity to get acquainted
with the device to be tested, and after a few
minutes is asked to fill in a hardware evaluation,
a questionnaire regarding attitudes to the look
and feel of the device.

The tester performs a number of use cases on
the device, based on the tester’s normal phone

122 Jeff Winter, Kari Rönkkö

Metrics/
graphs

UTUM test data

RESULTS

U
ser

User
satisfaction
Appraised

inefficiency

User
satisfaction
Appraised
efficiency

User
dissatisfaction

Appra

User
dissatisfaction

Appra

Test
knowledge

Knowledge

Interested
parties

Influence

Figure 1. Contents of the UTUM testing, a mix of metrics and mental data

use or organisational testing needs. The test
leader observes what happens during the use
case performance, and records any observations,
the time taken to complete the use cases, and
answers to follow-up questions that arise. After
the use case is complete, the tester answers ques-
tions about how well the telephone lets the user
accomplish the use case.

When all of the use cases are completed, the
tester completes a questionnaire based on the
System Usability Scale (SUS) [7] about his or
her subjective impressions of how easy the in-
terface is to use. It expresses the tester’s opin-
ion of the phone as a whole. The tester is finally
thanked for their participation in the test, and
is usually given a small gift, such as a cinema
ticket, to thank them for their help.

The data obtained are transferred to spread-
sheets. These contain both quantitative data,
such as use case completion times and attitude
assessments, and qualitative data, such as com-
ments made by testers and information about
problems that arose. The data is used to cal-
culate metrics for performance, efficiency, effec-
tiveness and satisfaction, and the relationships
between them, leading to a view of usability for
the device as a whole. The test leader is an im-
portant source of data and information in this
process, as he or she has detailed knowledge of
what happened during testing.

Figure 1 illustrates the flow of data and
knowledge contained in the test and the test re-
sults, and how the test is related to different
groups of stakeholders. Stakeholders, who can
be within the organisation, or licensees, or cus-
tomers in other organisations, can be seen at
the top of the flow, as interested parties. Their
requirements influence the design and contents
of the test. The data collected is found both as
knowledge stored in the mind of the test leader,
and as metrics and qualitative data in spread-
sheets.

The results of the testing are thereby a com-
bination of metrics and knowledge, where the
different types of data confirm one another. Met-
rics based material is presented in the form of
diagrams, graphs and charts, showing compar-
isons, relations and tendencies. This can be cor-
roborated by the knowledge possessed by the
test leader, who has interacted with the testers
and who knows most about the process and con-
text of the testing. Knowledge material is often
presented verbally, but can if necessary be sup-
ported and confirmed by metrics and visual pre-
sentations of the data.

UTUM has been found to be a customer
driven tool that is quick and efficient, is eas-
ily transferable to new environments, and that
handles complexity [44]. For more detailed in-
formation on the contents and performance of

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 123

the UTUM test and the principles behind it, see
([39], and [44]). A brief video presentation of the
whole test process (6 minutes) can be found on
YouTube [8].

4. The Study Methodology and
the Case Studies

This work has been part of a long-term research
cooperation between U-ODD and UIQ, which
has centred on the development and evaluation
of a usability evaluation framework (for more in-
formation, see [44], [40]). The case studies in this
phase of the research cooperation were based on
tests performed by together by UIQ in Ronneby,
and by Sony Ericsson Mobile Development in
Manchester.

The process of research cooperation is ac-
tion research (AR) according to the research
and method development methodology called
Cooperative Method Development (CMD), see
[11], [10], [12] and ([28], chapter 8) for further
details. AR “involves practical problem solving
which has theoretical relevance” ([22] p. 12). It
involves gaining an understanding of a problem,
generating and spreading practical improvement
ideas, applying the ideas in a real world situa-
tion and spreading the theoretical conclusions
within academia [22]. Improvement and involve-
ment are central to AR, and its purpose is to
influence or change some aspect of whatever the
research has as its focus ([27] p. 215). A cen-
tral aspect of AR is collaboration between re-
searchers and those who are the focus of the re-
search. It is often called participatory research
or participatory action research ([27] p. 216).
CMD is built upon guidelines that include the
use of ethnomethodological and ethnographi-
cally inspired empirical research, combined with
other methods if suitable. Ethnography is a re-
search strategy taken from sociology, with foun-
dations in anthropology [29]. It relies upon the
first-hand experience of a field worker who is
directly involved in the setting that is under
investigation [29]. CMD focuses on shop floor
development practices, taking the practitioners’
perspective when evaluating the empirical re-

search and deliberating improvements, and in-
volving the practitioners in the improvements.
This approach is inspired by a participatory de-
sign (PD) perspective. PD is an approach to-
wards system design in which those who are ex-
pected to use the system are actively involved
and play a critical role in its design. It includes
stakeholders in design processes, and demands
shared responsibility, participation, and a part-
nership between users and implementers [32].

These studies have been performed as case
studies, defined by Yin as “an empirical en-
quiry that investigates a contemporary phe-
nomenon within its real-life context, especially
when the boundaries between phenomenon and
context are not clearly evident” ([46], p. 13). Yin
presents a number of criteria that are used to
establish the quality of empirical social research
and states that they should be applied both in
the design and conduct of a case study. They
deal with construct validity, internal validity, ex-
ternal validity and reliability ([46], pp. 35–39).

Three tactics are available to increase con-
struct validity, which deals with establishing
correct measures for the concepts being stud-
ied, and is especially problematic in case study
research. These are: using multiple sources
of information; ensuring a chain of evidence
and; using member checking, i.e. having the
key participants review the case study report.
In this study, we have used many different
sources of information. The data was obtained
through observation, through a series of unstruc-
tured and semi-structured interviews [27], both
face-to-face and via telephone, through partici-
pation in meetings between different stakehold-
ers in the process, and from project documents
and working material. The interviews have been
performed with test leaders, and with staff on
management level within the two companies.
Interviews have been audio taped, and tran-
scribed, and all material has been stored. The
second case study involves the use of a survey.
The mix of data and collection methods has
given a triangulation of data that serves to val-
idate the results that have been reached.

To ensure a chain of evidence a “study
database” or research diary has been main-

124 Jeff Winter, Kari Rönkkö

tained. It collects all of the information in the
study, allowing for traceability and transparency
of the material, and reliability [46]. It is mainly
computer based, and is an account of the study
recording activities performed in the study, tran-
scriptions of interviews and observation notes,
and records of relevant documents and articles.
The audio recordings are also stored digitally.
The written document contains notations of
thoughts concerning themes and concepts that
arise when reading or writing material in the
account of the study. The chain of evidence is
also a part of the writing process.

The most important research collaborators
in the industrial organisation have been an in-
tegral part of the study, and have been closely
involved in many stages of the work. They have
been available for testing thoughts and hypothe-
ses during the study, giving opportunities for
member checking. They have also been involved
as co-authors when writing articles, which also
means that member checking has been an inte-
gral part of the research.

Internal validity is especially important in
exploratory case studies, where an investigator
tries to determine whether one event leads to
another. It must be possible to show that these
events are causal, and that no other events have
caused the change. If this is not done, then
the study does not deal with threats to inter-
nal validity. Some ways of dealing with this are
via pattern matching, explanation building, ad-
dressing rival explanations, and using logic mod-
els. This study has been a mix of exploratory
and explanatory studies. To address the issues
of internal validity in the case studies, we have
used the general repertoire of data analysis as
mentioned in the previous paragraph. The ma-
terial in the research diary has been analysed
to find emerging themes, in an editing approach
that is consistent with Grounded Theory (see
Robson [27] p. 458). The analysis process has af-
fected the further rounds of questioning, narrow-
ing down the focus, and shifting the main area
of interest, opening up for the inclusion of new
respondents who shed light on new aspects of
the study. A further method for ensuring valid-
ity has been through discussions together with

research colleagues, giving them the chance to
react to the analysis and suggest and discuss
alternative explanations or approaches.

External validity, knowing whether the re-
sults of a case study are generalisable outside
the immediate case study, has been seen as a
major hinder to doing case studies, as single case
studies have been seen as a poor basis for gener-
alisation. However, this is based on a fallacious
analogy, where critics contrast the situation to
survey research, where samples readily gener-
alise to a larger population. In a case study, the
investigator tries to generalise a set of results to
a wider theory, but, generalisation is not auto-
matic, and a theory must be tested by replicat-
ing the findings, in much the same way as exper-
iments are replicated. Although Yin advises per-
forming multiple-case studies, since the chances
of doing a good case study are better than us-
ing a single-case design ([46], p. 53), this study
has been performed as a single-case study and
has been performed to generate theory. The case
here represents a unique case ([46], p. 40), since
the testing has mainly been performed within
UIQ, and it is thereby the only place where it has
been possible to evaluate the testing methodol-
ogy in its actual context. One particular threat
is in our study is therefore that most of the data
comes from UIQ. Due to close proximity to UIQ,
the interaction there has been frequent and in-
formal, and everyday contacts and discussions
on many topics have influenced the interviews
and their analysis. Interaction with Sony Er-
icsson has been limited to interviews and dis-
cussions, but data from Sony Ericsson confirms
what was found at UIQ. A further threat is that
most of the data in the case study comes from in-
formants who work within the usability/testing
area, but once again, they come from two differ-
ent organisations and corroborate one another,
have been complemented by information from
other stakeholders, and thus present a valid pic-
ture of industrial reality.

A threat in the second case study is the
fact that only ten people have participated. This
makes it difficult to draw generalisable conclu-
sions from the results. Also, since the company
is now disbanded, it is not possible to return

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 125

to the field to perform cross checking with the
participants in the study. The analysis is there-
fore based on the knowledge we have of the con-
ditions at the company and the context where
they worked, and is supported by discussions
with a people who were previously employed
within the company, whom we are still in contact
with. These people can however mainly be char-
acterised as Designers, and therefore may not
accurately reflect the views of Product Owners.

Thus, since this research is mainly based on
a study of one company in a limited context, it
is not possible to make confident claims about
the external validity of the study. However, we
can say that we have created theory from the
study, and that readings appear to suggest that
much of what we have found in this study can
also be found in other similar contexts. Further
work remains to see how applicable the theory
is for other organisations in other or wider con-
texts. Extending the case study and performing
a similar study in another organisation is a way
of testing this theory, and further analysis may
show that the case at UIQ is actually represen-
tative of the situation in other organisations.

Reliability deals with the replicability of a
study, whereby a later investigator should be
able to follow the same procedures as a previ-
ous investigator, and arrive at the same findings
and conclusions. By ensuring reliability you min-
imize errors and bias in a study. One prerequi-
site for this is to document procedures followed
in your work, and this can be done by main-
taining a case study protocol to deal with the
documentation problem, or the development of a
case study database. The general way to ensure
reliability is to conduct the study so that some-
one else could repeat the procedures and arrive
at the same result ([46], pp. 35–39). The case
study protocol is intended to guide the investi-
gator in carrying out the data collection. It con-
tains both the instrument and the procedures
and general rules for data collection. It should
contain an overview of the project, the field pro-
cedures, case study questions, and a guide for
the case study report ([46], p. 69). As mentioned
previously, a case study database has been main-
tained, containing the most important details of

the data collection and analysis process. This
ensures that the study is theoretically replica-
ble. One problem regarding the replicability of
this study, however, is that the rapidly changing
conditions for the branch that we have studied
mean that the context is constantly changing,
whereby it is difficult to replicate the exact con-
text of the study.

In the following, we begin by presenting
the results of the first case study, and dis-
cuss in which way the results are agile or
plan-driven/formal, who is interested in the dif-
ferent types of results, and which of the organisa-
tional stakeholders needs agile or formal results.

5. Agile or Formal?

The first focus of the study was the fact that
testing was distributed, and the effect this had
on the testing and the analysis of the results
During the case study, as often happens in
case studies [46], the research question changed.
Gradually, another area of interest became the
elements of agility in the test, and the bal-
ance between the formal and informal parts of
the testing. The framework has always been re-
garded as a tool for quality, and verifying this
was one purpose of the testing that this case
study was based on. Given the need for agility
mentioned above, the intention became to see
how the test is related to agile processes and
whether the items in the agile manifesto can be
identified in the results from the test framework.
The following is the result of having studied the
material from the case study from the perspec-
tive of the spectrum of different items that are
taken up in the agile manifesto.

