
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Automated Code Generation from System
Requirements in Natural Language

Jan Franců∗, Petr Hnětynka∗
∗Faculty of Mathematics and Physics, Department of Software Engineering, Charles University in Prague

jfrancu@gmail.com, hnetynka@dsrg.mff.cuni.cz

Abstract
An initial stage of a software development is specification of the system requirements. Typically,
these requirements are expressed in UML and consist of use cases and domain model. A use case is
a sequence of tasks, which have to be performed to achieve a specific goal. The tasks of the use case
are written in a natural language. The domain model describes objects used in the use cases. In this
paper, we present an approach that allows automated generation of executable code directly from
the use cases written in a natural language. Usage of the generation significantly accelerates the
system development, e.g. it makes immediate verification of requirements completeness possible
and the generated code can be used as a starting point for the final implementation. A prototype
implementation of the approach is also described in the paper.

1. Introduction

Development of software is covered by several
stages from which one of the most important
is the initial stage – collecting system require-
ments. These requirements can be captured in
many forms, however, use of the Unified Mod-
eling Language (UML) has become an industry
standard at least for large and medium-size en-
terprise applications. Development with UML
[8] is based on modeling the developed system at
multiple levels of abstraction. Such a separation
helps developers to reflect specific aspects of the
designed system on different levels and therefore
to get a “whole picture” of the system.

Development with the UML starts with def-
inition of goals of the system. Then, main char-
acteristics of the system requirements are iden-
tified and described. A behaviour of the devel-
oped system is specified as a set of use cases.
A use case is a description of a single task per-
formed in the designed system [3]. The task itself
is further divided into a sequence of steps that
are performed by communicating entities. These

entities are either parts of the system or users
of the system. A step of a use case is specified
by natural language sentences. The use cases of
the system are completed by a domain model
that describes entities, which together form the
designed system and which are referred to in the
use cases.

Bringing a system from the design stage to
the market is a very time-consuming and also
money-consuming task. A possibility to gener-
ate an implementation draft directly from the
system requirements would be very helpful for
both requirement engineers and developers and
it would significantly speed up development of
the system and decrease time required to de-
liver the system to the market and also decrease
amount of money spent. The system use cases
contain work-flow information and together with
the domain model capture all important infor-
mation and therefore seem to be sufficient for
such a generation. But the problem is that the
use cases are written in a natural language and
there is a gap to overcome to generate the sys-
tem code.

74 Jan Franců, Petr Hnětynka

1.1. Goals of the paper

In this paper, we describe an approach, which al-
lows to generate an implementation of a system
from the use cases written in a natural language.
The process proposed in the paper enables soft-
ware developers to take an advantage of the
carefully written system requirements in order
to accelerate the development and to provide
immediate feedback for the project’s require-
ment engineers by highlighting missing parts
of the system requirements. The process fits in
the incremental development process where in
each iteration developers can eliminate short-
comings in design. In addition, the process can
be customized to fit in any enterprise application
project.

Described approach is implemented in a
proof-of-the-concept tool and tested on a case
study.

To achieve the goals, the paper is structured
as follows. Section 2 provides an overview of the
UML models and technologies required for use
case analysis. Section 3 shows how our genera-
tion tool is employed in the application develop-
ment process. Section 4 describes the tool and
all generation steps in detail while Section 5
presents particular examples of the generated
code. Section 6 evaluates our approach and the
paper is concluded in Section 7, where future
plans are also shown.

2. Specification of Requirements

The Unified Modeling Language (UML) is a
standardized specification language for the soft-
ware development. Development with UML is
based on modeling a system at multiple lev-
els of abstraction in separated models. Each
model represented as a set of documents clar-
ifies the abstraction on a particular level and
captures different aspects of the modeled sys-
tem. The UML-based methodologies standard-
ize whole development process and ensure that
the designed system will meet all the require-
ments. UML also increases possibilities to reuse
existing models and simplifies reuse of code.

The developers can use several existing model-
ing tools/frameworks (e.g. [10]) to support this
process.

In this paper, we work with the UML doc-
uments created during the initial stage of the
system development, i.e. with the requirement
specification. Results of the stage are captured
in use cases and domain model.

2.1. Use Cases

A use case in the context of UML is a description
of a process where a set of entities cooperates
together to achieve a goal of the use case. The
entities in the use case can refer to the whole sys-
tem, parts of the system, or users. Each use case
has a single entity called system under discus-
sion (SuD); from the perspective of this entity,
the whole use case is written. An entity primar-
ily communicating with SuD is called a primary
actor (PA). Other entities involved in the use
case are called supporting actors (SA).

Each use case is a textual document writ-
ten in a natural language. The book [3] recom-
mends the following structure of the use case: (1)
header, (2) main scenario, (3) extensions, and
(4) sub-variations.

The header contains the name of the use
case, SuD entity, primary actor and support-
ing actors. The main scenario (also called the
success scenario) defines a list of steps (also
called actions) written as sentences in a natu-
ral language that are performed to achieve the
goal of the use case. An action can be extended
with a branch action, which reflects possible
diversions from the main scenario. There are
two types of the branch actions: extensions and
sub-variations. In an extension, actions are per-
formed in addition to the extended action, while
in a sub-variation, actions are performed instead
of the extended action. The first sub-action of a
branch action is called a conditional label and
describes necessary condition under which the
branch action is performed.

