








Automatic Test Cases Generation from Software Specifications 119

Table 3. Testing Paths Weight(TPW)

Pi N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TPW
P1 1 2 3 4 7 8 9 18 – – 200
P2 1 2 3 5 7 8 9 18 – – 188
P3 1 2 3 6 7 8 9 18 – – 216
P4 1 2 3 4 7 10 11 12 13 18 466
P5 1 2 3 5 7 10 11 12 13 18 454
P6 1 2 3 6 7 10 11 12 13 18 482
P7 1 2 3 4 7 10 11 14 15 18 577
P8 1 2 3 5 7 10 11 14 15 18 565
P9 1 2 3 6 7 10 11 14 15 18 593
P10 1 2 3 4 7 10 11 14 16 18 512
P11 1 2 3 5 7 10 11 14 16 18 500
P12 1 2 3 6 7 10 11 14 16 18 528
P13 1 2 3 4 7 10 17 18 – – 242
P14 1 2 3 5 7 10 17 18 – – 230
P15 1 2 3 6 7 10 17 18 – – 258

Figure 8. ATM Nodes Tree

best testing path. In other words, we want to se-
lect a second best testing path, which contains
as many different nodes as possible compared
to the first best testing path. Emanuela et al.
[12] used the similarity function to reduce the
test cases. To select the second best path, we
used node non-similarity criterion. Based on the
non-similarity degree between the best path and
others, the testing paths eliminated were those
with the biggest similarity degree. There is a
probability for getting more than one test path
with the same degree of non-similarity criterion;

the highest weight of non-similar nodes is the
factor used to choose one of them.

In ATM testing path there are four paths
(P1, P2, P4 and P5) met the highest non-similar
criterion, non-similar path with the highest

Table 4. Non-similar paths weight

Pi Non-similar Nodes Weight
P1 4, 8 and 9 118
P2 5, 8 and 9 106
P3 6, 8 and 9 134
P4 4, 12 and 13 285



120 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

nodes weight is selected. Table 4 represents
those paths with non-similar node weights. P3

has two conditions necessary (non-similarity and
highest weight) for being chosen as the second
best testing path. Both testing paths (best and
second best testing path) cover more than 74%
of system details.

7. Conclusion

In this paper the ICTM has been improved to
detect specifications automatically. These speci-
fications are used to generate test cases. To con-
trol the consistency of relationships in Hu, we
proposed an algorithm to enter the class hier-
archy relationships in a systematic way. Consis-
tency relationship entering techniques support
the reliability of ICTM.

In this paper, a restructured algorithm was
proposed to remove duplication sub-trees, either
at the same top level or at different top levels.
This technique can offer more pruning and pro-
duce legitimate and non-duplicated test cases.
Testing path selection was one of the concerns
in this work in order to reduce the number of
expectation flows. Test paths have been deter-
mined and one has been selected automatically
to be the best among them. The best testing
path covers most of the system units and avoids
the undesirable time needed to execute all test
paths. To improve the percentages of coverage,
we propose the selection of additional test paths
based on dissimilarity to the best test path.

In future work we will conceder to use class
diagrams, OCL and sequence diagrams to rep-
resent software specifications to provide other
additional information. Therefore, by combining
these two UML specifications in future work we
will be able to capture most of the system spec-
ifications.

References

[1] A. Alhroob, K. Dahal, and A. Hossain. Auto-
matic test cases generation from software spec-
ifications modules. In Proceedings of the 4th
IFIP TC2 Central and East European Confer-

ence on Software Engineering Techniques, pages
130–142. Springer, 2009.

[2] N. Amla and P. Ammann. Using Z specifi-
cations in category partition testing. In Sys-
tems Integrity, Software Safety and Process Se-
curity: Building the System Right, pages 3–10,
Gaithersburg, MD, USA, IEEE Press, 1992.

[3] P. Ammann and J. Offutt. Using formal meth-
ods to derive test frames in category-partition
testing. In Computer Assurance, 1994. COM-
PASS ’94 Safety, Reliability, Fault Tolerance,
Concurrency and Real Time, Security. Proceed-
ings of the Ninth Annual Conference on, pages
69–79, Gaithersburg, MD, USA, IEEE, 1994.

