

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.wroc.pl)
Lech Madeyski (Lech.Madeyski@pwr.wroc.pl, http://madeyski.e-informatyka.pl/)

Wrocław University of Technology
Institute of Applied Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
http://www.e-informatyka.pl/wiki/e-Informatica/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
othervise, without the prior written permission of the publishers.

Printed in the camera ready form

c○ Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2010

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

ISSN 1897-7979

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej. Order No. 418/2010.

Editorial Board
Editor-in-Chief

Zbigniew Huzar (Wrocław University of Technology, Poland)

Associate Editor-in-Chief

Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Corvinus University of Budapest, Hungary)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Macqarie University Sydney, Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Editorial
Zbigniew Huzar, Lech Madeyski . 7

Regular Papers
Deriving 𝑅𝑇 𝑇 Credentials for Role-Based Trust Management

Anna Felkner, Krzysztof Sacha . 9
Hierarchical Model for Evaluating Software Design Quality

Pawel Martenka, Bartosz Walter . 21
Pattern-Based Software Architecture for Service-Oriented Software Systems

Claus Pahl, Ronan Barrett . 31
The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View

Liguo Yu . 47
Integration of Application Business Logic and Business Rules with DSL and AOP

Bogumiła Hnatkowska, Krzysztof Kasprzyk . 59
A Case Study on Behavioural Modelling of Service-Oriented Architectures

Marek Rychlý . 71
Defect Inflow Prediction in Large Software Projects

Miroslaw Staron, Wilhelm Meding . 89
Automatic Test Cases Generation from Software Specifications

Aysh Alhroob, Keshav Dahal, Alamgir Hossain 109

Editorial

It is a pleasure to present to our readers
the fourth issue of the e-Informatica Software
Engineering Journal (ISEJ). The mission of the
e-Informatica Software Engineering Journal is
to be a prime international journal to publish
research findings and IT industry experiences
related to theory, practice and experimentation
in software engineering. The scope of the jour-
nal includes methodologies, practices, architec-
tures, technologies and tools used in processes
along the software development lifecycle, but
particular interest is in empirical evaluation.

The current issue of the journal includes
eight papers. The first of the papers by Felkner
and Sacha defines formal language that enables
handling trust in distributed control systems.
The sound and complete deductive system de-
riving credentials from initial credentials is pre-
sented and explained.

The second of the papers by Martenka
and Walter is a contribution extending
factor-strategy model proposed by Marinescu.
It enables more comprehensive and traceable in-
formation concerning detected potential anoma-
lies to the designer, resembling the human way
of cognition.

The third of the papers by Pahl and Barrett
presents a modelling and transformation tech-
nique for service-centric distributed systems.
Authors capture behavioural aspects and as-
sociates quality of architectural structures at
different levels of abstraction through patterns.
Positive effect of the technique application is
illustrated by a case study including design,
maintenance and evolution of a system that has
been developed by more than 20 people and
maintained for more than ten years.

The objective of the fourth paper by Yu is to
understand the changing patterns of software
complexity. Common coupling is a measure

of the system complexity but also it gives in-
sight into software flexibility. How the coupling
changes with the evolution of a software system
is the subject of study on Apple Darwin, an
open-source operating system.

The fifth paper by Hnatkowska and
Kasprzyk proposes an approach to business
logic implementation that enables easy response
to business rules changes. Separation of busi-
ness logic layer from business rule layer by in-
troducing an integration layer is the core of the
idea. The proof-of-concept implementation of
the integration layer is presented in the aspect
oriented language.

The sixth paper by Rychlý is an interesting
application of Milner’s 𝜋-calculus to describe
behaviour of components in service-oriented ar-
chitecture. A case study of the architecture
for functional testing of complex safety-critical
systems is presented.

The seventh paper by Staron and Meding
presents methods for constructing prediction
models of trends in defect inflow in large soft-
ware projects. Two models are considered. The
first one, so called short-term prediction model,
is used to predict the number of defects discov-
ered in the code up to three weeks in advance.
The second one, long-term prediction model,
provides the possibility of predicting the de-
fect inflow for the whole project. The initial
evaluation of these methods in a large software
project at Ericsson shows that the models are
sufficiently accurate and easy to deploy.

In the last paper Alhroob, Dahal and Hos-
sain present a new technique of test cases gen-
eration extending the Integrated Classification
Tree Methodology. The stress is put on extrac-
tion of legitimate test cases by removing the
duplicate test cases and those incomputable
with the software specifications. Large amounts

8 Editorial

of time would have been needed to execute all
of the test cases; therefore, a methodology is
aimed to select the best testing path which
guarantees the highest coverage of system units
and avoids using all generated test cases.

We look forward to receiving quality contri-
butions from researchers and practitioners in
software engineering for the next issue of the
journal.

Editors
Zbigniew Huzar
Lech Madeyski

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Deriving RTT Credentials for
Role-Based Trust Management

Anna Felkner∗, Krzysztof Sacha∗∗
∗Research and Academic Computer Network

∗∗Warsaw University of Technology

anna.felkner@gmail.com, k.sacha@ia.pw.edu.pl

Abstract
Role-based trust management languages define a formalism, which uses credentials to handle trust
in decentralized, distributed access control systems. A credential provides information about the
privileges of users and the security policies issued by one or more trusted authorities. The main
topic of this paper is RTT , a language which supports manifold roles and role-product operators to
express threshold and separation of duties policies. The core part of the paper defines a relational,
set-theoretic semantics for the language, and introduces a deductive system, in which credentials
can be derived from an initial set of credentials using a set of inference rules. The soundness and
the completeness of the deductive system with respect to the semantics of RTT is proved.

1. Introduction

The problem of guaranteeing that confidential
data and services offered by a computer system
are not made available to unauthorized users
is a challenging issue, which must be solved by
reliable software technologies that are used for
building high-integrity applications. The tradi-
tional solution to this problem is an implementa-
tion of some access control techniques, by which
users are identified, and granted or denied access
to a system data and other resources, depend-
ing on their individual or group identity. The
examples of such solutions can be Mandatory
Access Control (MAC) facilities, Discretionary
Access Control (DAC) and Role-Based Access
Control (RBAC) systems. Such an approach fits
well into closed and centralized environments, in
which the identity of users is known in advance.

Quite new challenges arise in decentralized
and open systems, where the identity of users is
not known in advance and the set of users can
change. For example, consider a university, in
which the students are enrolled and registered

in particular faculties, and no central registry
of all the students of that university exists. The
policy of the university is such that a student
is eligible to attend a lecture given by a faculty,
regardless of the faculty in which he or she is ac-
tually registered. However, how could a faculty
(the lecture owner) know that Peter Pan is eligi-
ble to attend the lecture, if his name is unknown
to this faculty? The identity of the student it-
self does not help in making a decision whether
he or she is eligible to attend or not. What is
needed to make such a decision is information
about the privileges assigned to Peter Pan by
other authorities (is he registered in a faculty),
as well as trust information about the authority
itself (is the faculty a part of this university).

Trust-management system is a standardized
solution for controlling security-critical services
in high-integrity applications (Figure 1). It helps
answer questions related to the conformance
of potentially dangerous operations to a secu-
rity policy of an organization, and provides the
users with a language for writing the policies
and controlling access to system services and

10 Anna Felkner, Krzysztof Sacha

Remote
client

Remote
client

Remote
client

Local
server

Local
server

TM
system

Requests
for resources

Security queries

Figure 1. Trust management system

resources. The policies are no longer hard-coded
into applications and therefore can be much eas-
ier to change. A designer of an application must
only identify the security issues in the applica-
tion and formulate appropriate queries to the
trust-management system.

Such a conception of trust management, in-
troduced in [2], has evolved since that time to
a much broader context of assessing the reliabil-
ity and developing trustworthiness for other sys-
tems and individuals [9]. In this paper, however,
we will use the term trust management only in a
meaning restricted to the field of access control.

The paper is organized as follows. An
overview of the work related to role-based trust
management systems and languages is given in
Section 2. Section 4 describes the relational se-
mantics of RT T language. Section 6, which is the
core part of our contribution, presents a deduc-
tive system, in which credentials can be derived
from an initial set of credentials using a set of
inference rules. A proof of the soundness and
the completeness of the deductive system with
respect to the semantics of RT T is presented as
well. Sections 3 and 5 provide the reader with
illustrative examples. Final remarks and plans
for future research are given in conclusions.

2. Related Work

Traditional access control systems usually rely
on Role-Based Access Control model [14, 6, 7],
which groups the access rights by the role name
and limits the access to a resource to those users,
who are assigned to a particular role. RBAC sys-
tems provide authorization decisions based on
the identity of the users, and work well in cen-
tralized environment of an enterprise.

Trust management model represents quite
another approach to access control, in which

decisions are based on credentials (certificates)
issued by multiple principals. A credential is
an attestation of qualification, competence or
authority, issued to an individual by a third
party. Examples of credentials in real life in-
clude identification documents, social security
cards, driver’s licenses, membership cards, aca-
demic diplomas, certifications, security clear-
ances, passwords and user names, keys, etc.
A credential in a computer system can be a dig-
itally signed document.

The potential and flexibility of trust man-
agement approach stems from the possibility of
delegation: A principal may transfer limited au-
thority over a resource to other principals. Such
a delegation can be implemented by means of an
appropriate credential. This way, a set of cre-
dentials can define the access control strategy
and allow of deciding on who is authorized to
access a resource, and who is not. A side-effect
of delegation is such that a number of authoriz-
ing principals can be distributed over a network.
A variety of problems arises if the credentials are
stored in a decentralized manner.

The term trust management was first ap-
plied in the context of distributed access con-
trol in [2]. The first trust management system
described in the literature was PolicyMaker [3],
which defined a special assertion language capa-
ble of expressing policy statements, which were
locally trusted, and credentials, which had to be
signed using a private key. The next generation
of trust management languages were KeyNote
[1], which was an enhanced version of Policy-
Maker, SPKI/SDSI [4] and a few other lan-
guages. All those languages allowed assigning
privileges to entities and used credentials to del-
egate permissions from its issuer to its subject.
What was missing in those languages was the
possibility of delegation based on attributes of
the entities and not on their identity.

Deriving RTT Credentials for Role-Based Trust Management 11

Role-based trust management (RT) lan-
guages use roles to represent attributes [12]. The
meaning of a role is a set of entities who have the
attribute represented by the role. This meaning
of roles captures the notion of groups of users
in many systems and has been borrowed from
Role-Based Access Control approach. The core
language of RT family is RT0, described in detail
in [13]. It allows describing localized authorities
for roles, role hierarchies, delegation of authority
over roles and role intersections. All the subse-
quent languages add new features to RT0.

RT1 introduces parametrized roles, i.e. roles
that are described using additional parameters,
which can represent relationships between en-
tities. RT2 adds to RT1 logical objects, which
can represent permissions given to entities with
respect to groups of logically related objects (re-
sources). Those extensions can help in keeping
the notation concise, but does not increase the
expressive power of the language, because each
combination of parameters in RT1 and each per-
mission to a logical object in RT2 can be defined
alternatively as a separate role in RT0.

RT T provides manifold roles and role-prod-
uct operators, which can express threshold and
separation of duties policies. A manifold role is
a role that can be satisfied by a set of cooper-
ating entities. A singleton role can be treated
as a special case of a manifold role, whose set
of cooperating entities is a singleton set. This
way, RT0 credentials can also be expressed in
RT T . A threshold policy requires a specified
minimum number of entities to agree on some
fact, e.g. in a requirement that two different
bank cashiers must authorize a transaction. Sep-
aration of duties policy requires a set of enti-
ties, each of which fulfils a specific role, to agree
before access is granted. Both types of policies
mean that some transactions cannot be com-
pleted by a single entity, because no single entity
has all the access rights required to complete
the transaction.

RTD provides mechanisms to describe del-
egation of role activations and selective use of
role membership. This language is not covered
in this paper. The features of RT T and RTD

can be combined together with the features of

RT0, RT1 or RT2. A more detailed treatment of
the role-based trust management family of lan-
guages can be found in [12].

2.1. The Language RT0

Basic elements of all the RT languages are en-
tities, role names, roles and credentials. Enti-
ties represent principals that can define roles
and issue credentials, and requesters that can
make requests to access resources. An entity can
be identified by a user account in a computer
system or by a public key. Role names repre-
sent permissions that can be issued by entities
to other entities or groups of entities. Roles rep-
resent sets of entities that have permissions is-
sued by particular issuers. A role is defined as
a pair composed of an entity (role issuer) and
a role name. Credentials define roles by point-
ing a new member of the role or by delegating
authority to the members of other roles.

In this paper, we use nouns beginning with a
capital letter or just capital letters, e.g. A,B,C,
to denote entities and sets of entities. Role
names are denoted as identifiers beginning with
a small letter or just small letters, e.g. r, s, t.
Roles take the form of an entity (the issuer of
this role) followed by a role name separated by
a dot, e.g. A.r. Credentials are statements in
the language. A credential consists of a role, left
arrow symbol and a role expression.

There are four types of credentials in RT0,
which should be interpreted in the following way:
A.r ← B – simple membership: Entity B is a

member of role A.r.
A.r ← B.s – simple inclusion: Role A.r includes

(all members of) role B.s. This is a delega-
tion of authority over r from A to B, be-
cause B may cause new entities to become
members of the role A.r by issuing creden-
tials that define B.s.

A.r ← B.s.t – linking inclusion: Role A.r in-
cludes role C.t for each C, which is a member
of role B.s. This is a delegation of authority
from A to all the members of the role B.s.
The expression B.s.t is called a linked role.

A.r ← B.s ∩ C.t – intersection inclusion: Role
A.r includes all the entities who are members

12 Anna Felkner, Krzysztof Sacha

of both roles B.s and C.t. This is a partial
delegation from A to B and C. The expres-
sion B.s ∩ C.t is called an intersection role.
A formal, set-theoretic semantics of RT0 has

been defined in a slightly different manner in [13]
and [8].

Let E be a set of entities, R a set of role
names and P a set of RT0 credentials. The se-
mantics of the set P of RT0 credentials is a func-
tion SP :

SP : E ×R → 2E .
such that SP is the least fixpoint of the following
sequence of functions Ri, which map roles to sets
of entity names [8]:
1. R0 maps each role to an empty set φ
2. Ri+1 =

⊕
c∈P f(Ri, c)

where
⊕

is the point-wise extension of a func-
tion and f is a function that, given a (partial)
semantics Ri and a credential A.r ← e, returns
all the entities that should be added to Ri(A.r),
as governed by e:

f(Ri, A.r ← B) = {A.r 7→ {B}}
f(Ri, A.r ← B.s) = {A.r 7→ Ri(B.s)}

f(Ri, A.r ← B.s.t) = {A.r 7→
⋃

C∈Ri(B.s)
Ri(C.t)}

f(Ri, A.r ← B.s ∩ C.t)
= {A.r 7→ Ri(B.s) ∩Ri(C.t)}

2.2. The Language RT T

At the syntax level, RT T adopts all the four
types of RT0 credentials, and adds two new
types of credentials. These are:
A.r ← B.s� C.t – role A.r includes one mem-

ber of role B.s and one member of role C.t.
This allows expressing threshold policies.

A.r ← B.s⊗ C.t – role A.r includes one mem-
ber of role B.s and one member of role C.t,
but those members of roles have to be differ-
ent. This allows for expressing separation of
duties policies.
The changes at the semantics level are

greater, because the requesters as well as the
issuers of RT T credentials are no longer enti-
ties, but sets of entities, who can jointly fulfil

a role. Such a change applies to all six types of
credentials, also those, which are adopted from
RT0.

Formal definition of the semantics of RT T is
covered in Section 4.

3. Examples

The models discussed in this paper can be, in
general, very complex. Therefore, we present
here only simplified examples, with the intention
to illustrate the basic notions and the notation.
The first example demonstrates the use of RT0

credentials, while the second one presents the
use of RT T credentials.

Example 1 (RT0)

A person has the right to attend a lecture, given
at a university U , when he or she is a student
registered to a faculty of this university. To be
able to fulfil the role of a faculty, an organi-
zation ought to be a division of the university
and should conduct research activities. John is
a student registered to F , which is a division of
U , and which conducts research activities. The
following credentials prove that John have the
right to attend a lecture:

U.lecture← U.faculty.student (1)

U.faculty ← U.division ∩ U.research (2)
U.division← F (3)
U.research← F (4)
F.student← John (5)

Example 2 (RT T)

The following example has been adopted from
[11]. A bank B has three roles: manager,
cashier and auditor. Security policy of the
bank requires an approval of certain transac-
tions from a manager, two cashiers, and an
auditor. The two cashiers must be different.
However, a manager who is also a cashier can
serve as one of the two cashiers. The auditor
must be different from the other parties in the
transaction.

Deriving RTT Credentials for Role-Based Trust Management 13

Such a policy can be described using the fol-
lowing credentials:

B.twoCashiers← B.cashier ⊗B.cashier (6)

B.managerCashiers

← B.manager �B.twoCashiers (7)

B.approval

← B.auditor ⊗B.managerCashiers (8)

Now, assume that the following credentials
have been added:

B.cashier ←Mary (9)

B.cashier ← Doris (10)
B.cashier ← Alice (11)
B.cashier ← Kate (12)
B.manager ← Alice (13)
B.auditor ← Kate (14)

Then one can conclude that, according to the
policy of B, the following sets of entities can
cooperatively approve a transaction: {Mary,
Doris, Alice, Kate}, {Mary, Alice, Kate} and
{Doris, Alice, Kate}.

4. The Semantics of RT T

The syntax of a language defines language ex-
pressions, which are used to communicate infor-
mation. The primary expressions of role-based
trust management languages are credentials and
sets of credentials, which are used as a means for
defining roles.

The semantics of a language defines the
meaning of expressions. Such a definition con-
sists of two parts [10]: A semantic domain and a
semantic mapping from the syntax to the seman-
tic domain. The meaning of a language expres-
sion must be an element in the semantic domain.

The semantics of RT0, which defines the
meaning of a set of credentials as a function from
the set of roles into the power set of entities, has
no potential to describe the meaning of RT T ,
which supports manifold roles and role-product
operators. Therefore, we define in this section
the meaning of a set of credentials as a relation
over the set of roles and the power set of en-

tities. Thus, we use a Cartesian product of the
set of roles and the power set of entities as the
semantic domain of a role-based trust manage-
ment language. The semantic mapping would
associate a specific relation between roles and
entities with each set of credentials. Such a re-
lational approach allows us to define a formal
semantics of RT T language [5].

Let E be the set of entities and R be the
set of role names. P is a set of RT-credentials,
which describe the assignment of sets of entities
to roles, issued by other entities (or rather sets
of entities).

The semantics of P, denoted by SP , is de-
fined as a relation:

SP ⊆ 2E ×R× 2E ,

An instance of this relation, e.g.: (A, r,X),
maps the role A.r to a set of entities X ∈ 2E .
If the cardinality of set X is greater than one,
then the role A.r is a manifold role and the en-
tities of set X must cooperate together in order
to satisfy the role. The cardinality of set A can
also be greater than one, which would mean that
the role A.r is governed jointly by the entities of
set A.

If all the sets of entities are singleton sets,
the semantics of RT T reduces to the semantics
of RT0. This way, our definition covers all the
RT languages including RT0 through RT T .

Denote the power set of entities by F = 2E .
Each element in F is a set of entities from E
(a subset of E). Each element in 2F is a set,
compound of sets of entities from E .

The semantics of P can now be described in
an alternative way as a function:

S̃P : 2E ×R → 2F

which maps each role from 2E ×R into a set of
subsets of entities. The members of each subset
must cooperate in order to satisfy the role.

Knowing the relation SP , one can define the
function S̃P as follows:

S̃P(A, r) = {X ∈ 2E : (A, r,X) ∈ SP}
The semantics of RT T can now be defined

formally in the following way.

14 Anna Felkner, Krzysztof Sacha

Definition 1. The semantics of a set P of RT T credentials, denoted by SP , is the smallest relation
Si, such that:
1. S0 = φ
2. Si+1 =

⋃
c∈P f(Si, c) for i = 0, 1, . . .

which is closed with respect to function f , which describes the meaning of credentials in the following
way (A,B,C,X, Y are sets of entities, may be singletons):

f(Si, A.r ← X) = {(A, r,X)} (D1)
f(Si, A.r ← B.s) = {(A, r,X) : (B, s,X) ∈ Si} (D2)

f(Si, A.r ← B.s.t) =
⋃
C:(B,s,C)∈Si{(A, r,X) : (C, t,X) ∈ Si} (D3)

f(Si, A.r ← B.s ∩ C.t) = {(A, r,X) : (B, s,X) ∈ Si ∧ (C, t,X) ∈ Si} (D4)
f(Si, A.r ← B.s� C.t) = {(A, r,X ∪ Y) : (B, s,X) ∈ Si ∧ (C, t, Y) ∈ Si} (D5)

f(Si, A.r ← B.s⊗ C.t) = {(A, r,X ∪ Y) : (B, s,X) ∈ Si ∧ (C, t, Y) ∈ Si ∧(X ∩ Y) = φ} (D6)

5. Examples

We use the example sets of credentials from Section 3 to illustrate the definition of RT T semantics.

Example 1 (RT0)

The starting relation S0 is, by definition, empty. The sequence of steps to compute consecutive
relations Si can be described as follows:
S0 = φ
S1 = {({U}, division, {F}), ({U}, research, {F}), ({F}, student, {John})}
S2 = {({U}, division, {F}), ({U}, research, {F}), ({F}, student, {John}),

({U}, faculty, {F})}
S3 = {({U}, division, {F}), ({U}, research, {F}), ({F}, student, {John}),

({U}, faculty, {F}), ({U}, lecture, {John})}
The resulting relation S3 cannot be changed using the given set of credentials, hence: SP = S3.

Because the RT language considered in this example is RT0, all the sets of entities are singleton
sets.

Example 2 (RT T)

The sequence of steps to compute consecutive relations Si starts from an empty set, S0 = φ, and
proceeds as follows. Credentials 9 through 14 are mapped in S0 into relation S1:
S1 = {({B}, cashier, {Mary}), ({B}, cashier, {Doris}),

({B}, cashier, {Alice}), ({B}, cashier, {Kate}),
({B},manager, {Alice}), ({B}, auditor, {Kate})}

Credential 6 adds the following instances to relation S2:
S2 = S1 ∪ {

({B}, twoCashiers, {Mary,Doris}), ({B}, twoCashiers, {Mary,Alice}),
({B}, twoCashiers, {Mary,Kate}), ({B}, twoCashiers, {Doris,Alice}),
({B}, twoCashiers, {Doris,Kate}), ({B}, twoCashiers, {Alice,Kate})}

Credentials 7 is resolved in S3:
S3 = S2 ∪ {

({B},managerCashiers, {Mary,Doris, Alice}),

Deriving RTT Credentials for Role-Based Trust Management 15

({B},managerCashiers, {Mary,Alice}),
({B},managerCashiers, {Mary,Kate,Alice}),
({B},managerCashiers, {Doris,Alice}),
({B},managerCashiers, {Doris,Kate,Alice}),
({B},managerCashiers, {Alice,Kate})},

and credential 8 in S4:
S4 = S3 ∪ {

({B}, approval, {Mary,Doris, Alice,Kate}),
({B}, approval, {Mary,Alice,Kate}),
({B}, approval, {Doris,Alice,Kate})},

The resulting relation S4 cannot be changed using the given set of credentials, hence: SP = S4.
Because the RT language considered in this example is RT T , there is a set of sets of entities assigned
to each role.

6. Deductive system over RT T credentials

RT T credentials are used to define roles and roles are used to represent permissions. The semantics
of a given set P of RT T credentials defines for each role A.r the set of entities which are members
of this role. The member sets of roles can also be calculated in a more convenient way using a
deductive system, which defines an operational semantics of RT T language.

A deductive system consists of an initial set of formulae that are considered to be true, and
a set of inference rules, that can be used to derive new formulae from the known ones.

Let P be a given set of RT T credentials. The application of inference rules of the deductive
system will create new credentials, derived from credentials of the set P. A derived credential c will
be denoted using a formula:

P � c
which should be read: “credential c can be derived from a set of credentials P”.
Definition 2. The initial set of formulae of a deductive system over a set P of RT T credentials
are all the formulae:

c ∈ P
for each credential c in P. The inference rules of the system are the following:

c ∈ P
P � c (W1)

P � A.r ← B.s P � B.s← X

P � A.r ← X
(W2)

P � A.r ← B.s.t P � B.s← C P � C.t← X

P � A.r ← X
(W3)

P � A.r ← B.s ∩ C.t P � B.s← X P � C.t← X

P � A.r ← X
(W4)

P � A.r ← B.s� C.t P � B.s← X P � C.t← Y

P � A.r ← X ∪ Y (W5)

P � A.r ← B.s⊗ C.t P � B.s← X P � C.t← Y X ∩ Y = φ

P � A.r ← X ∪ Y (W6)

16 Anna Felkner, Krzysztof Sacha

There could be a number of deductive sys-
tems defined over a given language. To be use-
ful for practical purposes a deductive system
must exhibit two properties. First, it should
be sound, which means that the inference
rules could derive only formulae that are valid
with respect to the semantics of the language.
Second, it should be complete, which means
that each formula, which is valid according
to the semantics, should be derivable in the
system.

All the credentials, which can be derived in
the system, either belong to set P (rule W1) or
are of the type: P � A.r ← X (rules W2 through
W6). To prove the soundness of the deductive
system, one must prove that for each new for-
mula P � A.r ← X, the triple (A, r,X) belongs
to the semantics SP of the set P.

Let we first note that all the formulae P �
A.r ← X , such that A.r ← X ∈ P are sound.
This is proved in Lemma 1.
Lemma 1. If A.r ← X ∈ P then (A, r,X) ∈
SP .
Proof. The relation SP , which defines the seman-
tics of P, is a limit of a monotonically increas-
ing sequence of sets S0, S1 . . . such that S0 = φ.
According to Definition 1: f(S0, A.r ← X) =
(A, r,X) Hence, (A, r,X) ∈ S1 and because
S1 ⊆ SP then (A, r,X) ∈ SP . �

To prove the soundness of the deductive sys-
tem over P, we must prove the soundness of each
formula P � A.r ← X, which can be derived
from the set P. This is proved in Theorem 1.
Theorem 1. If P � A.r ← X then (A, r,X) ∈
SP .
Proof. By induction with respect to the number
n of inference steps, which are needed to derive
a formula P � A.r ← X.

If n = 1 then the formula P � A.r ← X
could be derived only using rule W1, because the
premises of only this rule belong to the initial set
of formulae of the deductive system. Hence, the
thesis is true according to Lemma 1.

Consider n > 1 and assume for the inductive
step that the thesis is true if the number of infer-
ence steps was not greater than n. We will show
that it is true also in a case when the number of
inference steps equals n+ 1.

Each of the rules W2 through W6 could be
used in the last (n + 1) step of inference. All
those five cases are discussed separately.

[W2] The first premise of W2 cannot be de-
rived otherwise than using W1. Hence, A.r ←
B.s ∈ P . The second premise of W2 : P �
B.s ← X was derived from P using at most
n steps of inference, hence, (B, s,X) ∈ SP ac-
cording to the inductive hypothesis. By Defini-
tion 1, there exists such Si that (B, s,X) ∈ Si,
and (A, r,X) ∈ f(Si, A.r ← B.s) according to
(D2). Because f(Si, A.r ← B.s) ⊆ Si+1 ⊆ SP
then (A, r,X) ∈ SP .

[W3] The first premise of W3 cannot be de-
rived otherwise than using W1. Hence, A.r ←
B.s.t ∈ P . The second premise of W3 : P �
B.s ← C was derived from P using at most
n steps of inference, hence, (B, s, C) ∈ SP ac-
cording to the inductive hypothesis. By Defini-
tion 1, there exists such Si that (B, s, C) ∈ Si.
Similarly, in the case of the third premise of
W3 : P � C.t ← X, there exists such Sj that
(C, t,X) ∈ Sj . Let k be the maximum of (i, j).
Then (B, s, C) ∈ Sk and (C, t,X) ∈ Sk, and
(A, r,X) ∈ f(Sk, A.r ← B.s.t) according to
(D3). Because f(Sk, A.r ← B.s.t) ⊆ Sk+1 ⊆ SP
then (A, r,X) ∈ SP .

[W4] The first premise of W4 cannot be de-
rived otherwise than using W1. Hence, A.r ←
B.s ∩ C.t ∈ P . The second premise of W4 : P �
B.s ← X was derived from P using at most
n steps of inference, hence, (B, s,X) ∈ SP ac-
cording to the inductive hypothesis. By Defini-
tion 1, there exists such Si that (B, s,X) ∈ Si.
Similarly, in the case of the third premise of
W4 : P � C.t ← X, there exists such Sj
that (C, t,X) ∈ Sj . Let k be the maximum of
(i, j). Then (B, s,X) ∈ Sk, (C, t,X) ∈ Sk and
(A, r,X) ∈ f(Sk, A.r ← B.s ∩ C.t) according to
(D4). Because f(Sk, A.r ← B.s∩C.t) ⊆ Sk+1 ⊆
SP then (A, r,X) ∈ SP .

[W5] The conclusion of W5 is a formula
P � A.r ← X � Y , which states that the set
of entities that can play a role A.r is a union of
two another sets of entities X and Y . To prove
the thesis we must show that (A, r,X∪Y) ∈ SP .

The first premise of W5 cannot be derived
otherwise than using W1. Hence, A.r ← B.s �

Deriving RTT Credentials for Role-Based Trust Management 17

C.t ∈ P. Similarly as in case of W4, the sec-
ond and the third premises of W5 were derived
from P using at most n steps of inference. So,
(B, s,X) ∈ SP and (C, t, Y) ∈ SP . Then, there
exists such k that (B, s,X) ∈ Sk and (C, t, Y) ∈
Sk, and (A, r,X ∪ Y) ∈ f(Sk, A.r ← B.s� C.t)
according to (D5). Because f(Sk, A.r ← B.s �
C.t) ⊆ Sk+1 ⊆ SP then (A, r,X ∪ Y) ∈ SP .

[W6] The conclusion of W6 is a formula
P � A.r ← X ⊗ Y , which states that the set
of entities that can play a role A.r is a union of
two another sets of entities X and Y . To prove
the thesis we must show that (A, r,X∪Y) ∈ SP .

The first premise of W6 cannot be derived
otherwise than using W1. Hence, A.r ← B.s ⊗
C.t ∈ P. Similarly as in case of W4, the sec-
ond and the third premises of W6 were derived
from P using at most n steps of inference. So,
(B, s,X) ∈ SP and (C, t, Y) ∈ SP . Then, there
exists such k that (B, s,X) ∈ Sk and (C, t, Y) ∈
Sk. The fourth premise of W6: X ∩ Y = φ, does
not depend on the number of inference steps and
is always true if W6 could be applied. Hence,
(A, r,X ∪Y) ∈ f(Sk, A.r ← B.s⊗C.t)according
to (D6). Because f(Sk, A.r ← B.s ⊗ C.t) ⊆
Sk+1 ⊆ SP then (A, r,X ∪ Y) ∈ SP . �

To prove the completeness of the deductive
system over a set P of RT T credentials, we must
prove that a formula P � A.r ← X can be
derived using inference rules for each element
(A, r,X) ∈ SP . This is proved in Theorem 2.
Theorem 2. If (A, r,X) ∈ SP then P � A.r ←
X.
Proof. Assume (A, r,X) ∈ SP . By Definition 1,
there exists such i ≥ 0 and such c ∈ P that
(A, r,X) ∈ f(Si, c). The proof of the thesis is by
induction with respect to the value of index i.

If i = 0 then credential c must take the
form of A.r ← X. This is because S0 = φ and
f(S0, d) = φ for each credential d other than
A.r ← X. Hence, A.r ← X ∈ P and the for-
mula P � A.r ← X can be derived using rule
W1.

Let i > 0. Assume for the inductive step that
the thesis is true, if the value of index i in the
expression (A, s,X) ∈ f(Si, c) was not greater
than n. We will show that it is true also in the
case when the value of index i equals n+ 1.

Assume (A, r,X) ∈ SP and (A, r,X) ∈
f(Sn+1, c) for a certain c ∈ P. The credential
c can take one of the six forms allowed in RT T .
Each of these types of credentials will be dis-
cussed separately.

[c = A.r ← X] If this is the case, then the
formula P � A.r ← X can be derived using rule
W1.

[c = A.r ← B.s] If (A, r,X) ∈
f(Sn+1, A.r ← B.s), then (B, s,X) ∈ Sn+1

according to (D2) of Definition 1. Hence, there
exists a credential c ∈ P such that (B, s,X) ∈
f(Sn, c). This implies that (B, s,X) ∈ SP
and P � B.s ← X according to the induc-
tive hypothesis. Then P � A.r ← B.s and
P � B.s ← X, hence, P � A.r ← X is a
conclusion of rule W2.

[c = A.r ← B.s.t] If (A, r,X) ∈
f(Sn+1, A.r ← B.s.t) then according to (D3)
of Definition 1, there exists a set of entities C
such that (B, s, C) ∈ Sn+1 and (C, t,X) ∈ Sn+1.
Hence, there exists a credential c1 ∈ P such that
(B, s, C) ∈ f(Sn, c1) and there exists a creden-
tial c2 ∈ P such that (C, t,X) ∈ f(Sn, c2). This
implies that (B, s, C) ∈ SP and (C, t,X) ∈ SP ,
hence, P � B.s← C and P � C.t← X accord-
ing to the inductive hypothesis. P � A.r ← X
is a conclusion of rule W3.

[c = A.r ← B.s ∩ C.t] If (A, r,X) ∈
f(Sn+1, A.r ← B.s ∩C.t) then (B, s,X) ∈ Sn+1

and (C, t,X) ∈ Sn+1 according to (D4) of Def-
inition 1. Hence, there exist credentials c1, c2

such that (B, s,X) ∈ f(Sn, c1) and (C, t,X) ∈
f(Sn, c2). This implies that (B, s,X) ∈ SP and
(C, t,X) ∈ SP , hence, P � B.s ← X and P �
C.t← X according to the inductive hypothesis.
P � A.r ← X is a conclusion of rule W4.

[c = A.r ← B.s� C.t] If (A, r,X) ∈
f(Sn+1, A.r ← B.s � C.t), then according to
(D5) of Definition 1, there exist two sets of en-
tities Z, Y such that Z ∪Y = X and (B, s, Z) ∈
Sn+1 and (C, t, Y) ∈ Sn+1. Hence, there exist
credentials c1, c2 such that (B, s, Z) ∈ f(Sn, c1)
and (C, t, Y) ∈ f(Sn, c2). This implies that
(B, s, Z) ∈ SP and (C, t, Y) ∈ SP , hence, P �
B.s ← Z and P � C.t ← Y according to the
inductive hypothesis. P � A.r ← X is a conclu-
sion of rule W5.

18 Anna Felkner, Krzysztof Sacha

[c = A.r ← B.s⊗ C.t] If (A, s,X) ∈
f(Sn+1, A.r ← B.s ⊗ C.t), then according to
(D6) of Definition 1, there exist two sets of en-
tities Z, Y such that Z ∪ Y = X and Z ∩ Y = φ
and (B, s, Z) ∈ Sn+1 and (C, t,X) ∈ Sn+1.
Hence, there exist credentials c1, c2 such that
(B, s, Z) ∈ f(Sn, c1) and (C, t, Y) ∈ f(Sn, c2).
This implies that (B, s, Z) ∈ SP and (C, t, Y) ∈
SP , hence, P � B.s← Z and P � C.t← Y ac-
cording to the inductive hypothesis. P � A.r ←
X is a conclusion of rule W6. �

A conclusion from Theorem 1 and Theorem
2 is such that the deductive system of Defini-
tion 2 is sound and complete with respect to
the semantics of RT T credentials. This way, the
deductive system gives an operational definition
of RT T semantics.

7. Conclusions

This paper deals with modelling of trust man-
agement systems in decentralized and dis-
tributed environments. The modelling frame-
work is a family of role-based trust management
language RT T . Two types of semantics for a set
of RT T credentials have been introduced in the
paper.

A set-theoretic semantics of RT T is defined
as a relation over a set of roles and a power
set (set of sets) of entities. All the members
of a set of entities related to a role must co-
operate in order to satisfy the role. This way,
our definition covers the full potential of RT T ,
which supports the notion of manifold roles and
is able to express structure of threshold and
separation-of-duty policies.

An operational semantics of RT T is defined
as a deductive system, in which credentials can
be derived from an initial set of credentials using
a set of inference rules. The semantics is given
by the set of resulting credentials of the type
A.r ← X, which explicitly show a mapping be-
tween roles and sets of entities.

The properties of soundness and complete-
ness of the deductive system with respect to the
semantics of RT T are proved.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The role of trust management in
distributed systems security. In Secure Internet
Programming, pages 185–210. 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decen-
tralized trust management. In Proceedings of
the IEEE Conference on Security and Privacy,
pages 164–173, 1996.