The above described structure is not the only
possible one – designers can use any structure
they like. In our approach, we assume the use
cases satisfy these recommendation as it allows

Automated Code Generation from System Requirements in Natural Language 75

Figure 1. The Marketplace project entities

UseCase: Buyer buys a selected item
SuD: Clerk
PA: Buyer
Supporting actor: Computer System

Main success scenario specification:
1 Buyer submits to the clerk a reference to a selected offer.
2 Clerk submits the reference to the system.
3 Clerk reports the system response to the seller and requests billing

and shipping information, payment method and payment details.
4 Buyer submits to the clerk the requested billing and shipping information,

payment method and payment details.
5 Clerk enters the billing and shipping information, payment method

and payment details.
6 Clerk reports the system response (with the unique acknowledgment)

to the buyer.

Extensions:
3a System failed to validate the offer.
3a1 Use case abort.

Figure 2. Use case example

us to process the use case automatically and
generate the system implementation. Such an
assumption does not limit the whole approach
in a significant way, hence the book [3] is widely
considered as a “bible” for writing the use cases
(in addition, we already have an approach for
using use cases in fact with any structure – see
Sect. 7).

In the rest of the paper we use as an exam-
ple a Marketplace project for on-line selling and
buying. A global view of the application entities
is depicted on Figure 1. There are several actors,
which communicate with the system. Sellers en-
ter offers to the system and Buyers search for
interesting offers. Both of them mainly commu-
nicate directly with the Computer system – in
few cases, they have to communicate through a
Clerk who passes information to the Computer
system. There is also a Supervisor which main-

tains the Computer system. A Credit verification
agency verifies Seller’s and Buyer’s operations
and finally a Trade commission confirms the of-
fers.

The use case on Figure 2 is a part of the
Marketplace specification (the whole specifica-
tion has 19 use cases) and it describes commu-
nication between the Buyer (as PA), Clerk (as
SuD), and Computer system. It is prepared ac-
cording to the recommendations.

2.2. Domain Model

A domain model describes entities appearing
in the designed system. Typically, the domain
model is captured as a UML class diagram and
consists of three types of elements: (1) concep-
tual classes, (2) attributes of conceptual classes,
and (3) associations among conceptual classes.

76 Jan Franců, Petr Hnětynka

Conceptual classes represent objects used in
the system use cases. The attributes are fea-
tures of the represented objects and associations
describe relations among the classes. Figure 3
shows the Marketplace domain model.

As described in [8], noun phrases appearing
in the use cases can be used for determining class
names during creation of the domain model (in
further detail, such a relation between the class
diagrams and use cases is investigated in [1]).

Figure 3. Marketplace domain model

2.3. Procasor Tool and Procases

The Procasor [6] is a tool for automated trans-
formation of natural language (English) use
cases into a formal behaviour specification. The
transformations are described in [9] and further
extended in [4] where almost all restrictions of a
use case step syntax were removed.

As a formalism into which the natural lan-
guage use cases are transformed the Procasor
uses procases [9] that are a special form of be-
haviour protocols [14]. In addition to procases, a
UML state machine diagram is also generated.

A procase is a regular expression-like specifi-
cation, which can describe behaviour of a single
entity as well as of the whole system [13]. The
procases generate so called traces that represent
all possible valid sequences of actions described
by the use cases. Figure 7 shows a procase de-
rived from the use case shown in Figure 2.

A procase is composed of operators (i.e.+, ;),
procedure calls ({,}), action tokens, and support-
ing symbols (i.e. round parenthesis for specifying
operators’ precedence). Each action token rep-

resents a single action that has to be performed
and its notation is composed of several parts.
First, there is a single character representing a
type of the action. The possible types are ? resp.
! for request receiving resp. sending action, #
for internal actions (unobservable by others than
SuD) and % for special actions. The action type
is followed by the entity name onwhich the action
is performed. Finally, the name of the action itself
is the last part (separated by a dot). In a case,
there is no entity name, the action is internal. For
example, ?B.submitSelectOffer is the submitSe-
lectOffer action where SuD waits for a request
from the B (Buyer) entity.

The procases use the same set of operation
as regular expressions. These are: * for itera-
tion, ; for sequencing, and + for alternatives.
In this paper, we call the alternative operator
as a branch action, its operands (actions) as
branches, and the iteration operator with its
operand as a loop action.

A special action is NULL which means no
activity and is used in places with no activity
but the procase syntax requires an action spec-
ified there (e.g. with the alternative operator).
Another special action is the first action inside
a non-main scenario branch, which is alled con-
dition branch label and expresses the condition
under which the branch is triggered. Finally,
the %ABORT special action represents a failure
ending of the procase.

Procedure calls (written as a sequence of ac-
tions in curly brackets) represent a behaviour
(mostly composed of inner actions) of the re-
quest receive action after which they are placed
(the action is called trigger action).