The agile movement is based on core val-
ues, described in the agile manifesto [35], and
explicated in the agile principles [36]. The agile
manifesto states that: “We are uncovering better
ways of developing software by doing it and by
helping others do it. Through this work we have
come to value: Individuals and interactions over
processes and tools, Working software over com-
prehensive documentation, Customer collabora-
tion over contract negotiation, and Responding

126 Jeff Winter, Kari Rönkkö

to change over following a plan. That is, while
there is value in the items on the right, we value
the items on the left more”. Cockburn stresses
that the intention is not to demolish the house of
software development, represented here by the
items on the right (e.g. working software over
comprehensive documentation), but claims that
those who embrace the items on the left rather
than those on the right are more likely to suc-
ceed in the long run [9]. Even within the ag-
ile community there is some disagreement about
the choices, but it is accepted that discussions
can lead to constructive criticism. Our analysis
showed that all these elements could be identi-
fied in the test and its results.

In our research we have always been con-
scious of a division of roles within the company,
often expressed as “shop floor” and “manage-
ment”, and working with a participatory design
perspective we have worked very much from the
shop floor point of view. During the study, this
viewpoint of separate groups emerged and crys-
tallised, and two disparate groups became ap-
parent. We called these groups Designers, repre-
sented by e.g. interaction designers and system
and interaction architects, representing the shop
floor perspective, and Product Owners, includ-
ing management, product planning, and market-
ing, representing the management perspective.

When regarding this in light of the Agile
manifesto, we began to see how different groups
may have an interest in different factors of the
framework and the results that it can produce,
and it became a point of interest to see how these
factors related to the manifesto and which of the
groups, Designers (D) or Product Owners (PO),
is mainly interested in each particular item in
the manifesto. The case study data was anal-
ysed on the basis of these emerging thoughts.
Where the groups were found to fit on the scale
is marked in bold text in the paragraphs that
follow. One of the items is changed from “Work-
ing software” to “Working information” as we
see the information resulting from the testing
process as a metaphor for the software that is
produced in software development.
• Individuals and interactions – The test-

ing process is dependent on the individuals

who lead the test, and who actually perform
the testing on the devices. The central figure
here is the test leader, who functions as a
pivot point in the whole process, interacting
with the testers, observing and registering
the data, and presenting the results. This
interaction is clearly important in the long
run from a PO perspective, but it is D who
has the greatest and immediate benefit of the
interaction, showing how users reacted to de-
sign decisions, that is a central part of the
testing.

• Processes and Tools – The test is based
upon a well-defined process that can be re-
peated to collect similar data that can be
compared over a period of time. This is im-
portant for the designers, but in the short
term they are more concerned with the ev-
eryday activities of design and development
that they are involved in. Therefore we see
this as being of greatest interest to PO, who
can get a long-term view of the product,
its development, and e.g. comparisons with
competitors, based on a stable and standard-
ised method.

• Working information – The test produces
working information quickly. Directly after
the short period of testing that is the sub-
ject of this case study, before the data was
collated in the spreadsheets, the test lead-
ers met and discussed and agreed upon their
findings. They could present the most im-
portant qualitative findings to system and
interaction architects within the two organ-
isations 14 days after the testing began,
and changes in the implementation were re-
quested soon after that. An advantage of do-
ing the testing in-house is having access to
the test leaders, who can explain and clarify
what has happened and the implications of
it. This is obviously of primary interest toD.

• Comprehensive documentation – The
documentation consists mainly of spread-
sheets containing metrics and qualitative
data. Metrics back up qualitative data and
open up ways to present test results that
can be understood without having to include
contextual information. They make test re-

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 127

sults accessible for new groups. The quanti-
tative data gives statistical confirmation of
the early qualitative findings, but are re-
garded as most useful for PO, who want fig-
ures of the findings that have been reached.
There is less pressure of time to get these
results compiled, as the critical findings are
already being implemented. The metrics can
be subject to stringent analysis to show com-
parisons and correlations between different
factors. In both organisations there is begin-
ning to be a demand for Key Performance
Indicators for usability, and although it is
still unsure what these may consist of, it is
still an indication of a trend that comes from
PO level.

• Customer collaboration – in the testing
procedure it is important for the testers to
have easy access to individuals, to gain in-
formation about customer needs, end user
patterns, etc. The whole idea of the test is
to collect the information that is needed at
the current time regarding the product and
its development. How this is done in practice
is obviously of concern to PO in the long run,
but in the immediate day to day operation
it is primarily of interest to D.

• Contract negotiation – On a high level
it is up to PO to decide what sort of coop-
eration should take place between different
organisations and customers, and this is not
something that involves D, so this is seen as
most important for PO.

• Respond to change – The test is eas-
ily adapted to changes, and is not particu-
larly resource-intensive. If there is a need to
change the format of a test, or a new test
requirement turns up suddenly, it is easy to
change the test without having expended ex-
tensive resources on the testing. It is also
easy to do a “Light” version of a test to check
a particular feature that arises in the every-
day work of design, and this has happened
several times at UIQ. This is the sort of thing
that is a characteristic of the day to day work
with interaction design, and is nothing that
is of immediate concern for PO, so this is
seen as D.

• Following a plan – From a short-term per-
spective, this is important for D, but since
they work in a rapidly changing situation, it
is more important for them to be able to re-
spond to change. This is however important
for PO who are responsible for well func-
tioning strategies and long-term operations
in the company.

5.1. On Opposite Sides of the Spectrum

In this analysis, we found that “Designers”, as in
the agile manifesto, are interested in the items
on the left, rather than the items on the right
(see Figure 2). We see this as being “A De-
signer’s Manifesto”. “Product Owners” are more
interested in the items on the right. Boehm char-
acterised the items on the right side as being
“An Auditor Manifesto”[6]. We see it as be-
ing “A Product Owner’s Manifesto”. This is of
course a sliding scale; some of the groups may
be closer to the middle of the scale. Neither of
the two groups is uninterested in what is hap-
pening at the opposite end of the spectrum, but
as in the agile manifesto, while there is value
in the items on one side, they value the items
on the other side more. We are conscious of
the fact that these two groups are very coarsely
drawn, and that some groups and roles will lie
between these extremes. We are unsure exactly
which roles in the development process belong
to which group, but are interested in looking at
these extremes to see their information require-
ments in regard to the results of usability test-
ing. On closer inspection it may be found that
none of the groups is on the far side of the spec-
trum for all of the points in the manifesto. To
gain further information regarding this, a case
study has been performed, which we present in
the next section.

6. Follow-up Study of Preferred
Presentation Methods

This study is thus an investigation of attitudes
regarding which types of usability findings dif-
ferent stakeholders need to see, and their pre-

128 Jeff Winter, Kari Rönkkö

Individuals
Interactions

Working
information

Customer
collaboration

Respond to
change

Processes &
tools

Comprehensive
documentation

Contract
negotiation

Following a plan

D

D

D

D

PO

PO

PO

PO
Agile Plan Driven

Product Owner = POD = Designers

Figure 2. Groups and their diverging interests

ferred presentation methods. In the previous
study we identified two groups of stakeholders
with different information needs, ranging from
Designers, who appear to want quick results,
often qualitative results rather than quantita-
tive results, to Product Owners, who want more
detailed information, are more concerned with
quantitative results, but are not as concerned
with the speediness of the results. To test this
theory, we sent a questionnaire to a number of
stakeholders within UIQ and their customers,
who are participants in the design and develop-
ment process.

A document was compiled illustrating ten
methods for presenting the results of UTUM
tests. It contained a brief description of the pre-
sentation method and the information contained
in it. The methods were chosen together with
a usability expert from UIQ who often presents
the results of testing to different groups of stake-
holders. The methods were chosen on the basis
of his experience of presenting test results to dif-
ferent stakeholders and are the most used and
most representative ways of presenting results.
The methods range from a verbal presentation
of early findings, to spreadsheets containing all
of the quantitative or the qualitative data from
the testing, plus a number of graphical represen-
tations of the data. The methods were as follows

Method 1: The Structured Data Sum-
mary (the SDS). A spreadsheet with the qual-

itative findings of the testing. It shows issues
that have been found, on the basis of each tester
and each device, for every use case. Comments
made by the test participants and observations
made by the test leader are stored in the spread-
sheet.

Method 2: A spreadsheet containing
all “raw” data. All of the quantitative data
from a series of tests. Worksheets contain
the numerical data collected in a specific se-
ries of tests, which are also illustrated in a
number of graphs. The data includes times
taken to complete use cases, and the results of
attitude assessments.

Method 3: A Curve diagram. A graph
illustrating a comparison of time taken to com-
plete one particular use case. One curve illus-
trates the average time for all tested telephones,
and the other curves show the time taken for
individual phones.

Method 4: Comparison of two factors
(basic version). An image showing the results
of a series of tests, where three telephones are
rated and compared with regard to satisfaction
and efficiency. No more information is given in
this diagram.

Method 5: Comparison of two factors
(brief details). The same image as Method 4,
with a very brief explanation of the findings.

Method 6: Comparison of two factors
(more in depth details). The same image as

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 129

Methods 4 and 5. Here, there is a more exten-
sive explanation of the results, and the findings
made by the test leader. The test leader has also
written suggestions for short term and long term
solutions to issues that have been found.

Method 7: The “Form Factor” – an
immediate response. A visual comparison
of which telephone was preferred by men and
women, where the participants were asked to
give an immediate response to the phones, and
choose a favourite phone on the basis of “Form
Factor” – the “pleasingness” of the design.

Method 8: PowerPoint presentation,
no verbal presentation. A PowerPoint pre-
sentation, produced by the test leader. A sum-
mary of the main results is presented graphically
and briefly in writing. This does not give the
opportunity to ask follow-up questions in direct
connection with the presentation.

Method 9: Verbal presentation sup-
ported by PowerPoint. A PowerPoint pre-
sentation, given by the test leader. A summary
of the main results is presented graphically and
briefly in writing, and explained verbally, giv-
ing the listener the chance to ask questions
about e.g. the findings and suggestions for im-
provements. This type of presentation takes the
longest to prepare and deliver.

Method 10: Verbal presentation of
early results. The test leader gives a verbal
presentation of the results of a series of tests.
These are based mainly on his or her impressions
of issues found, rather than an analysis of the
metrics, and can be given after having observed
a relatively small number of tests. This is the
fastest and most informal type of presentation,
and can be given early in the testing process.

The participants in the study were chosen to-
gether with the usability expert at UIQ. Some of
the participants were people who are regularly
given presentations of test results, whilst others
were people who are not usually recipients of the
results, but who in their professional roles could
be assumed to have an interest in the results of
usability testing. They were asked to read the
document and complete the task by filling in
their preferences in a spreadsheet. The results
of the survey were returned to the researcher via

e-mail, and have been summarised in a spread-
sheet and then analysed on the basis of a number
of criteria to see what general conclusions can be
drawn from the answers.

The method whereby the participants were
asked to prioritize the presentation methods
was based on cumulative voting [19], [43], a well
known voting system in the political and the cor-
porate sphere ([13], [31]), also known as the $100
test or $100 method [20]. Cumulative voting is
a method that has previously been used in the
software engineering context, for e.g. software
requirement prioritization [26] and the prioritiza-
tion of process improvements [3], and in [2] where
it is compared to and found to be superior to
Analytical Hierarchy Process in several respects.

The questionnaire was sent to 29 people,
mostly within UIQ but also to some people
from UIQ’s licensees. Only six respondents had
replied to the questionnaire within the stipu-
lated time, so one day after the first deadline, we
sent out a reminder to the respondents who had
not answered. This resulted in a further three
replies. After one more week, we sent out a final
reminder, leading to one more reply. Thus, we
received 10 replies to the questionnaire, of which
nine were from respondents within UIQ. On fur-
ther enquiry, the reason given for not replying
to the questionnaire was in general the fact that
the company was in an intensive working phase
for a planned product release, and that the staff
at the company could not prioritise allocating
the time needed to complete the questionnaire.
This makes it impossible to give full answers to
the research questions in this study, although it
helps us to answer some of the questions, and
gives us a better understanding of factors that
affect the answers to the other questions. This
study helps us formulate hypotheses for further
work regarding these questions.