[3] M. Blaze, J. Feigenbaum, and M. Strauss. Com-
pliance checking in the PolicyMaker trust man-
agement system. In Financial Cryptography,
pages 1439–1456, 1998.

[4] D. Clarke, J. E. Elienb, C. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer
Security, 9(4):285–322, 2001.

[5] A. Felkner and K. Sacha. The semantics of
role-based trust management languages. In
Proc. Central and Eastern European Conference
on Software Engineering Techniques CEE-SET,
pages 195–206, 2009.

[6] D. Ferraiolo and D. Kuhn. Role-based access
control. In Proc. 15th National Computer Secu-
rity Conference, pages 554–563, 1992.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R.
Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control. ACM
Transactions on Information and System Secu-
rity (TISSEC), 4(3):224–274, 2001.

[8] D. Gorla, M. Hennessy, and V. Sassone. In-
ferring dynamic credentials for role-based trust
management. In Proceedings of the 8th ACM
SIGPLAN international conference on Princi-
ples and practice of declarative programming,
page 224, 2006.

[9] W. M. Grudzewski, I. K. Hejduk, A. Sankowska,
and M. Wantuchowicz. Trust Management in
Virtual Work Environments: A Human Factors
Perspective. CRC Press, 2008.

[10] D. Harel and B. Rumpe. Modeling languages:
Syntax, semantics and all that stu. 2000.

[11] N. Li and J. Mitchell. RT: a role-based
trust-management framework. In Proc. 3rd
DARPA Information Survivability Conference

Deriving RTT Credentials for Role-Based Trust Management 19

and Exposition, pages 201–212. IEEE Computer
Society Press, 2003.

[12] N. Li, J. C. Mitchell, and W. H. Winsborough.
Design of a role-based trust-management frame-
work. In Proceedings of 2002 IEEE Symposium
on Security and Privacy, pages 114–130, Oak-
land CA, 2002. IEEE Computer Society Press.

[13] N. Li, W. H. Winsborough, and J. C. Mitchell.
Distributed credential chain discovery in trust
management. Journal of Computer Security,
11(1):35–86, 2003.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman. Role-based access control mod-
els. Computer, 29(2):38–47, 1996.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Hierarchical Model for
Evaluating Software Design Quality

Paweł Martenka∗, Bartosz Walter∗
∗Institute of Computing Science, Poznań University of Technology

pawel.martenka@cs.put.poznan.pl, bartosz.walter@cs.put.poznan.pl

Abstract
Quality of software design has a decisive impact on several quality attributes of the resulting
product. However, simple metrics, despite of their popularity, fail to deliver comprehensive infor-
mation about the reasons of the anomalies and relation between them and metric values. More
complex models that combine multiple metrics to detect a given anomaly are still only partially
useful without proper interpretation. In the paper we propose a hierarchical model that extend
the Factor-Strategy model defined by Marinescu in two ways: by embedding a new interpretation
delivery mechanism into the model and extending the spectrum of data providing input to the
model.

1. Introduction

Software design is considered one of the most
complex human creative activities [13]. As such,
the design process is prone to making errors,
which significantly affect the quality of a soft-
ware product resulting from the design. There-
fore, there is a continuous search for mod-
els and approaches that could help both im-
proving the design process and evaluating its
quality.

Since software design is a quantifiable pro-
cess, well-known code metrics are advocated as
the primary solution for that problem. They are
easy to compute, there is also plenty of exper-
imental data showing the correlation between
various metrics and desired quality attributes.
However, metrics are just numbers, which often
do not point to the design flaws, but rather pro-
vide rough and aggregate data. There are three
main drawbacks of using the isolated metrics as
direct providers of quality-related information:
1. There is no direct traceable connection be-

tween an actual cause and the value of a
metric; usually it is the designer who is re-

quired to examine the values and identify the
problem.

2. A vector of metric values has no meaning
for the designer without a proper interpreta-
tion. Aggregate metrics are not subject to a
straightforward interpretation.

3. Code metrics are unable to deliver complete
information about software design. They
need to be combined with diversed set of
data to provide a more complete view.

Then, there is a need for more holistic ap-
proaches. One of them is a two-stage Fac-
tor-Strategy proposed by Marinescu ([17]),
which is still based on metrics, but also ad-
dresses some of their weaknesses. It is a frame-
work for building rule-based descriptions of
design anomalies, which builds a navigable
path between metrics and actual violations of
high-level design principles. Unfortunately, this
approach has also drawbacks. Such principles
usually refer to abstract notions like cohesion
or coupling, which still are not directly pointing
to actual flaws. Moreover, actual code anomalies
often result from multiple violations of different
nature, for which the rules could be not properly

22 Paweł Martenka, Bartosz Walter

configured. For example, the Large Class bad
smell [12], which describes classes bearing too
much responsibility, typically denotes an overly
complex, low-cohesive class with lots of mem-
bers. Due to a large number of symptoms sug-
gesting the presence of the flaw, metrics point-
ings to them must be combined and evaluated in
non-linear and fuzzy manner to deliver an effec-
tive and useful measurement mechanism. Thus,
the Factor-Strategy model, which is based on
simple and strict rules, still does not provide a
flexible abstraction for such flaws.

In this paper we propose a hierarchical model
for evaluating design quality which is based on
the Factor-Strategy concept, but extends it in
several ways. It provides designers with hierar-
chical, custom-grained information, which helps
in tracing the causes of flaws, and also enriches
the spectrum of utilized sources of data.

The paper is structured as follows. Section 2
provides an overview of existing literature and
approaches used for similar problems. In Sec-
tion 3 we present Factor-Strategy model in a
more detailed way, and in Section 4 we propose
the hierarchical model. Section 5 contains a sim-
ple exemplary instance of the model, along with
early experimental evaluation results. Section 6
summarizes our findings and proposes further
extensions to the model.

2. Related Work

Historically, first attempts to quantitatively
evaluate the design quality of object-oriented
software were directly derived from code met-
rics. Metric suites proposed by Chidamber and
Kemerer [6], e Abreu [9] and others were de-
signed to capture the most important inter-
nal characteristics of object oriented software,
like cohesion and coupling, and the use of
mechanisms embedded in the object paradigm.
A strong evidence has been collected pointing to
correlation between these metrics and external
quality characteristics.

These characteristics were further investi-
gated by Briand et al. [3, 2], who noted that they
are too ambiguous to be effectively captured by

generalized, aggregate metrics. As an effect, they
proposed several specific metrics, which anal-
ysed different flavours of cohesion and coupling.

Some researchers went in the opposite direc-
tion, building more holistic approaches to mod-
elling design anomalies. Beck, the author of eX-
treme Programming methodology, coined a term
of “code bad smell” for a general label for de-
scribing structures in the code that suggest for
the possibility of refactoring [11]. Since specific
smells describe anomalies that can result from
many initial causes, they should also be backed
by several symptoms [23], e.g. diversed sets of
metrics. Moonen et al. [22] proposed a method
for automating smell detection based on analysis
of source code abstract syntax trees. Kothari et
al. in [16] defined a framework for building tools
that perform partially automated code inspec-
tions and transformations.

Dhambri et al. in [8] proceeded a step fur-
ther and employed visualisation techniques for
detecting anomalies. The main idea was based
on presenting some software quality attributes
(e.g. measured by metrics) to a software design
expert, who made the final decision. Another
work, by Simon and Lewerentz [21], focused on
refactorings driven by distance based cohesion.
Distance between members of classes (fields and
methods) was visualised in a 3D space, so that
an expert could decide on appropriate assign-
ment of class members and possibly suggest
refactorings.

Based on critics of the simplistic
metric-based quality models, Marinescu pro-
posed Factor-Strategy model [17], composed of
two stages: detection strategies stage respon-
sible for identifying an anomaly, and composi-
tion stage that evaluates the impact of suspects
found in the previous step on the high-level
quality factors.

This model was further extended. Ratiu [20]
encapsulated the detection strategies with a new
model which incorporated code changes his-
tory into the classification mechanism. The new
model has two main advantages:
1. removes false positives from the detected sus-

pects set,
2. emphasizes the most harmful suspects.

Hierarchical Model for Evaluating Software Design Quality 23

Similar concept – use of historical data – was
also exploited by Graves et al. [14] and Khosh-
goftaar et al. [15]. Graves presented a few models
to predict fault incidence and Khoshgoftaar in-
troduced a regression model to predict software
reliability, both based on the code history.

3. The Factor-Strategy Model

As Marinescu noted, classical models of design
quality evaluation do not provide explicit map-
ping between metrics and quality criteria, so
the rules behind quality quantification are im-
plicit and informal. The metrics-based models
can provide information about existence of a
problem, but they do not reveal the actual cause
of a problem. Hence, there is a need for a more
comprehensive and holistic model.

The Factor-Strategy model has been pro-
posed as a response to the above-mentioned
weaknesses. It is composed of two main ele-
ments: the Detection Strategy and the composi-
tion step.

The Detection Strategy (DS) is defined as a
quantifiable expression of a rule by which design
fragments that are conforming to that rule can
be detected in the source code.

Rules are configured by a set of selected and
suitable metrics. In consequence, DS provides a
more abstract level of interpretation than indi-
vidual metrics do, so that the numeric values of
these metrics do not need to be interpreted in
isolation.

Metrics are combined into rules using two ba-
sic mechanisms: filtering and composition. Fil-
ters transform metrics values whereas the com-
position operators aggregate into a rule. Mari-
nescu gives a following example of a Detection
Strategy instance for the Feature Envy smell:

FeatureEnvy := ((AID, HigherThan(4))
and (AID, TopValues(10%))
and (ALD, LowerThan(3)) and (NIC,
LowerThan(3))

This examplary rule uses three metrics: Ac-
cess of Import-Data (AID), Access of Local
Data (ALD) and Number of Import Classes
(NIC) processed with HigherThan, TopValues

and LowerThan filters, and composed with and
composition operator.

Application of DS on a set of software enti-
ties (e.g. classes) results in:
1. a set of detected suspects,
2. a vector of metrics values for each suspect.
Using this data, a score for a DS is calcu-
lated and mapped to a normalised value (a
ranked score). The score can be interpreted as
a higher-level metric for the strategy. Marinescu
provides a few exemplary formulas for comput-
ing the score, for example the simplest is the
number of suspects for a given DS.

Quantification of high-level quality factors is
based on an aggregation of ranked strategies and
rules. Formulas for aggregation can vary from a
simple mean value, where DS and the rules have
equal weight, to more sophisticated, weighted
methods. Selection of a method for aggregation
depends on the measurement goals. The aggre-
gated value – which is a score for the quality fac-
tor, is also mapped to the ranked score to provide
qualitative information (labelled ranked scores).

4. Hierarchical Model

The Factor-Strategy model overcomes major
problems of the classical solutions but still has
a few drawbacks. The first doubt refers to the
completeness of strategies suite: they need to be
configured for every anomaly, so even the biggest
set of strategies does not cover all possible flaws.

The second weakness is concerned about
limiting the data sources to metrics only.
As noted in [23], anomalies typically require
multi-criteria detecting mechanisms, including
data from dynamic execution, configuration
management repository, analysis of Abstract
Syntax Tree patterns etc. Ratiu and others
[20, 14, 15] proved usefulness of historical data
for quality evaluation. Van Emden [22] and Bax-
ter [1] presented examples how Abstract Syn-
tax Trees (ASTs) could be exploited as a source
of quality-related data. The extended spectrum
of sensor types, embedded into Factor-Strategy
model, may improve its sensitivity, accuracy
and correctness.

24 Paweł Martenka, Bartosz Walter

The final remark refers to the fact that oper-
ators used for defining detection rules are strict,
ie. they define a borderline, which may classify
very similar entities to different categories. Pro-
vided that the borderline is set up arbitrary, it
can significantly affect the results of evaluation.

The goal of this research is to develop
a hierarchical model which tackles the men-
tioned problems and weaknesses. It extends the
Factor-Strategy model mainly in two areas:
1. diversed data sources are used instead of

metrics only,
2. a simple mechanism for dealing with fuzzy

problems is proposed.

4.1. Structure of the Model

The structure of the hierarchical model and
its relation to the Factor-Strategy approach is
shown on Fig. 1. At the top of the model
there are high-level quality criteria (or char-
acteristics), which are combined with detected
lower-level patterns and rules violations. Pat-
tern and rule detection methods are supported
by data coming from various data sources,
e.g. metrics, historical data, results of dynamic
behaviour and abstract syntax trees (AST),
which improves accuracy of the detection
mechanism.

The model schema shows a hierarchy of el-
ements, but also a hierarchy of information.
The evaluation criteria provide the most ab-
stract and the most aggregated information. A
designer can track down the hierarchy to get
more detailed information and find the cause of
a problem indicated by the criteria.

4.2. Analysis of Detection Rules and
Design Principles

Detection strategies, which are the core part
of the original Factor-Strategy model, are con-
figurable sets of rules aiming at capturing vi-
olations of the well-known principles of design,
based on quantified data. However, actual design
anomalies present in code do not always match
the predicted and configured set of strategies.
They can also violate multiple principles concur-

rently or – on the other hand – remain ignored
by existing strategies.

The analysis mechanism present in the hier-
archical model can be divided into three parts:
1. new data selection approach,
2. metrics quantisation,
3. entity-level aggregation.

4.2.1. Data Selection

Classical quality models employ a set of se-
lected metrics for evaluation of quality factor
(or factors). For example, a model presented
by Briand et al. in [4] is built upon metrics
which are supposed to measure coupling, inheri-
tance, polymorphism and size, and is oriented on
fault-proneness prediction. Also instances of De-
tection Strategies in [17] consist of diverse sets
of metrics.

The model presented in this section pro-
motes different approach. Typically, behind ev-
ery principle of software design an internal qual-
ity characteristic is present. Based on this obser-
vation, the selection of metrics should be strictly
oriented on such characteristic. On the other
hand, the selected metrics should be simple,
suitable and adequate in the context of mea-
sured characteristic. As a consequence, some
types of metrics should be avoided:
1. strongly aggregating measures, like COF

(Coupling Factor defined by Abreu et al.
in [9]), which are biased by compensation
problem – some parts of highly-coupled de-
sign can be masked by parts which are
loosely-coupled,

2. metrics which are ambiguously defined, or
those capturing ambiguous concepts; Khaled
El-Emam in [10] argues that the notion of
cohesion is too general to provide significant
results,

3. metrics which try to capture multiple char-
acteristics at a time or appear not related to
the expected characteristic, eg. Basili et al.
in [5] argue that WMC metric actually mea-
sures software size instead of complexity.
Following the postulate of diversed data

sources, the model creation process should in-
corporate as many sources as is needed to

Hierarchical Model for Evaluating Software Design Quality 25

A S TM e t r i c s H i s t o r i c a l d a t a D y n a m i c b e h a v i o u r

D a t a g a t h e r i n g

P a t t e r n d e t e c t i o n R u l e s a n a l y s i s

H igh - l eve l qua l i t y c r i t e r i a

C o m b i n a t i o n

Figure 1. Hierarchical quality model

increase interpretability of the results. New
patterns and existing strategies may be built
with extended spectrum of data coming from
new sources.

4.2.2. Metrics Quantization

As pointed out by Marinescu in [17], a sim-
ple vector of metrics values is not very useful,
because there is no clear connection between
measures and quality factors. In other words,
such values require of proper interpretation. The
method presented below provides a new inter-
pretation mechanism for metrics, so that vio-
lations of rules can be detected and presented
to the designer in intuitive way. In the context
of the violated rules, we require an answer to
the question: is the value of a metric unaccept-
able and, in consequence, measured character-
istic has negative impact on quality? The sim-
plest solution introduces a threshold: if a value

of a metric exceeds threshold, then the measured
attribute is considered to negatively impact the
quality. The domain of the metric is divided into
two intervals, which can be labelled as “negative
impact” and “no impact”. Thus, the labels pro-
vides interpretation for metrics values.

However, strict threshold values are inflex-
ible, because values close to the threshold can
be interpreted incorrectly in certain context. To
provide a simple fix for that, the strict threshold
value can be replaced with an additional interval
representing the uncertainty. Values which falls
into this interval should be analysed separately
or supported by other data sources for correct
classification.

Having considered these arguments, we can
define three classes (intervals) of the attribute
domain:
1. L – a value of a metric is unambiguously ac-

ceptable, and the measured attribute has no
or negligible negative impact on quality,

26 Paweł Martenka, Bartosz Walter

2. M – a value of a metric is near to threshold;
additional analysis is required or other data
sources should be explored,

3. H – a value of a metric is unambiguously un-
acceptable, and the measured attribute has
negative impact on quality.
We can formally define the labelling phase in

following way:
1. E – a set of analysed entities, for example a

class or a package,
2. M – a set of all metrics, suitable for the con-

structed model,
3. L – a set of all labels which identify classes

of impact,
4. P – a set of all principles considered in the

model,
5. m – a metric (e.g. CBO),
6. m(e), e ∈ E – a value of metric m for entity e.

mlie,m = αm(m(e)), e ∈ E,m ∈M,mlie,m ∈ L.
(1)

Function described by formula (1) maps a value
of a metric m, measured for entity e, to a label
mli1. As an effect, a numerical value delivered
by a metric is replaced by a higher-lever label,
which is already interpreted from the quality
point of view.

The entire effort in the construction of this
part of the model must be devoted to defin-
ing the α function. For the basic version of the
model (with three classes) at least one threshold
value with surrounding interval must be defined.
The crucial step deals with identification of a
threshold and a width of the interval.

The quantised metric – the labelled value –
is only the very first and preliminary interpreta-
tion step. This information is valuable in larger
context, thus labelled metrics should be utilised
in compound patterns and strategies.

4.2.3. Entity-level Aggregation

Some of the characteristics and mechanisms,
which constitute the basis for the rules of good
design, are so complicated that there is a need for
many supporting data sources, to capture all as-

pects and variations of those characteristics (e.g.
coupling can be divided into import and export).
Therefore, an aggregation function of a set of
quantised metrics and other data sources has to
be engaged, to answer the question: Does a com-
pound attribute, expressed by a set of input data,
have a negative impact on quality? Let be defined:
1. Mp – a set of metrics to express principle p,

in other words, a set of metrics suitable for
detection of violations of the principle,

2. Ae,p – a set of all additional pieces of in-
formation, extracted from the other data
sources (not metrics), for entity e and prin-
ciple p,

3. Me,p = {(m,mlie,m) : e ∈ E, p ∈ P,mlie,m ∈
L,∀(m ∈Mp)mlie,m = αm(m(e))} – a set of
pairs: metric with assigned label; the label
is assigned respectively to formula (1); the
set is evaluated for all metrics referring to
principle p and calculated for entity e.

plie,p = βp(Me,p, Ae,p), e ∈ E, p ∈ P, plie,p ∈ L.
(2)

Function defined by formula (2) aggregates a set
of labelled metrics and additional information to
label pli2, which denotes impact of underlying
characteristic on quality. Aggregation defined by
formula (2) may be also realized as a classifier3.
Assuming labels l ∈ L denotes classes, the clas-
sifier built for specific principle p will assign a
class l to an entity e. Meaning of the aggregated
label or class can be generalised as follows: label
l ∈ L denotes strength of negative impact of an
attribute upon quality.

Aggregation step requires careful interpreta-
tion of collected results, especially in the case
of compound characteristics. To sum up above
considerations:
1. well-known principles of software design are

always based upon internal quality charac-
teristic,

2. such characteristics can be decomposed into
elements which can be later evaluated by
data coming from diverse data sources. The
collected results are useful for detection of
violations of principles,

1 Metric-level impact.
2 Principle-level impact.
3 For example using decision rules or trees.

Hierarchical Model for Evaluating Software Design Quality 27

3. aggregated results say nothing about the
quality characteristic they are based on, but
provide information about the negative im-
pact of a measured attribute on quality.

Label evaluated by formula (2) denotes impact,
but do not identify a violation of a principle. To
define a violation, let be assumed:
1. V Lp – a set of labels, which are treated as a

violation of principle p,
2. Vp – a symbol of a violation of rule p.

plie,p ∈ V Lp ⇒ Vp, e ∈ E, p ∈ P. (3)

Definition If aggregated label pli for a charac-
teristic supporting principle p, for analysed en-
tity e, belongs to the set VL, then the entity is
flawed by a violation of rule p.
This definition is captured by formula (3).

The detected violations can be scored and
ranked just like Detection Strategies. As a
consequence, presented method can be homo-
geneously in-lined with methods presented in
Factor-Strategy model.

5. Example of Application

This section brings through a process of instan-
tiation of a fragment of the hierarchical model.
Scope of the example is narrowed to the ele-
ments which constitutes novelty of the model:
rules analysis method with metrics quantization
and aggregation. Instantiated model will be ap-
plied to exemplary entities.

5.1. Model Creation

5.1.1. Goals

The very first step of a model creation is the
selection of quality characteristic to be eval-
uated. Following activities, like principles and
metrics selection, are made in the context of the
high-level quality goal. For the purpose of this
example, readability (but analysability and un-
derstandability are closely related) of code and
design is selected as a goal and high-level quality
factor.

5.1.2. Principles

Coupling concept is considered to be a good pre-
dictor of quality. El-Emam in [10] provides evi-
dence that high coupling makes programs hard
to understand. Rule of low coupling, identified
by Coad and Yourdon in [7] is selected as the
design principle used as quality criterion in this
example. Hence, let us define a set of principles
P = {LowCoupling}.

5.1.3. Data Sources

For the purpose of coupling measurement, met-
rics Ca and Ce, defined by Robert Martin in
[18], are used. The metrics count incoming (Ce)
and outgoing (Ca) couplings separately, and will
be applied at class level. Additional information,
based on abstract syntax tree, is defined as a flag
indicating whether an entity (a class in this case)
is abstract. Let us assume:
1. M = MLowCoupling = {Ca,Ce} – a set of all

metrics is actually the set of metrics for the
design principle LowCoupling, because only
one design principle is considered,

2. A = {IsAbstract} – additional information
from a non-metrics source.

5.1.4. Definition of Quantization and
Aggregation

As described in [10] by [19], a human can cope
with 7±2 pieces of information at a time. We use
this observation as a threshold for the above-se-
lected coupling measures. For a quantization
purpose, let us define:
1. L = {L,M,H} – the basic set of labels,
2. αCe(Ce(e)):

mlie,Ce =





L,Ce(e) < 5
M,Ce(e) ∈ [5, 9]
H,Ce(e) > 9

(4)

3. αCa(Ca(e)):

mlie,Ca =





L,Ca(e) < 5
M,Ca(e) ∈ [5, 9]
H,Ca(e) > 9

(5)

28 Paweł Martenka, Bartosz Walter

The model is oriented toward detection of
violations, so the simple max function will
be used for aggregation, assuming that la-
bels are ordered from the lowest value of
L to highest H. Martin in [18] argues that
classes should depend upon the most stable
of them (eg. on abstract classes), so if a
class is abstract then export coupling (Ca) is
not taken into consideration. Aggregation func-
tion βLowCoupling(Me,LowCoupling, Ae,LowCoupling)
is defined as follows:

plie,LowCoupling =





mlie,Ce, IsAbstract(e)
max{mlie,Ce,mlie,Ca},

otherwise

(6)
Finally, let us define the violation:

1. V LLowCoupling = {M,H} – a set of labels
indicating violations of LowCoupling rule; la-
bel M is also included to capture entities
which probably violate the rule,

2. VLowCoupling – a symbol which denotes vio-
lation of LowCoupling rule,

3. (plie,LowCoupling ∈ V LLowCoupling) ⇒
VLowCoupling – definition of LowCoupling rule
violation.

5.2. Application

The model will be applied on sample data,
taken from a student project, depicted in ta-
ble 1. All classes are large (from 384 lines to 477
lines in a file) and probably flawed in many as-
pects. Results generated by the model are com-
pared to results gathered in a survey, conducted
among graduate software engineering students
(students were asked to identify classes that are
too large).

The quantized metrics and additional data
for all entities:
1. MDisplayManager,LowCoupling = {(Ce,H),

(Ca,M)}

2. MAmeChat,LowCoupling = {(Ce,H), (Ca,H)}
3. MDrawableGroup,LowCoupling = {(Ce,L),

(Ca,H)}
4. ADisplayManager,LowCoupling = {IsAbstract =

False}
5. AAmeChat,LowCoupling = {IsAbstract =

True}
6. ADrawableGroup,LowCoupling = {IsAbstract =

False}
Results of aggregation of quantized metrics:
1. pliDisplayManager,LowCoupling = max{H,M}

= H
2. pliAmeChat,LowCoupling = mliAmeChat,Ce = H
3. pliDrawableGroup,LowCoupling = max{L,H}

= H
Regarding the previous definitions of violations,
all entities violate the principle of low coupling
and negatively affect the high-level quality cri-
terion.

5.2.1. Interpretation

The high-level quality goal – readability – is
not evaluated because there are too few entities
to get a relevant output. Let be assumed, the
high-level factor indicates a problem in software.
The very first step is to look for strategies and
principles which support the factor, and choose
only those with current negative consequences.
The second step is to look for entities (suspects)
which negatively impacts the factor in the con-
text of chosen principle (or strategy). In this par-
ticular example there are only three classes and
all of them are suspects due to violations of the
principle.

Violation in DisplayManager results from
the metric Ce, labelled with H, and Ca la-
belled with M. Considering Ce definition, Dis-
playManager suffers mainly from import cou-
pling, and moderately from export coupling. Re-
spondents classified DisplayManager as Middle

Table 1. Sample data

Class Ce Ca mlie,Ce mlie,Ca IsAbstract
DisplayManager 13 8 H M False
AmeChat 14 35 H H True
DrawableGroup 4 14 L H False

Hierarchical Model for Evaluating Software Design Quality 29

Man and Large Class, and model results can in-
dicate causes of these smells.

AmeChat is an abstract class, so it is ob-
vious that it is used by many other classes. In
consequence, only import coupling is considered,
so the impact results from Ce, despite of high
value of Ca. The vast majority of the respon-
dents identified Large Class smell, which can be
connected with high import coupling.

DrawableGroup uses desirable amount of
classes, Ce=L, but is used in many other places.
The majority of the respondents identified Re-
fused Bequest in the class. This smell deals
with inheritance, which is not considered in
this model. Obtained results indicates other,
coupling-related problems which probably can-
not be named as a defined smell.

6. Summary

The proposed hierarchical model extends the
Factor-Strategy model in three ways. It delivers
more comprehensive and traceable information
concerning detected potential anomalies to the
designer, including the interpretation of metrics
values, and also broadens the spectrum of anal-
ysed data sources to the non-metric ones. As
the simple example suggests, these elements help
in discovering new types of anomalies and also
support the designer in evaluating the impact,
scope and importance of the violation. It also
delivers hierarchically structured data justifying
the suspected flaws, and includes a uncertainty
interval. Therefore, the model more resembles
the human way of cognition.

Further directions of research include an ex-
perimental validation of the model, defining de-
tection strategies utilizing data from heteroge-
neous data sources, and also embedding internal
design characteristics into the model.

References

[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna,
and L. Bier. Clone detection using abstract syn-
tax trees. In ICSM ’98: Proceedings of the Inter-
national Conference on Software Maintenance,

page 368, Washington, DC, USA, 1998. IEEE
Computer Society.

[2] L. C. Briand, J. W. Daly, and J. K. Wüst.
A unified framework for cohesion measurement
in object-oriented systems. Empirical Software
Engineering, 3(1):65–117, 1998.

[3] L. C. Briand, J. W. Daly, and J. K. Wüst. A
unified framework for coupling measurement in
object-oriented systems. IEEE Transactions on
Software Engineering, 25:1, 1999.

[4] L. C. Briand, W. L. Melo, and J. Wüst. Assess-
ing the applicability of fault-proneness models
across object-oriented software projects. Tech-
nical report, ISERN, 2000.

[5] L. C. Briand, S. Morasca, and V. R. Basili.
Property-based software engineering measure-
ment. IEEE Transactions on Software Engi-
neering, 22:68–86, 1994.

[6] S. R. Chidamber and C. F. Kemerer. A metrics
suite for object oriented design. IEEE Transac-
tions on Software Engineering, 20(6):476–493,
1994.

[7] P. Coad and E. Yourdon. Object Oriented De-
sign. Prentice Hall, 1991.

[8] K. Dhambri, H. A. Sahraoui, and P. Poulin.
Visual detection of design anomalies. In 12th
European Conference on Software Maintenance
and Reengineering 2008, pages 279–283, April
2008.

[9] F. B. e Abreu and R. Carapuça. Object-oriented
software engineering: Measuring and controlling
the development process. In Proceedings of the
4th International Conference on Software Qual-
ity, 1994.

[10] K. E. Emam. Advances in Software Engineer-
ing, chapter Object-Oriented Metrics: A Review
of Theory and Practice, pages 23–50. 2002.

[11] M. Fowler. Refactoring. Improving the Design
of Existing Code. Addison-Wesley, 1999.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[13] R. Glass. On design. Journal of Systems and
Software, 52(1):1–2, May 2000.

[14] T. L. Graves, A. F. Karr, J. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Transactions on Software Engi-
neering, 26:653–661, 2000.

[15] T. M. Khoshgoftaar, E. B. Allen, R. Halstead,
G. P. Trio, and R. M. Flass. Using process
history to predict software quality. Computer,
31:66–72, 1998.

[16] S. C. Kothari, L. Bishop, J. Sauceda, and
G. Daugherty. A pattern-based framework for

30 Paweł Martenka, Bartosz Walter

software anomaly detection. Software Quality
Control, 12(2):99–120, 2004.

[17] R. Marinescu. Measurement and Quality in
Object-Oriented Design. PhD thesis, “Politeh-
nica” University of Timişoara, 2002.

[18] R. Martin. OO design quality metrics. An anal-
ysis of dependencies. Report on Object Analysis
and Design, 2(3), 1995.

[19] G. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for pro-
cessing information. The Psychological Review,
(63):81–97, 1956.

[20] D. Ratiu, S. Ducasse, T. Grba, and R. Mari-
nescu. Using history information to improve
design flaws detection, 2004.

[21] F. Simon, F. Steinbrückner, and C. Lewerentz.
Metrics based refactoring. In Proceedings of the
5th European Conference on Software Mainte-
nance and Reengineering, pages 30–38, 2001.

[22] E. van Emden and L. Moonen. Java quality
assurance by detecting code smells. In Proceed-
ings of the 9th Working Conference on Reverse
Engineering, 2002.

[23] B. Walter and B. Pietrzak. Multi-criteria detec-
tion of bad smells in code with UTA method.
In Proceedings of XP 2005 conference, pages
154–161, 2005.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Pattern-Based Software Architecture for
Service-Oriented Software Systems

Claus Pahl∗, Ronan Barrett∗
∗School of Computing, Dublin City University

Claus.Pahl@computing.dcu.ie, Ronan.Barrett@computing.dcu.ie

Abstract
Service-oriented architecture is a recent conceptual framework for service-oriented software
platforms. Architectures are of great importance for the evolution of software systems. We
present a modelling and transformation technique for service-centric distributed software systems.
Architectural configurations, expressed through hierarchical architectural patterns, form the core
of a specification and transformation technique. Patterns on different levels of abstraction form
transformation invariants that structure and constrain the transformation process. We explore
the role that patterns can play in architecture transformations in terms of functional properties,
but also non-functional quality aspects.

1. Introduction

The development of distributed software sys-
tems based on service architectures is rapidly
gaining momentum. Service-oriented architec-
ture (SOA) is emerging as a new design
paradigm and conceptual framework for dis-
tributed service-centric software systems, sup-
ported by platforms such as the Web Services
Framework (WSF) [2]. Services are reusable soft-
ware components that are explicitly described,
published and provided at fixed locations. Due
to the ubiquity of the Web, the WSF platform
and SOA paradigm play a major role for soft-
ware systems.

In service-centric distributed environments
such as the Web services platform that al-
lows services to be invoked using Internet
protocols, a notion of workflow processes
is central to capture service composition
and interaction between services. We present
techniques to support, firstly, modelling of
services and service-oriented processes and,
secondly, property-preserving transformations
of service-oriented architectures. In contrast

to a variety of architecture approaches that
focus primarily on static, structural proper-
ties, we concentrate on dynamic dependen-
cies in the form of interaction processes be-
tween services. Our solution is an approach
to the architectural transformation of ser-
vices, supporting the evolution of service-ori-
ented architectures. Three aspects characterise
our approach:
– Architecture modelling using hierarchical

patterns. A three-layered architecture model
addresses different levels of abstraction. Each
layer is supported by a pattern-based mod-
elling approach for service processes. A ser-
vice-oriented architectural configuration no-
tation that combines patterns and process
behaviour in architectures forms the back-
bone. Patterns enhance reuse in SOA.

– Property-preserving architectural transfor-
mation. Based on the configuration nota-
tion as the abstract description language
for source and target architectures, a trans-
formation technique is developed. Patterns
are considered as characteristics of a service
architecture that are, due to the implied

32 Claus Pahl, Ronan Barrett

reliability and maintainability, worth being
preserved in transformations.

– Distribution and quality-of-service. We
investigate the role of distribution for
modelling and look at functional and
non-functional service properties. The in-
tegration of quality aspects into modelling is
important for the services platform, where
providers and users are usually from different
organisations.

We address the lack of behaviour and quality
aspects in service-oriented architectural trans-
formations. Our patterns capture essential be-
havioural service dependencies in the form of
interaction process patterns and link these to
quality properties. We utilise patterns to cap-
ture these properties and allow these properties
to be preserved in transformations by identifying
patterns as invariants. Formality is required to
obtain unambiguous models of process-based
service architectures and to complement mod-
elling by analysis and reasoning facilities. Archi-
tectural change and integration require a tech-
nique for process-oriented property-preserving
transformations.

We introduce our architecture model
and transformation technique in Section 2.
Pattern-based architecture modelling and
specification, supported by the architecture
configuration notation, is addressed in Section 3.
Architectural transformations are defined in
Section 4. Finally, we discuss related work and
end with conclusions.

2. Architecture Model and
Specification

Based on background definitions of service and
software architecture, we now define the prin-
ciples of our architecture model and the core
notation.

2.1. Service-oriented Architecture

The objective of software architecture is the
separation of computation and communication.
Architectures are about components (i.e. loci

of computation) and connectors (i.e. loci of
communication). Various architecture descrip-
tion languages (ADL) and modelling techniques
have been proposed [17]. An architectural model
captures common concepts in architectural de-
scription: components provide computation, in-
terfaces provide access and connectors provide
connections between components. In service ar-
chitecture, the main emphasis is on the compo-
sition of services to workflow processes and on
the overall configuration of services and service
processes. For instance [10], use scenarios – de-
scriptions of interactions of a user with a system
– to operationalise requirements and map these
to a system architecture. We extend the notion
of interaction and also consider system-internal
interactions and allow interaction processes to
be composite.

We focus on service architectures, i.e.
service-oriented software architectures, here.
A service is usually defined as a coherent set
of operations provided at a certain location [2].
A service provider makes an abstract interface
description available, which can be used by
potential service users to locate and invoke
this service. The Web Service platform provides
description languages (WSDL) and invocation
protocols (SOAP) for this purpose. Services
are often used ‘as is’ in single request-response
interactions. More recently, research has focused
on the composition of services to processes [2].
Orchestration is the prevalent form of service
composition. Existing services can be reused
to form business or workflow processes. The
principle of architectural composition that we
look at here is process assembly.

2.2. An Architectural Configuration
Notation

At the core of our architecture modelling and
transformation technique is a conceptual archi-
tecture model. The objective of this conceptual
architecture model is to capture the core layer-
ing and structuring principles of service-oriented
architectures. The conceptual service archi-
tecture model (SAM), tailored towards the
needs of service- and process-oriented platforms,

Pattern-Based Software Architecture for Service-Oriented Software Systems 33

shall address the different abstraction levels and
perspectives in service-oriented architectures:
– Reference architectures are high-level

specifications representing common struc-
tures of architectures specific to a particular
domain or platform.

– Architectural design patterns are
medium-scale patterns – usually referred
to as design patterns or architectural
frameworks.

– Workflow patterns are process-oriented
patterns that represent common data
exchange-oriented workflow processes in an
application domain.
Based on the architecture model, we define

a notation for architectural specification – the
service-oriented architectural configura-
tion notation (SAC) – that has features of
an abstract architectural description language
(ADL). Two elements define our transformation
technique: a description notation to capture ar-
chitectural properties and rules and techniques
for transformation.