2.4. Goals Revisited

As described in the sections above, the Proca-
sor tool parses the use cases written in a natural
language and generates a formal specification of
behaviour of the designed system. A straightfor-
ward idea is then why to stop just with the gen-
erated behaviour description and not to gener-
ate also an implementation of the system which
implements the work-flow captured in the use
cases.

Automated Code Generation from System Requirements in Natural Language 77

Figure 4. Development process overview

The goal of this paper is to present an ex-
tension of the Procasor tool that based on the
use cases generates executable implementation
of the designed system.

3. Generating Process

The development process with our generating
tool is as follows. First, requirement engineers
collect all requirements and describe them in the
form of use cases. Then the Procasor tool au-
tomatically generates procases. In parallel, the
requirement engineers create a project domain
model. As a next step of validating the use cases,
the generated procases can be reviewed. Then,
our generator is employed and produces an imple-
mentation of the developed system. The gener-
ated implementation consists of threemain parts:
(i) use case objects where work-flow captured in
a use case is generated, (ii) pages which are used
to communicate with users of the system, and
(iii) entity objects where the business logic is
kept.

The generated implementation is only an ini-
tial draft and serves primarily for testing the
use cases and domain model. But it can be also
used as a skeleton for the actual implementation
and/or to allow customers to gain first impres-
sions of the application. The whole development
process is illustrated in Figure 4.

At this point a common mistake has to be
emphasized (which is also emphasized in [8]).

The system requirements cannot be understood
as final and unchangeable. Especially in incre-
mental development, the requirements are cre-
ated in several iterations and obviously the first
versions are incomplete. Therefore if the gen-
erator is used on such input, it can generate a
completely wrong implementation. But this im-
plementation can be used to validate the use
cases, repair them and regenerate the implemen-
tation.

4. Generating Tool in Detail

The generator of the implementation takes as
an input the procases generated by the Procasor
and the created domain model of the designed
system. From these inputs, it generates the ex-
ecutable implementation.

The generation is automated and it consists
of three steps:
1. First, procases generated from the Procasor

are rearranged into a form, in which they
still follow the procases syntax but are more
suitable for generating the implementation
(Sect. 4.1).

2. Then, a relation between words used in the
use cases and elements in the domain model
is obtained and parameters (i.e. their num-
bers and types) of the methods are identified
(Sect. 4.2).

3. Finally, the implementation of the designed
system is generated (Sect. 4.3).

78 Jan Franců, Petr Hnětynka

4.1. Procase Preprocessing

The procases produced by the Procasor do not
contain procedure calls brackets (see 2.3), which
are crucial for successful transformation of the
procases into the code. Except several marginal
cases, eachuse case is a request-response sequence
between SuD and PA (for enterprise applica-
tions). In the procase, a single request-response
element is represented as a sequence of actions
from which the first one is the request receive
action (i.e. starts with ?) and then followed by
zero or more other actions (i.e. sending request
action, internal actions, etc.). In otherwords, SuD
receives the request action, then performs a list of
other actions, and finally returns the result (i.e.
end of the initial request receive action). Hence,
the sequence of actions after the request receive
action can bemodeled as a procedure content and
enclosed in the procedure call brackets.

The following example is a simple procase in
a form produced by the Procasor:

?PA.a; #b; !SA.c; ?PA.d; #e; #f
After identifying the procedure calls, the

procase is modified into the following form:
?PA.a{#b; !SA.c}; ?PA.d{#e; #f}

At the end, the code generated from this pro-
case consists of two procedures – first one gener-
ated from the ?PA.a action and internally call-
ing the procedures resulted from #b and !SA.c,
and the second one generated from ?PA.d and
calling #e and #f.

The approach described in the paragraph
above works fine except for several cases. In par-
ticular, these are: (1) first action of the use case
is not a request receive action, (2) a request re-
ceive action is in a branch(es), and (3) a request
receive action is anywhere inside a loop.

In the case when the first action of the use
case is not a request receive action, a special
action INIT is prepended to the use case and
the actions till the first request receive action
are enclosed in the procedure call brackets. In
the generated code, a procedure generated from
the INIT action is called automatically before
the other actions.

Two other cases cannot be solved directly
and require more complex preprocessing. To
solve these cases, we have enhanced procases
with so called conditional events, which allow
“cutting” branches of the procase and arrange
them in a sequence, but which do not modify
the procase syntax.

The conditional events allow to mark
branches of the alternatives by a boolean vari-
able (written in the procase just as a name with-
out any prefix symbol followed by a colon, e.g.
D:). The variables can be set to true via the ac-
tion written as the variable name prefixed with
the $ symbol (e.g. $D) or to false by its name
with the $ and ∼ symbols (e.g. ∼$D). At the
beginning of each procase, all variables are un-
declared.

These events modify the behaviour of the
procase in a way that only traces containing
the action, which sets the variable to true, con-
tinue with the branches marked by this variable.
When the value of the variable is false, the traces
continue with the unmarked branches as in un-
changed procase.