The division of roles amongst the respon-
dents, and the number of respondents in the
categories was as follows:
• 2: UI designers
• 2: Product planning
• 4: System design
• 1: Other (Usability)
• 1: Other (CTO Office)

130 Jeff Winter, Kari Rönkkö

Distribution of allocated points

0

10

20

30

40

50

60

70

UI D
es

ign
er

Prod
uc

t P
lan

nin
g

Sys
tem

 D
es

ign
Othe

r
Othe

r

UI D
es

ign
er

Sys
tem

 D
es

ign

Prod
uc

t P
lan

nin
g

Sys
tem

 D
es

ign

Sys
tem

 D
es

ign

Test respondents

Po
in

ts
 a

llo
ca

te
d

Mean

Figure 3. Distribution of points allocated per respondent

We have divided the respondents according
to the tentative schema found in the first case
study, between Designers (D) and Product Own-
ers (PO). Some respondents were difficult to
place in a particular category. The roles the re-
spondents held in the company were discussed
with a member of the management staff at UIQ,
with long work experience at the company, who
was well versed in the thoughts we had regarding
the difference between Designers and Product
Owners. Due to turbulence within the company,
it was not possible to verify the respondents’ at-
titudes to their positions, and would have been
difficult, since they were not familiar with the
terminology that we used, and the meaning of
the roles that we had specified.

Five respondents, the two UI designers, the
usability specialist and two of the system de-
signers, belonged to the Designer group. The re-
maining five respondents, the two members of
product planning, the respondent from the CTO
office and two of the system designers, were rep-
resentatives of the group of Product Owners.

Figure 3 is a box and whisker plot that shows
the distribution of the points and the mean
points allocated per person. As can be seen, the

spread of points differs greatly from person to
person. Although this reflects the actual needs
of the respondent, the way of allocating points
could also reflect tactical choices, or even the
respondent’s character. To get more informa-
tion about how the choices were made would
require a further study, where the respondents
were interviewed concerning their strategies and
choices.

In what follows, we use various ways of sum-
marising the data. To obtain a composite picture
of the respondents’ attitudes, the methods are
ranked according to a number of criteria. Given
the small numbers of respondents in the study,
this compilation of results is used to give a more
complex picture of the results, rather than sim-
ply relying on one aspect of the questionnaire.
The methods are ranked according to: the total
number of points that were allocated by all re-
spondents; the number of times the method has
been chosen, and; the average ranking, which is
the sum of the rankings given by each respon-
dent, divided by the number of respondents that
chose the method (e.g., if one respondent chose a
method in first place, whilst another respondent
chose it in third place, the average position is

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 131

Comparison of different stakeholder groups

0
1
2
3
4
5
6
7
8
9

10

9.
Verb

al
& P

ow
erP

oin
t

6.
Compa

ris
on

 (m
ore

 de
tails)

10
. V

erba
l

8.
Pow

erP
oin

t

5.
Compa

ris
on

 (b
rie

f d
eta

ils
)

3.
Curve

 diagra
m

1.
The

 S
DS

4.
Compa

ris
on

 (n
o d

etai
ls)

7.
“Form

 fa
cto

r”

2.
Exc

el
sh

ee
t

Method number

A
ss

ig
ne

d
ra

nk

All respondents
Designers
Product Owners

Figure 4. Comparison: All, Designers and Product Owners (lowest point is best)

(1+3)/2 = 2). A lower average ranking means a
better result in the evaluation, although it gives
no information about the number of times it has
been chosen.

Figure 4 shows a summary of the results for
all respondents and a comparison with the re-
sults for the group of Designers and Product
Owners. For all respondents, total rank is very
similar to ranking according to points allocated,
and only two methods (ranked 5 and 6) have
swapped places. Three methods head the list.
Two are verbal presentations, one being sup-
ported by PowerPoint and the other is purely
verbal.

Even within the two groups of Designers and
Product Owners, there is little discrepancy be-
tween the results for total rank and position ac-
cording to points awarded. Table 1 illustrates
the ranks. The Methods are ordered according
to the points allocated by all respondents. The
next columns show the composite results, for all
respondents and according to the two groups.
Cases where the opinions differ significantly be-
tween Designers and Product Owners (a differ-
ence of 3 places or more) will be the subject of
a brief discussion, to see whether we can draw
any tentative conclusions about the presentation
requirements of the different stakeholder groups.
These methods, which are shown in italics in Ta-
ble 1, are Methods 1, 3, 4 and 8. Since the com-
pany has now ceased operations, it is no longer

possible to do a follow-up study of the attitudes
of the participants, so the analysis is based on
the knowledge we have of the operations at the
company and the context where they worked. To
verify these results, further studies are needed.

Method 3: The Curve Diagram. Design-
ers ranked this presentation highly because if
it is interpreted properly, it can give a great
deal of information about the use case as it
is performed on the device. If the device per-
forms poorly in comparison to the other de-
vices, which can easily be seen by the placement
and shape of the curve, this indicates that there
are problems that need to be investigated fur-
ther. Use case performance time indicates the
performance of the device, which can be corre-
lated with user satisfaction. The shape of the
curve illustrates when problems arose. If prob-
lems arise when performing the use case, these
will be visible in the diagram and the Design-
ers will know that there are issues that must
be attended to.

Product Owners ranked this method poorly
because the information is on the level of an in-
dividual use case, whilst they need information
about the product or device at a coarser level of
detail that is easy to interpret, giving an overall
view of the product. They trust that problems
at this level of detail are dealt with by the De-
signers, whilst they have responsibility for the
product and process as a whole.

132 Jeff Winter, Kari Rönkkö

Table 1. Comparison of ranks: All, Designers and Product Owners

Rankings
Method All respondents Designers Product

Owners
Difference

between groups
9. Verbal & PowerPoint 1 1 3 2
6. Comparison (more details) 2 3 2 1
10. Verbal 3 4 4 0
8. PowerPoint 4 7 1 6
5. Comparison (brief details) 6 6 5 1
3. Curve diagram 5 2 9 7
1. The SDS 7 5 10 5
4. Comparison (no details) 8 8 5 3
7. “Form factor” 9 9 7 2
2. Spreadsheet 10 10 8 2

Method 8: PowerPoint presentation, no
verbal presentation. This can contain several
ways of presenting the results of testing. De-
signers find this type of presentation of lim-
ited use because of the lack of contextual in-
formation and the lack of opportunity to pose
follow-up questions. It gives a lot of information,
but does not contain sufficient details to allow
Designers to identify the problems or make de-
cisions about solutions. Without details of the
context and what happened in the testing situ-
ation, it is hard to interpret differences between
devices, to know which problems there are in
the device, and thereby difficult to know what
to do about the problems. The length of time
taken to produce the presentation also means
that it is not suitable for Designers, who are
concerned with fixing product issues as early
in the development process as possible. We also
believe that there is also a difference in “cul-
ture” where Designers are still unused to be-
ing presented with results in this fashion, and
cannot translate this easily to fit in with their
work practices.

This type of presentation is of primary in-
terest to Product Owners because it provides
an overall view of the product in comparison
to other devices, without including too much
information about the context and test situa-
tion. It contains sufficient text, and gives an
indication of the status of the product. It is
also adapted to viewing without the presence
of the test leader, so the recipient can view the
presentation and return to it at will. Product

Owners are often schooled in an engineering tra-
dition and are used to this way of presenting
information.

Method 1: The Structured Data Summary
(the SDS). Designers value this method of pre-
sentation because of the extent and character of
the contextual information it includes, and be-
cause of the way the data is visualised. For ev-
ery device and use case, there is information on
issues that were observed, and records of com-
ments made by the testers. It is easy to see
which use cases were problematic, due to the
number of comments written by the test leader,
and the presence of many user comments also
suggests that there are issues that need inves-
tigation. The contextual information gives clues
to problems and issues that must be dealt with
and gives hints on possible solutions. The effort
required to read and summarise the information
contained in the spreadsheet, leading to a de-
gree of cognitive friction, means however that it
is rated in the middle of the field rather than
higher.

Product Owners rate this method poorly
because they are uninterested in products on
the level of use cases, which this presentation
gives provides, and it is difficult to interpret for
the device as a whole. The information is not
adapted to the broad view of the product that
the Product Owners need. The contextual in-
formation is difficult to summarise and does not
give a readily understandable of the device as a
whole. Product Owners find it difficult to make
use of the information contained in this spread-

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 133

sheet and thereby rank it as least useful for their
needs.

Method 4: Comparison of two factors (ba-
sic version). The lack of detail and of contextual
information make if difficult for Designers to
read any information that allows them to iden-
tify problems with the device. It simply provides
them with a snapshot of how their product com-
pares to other devices at a given moment.

Product Owners ranked this in the middle
of the field. This is a simple way of visualising
the state of the product at a given time, which
is easy to compare over a period of time, to see
whether a device is competitive with the other
devices included in the comparison. This is typ-
ically one of the elements that are included in
the PowerPoint presentation that Product Own-
ers have ranked highest (Method 8). However,
this particular method, when taken in isolation,
lacks the richness of the overall picture given in
Method 8 and is therefore ranked as lower.

To summarise these results, we find that the
greatest difference between the two groups con-
cerns the level of detail included in the presen-
tation, the ease with which the information can
be interpreted, and the presence of contextual
information in the presentation. Designers pri-
oritise methods that give specific information
about the device and its features. Product Own-
ers prioritise methods that give more overarch-
ing information about the product as a whole,
and that is not dependent on including contex-
tual information.

6.1. Changing Information Needs

Participants were informed that the survey was
mainly focused on the presentation of results
that are relevant during ongoing design and de-
velopment. We pointed out that we believed that
different presentation methods may be impor-
tant in the starting and finishing phases of these
processes. We stated that comments regarding
this would be appreciated. Three respondents
wrote comments about this factor.

One respondent (D) stated that the infor-
mation needed in their everyday work as a UI
designer, in the early stages of projects when

the interaction designers are most active, was
best satisfied through the verbal presentations of
early results and verbal presentation supported
by PowerPoint, whilst a non-verbal presenta-
tion, in conjunction with the metrics data in the
spreadsheet and the SDS would be more appro-
priate later in the project, where the project ac-
tivities were no longer as dependent on the work
tasks and activities of the interaction designers.

A second respondent (D) stated that the ver-
bal presentations are most appropriate in the re-
quirements/design processes. Once the problem
domain is understood, and the task is to iterate
towards the best solution, the metrics data and
the SDS would become more appropriate, be-
cause the problem is understood and the quali-
tative answers are more easily interpreted than
the qualitative answers.

Another respondent (PO) wrote that it was
important to move the focus from methods that
were primarily concerned with verification to-
wards methods that could be of assistance in re-
quirements handling, in prioritisation and deci-
sion making in the early phases of development.
In other words, the methods presented are most
appropriate for later stages of a project, and
there is a lack of appropriate methods for early
stages.

Given the limited number of answers to these
questions, it is of course difficult to draw any
general conclusions, although it does appear to
be the case that the verbal results are most im-
portant in the early stages of a project, to those
who are involved in the actual work of design-
ing and developing the product, whilst the more
quantitative data is more useful as reference ma-
terial in the later stages of a project, or further
projects.

6.2. Attitudes Towards the Role of
the Test Leader

The respondents were asked to judge whether
or not they would need the help of the test
leader in order to understand the presentation
method in question. Two of the respondents sup-
plied no answers to this question, and one of
the respondents only supplied answers regarding

134 Jeff Winter, Kari Rönkkö

methods 9 and 10, which presuppose the pres-
ence of the test leader and are therefore excluded
from the analysis. If we exclude these three re-
spondents from the summary, there were seven
respondents, of whom four gave answers for all
eight methods, one gave five answers, and two
gave three answers. The three respondents who
did not answer these questions were all Product
Owners, meaning that there were five designers
and two Product Owners who answered these
questions.