Various formal approaches to the represen-
tation of processes have been suggested in the
past, e.g. [6] using Petri nets. Process calculi
such as the π-calculus [15, 13] are suitable
frameworks for architectural configurations of
service- and process-centric systems, i.e. sup-

port of modelling and transformation, due to
their abstraction from service implementation
and their focus on interaction processes. The
π-calculus, a calculus for mobile processes, is
particularly useful due to a similarity between
mobility and evolution – both are about changes
of a service in relation to its neighbourhood –
which helps us to support architectural transfor-
mations. Our notation is defined in terms of the
π-calculus [15], but we want to firstly provide
a less mathematical syntax and, secondly, allow
the addition of further combinators to express
workflow and design patterns. A simulation no-
tion captures property-preservation and permit-
ted structure and behaviour variations during
transformation.

Our notation consists of process activities,
combinators and abstractions, which are sum-
marised in Fig. 1. The basic element describing
process activity is an action. Actions π are
combined to service process expressions. Ac-
tions of a service are primitive processes divided
into invocations and activations. Invocations
inv x(y) by a client of a service via channel x
connects to the remote service, passing y as a
parameter. Activations receive rcv x(a) from
a provider from other services and the dual reply
rep x(b), with channel x and parameters a and
b. Based on actions, process combinators are

Actions:
π ::= inv x(y) Invocation

rcv x(a) Activation – Receive
rep x(b) Activation – Reply

Processes – workflow combinators:

P ::= π Action
P1;P2 Sequential Composition
par (P1, P2) Parallel Composition
repeat (P) Iteration
choice (P1, P2) Exclusive Choice
mchoice (P1, P2) Multi-Choice

Processes – other constructs:
P ::= let x = π in Variable

0 Inaction

Abstraction:
A(a1, . . . , an) = PA with a1, . . . , an are free in PA

Figure 1. Syntactical Definition of the SAC Notation

34 Claus Pahl, Ronan Barrett

basic forms of workflow patterns. Sequences
are represented as P1; P2 – process P1 is ex-
ecuted and the system transfers to P2 where
the next action is executed. Exclusive choice
means that one Pi (i = 1, . . . , n) from choice
P1, . . ., Pn is chosen, Multi-choice mchoice
P1, . . ., Pn allows any number of the processes
Pi (i = 1, . . . , n) to be chosen and executed in
parallel. Iteration repeat P executes process
P an arbitrary number of times. Parallel com-
position par (P1, . . ., Pn) executes processes Pi
concurrently. A(a1, . . . , an) = PA is a process
abstraction, where P is a process expression
and the ai are free variables in P. A variable is
introduced using let x = π in P. Inaction is
denoted by 0.

The semantics is defined in terms of the
π-calculus [15], by mapping constructs directly
to π-calculus constructs. The actions are de-
fined in terms of send x〈y〉 (for invocation inv
and reply rep) and receive x(y) (for receive
rcv) of the π-calculus. Combinators are defined
through their π-calculus counterparts, except
multichoice mchoice P1, P2, which is defined as
choice (A, B, par (A, B)) – essentially a parallel
composition of all elements of the powerset of
the mchoice argument list. The abstraction is
the π-calculus abstraction.

3. Pattern-Based Service Architecture
Modelling

The architectural configuration notation SAC
enables the modelling of pattern-based service
architecture configurations.

3.1. Patterns and Abstraction Levels

Architectural and design patterns are re-
curring solutions to software design prob-
lems [7]. Although originally proposed for
object-oriented development, their applicability
for service-based architectures has been demon-
strated [18]. These patterns are about structure
and interaction and provide reusable solutions
to commonly encountered design problems. We
use patterns at different levels of abstraction –

reference architectures, architectural design pat-
terns, and workflow patterns. We cover the three
layers of the architecture model SAM. Work-
flow operators for service processes are directly
integrated as operators. Architectural design
patterns expressing service interaction patterns
can be formulated as a number of concurrently
executing processes. Reference architectures can
be modelled at the level of abstractions.

Reference architectures, often emerge
in an abstracted and standardised form from
successful architectural assemblies. Reference
architectures define accepted structures that
help us to built maintainable and interopera-
ble systems. Besides domain-specific architec-
tures, which we will illustrate in the case study
section, platform-specific reference architecture
are important. Examples of classical Web-based
architectures are client-server architectures or
three-tiered architectures.

Design patterns are recognised as im-
portant building blocks in the development
of software systems [7]. Their purpose is the
identification of common structural and be-
havioural patterns. A rich set of design pat-
terns has been described, which can be used to
structure a software design at an intermediate
level of abstraction. Usually, architectural pat-
terns (such as model-view-controller) are distin-
guished from design patterns (such as factory,
composite, or iterator) as the former are linked
to component frameworks. We see both forms as
intermediate-level constraints on a system archi-
tecture, i.e on services and on their interaction
patterns.

Design patterns also play a role in the design
of Web services architectures [18]. An example
of an architectural design pattern in the Web
services context is the client-dispatcher-server
pattern [18]. The pattern architecture with its
interactions is visualised in Fig. 2. The SAC
notation adds behaviour specification to the
static view of UML class diagrams. It is a textual
description, similar to UML activity and interac-
tion diagrams in purpose. We have used a UML
class diagram to present the abstract service
interface and the service connectivity. Pattern
definitions such as client-dispatcher-server can

Pattern-Based Software Architecture for Service-Oriented Software Systems 35

Client = repeat (let requestServ = inv requestConnection()
in inv requestServ(resId))

Server = inv registerServ(id);
repeat (rcv acceptConnection(c); rcv requestServ(s);

rep requestServ(runService(s)))
Dispatcher = choice (

choice (rcv registerServ(id), rcv unregisterServ(id)),
repeat (rcv requestConnection();

let c = getChannel()
in inv acceptConnection(c); rep requestConnection(c)))

Figure 2. Pattern – the Client-Dispatcher-Server Architectural Design Pattern

act as building blocks of complex architectures.
Patterns are defined as process expressions and
made available as process abstractions. These
macro-style building blocks can also form a
pattern repository.

Workflow patterns are small-scale process
patterns [19] – often at the same level of ab-
straction as design patterns, but more focussed
on data exchange. Workflow patterns relate to
connector types that are used in the composition
of services – we provide them as built-in oper-
ators. An example of a workflow pattern is the
sequencing workflow pattern. Workflow patterns
are small compositions of activities. Workflow
patterns for Web services architectures are de-
scribed in [20].

To identify workflow patterns in an architec-
ture specification is important since often not all
patterns are supported by the implementation
language.

choice(A,B,C,par(A,B),par(A,C),

par(B,C),par(A,B,C))

is an equivalent workaround to the multichoice
workflow, needed if the implementation lan-
guage does not support the multichoice pattern
mchoice(A, B, C) – which is the case with some
WS-BPEL implementations [20].

3.2. Patterns and Quality

Patterns can influence a system’s quality char-
acteristics such as understandability or main-
tainability. For service-centric software systems
specific properties arising from the often dis-
tributed and cross-organisational context are of
central importance. The reliability of a system,
the availability of services, and the individual
service and overall system performance are often
crucial.
– The qualtiy benefits of the client-dis-

patcher-server pattern are: composition is
easy to maintain, as composition logic is
contained at a single participant, the cen-
tral dispatcher. Low deployment overhead as
only the dispatcher manages the composi-
tion. Composition can consume participant
services that are externally controlled. Web
service technology enables the reuse of ser-
vices.

– The main disadvantages are: a single point
of failure at the dispatcher provides for poor
reliability/availability. Communication bot-
tlenecks at the dispatcher result in restricted
scalability. Messages have considerable over-
head for deserialisation and serialisation.
A high number of often verbose messages

36 Claus Pahl, Ronan Barrett

between dispatcher and clients/servers is
sub-optimal and results in poor performance.

All patterns have their advantages and disad-
vantages. Often, the qualities mutually affect
each other negatively such as maintainability
and performance. What is, however, important
here is that the qualities associated to a given
pattern are preserved during a transformation.
The client-dispatcher-server pattern is typical
for learning technology systems, for which main-
tainability and interoperability are central. Fail-
ure is not a highly critical problem and the
number of users is predictable – which allows us
to neglect two of the major disadvantages. Note,
that these characteristics are associated to pat-
tersn, but not part of our notation. For instance
distribution is not part of our notation. We can
use an annotation for the composition operators
to indicate a distributed implementation if an
extension is considered.

3.3. Case Study – Modelling Service
Architectures

Our case study system is a learning environment
called IDLE – the Interactive Database Learning
Environment [14], which is based on object
technology with a Web-based access interface.
IDLE is a multimedia system that uses differ-
ent mechanisms to provide access to learning
content, e.g. Web server and a (synchronised)
audio server. It is an interactive system that in-
tegrates components of a database development
environment (a design editor, a programming in-
terface, and an analysis tool) into a teaching and
learning context. Learners can develop database
applications, supported by shared storage and
workspace.

IDLE has been developed since 1996 in
several stages. The consequence of this growth
is a system without a designed architecture –
an architecture that is even not explicitly cap-
tured and documented. However, the existing
architecture is service-oriented (although not
fully Web Service-based) and, consequently, is
a suitable starting point for transformations.
Evolving Internet technologies and frequently
changing software developers are only two of the

contributors to difficult maintenance. Besides
achieving maintainability, interoperability and
componentisation were reasons to choose a fully
service-based architecture as the target.

Architecture modelling starts with the pro-
posed three-layered approach. In the context of
our case study domain, the IEEE-defined Learn-
ing Technology System Architecture (LTSA)
provides a domain-specific service-oriented ref-
erence architecture [9], visualised in the
UML-style class diagram in Fig. 3. Six central
components such as Delivery or Coach are iden-
tified. These components provide services, e.g.
the Delivery component provides a Multimedia
delivery service to the LearnerEntity. These
services are usually related to processing mul-
timedia data. We use the LTSA reference archi-
tecture as a starting point for the re-engineering
of IDLE.

Figure 3. Overview of the LTSA Reference
Architecture

In IDLE, a learner requests content from a
resources server. The IDLE specification in SAC,
Fig. 4, is based on the client-dispatcher-server
design pattern, Fig. 2, with the learner (as
client), a coach (as dispatcher), and the re-
sources and delivery subsystem (as server).
This specification captures a central behavioural
property of IDLE, captured using the pattern.
It is an extension of the pattern in terms of
the IDLE application context that adds inter-
action with the Resources server to the Delivery
component. Servers register their services with
the dispatcher and clients request connection
channels to servers in order to use the services.
The learner is a client invoking services of the de-
livery (request a connection and an educational
service). The coach is a broker and mediator
that handles the service registration (from the

Pattern-Based Software Architecture for Service-Oriented Software Systems 37

Learner = repeat (let requestEducServ = inv requestConnection()
in inv requestEducServ(resId))

Delivery = inv registerEducServ(id);
repeat (rcv acceptConnection(c); rcv requestEducServ(s);

rep requestEducServ(run(s)); rcv locator(uri);
let learnResource = inv retrieveResource(uri)
in rep multimedia(learnResource))

Coach = choice (
choice (rcv registerEducServ(id), rcv unregisterEducServ(id)),
repeat (rcv requestConnection();

let c = getChannel()
in inv acceptConnection(c); rep requestConnection(c)))

Figure 4. Specification – Educational Service (EducServ) Registration and Provision in IDLE directly
based on the Client-Dispatcher-Server Design Pattern

delivery) and forwards the delivery channel (pro-
vided by the delivery component) to the learner.
Passing channel names over channels, as in the
example, is typical for the notation’s ability to
model dynamic infrastructures. A learner uses
the provided channel to access the delivery’s
educational service.

Another example of a design pattern is the
factory method pattern – a creational pattern [7]
that provides an interface for creating related
objects without specifying their concrete classes.
This pattern can be applied in IDLE for ma-
nipulating a variety of related persistent stores
such as the learners records or adding/retrieving
objects to/from a database such as a workspace
feature.

Workflow patterns are the final ar-
chitectural aspect. The multichoice opera-
tor denotes a process composition pattern.
mchoice(Lecture,Tutorial,Lab) expresses that
any selection of the IDLE services Lecture,
Tutorial, and Lab can be used concurrently.
We have realised the storage and workspace
function, which could have been integrated into
either learning resources or learner records, as
a separate service. This IDLE feature can be
specified as a complex service workflow process,
see Fig. 5. The workspace service deals with
incoming retrieval or storage requests.

Our service modelling notation needs a
methodological context that covers mod-
elling existing systems and transformations.
Service-oriented architecture usually starts with
the identification of services. Two cases can be
distinguished:

– Some system components will exhibit service
character – an SQL execution element, part
of the IDLE lab resources and delivery sub-
system, is an example.

– Some components could easily be wrapped
up as services, if required. An example of this
category is the IDLE storage and workspace
feature.

Once all services have been identified, the con-
nections and interactions between services have
to be modelled. In our case study, the problem
is re-engineering of a legacy system into a
service-based system. The existing architecture
– even though not adequately designed and
documented – provides a starting point for
service identification. The LTSA also determines
the service-based modelling of IDLE due to
the LTSA’s SOA character. We have used a
top-down approach to service identification as
the first step of the transformation part.

The need to change, adapt and extend makes
it clear that the original architecture cannot
be fully preserved. An abstraction mechanism
– in the form of patterns – answers the need
to focus on essential, but not all architectural
properties that should be preserved. Patterns
not only identify common functional structures;
they also have typical quality attributes asso-
ciated with them. A central difficulty arises:
how to identify suitable patterns. The collection
of frequent patterns is often domain-specific,
as our investigation indicates. Examples of fre-
quently occurring design patterns in IDLE,
other learning technology systems, and also
the LTSA include the client-dispatcher-server

38 Claus Pahl, Ronan Barrett

WorkSpace = choice (
repeat (rcv retrieve(resId); inv provide(res)),
repeat (rcv store(resId, res)))

Figure 5. Specification – Specification of the IDLE Storage and Workspace Service

pattern, but also the factory, proxy, observer,
composite, and serialiser patterns [7]. Other,
less frequent patterns include the iterator and
the strategy pattern. These common patterns
could result in a domain-specific formulation
of patterns and a repository of domain-specific
patterns, which would help software archi-
tects in identifying invariants of the trans-
formation.

4. Transformation

Software architecture addresses more than the
high-level system design. Software change result-
ing from maintenance requirements and integra-
tion problems is equally important. We focus
on architecture transformations as a central
software change technique. A number of reasons
might require transformations:
– Interoperability can be a transformation ob-

jective.
– A reference architecture might need to be

adopted.
– Changes in interface and interaction of ser-

vices need to be addressed.
Architectures are often transformed if imple-
mentation restrictions have to be dealt with.
An objective of architecture transformation is
to implement changes, but also to preserve
properties. Existing service connectivity and
interaction is often worth being preserved, i.e.
act as invariants of the transformation. Our
patterns express processes at different levels
of abstraction. Preserving patterns is desirable
since patterns represent architectural configura-
tions that are easy to understand and implement
and describe structures that are often easy to
maintain and reliable.

While the idea of preserving patterns at
all architecture layers is therefore obvious, a
verifiable transformation technique is needed.
A generic constructive mapping rule is at the

centre of our transformation technique. A notion
of simulation captures the notions of equivalence
and refinement of services and service processes.

A prerequisite for transformations is the
explicit architecture specification of an existing
system. A complete specification is not nec-
essary; accuracy and level of preservation of
the transformation, however, depend on the
degree of detail and number of patterns iden-
tified. In IDLE, we have for instance analysed
an inadequately documented system to extract
structures and patterns.

4.1. Simulation and Transformation
Rules

Our transformation technique is based on a
notion of simulation and on simulation-based
transformation rules. It has to address the needs
of the three pattern-based architecture layers
and the focus on patterns as transformation
invariants. Each of the three architecture models
might create its own requirements:
– Reference architectures. Each service ab-

straction is mapped to a service abstraction
in the new architecture. The transformation
objective determines whether the service
process definition has to be changed. The
transformation is subject to invariants, i.e.
pattern preservation.

– Architectural design patterns. Often, inter-
action processes need to be changed to ac-
commodate new or modified service func-
tionality. Ideally, newly emerging patterns
that a service participates in will simulate
the original patterns.

– Workflow patterns. Workflow pattern trans-
formations can often be handled automati-
cally in architecture implementations.
Property preservation is the goal of our ar-

chitecture transformations. A simulation notion
shall capture service process pattern preserva-
tion in the transformation technique. A simu-

Pattern-Based Software Architecture for Service-Oriented Software Systems 39

lation definition, adopted from the π-calculus,
satisfies the pattern preservation requirement
for the processes that we envisage:

Process Q simulates process P if there
exists a binary relation S over the set of
processes such that if whenever PSQ and
P

m−→ P ′ then there exists Q′ such that
Q

n−→Q′ and P ′SQ′ for service processes
n and m.

This definition expresses when process Q based
on service expression n preserves, or simulates,
the behaviour of process P based on service
expression m. The services n and m can here be
unrelated, as this definition is about observable
behaviour only.

In order to automate transformation support
based on this definition, a constructive theorem
supporting simulation is needed. This theorem
is the basis of a transformation rule which
allows the verification of preservation and the
automation of transformation. In [12], we have
developed a constructive simulation test based
on the construction of transition graphs for SAC
process expressions.

Since usually not the entire specified be-
haviour should be preserved, we have introduced
the notion of patterns to capture common
behavioural aspects that need to be pre-
served. Patterns at different levels of abstraction
identify reliable and maintainable interaction
patterns between services. Central to our trans-
formation technique is a transformation rule,
which associates patterns and simulation:

Given an architecture specification S in
SAC, create an architecture specification
S′ as follows. For each abstraction A
in S (apply this rule recursively from
top to bottom), map A to A′ where
A′ is another abstraction such that for
any pattern P that A participates in, A′

simulates P ′ with P ′ = P [A/A′], i.e. A′

substitutes A and P is replaced by P ′ to
cater for renaming of abstractions.

This produces pattern-preserving target archi-
tectures, if no further modification are made.
We, however, argue that further modifications
of the initial architecture in terms of additional
or modified functionality are typical for transfor-

mations in evaluation and integration contexts.
In this case, the invariant pattern preservation
needs to be demonstrated. Pattern-preserving
transformation rules can aid here. These are
based on standard simulation relationships dis-
cussed in the process algebra literature [15], such
as:
– A;B simulates A: only transitions of B are

added that do not affect A.
– repeat(A) simulates A: a single repetition

corresponds to A.
– choice(A;B) simulates A: the selection of A

corresponds to A.
– par(A;B) simulates A: A is always executed

in the parallel composition.
From this constructive rule set, pattern-preserv-
ing transformations that even include structural
and behavioural changes can be formulated.

The determination of an invariant, here the
pattern P , is a common, but often non-trivial
problem, which can be alleviated through do-
main-specific patterns.

4.2. Case Study – Pattern-Preserving
Transformations

We demonstrate the adoption of the LTSA
reference architecture on the highest level of
abstraction for the IDLE system. The trans-
formation aim is interoperability of IDLE ser-
vices and components with other LTSA-speci-
fied components. This interoperability objective,
however, can have an impact on all levels of ab-
straction. Other learning technology standards,
for instance, prescribe interfaces for learning
technology objects, which would have to be
reflected in service interfaces here.

The starting point for the transformation
is the architecture specification of an existing
system – in our case IDLE in its original form.
IDLE on the highest level of abstraction is
a parallel composition of composite processes

IDLE = par(Learner,Delivery, StudentModel,

PedagogyModel,Workspace,

Evaluation, . . .)

where each top-level service is an abstraction
of a process expression based on other, more

40 Claus Pahl, Ronan Barrett

basic services. Some of these are already similar
to LTSA components – we have indicated this
fact by using the similar names. Other existing
IDLE components such as StudentModel and
PedagogyModel have no direct counterpart in
the LTSA, but can be abstracted by e.g. the
Coach. Several different combinations of indi-
vidual services can form patterns; these might
actually overlap.

The first transformation step is to describe
IDLE’s architectural characteristics – ideally in
LTSA terminology to simplify the transforma-
tion, see Fig. 3. The client-server-dispatcher
pattern, see Fig. 2, is not identical to the
structure that can be found in the IDLE system,
see Fig. 4, since interactions with the resources
server are added. The pattern itself as an iden-
tifiable pattern is nonetheless worth preserving
and is, thus, one of the invariants. In our case,
the client-dispatcher-server pattern par (Client,
Dispatcher, Server) is therefore simulated by the
composite IDLE process par (LearnerEntity,
Coach, Delivery), resulting from the composi-
tion of learner, coach, and resources and delivery
subsystems of the IDLE reformulation in LTSA
terminology. This property is in our case easy
to verify, since the IDLE specification in Fig. 4
describes only the service requests and connec-
tions that establish functionality defined in the
pattern.

LTSA is a high-level system specification, to
which we add functionality in IDLE in the form
of new services not covered by LTSA. Architec-
tural changes are necessary due to the workspace
service integration into IDLE. The explicit stor-
age and workspace service, see Fig. 5, requires
the services LearnerEntity and Delivery to be
modified in their interaction behaviour. Again,
the pattern shall be the invariant of the trans-
formation, but some refinements – constrained
by the simulation definition – need to be made
to accommodate the added service within the
system.

Workflow patterns to be preserved can be
identified due to their implementation as op-
erators in the notation. The specification of
the IDLE educational service system based on
the client-dispatcher-server architectural design

pattern in Fig. 4 based on Fig. 2 is defined in
terms of workflow patterns. The Learner is based
on a sequence of activities. The Coach is based
on choice in the first part, and a concurrent
split and merge in the second part. These are
candidates for invariants.

The reconstructed IDLE architecture is the
transformation basis. The integration of spec-
ifications of the identified existing or created
services forms the transformed architecture. The
transformation task is to transform IDLE into
LTSA-IDLE – an architectural variant of IDLE
with LTSA-conform service interfaces and inter-
action processes. In the transformation, we need
to consider the source, the invariant, the target
construction, and the preservation proof.
– Source. The starting point of the transfor-

mation is the original IDLE specification.
Since in our case a full specification did
not exist, we analysed the system and ex-
tracted its current structural, behavioural
and quality properties based on existing doc-
umentation and system tests. The high-level
architecture was given earlier and some de-
tailed excerpts are presented in Figs. 4 and 5.

– Invariant. The invariant is determined by
patterns on different levels of abstraction.
The LTSA determines the high-level archi-
tecture. We focus here on the client-dis-
patcher-server pattern as the architectural
pattern invariant. The identification of pat-
terns as invariants is a crucial and difficult
step that depends on the expertise of the
software architect – domain-specific patterns
with common behaviour or qualities provide
a starting point for invariant identification.
The central pattern that we have identified
and chosen to be an invariant captures the
interactions between three of the central
components of IDLE, i.e. learner, coach and
delivery. It is one of the patterns that we
found frequently in learning technology sys-
tems, and that we considered suitable to cap-
ture common interaction behaviour between
central system components.

– Target Construction. The LTSA-based
architecture specification of some IDLE ser-
vices – which is the transformation result –

Pattern-Based Software Architecture for Service-Oriented Software Systems 41

LearnerEntity = repeat (let requestEducServ = inv requestConnection()
in inv requestEducServ(resId);

let preferencesInfo = inv getPreferences();
learnResource = inv multimedia()

in inv setPreferences(alter(preferencesInfo)))
Delivery = inv registerEducServ(id);

repeat (rcv acceptConnection(c); rcv requestEducServ(s);
rep requestEducServ(run(s)); rcv locator(uri);
let learnResource = inv retrieveResource(uri)
in rep multimedia(learnResource))

Coach’ = choice (
choice (rcv registerEducServ(id), rcv unregisterEducServ(id)),
repeat (rcv requestConnection();

let c = getChannel()
in inv acceptConnection(c); rep requestConnection(c);

repeat (
choice (

rcv getPreferences(); rep getPreferences(prefInfo),
rcv setPreferences(preferencesInfo),
rcv getLearnerInfo(id); rep getLearnerInfo(info),
let uri = inv locator(resource) in 0))))

LearningRes = rcv retrieveResource(uri); rep retrieveResource(retrieve(uri))
LearnerRec = rcv getLearnerInfo(id); rep getLearnerInfo(info(id))

Figure 6. Transformation – Resulting Adaptive Delivery in IDLE Architecture
(selected components and services) based on the LTSA

can be found in Fig. 6. It is constructed based
on our transformation rule as follows.
– At the reference architecture level, IDLE

is mapped to LTSA-IDLE where the
merger of StudentModel and Pedagogy-
Model simulates the Coach. This requires
a reformulation of the IDLE process (par-
allel composition of composite processes,
e.g. Delivery) as LTSA-IDLE by renam-
ing abstractions and introducing Coach
as a new element on the highest level.

– At the architectural design pattern level,
the composition is changed at the sub-
component level. Coach is defined to
reflect the merger of the two model
components as a parallel composition of
StudentModel and PedagogyModel.

– Simulation and Preservation. The in-
variants – LTSA and client-dispatcher-server
– are two patterns that have to be simulated
by the new architecture. We have adapted
our terminology to LTSA. For instance,
Learner becomes LearnerEntity. Renaming

does not affect the simulation property. The
two components StudentModel and Peda-
gogyModel are merged into Coach, i.e. the
model components were abstracted by a
single Coach interface, which results in the
LTSA pattern being simulated. In this case,
Coach is only introduced as an abstraction
for behaviour that already existed in the
source system. Simulation is therefore also
guaranteed. The new Coach’ service handles
the interaction with the learner and peda-
gogy model components. The original Coach
specification from Fig. 4 has been extended
to reflect this fact, which is presented in
Fig. 6. The structural and behavioural prop-
erties of the client-dispatcher-server pattern
P := par(Client, Dispatcher, Server) are still
intact, i.e. the pattern is preserved according
to the transformation with pattern P and the
original Coach adapted to Coach’. The three
pattern components are still present and the
externally visible interaction behaviour is
the same1.

1 The formal proof is based on a constructive simulation test developed in [12], which is beyond the scope of this
paper.

42 Claus Pahl, Ronan Barrett

The specification in Fig. 6 describes a more
complete range of interactions than the initial
focus of Fig. 4 on educational service request
and connection establishment. Fig. 6 adds the
adaptive delivery of resources. After updating
preferences by interacting with the coach, the
learner entity requests and receives learning
resources via a multimedia channel from the
delivery service. The learning resources ser-
vice retrieves the actual content for the de-
livery service, which in turn delivers it to
the learner entity. Adding functionality or sig-
nificantly modifying the original architecture
is common in evolution and integration sit-
uations. This is also the primary motivation
for introducing invariants that are abstrac-
tions of the original architecture. The orig-
inal architecture can due to these modifica-
tions in practice rarely be fully preserved –
only well-chosen abstractions can be suitable
invariants.

Verifying the preservation of the client-dis-
patcher-server invariant in the resulting archi-
tecture is a non-trival task. We can demonstrate
for each affected service, i.e. LearnerEntity,
Coach’ and Delivery, that each simulates the
original component:
– LearnerEntity simulates the Client through

the first process elements (the repeat expres-
sion with the first two invocations) in the
sequence of four subprocess expressions. In
general, repeat(A;B) simulates repeat(A)
because for each state transition in A there
is a corresponding one in A;B.

– Delivery (which is unchanged) simulates the
Server since, similar to the first case, only
basic activities such as receive-reply inter-
actions and invocations with the Resources
component are added within the repeat loop.

– Coach’ simulates the Dispatcher as the Dis-
patcher functionality becomes the outer pro-
cess structure of the Coach to which pref-
erences and learner initialisation and the
location retrieval aspects are added. A;B
simulates A because transitions in A are also
part of A;B.

Constructive rules are important in discharging
the simulation proof obligation.

In our method, design patterns that can be
identified in an existing system such as the orig-
inal IDLE, should be invariants of the architec-
tural transformation. This method can be sup-
ported by transformation tools. The architect
provides the source system model and identifies
preservable patterns from the model patterns
and, if necessary, renamings and non-standard
transformations. More involvement from the
software architect is required if in the context
of the transformation process, architectural fea-
tures are also changed or extended. In this case,
which is actually the standard situation in ap-
plication integration and software migration, a
fully automated approach is not feasible and the
software architect needs to apply the provided
constructive transformation rules to guarantee
pattern preservation.

5. Related Work

Some ADLs are similar to SAC in terms
of their focus on processes. Darwin [11] is
a π-calculus based ADL. Darwin focuses on
component-oriented development approach,
addressing behaviour and interfaces. Restrictions
based on the declarative nature of Darwin make it
rather unsuitable for the design of service-based
architectures, where flexibility and change
demands such as both binding and unbinding
on demand are required features. Wright [1] is
an ADL based on CSP as the process calculus.
Wright supports compatibility and deadlock
checks through formalised specifications, based
on explicit connector types. This is an aspect that
we have neglected here, but that could enable
further analysis techniques, if we introduced
typed channels. In [5], the formal foundations of
a notion of behaviour conformance are explored,
based on the π-calculus bisimilarity relation.
We chose the π-calculus as our basis, since it
caters for mobility, and, consequently, allows
us to address transformation in the context of
architecture evolution. Mobility allows us to
deal with changes in the interaction infrastruc-
ture. The client-dispatcher-server pattern is an
example where a new channel is dynamically

Pattern-Based Software Architecture for Service-Oriented Software Systems 43

formed. Architecture transformation also means
controlled changes of architectural structures.

Patterns have recently been discussed in the
context of Web service architectures [18, 19, 20,
4]. In [19, 20], collections of workflow patterns are
compiled. We have based our catalog on these col-
lections. The client-dispatcher-server pattern is
also discussed in [18]. Other patterns that we have
mentioned mainly originate from [7]. Grønmo et
al. [16] consider the modelling and building of
compositions from existing Web services using
model-driven development. The authors consider
two modelling aspects, service (interface and
operations) and workflow models (control and
data flow concerns). These efforts embed patterns
into a methodological framework, similar to our
objectives. Our consideration of distribution as
a further dimension in service patterns, however,
goes beyond those approaches.

A recent software architecture approach for
service-based systems is model-driven develop-
ment (MDD). MDD emphasises the importance
of modelling and transformations. The latter
are, in contrast to our framework, part of the
modelling process between modelling levels of ab-
straction. Our framework addresses the transfor-
mation of architecture specifications, for instance
to support software change and evolution. While
MDD is vertically oriented, i.e. mapping from ab-
stract domain models to more concrete platform
models, we follow a more horizontal transforma-
tion approach on the level of architectures. We
have focused on hierarchical pattern-based pro-
cess modelling and architectural configuration –
two aspects that can complement and extend
MDD by providing higher levels of abstraction
and architectural transformation. The formality
of our approach satisfies the automation require-
ments of model-driven development and even
adds reasoning support.

6. Conclusions

A new architectural design paradigm such as
service-oriented architecture (SOA) requires ad-
equate methodological support for design, main-
tenance, and evolution. While an underlying

deployment platform exists in the form of Web
Services, an engineering methodology and tech-
niques are still largely missing. We have pre-
sented a layered architecture model that cap-
tures behavioural aspects and associates quality
of architectural structures at different levels
of abstraction through patterns. A modelling
notation allows interaction behaviour in archi-
tectures and architectural configurations to be
captured and distribution and quality charac-
teristics to be associated. Interaction behaviour
and composite processes are essential aspects for
the development and maintenance of distributed
service-based systems.

Our emphasis here was on the applicability
of the method by demonstrating the usefulness
for a service-based learning technology system.
We have investigated the role that hierarchically
organised patterns, supported by the architec-
ture model and the transformation technique,
can play for service-oriented architecture. Pat-
terns that capture interaction behaviour be-
tween services are ideally suited for the service
context with its focus on processes. Process
patterns provide an abstraction mechanism that
captures relevant invariants for architectural
transformation.
– Patterns as abstractions greatly improve the

possibility to reuse and evolve architectural
designs. As architectural abstractions, they
capture important behaviour and quality
invariants.

– Pattern-based modelling has implications
for functional and quality characteris-
tics of a service-centric software system.
Pattern-based transformation focuses on
functional properties, but also preserves the
quality characteristics.

The novelty of our architecture transformation
technique is to use patterns to capture behaviour
and quality invariants in a layered architectural
modelling approach to service-based architec-
ture evolution and change.

We have applied the presented techniques in
the ongoing design, maintenance and evolution
of the IDLE system. It is an extensive system
with a range of interactive, distributed features,
characterised by complex a information archi-

44 Claus Pahl, Ronan Barrett

tecture, that has been developed by more than
20 people and maintained for more than ten
years – which indicates the scalability of the
transformation technique. The technique was
described in its principles and illustrated using
the case study. Our tool implementation for dis-
tribution pattern architecture demonstrates the
positive effect of pattern-based transformations
on architectures in terms of quality. However,
the pragmatics of modelling with formal nota-
tions need to be addressed further. While in
the case study, architects were familiar with the
notation, a closer integration with UML activity
diagrams is envisaged to improve acceptance
and usability.

A critical aspect of the approach is the re-
liance on the quality of the architectural descrip-
tion of the original system and the adequacy
of the identified patterns – particularly obvious
is migration and legacy integration projects.
Transformations depend on the detail of the
input architecture and the patterns that define
the transformation invariant. The extraction of
a system’s architecture and the correct identi-
fication of intended patterns for undocumented
systems is a difficult aspect that, although es-
sential for the success, has been addressed only
through the idea of domain-specific patterns
here. Re-engineering and migration approaches
for the architectural level can provide further
solutions here.

References

[1] R. Allen and D. Garlan. A formal basis for archi-
tectural connection. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM),
6(3):249, 1997.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machi-
raju. Web services: concepts, architectures and
applications. Springer Verlag, 2004.

[3] R. Barrett, L. M. Patcas, C. Pahl, and J. Mur-
phy. Model driven distribution pattern design
for dynamic web service compositions. In Pro-
ceedings of the 6th international conference on
Web engineering, page 136, 2006.

[4] F. Buschmann, K. Henney, and D. C. Schmidt.
Pattern-Oriented Software Architecture Volume
4: A Pattern Language for Distributed Comput-
ing. Wiley, May 2007.

[5] C. Canal, E. Pimentel, and J. M. Troya. Com-
patibility and inheritance in software archi-
tectures. Science of Computer Programming,
41(2):105–138, 2001.

[6] R. Dijkman and M. Dumas. Service-oriented
design: A multi-viewpoint approach. Interna-
tional journal of cooperative information sys-
tems, 13(4):337–368, 2004.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable
object-oriented software. Addison-wesley Read-
ing, MA, 1995.

[8] D. Garlan and B. Schmerl. Architecture-driven
modelling and analysis. In T. Cant, editor,
Proceedings of the eleventh Australian workshop
on Safety critical systems and software, page 17,
2007.

[9] IEEE P1484.1/D8. Draft standard for learning
technology – learning technology systems archi-
tecture LTSA, 2001.

[10] R. Kazman, S. J. Carrière, and S. G. Woods. To-
ward a discipline of scenario-based architectural
engineering. Annals of software engineering,
9(1–4):5–33, 2000.

[11] J. Magee, N. Dulay, S. Eisenbach, and
J. Kramer. Specifying distributed software
architectures. Software Engineering—ESEC’95,
pages 137–153.

[12] C. Pahl. An ontology for software component
matching. Fundamental Approaches to Software
Engineering, pages 6–21.

[13] C. Pahl. A Pi-calculus based framework for the
composition and replacement of components. In
SAVCBS 2001 Proceedings, page 97, 2001.

[14] C. Pahl, R. Barrett, and C. Kenny. Supporting
active database learning and training through
interactive multimedia. ACM SIGCSE Bulletin,
36(3):31, 2004.

[15] D. Sangiorgi and D. Walker. The pi-calculus: a
Theory of Mobile Processes. Cambridge Univer-
sity Press, 2003.

[16] D. Skogan, R. Grønmo, and I. Solheim. Web ser-
vice composition in UML. In Eighth IEEE In-
ternational Enterprise Distributed Object Com-
puting Conference, 2004. EDOC 2004. Proceed-
ings, pages 47–57, 2004.

Pattern-Based Software Architecture for Service-Oriented Software Systems 45

[17] R. N. Taylor, N. Medvidovic, and E. M.
Dashofy. Software architecture: Foundations,
theory, and practice. 2009.

[18] N. Y. Topaloglu and R. Capilla. Modeling the
variability of web services from a pattern point
of view. Web Services, pages 128–138.

[19] W. van der Aalst, A. ter Hofstede, B. Kie-
puszewski, and A. Barros. Workflow patterns.

Distributed and Parallel Databases, 14(1):5–51,
July 2003.

[20] M. Vasko and S. Dustdar. An analysis of web
services workflow patterns in collaxa. Web
Services, pages 1–14.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

The Evolution of Complexity in Apple Darwin:
A Common Coupling Point of View

Liguo Yu∗
∗Computer Science and Informatics, Indiana University South Bend

ligyu@iusb.edu

Abstract
Common coupling increases the interdependencies between software modules. It should be avoided
if possible. In previous work, we presented two types of categorization of common coupling, one is
for single-kernel-based software, one is for multi-kernel-based-software. In this paper, we analyze
the relationships between these two types of categorization and apply them to study the evolution
of the complexity of Apple Darwin. The same conclusion about Darwin’s evolution is drawn
based on the two types of categorization of common coupling: From version XNU-517 to version
XNU-792, Darwin has restructured to reduce the number of difficulty-inducing high category
(level) global variables in order to reduce the system complexity. However, due to the definition-use
dependencies, the complexity of Darwin induced by global variables has increased from version
XNU-517 to version XNU-792.