4.1.1. Branch transformation

First, we show how to rearrange a procase with
the request receive action placed in a branch.
The general approach of identifying procedures
as described above does not work as it would
result in nested procedures. To avoid them, it is
necessary to rearrange the procase in order to
place affected branches sequentially.

We illustrate the branch transformation on
the following example:
?a; #b; (#c; ?d?d?d; #e+#f ; (#g; #h+#i));#j

The problematic action is ?d placed in a branch
and the whole example is visualized in Fig. 5(a).

The approach of rearranging branches is as
follows. Instead of the affected request receive
action, the declaration of a conditional event
variable is placed. The original action with all
subsequent actions till the end of the branch are
moved outside the alternative and marked with
the chosen variable – depicted in Fig. 5(a ⇒ b).

Automated Code Generation from System Requirements in Natural Language 79

Figure 5. First part of the Branch transformation

The NULL action is added as a second branch
of the newly created marked branch.

Now, the actions that followed after the orig-
inal branch action (till the first request receive
action) have to be appended to all other branches
of this branch action except the branch with the
variable declaration – depicted in Fig. 5(b⇒ c).
In addition, these actions are placed at the end of
the newly created branch. In a case the variable
declaration is placed in more than one branch
(i.e. the request receive actions were in more
branches), appending of subsequent actions (till
the first request receive action) has to be done
for all these branches and variables – depicted in
Fig. 6(d ⇒ e). This appending guarantees that
the resulting procase in Fig. 6(f) generates the
same traces as the original one. Now, the general
approach of identifying procedures can be applied
and yields the following procase:
?a {#b; (#c; $D +#f ; (#g; #h; #j +#i; #j))};

(D : ?d {#e; #j}+NULL)
Another example is in Figure 7, which shows

the procase of the use case in Fig. 2 that also
contains problematic request receive action. Fig-
ure 8 depicts the procase after the branch trans-
formation, i.e. it is completely equivalent to the
former one and does not contain the problematic
branch.

4.1.2. Loop transformation

The transformation of the procases with the re-
quest receive action located in a loop action is
quite similar to the previous case. Again, the
transformation guarantees that the resulting pro-
case generates the same traces as the original one.

The following procase is an example with the
request receive action inside the loop:

?PA.a; #b; (#c; ?PA.d?PA.d?PA.d; #e) ∗#f
And the resulting transformed procase:

?PA.a {#b; (#c; $D +#f)};
(D : ?PA.d {#e; (#c+#f ;∼ $D)}+NULL)∗

4.1.3. Unresolved cases

In a case the request receive action is located in
two or more nested loops or in a loop nested in
branches, the previous two transformations do
not work. The procase is then marked as unre-
solved, excluded from the further processing and
has to be managed manually. On the other hand,
such use cases are very unreadable (see [8] for sug-
gestions about avoiding extensions of extensions
or complex nested loops which results into this
problematic procases) and therefore the skipped
use cases are candidates for rewriting in a more
simple and readable way.

80 Jan Franců, Petr Hnětynka

Figure 6. Second part of the Branch transformation

?B.submitSelectOffer;
!CS.submitSelectOffer;
!B.reportSystemResponse;
(
?B.submitBillingShippingInformationPaymentMethodPaymentDetail;
!CS.enterBillingShippingInformationPaymentMethodPaymentDetail;
!B.reportSystemResponse

+
#validateSystemFail;
%ABORT

)
Figure 7. Procase example before the branch transformation

4.2. Determining Arguments

Once the procases have been preprocessed into
sequences of actions grouped as procedure calls,
the next step is to determine arguments of the
identified procedures, types of these arguments,
and how their values are assigned. The argu-
ments are subsequently used as arguments for
methods in the final generated code.

In our approach, we are using a fact men-
tioned in [8] that noun phrases appearing in the
use cases are directly related with the domain
model elements names. The process of determin-
ing arguments is as follows.

First, all noun phrases (which may refer to
the data manipulated in the use case step) are
extracted by the Procasor from the use case step
sentence. In addition, we also take into account
verbs from the sentence as they can refer to the
relations between the conceptual classes in the
domain model.

The list of extracted words is then matched
against keywords of the domain model (by the
keywords we mean names of the classes, at-
tributes, and associations) in order to discover
which words are actual attributes and to obtain
their types. There are many options to match
the keywords – currently in our implementa-

Automated Code Generation from System Requirements in Natural Language 81

?B.submitSelectOffer {
!CS.submitSelectOffer;
!B.reportSystemResponse;
(
#validateSystemFail;
%ABORT

+
$SBSIPMPD

)
};
(SBSIPMPD:
?B.submitBillingShippingInformationPaymentMethodPaymentDetail {
!CS.enterBillingShippingInformationPaymentMethodPaymentDetail;
!B.reportSystemResponse1

}
+
NULL

)

Figure 8. Procase example from Fig. 7 after the branch transformation

tion we use a simple case-insensitive equality of
strings. Such a matching approach can be seen
as insufficient but on the other hand, projects
commonly follow a chosen terminology (many
times explicitly captured in the requirement
documents) and therefore our approach is sat-
isfactory in most of the cases.