Analysis of the answers showed that, with
the exception of Method 7 the methods that are
primarily graphical representations of the data
do not appear to require the presence of the
test leader to explain the presentation. Method
7 was found to require the presence of the test
leader, presumably because it was not directly
concerned with the operations of the company.
The spreadsheets however, one containing qual-
itative and one containing quantitative data,
both require the presence of a test leader to ex-
plain the contents.

Given the fact that the Designers were in the
majority, there were few obvious differences be-
tween Designers and Product Owners, although
the most consistent findings here regard meth-
ods 4, 5, and 6, variations of the same presenta-
tion method with different amounts of written
information. Here, Product Owners needed the
test leader to be present whilst Designers did
not.

6.2.1. In Summary

We now summarise the results of the research
questions posed in this case study. The answer
to the first question, whether any presentation
methods are generally preferred, is that the re-
spondents as a whole generally preferred verbal
presentations. The primarily verbal methods are
found in both first and third place. The most
popular form was a PowerPoint presentation
that was supported by verbal explanations of the
findings. In second place is a non-verbal illustra-
tion showing a comparison of two factors, where
detailed information is given explaining the di-
agram and the results it contains. This type of

presentation is found in several variants in the
study, and those with more explanatory detail
are more popular than those with fewer details.
Following these is a block of graphical presenta-
tion methods that are not designed to be depen-
dent on verbal explanations. Amongst these is
a spreadsheet containing qualitative data about
the test results. At the bottom of the list is a
spreadsheet that contains the quantitative data
from the study. This presentation differs in char-
acter from the SDS, the spreadsheet containing
qualitative data, since the SDS offers a view of
the data that allows the identification of prob-
lem areas for the tested devices. This illustrates
the fact that even a spreadsheet, if it offers a
graphical illustration of the data that it con-
tains, can also be found useful for stakeholders,
even without an explicit explanation of the data
that it contains.

Concerning the second question, we could
identify differences between the two groups of
stakeholders, and the greatest difference be-
tween the groups concerns the level of detail in-
cluded in the presentation, the ease with which
the information can be interpreted, and the pres-
ence of contextual information in the presenta-
tion. Designers prioritise methods that give spe-
cific information about the device and its fea-
tures. Product Owners prioritise methods that
give more overarching information about the
product as a whole, and that is not dependent
on including contextual information. We also
found that both groups chose PowerPoint pre-
sentations as their preferred method, but that
the Designers chose a presentation that was pri-
marily verbal, whilst Product Owners preferred
the purely visual presentation. Another aspect
of this second question is the attitude towards
the role of the test leader, where there were
few obvious differences between Designers and
Product Owners. The most consistent findings
here concern variations of the same presenta-
tion method with different amounts of writ-
ten information. Here, Product Owners needed
the test leader to be present whilst Designers
did not.

Regarding the third question, if there are
methods that are lacking in the current presen-

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 135

tation methods, it was found that taking into
account and visualising aspects of UX is be-
coming more important, and the results indi-
cate that testing must be adapted to capture
these aspects more implicitly. There is also a
need for a composite presentation method com-
bining the positive features of all of the cur-
rent methods – however, given the fact that
there do appear to be differences between in-
formation needs, it may be found to be dif-
ficult to devise one method that satisfies all
groups.

No clear answers can be found for the fourth
question, whether information needs, and pre-
ferred methods change during different phases
of a design and development project. How-
ever, the replies suggest that the required meth-
ods do change during a project, that more
verbally oriented and qualitative presentations
are important in early stages of a project, in
the concrete practice of design and develop-
ment, and that quantitative orientated methods
are important in later stages and as reference
material.

Regarding the final question, whether results
can be presented without the presence of the
test leader, we find that the methods that are
primarily graphical representations of the data
do not appear to require the presence of the test
leader to explain the presentation. The spread-
sheets however, containing qualitative and quan-
titative data, both require the presence of a test
leader to explain the contents.

To verify these results, further studies are of
course needed. Despite the small scale of this
study, the results give a basis for performing a
further study, and allow us to formulate a hy-
pothesis for following up our results. In line with
the rest of the work performed as part of this
research, we feel that the this work should be a
survey based study in combination with an in-
terview based study, in order to verify the results
from the survey and gain a depth of information
that is difficult to obtain from a purely survey
based study.

We continue by discussing the results of the
two case studies in relation to the industrial situ-
ation where we have been working, and the need

for quality assurance in development and design
processes.

7. Discussion

We begin by discussing our results in relation
to academic discourses, to answer our first re-
search question: How can we balance demands
for agile results with demands for formal results
when performing usability testing for quality as-
surance? We also comment upon two related dis-
courses from the introductory chapter, i.e. the
relation between quality and a need for coop-
eration between industry and research, and the
relationship between quality and agility.

Since we work in a mass-market situation,
and the system that we are looking at is too
large and complex for a single customer to spec-
ify, the testing process must be flexible enough
to accommodate the needs of many different
stakeholders. The product must appeal to the
broadest possible group, so it is difficult for
customers to operate in dedicated mode with
development team, with sufficient knowledge
to span the whole range of the application,
which is what an agile approach requires to
work best [5]. In this case, test leaders work
as proxies for the user in the mass market.
We had a dedicated specialist test leader who
brought in the knowledge that users have, in
accordance with Pettichord [24]. Evidence sug-
gests that drawing and learning from experi-
ence may be as important as taking a ratio-
nal approach to testing [21]. The fact that the
test leaders involved in the testing are usabil-
ity experts working in the field in their every-
day work activities means that they have con-
siderable experience of their products and their
field. They have specialist knowledge, gained
over a period of time through interaction with
end-users, customers, developers, and other par-
ties that have an interest in the testing process
and results. This is in line with the idea that
agile methods get much of their agility from
a reliance on tacit knowledge embodied in a
team, rather than from knowledge written down
in plans [5].

136 Jeff Winter, Kari Rönkkö

It would be difficult to gain acceptance of
the test results within the whole organisation
without the element of formalism. In sectors
with large customer bases, companies require
both rapid value and high assurance. This can-
not be met by pure agility or plan-driven disci-
pline; only a mix of these is sufficient, and or-
ganisations must evolve towards the mix that
suits them best [5]. In our case this evolution
has taken place during the whole period of the
research cooperation, and has reached a phase
where it has become apparent that this mix is
desirable and even necessary.

In relation to the above, Osterweil [23] states
that there is a body of knowledge that could
do much to improve quality, but that there is
“a yawning chasm separating practice from re-
search that blocks needed improvements in both
communities”, thereby hindering quality. Prac-
tice is not as effective as it must be, and research
suffers from a lack of validation of good ideas
and redirection that result from serious use in
the real world. This case study is part of a suc-
cessful cooperation between research and indus-
try, where the results enrich the work of both
parts. Osterweil [23] also requests the identifi-
cation of dimensions of quality and measures
appropriate for it. The particular understand-
ing of agility discussed in our case study can
be an answer to this request. The agility of the
test process is in accordance with the “good or-
ganisational reasons” for “bad testing” that are
argued by Martin et al [21]. These authors state
that testing research has concentrated mainly
on improving the formal aspects of testing, such
as measuring test coverage and designing tools
to support testing. However, despite advances in
formal and automated fault discovery and their
adoption in industry, the principal approach for
validation and verification appears to be demon-
strating that the software is “good enough”.
Hence, improving formal aspects does not nec-
essarily help to design the testing that most ef-
ficiently satisfies organisational needs and min-
imises the effort needed to perform testing. In
the results of this work, the main reason for
not adopting “best practice” is precisely to ori-
ent testing to meet organisational needs. Our

case is a confirmation of [21]. Here, it is based
on the dynamics of customer relationships, us-
ing limited effort in the most effective way, and
the timing of software releases to the needs of
customers as to which features to release. The
present paper illustrates how this happens in in-
dustry, since the agile type of testing studied
here is not according to “best practice” but is
a complement that meets organisational needs
for a mass-market product in a rapidly chang-
ing marketplace, with many different customers
and end-users.

To summarise our second case study, the
findings presented here are the results of a pre-
liminary study that indicates the needs of dif-
ferent actors in the telecom industry. They are
a validation of the ways in which UTUM re-
sults have been presented. They provide guide-
lines to improving the ways in which the results
can be presented in the future. They are also a
confirmation of the fact that there are different
groups of stakeholders, the Designers and Prod-
uct Owners found in our first case study, who
have different information requirements. Further
studies are obviously needed, but despite the
small scale of this study, it is a basis for perform-
ing a wider and deeper study, and it lets us for-
mulate a hypothesis regarding the presentation
of testing results. We feel that the continuation
of this work should be a survey based study in
combination with an interview based study.

8. Conclusions and Further Work

In the usability evaluation framework, we have
managed to implement a working balance be-
tween agility and plan driven formalism to sat-
isfy practitioners in many roles. The industrial
reality that has driven the development of this
test package confirms the fact that quality and
agility are vital for a company that is working
in a rapidly changing environment, attempting
to develop a product for a mass market. There
is also an obvious need for formal data that can
support the quick and agile results. The UTUM
test package demonstrates one way to balance
demands for agile results with demands for for-

Satisfying Stakeholders’ Needs – Balancing Agile and Formal Usability Test Results 137

mal results when performing usability testing for
quality assurance. The test package conforms to
both the Designer’s manifesto, and the Product
Owner’s manifesto, and ensures that there is a
mix of agility and formalism in the process.

The case in the present paper confirms
the argumentation emphasizing ’good organi-
zational reasons’, since this type of testing is
not according to “best practice” but is a com-
plement that meets organisational needs for
a mass-market product in a rapidly chang-
ing marketplace, with many different customers
and end-users. This is partly an illustration of
the chasm between industry and research, and
partly an illustration of how agile approaches
are taken to adjust to industrial reality. In re-
lation to the former this case study is a suc-
cessful cooperation between research and in-
dustry. It has been ongoing since 2001, and
the work has an impact in industry, and re-
sults enrich the work of both parts. The in-
clusion of Sony Ericsson in this case study
gave even greater possibilities to spread the
benefits of the cooperative research. More and
more hybrid methods are emerging, where ag-
ile and plan driven methods are combined,
and success stories are beginning to emerge.
We see the results of this case study and the
UTUM test as being one of these success sto-
ries. How do we know that the test is suc-
cessful? By seeing that it is in successful use
in everyday practice in an industrial environ-
ment. We have found a successful balance be-
tween agility and formalism that works in in-
dustry and that exhibits qualities that can be
of interest to both the agile and the software
engineering community.

Acknowledgements This work was partly
funded by The Knowledge Foundation in Swe-
den under a research grant for the software de-
velopment project “Blekinge – Engineering Soft-
ware Qualities”, www.bth.se/besq. Thanks to
the participants in the study and to my col-
leagues in the U ODD research group for their
help in data analysis and structuring my writing.
Thanks also to Gary Denman for permission to
use the Structured Data Summary.

References

[1] K. Beck. Extreme Programming Explained. Ad-
dison Wesley, Reading, MA, 2000.

[2] P. Berander and P. Jönsson. Hierarchical cu-
mulative voting (HCV) – prioritization of re-
quirements in hierarchies. International Journal
of Software Engineering & Knowledge Engineer-
ing, 16(6):819, 2006.

[3] P. Berander and C. Wohlin. Identification of
key factors in software process management –
a case study. In 2003 International Symposium
on Empirical Software Engineering, ISESE ’03,
pages 316–325, Rome, Italy, 2003.

[4] B. W. Boehm. A spiral model of software
development and enhancement. Computer,
21(5):61–72, 1988.

[5] B. W. Boehm. Get ready for agile methods,
with care. Computer, 35(1):64–69, 2002.

[6] B. W. Boehm. Keynote address, 5th Workshop
on Software Quality (WoSQ), 2007.

[7] J. Brooke. System usability scale (SUS): a
Quick-and-Dirty method of system evaluation
user information, 1986.

[8] BTH. UIQ, usability test. http://www.youtube.
com/watch?v=5IjIRlVwgeo, Aug. 2008.

[9] A. Cockburn and J. Highsmith. Agile Software
Development. The Agile Software Development
Series. Addison-Wesley, Boston, 2002.