1. Introduction

Coupling measures the degree of dependencies
between two software modules [9, 6, 5]. Strong
coupling indicates a high degree of dependen-
cies while loose coupling indicates a low de-
gree of dependencies. High degree of dependency
makes the software modules difficult to main-
tain and reuse. For example, to identify the
origin of a fault, the best practice is to sepa-
rate modules and test each of them individu-
ally. Loose coupling with low degree of depen-
dencies can make the fault isolation process eas-
ier, while strong coupling with high degree of
dependencies will make this process tedious and
time/effort consuming. Consider reuse, it is eas-
ier to reuse a module that has loose coupling
and is weakly dependent on others than a mod-
ule that has strong coupling and is tightly de-
pendent on others. Therefore, from the view-
point of maintenance and reuse, a good soft-
ware system should have low coupling between
modules.

The software couplings can be divided as
data coupling (simple data are passed as param-
eters in a function call), stamp coupling (data
structures are passed as parameters in a func-
tion call), external coupling (two modules access
the same file/database), and common coupling
(two modules access the same global variable),
in which, common coupling is considered to be a
strong form of coupling. That is, common cou-
pling induces high degree of dependencies be-
tween software modules and accordingly makes
software modules difficult to understand, main-
tain, and reuse [8, 7].

Software evolution is inevitable. On the
one hand, software needs to continually sat-
isfy customers’ functional requirements and
non-function requirements. On the other hand,
software needs to promptly adapt to the changes
of hardware and system environments. There-
fore, with the evolution of a software system,
new features and new modules to support new
hardware, are continually added to the source
code. Both the size of the product and the com-

48 Liguo Yu

plexity of the product are expected to increase
as new versions are developed and released. At
the same time, to make the system align with its
original quality design, the code structure needs
to be monitored and examined frequently, and
restructuring should be taken as needed to re-
duce the system complexity in order to achieve
high maintainability and reusability. One way to
reduce the system complexity is to replace ex-
isting strong couplings or new strong couplings
introduced in the evolution process with loose
couplings.

In this paper, we use common coupling as
a measure of the system complexity and study
how it changes with the evolution of a software
system. The study is performed on Apple Dar-
win, an open-source operating system. The ob-
jective of this study is to understand the chang-
ing patterns of software complexity under the
dual effects of size increasing and code restruc-
turing in the evolution process.

The remainder of the paper is organized as
follows: Section 2 describes kernel-based soft-
ware. Section 3 reviews the categorizations of
common coupling. Section 4 presents the study
of the evolution of Darwin. The conclusions and
limitations appear in Section 5.

2. Kernel-Based Software

Many software products, such as operating
systems and database systems, are called
kernel-based software [2]. That is, the software
system consists of architecture and/or platform
independent kernel modules, together with spe-
cific architecture and/or platform dependent
nonkernel modules [8, 1]. Software product line
is another example of kernel-based system, in
which, the core assets are considered as kernel
modules, and custom assets are considered as
nonkernel modules. Figure 1 depicts the produc-
tion of kernel-based software: Each implemen-
tation/installation of kernel-based software in-
volves the use of all kernel modules and optional
nonkernel modules.

In previous work [17], we identified two types
of kernel-based software, single-kernel-based

Figure 1. Depiction of the production of
kernel-based software

software and multi-kernel-based software. In
a kernel-based software system, if all the
kernel modules are included in one compo-
nent and the rest nonkernel modules are
included in another component, we call it
single-kernel-based software. Figure 2 shows the
structure of a single-kernel-based software sys-
tem, in which circles represent kernel modules,
squares represent nonkernel modules, and rect-
angles represent components. In other words, in
single-kernel-based systems, kernel modules and
nonkernel modules are clearly separated into two
components, kernel component and nonkernel
component [17]. Examples of single-kernel-based
systems are Linux and BSDs.

Figure 2. Depiction of single-kernel-based software

In a kernel-based software system, if the
kernel modules are included in more than
one component, we refer to that system as
multi-kernel-based software. Figure 3 shows a
multi-kernel-based software system, in which,
kernel modules (represented with circles) and
nonkernek modules (represented with squares)
coexist in multiple components. These compo-
nents that consist of both kernel modules and
nonkernel modules are called kernel-based com-
ponents and are represented with triple line rect-

The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 49

angles. We use the term outer component to re-
fer to the software component external to the
kernel-based components. The outer component
consists of no kernel modules and is represented
with a dashed triple line rectangle. Examples of
multi-kernel-based software are Apple Darwin
and TrustedBSD SED Darwin [10].

Figure 3. Depiction of multiple-kernel-based
software

3. Categorizations of Common
Coupling in Kernel-Based Software

In previous work, we presented two types of cat-
egorization of common coupling, one is within a
single-kernel-based software system [15, 13, 16],
and one is within a multiple-kernel-based soft-
ware system [17]. These categorizations provide
two approaches to measuring the maintenance
effort and reuse effort of a kernel-based soft-
ware system [14, 12]. These categorizations are
reviewed here to provide the background knowl-
edge about this research. Both of these catego-
rizations are related with the definition-use anal-
ysis of global variables [15, 17].

3.1. Definition-use Analysis

The occurrence of a variable in a source code
statement is related with one of the two tasks:
reading the value of the variable or writing a
value to the variable. Writing a value to a vari-

able is called definition of a variable. The most
common form of variable definition is an assign-
ment statement, such as x = 10. Reading the
value of a variable is called use of a variable.
The use of a variable is a statement that utilizes
the value of the variable, such as print(x). From
the declaration of a variable to the destruction of
that variable, each time the variable is invoked,
it is either assigned a new value (a definition) or
its present value is used (a use).

Common coupling induces dependen-
cies between software modules through the
definition-use of a global variable. For exam-
ple, if module M1 defines a global variable
and module M2 uses that global variable, we
say that module M2 is dependent on M1 via
common coupling. This dependency induced by
definition-use of a global variable has effects on
both software maintenance and reuse. Consider-
ing maintenance, if changes are made to module
M1, attentions must be given to module M2 to
examine the effects of such changes and if neces-
sary, corresponding changes should be made on
M2. For reuse, if we want to reuse module M2,
we must consider either reusing M1 together
with M2 (because M2 is dependent on M1), or
modifying M2 to remove its dependence on M1.

3.2. Categorization of Common Coupling
in Single-Kernel-Based Software

In previous work, we divided global variables in
single-kernel-based software into 5 categories, as
shown below [15].
– Category 1: A global variable is defined in

one or more kernel modules but not used in
any kernel modules.

– Category 2: A global variable is defined in
one kernel module and is used in one or more
kernel modules.

– Category 3: A global variable is defined in
more than one kernel module, and is used in
one or more kernel modules.

– Category 4: A global variable is defined in
one or more nonkernel modules and is used
in one or more kernel modules.

– Category 5: A global variable is defined
in one or more nonkernel modules and is

50 Liguo Yu

defined and used in one or more kernel
modules.
In these five categories, high categories (Cat-

egories 4 and 5) global variables are considered
worst for kernel maintenance and reuse, because
they induce dependencies of kernel modules on
nonkernel modules; Categories 2 and 3 global
variables induce dependencies locally within the
kernel and are accordingly considered better
than Categories 4 and 5; Category-1 global vari-
ables do not affect kernel dependencies and are
considered better than all others. For more dis-
cussions about these five-category global vari-
ables, the readers are referred to [15].

3.3. Categorization of Common Coupling
in Multiple-Kernel-Based Software

In previous work [17], we divided global vari-
ables in multiple-kernel-based software into 6
levels. They are listed below.
– Level 0: A global variable is defined in kernel

modules but not used in kernel modules.
– Level 1: A global variable is defined and used

within the same kernel module but not de-
fined in any other modules.

– Level 2: A global variable is used in kernel
modules and is defined in nonkernel modules
of the same kernel-based component.

– Level 3: A global variable is used in kernel
modules of one kernel-based component and
is defined in nonkernel modules of an outer
component.

– Level 4: A global variable is used in kernel
modules of one kernel-based component and
is defined in nonkernel modules of another
kernel-based component.

– Level 5: A global variable is used in ker-
nel modules of one kernel-based component
and is defined in kernel modules of another
kernel-based component.
In these levels, a Level-0 global variable can-

not affect the dependencies of kernel modules,
because there is no use in kernel modules. There-
fore, the presence of a Level-0 global variable
will not cause difficulties in the maintenance and
reuse of kernel modules. The definition and use
of a Level-1 global variable are all within one

kernel module and accordingly, this definition
does not affect the dependency of this kernel
module as well as other kernel modules.

In contrast, a kernel module that uses a
Level-2 global variable depends on the nonkernel
modules that define the global variable. This de-
pendency is within the same kernel-based com-
ponent and it does not affect other kernel-based
components. High level (Levels 3 to 5) global
variables might affect kernel maintenance and
reuse. A Level-3 global variable induces depen-
dencies of kernel modules on outer modules.
Level-4 and Level-5 global variables are worst.
They induce dependencies of kernel modules
on modules of other kernel-based components.
For more discussions about these six-level global
variables, the readers are referred to [17].

3.4. Relations between the Two Types of
Categorizations

In multiple-kernel-based systems, there are more
than one kernel-based components. However, in
some cases, we are interested in only one specific
kernel-based component and consider the kernel
modules within this component as kernels and
all the rest modules (within or outside of this
component) as nonkernels. Therefore, we can
also consider this multi-kernel-based software
system as a single-kernel-based software system.
For example, in Figure 3, if we only consider
the kernel modules within the first kernel-based
component as kernels, the resulting system is
single-kernel based, as shown in Figure 4.

Accordingly, the global variables categorized
into six levels in multi-kernel-based software sys-
tems can be recategorized and mapped to the
five categories in single-kernel-based software
systems. The mapping and the relationships are
shown in Table 1. Therefore, a global variable
in multi-kernel-based software could be catego-
rized using two schemes. In the remainder of
this paper, we call the 5-category categorization
Categorization 1 and the 6-level categorization
Categorization 2.

To study the effects of definition-use of a
global variable on kernel dependencies, we uti-
lize the following terminologies.

The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 51

– Dependency-inducing definition: a def-
inition of a global variable that can induce
the dependency of kernel modules on other
modules.

– Non-dependency-inducing definition: a
definition of a global variable that cannot in-
duce the dependency of kernel modules on
other modules.

– Safe dependency-inducing definition: a
definition of a global variable that induces
the dependency of kernel modules on other
kernel modules.

– Unsafe dependency-inducing defini-
tion: a definition of a global variable that
induces the dependency of kernel modules on
other nonkernel modules.

Figure 4. The single-kernel point of view of the
system shown in Figure 3

Table 1. The mapping of 6-level categorization to
5-category categorization of global variables in

multi-kernel based software

Level number Category number
(6-level categorization) (5-category categorization)

0 1
1 2, 3

2, 3, 4, 5 4, 5

In other words, if a definition of a global vari-
able induces the dependency of kernel modules
on other modules (either kernel or nonkernel), it
is a dependency-inducing-definition. Otherwise,
the definition is called a non-dependency-induc-
ing definition. The definitions of global variables

in Categories 2 to 5 (Levels 1 to 5) are depen-
dency-inducing definitions. Definitions of global
variables in Category 1 (Level 0) induce no de-
pendencies of kernel modules and are accord-
ingly non-dependency-inducing.

There are two types of dependency-inducing
definitions, safe dependency-inducing defini-
tion and unsafe dependency-inducing definition.
Safe dependency-inducing definitions are related
with Categories 2, 3 and 5 (or Levels 1 to
5) global variables and these definitions occur
in kernel modules. Unsafe dependency-inducing
definitions are related with Categories 4 and 5
(or Levels 2 to 5) global variables and these
definitions occur in nonkernel modules. Table 2
and Table 3 classify the definitions into different
types. For example, a definition of Category-1
global variable in a nonkernel module is a
non-dependency-inducing definition; a definition
of a Level-2 global variable in a kernel module is
a safe dependency-inducing definition; a defini-
tion of a Level-3 global variable in a nonkernel
module is a unsafe dependency-inducing defini-
tion. The symbol “—” indicates there is no such
definitions of a global variable in the correspond-
ing category (level).

We remark here that the terminologies
of safe/unsafe dependency-inducing definitions
presented in this paper are different from the
terminologies of safe/unsafe definitions cited in
[15]. The unsafe definitions cited in [15] are ac-
tually the dependency-inducing definitions pre-
sented here and the safe definitions cited in [15]
map to the non dependency-inducing definitions
presented here.

4. The Evolution of Darwin

4.1. Overview

Darwin is Apple’s open-source operating system
for Macintosh computers. Figure 5 shows the
architecture of Apple Darwin. It conceptually
consists of three components: One kernel-based
component (denoted as osfmk) that is reused
(with modifications) from Mach [4], another
kernel-based component (denoted as bsd) that

52 Liguo Yu

Table 2. The classification of definitions in single-kernel based software

Category Definitions in kernel modules Definitions in nonkernel modules
1 Non-dependency-inducing Non-dependency-inducing
2 Safe dependency-inducing –
3 Safe dependency-inducing –
4 – Unsafe dependency-inducing
5 Safe dependency-inducing Unsafe dependency-inducing

Table 3. The classification of definitions in multiple-kernel based software

Level Definitions in kernel modules Definitions in nonkernel modules
0 Non-dependency-inducing Non-dependency-inducing
1 Safe dependency-inducing –
2 Safe dependency-inducing Unsafe dependency-inducing
3 Safe dependency-inducing Unsafe dependency-inducing
4 Safe dependency-inducing Unsafe dependency-inducing
5 Safe dependency-inducing Unsafe dependency-inducing

is reused (with modifications) from FreeBSD
[3, 11], and the third component (denoted as
outer) is a new written regular component. The
structure of Darwin shown in Figure 5 indicates
that it is a dual-kernel-based system. Darwin is
written in C/C++, in the remainder of this pa-
per, we use the term module to refer to a source
code file written in C or C++ (.c file, .cpp file,
or .h file).

Figure 5. Architecture of Apple Darwin,
a dual-kernel-based software system

To study the changes of kernel dependen-
cies of Darwin with the evolution of the sys-
tem complexity, we compared common cou-
pling in two versions of Darwin, XNU-517

and XNU-792, which were released in Novem-
ber 2003 and April 2005, respectively. Fig-
ure 6 illustrates the evolution of Darwin from
XNU-517 to XNU-792. It shows that the to-
tal number of modules increased about 5 per-
cent and the total size measured in KLOC
(Thousand Lines of Code) increased about
11 percent.

4.2. The Evolution of Complexity
Induced by Common Coupling

In order to study common coupling in Dar-
win kernels, for each kernel module, we deter-
mined all the global variables and character-
ized them using two different schemes described
in Section 3, Categorization 1 and Categoriza-
tion 2. Figure 7 and Figure 8 illustrate the evo-
lution of the global variables in Darwin from the
viewpoint of single-kernel-based software and
multiple-kernel-based software respectively.

In both categorizations, we can see that the
total number of global variables increased from
version XNU-517 to version XNU-792. However,
if we look at the most unfavorite global variables
(Categories 4 and 5 in Categorization 1 and Lev-
els 2, 3, 4, and 5 in Categorization 2), the num-
ber decreased from 17 to 14 and from 23 to 19
for osfmk kernel and bsd kernel respectively.
Therefore, we can conclude that, from version
XNU-517 to version XNU-792, Darwin has re-
structured to reduce the number of high-level

The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 53

Figure 6. The evolution of Darwin from XNU-517 to XNU-791: (a) the number of modules;
and (b) the size (KLOC) of the system

Figure 7. The number of global variables in Darwin kernels – Categorization 1

global variables, which are potential obstacles
to kernel maintenance and reuse.

However, as we discussed before, the com-
plexity induced by common coupling is re-
lated with the definition-use of global variables.
To understand the evolution of the complex-
ity in detail, we need to study the evolution of
definition-use of global variables in Darwin from
version XNU-517 to version XNU-792.

As described in Section 3, only the depen-
dency-inducing definitions can affect kernel de-
pendencies, we therefore studied the evolution of
dependency-inducing definitions of global vari-
ables in osfmk kernel and bsd kernel. The re-
sults are shown in Table 4 and Table 5. The def-
initions are classified using the Categorization 1

scheme, which applies to single-kernel-based
software. It is worth noting that Category-1
global variables have non-dependency-inducing
definitions and are accordingly not included
in Table 4 and Table 5. Fig. 9 summarizes
osfmk kernel (Table 4) and bsd kernel (Ta-
ble 5) and shows the overall evolution of
dependency-inducing definitions in Darwin. It
can be seen that from version XNU-517 to
version XNU-792, both the number of safe
dependency-inducing definitions and the num-
ber of unsafe dependency-inducing definitions
increased.

Table 6 shows the detail about the evo-
lution of unsafe dependency-inducing defini-
tions in Apple Darwin from the viewpoint

54 Liguo Yu

Figure 8. The number of global variables in Darwin kernels – Categorization 2

Figure 9. The evolution of the dependency-inducing definitions in Darwin

of multi-kernel-based system and the global
variables are classified using Categorization 2
scheme. It is worth noting that Level-0 and
Level-1 global variables have no unsafe depen-
dency-inducing definitions and are according not
listed in Table 6.

As discussed in Section 3.3, high level
(Level-4 and Level-5) global variables can bring
more difficulties for kernel maintenance and
reuse than low level (such as Level 2 and
Level 3) global variables. Because the number
of high level (Level-4 and Level-5) global vari-
ables is reduced from version XNU-517 to ver-
sion XNU-792 (Figure 8), the number of un-

safe dependency-inducing definitions induced by
high level (Level-4 and Level-5) global variables
decreased (Table 6). However, the number of un-
safe dependency-inducing definitions induced by
low level (Level 2 and Level 3) global variables
increased tremendously (Table 6). It can be seen
in Table 6, overall the number of unsafe depen-
dency-inducing definitions increased from 121 in
version XNU-517 to 175 in version XNU-792,
matching the evolution of unsafe dependency-in-
ducing definitions shown in Figure 9, which is
derived from Table 4 and Table 5. Therefore,
using two different categorization schemes, the
same result is obtained: the complexity of Ap-

The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 55

Table 4. The evolution of dependency-inducing definitions for osfmk kernel – Categorization 1.

Category number

Number of definitions
Definitions in kernel Definitions in nonkernel

(Safe dependency-inducing) (Unsafe dependency-inducing)
XNU-517 XNU-792 XNU-517 XNU-792

2 59 19 – –
3 28 21 – –
4 – – 25 15
5 27 23 33 74

Sum 114 63 58 89

Table 5. The evolution of dependency-inducing definitions for bsd kernel – Categorization 1.

Category number

Number of definitions
Definitions in kernel Definitions in nonkernel

(Safe dependency-inducing) (Unsafe dependency-inducing)
XNU-517 XNU-792 XNU-517 XNU-792

2 34 32 – –
3 52 134 – –
4 – – 48 15
5 22 27 15 71

Sum 108 193 63 86

Table 6. The evolution of unsafe dependency-inducing definitions in Darwin kernel – Categorization 2

Level number
osfmk kernel bsd kernel

XNU-517 XNU-792 XNU-517 XNU-792
2 53 77 22 18
3 2 11 0 44
4 2 0 17 12
5 1 1 24 12

Sum 58 89 63 86

ple Darwin induced by global variables (com-
mon coupling) increased from version XNU-517
to version XNU-792.

4.3. Discussions

Software evolution is inevitable, because new
features need to be frequently added and new
hardware and platforms need to be continually
supported. This is demonstrated in the evolu-
tion of Apple Darwin: From version XNU-517
to version XNU-792, both the size of kernel and
the size of the entire system increased.

As new modules are added to the sys-
tem, new dependencies need to be created be-
tween these new modules and existing mod-
ules, which will increase the complexity of the
system. The maintenance activity performed
on existing modules might also alter its orig-

inal quality and increase the complexity of
the system. Therefore, an evolving software
system needs to be restructured regularly to
retain its high quality design. This is also
demonstrated in the evolution of Apple Dar-
win, in which, we found, from version XNU-517
to version XNU-792, Darwin has restructured
through reducing the number of high cate-
gory (level) global variables. This restructur-
ing effort decreases the effect of the complex-
ity increasing and dependency increasing due to
the growth of the kernel size and the product
size.

However, the definition-use analysis of the
evolution of kernel dependencies shows that
the number of dependency-inducing definitions,
especially the number of the unsafe depen-
dency-inducing definitions, increased from ver-
sion XNU-517 to version XNU-792. Therefore,

56 Liguo Yu

the overall complexity of the system in the view-
point of common coupling increased despite the
effort of restructuring in reducing the number of
unfavorite high category (level) global variables.

With the growth of the size of Darwin, both
the module complexity and the module depen-
dency are expected to continually increase. To
reduce the effects of common coupling on kernel
maintenance and kernel reuse, we suggest that
major restructuring should be taken on Apple
Darwin to reduce the number of dependency-in-
ducing definitions, especially the number of un-
safe dependency-inducing definitions.

5. Conclusions and Limitations

In this paper, we studied the evolution of
the complexity of Apple Darwin from version
XNU-517 to version XNU-792. We applied two
schemes of categorization of common coupling,
in which Apple Darwin is considered as both
a single-kernel-based software system and a
multi-kernel-based software system. Analysis of
the two categorizations gives the same result.
Specifically, the study found that from version
XNU-517 to version XNU-792, the complexity
of Apple Darwin increased. To reduced this in-
crease of complexity, restructuring is necessary
and it has been taken. Although the number
of high category (level) unfavorite global vari-
ables is reduced in this restructuring process,
the number of unsafe-dependency-inducing def-
initions increases. Therefore, the complexity of
Darwin increased from the viewpoint of com-
mon coupling in spite of the effort of restructur-
ing. Suggestions are that major restructurings
should be taken to reduce or remove the unsafe
dependency-inducing definitions in order to re-
duce the system complexity.

There are several limitations to this research.
One limitation is that this research only focus on
one type of coupling: common coupling; other
types of component dependencies are not con-
sidered. The result could be improved if the evo-
lution of more types of couplings are studied.
Another limit is that only two versions of Ap-
ple Darwin are studied in this research. If more

versions of Apple Darwin together with more
versions of other operating systems are studied
using the technique proposed in this paper, the
result could be more interesting and convincing.

References

[1] P. B. Hansen. The nucleus of a multiprogram-
ming system. Communications of the ACM,
4(4):238–241, 1970.

[2] T. Härden. New approaches to object process-
ing in engineering databases. In Proceedings
of International Workshop on Object-Oriented
Database Systems, pages 217–217, September
1986.

[3] Kernelthread. What is Mac OS X. http://www.
kernelthread.com/mac/osx/, 2005.

[4] Mach. Mach 3.0 sources. http://www-2.cs.cmu.
edu/afs/cs/project/mach/public/www/sources/,
undated.

[5] J. Offutt, M. J. Harrold, and P. Kolte. A soft-
ware metric system for module coupling. Jour-
nal of Systems and Software, 20(3):295–808,
1993.

[6] M. Page-Jones. The Practical Guide to Struc-
tured Systems Design. Yourdon Press, New
York, 1980.

[7] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller,
and J. Offutt. Maintainability of the Linux ker-
nel. IEE Proceedings–Software, 149(1):18–23,
2002.

[8] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller,
and J. Offutt. Quality impacts of clandestine
common coupling. Software Quality Journal,
11(3):211–218, 2003.

[9] W. P. Stevens, G. J. Myers, and L. L. Constan-
tine. Structured design. IBM Systems Journal,
13(13):115–139, 1974.

[10] TrustedBSD. http://www.trustedbsd.org/
sedarwin.html, 2008.

[11] J. West. How open is open enough? modeling
proprietary and open source platform strategies.
Research Policy, 32(7):1259–1285, 2003.

[12] L. Yu. Common coupling as a measure of
reuse effort in kernel-based software with case
studies on the creation of MkLinux and Dar-
win. Journal of the Brazilian Computer Society,
14(1):45–55, 2008.

[13] L. Yu and S. Ramaswamy. Categorization of
common coupling in kernel-based software. In
Proceedings of the 43rd ACM Southeast Confer-
ence, volume 2, pages 207–210, March 2005.

The Evolution of Complexity in Apple Darwin: A Common Coupling Point of View 57

[14] L. Yu, S. R. Schach, and K. Chen. Com-
mon coupling as a measure of reuse effort in
kernel-based software. In Proceedings of 19th In-
ternational Conference on Software Engineering
and Knowledge Engineering, pages 39–44, July
2007.

[15] L. Yu, S. R. Schach, K. Chen, and J. Offutt.
Categorization of common coupling and its ap-
plication to the maintainability of the Linux ker-
nel. IEEE Transactions on Software Engineer-
ing, 30(10):694–706, 2004.

[16] L. Yu, S. R. Schach, K. Chen, J. Offutt,
and G. Heller. Maintainability of the ker-
nels of open-source operating systems: A com-
parison of Linux with FreeBSD, NetBSD, and
OpenBSD. Journal of Systems and Software,
79(6):807–815, 2006.

[17] L. Yu, S. R. Schach, K. Chen, and S. Ra-
maswamy. Coupling measurement in multi-ker-
nel-based software with its application to Dar-
win. The International Journal of Intelligent
Control and Systems, 13(2):109–118, 2008.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Integration of Application Business Logic
and Business Rules with DSL and AOP

Bogumiła Hnatkowska*, Krzysztof Kasprzyk*
*Faculty of Computer Science and Management, Institute of Informatics, Wrocław University of Technology

bogumila.hnatkowska@pwr.wroc.pl, krzysiek.kasprzyk@gmail.com

Abstract

Business processes and business rules are implemented in almost all enterprise systems. Ap-
proaches used today to their implementation are very sensitive to changes. In the paper authors
propose to separate business logic layer from business rule layer by introducing an integration layer.
The connections between both parts are expressed in a dedicated domain specific language (DSL).
The definitions in DSL are further translated into working source code. The proof-of-concept im-
plementation of the integration layer was done in the aspect oriented language (AOP) – AspectJ.
The AOP was selected because it fits well to encapsulate scattered and tangled source code
implementing the connections between business logic and business rules with the source code
implementing core business logic.

1. Introduction

Software systems of enterprise class usually sup-
port business processes and business rules exist-
ing in a given domain. Because both (business
processes and business rules) are often subject
of change, they should be defined within a soft-
ware system in such a way that is easy to main-
tain. Approaches used today to business rules
implementation are very sensitive to changes,
i.e. each modification of: (a) business rule set (b)
when (within a business process) to fire specific
business rule (c) which business rules to fire –
can result in the necessity of application source
code modification. Additionally, the source code
implementing the connections between business
logic and business rules is often scattered and
tangled with the source code implementing core
business logic. That allows to treat the problem
of integration between business logic layer and
business rules (considered as a separate layer)
as a cross-cutting concern. A mechanism usu-

ally used for separation of cross-cutting con-
cerns within software systems is Aspect Ori-
ented Programing (AOP) [8], and one of the
most popular AOP programming languages is
AspectJ [8].

According to [10], business rules should be
separated from business processes, however they
apply across processes and procedures. What
more, business rules should be expressed declar-
atively, and they should be executed directly,
for example in a rules engine. In the pa-
per authors describe an architecture of a soft-
ware system, satisfying all above mention de-
mands. The main element of the architecture is
an integration layer that lies between business
rules repository and business logic layer. The
layer is implemented in AspectJ. Unfortunately,
aspect-oriented languages are rather difficult, so
the source code of intermediate layer is complex
and hard to understand. Therefore there is a
need for more abstract language (rather declar-
ative one) which can be used for describing how

60 Bogumiła Hnatkowska, Krzysztof Kasprzyk

to integrate business logic with business rules.
In this paper authors present a domain specific
language (DSL) serving that purpose. Models
written in the DSL are automatically translated
to AspectJ source code. The DSL editor with
syntactic checks as well as transformations were
implemented in the oAW framework [9].

The structure of the paper is as follows. In
chapter 2. main features of integration layer are
presented. In chapter 3. the DSL syntax shortly
is described. Short but complete examples are
shown in chapter 4. Chapter 5. presents related
works while chapter 6. contains some concluding
remarks.

2. Features of Integration Layer

Business model defines basic notions from a
given domain, the relationships between the no-
tions and the way in which they are constrained.
Business rules constitutes an important part of
a business model. A business rule is a state-
ment that defines or constrains some aspect of
the business. It is intended to assert business
structure or to control or influence the behav-
ior of the business [5]. There are many types
of business rules, for example von Halle distin-
guishes [3]:
– terms – nouns which meaning is commonly

accepted,
– facts – statements defining relationships

among terms,
– rules – declarations of a policy or a condition

that must be satisfied.
Rules are defined upon terms, and facts, and
they are further divided into constraints, action
enablers, inferences, and computations. Terms
and facts usually are expressed directly in the
source code of application. If they are changed
also the source code is modified. Rules can
be implemented either directly in the applica-
tion source code or outside it. Using today ap-
proaches to rules realizations try to separate
them into some components (modules, etc.) to
minimize the influence of their changes on the
other parts of application. The advantages of
rules modularization are as follows:

– Rules are directly expressed;
– Rules can be shared between different busi-

ness processes;
– It is easier to define who and when can mod-

ify rules;
– Rules can be maintained (update, create,

delete) not only by programmers but also by
business experts.
A typical solution to rules modulariza-

tion employs business rule engines or business
rule management systems like JBoss Rules [7],
JRules [5], or Jess [4]. However, even in such a
case, source code responsible for communication
with the engine is scattered and tangled with
application source code responsible for business
logic. Additionally, every time you decide to use
(or not to use) a rule in a given place, you need
to modify the application business source code.
To eliminate above mentioned problem we have
decided to introduce separate layer in the appli-
cation architecture, between business logic layer
and rules representation – see Fig. 1. The main
aim of this layer is to isolate the business logic
layer from rules. So, this should prevent the busi-
ness logic layer from being influenced by rules
evolving or changing.

The desired features of integration layer are
presented below:
– Support for invocations of all rule kinds;
– Definition when to invoke what rules;
– Passing parameters and context dependent

information to rules.
The are two kinds of activation events that can
result in rules invocation:
– method invocation event,
– attribute change event.

Business rules should be validated depending
on the context that is changing dynamically. So,
integration layer should allow to specify a dy-
namic context in which an activation event will
result in business rule(s) firing. Authors have
identified different time relationships between
an activation event and rule(s) invocation – see
Fig. 2. An activation event can cause rules invo-
cation if it happened:
– during execution of specific business method,
– when specific business method is not exe-

cuted,

Integration of Application Business Logic and Business Rules with DSL and AOP 61

Figure 1. Integration layer in application architecture

S0 S1

S2S3

deactivationMethod1

deactivationMethod2

deactivationMethod3

S0 S1

S2S3

activationMethod1

activationMethod2

activationMethod3

S0 S1 S2

activationMethod deactivationMethod

A

B C

Figure 2. Possible scenarios of defining the moments of business rule invocation
(gray state – the rule can not be fired, white state – the rule can be fired)

– after execution of activation method but be-
fore invocation of deactivation method (case
𝐴 in Fig. 2; business rule can be fired in 𝑆1
state),

– after execution of a sequence of activation
methods (case 𝐵 in Fig. 2, where the se-
quence consists of three methods; business
rule can be fired in 𝑆3 state),

– before execution of a sequence of deactiva-
tion methods (case 𝐶 in Fig. 2, where the
sequence consists of three methods; business
rule can be fired in 𝑆0, 𝑆1 or 𝑆2 states).

The presented cases (𝐴, 𝐵, 𝐶 in Fig. 2) can be
put together to define more complicated context.

3. DSL definition

To hide the complexity of integration layer a
textual domain specific language was defined.
It allows to specify how to integrate business
logic with business rules in a declarative way.
The full meta-model of the DSL consists of 29
classes and 42 relationships (17 generalizations,
25 associations). The concrete syntax of the lan-
guage was defined in the form supported by the
oAW framework. Models written in DSL are val-
idated against a set of rules expressed in Check
language which is a part of the Xtext frame-
work. Transformation between models and As-

62 Bogumiła Hnatkowska, Krzysztof Kasprzyk

pectJ source code was implemented in Xpand
template language. The general structure of text
files written in DSL is presented below:
Package declaration
[Import section]
[Global object declaration]
Event definitions
Business logic to business rules link definitions
The presentation of the DSL is constrained to
mandatory elements.

3.1. Package Declaration

Package declaration has the same form as in java
program. It specifies where (to what package)
generate AspectJ code.

3.2. Event Definition

Business rules are fired in strictly defined mo-
ments during program execution. As it was men-
tion above there are two kinds of activation
events: method invocation event, and attribute
change event. Definition of an event activated by
method invocation has a form presented below:
event <event name> isExecutionOf method

<method name> in <type name>
[withParams (<parameter list>)]
[returns <type name>]

end
The definition contains the unique name for

the event and the signature of the method (op-
tionally types of parameters and type of re-
turned value).

As activation event is also responsible for
preparing the context to business rules evalua-
tion. By using asFact keyword some data asso-
ciated with method execution are passed to the
rules engine:
– The reference to an object realizing the

method (in <type name> asFact <object
name>);

– The value returned by the method (returns
<type name> asFact <object name>);

– The references to objects passed as pa-
rameters (withparams(<type name 1>,
..., <type name k>) asFact <object
name 1>,..., <object name k>).

The data will be used further in link defini-
tions (see chapter 3.3).

Definition of an attribute change event has
the form presented below:
event <event name> isUpdateOf field
<attribute name> in <type name>

end
It defines the unique name for the event, the lo-
calization (class) and the name of the attribute.
Similarly to the method activation event there
is a possibility to exhibit some data:
– The new value of the attribute (newValue

<type name> asFact <object name>);
– The object which attribute is modified (in

<type name> asFact <object name>).

3.3. Business Logic to Business Rules
Link Definition

Business logic to business rules links are the
main elements of DSL. They are built upon
events and values exhibited by them. Defini-
tion of the link determines what business rule(s)
when to fire, and optionally the data necessary
for business rules evaluation, context of execu-
tion etc.:
link <link name>
[configuredBy <path to configuration file>]
fires <rule names> <when clause> <event name>
[requires <object name_1>,...,<object name_k>]
[active <context definition>]

end
The most important part of the definition is

fires clause. It is a regular expression defining
the names of business rules that should be fired
in a reaction to a specific event. The when clause
specifies exactly when to run business rules.
There are three possibilities to choose from:
1. before (rules are called before event activa-

tion);
2. after (rules are called after event activa-

tion);
3. insteadOf (rules are called instead of event

activation).
The requires clause is used for passing nec-

essary data identified by names to a rule en-
gine. The order of object names is important
because it determines the order of events that

Integration of Application Business Logic and Business Rules with DSL and AOP 63

are responsible for preparing the objects. The
active clause defines the context (additional
constraints) in which the activation event (de-
fined in fires clause) results in business rules
invocation. There are many possibilities for con-
text definition, below are presented two of them:
– while <event name> – activation event

must occur within flow of method defined by
an event,

– except <event name> – activation event
must occur outside flow of method defined
by an event.

4. Examples

4.1. Example 1

Let consider a simple business process (called
Order Processing) that aims at processing an
order of a given customer. The process consists
of four basic operations performed in a sequence:
1. order validation,
2. order’s total cost calculation,
3. order’s shipping cost calculation,
4. sending an order for further realization.

If an order is not validated (result of opera-
tion 1), status of the order is set to rejected and
the whole business process is stopped; otherwise
status of the order is set to accepted, and the
process is continued. The business process is con-
strained with the following set of business rules:
– Rule 1: “Gold” customer pays 40% less for

shipping.
– Rule 2: “Platinum” customer pays nothing for

shipping.
The data model and the business layer model

(limited to the considered example) of the ap-
plication supporting Order Processing business
process is presented in Fig. 3. An order contains
a collection of order items, each of which has
a price defined. An order is placed by a cus-
tomer. A customer belongs to one of customer
categories (regular, gold, platinum). The main
class realizing the business logic is OrderProcess-
ingService with processOrder operation. The op-
eration implements all four operations defined
for the business process – see Fig. 4.