The determined arguments are compared (by
the name and type) with arguments of previous
procedures (if they exist) and the already used
arguments are copied (their values). If the previ-
ous procedures are located in a branch parallel
with the NULL action they are excluded from
processing as they may not be called before the
processed one.

Now, the process behaves differently based
on a type of the entity, on which the action is
called. The types are (i) human user entities
(UE) such as buyer, seller, etc. and (ii) parts
of the system or other computer systems (i.e.
system entity – SE).

For the trigger action and actions with
UE SuD, the unmatched determined types are
used as arguments (i.e. parameters which have
to be inputted by users). For actions with
SE SuD the unmatched determined types are
also added as arguments but with default val-
ues (during the development of the final ap-
plication, developers have to provide correct
values for them).

4.3. Generating Application

Structure of the generated application employs
multiple commonly used design patterns for en-
terprise applications. Based on these patterns,
the generated code is structured into three lay-
ers – presentation layer, middle (business) layer,
and data layer. In the following text, we re-
fer to objects of the presentation layer as pages
because the most commonly used presentation
layer in contemporary large applications em-
ploys web pages, but any type of the user in-
terface can be generated in a similar way.

The middle layer consists of so called use
case objects which contain the business logic of
the application. Also, the middle layer contains
entity objects where the internal logic (imple-
mentation of the basic actions) is generated. The
use case objects implement the ordering of the
actions and call the entity objects.

We do not describe generation of the data
layer, as it is well captured in common UML
tools and frameworks (generation of classes from
class diagrams etc. – see Sect. 6).

The generation depends on the type of en-
tity – pages are generated for UE while for SE a
non-interactive code only. Thus, a page is gen-
erated for every action performed by UE (pro-
cedure call triggering actions and procedure call
internal actions).

82 Jan Franců, Petr Hnětynka

If the use case has SuD as UE then ele-
ments generated from the actions located inside
a procedure call are named with the suffix “X”
to allow their easier identification during future
development, as in most cases they have to be
modified by developers.

Based on combination of the communicating
actors (UE vs. SE), the generation distinguishes
four cases how the code is generated from a pro-
cedure call:
1. If PA and/or SA is UE, then a page is gen-

erated for every procedure call triggering ac-
tion, which is triggered by this UE.

2. If PA and/or SA is SE, an action implemen-
tation method is generated in the actor en-
tity object and the action method body con-
tains a call to the corresponding use case ob-
ject.

3. If SuD is UE, then a method in the cor-
responding use case object is generated for
each procedure call of SuD. The method
body calls the actor entity object and redi-
rects to “X” pages, which manage the in-
ternal procedure call actions. Internal pro-
cedure call actions are generated in a sim-
ilar way to the request receive action with
UE PA – the “X” page and a method inside
the “X” use case object are generated. The
method inside the “X” use case object is gen-
erated as a simple delegation method to the
corresponding entity object and redirection
to the particular page.

4. And finally if SuD is SE, then inside the cor-
responding use case object, a method with
the body containing the internal procedure
call actions is generated.
Figure 9 shows the procase of the Clerk-

-buys-selected-Offer-on-behalf-of-Buyer use case
and Figure 10 overviews all generated elements
from the use case.

The following sections describe each type of
the generated objects in more details.

4.3.1. Pages

As generated, pages are intended for testing the
use cases and are expected to be reimplemented
during the further development. A single page is

generated for each action interacting with UE.
In a case of UE PA, there is a page for every
triggering action and, in addition for UE SuD,
there is also a page for every procedure call in-
ternal action. If the action has arguments which
can be inputted then for each of them an input
field is generated. Values are assigned by humans
during testing of the generated system.

For the UE PA actions, the corresponding
pages have a button (an input control element)
that allows to continue to the next page, i.e. to
continue in the use case (there is only a single
button as there is no other choice to continue).
On the pages belonging to the UE SuD actions,
there are several buttons, which reflect the pos-
sibilities of continuation in the original use case.
For a sequence of the actions, the page contains
the “continue” button; if the next action is a
branch action then the page contains a button
for each branch (the default button is for the
main scenario branch – the buttons for the rest
of the branches are labeled by the branch con-
dition label; if the next action is a loop action
then the page has a button to enter the loop
and another button to skip the loop (following
the definition of loop operation).

4.3.2. Use Case Objects

The use case objects contain the business logic
(work-flow) of the use case, i.e an order of
actions in the main scenario and all possible
branches. Bodies of the generated methods differ
according to SuD.

UE SuD: As described above, a method
in the corresponding use case object is gener-
ated for each procedure call of UE SuD. For
each trigger action, the method body contains
a call to the particular entity object and redi-
rection to a page of the subsequent action.
For internal procedure call actions, a similar
method body is created in “X” use case ob-
ject.