[10] Y. Dittrich, C. Floyd, and R. Klischewski.
Doing Empirical Research in Software Engi-
neering: finding a path between understanding,
intervention and method development, pages
243–262. MIT Press, 2002.

[11] Y. Dittrich, K. Rönkkö, J. Erickson, C. Hans-
son, and O. Lindeberg. Co-operative method
development: Combining qualitative empirical
research with method, technique and process
improvement. Journal of Empirical Software
Engineering, 2007.

[12] Y. Dittrich, K. Rönkkö, O. Lindeberg, J. Er-
ickson, and C. Hansson. Co-operative method
development revisited. SIGSOFT Softw. Eng.
Notes, 30(4):1–3, 2005.

[13] J. N. Gordon. Institutions as relational in-
vestors: A new look at cumulative voting.
Columbia Law Review, 94(4):124–193, 1994.

[14] M. J. Harrold. Testing: A roadmap. In Proceed-
ings of the Conference on the Future of Software
Engineering, Limmerick, Ireland, 2000. ACM
Press.

[15] M. Hassenzahl, E. L. Law, and E. T. Hvannberg.
User experience – towards a unified view. In

138 Jeff Winter, Kari Rönkkö

UX WS NordiCHI’06, pages 1–3, Oslo, Norway,
2006. cost294.org.

[16] M. Hassenzahl and N. Tractinsky. User experi-
ence – a research agenda. Behaviour & Infor-
mation Technology, 25(2):91–97, 2006.

[17] International Organization for Standardization.
ISO 9241-11 (1998): Ergonomic requirements
for office work with visual display terminals
(VDTs) – part 11: Guidance on usability. Tech-
nical report, 1998.

[18] International Organization for Standardization.
ISO 9126-1 software engineering – product qual-
ity – part 1: Quality model, 2001.

[19] Investopedia.com. Cumulative voting.
http://www.investopedia.com/terms/c/
cumulativevoting.asp, Apr. 2009.

[20] D. Leffingwell and D. Widrig. Managing Soft-
ware Requirements: A Use Case Approach, vol-
ume 2nd. Addison Wesley, 2003.

[21] D. Martin, J. Rooksby, M. Rouncefield, and
I. Sommerville. ‘Good’ organisational reasons
for ‘Bad’ software testing: An ethnographic
study of testing in a small software company.
In ICSE ’07, Minneapolis, MN, 2007. IEEE.

[22] E. Mumford. Advice for an action re-
searcher. Information Technology and People,
14(1):12–27, 2001.

[23] L. Osterweil. Strategic directions in software
quality. ACM Computing Surveys (CSUR),
28(4):738–750, 1996.

[24] B. Pettichord. Testers and developers think dif-
ferently. STGE magazine, Vol. 2(Jan/Feb 2000
(Issue 1)), 2000.

[25] S. L. Pfleeger and J. M. Atlee. Software Engi-
neering, volume 3rd. Prentice Hall, Upper Sad-
dle River, NJ, 2006.

[26] B. Regnell, M. Höst, J. N. och Dag, P. Bere-
mark, and T. Hjelm. An industrial case study
on distributed prioritisation in Market-Driven
requirements engineering for packaged software.
Requirements Engineering, 6(1):51–62, 2001.

[27] C. Robson. Real World Research, volume 2nd.
Blackwell Publishing, Oxford, 1993.

[28] K. Rönkkö. Making Methods Work in Software
Engineering: Method Deployment as a Social
achievement. PhD thesis, Blekinge Institute of
Technology, School of Engineering, 2005. Dis-
sertation Series No. 2005:04; Doctoral Thesis.

[29] K. Rönkkö. Ethnography. In P. Laplante, edi-
tor, Encyclopedia of Software Engineering. Tay-
lor and Francis Group, New York, 2008.

[30] W. W. Royce. Managing the development of
large software systems: concepts and techniques.

In 9th international conference on Software En-
gineering, pages 328–338, Monterey, California,
United States, 1987. IEEE Computer Society
Press.

[31] J. Sawyer and D. McRae, Jr. Game the-
ory and cumulative voting in Illinois: 1902–
1954. The American Political Science Review,
56(4):936–946, 1994.

[32] D. Schuler and A. Namioka. Participatory De-
sign – Principles and Practices, volume 1st.
Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1993.

[33] I. Sommerville. Software Engineering, volume 8.
Addison Wesley, 1982.

[34] D. Talby, O. Hazzan, Y. Dubinsky, and
A. Keren. Agile software testing in a Large-Scale
project. IEEE Software, 23(4):30–37, 2006.

[35] The Agile Alliance. The agile manifesto. http:
//agilemanifesto.org/, Apr. 2009.

[36] The Agile Alliance. Principles of ag-
ile software. http://www.agilemanifesto.org/
principles.html, Apr. 2009.

[37] U-ODD. Use-Oriented Design and Devel-
opment. http://www.bth.se/tek/u-odd, Apr.
2009.

[38] UIQ Technology. Company information. http:
//uiq.com/aboutus.html, June 2008.

[39] UIQ Technology. UIQ Technology Usability
Metrics. http://uiq.com/utum.html, June 2008.

[40] UIQ Technology. UTUM website. http://uiq.
com/utum.html, June 2008.

[41] UXEM. User eXperience Evaluation Meth-
ods in product development (UXEM).
http://www.cs.tut.fi/ihte/CHI08_workshop/
slides/Poster_UXEM_CHI08_V1.1.pdf, June
2008.

[42] UXNet: the user experience network. http:
//uxnet.org/, June 2008.

[43] Wikipedia. Cumulative voting. http:
//en.wikipedia.org/wiki/Cumulative_voting,
Apr. 2009.

[44] J. Winter, K. Rönkkö, M. Ahlberg, M. Hinely,
and M. Hellman. Developing quality through
measuring usability: The UTUM test package.
In ICSE 2007, 5th Workshop on Software Qual-
ity, at ICSE 2007, 2007.

[45] WoSQ. Fifth workshop on software quality, at
ICSE 07. http://attend.it.uts.edu.au/icse2007/,
June 2008.

[46] R. K. Yin and S. Robinson. Case Study Re-
search – Design and Methods, volume 3rd of
Applied Social Research Methods Series. SAGE
publications, 5, 2003.

e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Web–Server Systems HTCPNs-Based
Development Tool Application in

Load Balance Modelling

Slawomir Samolej∗, Tomasz Szmuc∗∗
∗Department of Computer and Control Engineering, Rzeszów University of Technology

∗∗Institute of Automatics, AGH University of Science and Technology
ssamolej@prz.edu.pl, tsz@agh.edu.pl

Abstract
A new software tool for web–server systems development is presented. The tool consist of a set
of predefined Hierarchical Timed Coloured Petri Net (HTCPN) structures – patterns. The pat-
terns make it possible to naturally construct typical and experimental server–systems structures.
The preliminary patterns are executable queueing systems. A simulation based methodology of
web–server model analysis and validation has been proposed. The paper focuses on presenting the
construction of the software tool and its application for selected cluster–based web–servers load
balancing strategies evaluation.

1. Introduction

Gradually, the Internet becomes the most im-
portant medium for conducting business, sell-
ing services and remote control of industrial
processes. Typical modern software applications
have a client–server logical structure where pre-
dominant role plays an Internet server offer-
ing data access or computation abilities for re-
mote clients. The hardware of an Internet or
web–server is now usually designed as a set of
(locally) deployed computers. The computers
are divided into some layers or clusters where
each layer executes separate web–system task
[4], [12], [24], [34], [39], [37], [5], [2], [22], [9], [29],
[23]. This design approach makes it possible to
distribute services among the nodes of a cluster
and to improve the scalability of the system. Re-
dundancy which intrinsically exists in such hard-
ware structure provides higher system depend-
ability. Fig. 1 shows an example cluster–based
Internet system structure. The Internet requests
are generated by the clients. Then they are dis-
tributed by the load balancer among set of com-

puters that constitute the front-end or WWW
cluster. The front–end cluster offers a system
interface and some procedures that optimize
the load of the next system layer–the database
server.

To improve the quality of service of
web–server clusters two main research paths
are followed. First, the software of individual
web–server nodes is modified to offer average
response time to dedicated classes of consumers
[11], [18], [19]. Second, some distribution strate-
gies of cluster nodes are investigated [4], [29] in
conjunction with searching for load balancing
policies for the nodes [6], [32], [39], [37], [5], [2],
[22]. In several research projects reported in [12],
[30], [34] load balancing algorithms and modified
cluster node structures are analyzed together.

It is worth noticing that in some of above-
mentioned manuscripts searching for a solution
of the problem goes together with searching for
the adequate formal language to express the
system developed [3], [12], [30], [32], [34], [39].
In [3], [32], [34], [39] Queueing Nets whereas
in [30] Stochastic Petri Nets are applied for

140 Slawomir Samolej, Tomasz Szmuc

Figure 1. Example distributed cluster–based Internet system

system model construction and examination.
However, the most mature and expressive lan-
guage proposed for the web–cluster modelling
seems to be Queueing Petri Nets (QPNs) [12].
The nets combine coloured and stochastic Petri
nets with queueing systems [1] and consequently
make it possible to model relatively complex
web–server systems in a concise way. Moreover,
there exists a software tool for the nets sim-
ulation [13]. The research results reported in
[12] include a systematic approach to apply-
ing QPNs in distributed applications modelling
and evaluation. The modelling process has been
divided into following stages: system compo-
nents and resources modelling, workload mod-
elling, intercomponent interactions and process-
ing steps modelling, and finally – model param-
eterization. The final QPNs based model can be
executed and used for modelled system perfor-
mance prediction.

The successful application of QPNs in
web–cluster modelling become motivation to re-
search reported in this paper. The aim of the
research is to provide an alternative methodol-
ogy and software tool for cluster–based hard-
ware/software systems development. The main
features of the methodology are as follows:
– The modelling language will be Hierarchical

Timed Coloured Petri Nets (HTCPNs) [7],
– A set of so called HTCPNs design patterns

(predefined net structures) will be prepared
and validated to model typical web cluster
components,

– The basic patterns will be executable models
of queueing systems,

– A set of design rules will be provided to cope
with the patterns during the system model
creation,

– The final model will be an executable and an-
alyzable Hierarchical Timed Coloured Petri
Net,

– A well established Design/CPN and CPN
Tools software toolkits will be used for the
design patterns construction and validation,

– The toolkits will also be used as a platform
for the web–server modelling and develop-
ment,

– Performance analysis modules of the toolkits
will be used for capturing and monitoring the
state of the net during execution.
The choice of HTCPNs formalism as a mod-

elling language comes from the following pre-
requisites. First, HTCPNs have an expression
power comparable to QPNs. Second, the avail-
able software toolkits for HTCPNs composi-
tion and validation seem to be more popu-
lar than“SimQPN” [13]. Third, there exists a
reach knowledge base of successful HTCPNs
applications to modelling and validation of
wide range software/hardware systems [7] in-
cluding web–servers [24], [27], [36]. The rest
named features of design methodology intro-
duced in this paper results from both gen-
erally known capabilities of software toolkits
for HTCPNs modelling and some previous ex-
perience gained by the authors in applica-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 141

tion HTCPNs to real–time systems develop-
ment [25], [26].

This paper is organized as follows. Section
2 describes some selected design patterns and
rules of applying them to web–server cluster
model construction. An example queueing sys-
tem, web–server subsystem and top–level sys-
tem models are presented. Then the simulation
based HTCPNs models validation methods are
discussed. Section 3 presents HTCPNs models of
selected experimental and applied load balanc-
ing strategies for computer clusters. The load
balancing models construction and some simu-
lation results are discussed. Conclusions and fu-
ture research program complete the paper.

It has been assumed that the reader is fa-
miliar with the basic principles of Hierarchical
Timed Coloured Petri Nets theory [7], [8], [14].
All the Coloured Petri Nets in the paper have
been edited and analysed using Design/CPN
tool [21], [36]. Equivalent HTCPNs models may
be developed using CPN Tools [8], [35] software
toolkit.