The business rules were defined in DRL lan-
guage and stored in JBoss engine. Each business
rule was given a unique name:
– Rule 1 – Reduce shipping cost for gold cus-

tomers.
– Rule 2 – Reduce shipping cost for platinum

customers.
An example of rule definition in DRL lan-

guage is shown below:
rule "Reduce shipping cost for gold customers"
when
order: Order(shippingCost > 0)
customer: Customer(category == CustomerCategory.GOLD)

then
order.setShippingCost(order.getShippingCost() * 0.6f);

end
Business rules should be fired in strictly de-

fined moments of application execution. Rule 1
and Rule 2 should be fired after execution of
calculateShippingCost method, but only if the
method was invoked inside processOrder flow.
Both rules modify the value returned by the
calculateShippingCost method basing on spe-
cific customer information. Following examples
present how to define activation event, and a link
between application business logic and business
rules in proposed DSL:
event ShippingCostCalculation isExecutionOf method

calculateShippingCost
in OrderProcessingService withParams (Order)

end
link CustomizeShippingCost
fires "*shipping cost*" after ShippingCostCalculation
requires customer newOrder active while OrderProcessing

end
Business rules (Rule 1, Rule 2) are identified

based on part of their names (“*shipping cost*”
regular expression).

The DSL definition is automatically trans-
formed to AspectJ code. The following code
presents result of such transformation:
package pl.wroc.pwr.casestudy.aspects;
import pl.wroc.pwr.casestudy.domain.Customer;
...
import org.drools.StatelessSession;
...
public aspect CustomizeShippingCostAspect
percflow(execution(

64 Bogumiła Hnatkowska, Krzysztof Kasprzyk

-email : String

Customer

+addItem(wartość item : OrderItem)

-shippingCost : float

-totalCost : float

Order

+REJECTED

+ACCEPTED

+EXECUTED

«enumeration»

OrderStatus

+REGULAR

+GOLD

+PLATINUM

«enumeration»

CustomerCategory
-price : float

OrderItem

1 *

*

1
1

1..*
*
1

+processOrder(wartość i wynik customer : Customer, wartość i wynik order : Order)

#calculateTotalCost(wartość order : Order)

#calculateShippingCost(wartość order : Order)

OrderProcessingService

+validateOrder(wartość item : OrderItem)

OrderValidator

+storeOrder(wartość item : OrderItem)

OrderRepository

1
1

1
1

Figure 3. Data model and business logic layer for considered example

void OrderProcessingService.processOrder(
Customer, Order))) {

private Customer customer;
private Order newOrder;
private int capturedFacts = 0;
private static int getCapturedFacts() {
if (CustomizeShippingCostAspect.hasAspect()) {

return
CustomizeShippingCostAspect.aspectOf().capturedFacts;

} else {
return -1;

}}
before(Customer customer, Order newOrder):
execution(void OrderProcessingService.processOrder
(Customer, Order)) && args (customer, newOrder)

&& if (getCapturedFacts() == 0) {
this.customer = customer;
this.newOrder = newOrder;
this.capturedFacts++;

}
pointcut shippingCostCalculationPointcut() :
execution(
void OrderProcessingService.calculateShippingCost(Order))
&& cflow(execution(
void OrderProcessingService.processOrder
(Customer, Order))) && if (getCapturedFacts() == 1);
after() : shippingCostCalculationPointcut () {
RuleAgent agent

= RuleAgent.newRuleAgent("config.properties");
RuleBase ruleBase = agent.getRuleBase();
StatelessSession session = ruleBase.newStatelessSession();
session.setAgendaFilter(

new RuleNameMatchesAgendaFilter("*shipping cost*"));
try {

session.execute(new Object[]{customer, newOrder});
} catch (ConsequenceException exc) {

Throwable originalException = exc.getCause();
if (originalException instanceof RuntimeException){

Integration of Application Business Logic and Business Rules with DSL and AOP 65

Figure 4. Order processing realization

throw (RuntimeException) originalException;
} else {

throw exc;
}}}}

4.2. Example 2

The second example considers business rules for
cross and circle game. For the game following
rules were identified:
– Rule 1: Board size is set to 3 x 3; at the

beginning all fields are free.
– Rule 2: The game is for two players: one uses

circle and the other – cross symbol.
– Rule 3: Players set moves in turns.
– Rule 4: Player should place his/her symbol

on a free field.
– Rule 5: Game is over if someone places 3 the

same symbols in vertical, horizontal or diag-
onal line – this player is the winner.

– Rule 6: Game is over where there is no free
place – nobody wins.
Based on business rules the class diagram

presenting business terms and facts was elab-
orated – see Fig. 5.

In the Table 1 we consider possible ways of
implementation above mentioned business rules;
the first alternative is to implement business
rules directly in object-oriented program; the
second – to implement them in JBoss rule engine
and invoke using intermediate layer. The last
column in the table presents some comments,
and the proposed solution.

The sequence diagram presented in Fig. 6.
shows a possible implementation of message
passing (main flow of events) after object-ini-
tialization before applying proposed architec-
ture. The places when to invoke particu-
lar business rules are marked there by UML
notes.

Eventually, only the business rules 4–6 were
implemented within proposed architecture. Be-
low there is an example definition of Rule 4 writ-
ten a in DLR language that is accepted by JBoss
engine. The rule causes an exception when the
condition is evaluated to true.
rule "Rule4"
when
$move: Move()
$board: Board()

66 Bogumiła Hnatkowska, Krzysztof Kasprzyk

+IN_PROGRESS

+NO_WINNER

+WIN_CROSS

+WIN_CIRCLE

«enumeration»

GameState

+CROSS

+CIRCLE

+FREE

«enumeration»

FieldState

+setMove()

-size

Board

-x

-y

Move

+setMove()

+getState()

+calculateNewState()

Game

+setState()

Field

1

*

11

1

1

1 1

Figure 5. Terms and facts for cross and circle game

eval($board.getFieldState($move) == FieldState.CROSS ||
$board.getFieldState($move) == FieldState.CIRCLE)

then
throw new IllegalStateException("Place must be free");

end
The activation event definition in DSL lan-

guage as well as link definition for Rule 4 has
the following form:
event setMoveEv isExecutionOf

method setMove in Board asFact boardSetMoveEv
withParams (Move asFact moveSetMoveEv FieldState

asFact fieldStateSetMoveEv)
end
link setMoveEv_Rule4

fires "Rule4" before setMoveEv
requires moveSetMoveEv boardSetMoveEv

end
The activation event for Rule 4 is an invoca-

tion of setMove method. The parameters of the
method are further passed to business rule en-
gine. Rule 4 should be evaluated before setMove
method is called – what is expressed in link def-
inition, and the rule itself needs two parameters
to work on.

Based on DSL specification AspectJ code
was generated. In the code activatation events
are represented by pointcuts while links by ad-
vices:
public aspect setMoveEv_Rule4Aspect {

pointcut setMoveEvPointcut(Move moveSetMoveEv,
Board boardSetMoveEv):

execution (void Board.setMove(Move, FieldState))
&& args (moveSetMoveEv, FieldState)
&& target (boardSetMoveEv);
before(Move moveSetMoveEv, Board boardSetMoveEv):

setMoveEvPointcut (setMoveEv, boardSetMoveEv) {
StatelessSession session

= AspectHelper.ruleBase.newStatelessSession();
session.setAgendaFilter(

new RuleNameMatchesAgendaFilter("Rule4"));
try {
session.execute(new Object[]{moveSetMoveEv,

boardSetMoveEv});
} catch (ConsequenceException exc) {
Throwable originalException = exc.getCause();
if (originalException instanceof RuntimeException) {
throw (RuntimeException) originalException;

} else {
throw exc;

}}}}
The rules can be checked by JUnit tests. Be-

low unit test for Rule 4 is presented:
@Test(expected=IllegalStateException.class)
public void testRule4() {
System.out.println("==Rule 4 - free place==");
Game service = new Game();
Move move = new Move();
move.setX(1);

Integration of Application Business Logic and Business Rules with DSL and AOP 67

Table 1. Possible ways of business rules implementaiton for cross and circle game

Rule Classical OO Proposed architecture Comments
No. implementation
Rule 1 Appropriate constructors Method invocation event Initializing objects within

(for constructors) JBoss is possible, however
looks strange; classical OO
implementation is used

Rule 2 Implemented at GUI level. Assured by terms Classical OO
Assured by terms definition definition implementation is used

Rule 3 Implemented at GUI level At least last move must To simplify the class
be remebered; structure classical OO
Method invocation event implementation is used
(setMove method)

Rule 4 Either setMove method Method invocation event Proposed architecture
returns bool value (true for setMove method; is used
when place is free) or an exception is thrown
setMethod throws an when place is occupied
exception when place
is occupied

Rule 5 After setMove method Method invocation event Proposed architecture is
Rule 6 the state of a game is either for setMove method used. The new state of a

recalculated; the interface or for calculateNewState game might be calculated
asks a game for its new method; the interface asks after setMove method,
state a game for its new state what is not easly to observe.

To increase readibility the
empty calculateNewState
method is provided for
Game class – its invocation
fires business rule 5
validation

move.setY(1);
service.setMove(move, FieldState.CROSS);
service.setMove(move, FieldState.CIRCLE);

}

5. Related works

Other researchers have also noticed relationship
between crosscutting nature of business rules
and aspect-oriented paradigm. In [2] authors
analyze if domain knowledge can be treated as
one of the system’s aspects that should be de-
veloped and maintained independently of other
concerns. In [8] author investigates how to move
implementation of business rules from core busi-
ness classes to aspects. Two business rules for
a system that supports transferring funds be-
tween bank accounts were defined and imple-
mented in AspectJ language. Conducted analy-

sis is neither thorough nor systematic but shows
that aspect-oriented programming language can
support implementation of business rules in
object-oriented systems. In [1] an approach for
expressing business rules at a high level of ab-
straction is presented. A high-level business rule
language and high-level business rule connec-
tion language were defined. Proposed solution is
similar to ours because it uses aspect-oriented
paradigm to encapsulate source code that con-
nects business rules with the core application.
Each high-level rule is automatically mapped to
a java class, but only inferences and computa-
tions are supported. JAsCo [6] aspect-oriented
language is used for low-level implementation
of connections between rules and application.
For each rule connection specification an aspect
bean and a connector are generated. Our ap-
proach differs from that one presented in [1]
mainly because of different technologies (JBoss

68 Bogumiła Hnatkowska, Krzysztof Kasprzyk

Figure 6. Sequence diagram for game scenario

instead of pure Java) and languages (AspectJ
instead of JAsCo) used in a proof-of-concept im-
plementation of the integration layer. Moreover,
our DSL for integration layer is more flexible
and expressive than the high-level business rule
connection language proposed in [1]. It supports
all kinds of business rules, allows to more precise
activation event’s context definition and offers
better support for capturing business objects
within business processes realizations.

6. Conclusions

Authors have proposed to use a specific DSL
for describing dependencies between application
business layer and business rules. At that moment
only two types of events that result in a business
rule invocation are identified (method call and
attribute change). Introduction of a new event
kind must be followed with extension of both,
DSL syntax and DSL-to-code transformations.

Applying proposed DSL for the integration
layer has many advantages. It allows to de-
fine connections between rules and business pro-
cess at higher abstraction level in a declarative
way. The syntax is easy and very flexible. The
proof-of-concept implementation proved that
the reduction above 70% in source code line
numbers is possible. The solution is platform
independent, so – if something changes at im-
plementation level it will only have influence
on model-to-code transformations. The transfor-
mations are complete in the sense that obtained
aspect definitions need not to be changed by pro-
grammers.

The main disadvantage of DSL is that to ap-
ply it successfully you need to know the business
classes, relationships among them, the semantics
of their methods and the interactions among in-
stances. Therefore, the obvious direction of fur-
ther research is a formalization of business rules
and business processes, that allow to abstract
from their concrete implementations.

Integration of Application Business Logic and Business Rules with DSL and AOP 69

References

[1] M. A. Cibrán and M. D’Hondt. A slice of
MDE with AOP: Transforming high-level busi-
ness rules to aspects. In J. Smith, editor,
MoDELS, pages 170–184, 2006.

[2] M. D’Hondt and T. D’Hondt. Is domain knowl-
edge an aspect? In Proceedings of the Workshop
on Object-Oriented Technology, pages 293–294,
London, UK, Springer-Verlag, 1999.

[3] B. V. Halle. Business Rules Applied – Building
Better Systems Using the Business Rules Ap-
proach. Wiley, 2002.

[4] E. F. Hill. Jess in Action: Java Rule-Based Sys-
tems (In Action Series). Manning Publications,
2003.

[5] ILOG JRules. http://www.ilog.com/products/
jrules/.

[6] JAsCo language documentation. http://ssel.
vub.ac.be/jasco/.

[7] JBoss rules. http://www.jboss.com/products/
rules.

[8] R. Laddad. AspectJ in Action. Practical As-
pect-Oriented Programming. Manning Publica-
tions, 2003.

[9] OpenArchitectureWare user guide. http://
www.openarchitectureware.com/staticpages/
index.php/documentation.

[10] R. Ross. The business rules manifesto. http://
www.businessrulesgroup.org/brmanifesto.htm,
2003.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

A Case Study on Behavioural Modelling of
Service-Oriented Architectures

Marek Rychlý∗
∗Department of Information Systems, Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic

rychly@fit.vutbr.cz

Abstract
Service-oriented architecture (SOA) is an architectural style for software systems’ design, which
merges well-established software engineering practices. There are several approaches to describe
systems and services in SOA, the services’ derivation, mutual cooperation to perform specific
tasks, composition, etc. In this article, we introduce a new approach to describe behaviour of
services in SOA, including behaviour of underlying systems of components, which form the ser-
vices’ implementation. The behavioural description uses the process algebra π-calculus and it is
demonstrated on a case study of a service-oriented architecture for functional testing of complex
safety-critical systems.

1. Introduction

Service-oriented architecture (SOA) is a well-es-
tablished architectural style for aligning busi-
ness and IT architectures. It is a complex solu-
tion for analysis, design, maintaining and inte-
gration of enterprise applications that are based
on services. It represents a model in which
functionality is decomposed into small, dis-
tinct units, “services”, which can be distributed
over a network and can be combined together
and reused to create business applications [10].
A system that applies SOA can be described at
three levels of abstraction: as a system of busi-
ness processes, services, and components.

At the first level, the system is described as a
hierarchically composed business process, where
each decomposable process (at each level of the
composition) represents a sequence of steps in
accordance with some business rules leading to
a business aim.

The business processes or their parts are
implemented by services, which are defined as

autonomous platform-independent entities en-
abling access to their capabilities via their inter-
faces. Business services encapsulate distinct sets
of business logic, utility services provide generic,
non-application specific and reusable functional-
ity, and controller services act as parent services
to service composition members and ensure their
assembly and coordination to the execution of
the overall business task [10].

Every service can be implemented as a com-
ponent-based system (CBS) with well-defined
structure and description of its evolution for
the benefit of the implementation. Then, com-
ponents are self contained entities, parts of
component-based systems accessible through
well-defined interfaces and interconnected and
communicating via bindings of these interfaces.
Primitive components are realised directly, be-
yond the scope of architecture description (they
are “black-boxes”), while composite components
are decomposable on systems of subcomponents
at the lower level of architecture description
(they are “grey-boxes”).

72 Marek Rychlý

1.1. Motivation

There are several approaches to describe infor-
mation systems and services in service-oriented
architecture [1, 19]. Those approaches cover the
whole development process from an analysis
where individual services are derived from user
requirements (usually represented by a system of
business processes) to an implementation, which
uses particular technologies implementing the
services (e.g. Web Services). During this process,
developers have to deal with description of a mu-
tual cooperation of services to perform specific
tasks, their composition, deployment, etc.

However, current approaches to service-ori-
ented architecture design usually end up at the
level of individual services. They do not de-
scribe underlying systems of components, which
form design of individual services as compo-
nent-based software systems with well-defined
interfaces and behaviour.

This article introduces a development pro-
cess which includes design of service-oriented
architecture as well as description of underly-
ing component-based systems. Structure of the
service-oriented architecture and the compo-
nent-based systems is depicted by UML-based
models in a logical view, while their behaviour
is formally described by means of process alge-
bra π-calculus in a process view, with a focus
on particular features such as dynamic recon-
figuration and component mobility1 in aspects
of SOA. The proposed development process is
illustrated on a case study of an environment
for functional testing of complex safety-critical
systems.

1.2. Structure of the Article

The remainder of this article is organised as fol-
lows. The case study is introduced in Section 2
and its design is described in more detail in Sec-
tion 2.1 as a service-oriented architecture and in
Section 2.2 as an underlying component-based
system.

In Section 3, we briefly describe the
π-calculus to provide formal basis, which is used
later for behavioural modelling of services in the
service-oriented architecture in Section 4 and
for behavioural modelling of components of the
component-based system in Section 5. In Sec-
tion 6, the formal description of behaviour of
the services and components is utilised for veri-
fication and model checking.

In Section 7, the proposed approach is dis-
cussed and briefly compared with current ap-
proaches relevant to our subject. To conclude,
in Section 8, we summarise the contribution of
this article and outline the future work.

2. Case Study

As a case study, we adopt specification of a SOA
for functional testing of complex safety-critical
systems, more specifically a testing environment
of a railway interlocking control system, which
has been described in [9]. The environment al-
lows to distribute and run specific tests over
a wide range of different testing environments,
varying in their logical position in the system’s
architecture.

The testing environment is described as a
composition of a tester and a set of external
system simulators. The external system simula-
tors totally or partially represent and simulate
a tested environment interacting with system
under testing (SUT), e.g. a behaviour of field
objects (points, track circuits, coloured signals,
etc.). The tester automatically executes specific
tests that are coded in test scripts and coor-
dinates the SUT via a man machine interface
(MMI) and the external system simulators. The
SUT is represented by the computer based con-
trol system (CBCS), running the control soft-
ware, interacting with operators by means of
the MMI and monitoring or controlling external
systems of rail yards by means of sensors or actu-
ators, which are accessible via external systems
interface. Each rail yard has its own instance

1 The dynamic reconfiguration represents creation, destruction and updating of components and their intercon-
nections during the systems’ run-time, while the component mobility allows creation of copies of components and
changes of their context.

A Case Study on Behavioural Modelling of Service-Oriented Architectures 73

< < service> >
TestLogger

< < service> >
TestEnvironmentBroker

< < service> >
TestEnvironment

< < service> >
TestManager

AsyncReplyET

providerExecuteTest

consumer

PublishEnvironment
provider

FindEnvironment

consumer

LogResults

provider
ReadLog

provider
SubmitTest

Figure 1. Services of the testing environment and their interfaces (for notation, see [19])

: TestLogger: TestManager : TestEnvironmentBroker : TestEnvironment

Tester

6:

7: asyncReply()

10:

9: readLog()

8: logResults()

5: executeTest()

4:

3: searchForService()2: testSubmission()

1: publishService()

Figure 2. The choreography of services in the testing environment

of the testing environment with specific sensors
and actuators where assigned tests are automat-
ically executed. For detailed description, see [9].

To implement a system for distribution and
execution of the tests over various instances of
the testing environments, [9] proposes to use
SOA. The system consists of a test manager,
which is able to receive a test script and exe-
cute it in an instance of the testing environment.
Available testing environments are registered by
a broker and provided to the test manager at its
request.

2.1. Service Identification

From the description of the testing environ-
ment and the system’s architecture, the follow-
ing tasks can be identified as invocations of
services: “Submit Test”, “Execute Test”, “Log
Results”, “Read Log”, “Publish Environment”,
and “Find Environment”. The tasks can be im-
plemented by the following business (entity) ser-
vices, as it is described in Figure 1: TestMan-

ager, TestEnvironment, TestEnvironmentBroker,
and TestLogger.

At first, service TestManager receives a test
script from a tester via its interface Sub-

mitTest. Then, it calls FindEnvironment of
service TestEnvironmentBroker to search for
a testing environment that would be suit-
able for the test script. The broker, which
has previously accepted a registration request
from a specific service TestEnvironment via its
interface PublishEnvironment, provides Test-

Manager with a reference to the registered
service as a return value of the call of
FindEnvironment.

After that, service TestManager passes the
test script to the referred service TestEnviron-

ment via its interface ExecuteTest. When the test
script is finished, service TestEnvironment for-
wards its results back to service TestManager,
which logs the results via LogResults of service
TestLogger. Those results can be viewed later
via ReadLog, which is provided by service Test-

Logger to the tester.

74 Marek Rychlý

< < service> >
TestManager

< < service> >
TestEnvironment

< < service> >
TestEnvironmentBroker

< < service> >
TestLogger

< < syncCall> > + testSubmission(spec : string) : int

< < Interface> >
SubmitTest

< < syncCall> > + readLog() : string

< < Interface> >
ReadLog

< < syncCall> > + logResults(results : string, testID : int) : void

< < Interface> >
LogResults

< < asyncCall> > + executeTest(spec : string) : int

< < Interface> >
ExecuteTest

< < syncCall> > + searchForService(name : string) : string

< < Interface> >
FindEnvironment

< < syncCall> > + publishService(uri : string) : void

< < Interface> >
PublishEnvironment

< < syncCall> > + asyncReply(results : string, requestID : int) : void

< < Interface> >
AsyncReplyET

< < use> >

< < use> >

< < use> >

< < use> > < < use> >

Figure 3. Services of the testing environment as UML classes

Figure 2 shows a choreography of the ser-
vices as an UML sequence diagram. Detailed
description of the services as classes and their
interfaces with relevant stereotypes is described
in the UML class diagram in Figure 3. Service
TestEnvironment is invoked asynchronously via
ExecuteTest, i.e. a reply corresponding to the
request will be returned later via the service’s
interface AsyncReplyET.

2.2. Component-Based System

Railway interlocking control systems are
safety-critical systems and can be described as
component-based systems [3]. A testing environ-
ment of such systems has to interact with the
systems’ components, as it is described in Sec-
tion 2. For that reason, a part of the testing envi-
ronment, which is directly connected to a system
under testing (via the external systems simula-
tors), has character of a component neighbour-
ing to the system and can be described as CBS.

Figure 4 describes composite compo-
nent testEnvironment, which represents service
TestEnvironment from Section 2.1. The used no-
tation is based on our component model [17, 18]
(it is not standard UML), whose detailed de-
scription is out of the scope of this article.
However, in this section, we try to outline the
main ideas and informally describe structure of
the composite component and behaviour of its
subcomponents controller, environment, test and
output.

Component testEnvironment receives a test
script via provided interface executeTest, which
is internally processed by component controller.
The script is represented by a fresh component,
which does required testing after binding of its
interfaces to component environment.

At first, component controller attaches the
new component as a subcomponent test of com-
ponent testEnvironment via its control interface
teAttachP. Then, it binds interfaces tInteract

and tResult of the new component to interface
eInteract of component environment and inter-
face oResult of component output, respectively.
Finally, component test is activated via inter-
face startTestP and executed with a new iden-
tifier via interface executeWithID. The identifier
is also returned by component testEnvironment
as a reply of the test script’s submission.

Component test performs the test script by
interacting with component environment via its
interface eInteract. When the test script is fin-
ished, component test sends the test’s results
and its identifier to component output via its
interface oResult. Then, component output no-
tifies component controller via its interface cDone

and forwards the results and the identifier out of
the component testEnvironment via its external
interface asyncReplyET.

After component controller is notified about
the finished test script, it is able to receive and
execute another test script, i.e. to attach a new
component in the place of component test. Be-
fore that, component test with the old script is

A Case Study on Behavioural Modelling of Service-Oriented Architectures 75

< < component> >
testEnvironment

< < component> >
controller

< < component> >
test

< < component> >
environment

< < component> >
output

executeWithID
exec : Operat ion

startTestP
: CtrlStart

detachTestP/ R

: CtrlDetach

: CtrlDetach

stopTestP/ R

: CtrlStop

: CtrlStop

provRefOResP/ R

: CtrlRefProvInterface

: CtrlRefProvInterface

teAttachP/ R

: CtrlAttach

: CtrlAttach

done : Operat ion

cDone oDone teReply oReply

rep : Operat ion

res : Operat ion

oResult
bindTResP

: CtrlBindReqInterface

: CtrlRefProvInterface

teExecTestP/ R

tResult

bindTIntP

tInteract

provRefEIntP/ R

eInteract

: CtrlRefProvInterface

int : Operat ion
res : Operat ion

: CtrlBindReqInterface

int : Operat ion

done : Operat ion
: RefToComponent

rep : Operat ion: RefToComponent

asyncReplyETexecuteTest

Figure 4. Composite component TestEnvironment (a specific UML-like notation)

stopped via interface stopTestP and detached
via control interface detachTestP2.

3. Formal Basis for Behavioural
Modelling

To describe services in SOA and CBS in for-
mal way, we use the process algebra π-calculus,
known also as a calculus of mobile processes
[16]. It allows modelling of systems with dy-
namic communication structures (i.e. mobile
processes) by means of two concepts: processes
and names. The processes are active com-
municating entities, primitive or expressed in
π-calculus, while the names are anything else,
e.g. communication links (known as “ports”),
variables, constants (data), etc. Processes use
names (as communication links) to interact, and
they pass names (as variables, constants, and
communication links) to another processes by
mentioning them in the interactions. Names re-
ceived by a process can be used and mentioned
by it in further interactions (as communication
links). For description of our approach in this
article, we suppose basic knowledge of the fun-

damentals of the π-calculus, a theory of mobile
processes, according to [20]:
– x〈y〉.P is an output prefix that can send

name y via name x (i.e. via the communi-
cation link x) and continue as process P ;

– x(z).P is an input prefix that can receive any
name via name x and continue as process P
with the received name substituted for every
free occurrence of name z in the process;

– P + P ′ is a sum of capabilities of P together
with capabilities of P ′ processes, it proceeds
as either process P or process P ′, i.e. when
a sum exercises one of its capabilities, the
others are rendered void;

– P | P ′ is a composition of processes P and P ′,
which can proceed independently and can in-
teract via shared names;

–
∏m
i=1 Pi = P1 | P2 | . . . | Pm is a multi-com-

position of processes P1, . . . , Pm, for m ≥ 3,
which can proceed independently interacting
via shared names;

– (z)P is a restriction of the scope3 of name z
in process P ;

– (x̃)P = (x1, x2, . . . , xn)P = (x1)(x2) . . . (xn)P
is a multi-restriction of the scope of names
x1, . . . , xn to process P , for n ≥ 2,

2 In the diagram in Figure 4, only these two interfaces of test are connected with controller, because the rest of the
test’s interfaces are used only during its nesting and their connections do not exist outside of controller component.

3 The scope of a restriction may change as a result of interaction between processes.

76 Marek Rychlý

– !P is a replication that means an infinite composition of processes P or, equivalently, a process
satisfying the equation !P = P | !P .
The π-calculus processes can be parametrised. A parametrised process, referred as an abstrac-

tion, is an expression of form (x).P .
When abstraction (x).P is applied to argument y it yields process P {y/x}, i.e. process P with

y substituted for every free occurrence of x. Application is a destructor of the abstraction. We can
define two types of application: pseudo-application and constant application.

Pseudo-application F 〈y〉 of abstraction F
def
= (x).P is an abbreviation of substitution P {y/x}.

On the contrary, the constant application is a real syntactic construct, which allows to reduce a form
of process Kbyc, sometimes referred as an instance of process constant K, according to a recursive
definition of process constant K ∆

= (x).P . The result of the reduction yields process P {y/x}.

4. Behavioural Modelling of Services

In this section, we describe behaviour of the services in the testing environment. Behaviour of
services TestManager, TestEnvironmentBroker, TestEnvironment, and TestLogger can be described
by means of π-calculus process abstractions TM , TEB, TE, and TL, respectively. These pro-
cess abstractions use names st, pe, fe, et, ar, lr, and rl as representations of the services’ inter-
faces SubmitTest, PublishEnvironment, FindEnvironment, ExecuteTest, AsyncReplyET, LogResults,
and ReadLog, respectively.

According to the description of TestEnvironment in Section 2.1, process abstraction TM de-
scribing behaviour of service TestManager is defined as follows:

TM
def
= (st, fe, lr).(s)(TMstbst, fe, sc | TMarblr, sc)

TMst
∆
= (st, fe, s).st(test, ret).(r, r′)

(fe〈r〉.r(et′, ar′).et′〈test, r′〉.(r′(id).ret〈id〉 | s〈ar′〉 | TMstbst, fe, sc))

TMar
∆
= (lr, s).s(ar′)ar′(res, id).lr〈res, id〉 | TMarblr, sc

where st, fe, and lr are names representing the service’s interfaces and subsequently processed by
constant applications of TMst and TMar.

Constant application TMstbst, fe, sc receives a pair of names (test, ret) from a client via name
st. In the pair, name test represents a submitted test script and name ret will be used later to
send a return value to the client. Then, a request for a testing environment is sent via name fe
and the environment as a reply is received via name r. Name et′, which represents an interface
ExecuteTest of the environment, is used to send test. Name id, which is received as a return value,
is forwarded to the client, while name ar′ is sent via shared name s into process constant TMar.
Constant application TMarblr, sc receives name ar′ via shared name s. After the test script is
finished, name ar′ is used to receive the test’s result res and its id. These names, as a pair (res, id),
are immediately sent via name lr.

Process abstraction TEB, which describes behaviour of service TestEnvironmentBroker, is de-
fined as follows:

TEB
def
= (pe, fe).(q)(TEBpubbq, pec | TEBfindbq, fe, pec)

TEBpub
∆
= (t, pe).pe(i, d).(t′)(t〈t′, i, d〉 | TEBpubbt′, pec)

A Case Study on Behavioural Modelling of Service-Oriented Architectures 77

TEBfind
∆
= (h, fe, pe).h(h′, i, d).(TEBfindbh′, fe, pec | (fe〈i〉.pe〈i, d〉 + d))

where pe and fe are names representing the service’s interfaces PublishEnvironment and FindEn-

vironment, respectively, and subsequently processed by the constant applications of TEBpub and
TEBfind. By the composition of their constant applications with shared name q, process abstrac-
tion TEB implements basic operations on a simple queue (i.e. a First-In-First-Out (FIFO) data
structure).

The application of process constant TEBpub receives a pair of names (i, d) via name pe and cre-
ates a new name t′. Then, it proceeds as a composition of a constant application of TEBpubbt′, pec,
which handles future requests, and process t〈t′, i, d〉, which enqueues the received pair (i, d) by
sending them via name t, which is the current tail of the queue, together with name t′, a new tail
of the queue used in the future requests.

The application of process constant TEBfind dequeues a front item of the queue as a triple
of names (h′, i, d) via name h, which is the current head of the queue. Then, it proceeds as a
composition of a constant application of TEBfindbh′, fe, pec, which handles future requests, and
a sum of capabilities of process fe〈i〉.pe〈i, d〉, which provides name i as an interface for potential
service requesters and enqueues it back to the queue via name pe, and process d, which, after
receiving a name via name d, allows to remove the interface and does not provide it to potential
service requesters any more.

Behaviour of service TestEnvironment is described as process abstraction TE and defined as
follows:

TE
def
= (et, ar, pe).TEinit〈et, ar, pe〉.TEimpl〈et, ar〉

TEinit
def
= (et, ar, pe).pe〈et, ar〉

TEimpl
def
= (et, ar).(s0, s1, ar

s, etg)

(ars〈ar〉 | (d, t)(etg〈t〉.t(p).Wirebet, p, dc) | TEcomp〈s0, s1, et
g, ars〉)

where et, ar, and pe are names representing the service’s interfaces ExecuteTest, AsyncReplyET, and
PublishEnvironment, respectively. Initialisation of the service is described as process abstraction
TEinit, which sends the service’s interfaces represented by names et and ar via name pe (i.e.
publishes the corresponding interfaces via interface PublishEnvironment). After the initialisation,
names et and ar are processed by pseudo-application TEimpl〈et, ar〉, which describes behaviour of
a component-based system implementing the service (service TestEnvironment is implemented as
the component-based system, see Section 2.2). Process abstraction TEcomp will be described later,
in Section 5.

Finally, process abstraction TL, which describes behaviour of service TestLogger, is defined as
follows:

TL
def
= (lr, rl).(s)(TLlrblr, sc | TLrlbrl, sc)

TLlr
∆
= (lr, t).lr(res, id).(t′)(t〈t′, res, id〉 | TLlrblr, t′c)

TLrl
∆
= (rl, h).h(h′, res, id).rl(ret).ret〈res, id〉.TLrlbrl, h′c

where lr and rl are names representing the service’s interfaces LogResults and ReadLog, respectively,
and subsequently processed by the applications of process constants TLlr and TLrl. The process
abstraction TL uses an internal queue to store log results. The queue is accessed in process constants
TLlr and TLrl via name h for a head of the queue and name t for a tail of the queue, respectively.
At the beginning, h and t are identical to name s in process abstraction TL.

78 Marek Rychlý

Constant application TLlrblr, tc receives a pair of names (res, id) via name lr, which will be
added into the internal queue. It creates name t′ (as a new tail of the queue) and sends via t′

the pair of names (res, id) and name t (an original tail of the queue). Concurrently, the process
proceeds as the application of process constant TLlr with name t′ (the new tail of the queue).

Constant application TLrlbrl, hc receives a first queued item via name h (from a head of the
queue). This item contains a pair of names (res, id) and name h′ (a new head of the queue). After
the pair of names (res, id) is requested via name rl, it is sent via name ret as a reply and the
process proceeds as the application of process constant TLrl with name h′ (the new head of the
queue).

Behaviour of the whole system of the interconnected services can be described as process ab-
straction System, which provides names st and rl representing interfaces SubmitTest and ReadLog,
respectively, and which is defined as follows:

System
def
= (st, rl).(et, ar, lr, pe, fe)

(TM〈st, fe, lr〉 | TE〈et, ar, pe〉 | TL〈lr, rl〉 | TEB〈pe, fe〉)

5. Behavioural Modelling of the Component-Based System

All processes, which represent behavioural descriptions of individual services, have been described
completely, except for process abstraction TE of service TestEnvironment implemented as a compo-
nent-based system with behaviour described by pseudo-application TEcomp〈s0, s1, ar

s, etg〉. In this
section, we describe behaviour of primitive components controller, environment, test, and output, as
process abstractions Ctr, Env, Test, and Out, respectively, and their parent composite component
testEnvironment, as process abstraction TEcomp.

5.1. Core Behaviour of Primitive Components

Core behaviour of primitive components output and controller can be defined as process abstractions
Outcore and Ctrcore, respectively, as follows:

Outcore
def
= (poResult, roDone, roReply).Out

′
corebpoResult, roDone, roReplyc

Out′core
∆
= (poResult, roDone, roReply).poResult(res, id).roDone〈id〉.

(roReply〈res, id〉 | Out′corebpoResult, roDone, roReplyc)

Ctrcore
def
= (pcDone, pteExecTest, rteAttach, rdetachTest, rstopTest, rprovRefEInt,

rprovRefORes).Ctr
′
corebpcDone, pteExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefOResc

Ctr′core
∆
= (pcDone, pteExecTest, rteAttach, rdetachTest, rstopTest, rprovRefEInt,

rprovRefORes).pteExecTest(ts, ret).ts(r
′
stopTest, r

′
startTest, r

′, p′).

rstopTest.rdetachTest.rteAttach〈r′stopTest, r′startTest, rdetachTest〉.
r′(p′bindTInt, p

′
bindTRes).p

′(p′provRefExecuteWithID).(ret′)(

rprovRefEInt〈ret′〉.ret′(eInteract).p′bindTInt〈eInteract〉.

A Case Study on Behavioural Modelling of Service-Oriented Architectures 79

rprovRefORes〈ret′〉.ret′(oResult).p′bindTRes〈oResult〉.

p′provRefExecuteWithID〈ret′〉.ret′(p′executeWithID).r′startTest.

((id)ret〈id〉.p′executeWithID〈id〉.id | pcDone(id′).id′.
Ctr′corebpcDone, pteExecTest, rteAttach, rdetachTest,
r′stopTest, rprovRefEInt, rprovRefOResc))

where the components’ provided or required interfaces are represented by names p... or r..., respec-
tively, without the last character (. . . P/R, see Figure 4).

Process abstraction Outcore is defined as the constant application of Out′core. It receives a pair
of names (res, id) via name poResult representing interface oResultP. Then, id is sent via name
roDone (interface oDoneR) and (res, id) is forwarded via name roReply (interface oReplyR) out of the
composite component.

Process constant Ctr′core, which is applied by process abstraction Ctrcore, receives a pair of
names (ts, ret) via name pteExecTest. Moreover, via name ts, the constant receives also names
r′stopTest, r

′
startTest, c, and indirectly also names p′bindTInt, p

′
bindTRes, and p′provRefExecuteWithID,

which represent interfaces of a new component compatible with component test and implementing
a test script. Name ret will be used later to send an identifier of the test’s results as a return value.
Then, a process of an old component test is deactivated and detached by means of names rstopTest
and rdetachTest. A process, which describes behaviour of the new component (i.e. the actual test
script), is attached via name rteAttach as a subcomponent, bound via names p′bindTInt and p′bindTRes,
activated via name r′startTest, and finally, it is executed via name p′executeWithID with a new name
id (the identifier). Processing of Ctr′core continues after the identical id is received via name pcDone,
i.e. the test script is finished and its results forwarded outside.