SE SuD: A body of the method generated
for the procedure call trigger action contains the
internal procedure calls. For the SuD internal
actions, methods are called on the use case SuD
entity object and for request send actions, meth-

Automated Code Generation from System Requirements in Natural Language 83

?CL.submitItemDescription {
(

#priceAssessmentAvailable;
!Sl.providePriceAssessment

+
#validateDescription;
(

#validationPerformedSystemFails;
%ABORT

+
NULL

)
)

};
?CL.enterPriceContactBillingInformation {

#validateContactInformation;
!SU.validateSeller

};
?SU.permitSeller {

!TC.validateOffer;
(

#listOffer;
!Sl.respondUniquelyIdentifiedAuthorizationNumber

+
#tradeCommissionRejectsOffer;
%ABORT

)
}

Figure 9. Clerk-buys-selected-Offer-on-behalf-of-Buyer use case

ods are called on the action triggered entity ob-
jects.

The branch actions are generated as a se-
quence of the condition statements (i.e. if () ...
else if () ...) with as many elements as branches
in the branch action. In each if statement, par-
ticular actions are generated, while the last else
statement contains the main scenario actions.
A similar construction but with a loop statement
(while) is created for the loop action.

The number of iteration in the loop state-
ment and choice of the particular branch in
the condition statements cannot be determined
from the use case. Therefore, the statements are
generated with predefined but configurable con-
stants inside the use case object.

4.3.3. Entity Objects

The internal logic of actions is not captured
by the use cases neither by the domain model.

Therefore, the entity objects are generated with
almost empty methods containing only calls to a
logger and they have to be finished by develop-
ers. For testing purposes, the logging methods
seem to be the most suitable ones as designers
can immediately check the traces of the gener-
ated system.

4.4. Navigation

Navigation (transitions) between the pages is an
important part of the application internal logic
as it determines the part of the system work flow
(the order of procedure calls and sequence of ac-
tions). The navigation is derived from the pro-
cases as a set of navigation rules. The pages/ob-
jects have associated these rules that contain un-
der which circumstances a transition has to be
chosen.

In general, the navigation rules are created
from the branch actions, loops, and special ac-

84 Jan Franců, Petr Hnětynka

Figure 10. Overview of elements generated from the procase in Fig. 9

tions that can change transitions (aborts, etc.).
In a case of the use case with SE SuD, the
rules are applied to determine transitions be-
tween calls of the actions. In a case of UE
SuD, the rules determine how the pages are
generated, i.e. which buttons are placed on
them.

5. Generated Application Example

To prove that our approach is feasible, we
have implemented the proposed generator. As
a particular technology for the generated ap-
plications, we have chosen the Java EE plat-
form with Enterprise Java Beans (EJB) as the
business layer and Java Server Faces (JSF) as
the presentation layer. These technologies have
been chosen as they are commonly used for
large enterprise applications today and thus

they can be used as starting point for con-
tinuing the application implementation. The
generator itself has been written in plain
Java.

The generator produces code together with
an Ant build file, which can immediately compile
and deploy the application to the JBoss applica-
tion server [7], which allows users to inspect and
modify code and iteratively test the application.

Based on the chosen technologies and used
design patterns the first two application layers
are mapped into the following five tiers. The
pages results in two tiers: (i) JSF pages and (ii)
backing beans (BB). The middle layer then re-
sults into three tiers: (iii) business delegator tier
(BD), (iv) Enterprise Java Bean tier (EJB), and
finally (v) manager tier (MGR). Generation of
the data persistence layer is not currently sup-
ported but it is a simple task, which we are plan
to add soon (see Sect. 7).

Automated Code Generation from System Requirements in Natural Language 85

In the rest of this section, we describe in
more detail all the generated elements produced
from a single use case. As a particular example,
the Clerk submits an offer on behalf of a Seller
use case from the Marketplace example is used.
It has the following content.

UseCase: Clerk submits an offer on behalf of
a Seller (part)

SuD: Computer System
PA: Clerk

Main success scenario:
1 Clerk submits information describing an item.
2 System validates the description.

Extensions:
2a Validation performed by the system fails.
2a1 Use case aborted.

Sub-variations:
2b Price assessment available.
2b1System provides the seller with a price

assessment.

The Procasor and the preprocessing step of
our generator produce the following procase:

?CL.submitItemDescription {
(

#priceAssessmentAvailable;
!Sl.providePriceAssessment

+
#validateDescription;
(

#validationPerformedSystemFails;
%ABORT

+
NULL

)
)

}

5.1. JSF Pages

All action pages are generated as described
in 4.3.1. To allow easy testing, each page dis-
plays the use case together with the correspond-
ing procase – both with the highlighted cur-
rently processed action and acting entity. The
following listing shows a core of the generated
JSF page for the use case above.
<h:form>
<h:outputText value="itemDescription : " />
<h:inputText id="itemDescription"

value="#{ComputerSystem_
ClerkSubmitsAnOfferOnBehalfOfASeller_
ClerkBBean.itemDescription}" />

</br>
<h:outputText value="sellerBillingInformation : " />
<h:inputText id="sellerBillingInformation"
value="#{ComputerSystem_

ClerkSubmitsAnOfferOnBehalfOfASeller_
ClerkBBean.sellerBillingInformation}" />

</br>
<h:commandButton value="submitForm"
action="#{ComputerSystem_

ClerkSubmitsAnOfferOnBehalfOfASeller_
ClerkBBean.submitItemDescription}" />

</h:form>

The JSF page has a simple form with
an input field for the action argument
and a submit button. The triggering ac-
tion submitItemDescription has an argument
itemDescription which is bound to the use case
backing bean variable.