2. Cluster Server Modelling
Methodology

The main concept of the methodology lies in the
definition of reusable timed coloured Petri nets
structures (patterns) making it possible to com-
pose web–server models in a systematic manner.
The basic set of the patterns includes typical
queueing systems TCPNs implementations, eg.
–/M/PS/∞ , –/M/FIFO/∞ [24], [27]. Packet
distribution TCPNs patterns constitute the next
group of reusable blocks. They preliminary role
is to provide some predefined web–server clus-
ter substructures composed from the queueing
systems. At this stage of subsystem modelling
the queueing systems are represented as sub-
stitution transitions (compare [24], [27]). The
separate models of system arrival processes are
also the members of the group mentioned. The
packet distribution patterns represented as sub-
stitution transitions are in turn used for the gen-
eral top–level system model composition. As a
result, the 3–level web–server model composi-

tion has been proposed. The top–level TCPN
represents the general view of system compo-
nents. The middle–level TCPNs structures rep-
resent the queueing systems interconnections.
And the lowest level includes executable queue-
ing systems implementations.

The modelling methodology assumes, that
the actual state of the Internet requests servic-
ing in the system can be monitored. Moreover,
from the logical point of view the model of the
server cluster is an open queueing network, so
the requests are generated, serviced and finally
removed from the system. As a result an impor-
tant component of the software tool for server
cluster development is the logical representation
of the requests.

In the next subsections the following features
of the modelling methodology will be explained
in detail. First, the logical representation of In-
ternet requests will be shown. Second, queueing
system modelling rules will be explained. Third,
an example cluster subsystem with an individ-
ual load–balancing strategy will be proposed.
Fourth, Internet request generator structure will
be examined. Fifth, top–level HTCPNs struc-
ture of an example cluster–server model will be
shown. Finally, model analysis capabilities will
be discussed.

2.1. Logical Request Representation

In the server–cluster modelling methodology
that is introducing in the paper the structure
of the HTCPN represents a hardvare/software
architecture of web–server. Yet, the dynamics of
the modelled system behavior is determined by
state and allocation of tokens in the net struc-
ture. Two groups of tokens has been proposed for
model construction. The first group consists of
the so–called local tokens, that “live” in individ-
ual design patters. They provide local functions
and data structures for the patterns. The sec-
ond group of tokens represents Internet requests
that are serviced in the system. They are trans-
ported throughout several cluster components.
Their internal state carries data that may be
used for timing and performance evaluation of
the system modelled. As the tokens represent-

142 Slawomir Samolej, Tomasz Szmuc

ing the requests have the predominant role in
the modelling methodology, they structure will
be explained in detail.

Each token representing an Internet request
is a tuple

PACKAGE = (ID,PRT ,START_TIME ,
PROB,AUTIL,RUTIL),

where ID is a request identifier, PRT is a request
priority, START_TIME is a value of simula-
tion time when the request is generated, PROB
is a random value, AUTIL is an absolute request
utilization value, and RUTIL is a relative re-
quest utilization value. Request identifier makes
it possible to give the request an unique number.
Request priority is an integer value that may
be taken into consideration when the requests
are scheduled according priority driven strategy
[11]. START_TIME parameter can store a sim-
ulation time value and can be used for the tim-
ing validation of the requests. Absolute request
utilization value, and relative request utilization
value are exploited in some queueing systems
execution models (e.g. with processor sharing
service).

2.2. Queueing System Models

The basic components of the software tool for
web–server clusters development introduced in
this paper are the executable queueing systems
models. At the current state of the software tool
construction the queueing systems models can
have FIFO, LIFO, processor sharing or prior-
ity based service discipline. For each queue an
arbitrary number of service units may be de-
fined. Additionally, the basic queueing systems
has been equipped with auxiliary components
that are responsible for monitoring of internal
states of the queue during its execution.

An example HTCPNs based –/1/FIFO/∞
queueing system model is shown in Fig. 2.
The model is a HTCPNs subpage that
can communicate with the parent page via
INPUT_PACKS , OUTPUT_PACKS and QL
port places. Request packets (that arrive
through INPUT_PACK place) are placed
into a queue structure within PACK_QUEUE

place after ADD_FIFO transition execution.
TIMERS place and REMOVE_FIFO transi-
tion constitute a clock–like structure and are
used for modelling of duration of packet exe-
cution. When REMOVE_FIFO transition fires,
then the first packet from the queue is with-
drawn and directed to the service procedure.

The packets under service acquire the ade-
quate time stamps generated according to the
assumed service time random distribution func-
tion. The time stamps associated with the
tokens prevent from using the packet tuples
(the tokens) for any transition firing until the
stated simulation time elapses (according to fir-
ing rules defined for HTCPNs [7]). The pack-
ets are treated as serviced when they can leave
OUTPUT_PACKS place as their time stamps
expired. The number of tokens in TIMERS place
defines the quantity of queue servicing units in
the system.

Main parameters that define the queueing
system model dynamics are queue mean service
time, service time probability distribution func-
tion and number of servicing units. Capacity of
the queue is not now taken into consideration
and theoretically may be unlimited.

For future applications the primary queue-
ing system design pattern explained above has
been equipped with an auxiliary “plug–in”.
COUNT_QL transition and TIMER_QL, QL
and COUNTER places make it possible to mea-
sure the queue length and export the mea-
sured value to the parent CPNs page during
the net execution. TIMER_QL place includes
a timer token that can periodically enable the
COUNT_QL transition. QL port place includes
a token storing the last measured queue length
and an individual number of a queueing system
in the system. The COUNTER place includes a
counter token used for the synchronization pur-
pose.

2.3. Packet Distribution Models

Having a set of queueing systems design pat-
terns some packet distribution HTCPNs struc-
tures may be proposed. In [24] a typical ho-
mogeneous multi–tier web–server structure pat-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 143

ADD_FIFO

PACK_QUEUE

PACK_QUEUE

nil REMOVE_FIFO

[fifo_queue<>nil]

C

output (tim_val);
action
discExp(1.0/fifo1_ser_mean_time)
;

TIMERS TIMER
1‘1

OUTPUT_PACKS

PACKAGE

P Ge
n

INPUT_PACKS

PACKAGE

P Ge
n

QL
QL_A_ID

P Ge
n

TIMER_QL

TIMER
1‘1

COUNT_QL

COUNTER
INT

1‘0

FG

Fifo queue

pack

add_FIFO(pack,fifo_queue)

fifo_queue

fifo_queue release_FIFO
(fifo_queue)@+tim_val

update_FIFO
(fifo_queue)

fifo_queue

1‘(length fifo_queue,
#2 qlen_a_id)

qlen_a_id

tim1

1‘tim1@+
ql_timer_val

1‘tim1@+tim_val1‘tim1

n

n+1

Figure 2. HTCPNs based –/1/FIFO/∞ queueing system model

T3

T4

T5

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

FIFO1

HS

FIFO2

HS

FIFO3

HS

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10

PACKS13

PACKAGE

P Out

PACKS1

PACKAGE

P In

Load Balacer Server Cluster

pack

pack

pack

pack

pack

pack

pack

pack

pack pack

pack

pack

pack

pack

pack

pack

pack

pack

Figure 3. WWW cluster with stochastic load balancer

tern was examined, in [23] a detailed distributed
database cluster model was proposed, whereas
in [27] a preliminary version of server structure
with feedback like admission control of Inter-
net requests was introduced. The packet dis-
tribution patterns presented in this paper are
also related to the load balancing in web–server
cluster problem. The detailed discussion of some
selected load balancing strategies models is in-
cluded in section 3. In this section a simple
WWW cluster model with stochastic packed dis-
tribution policy is concerned.

Figure 3 includes an example of clus-
ter load–balancing HTCPNs model. The clus-

ter consists of 3 computers (compare Fig. 1)
represented as FIFO1 . . .FIFO3 substitution
transitions, where each transition is attached
to the corresponding FIFO queueing pat-
tern. The Internet requests serviced by the
cluster arrive through PACKS1 port place.
A load balancer decides where the cur-
rently acquired request should be send. When
a token arrives in PACKS1 place, transi-
tions T3 . . .T5 are in conflict. According to
CPN properties, a transition is randomly
chosen for firing. Consequently, the stochas-
tic packet distribution policy is naturally
modelled.

144 Slawomir Samolej, Tomasz Szmuc

2.4. Request Generator Model

According to one of main assumptions of the
web–server cluster modelling methodology pre-
sented in this paper, the system model can be
treated as an open queueing network. Conse-
quently, the crucial model component must be a
network arrival process simulating the Internet
service requests that are sent to the server.

Figure 4 shows an example HTCPNs sub-
page that models a typical Internet request gen-
erator. The core of the packet generator is a
clock composed from TIMER0 place and T0
transition. The code segment attached to the
T0 transition produces values of time–stamps
for tokens stored in TIMER0 place. The values
are defined by the defined probability function.
As a result the Internet requests appear into
PACKS1 place at random moments in simula-
tion time. The frequency at which tokens ap-
pear in PACKS1 place is determined by the
mentioned above distribution function. PACKS1
place has a port place status and thereafter to-
kens appearing in it can be consumed by other
model components (e.g. server cluster model).

T0
C

output (tim_val);
action
discExp(1.0/
pack_gen_mean_time);

COUNT0

INT 1‘1

TIMER0

TIMER 1‘1

PACKS1

PACKAGE

P Ge
n

tim1

tim1
@+tim_val

(n,1,intTime(),
ran’random_val(),0,0)n

n+1

Figure 4. Web–server arrival process model

The Internet request frequency can have any
standard probability distribution function or
can be individually constructed as it was pro-
posed in [36].

2.5. Example Top–Level Multi–Tier
Server Model

Having the adequate set of design patterns, a
wide area of server cluster architectures can be

modelled and tested at the early stage of de-
velopment process. At the top–level modelling
process each of the main components of the sys-
tem can be represented as a HTCPNs substitu-
tion transition. The modelling methodology pre-
sented in the paper suggest that at the top–level
model construction the arrival process and main
server cluster layers should be highlighted. Af-
ter that each of the main components (main
substitution transition) should be decomposed
into an adequate packed distribution subpage,
were under some of transitions queueing system
models will be attached. It is easily to notice
that a typical top–down modelling approach of
software/hardware system modelling has been
adapted in the web server modelling methodol-
ogy proposed in the paper.

Figure 5 includes an example top–level
HTCPN model of cluster–based server (com-
pare Fig. 1) that follows the abovementioned
modelling development rules. The HTCPN
in Fig. 5 consists of 3 substitution transi-
tions. Input_Procs transition represents the
arrival process for the server cluster, whereas
WWW_Server_Cluster transition represents
the first–layer of multi–tier web–server, and fi-
nally DataBaseServer transition represents the
data base server.

The modelling process can be easily ex-
tended by attaching the request generator model
as in section 2.4 under the Input_Procs transi-
tion and by attaching the WWW cluster model
with load balancing module as in section 2.3
underWWW_Server_Cluster transition. The
final executable model can be acquired by at-
taching FIFO design patterns under FIFO1,
FIFO2 and FIFO3 transitions in the load bal-
ancing module (compare sections 2.2 and 2.3).
A separate model should be proposed for the
packet distribution and queueing models layers
of the data base server.

2.6. Model Validation Capabilities

Typical elements of HTCPNs modelling soft-
ware tools are performance evaluation routines,
e.g.: [16], [35] . The routines make it possible to
capture the state of dedicated tokens or places

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 145

PACKS1

PACKAGE

PACKS18

PACKAGE

T13

Input_Procs WWW_Server_Cluster DataBaseServer

PACKS13

PACKAGE

Figure 5. Example top–level multi–tier server model

during the HTCPN execution. A special kind
of log files showing the changes in the state of
HTCPN can be received and analyzed offline.

At the currently reported version of
web–server cluster modelling and analysis soft-
ware tool, queue lengths and service time
lengths can be stored during the model ex-
ecution. Detecting the queue lengths seems
to be the most natural load measure avail-
able in typical software systems. The service
time lengths are measurable in the proposed
modelling method because of a special kind
PACKAGE type tokens construction (compare
section 2.1). The tokens “remember” the simu-
lation time at which their appear in the cluster
and thereafter the time at each state of their
service may be captured. In real systems the
service time is a predominant quality of service
parameter for performance evaluation.