Core behaviour of components environment and test depends on a specific implementation of the
testing environment and on a specific test script. However, for demonstrating purposes, we define
process abstractions Envcore and Testcore:

Envcore
def
= (peInteract).Env

′
corebpeInteractc

Env′core
∆
= (peInteract).peInteract(ret).((val)ret〈val〉 | Env′corebpeInteractc)

Testcore
def
= (pexecuteWithID, rtInteract, rtResult).pexecuteWithID(id).

(ret)(rtInteract〈ret〉.ret(val).rtResult〈val, id〉)
Process constant Env′core receives a request from a test script via name peInteract and returns a

new name val as a reply. Process abstraction Testcore receives identifier id via name pexecuteWithID,
sends a request to a process representing behaviour of a test environment via name rtInteract,
receives a reply and forwards it as the test’s results together with id via name rtResult.

5.2. Behaviour of a Composite Component

To assemble (sub)components into a composite component, we need to implement control actions.
Components, primitive or composite, provide control interfaces for referencing their provided func-
tional interfaces, binding their required functional interfaces (to the referred provided interfaces),
and controlling their life-cycle (to start and stop the components). Moreover, each composite com-
ponent provides its subcomponents with (internal) control interfaces for attaching and detaching
other subcomponents, exporting their functional interfaces as the composite component’s (external)

80 Marek Rychlý

functional interfaces, and importing the composite component’s (external) functional interfaces to
its subcomponents.

Behaviour associated with those control actions can be described in π-calculus. At first, let us
define an auxiliary constant application Wirebx, y, dc, which can receive a message via name x (an
input) and send it via name y (an output) repeatedly till it receives a message via name d (i.e.
disable processing). Then, let us assume that CtrlIfs〈r1, . . . , rn, p

s
1, . . . , p

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m〉

represents behaviour, which is associated with binding of interfaces represented by names r1, . . . , rn
via control interfaces represented by names ps1, . . . , p

s
n and referencing of interfaces represented by

p1, . . . , pm via control interfaces represented by pg1, . . . , p
g
m.

Wire
∆
= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

SetIf
∆
= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, p

s
1, . . . , p

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m).

(
n∏

i=1

(rdi)(Plug〈rdi 〉 | SetIfbri, psi , rdi c) |
m∏

j=1

!GetIf〈pj , pgj 〉)

Moreover, let us assume that CtrlEI〈r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉 represents be-

haviour of interconnections between external required and provided interfaces represented by names
r1, . . . , rn and p1, . . . , pm and internal provided and required interfaces represented by names
p′1, . . . , p

′
n and r′1, . . . , r

′
m, respectively.

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n).

n∏

i=1

(d)Wirebri, p′i, dc |
m∏

j=1

(d)Wirebr′j , pj , dc

Finally, let us assume that CtrlSS〈s0, s1, a〉 represents behaviour, which is associated with a
component’s life-cycle (s0 for stopping and s1 for starting the component) and attaching new
subcomponents (via a).

Dist
∆
= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆
= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

With the above mentioned process abstractions and constants, behaviour of components output,
environment, and test including their control parts can be defined as process abstractions Out, Env,

A Case Study on Behavioural Modelling of Service-Oriented Architectures 81

and Test, respectively:

Out
def
= (s0, s1, p

g
oResult, p

s
oDone, p

s
oReply).(poResult, roDone, roReply)

(CtrlIfs〈poResult, pgoResult〉 | CtrlIfs〈roDone, psoDone〉
| CtrlIfs〈roReply, psoReply〉 | Outcore〈poResult, roDone, roReply〉)

Env
def
= (s0, s1, p

g
eInteract).(peInteract)

(CtrlIfs〈peInteract, pgeInteract〉 | Envcore〈peInteract〉)

Test
def
= (s0, s1, p

g
executeWithID, p

s
tInteract, p

s
tResult).

(pexecuteWithID, rtInteract, rtResult)(CtrlIfs〈rtInteract, pstInteract〉
| CtrlIfs〈pexecuteWithID, p

g
executeWithID〉 | CtrlIfs〈rtResult, pstResult〉

| Testcore〈pexecuteWithID, rtInteract, rtResult〉)
Behaviour of component controller is defined as process abstraction Ctr with free names rteAttach,

rdetachTest, rstopTest, rprovRefEInt and rprovRefORes representing required control interfaces of other
components:

Ctr
def
= (s0, s1, p

g
cDone, p

g
teExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes).

(pcDone, pteExecTest)(CtrlIfs〈pcDone, pgcDone〉
| CtrlIfs〈pteExecTest, pgteExecTest〉 | Ctrcore〈pcDone, pteExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes〉)
Behaviour of composite component testEnvironemt, i.e. the implementation of the core of service

TestEnvironment, is described as process abstraction TEcomp:

TEcomp
def
= (s0, s1, p

g
executeTest, p

s
asyncRepltET).(pexecuteTest, rteExecTest,

psteExecTest, rasyncRepltET , pteReply, p
g
teReply, pteAttach)

(CtrlIfs〈pexecuteTest, pgexecuteTest〉 | CtrlIfs〈rteExecTest, psteExecTest〉
| CtrlIfs〈rasyncRepltET , psasyncRepltET 〉 | CtrlIfs〈pteReply, pgteReply〉
| CtrlEI〈pexecuteTest, rteExecTest〉 | CtrlEI〈pteReply, rasyncRepltET 〉
| CtrlSS〈s0, s1, pteAttach〉 | TE′comp〈pteAttach, psteExecTest, pgteReply〉)

TE′comp
def
= (pteAttach, p

s
teExecTest, p

g
teReply).(s

ctr
0 , sctr1 , sout0 , sout1 , senv0 , senv1 ,

pgcDone, p
g
eInteract, p

g
oResult, p

g
teExecTest, p

s
oDone, p

s
oReply,

rdetachTest, rprovRefEInt, rprovRefORes, rstopTest, rteAttach)

(Ctr〈sctr0 , sctr1 , pgcDone, p
g
teExecTest, rteAttach, rdetachTest, rstopTest,

rprovRefEInt, rprovRefORes〉 | Env〈senv0 , senv1 , pgeInteract〉
| Out〈sout0 , sout1 , pgoResult, p

s
oDone, p

s
oReply〉 | (d)pteAttach〈sctr0 , sctr1 , d〉

| (d)pteAttach〈sout0 , sout1 , d〉 | (d)pteAttach〈senv0 , senv1 , d〉
| Testplug〈rdetachTest, rstopTest〉 | (d)WirebrprovRefEInt, pgeInteract, dc

82 Marek Rychlý

| (d)WirebrprovRefORes, pgoResult, dc | (d)WirebrteAttach, pteAttach, dc

| (ret)(pgteExecTest〈ret〉.ret(pteExecTest).psteExecTest〈pteExecTest〉)

| (ret)(pgteReply〈ret〉.ret(pteReply).psoReply〈pteReply〉)

| (ret)(pgcDone〈ret〉.ret(pcDone).psoDone〈pcDone〉))

Testplug
def
= (rdetachTest, rstopTest).(rdetachTest | rstopTest)

Process abstraction TE′comp, which is applied
in process abstraction TEcomp, creates concur-
rent processes given by pseudo-applications of
Ctr, Out, and Env and sends their names s...0

and s...1 via name pteAttach, i.e. attaches compo-
nents controller, output, and environment, respec-
tively, as subcomponents of component testEn-
vironment. It also interconnects names repre-
senting required and provided control interfaces
of the components by means of three constant
applications of Wire. Concurrently with the
previous step, TE′comp applies process abstrac-
tion Testplug and binds name pteExecTest of the
pseudo-application of Ctr to name rteExecTest
of the pseudo-application of TEcomp, name
pcDone of Ctr to name rcDone of Out, and
name pteReply of TEcomp to name rteReply of
Out. The pseudo-application of process ab-
straction Testplug handles requests initiated by
the pseudo-application of Ctr and received by
names rstopTest and rdetachTest to stop and to de-
tach a process representing behaviour of a pre-
vious but non-existent component with a test
script (e.g. a non-existent predecessor of com-
ponent test).

6. System Properties and Their
Verification

Formally described behaviour of services and
components allow us to make simulations of the
behaviour, to detect deadlocks, and to check
strong and weak open bisimulation equivalences
between behaviours of different services and
components. This can be useful, especially to
check the test scripts, which are processed by the
tester, and to control the tester’s behaviour and

communication with other parts of the environ-
ment and with SUT (see Section 2). The wrong
behaviour or the erroneous communication can
cause the tests to fail and, moreover, may block
future requests to the testing environment.

The behaviour formally described in the pre-
vious sections can be used for verification and
model checking by means of external verifi-
cation tools such as The Mobility Workbench
(MWB, [21]) and Another/Advanced Bisimu-
lation Checker (ABC, [4]). The utilisation is
demonstrated by examples of interactive simu-
lation in Section 6.1, finding deadlocks in Sec-
tion 6.2, bisimulation checking in Section 6.3,
and model checking in Section 6.4.

6.1. Simulation

To simulate behaviour of the system from the
case study, which has been described by means
of process abstraction System from Section 4,
we need to submit a sample test to the system,
wait for its processing and finally, receive its re-
sults. Therefore, agent Tester is defined as fol-
lows:

agent Tester = (^s0,s1,pgexecuteWithID,pstInteract,
pstResult,rl,st) (

Test(s0,s1,pgexecuteWithID,pstInteract,pstResult)
| System(st,rl) | (^ts,ret,r,p) ’st<ts,ret>

. ’ts<s0,s1,r,p> . ’r<pstInteract,pstResult>

. ’p<pgexecuteWithID> . ret(id1)

. (^r2) ’rl<r2> . r2(res,id2) . 0)

Agent Tester is a composition of the appli-
cations of agents Test and System, and an aux-
iliary π-calculus process (after the last compo-
sition operator). Agents Test and System repre-
sent process abstraction System from Section 4

A Case Study on Behavioural Modelling of Service-Oriented Architectures 83

and process abstraction Test from Section 5.2,
respectively, with their notations adapted to
MWB and ABC.

The auxiliary process submits all names of
the application of agent Test (i.e. names s0,
s1, pgexecuteWithID, pstInteract and pstRe-

sult) indirectly via name st to the application
of agent System and receives name id1 as a re-
ply via name ret. Then, it waits for results of a
test performed by the application of agent Test,
which can be received via name rl of the appli-
cation of agent System.

Behaviour of agent Tester can be interac-
tively simulated in MWB by means of com-
mand “step Tester”. However, the simulation is
not transparent but demanding because of large
amount of possible internal (silent) actions.

6.2. Deadlocks

A deadlock occurs in a π-calculus process iff the
process can not perform any reduction step, i.e.
the process is not responding to any action on
its free names (see Section 3).

To permit concurrent processing of multi-
ple requests, process abstractions and constants
TMst, TMar, TEBpub, TEBfind, TLlr TLrl,
Out′core, and Env′core, from Sections 4 and 5
use unguarded or weakly guarded recursions (i.e.
guarded by unobservable prefix τ). These pro-
cesses, as separate units, do not come to dead-
locks, because each of them can always perform
at least one reduction step4.

Agents representing the processes from the
case study have been checked for deadlocks,
by means of command “deadlocks” in MWB.
In some cases, the deadlock-checking can not
be finished due to the unguarded or weakly
guarded recursions (only guarded recursions are
handled correctly). However, the deadlocks have
been found in agents TestCore, TestPlug, Wire,
Dist, TE2comp, and TEimpl.

Agents TestCore, TestPlug, Wire, and Dist

have deadlocks in process 0, which is reachable
by 1, 4, 2, and 1 commitments, respectively.

These deadlocks are desired, since the agents
represent process abstractions Testcore (see Sec-
tion 5.1) and process abstractions and constants
testplug, Wire and Dist (see Section 5.2), which
describe finite behaviour and can be reduced to
process 0 by input, output, and τ actions on
their free names.

Process abstraction Testcore describes be-
haviour of a core functionality of component
test, which implements a test script. The be-
haviour is finished after the test script is per-
formed, so Testcore is reduced to process 0.
Analogously, process abstraction testplug, which
describes processing of first requests to stop and
to detach a non-existent component before it can
be replaced by a real component implementing
a specific test script (e.g. component test), is
performed only once and reduced to process
0. Process constants Wire and Dist describe
behaviour of a connector of two interfaces and
distribution of a start/stop request from a com-
posite component among its subcomponents,
respectively. Although they contain recursions
and their behaviour can be infinite, they can
be terminated instantly (e.g. when the connec-
tor is removed or the request has been already
submitted to all of the subcomponents). In such
case, process constants Wire or Dist can be
reduced to process 0 (by means of an input
action on name d or an output action on name
r, respectively).

Agents TE2comp and TEimpl have deadlocks
in processes that are reachable by 22 and 31
commitments, respectively. The deadlocks are
related to the ability of process abstraction
TEcomp, which describes behaviour of composite
component testEnvironment, and of process ab-
straction TE, which describes behaviour of ser-
vice TestEnvironment, to receive and to execute
a test script. During the execution, behaviour of
the component and the service is controlled by
the test script (the component’s subcomponent
controller is waiting for an input on its interface
cDone, see Section 2.2). If the test script is in-
compatible with its environment and can not be

4 Nevertheless, these processes can come to a live-lock in their mutual co-operation. In such a case, the processes
will communicate only between themselves and will periodically change, but as a whole system, they will not be
responding to any external actions on their free names.

84 Marek Rychlý

finished, the component and the service come to
a deadlock.

In our approach, the deadlock-checking can
be utilised to detect erroneous behaviour of in-
dividual services and components.

6.3. Bisimulation Checking

In π-calculus, congruences are equivalence re-
lations5 on π-calculus processes, which allows
to formulate structural and behavioural equiv-
alences between the processes. Two π-calculus
processes express the same behaviour if they
are barbed congruent, which means bisimilar in
terms of labelled state transition systems, i.e. if
no difference can be observed when they are put
into an arbitrary π-calculus context and com-
pared using the appropriate bisimulation game
[20].

There are four important relations – namely
an early strong bisimulation, a late strong bisim-
ulation, an early weak bisimulation, and a late
weak bisimulation. Early and late bisimulations
differ in ways to treat input actions. Strong and
weak bisimulations differ in ways to treat inter-
nal actions, the strong bisimulation treats inter-
nal τ -action and visible action equally while the
weak bisimulation makes abstraction from the
number of internal τ -actions (i.e. evolution of
bisimilar systems is independent on their inter-
nal τ -actions).

The ABC allows to check strong and weak
open bisimulation equivalences by means of
commands “eq” and “weq”. Moreover, in a case
of of two agents that have the same free names,
the bisimulation equivalences can be checked
also by means of commands “eqd” and “weqd”,
which suppose the free names of the first agent
are distinct from the free names of the second
agent.

To demonstrate bisimulation checking in our
case study, we check the equivalences of process
Testcore and its possible replacements. The pro-

cess describes core behaviour of component test
representing a test script (see Section 5). The
bisimulation checking of behaviour of the origi-
nal test script, which is supposed to be correct,
and behaviour of its replacements, which may
be wrong, can prevent the deadlock in agents
TE2comp and TEimpl, as it has been described in
Section 6.2.

In addition to agent TestCore, we define
two agents with the same free names. The fol-
lowing definitions include original agent Test-

Core and new agents TestCoreEquiv and Test-

CoreNonequiv:

(∗∗∗ TestCore ∗∗∗)
agent TestCore = (\pexecuteWithID,rtInteract,rtResult)

pexecuteWithID(id) . (^ret) ’rtInteract<ret>
. ret(val) . ’rtResult<val,id> . 0

(∗∗∗ TestCoreEquiv ∗∗∗)
agent TestCoreEquiv = (\pexecuteWithID,rtInteract,rtResult)

pexecuteWithID(id) . (^comm)
((^ret) ’rtInteract<ret> . ret(val) . ’comm<val>
. 0 | comm(res) . ’rtResult<res,id> . 0)

(∗∗∗ TestCoreNonequiv ∗∗∗)
agent TestCoreNonequiv = (\pexecuteWithID,rtInteract,

rtResult)
pexecuteWithID(id) . (^ret) ’rtInteract<ret>
. ret(val) . (^resid) ’rtResult<val,resid> . 0

Agents TestCore and TestCoreEquiv are not
strongly open bisimilar, because agent Test-

CoreEquiv can perform an internal communica-
tion via name comm, that can not be performed
by agent TestCore. However, these agents are
weakly open bisimilar and according to ABC, a
core relation6 of their bisimulation contains 12
members.

The agents TestCore and TestCoreNonquiv

are neither strongly open bisimilar nor weakly
open bisimilar. The problem is at the end of
processing, when agent TestCore sends via name
rtResult name id, which has been previously
received via name pexecuteWithID, while agent
TestCoreNonquiv creates and sends a fresh name

5 The equivalences are relations that are reflexive, symmetric, and transitive. The congruences ensure that if
processes P and Q are in a relation of equivalence and process P is a subprocess (a component) of process R, then
process R with substituted P for Q is in the relation of equivalence with the original process R (i.e. a substitution of
equivalent components of processes does not break the equivalence of the processes).

6 The core relation of bisimulation is a ternary relation between an agent, a set of distinctions, and an other
agent, such that an union of its symmetric closure and the identity relation is a bisimulation [4].

A Case Study on Behavioural Modelling of Service-Oriented Architectures 85

resid, which differs from the original name id.
The replacement of agent TestCore, which de-
scribes behaviour of component test, by agent
TestCoreNonequiv leads to a deadlock (see the
context of component test in Section 2.2).

6.4. Model Checking

Model checking is possible by means of the
MWB, which uses π-µ-calculus [7], an extension
of the µ-calculus7, as a property specification
language.

In MWB, we can check safety and liveness
properties by means of µ and ν operators, re-
spectively, as well as simply check the existence
of specific reduction steps by means of modal
operators ♦ and �. The following command ver-
ifies the ability of agent System to perform input
actions on its free names st and rl:

check System(st,rl)<st>TT & <rl>TT

Agent System describes behaviour of the sys-
tem from our case study (see process abstraction
System in Section 4). The complete description
of syntax and semantics of the π-µ-calculus in
MWB can be found in [21].

7. Related Work and Discussion

Related works relevant to our subject can be di-
vided into two groups, as formal approaches to
describe service-oriented architectures (SOAs)
and as formal approaches to describe compo-
nent-based systems (CBSs). In this section, we
outline current state of the art in both groups
and discuss advantages and drawbacks of our
approach, which intends to bridge the gap and
to provide formal description of service-oriented
architecture from choreography of services to
individual components of underlying compo-
nent-based systems.

In the first group, there are approaches
mostly based on Business Process Execution

Language for Web Services [2], such as [12], [15]
or [22]. Those approaches focus on the web ser-
vices, as a specific implementation of SOA, and
provide formal description of choreography and
orchestration based on business processes. The
description ends up at the level of individual ser-
vices implementing business processes and does
not include underlying CBSs.

The second group consists of several compo-
nent models8 [14], such as Darwin/Tracta [11],
Fractal [5] or SOFA 2.0 [6]. Those models usu-
ally focus only on pure CBSs without consider-
ing SOA at the higher level of abstraction. In
some cases [13], the component models brings
features of SOA into CBD, so that SOA be-
comes a specific case of a CBS. However, this
solution mixes two different levels of abstraction
(see Section 1).

Our approach is similar to the Reo coor-
dination language [8], which is also based on
π-calculus and able to describe both service in
SOA and components in CBSs. In comparison
with Reo and the above mentioned approaches
(especially those in the second group), our ap-
proach describes services and components sepa-
rately and with respect to their differences (i.e.
services are not components and vice versa).
We allow to go smoothly from services level to
components level and describe behaviour of a
whole system, services and components, as one
π-calculus process. Moreover, we use standard
polyadic π-calculus without any special exten-
sions, which allows to utilise a wide range of
existing tools for model-checking of π-calculus
processes and formal verification of their prop-
erties.

However, our approach can have also draw-
backs, e.g. complex description of behaviour
of primitive components’ control actions pro-
cessing or insufficient visibility of a compo-
nent-based system’s structure during its evo-
lution. After several dynamic reconfigurations
and a corresponding sequence of reductions of
the π-calculus process, it may be difficult to de-

7 The (modal) µ-calculus is a temporal logic with a least fix-point operator µ and a greatest fix-point operator ν.
It is used to specify properties of concurrent systems represented as labelled transition systems.

8 I.e. meta-models of architectural entities, their properties, styles of their interconnections, and rules of evolution
of the architecture of component-based systems.

86 Marek Rychlý

termine a final configuration from the resulting
π-calculus process, especially without knowledge
of the exact sequence of reductions.

8. Conclusion and Future Work

We have demonstrated an approach to formal
description of behaviour of service-oriented ar-
chitecture on a case study of a testing envi-
ronment of a railway interlocking control sys-
tem. The approach is innovative, it captures be-
haviour of services as well as behaviour of under-
lying systems of components, yet it distinguishes
these two levels. Future work is related to inte-
gration of the approach into modelling tools and
automatic generation of the formal description.

Acknowledgements. This research has
been supported by the Research Plan No. MSM
0021630528 “Security-Oriented Research in In-
formation Technology”.

References

[1] J. Amsden. Modeling SOA, parts I–V. IBM
developerWorks, October 2007.

[2] T. Andrews, F. Curbera, H. Dholakia,
Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana. Business process
execution language for Web Services, v1.1.
Technical report, IBM, 2003.

[3] J. P. Bowen and V. Stavridou. Safety-critical
systems, formal methods and standards.
IEE/BCS Software Engineering Journal,
8(4):189–209, July 1993.

[4] S. Briais. The ABC User’s Guide, May 2005.
[5] E. Bruneton, T. Coupaye, and J.-B. Stefani.

The Fractal component model. Draft of spec-
ification, version 2.0-3, The ObjectWeb Consor-
tium, February 2004.

[6] T. Bureš, P. Hnětynka, and F. Plášil. SOFA
2.0: Balancing advanced features in a hierarchi-
cal component model. In Proceedings of SERA
2006, pages 40–48, Seattle, USA, August 2006.
IEEE Computer Society.

[7] M. Dam. Model checking mobile processes
(full version). SICS Research Report R94:01,
Swedish Institute of Computer Science, Box
1263, S-164 28 Kista, Sweden, 1994.

[8] N. K. Diakov and F. Arbab. Compositional con-
struction of Web Services using Reo. In S. Bev-
inakoppa and J. Hu, editors, Proc. of Inter-
national Workshop on Web Services: Modeling,
Architecture and Infrastructure (WSMAI 2004),
pages 49–58. INSTICC Press, April 2004.

[9] R. Donini, S. Marrone, N. Mazzocca, A. Orazzo,
D. Papa, and S. Venticinque. Testing complex
safety-critical systems in SOA context. In CI-
SIS, pages 87–93, Los Alamitos, CA, USA, De-
cember 2008. IEEE Computer Society.

[10] T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR,
Upper Saddle River, NJ, USA, August 2005.

[11] D. Giannakopoulou. Model Checking for Con-
current Software Architectures. PhD thesis,
Imperial College of Science, Technology and
Medicine University of London, Department of
Computing, January 1999.

[12] S. Hinz, K. Schmidt, and C. Stahl. Transform-
ing BPEL to Petri nets.

[13] P. Hnětynka and F. Plášil. Dynamic reconfigu-
ration and access to services in hierarchical com-
ponent models. In Proceedings of CBSE 2006,
volume 4063 of Lecture Notes in Computer Sci-
ence, pages 352–359. Springer, 2006.

[14] K.-K. Lau and Z. Wang. A survey of software
component models (second edition). Pre-print
CSPP-38, School of Computer Science, The
University of Manchester, Manchester M13
9PL, UK, May 2006.

[15] R. Lucchi and M. Mazzara. A pi-calculus based
semantics for WS-BPEL. Journal of Logic and
Algebraic Programming, 70(1):96–118, January
2007.

[16] R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes, part I/II. Journal of Infor-
mation and Computation, 100:41–77, Septem-
ber 1992.

[17] M. Rychlý. A component model with sup-
port of mobile architectures and formal descrip-
tion. e-Informatica Software Engineering Jour-
nal, 3(1):9–25, October 2009.

[18] M. Rychlý. Formal-based Component Model
with Support of Mobile Architecture. PhD the-
sis, Department of Information Systems, Fac-
ulty of Information Technology, Brno University
of Technology, February 2010.

[19] M. Rychlý and P. Weiss. Modeling of service
oriented architecture: From business process to
service realisation. In ENASE 2008 Third Inter-
national Conference on Evaluation of Novel Ap-
proaches to Software Engineering Proceedings.

A Case Study on Behavioural Modelling of Service-Oriented Architectures 87

Institute for Systems and Technologies of Infor-
mation, Control and Communication, 2008.

[20] D. Sangiorgi and D. Walker. The π-Calculus: A
Theory of Mobile Processes. Cambridge Univer-
sity Press, New edition, October 2003.

[21] B. Victor. The Mobility Workbench User’s
Guide, polyadic version 3.122 edition, October
1995.

[22] M. Weidlich, G. Decker, and M. Weske. Ef-
ficient analysis of BPEL 2.0 processes using
π-calculus. In APSCC ’07: Proceedings of the
The 2nd IEEE Asia-Pacific Service Computing
Conference, pages 266–274, Washington, DC,
USA, 2007. IEEE Computer Society.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Defect Inflow Prediction
in Large Software Projects

Miroslaw Staron∗, Wilhelm Meding∗∗
∗Department of Applied IT, Chalmers | University of Gothenburg

∗∗Ericsson SW Research, Ericsson AB

miroslaw.staron@ituniv.se, wilhelm.meding@ericsson.com

Abstract
Performance of software projects can be improved by providing predictions of various project
characteristics. The predictions warn managers with information about potential problems and
provide them with the possibility to prevent or avoid problems. Large software projects are charac-
terized by a large number of factors that impact the project performance, which makes predicting
project characteristics difficult. This paper presents methods for constructing prediction models
of trends in defect inflow in large software projects based on a small number of variables. We refer
to these models as short-term prediction models and long-term prediction models. The short-term
prediction models are used to predict the number of defects discovered in the code up to three
weeks in advance, while the long-term prediction models provide the possibility of predicting the
defect inflow for the whole project. The initial evaluation of these methods in a large software
project at Ericsson shows that the models are sufficiently accurate and easy to deploy.

1. Introduction

Large software projects have very different dy-
namics than small projects; the number of fac-
tors that affects the project is much larger than
for small and medium software projects. There-
fore, while constructing predictions for large
software projects, there is a trade-off between
the prediction accuracy and the effort required
to collect the data necessary to predict (desig-
nated by the number and complexity of vari-
ables). The need to collect larger number of
data is particularly important as the data may
be distributed over time and across the globe.
Ericsson is no exception in that. The current
practices for constructing predictions in large
software projects at Ericsson rely heavily on ex-
pert estimations, which are rather time consum-
ing; in particular the experts use analogy based
classification techniques while constructing the

predictions for defect inflow – by identifying sim-
ilarities and differences between projects, the ex-
perts construct the predictions.

In this paper we present a case study con-
ducted at Ericsson which results in developing
new methods for short-term and long-term de-
fect inflow prediction. In our case (and at Er-
icsson), defect inflow is defined the number of
defects reported as a result of executing test
cases during the development project at a spe-
cific timeframe, often a week, a month or a year.
The term inflow is used in the company to de-
note that the defects which are discovered have
to be removed before the project concludes (i.e.,
the product is released) and therefore these de-
fects constitute additional work inflow in the de-
velopment project.

In this paper we present two methods for pre-
dicting defect inflow in large software projects in
industry:

90 Miroslaw Staron, Wilhelm Meding

– short-term defect inflow prediction used to
predict defect inflow for periods up to 3
weeks on a weekly basis, and

– long-term defect inflow prediction for the en-
tire project lifecycle on a monthly basis.

For each project, the long-term prediction model
provides means of planning projects and allocat-
ing resources by taking into consideration ex-
pected number of defect detected which have to
be removed before the release. The short-term
prediction model provides the means of immedi-
ate monitoring of the defect inflow status in the
project. The methods complement each other as
the predictions from the short-term model need
to be interpreted in the context of the predic-
tions from the long-term model.

In this paper we also present an evaluation
of these two methods in a large software project
at Ericsson. The results of the evaluation show
that both the short-term and long-term predic-
tion models developed using our methods in-
crease the prediction accuracy in comparison to
the existing practices.

The structure of the paper is as follows. Sec-
tion 2 presents the most relevant work for this
paper. Section 3 introduces the context of the
case study, in particular the organization of the
large projects for which the methods are con-
structed. Section 4 describes the short-term pre-
diction method, while Section 5 presents the
long-term prediction method. Section 6 presents
the process of evaluation of the prediction mod-
els and Section 7 presents the results from the
evaluation and Section 8 validity evaluation of
our study. Finally, Section 9 contains the con-
clusions.

2. Related Work

The most related work to our long-term pre-
diction method is the work of Amasaki [2] who
also aims at creating defect inflow profiles and
trends. Their work is focused on using trends
from development project to predict post-release
defect inflow, which is different from our work.
Our methods are intended to predict the defect
inflow trends in the development project (i.e.,

when the software product has not been released
yet) with the aim to support project manage-
ment rather than maintenance of the product.

Our long-term defect inflow prediction model
is similar to the the HyDEEP method [9] by
Klas et al. The HyDEEP method aims to sup-
port product quality assurance similarly to our
work. The HyDEEP method requires establish-
ing a baseline for effectiveness of defect removal
process which requires additional effort from the
quality managers (compared to our method).
The mean relative error of the predictions cre-
ated by HyDEEP can be up to 29.6% which
makes it a viable alternative to our long-term
defect inflow prediction. In our future work we
intend to compare the HyDEEP method to our
long-term prediction in our industrial context to
compare the complexity and ease-of-use of these
two methods.

When developing the long-term defect inflow
prediction model we used a similar approach to
Goel [7]. Goel’s process advocates for using one
of the predefined defect inflow prediction model
– e.g. Goel–Okumoto Nonhomogeneous Poission
Model, whereas we advocate for using linear
regression methods. The models considered by
Goel usually consider non-linear dependencies
between defect occurrences and between testing
and defect discovery. Based on our discussion
with experts at the company the dependencies
in our case are linear cause-effect relationships.

Our research on long-term defect inflow pre-
diction models is similar to the research on re-
liability theory in software engineering w.r.t the
fact that we are interested in the defect in-
flow profile and not defect density during de-
velopment. One of the most well-known mod-
els used in the reliability theory is the Rayleigh
model [10], which describes the defect arrival
rates for software projects after the release. It
was the first model we attempted to adjust and
apply before we created the method presented
in this paper without much success. We use this
model in the evaluation to show why this model
was not appropriate for our case. Our work is
substantially different from the models which
predict the defect inflow after release for the fol-
lowing reasons:

Defect Inflow Prediction in Large Software Projects 91

– we can assume that when the development
project is concluded, the defects reported are
taken care of during the maintenance project
(which can use the reliability theory to pre-
dict the defect inflow),

– changes in the trends of the defect inflow are
caused by the project milestones and do not
depend on the time after the release.

These underlying differences from the reliability
theory underpin our research and make us have
a different approach than the reliability theory.

Li et al. [11] evaluated empirically the ways
of predicting field defect rates using Theil fore-
casting statistics. The results of their work in-
fluenced the design of our study on long-term
defect inflow prediction, although we see their
assumption of defects being reported after the
release to be the main difference in contexts from
our research. The Software Reliability Growth
Model [13], which is used in their paper, seems
not to be applicable to the development projects
done in iterative way, since it assumes that no
new functionality is developed when the defects
are reported; this is not the case of the develop-
ment projects.

In our future work we consider extending our
prediction methods by using the same princi-
ples of Constructive Quality Modeling for De-
fect Density Prediction (COQUALMO) [4] and
its recent extension – Dynamic COQUALMO
[8]. In particular we intend to consider defect
introduction and removal as two separate pro-
cesses and use the efficiency of defect removal
(from [9]) as one of the variables in our predic-
tion models in the short-term predictions.

In our short-term models we consider the de-
fect inflow to be the function of characteristics
of work packages (e.g. the accumulated number
of components reaching a particular milestone)
and not directly the characteristics of the af-
fected components (e.g. size or complexity). Us-
ing the characteristics of components as the sole
predictors would provide us with a possibility
to predict the defect density of the component
and present this data on a monthly/weekly ba-
sis (based on when the component will be put
under testing). Such an approach would be an
extension of the current work on defect den-

sity, e.g., [3, 16, 12, 1]. In our case, neverthe-
less, this approach seems not feasible, because
the information about how the components are
to be affected by the project is not available at
the time of developing predictions; in particular
the change of size and complexity is not avail-
able. For short-term predictions, the data on size
and complexity of components was not avail-
able on a weekly basis simply because measur-
ing the size and complexity change is not mean-
ingful for particular weeks; the measurements of
component characteristics are done according to
project plans – e.g. builds – and not on a weekly
basis (i.e., not according to calendar time). In
our further work we intend to evaluate if it is
feasible to re-configure this data and use it as
an auxiliary prediction method.

Our research on short-term defect inflow can
be extended by using the research of Ostrand
et al. [17] on predicting the location of defects
in software components in large software sys-
tems. Predicting the location of defects can be
applied as the next step after the long-term de-
fect inflow predictions are in place, to guide the
project managers into channelling testing efforts
into components (or work packages which affect
these components) which are historically respon-
sible for the largest amount of defects in the sys-
tem.

When developing the short-term defect in-
flow prediction models we considered using
capture-recapture techniques [18] for estimating
the number of defects in the product to assess
the viability of our predictions. However, we de-
cided to prioritize the simplicity of data collec-
tion since using capture-recapture data would
require additional effort from the testers when
reporting discovered defects and a more thor-
ough statistics of the data from the defects
database.

3. Context

The context of the case study is Ericsson and one
of its large projects, which is developing one of
the releases of a network product. In the course
of development of the methods we used the pre-

92 Miroslaw Staron, Wilhelm Meding

vious releases of the product and we applied the
methods on the new release of the product. The
product has already had several releases and it
can be considered as a mature one. Choosing
late project releases decreases the risk of using
data biased with immaturity in the organiza-
tion, as it has already been shown by [21, 22] in
a similar context at the same company.

As a new practice at Ericsson, the large soft-
ware projects are structured into a set of work
packages which are defined during the project
planning phase. In the projects which we stud-
ied, the temporal aspects of defect discovery
were more important than the total number
of defects for the products. This was dictated
by the fact that stakeholders for this particular
work were project managers and at the project
management level, the defect inflow is a measure
of extra effort in the project (as the discovered
defects have to be removed from the product
before the release). The number of defects dis-
covered at a particular point in time seems to
be a function of the number of work packages
reaching the testing phase. Complexity and size
characteristics of the product do not have a di-
rect impact on the number of defects discovered
in a particular time frame, but the total number
of defects discovered in the product.

In the existing prediction work on de-
fect density [3, 16, 12, 14] it is usually the
case that a component is developed by a sin-
gle work package (or even the project, de-
pending on the size of the component and
project). In the case of Ericsson, work pack-
ages are related to the new features being devel-
oped and seldom result in creating completely
new subsystems or single system components.
The division of project into work packages is
based on customer requirements, while the di-
vision of system into sub-systems and compo-
nents is based on such elements as architec-
tural design and the architecture of the un-
derlying hardware (hardware/environment con-
straints). Each work package develops (or make
changes to) components for each new large
project, which makes it hard to develop a
unified defect inflow prediction model using
measurements at the component level. Dur-

ing the whole product life cycle (which spans
over more than one large project – also re-
ferred to as release from the perspective of
the product) the division of projects into
work packages changes to a large extent (as
the requirements are different for every re-
lease). Therefore using work package charac-
teristics (which are based on distributing func-
tionality) makes the method for long-term
predictions generalizable to other projects
at Ericsson.

Furthermore, from the perspective of project
management, the defect inflow is also a function
over the status of the project, i.e., where in the
lifecycle the project is. This information is con-
veyed by the work package completion status.
This is the assumption that we use in construct-
ing the defect inflow predictions – that the defect
inflow rate is dependent on where in the lifecycle
the project is. During the project lifecycle there
are 3 major milestones which are important for
the long-term prediction method:
– Md – design ready milestone, which defines

the point when all work-packages have fin-
ished designing. The Md milestone is used as
a reference point when comparing the base-
line and predicted projects,

– Mt – test ready milestone, which defines the
point when all work-packages have finished
their tests,

– Mf – product finished, which defines the
point when the development project con-
cludes and the product is released (the main-
tenance organization takes over the responsi-
bility for the released version of the product
– for that period of time the reliability theory
can be used to predict the defect inflow).

Predicting the defect inflow in the large soft-
ware projects at Ericsson is an important task
for project planning (long-term predictions),
project monitoring, and early warning mecha-
nism (short-term predictions). Ericsson’s qual-
ity managers created the predictions manually
using expert opinions and analogy based tech-
niques. The process of creating the predictions
was time consuming and resulted usually in cre-
ating predictions for 2 months and interpolat-
ing the remaining months using straight lines.