5.2. Backing Beans

According to the JSF framework, the pages are
supported by backing beans, which are Java
classes containing all variables that can be set
by the pages and handling all actions possibly
activated by the pages. For the variables, BBs
provide setter/getter methods. Also, BBs pro-
vide methods for calls to the next tier – business
delegators.

The following listing shows the BB’s method,
which is called when a user submits the form on
the page.
public String submitItemDescription() {
try {
return computerSystem_
ClerkSubmitsAnOfferOnBehalfOfASellerBD
.submitItemDescription(getSessionObject()
. getSellerBillingInformation (), itemDescription,
getSessionObject());

} catch (DelegateException e) {
e.printStackTrace();

}
return "abort";

}

Before the method call starts, the value of
the form’s input field is automatically set via
the BB’s setter method. The value is then used
in the method as a parameter of the call to the
BD tier.

86 Jan Franců, Petr Hnětynka

5.3. Business Delegator

Business delegators are Java classes created on
the basis of the Business Delegate pattern [17].
In the generated application, each use case has
its own BD, which provides calls to the use case
EJBs. Internally, methods of BDs use the Ser-
vice Locator pattern [17] to locate EJBs.

The method shown in the listing only dele-
gates calls to the use case EJB. The getBean
method contains code for obtaining a use case
bean LocalHome interface, creating the bean,
and returning the use case bean stub. The stub
is then used for the actual call.
public String submitItemDescription(String
sellerBillingInformation,
String itemDescription, ComputerSystem_
ClerkSubmitsAnOfferOnBehalfOfASellerSO
sessionObject) {
try {
return getBean().submitItemDescription(
sellerBillingInformation,
itemDescription, sessionObject);

} catch (BeanException e) {
throw new DelegateException(
this .getClass (). getName() +
". submitItemDescription()", e);

}
}

5.4. EJB

The use case objects are generated as stateless
session beans. There is no change against the
general process described in 4.3.2.

The shown EJB method contains internal
logic, i.e. actions located inside the triggered
procedure call are executed in this method.
The method body structure corresponds to
the procase procedure call. Each action is
generated as method delegating call to the
particular MGR.
public String submitItemDescription(String
sellerBillingInformation,
String itemDescription, ComputerSystem_
ClerkSubmitsAnOfferOnBehalfOfASellerSO
sessionObject) {
if (Constants.computerSystem_
ClerkSubmitsAnOfferOnBehalfOfASeller_
priceAssessmentAvailable) {

getSellerManager().providePriceAssessment();
}
else {

getComputerSystemManager()
. validateDescription(itemDescription);

if (Constants.computerSystem_
ClerkSubmitsAnOfferOnBehalfOfASeller_
validationPerformedSystemFails) {

return NavigationConstants.ABORT;
}

}
return NavigationConstants.CONTINUE;

}

5.5. Entity Managers

The entity objects are generated as entity man-
ager classes and they are accessed from the
beans, again using the Service locator pat-
tern [17]. The methods of the managers print
logs to a console (as explained in Section 4.3.3).
We do not show here the generated MGR as its
methods contain only these logger calls.

5.6. Additional Elements

In addition to the described elements, there are
several additional generated objects that are
used across the tiers. Namely, they are Value
objects and Session objects. The former ones are
generated and used for each type of arguments
of the use case actions, while the later ones hold
the value objects among different calls in a use
case.

The INIT procedure call is generated as the
init method of the corresponding use case EJB.
The special action %ABORT is not modeled as
an exception but rather as a predefined constant
returned from the particular methods.

6. Evaluation and Related Work

To verify our generator, we used it on the Mar-
ketplace application described in Sect. 2.1. The
generated implementation was compiled and di-
rectly deployed to an application server. The
implementation consists of approx. 70 classes
with 13 EJBs. The complete application has 92
action, from which only 16 actions were gen-
erated with wrong arguments and had to be
repaired manually (we are working on an en-

Automated Code Generation from System Requirements in Natural Language 87

hanced method of argument detection – see
Sect. 7).

Testing of the generated application discov-
ered a necessity to add one use case, two missing
extensions in another use case, and also sug-
gested restructuring other two use cases. All
these defects could be detected directly from the
use cases but with generated application, they
became evident immediately.

Our tool can be also viewed as an ideal
application of the Model-driven Architectures
(MDA) [11] approach. In this view, the uses
cases and domain model serve as a platform in-
dependent model, which via several transforma-
tions are transformed directly into an executable
code, i.e. platform specific model.

Currently, the existing tools usually generate
just data structures (source code files, database
tables, or XML descriptors) from the UML class
diagrams but no interaction between entities
(i.e. they handle just the class diagrams) and
as far as we know, there is no tool/project
that generates the implementation from the de-
scription in a natural language. Below, there
are several projects or tools that take as an
input not only class diagrams but still they
work with diagrams and not with a natural
language.