The performance analysis of models of web
servers constructed according the proposed in
the paper methodology can be applied in the
following domains.

First, the system instability may be easily
detected. The stable or balanced queueing sys-
tem in a steady state has an approximately con-
stans average queue length and correspondingly
average service time. On the contrary, when the
arrival process is to intensive for the queueing
systems to serve, both queue lengths and service
times increase. This kind of analysis is possible
when there are no limitations for queue lengths
in the proposed modelling method. Fig. 6 shows
the queue lengths (Fig. 6 (left)) and service time
lengths (Fig. 6 (right)) when the considered web
server cluster model is permanently overloaded.

Second, the average values of queueing sys-
tem systems parameters such as average queue
lengths and average servicing times for the bal-

anced model can be estimated. Provided that
the arrival process model and the server nodes
models parameters are acquired from the real
devices as in [18], [30], [34], [36], the software
model can be used for derivation the system
properties under different load conditions. In the
Fig. 7 queue lengths (Fig. 7 (left)) and service
times (Fig. 7 (right)) under stable system execu-
tion are shown. The cluster had a heterogeneous
structure, where server 2 (FIFO2 model) had
4 times lower performance. FIFO1 and FIFO3
average queue length was 1.7, whereas FIFO3
queue length was 4.4. The average service time
for FIFO1 and FIFO3 cluster nodes was 811
time units whereas for FIFO2 was 7471 time
units.

Third, some individual properties of cluster
node structures or load balancing strategies may
be observed. Some selected load balancing algo-
rithms properties derived from simulation exper-
iments will be discussed in section 3.

3. Example of Load Balancing
Strategies Evaluation

Load balancing is an important issue in parallel
and distributed systems. In traditional computa-
tion systems load balancing procedures were used
to distribute the computation task among system
nodes. It improved the general system utilisation
and usually led to faster processing. In recent
years, the load balancing algorithms elaborated
for general parallel and distributed systems [31]
were naturally re-applied in the emerging locally
distributed Internet or web systems. The first
load balancing strategies successively applied in
Internet systems were static random distribution
policy [28] and static modulus-based round-robin

146 Slawomir Samolej, Tomasz Szmuc

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

S
er

vi
ce

 T
im

e
Le

ng
th

Time [sim. time units]

Service Time Lengths

Server 1 serv. len.
Server 2 serv. len.
Server 3 serv. len.

Figure 6. Queue lengths (left) and service times (right) under overload condition

 0

 2

 4

 6

 8

 10

 12

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

S
er

vi
ce

 T
im

e
Le

ng
th

Time [sim. time units]

Service Time Lengths

Server 1 serv. len.
Server 2 serv. len.
Server 3 serv. len.

Figure 7. Queue lengths (left) and service times (right) under stable system execution

policy [15]. There were described in the paper
[38] successful implementations of round-robin,
weighted round-robin, least-connection and
weight least-connection load balancing strate-
gies in Linux Virtual Server [17] . The abovemen-
tioned strategies are now standard algorithms
in commercial load balancing solutions as men-
tioned in [20], [33].

The rapid development of web–server ori-
ented load balancing policies was tentatively
systematised in [5], [2]. Paper [5] classi-
fies distributed web-server architectures re-
garding the entity which distributes requests
among servers. It defines 4 approaches of re-
quest distribution: client–based, DNS–based,
dispatcher–based, and server–based. In [2] an at-
tempt of simulation based on comparison of se-
lected load balancing algorithms such as “round
robin”, “least connection first”, “round-trip”
and “Xmitbyte” was carried out.

During last few years research has focused
on the so-called dynamic load balancing strate-

gies for web–oriented systems. Generally, the
dynamic load balancing polices use some kind
of feedback information from the cluster nodes
to redirect the incoming request among the
nodes. In [30] the so called “fewest server pro-
cesses first” and “extended fewest server pro-
cesses first” dynamic load balancing policies
were compared. The fewest server processes first
policy concept is (in our opinion) comparable to
least–connection policy. In both algorithms the
least loaded server gets the next incoming re-
quest. The “extension” of the preliminary algo-
rithm lies in the fact that the request can have
priorities. The paper presents high-level Petri
net approach to efficiency analysis of the poli-
cies in different priority levels scenarios. A dy-
namic web system load balancing policy pre-
sented in [37] (AdaptLoad policy) adopts the
load of the servers according to size of docu-
ments requested. The policy builds a discrete
data histogram encoding empirical size distri-
bution of batches of K requests as they ar-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 147

rive in the system. Each server “offers” files
within a certain range of size. The range de-
pends of “popularity” of the files derived from
the histogram. The paper presents simulation
results of the policy behaviour under histori-
cal load conditions. Paper [6] at first discusses
such so called nonprediction–based load balanc-
ing techiques as “first fit”, “stream–based map-
ping” and “adaptive load sharing” correspond-
ingly. The techniques are examined with respect
to possible application in multimedia applica-
tions. The prediction–based load balancing tech-
niques as “least load first”, “prediction–based
least load first”, “adaptive partition” and
“prediction–based adaptive partition” are intro-
duced and experimentally evaluated. In [22] a
sum of weighted factors such as CPU usage,
memory usage, number of processors, number
of I/O operations, amount of free local storage
and network I/O usage are taken into consider-
ation to compute the load of a cluster node. The
load of the node may then be applied to a load
balancing policy.

At the current state of the development of
the HTCPNs–based tool, some selected load
balancing HTCPNs templates were modelled.
Three of the most widely applied polices such
as “random”, “round-robin” and “fewest server
processes first” were implemented. Addition-
ally one experimental–“adaptive load sharing”
policy was chosen for the implementation, be-
cause as it was claimed in [6], this policy of-
fers reasonable balance between the through-
put and out–of–order departures of the exter-
nal requests. In the following subsections the
HTCPNs–based models of the mentioned load
balancing policies will be presented. The fi-
nal subsection will include some simulation re-
sults of the HTCPNs–based load balancing al-
gorithms. The model of the simplest– “random”
load balancing policy was presented in subsec-
tion 2.3.

3.1. Round-robin Load Balancing
Policy Model

Figure 8 presents HTCPNs–based model of the
computer cluster similar to the cluster model

in Fig. 3. The cluster consists of 3 computers
servicing requests incoming via PACKS1 port
place. The incoming Internet requests are redis-
tributed among the cluster nodes according to
round-robin load balancing policy. The model
of the policy works as follows. Each incoming
packet “passes” T2 transition and after the tran-
sition firing the forth element of the tuple mod-
elling the requests (see subsection 2.1) is modi-
fied. The element includes a number of the server
where the packet will be serviced. Guard func-
tions attached to T3, T4, T5 transitions “check”
the fourth element of each packed model and
“pass” the related requests. The presented load
balancing policy model can be easily extended
to “weighted round-robin” policy by extending
the numbers generated for the forth element of
the packet tuple and by the corresponding mod-
ifications of the guards.

3.2. Fewest Server Processes First Load
Balancing Policy Model

Figure 9 includes HTCPNs–based model of the
computer cluster similar to the cluster model
in Fig. 3 and Fig. 8. The incoming Internet
requests are redistributed among the cluster
nodes according fewest serwer processes first
load balancing policy. The the model of the pol-
icy works as follows. During the model execu-
tion, the lengths of the queues in the queue-
ing systems modelling servers are periodically
monitored. The monitoring is possible due to
appropriate construction of queueing systems
models (compare subsection 2.2). QL1, QL2,
and QL3 places include the current values of
queue’s lengths. The queue’s lengths are com-
pared during BALANCE transition execution
and FEWEST place acquires a number of the
serwer which serves the fewest number of re-
quests (the server with the shortest request
queue). Guard functions associated to T3, T4,
and T5 transitions “open” (for the incoming re-
quests) only this branch of the cluster which
includes the least loaded server. The frequency
of the queue’s lengths measurement can be ad-
justed to derive the balance between additional
system load caused by the measurement and the

148 Slawomir Samolej, Tomasz Szmuc

T2 PACKS2

PACKAGE

T3

[#4 pack =1]

T4

[#4 pack =2]

T5

[#4 pack =3]

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

FIFO1

HS

FIFO2

HS

FIFO3

HS

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10

PACKS13

PACKAGE

P Out

PACKS1

PACKAGE

P In

Load Balacer Server Cluster

CUR

INT1‘1

pack

(#1 pack,
 #2 pack,
 #3 pack,
 n,
#5 pack,
#6 pack)

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack pack

pack

pack

pack

pack

pack

pack

n
if n<3 then n+1
else 1

Figure 8. WWW cluster with round-robin load balancing policy

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10 PACKS13

PACKAGE

P Gen

PACKS2

PACKAGE

P Gen

QL1_

MEAN_TABLE
1‘(0,0,0,0,0,0,0,0,0,0,1,0,1)

QL2_

MEAN_TABLE

1‘(0,0,0,0,0,0,0,0,0,0,1,0,2)

QL3_

MEAN_TABLE

1‘(0,0,0,0,0,0,0,0,0,0,1,0,3)

FIFO1

H

FIFO2

H

FIFO3

H

FEWEST

INT

1‘1
T3

[n=k]

T4
[n=k]

T5

[n=k]

HS

BALANCE

Load Balancer Server Cluster

S1_ID INT
1‘1

S2_ID INT
1‘2

S3_ID INT
1‘3

pack

pack

pack

pack
pack

pack

pack

pack

pack

pack

pack

pack

mean_ql_val1

mean_ql_val2

mean_ql_val3

k

find_fewest_proc_of3
(mean_ql_val1,mean_ql_val2,mean_ql_val3)

n

n

n

k
k

k
k

kk

Figure 9. WWW cluster with fewest server processes first load balancing policy

quality of the balance process. It is possible to
define digital filters to “smooth out” the queue
length “signal”.

3.3. Adaptive Load Sharing – Load
Balancing Policy Model

Fig. 10 presents HTCPNs–based model of the
computer cluster where the incoming Internet
requests are redistributed among the cluster
nodes according to adaptive load sharing load

balancing policy inspired by [6], [10]. The model
of the policy works as follows. During the sys-
tem model execution lengths of the queues in the
queueing systems modelling servers are periodi-
cally monitored. QL1, QL2, and QL3 places in-
clude the current values of queue’s lengths. Dur-
ing execution of the BALANCE transition the
utilisation of each node of the cluster is calcu-
lated. Depending on the utilisation values some
ranges of amounts of the Internet requests that
each server may serve are calculated. The cal-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 149

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10 PACKS13

PACKAGE

P G

PACKS2

PACKAGE

P G

QL1_

QL_A_ID
1‘(0,1)

QL2_

QL_A_ID

1‘(0,2)

QL3_

QL_A_ID

1‘(0,3)

FIFO1

H

FIFO2

H

FIFO3

H

B_TABLE

BAND_TABLE3

1‘((1,33),(34,66),(67,100))

T3

[b_guard31(b_tab3,pack)]

T4

[b_guard32
(b_tab3,pack)]

T5

[b_guard33(b_tab3,pack)]

H

BALANCE

Load Balancer Server Cluster

pack

pack

pack

pack
pack

pack

pack

pack

pack

pack

pack

pack

qlen_a_id1

qlen_a_id2

qlen_a_id3

b_tab3

count_bands_of3(qlen_a_id1,
qlen_a_id2, qlen_a_id3)

b_tab3

b_tab3

b_tab3

Figure 10. WWW cluster with adaptive load sharing load balancing policy

culated ranges are stored in B_TABLE place.
Generally, servers having lower utilisation values
will be given more chances to acquire the Inter-
net requests in the future. Guard functions asso-
ciated to T3, T4, and T5 transitions can be un-
derstand as “valves” that adjust the amounts of
the requests to be passed through to the servers
according the range table stored in B_TABLE
place. The frequency of the queue’s lengths mea-
surement can be adjusted to derive the balance
between additional system load caused by the
measurement and the quality of the balance pro-
cess. It is possible to define digital filters to
“smooth out” the queue length “signal”.