Defect Inflow Prediction in Large Software Projects 93

The short term predictions were not widely used
in the company due to the fact that they were
effort intensive. The new organization of soft-
ware projects provides a unique opportunity to
create more accurate and less time-consuming
prediction models using statistical regression
techniques.

4. Short-Term Defect Inflow
Prediction

In this section we present the process of develop-
ing the short-term prediction model, introduce
methods used for developing the model, present
the development of the model, and finally provide
a short example based on a case from Ericsson.

4.1. Process

The process of creating predictions in our case
started by using a baseline project data to de-
velop the prediction models, which resulted in
a set of candidate models. The applicability of
these candidate models for predictions was as-
sessed by examining the R2 model-fit coefficient
[23]. The candidate model which had the high-
est R2 was chosen for further development. This
model was used on a new set of data from one
of the current projects to check if it was ap-
plicable for predictions. The check was done by
calculating Mean Magnitude of Relative Error
or MMRE [5]. If the MMRE was sufficiently low
(below 30%, which was arbitrarily chosen by Er-
icsson), then the model was used for predictions.
If the MMRE was higher than 30% then the
“second-best” candidate model was used with
the new set of data and a new MMRE was cal-
culated.

4.2. Methods

When developing the models we used a num-
ber of statistical methods. We decided that the
prediction model would be in form of a linear
equation – an outcome of multivariate linear re-
gression method [23]. The choice of linear re-
gression was dictated by the dependencies be-

tween measures (predictor variables) at Erics-
son. Based on discussions with experts in the
company we could not identify polynomial or
exponential dependencies in short-term predic-
tions which dictated the use of linear model. To
construct the model we used the previous release
of the product, which we found to be similar in
size, complexity, and maturity of project teams
to the new projects in the company.

In order to avoid problems with co-linearity
within our data set we used Pricipal Component
Analysis or PCA [6]. Principal component anal-
ysis was performed prior to multivariate linear
regression and was used to identify variables in
the data set which can explain most variability
in the data set. We did not use the principal
component since our goal was to use as little
data as possible and still be able to have accu-
rate predictions.

To create the multivariate linear regres-
sion equation we used the method of Least
Squares [23] for fitting coefficients in the equa-
tion and we used the model-fit coefficient R2 [23]
when evaluating whether the model can be used
for predictions. When we evaluated the model
on a new data set from the current project we
used MMRE [5] to check how well the predic-
tions fit the actual values of defect inflow. The
evaluation methods are described in more detail
in Section 7.

4.3. Model Development

4.3.1. Assumptions and Application

The short-term defect inflow prediction model
was based on the following assumption: we used
data from past weeks to describe the defect in-
flow for the current week. In other words, the
dependent variable in the model was the defect
inflow for the current week (which has already
been known), while the independent variables
were the defect inflow from previous weeks and
planned/actual milestone completion status for
the current week and the previous weeks.

This assumption meant that once we had
the regression model describing the defect inflow
for a particular week using data from the past

94 Miroslaw Staron, Wilhelm Meding

weeks, we could use this model to predict the
defect inflow for the coming weeks by substitut-
ing data for past weeks with the data from the
current week. As the predictor variables we used
the defect inflow for the current project (for the
time up to till the current week), and milestone
completion status.

The short-term prediction model allowed
predicting the defect inflow for 1–5 weeks in ad-
vance, for example: if we found that our predic-
tor variables were number of defect inflow from
5 weeks before and the accumulated planned Md
completion, using the data for the current week,
we could predict what the defect inflow will be in
5 weeks. However, through simulations we found
that the predictions for future weeks 4 and 5 had
low prediction accuracy and therefore they are
not discussed in this paper.

4.3.2. Choice of Predictor Variables

The choice of predictor variables was dictated by
the availability of data and our goal – to make
predictions based on the data that already ex-
isted in the organization and was easy to obtain.
As discussed in Section 3, we could use milestone
completion and test progress to predict defect in-
flow (since these were relevant variables and they
influenced the defect inflow). The source of the
defect inflow: testing was performed before both
the design ready milestone (Md) and test ready
milestone (Mt). We discovered that we needed to
distinguish between Md and Mt phases as Md is
only used before the Md date for the project and
Mt completion status is used after the Md date.

In our case study we took into consideration
the following predictor variables:
– Number of planned Md completions (pre-

fixed with Mdp), and accumulated number
of planned Md completions (prefixed with
AMdp) – accumulated number of comple-
tions is the number of completions from the
beginning of the project until the current
week – for
– The predicted week (Mdp0, AMdp0),
– 1 week before (Mdp1, AMdp1), 2 weeks

before (Mdp2, AMdp2), . . . , 5 weeks be-
fore (Mdp5, AMdp5) the predicted week,

– Number of actual Md completions (Mda)
and accumulated number of actual Md com-
pletions (AMda) for
– 1 week before (Mda1, AMda1), 2 weeks

before (Mda2, AMda2), . . . , 5 weeks be-
fore (Mda5, AMda5) the predicted week;

– Number of planned Mt completions (Mtp)
and accumulated number of planned Mt
completions (AMtp) for
– The predicted week (Mtp0, AMtp0),
– 1 week before (Mtp1, AMtp1), 2 weeks

before (Mtp2, AMtp2), . . . , 5 weeks be-
fore (Mtp5, AMtp5) the predicted week;

– Number of actual Mt completions (Mta) and
accumulated number of actual Mt comple-
tions (AMta) for
– 1 weeks before (Mta1, AMta1), 2 weeks

before (Mta2, AMta2), . . . , 5 weeks be-
fore (Mta5, AMta5) the predicted week;

– Number of reported defects (defect inflow,
Di) for
– 1 week before (Di1), 2 weeks before

(Di2), . . . , 5 weeks before (Di5) the pre-
dicted week.

To avoid problems with multi-collinearity we
used the variables that were not correlated and
we chose the data from the project plan which
can always be obtained early in the project.
A representative scatter plot for relationship
between two of these variables is presented in
Figure 1.

While constructing the defect inflow predic-
tion models we deliberately did not include the
data for product size/complexity as this data
was not related to project planning for the fol-
lowing reasons:
– the software components were not assigned

on a one-to-one basis to work packages and
the milestones characterize work packages,
not the components,

– the data on source code size was collected
for milestones in the project (as it does not
make sense to collect them on a weekly ba-
sis) – which means that for the whole project
we could use few data points for size,

– the organization was concerned with project
planning and monitoring, and not source
code characteristics (e.g., size is only an in-

Defect Inflow Prediction in Large Software Projects 95

Figure 1. Relationship between accumulated planned test cases to be executed
and Accumulated Md closures, Spearman’s correlation coefficient: 0.96

put to the planning, but is not monitored in
the projects).

Neither did we decide to use data about Md/Mt
completion status as the accumulated num-
bers of test cases planned and executed were
highly correlated with the Md/Mt completion
status (Spearman’s correlation coefficients [23]
between 0.96 and 0.99 significant at the 0.01 sig-
nificance level).

In our search for the predictor variables we
used a large number of approaches and experi-
mented with more variables than the above ones.
However adding more variables did not increase
the accuracy of the model significantly. For in-
stance using all relevant variables (ca. 30) in one
of the equations increased the accuracy by only
1%, but the additional effort for data collection
increased significantly.

4.3.3. Reducing Number of Predictor Variables

Before constructing the regression model over
the candidate variables, Principal Component
Analysis was used to reduce the number of vari-
ables and thus identifying the strongest pre-
dictors. We experimented with the initial set
of variables (the input to PCA) in order to
achieve the best possible percentage of explain-

ing the variability at the minimal set of mea-
surements. PCA analysis identified 4–7 princi-
pal components (depending on the prediction
period: 1, 2, 3, 4, or 5 weeks in advance). The
scatter plot for the main principal components
and the defect inflow is presented in Figure 2.
Due to the confidentiality agreements with our
industrial partner, the values on the Y -axis are
not provided.

We used PCA to identify the key compo-
nents and we used variables which constituted
these components for the prediction models. We
re-calculated the loadings in the components so
that we could present the equations using the
original variables and not the components (as
this was one of our requirements while deploying
the model in the company – to use the original
names of measurements, not the names of the
components).

4.4. Result: Short-Term Defect Inflow
Prediction Model

The principal components before Md seemed to
be linearly correlated to the defect inflow, which
made the linear regression a viable technique for
building the prediction model in this case. For
the principal components after Md, the compo-

96 Miroslaw Staron, Wilhelm Meding

Figure 2. Scatter plot for the main principal components and defect inflow for the models before Md
and after Md. The X-axes show the values of the components

nents did not show a strong correlation with the
defect inflow, which affects the fitness of the re-
gression models and the prediction accuracy. We
checked whether the principal components ex-
pose logarithmic and polynomial relationship to
the defect inflow, but the results showed almost
a complete lack of relationship for the logarith-
mic curve and large scatter for the polynomial
curve. This supported the claims from Ericsson
experts that the relationships are linear and not
polynomial or exponential. The variability of the
data set explained by the principal components
is presented in the last column in Table 1.

The equations used to predict the short-term
defect inflow are presented together with the R2

coefficient for the regression model and the vari-
ability explained by the component which con-
tained the variables used in the equation. The
variables used in the equations are subsets of
variables presented earlier in this section.

4.5. Example

As an example, let us predict the defect inflow
for a particular week in an example project. Let
us assume that we are in week 10 of the project,
and it is before the design ready milestone (Md).
The data for that particular week is presented

in Table 2. We predict week 11, so the values for
1 week before the predicted week are the values
for week 10 (the current week), the values for 2
weeks before the predicted week are the values
for week 9, etc. We substitute the appropriate
numbers for the equations presented in Table 1
thus obtaining the predictions for week 11. By
using the data from week 10 as the data for 2
weeks before, data from week 9 as the data for 3
weeks before, we can create predictions for week
12 – for example AMdp2 in equation is AMdp1
from Table 2 (because the data shows the values
relative to week 10, not week 12. The value of
the defect inflow for week 13 is obtained in the
same way.

The results for the short-term predictions are
presented in Figure 3.

The figure shows that given the current cir-
cumstances of the project (i.e., the number of
defects reported in the current week and the sta-
tus of the planned and accumulated numbers of
work packages reaching the Md milestone) week
13 seems to be the week when the project man-
ager should pay more attention to as the number
of defects discovered is going to be rather high.
The potential action of the project manager is
to prepare more development resources for that
week to repair the defects discovered.

Defect Inflow Prediction in Large Software Projects 97

Table 1. Defect inflow prediction models (short-term)

Before/after Md
(design ready
milestone)

Period Equation R2 Variability
explained
by compo-
nent

Before Md 1 week D = 1.499 + 0.584∗AMdp0 + 0.650∗Di1−1.285∗
AMdp1 + 1.102 ∗AMda1

0.86 93.84%

Before Md 2 weeks D = 2.639 + 1.173 ∗ AMdp0 − 2.029 ∗ AMdp2 +
1.724 ∗AMda2 + 0.461 ∗Di2 − 0.366 ∗Di3

0.82 91.43%

Before Md 3 weeks D = 4.187−0.357∗Di3 + 1.928∗AMdp5−1.192∗
AMdp0

0.62 90.92%

After Md 1 week D = 39.155+0.470∗Di1 +1.290∗AMtp0−1.185∗
AMtp1−1.214∗AMta1 + 0.039∗AMtp2−0.044∗
AMta2 + 1.297∗AMtp3−0.517∗AMta3 + 0.003∗
AMtp4 + 0.107 ∗ AMta4 + 0.148 ∗ Di2 − 0.237 ∗
Di3 − 0.194 ∗Di4 + 0.180 ∗Di5

0.67 65.74%

After Md 2 weeks D = 53.669 + 1.419 ∗ AMtp0 − 0.682 ∗ AMtp1 +
0.099∗AMtp2−1.844∗AMta2 + 0.429∗AMtp3−
0.768∗AMta3 + 0.646∗AMtp4 + 0.446∗AMta4 +
0.306 ∗Di2 − 0.265 ∗Di3

0.55 78.69%

After Md 3 weeks D = 24.82+0.47∗Di3−0.351∗AMtp2+0.308∗Di5 0.62 59.09%

Table 2. Data for week 10 of the project

Variable AMdp0−
week11

AMdp0−
week12

AMdp0−
week13

AMdp1 AMdp2 AMdp5 AMda1 AMda2 Di1 Di2 Di3

Value 5 5 5 13 14 20 12 12 4 5 5

1

35

45 5
4

0

5

10

15

20

25

30

35

40

Week 8 Week 9 Week 10 Week 11 Week 12 Week 13

N
um

be
r o

f d
ef

ec
ts

Defect inflow

Predicted defect inflowCurrent weekActual defect inflow

Figure 3. Short-term defect inflow prediction for week 10

98 Miroslaw Staron, Wilhelm Meding

5. Long-Term Defect Inflow
Prediction

While the rationale behind the short-term pre-
diction was to predict the status of the project,
the rationale for the long-term prediction was to
create a monthly trend of defect inflows in the
project for the whole duration of the project.
The process for creating the model was the same
as for the short-term prediction, but the meth-
ods and results were different.

In the case of short-term models it was the
equations which were the resulting model. In the
case of long-term prediction it was the method
which was the result. This method consists of
the following steps:
1. Identify a baseline project,
2. Partition the defect inflow curve of the base-

line project,
3. Create regression models for each part of the

curve,
4. Calculate scaling factor for the new project,
5. Plot the defect inflow curve for the new

project.
On the contrary to the short-term defect in-

flow prediction, the long-term prediction used
a single predictor variable – project progress –
unlike several variables in the short-term predic-
tion models.

5.1. Long-Term Defect Inflow Prediction
Method Development

5.1.1. Methods

For creating the regression models we used the
polynomial regression method and we used only
one variable – the project progress – as the
predictor variable. The regression use the Least
Squared Estimators similar to the multivariate
linear regression used for short-term predictions.

For creating the scaling factors we used an
average ratio between the number of defects
reported in the new project compared to the
baseline project. The calculation of this fac-
tor Sc was done using the following formula

Sc =
1

n

n∑

i=1

pi − ai
pi

,

where: n – the number of months for which we
have the actual data, pi – the value obtained by
from the equation before scaling, ai – the value
of the actual data of defect inflow for this month.
The rationale behind this formula was that it
was an average relative difference between the
predicted defect inflow and the actual data from
the predicted project.

The scaling factor Sc was calculated for the
curve for which there was some initial defect in-
flow data available. If the data were not available
the scaling factor can be expert estimations (e.g.
before the project start).

The method for calculating the scaling
constant Sc1 for the curves which did not
start at the beginning of the project was

Sc1 =
predActualProject
predBaselineProject

,

where: predActualproject – the predicted defect in-
flow for the current project for the last month for
which the 1st equation (curve) can be used, and
predBaselineproject – the predicted defect inflow
for the equation describing the second curve.

5.1.2. Assumptions and Application

The assumption for the long-term defect in-
flow prediction in the software project was that
there existed a number of projects which could
be used as a baseline. With that respect the
long-term defect inflow prediction was similar
to the analogy-based estimations.

The long-term prediction method should be
used at the beginning of new projects in order
to estimate how many defects can be discovered
and when during the project. This information is
particularly important for project planning and
monitoring and the stakeholders for these pre-
dictions are project managers in large software
projects. The long-term defect inflow prediction
is usually not applicable for small projects since
these usually different significantly from each

Defect Inflow Prediction in Large Software Projects 99

other, even if they are executed by the same
organization and on the same product.

Our long-term defect inflow prediction model
was designed to work best for projects already
in progress as it used the actual reported de-
fect inflow from the projects to adjust the pre-
diction models and thus increase their accuracy.
Using expert estimations at the beginning of the
project should be replaced as soon as real data
is available in the new project.

5.2. Result: Method for Constructing
Long-Term Defect Inflow Prediction
Models

It should be noted that the resulting long-term
prediction model should be adjusted by the
owner of the prediction in order to increase its
accuracy. In particular, the defect inflow curve
needs to be maintained once a month so that the
predicted defect inflow is as accurate as possible.

5.2.1. Identify Similar Projects

The identification of the most similar project
needs to be done by experts, e.g., the experts
involved in creating the predictions. The factors
that should be taken into account while identi-
fying the most common projects are:
1. Estimated size of the project, measured as

number of person-hours in the project.
2. Number of “heavy” features in the project –

i.e., features which are of high complexity.
3. Complexity of the complete project – i.e., in-

cluding integration complexity.
4. Time span of the project.

The most important factor is the estimated
complexity. A rule of thumb used by experts is
that for a project which is twice as big as a ref-
erence project, the number of defect inflow in
each month would be around 75% more than in
the reference project.

The time span is important only in the case
when the projects are significantly longer, other-
wise the method compensates for that by using
the time relative to the Md milestone. Hence,

similar to the short-term defect inflow predic-
tion the Md milestone datse is an important
reference point. In case the time span of the
project is significantly longer, the scaling factor
(described later in this section) needs to be ob-
tained through expert estimates and not using
the method described in this paper.

5.2.2. Partition the Defect Inflow Curve of the
Baseline Project

In order to identify curves, identify the points
where the curves change shape. These changes
are important to identify otherwise we assume
that the fitted equations will under-/over- pre-
dict the values of the peaks in the defect inflow.
The peaks, however, are the most crucial ele-
ments to predict since project management is
interested in the information how many defect
might come in the peak time.

It should be noted that projects are usu-
ally independent from the calendar time –
which means that the prediction model should
be done according to the project milestones –
e.g. Md. However, changes in the time scale
should be done after the equations are built
and when the models are to be applied for the
current project.

5.2.3. Create Regression Models for Each Part
of the Curve

The next step is to create equations describing
the shape of the curves in this chart using regres-
sion methods. The equations for the curves can
be identified using curve estimations methods in
statistical packages. These curve estimations use
the standard regression techniques – e.g. least
square estimators.

In order to create the equations describing
each curve (identified in the previous section)
we need to:
– Use separate equation for each curve,
– Start with a straight line, and
– Change the curve type to polynomial with

order set to 2, 3 or 4. The order depends on

100 Miroslaw Staron, Wilhelm Meding

the R2 – as a rule of thumb, it should be as
small as possible. The higher the degree of
the polynomial, the higher the risk of errors
in predictions when the time-scale of the pre-
dicted project is different than the time-plan
of the baseline project.
These equations “re-create” the defect in-

flow for the baseline project using mathematical
equations, which allows us to adapt the defect
inflow trends for different time scales.

5.2.4. Calculate Scaling Factor for
the New Project

Up to this point, the method constructs a set
of equations which describe the trend of defect
inflow in the baseline project. In order to pre-
dict the defect inflow in the future projects, the
equations need to be scaled (moved up or down
the y-axis) to reflect the actual values so far
of the predicted project. The goal of this step
is to have a prediction model which is in form
of a set of equations which are scaled accord-
ing to certain criteria. For the different parts
of the curves identified so far we use different
scaling factors. For the first curve, in our case
there is a single criterion: the predicted defect
inflow should fit the actual defect inflow from
the predicted project. The outcome of the scal-
ing is the scaling factor Sc, which is used in the
following way

Dm(month) = Sc ∗ y(month),

where: Dm(month) – defect inflow for a specific
month, y(month) – the predicted defect inflow
for the month calculated from the equations de-
scribing the baseline project.

As mentioned in the methods section there
are two different ways of creating the scaling fac-
tor, which are used (i) at the beginning of the
project (when no defects have been reported),
and (ii) during the project when some defects
have been reported. In the first case (i), the scal-
ing needs to be done using expert opinion – i.e.,
the expert has to provide the ratio of complex-
ity between the predicted and this ratio becomes
the scaling factor Sc.

In the latter case (ii), the scaling can be
done by “fitting” the predictions to the existing
trend in defect inflow for the predicted project.
Using the actual data means that we do not
rely on subjective estimates but we actually try
to answer the question: “How will the defect
inflow look like in the predicted project if we
continue with the current trend of defect in-
flow?” Furthermore, the predictions of defect in-
flow become more important once the project
progresses – i.e., since the defect inflow is not
expected to be large at the beginning of the
project. This fitting can be done in the follow-
ing ways: (i) Calculating the average relative dif-
ference, or (ii) Using non-linear regression. The
first one (i) works well for the projects which has
similar life span (i.e., differences in life spans
should not be more than 2 months). The sec-
ond (ii) is more robust and does not have this
limitation.

5.3. Example: Long-Term Defect Inflow
Prediction Model

In this section we present how we constructed a
prediction model for one of the projects at Er-
icsson. In our study in one of the product the
trends in the defect inflow for some of the re-
leases are presented in Figure 4. The trends are
similar, but not the same, which requires more
advanced methods for predicting the defect in-
flow than only the analogy based estimations.
Due to the confidentiality agreement with our
industrial partner, we present the data scaled
to the largest defect inflow in each project and
we present only the subset of months for the
project.

The figure shows that the trends in the de-
fect inflow are rather stable over releases (al-
though they differ in the values, which cannot be
shown in the figure due to confidentiality agree-
ments). They are presented in a relative time
scale with the common point of Md milestone;
the milestone when all work packages have fin-
ished designing.

An important observation is that all three
projects have a similar percentage of defects in-

Defect Inflow Prediction in Large Software Projects 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
on

th
 -6

m
on

th
 -5

m
on

th
 -4

m
on

th
 -3

m
on

th
 -2

m
on

th
 -1

D
es

ig
n-

re
ad

y

m
on

th
 1

m
on

th
 2

m
on

th
 3

m
on

th
 4

Pe
rc

en
ta

ge
 o

f d
ef

ec
ts

 (s
ca

le
d

to
 th

e
pe

ak
)

Release: baseline-2

Release: baseline-1

Release: baseline

Figure 4. Defect inflow trends for previous projects scaled towards design ready milestone. The dots
represent removing a number of months since we cannot show the complete time frame for project

flow at the Md milestone month. Since this is
the case, we use the Md milestone month as
a reference point in constructing the long-term
predictions.

In order to identify the baseline project we
asked experts who work with these baseline
projects. They identified previous release of the
same product as the best baseline (“Release:
baseline” in Fig. 4).

In the case of this baseline project we iden-
tified the following curves:
1. months 1–5,
2. months 5–9,
3. months 9–11.
The developed trend line for months 1–5 is pre-
sented in Figure 5. The values of the defect
inflow are normalized, due to the confidential-
ity agreement with our industrial partner. The
curve equation is displayed in the chart, where x
denotes the month. The scaling factor was cal-
culated to be 1.23 in month number 3, which
meant that the new project produced ca. 23%
more defects thanAcknowledgments the previ-
ous project. We validated that with the quality
managers for that project who confirmed that
this number reflected their expert opinion.

6. Evaluation of Defect Inflow Models
in the Context of Ericsson

6.1. Design of Evaluation

When developing the prediction models we used
the model fit coefficient (R2) to observe whether
models are accurate w.r.t. the past projects
used to build the models. In this section we de-
scribe how we used the data from new (current)
projects to check whether the models accurately
predict defect inflows in new projects. We eval-
uated two aspects: the ability to predict the cor-
rect value and whether predictions over a period
of time (e.g., predictions 3, 2, and 1 weeks in
advance) predict the same value (stability). Un-
stable models change rapidly over time which
makes them less trustworthy – how can we trust
a prediction model that will change a lot in the
coming weeks/months?

We used the Magnitude of Relative Error
(MRE) metric to measure how accurate the pre-
dictions are. MRE was defined in [5] as

MRE =
|ai − pi|
ai

,

102 Miroslaw Staron, Wilhelm Meding

y = 0.75714x2 + 1.4571x + 8.43
R2 = 0.9598

1 2 3 4 5

Baseline project
Trendline

Figure 5. Equation for the curve for months 1–11

where ai means the actual value for the defect
inflow for i-th week (short-term predictions) or
month (long-term predictions); pi denotes the
predicted value of defect inflow for the i-th week
or month. In the evaluation we used both the
distribution of MRE and mean MRE (MMRE).
The best models were expected to have the low-
est value of MMRE – i.e., the mis-predictions of
models are small.

For evaluating the stability we used our own
measure mean in-stability (MiST) as a metric
for comparison, which we defined as

MiST =
1

n

n∑

i=1

|m0i −mji|
m0i

,

where: n – the number of months used in the
prediction, m0i – the predicted defect inflow for
the i-th month created before the project (0th
month), mji – the predicted defect inflow for the
i-th month created in the j-th month.

In evaluation of the prediction accuracy we
compared models developed in our research
(presented in Table 1) and “average” models,
i.e., predicting using a simple average amount
of defect inflow in a baseline project (or the av-
erage number of defects in the current project
– up to the week for which the prediction was
made), and the moving averages. The rationale
behind the average models was that if we did not
know how to predict the number of defect inflow
in a particular week, we could take the average
number of defects for all weeks as an estimator;

alternatively we could also use the median (i.e.,
the most common value of the defect inflow).
Thus, in the evaluation (Figure 6), we used the
following models:
– Average number of defect inflow from the

baseline project,
– Average number of defect inflow from the ac-

tual project until the week of prediction,
– Moving average (2 weeks) of the number of

defect inflow from the current project (i.e.,
the predicted value of the defect inflow is the
average of the defect inflow from previous 2
weeks),

– Moving average (3 weeks) of the number of
defect inflow from the current project (i.e.,
the predicted value of the defect inflow is the
average of the defect inflow from previous 3
weeks),

– Value of the mode of the defect inflow from
the baseline project (to some extend this is
the use of analogy based estimation),

– Value of the mode of the defect inflow from
the current project,

– Expert estimations for 1, 2, and 3 weeks.
In order to evaluate the long-term prediction

models developed using this method, we com-
pared the prediction model developed using our
method to the following prediction models:
– Linear, quadratic, cubic, 4th degree, 5th de-

gree, and exponential curve depicting the
trend in defect inflow,

– Rayleigh model,

Defect Inflow Prediction in Large Software Projects 103

– Expert estimations, which are based on the
predictions done for previous projects, prior
to our research.
The above models were chosen since they

require a similar amount of effort to create
compared to our models. We have deliber-
ately excluded methods like Bayesian Belief Net-
works [15] as their construction requires signifi-
cantly more effort than the construction of the
simple prediction models using our method.

6.2. Results of Evaluation

6.2.1. Short-Term Predictions

In this section we show how the models worked
in a new project at the company. The new
project which we chosen for the evaluation is
the next release of the same product, while the
baseline project was the previous release of the
same product.

The values for the MMRE for the reference
prediction models and the short-term prediction
models are presented in Figure 6. Figure 6 in-
dicates that the best model is the moving av-
erage for 2 weeks, which is one of the simplest
models to construct. Our prediction models have
larger mis-predictions, which are caused by the
fact that the predictions after Md are based on
the data which was weakly correlated with the
defect inflow. Despite a low value of MMRE for
predictions using moving averages, there is a dis-
advantage of these two models. Using moving
averages shows trends in the defect inflow for
more than one week, which are rather stable (the
moving average are partially used by experts in
estimating the defect inflow). However, the mov-
ing averages do not allow predicting peaks (as
the peak shown in Figure 3 for week 13).

The worst prediction models are the models
using modes from current and baseline projects;
these two models mis-predict the defect inflow
in most cases by more than 100%Ṫhe predic-
tions made by the expert had the most com-
mon mis-predictions of 75%-90%. The predic-
tions created using moving averages can result
in less accurate models (since they have a larger

percentage of mis-predictions above 90% than
’our’ models). From the experiments with the
historical data we found that the prediction
models developed in this paper had a tendency
of over-predicting (i.e., predicting values that
were larger than the actual values), in partic-
ular indicating the potential “red-alerts” for the
projects – i.e., showing that there will be a high
raise in the defect inflow in the project. Al-
though this might be a problem from the statis-
tical perspective (low accuracy), this provides a
means for project managers to get early warn-
ings of potential problems so that they can have
a time for reacting to some extent. This, how-
ever, cannot be verified on the historical data
and we are currently in the process of evaluating
the models in other large projects at Ericsson.
The interview with the expert provided the pre-
dicted values for 10 different weeks. The expert
was asked to make the predictions for 10 differ-
ent weeks in the same way as he does the pre-
dictions when they are needed (using the infor-
mation only up to the predicted week), although
making short-term predictions is not done very
often; the experts are focused on long-term pre-
dictions for the whole project. The results show
that the methods presented in this paper are not
worse than the predictions made by the expert
and hence can be used as a surrogate for expert
predictions. A disadvantage of the expert pre-
dictions is that they require a very deep, insight
knowledge into the project. The expert making
the estimations is very experienced. The time
required to create the predictions was negligibly
longer than the time required when using the
prediction models.

6.2.2. Long-Term Predictions

The values of Mean Magnitude of Relative Er-
rors (MMRE) are presented in Figure 7. The
MMRE is calculated using 7 months after the
project start (not for the whole project, since it
is not yet concluded).

This shows that the best model is using a
single, exponential equation. However, by exam-
ining only the first 7 months can be misleading,

104 Miroslaw Staron, Wilhelm Meding

52% 57%

154%

564%

223%

90%
106%

79% 79%

375%

191%
171%

0%

100%

200%

300%

400%

500%

600%

1 week
(our)

2 weeks
(our)

3 weeks
(our)

AVG-
baseline

AVG-
current

AVG-2w AVG-3w Mode-
baseline

Mode-
current

Expert -
1w

Expert -
2w

Expert -
3w

MMRE

Figure 6. MMRE for short-term predictions

49% 52%

87%

155%

100% 105%
93%

25%

46%

29%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Cus
tom

 (o
ur)

Ana
log

y
Lin

ea
r

Qua
dra

tic
Cub

ic

4th
 de

gre
e

5th
 de

gre
e

Exp
on

en
tia

l

Ray
lei

gh
Exp

ert

MMRE

Figure 7. MMRE for the new project

as the predictions for the whole project using
exponential equations do not produce trustwor-
thy results by the end of the project. Figure 8
presents the predictions for the whole project.

The results from the stability evaluation
are presented in Figure 9. A good model is
not changing very much from month to month
meaning that the initial predictions are actually
trustworthy.

The stability need to be assessed together
with the actual defect inflow trend in the
project, which is presented in Figure 8. The
trend in defect inflow is different that was ex-
pected, and it is different than in the baseline
project. These differences caused the instability
of the model. However, as the project progresses,
the peak in month (a+3) was leveraged and the
trend in month (b) came back to normal. How-

Defect Inflow Prediction in Large Software Projects 105

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Actual values
Custom (our)
Analogy
Exponential
Rayleigh

Md

Figure 8. Long-term predictions for the new project

207%

126%

74%

37%

0%

50%

100%

150%

200%

250%

M1 M2 M3 M4

Mean in-stability

Figure 9. Stability evaluation

ever, given the history and the way in which the
scaling factor is calculated, the current predic-
tions are that the defect inflow in the project
will be smaller than initially expected.

By observing the MiST chart in Figure 9 we
could conclude that the predictions are stable
only when there are no peaks in the defect in-
flow. The peaks are exceptional situations in the
projects and they render the predictions unus-
able, thus call for adjusting the predictions. The
presence of such a peak means that the predic-
tion model should be constructed differently –
e.g. by choosing a different baseline project, or
splitting the baseline project into more curves
(c.f. Section 5) – basically the instability is
caused by the fact that we use inappropriate
curves, which was caused by the fact that this
peak was not present in the baseline project.

7. Validity Evaluation

In this section we evaluate the validity of our
studies for constructing and evaluation of the
methods. We use the framework of Wohlin
et al. [24].

The main threat to the external validity of
our results is the fact that we developed and
used prediction methods in a single organization
within Ericsson. Even though the organization
is a large one (c.f. [20]) and we tested that at
more than one product, it could still be seen as a
threat. In order to minimize the threat we used
the predictions in more than one project and
product. The results were sufficiently accurate
for both products and they also led to taking
immediate actions by project managers in order
to prevent potential predicted problems.

106 Miroslaw Staron, Wilhelm Meding

The main threat to the construct validity
is the use of data from manual reporting to
construct the prediction models. Although this
might be seen as a problem issue, from our
discussions with experts it was clear that the
simplicity to create the predictions was one of
the top priorities and hence our decision. Using
test-progress data for predicting defect inflow in
the same organization can be found in [19]. In or-
der to minimize the threat that we use “random”
variables without empirical causal relationships
we preformed a short workshop with Ericsson
experts. The outcome of that workshop was that
there is empirical causality between the predic-
tors and predicted variables.

Another threat to the construct validity is
the use of regression method in our research. Us-
ing regression algorithms can be burdened with
the problem of overfitting, i.e., fitting the re-
gression equation in short term predictions (or
curve for long-term predictions) too closely to
the baseline project. Overfitting can cause the
models to be inapplicable for other projects. We
minimize this threat by evaluating our results in
new projects and check the applicability of the
models.

The main threat to the internal validity of
the study is the completeness of the data and
mortality of data points. It is rather a com-
mon situation in industry that data might be
missing due to external factors (e.g. vacations,
sick-leaves). In our case the missing data was
handled by removing data points which were in-
complete and removing the data points which
could potentially be affected by low-quality data
(mainly during vacation periods). The number
of data points removed was small compared to
the data sets (less than 5% of data points).

Finally, we have not discovered any threats
to the conclusion validity as we used established
statistical methods to develop the models and
confirmed our findings with expert knowledge
in the company.

8. Conclusions

This paper presented two complementary meth-
ods for predicting defect inflow in large software
projects: short-term and long-term defect inflow
prediction. The methods are used for the pur-
pose of project planning and monitoring at Er-
icsson. The goal of introducing new methods in
this paper is to provide the experts with sup-
port for creating the prediction models using
statistical methods based on the data which is
already collected in the organization (or which
can be collected at reasonable costs). Using lin-
ear regression methods resulted in simple and
high-cost efficient methods, which could be seen
as a trade-off between prediction accuracy and
costs of predicting. In this paper we tried to ad-
dress this trade-off by minimizing the number
of measurements to be collected and focus on
measurements established and existing in the or-
ganization at the same time minimizing the cost
for data reconfiguration. However, in the course
of our research new ways of data collection were
introduced, which improved the practice and al-
lowed for more accurate predictions.

Based on our experience and evaluation of
these methods at Ericsson we can recommend
using these methods and adjusting them to local
needs for particular organizations. The meth-
ods are intended to support projects which
are structured around work packages and not
sub-projects. Our further work is focused on
monitoring the performance of these methods in
a larger number of projects and further evaluat-
ing their robustness. We also intend to deploy
these methods to other departments and orga-
nizations to check their external validity.

Acknowledgements. We would like to
thank Ericsson AB for support in the study, in
particular the experts we have the possibility to
work with. We would like to thank the Software
Architecture Quality Center for support in this
study.

Defect Inflow Prediction in Large Software Projects 107

References

[1] W. W. Agresti and W. M. Evanco. Project-
ing software defects from analyzing ada designs.
Software Engineering, IEEE Transactions on,
18(11):988–997, 1992.

[2] S. Amasaki, T. Yoshitomi, O. Mizuno, Y. Tak-
agi, and T. Kikuno. A new challenge for
applying time series metrics data to software
quality estimation. Software Quality Journal,
13:177–193, 2005.

[3] T. Ball and N. Nagappan. Static analysis tools
as early indicators of pre-release defect density.
In 27th International Conference on Software
Engineering, pages 580–586, St. Louis, MO,
USA, IEEE, 2005.

[4] S. Chulani. Constructive quality for defect den-
sity prediction: COQUALMO. In International
Symposium on Software Reliability Engineering,
pages 3–5, 1999.

[5] S. D. Conte, H. E. Dunsmore, and V. Y.
Shen. Software Engineering Metrics and Mod-
els. Benjamin-Cummings, Menlo Park CA,
1986.

[6] G. H. Dunteman. Principal Component Analy-
sis. SAGE Publications, 1989.

[7] A. L. Goel. Software reliability models: As-
sumptions, limitations, and applicability.

[8] D. Houston, D. Buettner, and M. Hecht. Dy-
namic COQUALMO: Defect profiling over de-
velopment cycles. In ICSP, pages 161–172, 2009.

[9] M. Klaes, H. Nakao, F. Elberzhager, and
J. Munch. Support planning and controlling
of early quality assurance by combining expert
judgement and defect data – a case study. Em-
pirical Software Engineering, 2009.

[10] L. M. Laird and M. C. Brennan. Software mea-
surement and estimation: a practical approach.
John Wiley and Sons, Hoboken, N.J., 2006.

[11] P. L. Li, J. Herbsleb, and M. Shaw. Forecasting
field defect rates using a combined time-based
and metrics-based approach: a case study of
OpenBSD. In The 16th IEEE International
Symposium on Software Reliability Engineering,
page 10. IEEE, 2005.

[12] Y. K. Malaiya and J. Denton. Module size dis-
tribution and defect density. In 11th Interna-
tional Symposium on Software Reliability Engi-
neering, pages 62–71, San Jose, CA, USA, 2000.