The AndroMDA [2] is the generator frame-
work which transforms the UML models into
an implementation. It supports transformations
into several technologies and it is possible to
add new transformations. In general, it works
with the class diagrams and based on the class
stereotypes, it generates the source code. More-
over, it can be extended to work with other di-
agram types. A similar generator (made as an
Eclipse extension) is openArchitectureWare [12],
which is a general model-to-model transforma-
tion framework.

In [15], the sequence diagrams together with
class diagram are used to generate fragments of
code in a language similar to Java. The genera-
tion is based on the order of messages captured
in the sequence diagram and the structure of
the class diagram. There is also a proposed al-
gorithm for checking consistency between these
two types of diagrams.

Similarly in [5], Java code fragments are
generated from the collaboration and class dia-
grams. The authors use enhanced collaboration
diagrams in order to allow better management
of variables in the generated code.

In [16], the use cases are automatically
parsed and together with a domain model are
used to produce a state transition machine,
which reflects behaviour of the system. From the
high level view, the used approach is very similar
to our solution but they allow for processing only
very restricted use cases and thus the approach
is quite limited.

7. Conclusion and Future Work

The approach proposed in the paper allows for
automated generation of executable code di-
rectly from a requirement specification written
as use cases in a natural language. Also, we have
developed a prototype, which generates JEE ap-
plications via the proposed approach.

Applications generated by our tool are im-
mediately ready to be deployed and launched
and they are suitable for testing the use cases
(i.e. if the requirement specification is complete
and well structured) and as a starting point for
the development of the real implementation.

The proposed generator has several issues,
which suit for further improvements. An impor-
tant issue is connected with associations among
the classes in the domain model. The current im-
plementation correctly handles just one-to-one
associations. The one-to-many or many-to-many
associations result in the code to lists or ar-
rays and therefore the determination of the ar-
guments is more complex. We plan to solve as-
sociation limitation by analysis of sentence to
determine whether a method argument is the
list or object itself. Also, we plan to add a
categorization of verbs to allow better manage-
ment of arguments of the procedures. We plan
to employ some platform independent template
framework which will enable to generate more
configurable system implementation for several
platforms. The planned output of the generator
then would be a XML file which will be an input

88 Jan Franců, Petr Hnětynka

for the employed framework. Finally, we plan to
add generation of the data layer to applications.

The required structure of the use cases
(based on recommendations in [3]) can be seen
as another limitation but we already have an
approach, which allows processing of use cases
with almost any structure (see [4]) and we are
incorporating it to the implementation.

Acknowledgements The authors would
like to thank Vladimir Mencl, Jiri Adamek, and
Pavel Parizek for valuable comments. This work
was partially supported by the Czech Academy
of Sciences project 1ET400300504.

References

[1] B. Anda and D. I. Sjober. Investigating the
role of use cases in the construction of class dia-
grams. Empirical Software Engineering, Volume
10(3), Jul. 2005.

[2] AndroMDA. http://galaxy.andromda.org.
[3] A. Cockburn. Writing Effective Use Cases.

Addison-Wesley, Jan. 2000.
[4] J. Drazan and V. Mencl. Improved processing

of textual use cases: Deriving behavior specifi-
cations. In Proceedings of SOFSEM 2007, Har-
rachov, Czech Republic, Jan. 2007.

[5] G. Engels, R. Huecking, S. Sauer, and A. Wag-
ner. UML collaboration diagrams and their
transformation to Java. In Proceedings of UML
’99, Fort Collins, USA, Oct. 1999.

[6] M. Fiedler, J. Francu, V. Mencl, J. Ondrusek,
and A. Plsek. Procasor environment: Interac-

tive environment for requirement specification.
http://dsrg.mff.cuni.cz/~mencl/procasor-env.

[7] JBoss application server. http://jboss.org.
[8] C. Larman. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall
PTR, 2nd edition, 2001.

[9] V. Mencl. Deriving behavior specifications from
textual use cases. In Proceedings of WITSE ’04,
Linz, Austria, Sep. 2004.

[10] Objecteering software. Objecteering 6. http:
//www.objecteering.com.

[11] OMG. Model driven architecture (MDA). OMG
document ormsc/01-07-01, Jul. 2001.

[12] openArchitectureWare.
http://www.openarchitectureware.org.

[13] F. Plasil and V. Mencl. Getting “whole picture”
behavior in a use case model. In Proceedings of
IDPT, Austin, Texas, USA, Dec. 2003.

[14] F. Plasil and S. Visnovsky. Behavior protocols
for software components. IEEE Transactions
on Software Engineering, Volume 28(11), Nov.
2002.

[15] L. Quan, L. Zhiming, L. Xiaoshan, and
H. Jifeng. Consistent code generation from
UML models. UNU-IIST Rep. No. 319, The
United Nations University, Apr. 2005.

[16] S. S. Somé. Supporting use cases based require-
ments engineering. Information and Software
Technology, 48(11):43–58, 2006.

[17] Sun Microsystems. Core J2EE patterns: Best
practices and design strategies. http://java.sun.
com/blueprints/corej2eepatterns.