3.4. Simulation Based on Load
Balancing Policies Evaluation

For the above mentioned models of load balanc-
ing policies a set of simulation analysies was
carried out. In Figure 11 results of 2 differ-
ent simulations are shown. Figure 11 (left) in-
cludes queue lengths of 3 balanced servers where
load balancing policy followed round-robin algo-
rithm. In the (right) simulation a performance
degradation of server 2 in 200000 time units was

modelled. It can be easily seen, that the load bal-
ancer does not “notice” the performance degra-
dation. The requests directed to second server
are serviced later than the others.

The queue lengths for clusters where fewest
server processes first and adaptive load sharing
load balancing policies are coping with server 2
performance degradation are shown in Fig. 12.
Both polices (fewest server processes first –
Fig. 12 (left), adaptive load sharing – Fig. 12
(right)) “reconfigured” the loads for the cluster
nodes and managed to keep the average queue
lengths for all cluster nodes at the same level.
The simulation experiment proved that dynamic
load balancing polices better cope with dynamic
changes during system execution. However, it
must be noticed that the dynamic load balanc-
ing policies need some feedback information col-
lected from the nodes of the cluster. To fulfill
such requirement both modern load balancers
and cluster nodes (e.g. WWW servers) soft-
ware must be modified. Additionally the feed-
back data collection can increase the load of the
system.

Figure 13 shows more possibilities for design
of dynamic load–balancing policies. The simula-

150 Slawomir Samolej, Tomasz Szmuc

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 50000 100000 150000 200000 250000 300000 350000 400000

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50000 100000 150000 200000 250000 300000 350000 400000

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

Figure 11. Queue lengths under round-robin load balancing policy (left) balanced (right) unbalanced
after server 2 performance reduction

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 200000 400000 600000 800000 1e+06 1.2e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

Figure 12. Queue lengths under fewest server processes first (left) and adaptive load sharing (right)
load balancing policy after server 2 performance reduction

tion results show that the application of some
feedback data to cluster state modification may
cause system’s behaviour similar to control–loop
systems. In Figure 13 (left) the queue lengths os-
cillations caused by an inadequate data collec-
tion frequency may be noticed. The system in
Fig. 13 (right) seems to “suffer” from the high
sensibility that may in consequence lead to the
instability.

4. Conclusions and Future Research

The first part of the paper introduces the
HTCPNs–based software tool providing support
for development and validation of web–server
clusters executable models. The main concept
of the tool lies in the definition of reusable
HTCPNs structures (patterns) involving typical
components of cluster–based server structures.
The preliminary patterns are executable mod-

els of typical queueing systems. The queueing
systems templates may be arranged into server
cluster subsystems by means of packet distribu-
tion patterns. Finally, the subsystems patterns
may be naturally used for top level system mod-
elling, where individual substitution transitions
“hide” the main components of the system. The
final model is a hierarchical timed coloured Petri
net. Simulation and performance analysis are
the predominant methods that can be applied
for the model validation. Queueing systems tem-
plates was checked whether they meet theoret-
ically derived performance functions. The anal-
ysis of HTCPNs simulation reports enables to
predict the load of the modelled system under
the certain arrival request stream; to detect the
stability of the system; to test a new algorithms
for Internet requests redirection and for their
service within cluster structures.

The second part of the paper includes the re-
view of recently published research results con-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 151

 0

 20

 40

 60

 80

 100

 120

 0 200000 400000 600000 800000 1e+06 1.2e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0

 5

 10

 15

 20

 25

 30

 35

 0 200000 400000 600000 800000 1e+06 1.2e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

Figure 13. Queue lengths under fewest server processes first load balancing policy:
queue lengths oscillation (left), high system sensitivity (right)

cerning application load balancing policies in
Internet systems. Subsequently, the HTCPNs
based models of some selected polices have
been proposed. The most popular load balanc-
ing policies models such as “random”, “round
robin”, and “fewest server processes first” as well
as one experimental–“adaptive load sharing”
have been applied and evaluated. The worked
out HTCPNs structures become the integrated
modules of the HTCPNs based software tool
presented in the first part of the paper.

Currently, the software tool described in the
paper can be applied for a limited web–server
cluster structures modelling and validation.
Thereafter the main stream of author’s future
research will concentrate on developing next
web–server node structures models. This may
result in following advantages. First, an open
library of already proposed web–server clus-
ter structures could be created and applied by
the future web–server developers. Second, some
new solutions for distributed web–server sys-
tems may be proposed and validated.

References

[1] F. Bause. Queueing Petri Nets – a formalism
for the combined qualititative and quantitative
analysis of systems. In PNPM’93, pages 14–23.
IEEE, IEEE Press, 1993.

[2] H. Bryhni, E. Klovning, and O. Kure. A
comparison of load balancing techniques for
scalable web servers. IEEE Network, Volume
14(4):58–64, Jul./Aug. 2000.

[3] J. Cao, M. Andersson, C. Nyberg, and M. Khil.
Web server performance modeling using an

M/G/1/K*PS queue. In CT 2003, 10th In-
ternational Conference on Telecommunications,
pages 1501–1506. IEEE, 2003.

[4] V. Cardellini, E. Casalicchio, and M. Cola-
janni. The state of the art in locally distributed
web-server systems. ACM Computing Surveys,
Volume 34(2):263–311, June 2002.

[5] V. Cardellini, M. Colajanni, and P. Yu. Dy-
namic load balancing on web-server systems.
IEEE Internet Computing, Volume 3(3):28–39,
May/June 1999.

[6] J. Guo and L. Bhuyan. Load balancing in a
cluster-based web server for multimedia appli-
cations. IEEE Transactions on Parallel and
Distributed Systems, Volume 17(11):1321–1334,
2006.

[7] K. Jensen. Coloured Petri Nets, Basic Con-
cepts, Analysis Methods and Practical Use, vol-
ume I-III. Springer, 1996.

[8] K. Jensen, L. Kristensen, and L. Wells.
Coloured Petri Nets and CPN tools for
modelling and validation of concurrent sys-
tems. International Journal on Software
Tools for Technology Transfer (STTT), Volume
9(3-4):213–254, 2007.

[9] Y. Ji and I. S. Ko. A design of the simulator
for web-based load balancing. Springer LNCS,
Volume 4496/2007:884–891, July 2007.

[10] L. Kencl and J.-Y. L. Boudec. Adaptive load
sharing for network processors. In Twenty-First
Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceed-
ings, pages 545–554. IEEE, 2002.

[11] D. Kim, S. Lee, S. Han, and A. Abraham. Im-
proving web services performance using priority
allocation method. In Proc. Of International
Conference on Next Generation Web Services
Practices, pages 201–206. IEEE, 2005.

152 Slawomir Samolej, Tomasz Szmuc

[12] S. Konunev. Performance modelling and eval-
uation of distributed component–based sys-
tems using Queuing Petri Nets. IEEE
Transactions on Software Engineering, Volume
32(7):486–502, 2006.

[13] S. Kounev and A. Buchmann. SimQPN–a
tool and methodology for analyzing Queueing
Petri Net models by means of simulation. Per-
formance Evaluation, Volume 36(4–5):364–394,
2006.

[14] M. Kristensen, S. Christensen, and K. Jensen.
The practitioner’s guide to coloured Petri Nets.
International Journal on Software Tools for
Technology Transfer (STTT), Volume 2:98–132,
1998.

[15] T. T. Kwan, R. E. McGrath, and D. A. Reed.
Ncsa’s world wide web server: Design and per-
formance. Computer, Volume 28(11):68–74,
Nov. 1995.

[16] B. Linstrom and L. Wells. Design/CPN Per-
formance Tool Manual. CPN Group, Univ. of
Aarhus, Denmark, 1999.

[17] Linux virtual server project. http://www.
linuxvirtualserver.org/.

[18] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L.
Hellerstein, and S. Parekh. Online response
time optimization of Apache web server. In
IWQoS 2003: 11th International Workshop,
pages 461–478. Springer, 2003. LNCS.

[19] X. Liu, R. Zheng, J. Heo, Q. Wang, and L. Sha.
Timing performance control in web server sys-
tems utilizing server internal state information.
In Proc. of the Joint Internat. Conf. on Auto-
nomic and Autonomous Systems and Interna-
tional Conference on Networking and Services,
page 75. IEEE, 2005.

[20] loadbalancers.org. http://loadbalancer.org/.
[21] Meta Software Corporation. Design/CPN Ref-

erence Manual for X-Windows, 1993.
[22] G. Park, B. Gu, J. Heo, S. Yi, J. Han, J. Park,

H. Min, X. Piao, Y. Cho, C. W. Park, H. J.
Chung, B. Lee, and S. Lee. Adaptive load bal-
ancing mechanism for server cluster. Springer
LNCS, Volume 3983/2006:549–557, May 2006.

[23] T. Rak and S. Samolej. Distributed internet
systems modeling using tcpns. In Proc. of Inter-
national Multiconference on Computer Science
and Information Technology, pages 559–566.
IEEE, 2008.

[24] S. Samolej and T. Rak. Timing properties of in-
ternet systems modelling using Coloured Petri
Nets. In Systemy czasu rzeczywistego – Kierunki
badań i rozwoju, pages 91–100. Wydawnictwa
Komunikacji i Łączności, 2005. In Polish.

[25] S. Samolej and T. Szmuc. TCPN–based tool for
timing constraints modelling and validation. In
Software Engineering: Evolution and Emerging
Technologies, Volume 130 Frontiers in Artificial
Intelligence and Applications, pages 194–205.
IOS Press, 2005.

[26] S. Samolej and T. Szmuc. Time constraints
modeling and verification using Timed Colored
Petri Nets. In Real–Time Programming 2004,
pages 127–132. Elsevier, 2005.

[27] S. Samolej and T. Szmuc. Dedicated inter-
net systems design using Timed Coloured Petri
Nets. In Systemy czasu rzeczywistego – Metody
i zastosowania, pages 87–96. Wydawnictwa Ko-
munikacji i Łączności, 2007. In Polish.

[28] M. Satyanarayanan. Scalable, secure, and
highly available distributed file access. Com-
puter, Volume 23(5):9–18, 20–21, May 1990.

[29] T. Schroeder, S. Goddard, and B. Ramamurthy.
Scalable web server clustering technologies.
IEEE Network, Volume 14(4):38–45, May/June
2000.

[30] Z. Shan, C. Lin, D. Marinecu, and Y. Yang.
Modelling and performance analysis of
QoS–aware load balancing of web–server clus-
ters. Computer Networks, Volume 40:235–256,
2002.

[31] B. A. Shirazi, A. R. Hurson, and K. M. Kavi.
Scheduling and Load Balancing in Parallel and
Distributed Systems. Wiley-IEEE Computer So-
ciety Press, April 1995.

[32] F. Spies. Modeling of optimal load balancing
strategy using queueing theory. Microprocessing
and Microprogramming, Volume 41:555–570,
1996.

[33] Thomas-kern load balancers. http://www.
thomas-krenn.com.

[34] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spre-
itzer, and A. Tantawi. Analytic modeling of
multitier Internet applications. ACM Transac-
tions on the Web, Volume 1(2), 2007.

[35] L. Wells. Performance analysis using CPN tools.
In Proc. of the 1st Inter. Conf. on Performance

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 153

Evaluation Methodolgies and Tools, 2006. Arti-
cle No. 59.

[36] L. Wells, S. Christensen, L. Kristensen, and
K. Mortensen. Simulation based performance
analysis of web servers. In Proc. of the 9th Inter-
nat. Workshop on Petri Nets and Perf. Models,
page 59. IEEE, 2001.

[37] Q. Zhang, A. Riska, W. Sun, E. Smirni, and
G. Ciardo. Workload-aware load balancing
for clustered web servers. IEEE Transactions

on Parallel and Distributed Systems, Volume
16(3):219–233, March 2005.

[38] W. Zhang. Linux virtual server for scalable net-
work services. In Ottava Linux Symposioum.
Proceedings, 2000.

[39] Z. Zhang and W. Fan. Web server load balanc-
ing: A queueing analysis. European Journal of
Operational Research, Volume 186(2):681–693,
April 2008.