[13] K. Matsumoto, K. Inoue, T. Kikuno, and
K. Torii. Experimental evaluation of software

reliability growth models. In The 18th Inter-
national Symposium on Fault-Tolerant Comput-
ing, 1988, pages 148–153, Tokyo, Japan, IEEE,
1988.

[14] P. Mohagheghi, R. Conradi, O. M. Killi, and
H. Schwarz. An empirical study of software
reuse vs. defect-density and stability. In 26th
International Conference on Software Engineer-
ing, pages 282–291. IEEE, 2004.

[15] M. Neil and N. Fenton. Predicting software
quality using bayesian belief networks. In 21st
Annual Software Engineering Workshop, pages
217–230, NASA Goddard Space Flight Centre,
1996.

[16] A. M. Neufelder. How to predict software de-
fect density during proposal phase. In National
Aerospace and Electronics Conference, pages
71–76, Dayton, OH, USA, 2000.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Predicting the location and number of faults in
large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[18] H. Petersson, T. Thelin, P. Runeson, and
C. Wohlin. Capture-recapture in software in-
spections after 10 years research: Theory, eval-
uation and application. Journal of Systems and
Software, 72:249–264.

[19] M. Staron and W. Meding. Predicting weekly
defect inflow in large software projects based
on project planning and test status. Informa-
tion and Software Technology, 50(7–8):782–796,
2009.

[20] M. Staron, W. Meding, and C. Nilsson. A frame-
work for developing measurement systems and
its industrial evaluation. Information and Soft-
ware Technology, 51(4):721–737, 2009.

[21] P. Tomaszewski and L. Lundberg. Software de-
velopment productivity on a new platform: an
industrial case study. Information and Software
Technology, 47(4):257–269, 2005.

[22] P. Tomaszewski and L. Lundberg. The increase
of productivity over time: an industrial case
study. Information and Software Technology,
48(9):915–927, 2006.

[23] R. E. Walpole. Probability and statistics for
engineers and scientists. Prentice Hall, Upper
Saddle River, NJ, 7th edition, 2002.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishing, 2000.

e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Automatic Test Cases Generation from
Software Specifications

Aysh Alhroob∗, Keshav Dahal∗, Alamgir Hossain∗
∗School of Computing , Informatics and Media, University of Bradford

amhalhro@ bradford.ac.uk, k.p.dahal@ bradford.ac.uk, m.a.hossain1@ bradford.ac.uk

Abstract
A new technique is proposed in this paper to extend the Integrated Classification Tree Method-
ology (ICTM) developed by Chen et al. [13] This software assists testers to construct test cases
from functional specifications. A Unified Modelling Language (UML) class diagram and Object
Constraint Language (OCL) are used in this paper to represent the software specifications. Each
classification and associated class in the software specification is represented by classes and at-
tributes in the class diagram. Software specification relationships are represented by associated
and hierarchical relationships in the class diagram. To ensure that relationships are consistent, an
automatic methodology is proposed to capture and control the class relationships in a systematic
way. This can help to reduce duplication and illegitimate test cases, which improves the testing
efficiency and minimises the time and cost of the testing. The methodology introduced in this
paper extracts only the legitimate test cases, by removing the duplicate test cases and those
incomputable with the software specifications. Large amounts of time would have been needed
to execute all of the test cases; therefore, a methodology was proposed which aimed to select a
best testing path. This path guarantees the highest coverage of system units and avoids using all
generated test cases. This path reduces the time and cost of the testing.

1. Introduction

Unified Modelling Language (UML) provides di-
agrams to help the software developer to repre-
sent different aspects of design. It has become a
standard modelling language for designing soft-
ware. UML represents the system specifications
that could be used in software testing. The com-
mon definition of software testing usually refers
to the testing of program code and not to the
testing of models used in earlier development
stages of the software development process, such
as requirements engineering, analysis or design.
Model testing could identify many faults earlier
and could, hence, decrease repair costs. A crit-
ical component of testing is the construction of
test cases. However, software testing is an expen-
sive and labour-intensive process; typically, test-
ing consumes at least 50% of the total costs in-

volved in developing software [7]. Software test-
ing has two important purposes. First, it is com-
monly used to expose the presence of faults in
software. Second, even if testing does not reveal
any fault, it still provides increased justification
and confidence in the correctness of the software
[18]. The Category Partition Method (CPM)
was developed by Ostrand and Balcer [19] to
generate test cases from functional specifications
using the concept of formal test specifications.
Several studies [2, 3] have been conducted which
focus on CPM. Recently, Chen et al. [14] en-
hanced the CPM, by means of their choice re-
lation framework. Based on CPM, Grochtmann
and Grimm [16] developed a similar but differ-
ent method – the Classification Tree Method
(CTM). Classification trees have been used to
construct test cases in the CTM. The absence
of a systematic tree construction algorithm is

110 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

the major limitation of this method. As a re-
sult, users of this method are left with a loosely
defined task of constructing a Classification Tree
(Tu). For complex specifications, this construc-
tion task could be difficult, and hence, prone to
human error. If a Tu. is incorrectly constructed,
the quality of the resultant test cases generated
from it will be poorly affected. This problem is
solved by Chen et al. [13] who use Integrated
Classification Tree Methodology (ICTM). This
method helps with the identification of test cases
via the construction of classification trees. How-
ever, their tree constructed method is rather ad
hoc. This results in a variation of classification
trees constructed in CTM from one software
tester to the next, according to his/her personal
experience and expertise. A classification hier-
archy table (Hu) has been used in ICTM to al-
leviate this problem. The hierarchy table helps
to construct classification trees by capturing the
hierarchical relation for each pair of classifica-
tions.

In ICTM [13], however, a manual method has
been used in order to detect the classifications,
associated classes and relationships. The man-
ual process requires more human intermediation
which can lead to more errors. Manual extrac-
tion of information from the software specifica-
tions will also increase the cost of testing. In this
paper, we propose an approach for generating
test cases automatically from software specifica-
tions using a class diagram and representing the
software constraints by OCL. After decompos-
ing the specifications to functional units, func-
tional units will be represented as a class dia-
gram. An XML schema mapping technique will
then be used to read the specification from the
class diagram. Transferring data from the XML
to build a hierarchy table Hu. will reduce hu-
man error in building the table. The construc-
tion of the Hu. is the step before building the
classification tree. The paper also proposes a test
data refinement technique to discard duplicate
sub-trees. The approaches are based on heuris-
tic techniques for determining appropriate test
cases for testing software.

Software testing is used to find as many
faults as possible so that a piece of software

will work to its maximum capabilities. Path test-
ing is a structural testing method that involves
using software units to find every possible exe-
cutable path. Time and cost are the main factors
when testing efficiency, therefore, avoidance of
lengthy times in testing was the target set after
the legitimate test cases were obtained [1]. This
paper extends the work presented in Alhroob,
Dahal and Hossain [1] to select the best testing
path. This technique offers the best path that
covers most of the system units.

The rest of the paper is organised as follows.
Section 2 presents the previous work in auto-
matic test data generation for UML. Section 3
presents a methodology to generate test data to
test class diagram relationships. Section 4 de-
scribes the classification tree concepts, whereas
the pruning method of duplicate sub-trees is
outlined in Section 5. Section 6 covers the best
testing path selection. Finally, conclusions and
future works are presented in Section 7.

2. Previous Work

Test data are usually generated from the re-
quirements or the code, while the design is
rarely concerned with generating test data.
Extensible Markup Language (XML) is used
to express the constraints on data and de-
tect the rules of software systems. Bertolino
et al. [6] used the XML schema to analyse
the system specifications and identify the func-
tional units. Categories are identified from func-
tional specifications. The authors [9] used XML
schema mapping and category partition to iden-
tify the related constraints and relevant val-
ues for each category. In general, the test data
generation can be extracted from those values
and constraints.

Extracting the information from UML dia-
grams allows the developer to test the system
before writing the code. Heuristic techniques
can be applied for creating quality test data.
Doungsa-ard et al. [15] proposed a GA-based
test data generation technique from specifi-
cations. Test cases were generated from se-
quences of triggers for Unified Modelling Lan-

Automatic Test Cases Generation from Software Specifications 111

Figure 1. ICTM process

guage (UML) state diagrams. Lia Bao-lin et al.
[4] constructed a scenario tree from a sequence
diagram. The scenario path was obtained from
the tree and the attributes were extracted from
the sequence diagram to generate test data au-
tomatically. Object Constraint Language (OCL)
was used to describe the pre and post condi-
tions for the system to use its system specifica-
tions. Sarma et al. [21] proposed a method to ex-
tract this information from used case templates,
class diagrams and data dictionaries. They also
presented an approach to transform the UML
sequence diagram to Sequence Diagram Graph
(SDG) and provide the SDG with different in-
formation necessary to compose test data.

Dehla [23] proposed a technique to gener-
ate test data from UML sequence and state di-
agrams. The main specifications are extracted
from the sequence diagram, while the remain-
ing information derives from the state diagram.
Sequence diagrams do not provide all informa-
tion necessary to generate test data automati-
cally. Chen et al. [13] presented ICTM to create
test cases from specifications, as shown in Fig-
ure 1, via the building of Hu and Tu. The man-
ual steps, which are indicated by oval shapes
in Figure 1, need a software engineering expert.
Experts are also needed to decompose the func-
tional unit, identify the classifications and ex-
tract the relationships between the classifica-
tions. All classifications and their relationships

in ICTM are manually entered. The manual pro-
cesses need more experience, more time and gen-
erate higher costs. For large systems there are
many classifications and relationships; this re-
quires more effort to input. To avoid the risk
and effort, we propose a methodology to enable
the manual processes to be done automatically
without expert intermediation. Class diagrams
will be used to represent the software specifica-
tions. The proposed methodology is designed to
capture the specifications automatically to build
the Hu and Tu. The building of Hu and Tu au-
tomatically, enables the generation of test cases
in an efficient way.

The proposed methodology in this work pro-
duced full system coverage test cases, but other
issues arose regarding the time needed to ex-
ecute the test cases, in addition to the cost.
Peres et al. [20] introduced a good idea to ap-
ply characteristics of software and of testing in
test path selection. They used characteristics
in path selection strategies, such as complex-
ity, testability and feasibility. They assigned a
weight for nodes according to the lower predi-
cate strategy. And the sum of nodes weight was
assigned to the branch or path. Emanuela et
al. [9] used the degree of similarity between test
cases as the main factor for test case selection.
This strategy reduced the number of redundant
tests and selected the best to execute. Basanieri
and co-author [5] proposed a technique to assign

112 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

Figure 2. Proposed technique

a weight function to each diagram indicating the
functional importance.

Test generation with a verification technol-
ogy tool [17] extracts the test cases from the
UML model. The test cases are selected from
a specific objective that a tester would like to
test, and can be seen as a specification of a test
case. The number of test cases is still large and
can be reduced. Our methodology to select the
best testing path focused on the maximum cov-
erage percentage and minimum number of test
cases. These two factors were treated in previous
work [5, 9, 17, 20] separately. In this study, both
objectives are considered to achieve the highest
results.

3. Methodologies

Class diagram and OCL together represent the
functional units. Class diagram mapping to
XML code makes the diagram specifications eas-
ier to deal with. Due to the variation in de-
sign experts, each one will present the functional
units using class diagrams in different ways, that
is, different class diagrams and different XML
codes. To allow the proposed technique to deal
with one style of XML, we propose a technique
to force different XML to be stored in the same
database style.

The specifications will be transferred from
the database to construct the Hu. The Hu will
be more reliable due to new consistency checking
constraints and automatic information entering.
A consistent Hu means perfect Tu, but control
of the number of test cases produced from Tu
requires more restricted rules to reduce the num-
ber of illegitimate test cases. Pruning of the du-
plication sub-trees will reduce the number of ille-
gitimate test cases. This paper introduces auto-
matic test case generation from software specifi-
cations (see Figure 2) and proposes a technique
to improve the pruning of sub-trees. There are a
large number of legitimate test cases and a tech-
nique is needed to select the minimum number
to save time and cost. The proposed technique
used in this work selects the best path which
covers most of the system details.

3.1. UML Class Diagrams

UML class diagrams will be used to represent
the component of software specification. The
class diagram will represent the functional unit
hierarchy relationship. For example, a credit
card has two possible types: gold credit card or
classic credit card, and each type has its own
credit limit, as follows:
– The gold card has two children (credit limit

of $5000] and credit limit of $6000].

Automatic Test Cases Generation from Software Specifications 113

– The classic card also has two children (credit
limit $2000] and credit limit $3000].

Figure 3 represents the above functional units
using three hierarchy classes. OCL is used to
represent the constraints and determine the re-
lationship between the attributes in the main
class with sub-classes.

Figure 3. Example of functional unit representation
by class diagram

XML mapping is used to extract the software
specifications and capture the elements of soft-
ware from the UML diagram. UML is a standard
design modelling language and XML is widely
being accepted as an information representation
and sharing language across the Internet; efforts
have been initiated to map UML diagrams to
XML documents [22].

3.2. Automatic Detection for System
Specifications

The first three phases of ICTM in Figure 1
are manual phases and the construction of
Hu is dependent on the relationship setting.
A class diagram as a software system model is
used to decompose the specification and iden-
tify the relationships automatically. Classes,
attributes and relationships for the class dia-
gram can be extracted through mapping the
diagram to XML. In the proposed approach
the XML structure depends on the class dia-
gram design. The diagram design depends on
the designer’s view, so there is a probability of
extracting different XML schema for the same
system specifications. Standard XML schema
is not our concern, but the specifications in

that schema must be captured in a standard
way. The extracted classes and attributes will
be stored in proper database style, like Ta-
ble 1. The relationships between classes can
be stored in a different table. Now, an auto-
matic transfer technique will be used to transfer

Table 1. Classes and attributes for class diagram
in Figure 4

Class Att1 Att2 Att3
A a1 a2
B b1 b2
C c1 c2
D d1 d2
E e1 e2
F f1 f2
G g1 g2
H h1 h2 h3
I i1 i2

data from database tables to Hu, instead of man-
ually inserting. To make the proposed approach
clearer, the following case will be used to repre-
sent the main steps of the methodology. Suppose
a software tester is given the following of a pro-
gram arith-sum:
1. arith-sum has nine input variables A, B, C,

D, E, F , H, and I.
2. H has three possible values (denoted by h1,

h2, and h3), whereas each of the remaining
variables has two possible values (denoted,
for example, by a1 and a2 for A).

3. The input domain of arith-sum may con-
tain any combination of possible values from
some of these variables, except the following:
– (A is a2) and (B is b1 or b2)
– (A is a2) and (C is c1 or c2)
– (A is a2) and (D is d1 or d2)
– (A is a1) and (E is e1 or e2)
– (B is b2) and (C is c1 or c2)
– (B is b2) and (D is d1 or d2)
– (B is b1 or b2) and (E is e1 or e2)
– (C is c2) and (D is d1 or d2)
– (C is c1 or c2) and (E is e1 or e2)
– (C is c1 or c2) and (F is f2)
– (C is c1 or c2) and (H is h1, h2, or h3)
– (D is d1 or d2) and (E is e1 or e2)
– (D is d1 or d2) and (F is f2)

114 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

– (D is d1 or d2) and (H is h1, h2, or h3)
– (E is e1 or e2) and (G is g1 or g2)
– (F is f2) and (G is g1 or g2)
– (F is f1) and (H is h1, h2, or h3)
– (G is g1 or g2) and (H is h1, h2, or h3)

4. arith-sum calculates the arithmetic sum of
those variables entered.

Suppose we simply define the classes as the in-
put variables and the attributes as the possible
values. For example, A is taken as a class with
a1 and a2 as its attributes. Then Figure 4 shows
the class diagram for arith-sum.

3.3. Classes Hierarchy Table

Automatic construction of a classification hier-
archy table, Hu with class relationships for each
pair of classes is the main target in this section.
There are four possible types of hierarchical re-
lationships, as follows [10, 13]:
1. Class [X] is a loose ancestor of class [Y] (de-

noted by [X]⇔ [Y].
2. Class [X] is a strict ancestor of [Y] (denoted

by [X] ⇒ [Y]). A black arrow means direct
relation, but red indicates an indirect rela-
tion.

3. Class [X] is incompatible with Class [Y] (de-
noted by [X] ∼ [Y]).

4. Class [X] has other relations with Class [Y]
(denoted by [X]

⊗
[Y]).

The conditions associated with each of the
above hierarchical relations are commonly ex-
clusive and exhaustive. These hierarchical re-
lations are used to determine the relative po-
sition of [X] and [Y] in Tu. For example, [X]
⇒ [Y] corresponds to the situation where [X]
will appear as either a parent or an ancestor
of [Y] in Tu; in current work the loose an-
cestor relationship was discarded. Figure 5 de-
picts the completed Hu Every element in it con-
tains a hierarchical operator and corresponds
to the hierarchical relations between a pair
of classifications.

3.4. Consistency Checking

Cain et al. [8] introduced the consistency prob-
lem and proposed a technique to detect incon-

sistency relations. Let tij denote the element at
the ith row and the jth column of Figure 5. Con-
sider t12 and t21 in Figure 5. They correspond
the [A] ⇒ [B] and [B]

⊗
[A], respectively. Sup-

pose,
– t21 constraints are entered before that for t12,
– t21 constraints are entered correctly, causing

“
⊗

” to t21 to assign the hierarchical opera-
tor,

– a mistake has been made during the entry
of the constraints for t12, causing incorrect
assignment of the hierarchical operator “∼”
to t12.
As we note that the error is unwanted, to re-

cover this problem, a methodology is proposed
in this paper to ensure that all of the relation-
ships are entered in a systematic way and no
conflict occurs between them. We need the fol-
lowing five conditions to do that:
1. For eij (where eij is corresponding for all

classes) we have to detect the relationships
automatically for each pair of classes (A,B)
in Hu.

2. Xi → Yi, where X and Y are two associated
classes in the database.

3. If A = X and B = Y , then A is a child of
B, and all of the attributes of A are related
with at least one of the B attributes.

4. A = X and B 6= Y , then A is incompatible
with Y .

5. If A = Y and B = X, then A is a parent of
B, and at least one of the A attributes are
related with all B’s attributes.

4. Classification Tree (Tu)

Based on a predefined tree construction algo-
rithm [13], the corresponding Tu can be au-
tomatically constructed from the Hu in Fig-
ure 5. The tree represents the relationships be-
tween the classes and determines the parents
and children of classes. The classification tree is
used to generate the test cases; if the test cases
cover 100% of the tree branches that means all
parents, children and attributes will be tested.
Complete or legitimate test case extraction is
our target. Human error in the specification ex-

Automatic Test Cases Generation from Software Specifications 115

Figure 4. Class diagram for arith-sum

Figure 5. Classification-Hierarchy table (Hu)

traction phase is avoided by using the proposed
automatic methodology.

Occasionally, a classification tree may not be
able to reflect all the constraints between classi-
fications. Therefore, all potential test cases con-
structed from the classification tree should be
verified with the specification. In this way, we
can classify and remove the potential test cases
that deny the specification. Such potential test
cases are known as illegitimate test cases. Chen
and Poon [11] proposed that the final purpose
of the classification tree method is to construct
legitimate test cases, and the classification tree
is just a means for this construction. Given a
classification treeTu, let N i and N t be the num-

ber of potential test cases and legitimate test
cases, respectively. Chen et al. [12] defined an
effectiveness metric, Ep for Tu as the follows:

EP =
N t

N i
(1)

For more illustration, for equation (1), let N i

= 40 and N t = 5, then Ep = 0.125. N t

can only be known after removing all illegit-
imate test cases from the set of possible test
cases. Obviously, a small value of Ep is unde-
sirable, as effort will be wasted on illegitimate
test cases. The existence of duplicate sub-trees
under different top-level classifications in a clas-
sification tree is a main cause of a poor Ep.

116 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

From this remark, Chen and Poon developed
a tree restructuring algorithm to remove dupli-
cates, to obtain a better value of Ep for clas-
sification trees with duplicate sub-trees under
different top-level classifications [12]. Deleting
the duplicate sub-tree will cause the illegiti-
mate test cases to be discarded and will in-
crease the effectiveness metric of the classifi-
cation tree. Determining the duplication avail-
ability and choosing a suitable sub-tree to
delete are main factors for duplication sub-tree
pruning.

5. Pruning the Duplication Subtrees

Chen et al. [12] proposed an algorithm to
avoid duplicate sub-trees and improve the value
of EP . They observed that the algorithm
for removing duplicates has many limitations,
such as dealing with duplicate sub-trees un-
der different top-level classifications and the
fact that only one set of duplicate sub-trees
can be removed from the classification tree
at any one time. To overcome these limita-
tions, we propose a restructuring algorithm
for pruning the duplicate sub-tree, hence, im-
proving the value of Ep. The proposed algo-
rithm will deal with duplicate sub-trees and
choose the best ones to keep with Tu and
remove the others. The algorithm will com-
pare every sub-tree (ST) in Tu with oth-
ers to detect duplications in same and differ-
ent top-level classifications (Pi). The duplicate
sub-tree suitable for deleting is one that pro-
duces a large number of test cases by inte-
grating with others under the same or different
top level. The following methodology illustrates
the detection and deletion of suitable duplicate
sub-trees.
1. P1, P2 and P3 are top level class, for example,

they correspond to A, F and I respectively
as shown in Figure 6, where Pi ≥ 1.

2. The Tu has been divided into levels L1,
L2,. . . , Li, where Li ≥ 1. Every Li has a
value depending on the level number, for ex-
ample L1 has a value 1, L2 has a value 2,
etc.

3. Every classification (X) in Tu has its own
principle value sequentially, for example
(A = 1, B = 2,. . . , Xn = V). Each chil-
dren (x) for X will take the same value of
X. xv = Li ∗ Xn, where xv is the value of
each child.

4. We propose (2), (3) and (4) equations to
calculate some of parameters values to de-
termine which trees in the system must be
deleted.

XV =

n∑

n=1

xv (2)

QP =

n∑

n=1

Xv (3)

QST =

n∑

n=1

XDv (4)

RQST (Ratio of duplication ST in Pi) =
QST
QP

(5)

Where Xv, QP , QST and XDV are the
values of X, Pi, duplicate ST and duplicate
classes, respectively. We observe that if the ra-
tio of QST on QP in equation (5) is smaller,
then the number of branches in Pi be big,
which means more test cases will be gener-
ated from this Pi, If we delete the duplica-
tion ST from Pi which has more branches, we
avoid generating more illegitimate test cases.
For example, if RQST in P1 < RQST in P2

the duplication ST in P1 must be deleted.
The algorithm repeats the above process un-
til there are no duplicated ST s across any
pairs of distinct top-level sub-trees. This al-
gorithm deals with all duplicated ST s in Tu
whether in the same top level or different
and treats duplications for two sub-trees or
more. By referring to Figure 4, the classi-
fication tree in Figure 6 contains duplica-
tions for C ST . The C sub-tree arises in
two places, the first one occurs under the
B class and the second one under the F
class; the algorithm will detect the duplica-

Automatic Test Cases Generation from Software Specifications 117

Figure 6. arith-sum Classification Tree

tion by comparing classifications with oth-
ers in Tu even in different top level classes.
If the duplication is detected, the algorithm
starts to capture the suitable ST to delete.
For example, as noted in the class diagram
the C class is associated with B and F ;
that means that the C sub-tree should ap-
pear under two parents of classes. Duplica-
tion will occur even under B or F . One of
the sub-trees must be chosen for deletion de-
pending on the proposed sub-tree pruning algo-
rithm.

In this case, and by referring to equa-
tion (4), the duplicate sub-tree that comes un-
der F is selected for deletion. From Tu of
arith-sum in Figure 6, a total of 60 potential
test cases can be constructed; some of the test
cases are shown in Figure 7. The total num-
ber of test cases, before deleting the duplicate
sub-trees, was 108, so the classification tree
pruning technique deleted 48 illegitimate test
cases by checking the 60 legitimate potential
test cases against the specification of arith-sum.
32 potential test cases were found to be illegit-
imate and therefore removed. For example, the

potential test cases 5–10 were illegitimate be-
cause class (F) = f2 cannot coexist with class
(C) = c1 and c2.

6. Best Testing Path Selection

Testing is the process of executing a system
with the intention of finding errors. Assume that
there are 5 possible paths with loop<10, its
equal 107 different execution flows. If we exe-
cuted one test per millisecond, it would take
1.585 years to test this system. The proposed
methodology in this work aims to select a best
testing path. This path guarantees the highest
coverage of system units. Each test case gen-
erated for the class diagram in Figure 3 repre-
sents a test path. Before continuing to explain
the technique, we have to differentiate between
the test path and the case. The test case is the
combination of the node attributes, in contrast,
the test path is the nodes that are shared in a
test case, i.e. Test case 2 in Figure 7 is A = a1,
B = b1, C = c1, D = d1, F = f1, G = g1,
I = i2 and the test path 2 is A,B,C,D, F,G, I.

118 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

Figure 7. Some of potential test cases generated from Tu arith-sum (10 out of 60)

The best testing path technique, which covers
maximum units, concerns two main aspects.

Firstly, the weight of each class (node) is
dependent on the number of attributes and its
level. The level of node will be affected by the
number of participant nodes and branches, i.e.
H node in Figure 6 has a weight of 12. The
weight of H has been calculated by equation (2)
and xv = Li ∗Xn, where xv is the value of each
child. Secondly, the weight of each path is the
weight of all nodes that share one path, i.e. test
case 1 in Figure 7 goes through A,B,C,D, F,G
and I nodes. The weight of each node is as fol-
lows: A = 1, B = 4, C = 6, D = 8, F = 4, G = 8
and I = 6. The weight of the path is calculated
as follows:

Pw =
n∑

n=1

Xv (6)

where is the Pw is the weight of path and Xv is
the weight of each node. One of the case stud-
ies used in this work is the ATM machine. This
system contains 18 nodes and each node has its
own attributes. Table 2 represents each node
weight that has been calculated automatically.
As noted, the nodes are called by their numbers
and not by names, because the testing path se-
lection methodology deals with nodes by their
numbers, i.e. CardReader = 1, Inquiry = 2,
Deposit = 3, . . . etc.

Figure 8 represents the ATM system nodes;
the Node Tree (NT) shows the hierarchy rela-
tionships between the nodes. The tree represents
the relationships between the classes and deter-
mines the test paths. If the test paths cover

100% of the tree nodes that means all system
units will be tested.

Table 2. ATM Nodes Weight

Ni Weight Ni Weight
1 2 10 60
2 12 11 66
3 18 12 96
4 32 13 130
5 20 14 112
6 48 15 225
7 14 16 160
8 32 17 68
9 54 18 36

In this phase, the proposed methodology ex-
tracted the test paths automatically based on
the proposed test path construction algorithm.
15 test paths were generated from NT (see Ta-
ble 3), one is the best one. It is not necessary
that the testing path covers all units of the sys-
tem; any test path that covers the highest per-
centage of systems is the best one. The highest
percentage does not mean the largest number of
nodes. Each node has its own weight, as illus-
trated in Table 2. The best path, that has the
highest weight out of the total weight, is P9, as
shown in Table 3. P9 covers 10 nodes out of 18
with 51% system details coverage.

In fact, one test path cannot cover all units,
as there may be many paths/loops. To improve
the coverage of the system, we propose select-
ing the second best testing path as well to sup-
port the first best testing path. The selection
method for the second best testing path depends
on the non-similarity of nodes contained in the

Automatic Test Cases Generation from Software Specifications 119

Table 3. Testing Paths Weight(TPW)

Pi N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TPW
P1 1 2 3 4 7 8 9 18 – – 200
P2 1 2 3 5 7 8 9 18 – – 188
P3 1 2 3 6 7 8 9 18 – – 216
P4 1 2 3 4 7 10 11 12 13 18 466
P5 1 2 3 5 7 10 11 12 13 18 454
P6 1 2 3 6 7 10 11 12 13 18 482
P7 1 2 3 4 7 10 11 14 15 18 577
P8 1 2 3 5 7 10 11 14 15 18 565
P9 1 2 3 6 7 10 11 14 15 18 593
P10 1 2 3 4 7 10 11 14 16 18 512
P11 1 2 3 5 7 10 11 14 16 18 500
P12 1 2 3 6 7 10 11 14 16 18 528
P13 1 2 3 4 7 10 17 18 – – 242
P14 1 2 3 5 7 10 17 18 – – 230
P15 1 2 3 6 7 10 17 18 – – 258

Figure 8. ATM Nodes Tree

best testing path. In other words, we want to se-
lect a second best testing path, which contains
as many different nodes as possible compared
to the first best testing path. Emanuela et al.
[12] used the similarity function to reduce the
test cases. To select the second best path, we
used node non-similarity criterion. Based on the
non-similarity degree between the best path and
others, the testing paths eliminated were those
with the biggest similarity degree. There is a
probability for getting more than one test path
with the same degree of non-similarity criterion;

the highest weight of non-similar nodes is the
factor used to choose one of them.

In ATM testing path there are four paths
(P1, P2, P4 and P5) met the highest non-similar
criterion, non-similar path with the highest

Table 4. Non-similar paths weight

Pi Non-similar Nodes Weight
P1 4, 8 and 9 118
P2 5, 8 and 9 106
P3 6, 8 and 9 134
P4 4, 12 and 13 285

120 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

nodes weight is selected. Table 4 represents
those paths with non-similar node weights. P3

has two conditions necessary (non-similarity and
highest weight) for being chosen as the second
best testing path. Both testing paths (best and
second best testing path) cover more than 74%
of system details.

7. Conclusion

In this paper the ICTM has been improved to
detect specifications automatically. These speci-
fications are used to generate test cases. To con-
trol the consistency of relationships in Hu, we
proposed an algorithm to enter the class hier-
archy relationships in a systematic way. Consis-
tency relationship entering techniques support
the reliability of ICTM.

In this paper, a restructured algorithm was
proposed to remove duplication sub-trees, either
at the same top level or at different top levels.
This technique can offer more pruning and pro-
duce legitimate and non-duplicated test cases.
Testing path selection was one of the concerns
in this work in order to reduce the number of
expectation flows. Test paths have been deter-
mined and one has been selected automatically
to be the best among them. The best testing
path covers most of the system units and avoids
the undesirable time needed to execute all test
paths. To improve the percentages of coverage,
we propose the selection of additional test paths
based on dissimilarity to the best test path.

In future work we will conceder to use class
diagrams, OCL and sequence diagrams to rep-
resent software specifications to provide other
additional information. Therefore, by combining
these two UML specifications in future work we
will be able to capture most of the system spec-
ifications.

References

[1] A. Alhroob, K. Dahal, and A. Hossain. Auto-
matic test cases generation from software spec-
ifications modules. In Proceedings of the 4th
IFIP TC2 Central and East European Confer-

ence on Software Engineering Techniques, pages
130–142. Springer, 2009.

[2] N. Amla and P. Ammann. Using Z specifi-
cations in category partition testing. In Sys-
tems Integrity, Software Safety and Process Se-
curity: Building the System Right, pages 3–10,
Gaithersburg, MD, USA, IEEE Press, 1992.

[3] P. Ammann and J. Offutt. Using formal meth-
ods to derive test frames in category-partition
testing. In Computer Assurance, 1994. COM-
PASS ’94 Safety, Reliability, Fault Tolerance,
Concurrency and Real Time, Security. Proceed-
ings of the Ninth Annual Conference on, pages
69–79, Gaithersburg, MD, USA, IEEE, 1994.

[4] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y.
Hong. Test case automate generation from
UML sequence diagram and OCL expression.
In Proceedings of the 2007 International Con-
ference on Computational Intelligence and Se-
curity: CIS, pages 1048–1052, 2007.

[5] F. Basanieri, A. Bertolino, and E. Marchetti.
The Cow Suite approach to planning and de-
riving test suites in UML projects. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, edi-
tors, UML 2002–the Unified Modeling Lan-
guage, pages 383–397. Springer, 2002.

[6] A. Bertolino, J. Gao, E. Marchetti, and
A. Polini. Automatic test data generation for
XML schema-based partition testing. In Pro-
ceedings of the Second International Workshop
on Automation of Software Test, page 4. IEEE
Computer Society, 2007.

[7] B. Boris. Software testing techniques. Van Nos-
trand Reinhold Co, second edition, 1990.

[8] A. Cain, T. Y. Chen, D. Grant, P. L. Poon,
S. F. Tang, and T. H. Tse. An automatic
test data generation system based on the inte-
grated classification-tree methodology. Software
Engineering Research and Applications, pages
225–238, 2004.

[9] E. G. Cartaxo, F. G. O. Neto, and P. D. L.
Machado. Automated test case selection based
on a similarity function. In Workshop Modell-
basiertes Testen (MOTES07), Bremen, 2007.

[10] T. Y. Chen and P. L. Poon. Classification-hi-
erarchy table: a methodology for constructing
the classification tree. In Proceedings of the
1996 Australian Software Engineering Confer-
ence, page 93, Washington, DC, USA, IEEE
Computer Society, 1996.

[11] T. Y. Chen and P. L. Poon. Improving the qual-
ity of classification trees via restructuring. In
Proceedings of the Third Asia-Pacific Software
Engineering Conference, page 83, 1996.

Automatic Test Cases Generation from Software Specifications 121

[12] T. Y. Chen, P. L. Poon, and T. H. Tse. A new re-
structuring algorithm for the classification-tree
method. In Proceedings of the Software Technol-
ogy and Engineering Practice, pages 105–114,
1999.

[13] T. Y. Chen, P. L. Poon, and T. H. Tse. An in-
tegrated classification-tree methodology for test
case generation. International Journal of Soft-
ware Engineering and Knowledge Engineering,
10(6):647–679, 2000.

[14] T. Y. Chen, P. L. Poon, and T. H. Tse. A choice
relation framework for supporting category-par-
tition test case generation. IEEE transactions
on software engineering, 29(7):577–593, 2003.

[15] C. Doungsa-ard, K. Dahal, A. Hossain, and
T. Suwannasart. Advanced Design and Man-
ufacture to Gain a Competitive Edge, chapter
GA-based for Automatic Test Data Generation
for UML State Diagrams with Parallel Paths,
pages 147–156. Springer, London, 2008.

[16] M. Grochtmann and K. Grimm. Classification
trees for partition testing. Software Testing,
Verification and Reliability, 3(2):63–82, 1993.

[17] C. Jard and T. Jéron. TGV: theory, principles
and algorithms. International Journal on Soft-
ware Tools for Technology Transfer (STTT),
7(4):297–315, 2005.

[18] K. W. Miller, L. J. Morell, R. E. Noonan, S. K.
Park, D. M. Nicol, B. W. Murrill, and J. M.
Voas. Estimating the probability of failure when
testing reveals no failures. IEEE transactions on
Software Engineering, 18(1):33–43, 1992.

[19] T. J. Ostrand and M. J. Balcer. The cate-
gory-partition method for specifying and gen-
erating functional tests. Communications of the
ACM, 31(6):676–686, 1988.

[20] L. M. Peres, S. R. Vergilio, M. Jino, and J. C.
Maldonado. Path selection in the structural
testing: Proposition, implementation and appli-
cation of strategies. In Proceedings. XXI In-
ternatinal Conference of the Chilean Computer
Science Society, pages 240–246. SCCC, 2001.

[21] M. Sarma, D. Kundu, and R. Mall. Auto-
matic test case generation from UML sequence
diagram. In Proceedings of the 15th Inter-
national Conference on Advanced Computing
and Communications, pages 60–67, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[22] J. Singh. Mapping UML diagrams to XML.
Master’s thesis, Jawaharlal Nehru University
New Delhi, India, 2003.

[23] D. Sokenou. Generating test sequences from
UML sequence diagrams and state diagrams.
Informatik für Menschen, 2(94):236–240, 2006.

e-Informatica Software Engineering Journal (http://www.e-informatyka.pl/wiki/e-Informatica)
is an international journal that concerns theoretical and practical issues pertaining
development of software systems, and focuses on experimentation in software engineering.

The purpose of e-Informatica is to publish original and significant results in all areas of
software engineering research.

The scope of e-Informatica includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress
is laid on empirical evaluation.

Topics of interest include, but are not restricted to:
• Software requirements engineering and modeling
• Software architectures and design
• Software components and reuse
• Software testing, analysis and verification
• Agile software development methodologies and practices
• Model driven development
• Software quality
• Software measurement and metrics
• Reverse engineering and software maintenance
• Empirical and experimental studies in software engineering
• Evidence based software engineering
• Systematic reviews
• Object-oriented software development
• Aspect-oriented software development
• Software tools, containers, frameworks and development environments
• Formal methods in Software Engineering.
• Internet software systems development
• Dependability of software systems
• Human-computer interface
• AI and knowledge based software engineering
• Project management

The submissions will be accepted for publication on the base of positive reviews done by
international Editorial Board (http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board)
and external reviewers. English is the only accepted publication language. To submit
an article please enter our online paper submission site.

Subsequent issues of the journal will appear continuously according to the reviewed and
accepted submissions.