[4] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y.
Hong. Test case automate generation from
UML sequence diagram and OCL expression.
In Proceedings of the 2007 International Con-
ference on Computational Intelligence and Se-
curity: CIS, pages 1048–1052, 2007.

[5] F. Basanieri, A. Bertolino, and E. Marchetti.
The Cow Suite approach to planning and de-
riving test suites in UML projects. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, edi-
tors, UML 2002–the Unified Modeling Lan-
guage, pages 383–397. Springer, 2002.

[6] A. Bertolino, J. Gao, E. Marchetti, and
A. Polini. Automatic test data generation for
XML schema-based partition testing. In Pro-
ceedings of the Second International Workshop
on Automation of Software Test, page 4. IEEE
Computer Society, 2007.

[7] B. Boris. Software testing techniques. Van Nos-
trand Reinhold Co, second edition, 1990.

[8] A. Cain, T. Y. Chen, D. Grant, P. L. Poon,
S. F. Tang, and T. H. Tse. An automatic
test data generation system based on the inte-
grated classification-tree methodology. Software
Engineering Research and Applications, pages
225–238, 2004.

[9] E. G. Cartaxo, F. G. O. Neto, and P. D. L.
Machado. Automated test case selection based
on a similarity function. In Workshop Modell-
basiertes Testen (MOTES07), Bremen, 2007.

[10] T. Y. Chen and P. L. Poon. Classification-hi-
erarchy table: a methodology for constructing
the classification tree. In Proceedings of the
1996 Australian Software Engineering Confer-
ence, page 93, Washington, DC, USA, IEEE
Computer Society, 1996.

[11] T. Y. Chen and P. L. Poon. Improving the qual-
ity of classification trees via restructuring. In
Proceedings of the Third Asia-Pacific Software
Engineering Conference, page 83, 1996.



Automatic Test Cases Generation from Software Specifications 121

[12] T. Y. Chen, P. L. Poon, and T. H. Tse. A new re-
structuring algorithm for the classification-tree
method. In Proceedings of the Software Technol-
ogy and Engineering Practice, pages 105–114,
1999.

[13] T. Y. Chen, P. L. Poon, and T. H. Tse. An in-
tegrated classification-tree methodology for test
case generation. International Journal of Soft-
ware Engineering and Knowledge Engineering,
10(6):647–679, 2000.

[14] T. Y. Chen, P. L. Poon, and T. H. Tse. A choice
relation framework for supporting category-par-
tition test case generation. IEEE transactions
on software engineering, 29(7):577–593, 2003.

[15] C. Doungsa-ard, K. Dahal, A. Hossain, and
T. Suwannasart. Advanced Design and Man-
ufacture to Gain a Competitive Edge, chapter
GA-based for Automatic Test Data Generation
for UML State Diagrams with Parallel Paths,
pages 147–156. Springer, London, 2008.

[16] M. Grochtmann and K. Grimm. Classification
trees for partition testing. Software Testing,
Verification and Reliability, 3(2):63–82, 1993.

[17] C. Jard and T. Jéron. TGV: theory, principles
and algorithms. International Journal on Soft-
ware Tools for Technology Transfer (STTT),
7(4):297–315, 2005.

[18] K. W. Miller, L. J. Morell, R. E. Noonan, S. K.
Park, D. M. Nicol, B. W. Murrill, and J. M.
Voas. Estimating the probability of failure when
testing reveals no failures. IEEE transactions on
Software Engineering, 18(1):33–43, 1992.

[19] T. J. Ostrand and M. J. Balcer. The cate-
gory-partition method for specifying and gen-
erating functional tests. Communications of the
ACM, 31(6):676–686, 1988.

[20] L. M. Peres, S. R. Vergilio, M. Jino, and J. C.
Maldonado. Path selection in the structural
testing: Proposition, implementation and appli-
cation of strategies. In Proceedings. XXI In-
ternatinal Conference of the Chilean Computer
Science Society, pages 240–246. SCCC, 2001.

[21] M. Sarma, D. Kundu, and R. Mall. Auto-
matic test case generation from UML sequence
diagram. In Proceedings of the 15th Inter-
national Conference on Advanced Computing
and Communications, pages 60–67, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[22] J. Singh. Mapping UML diagrams to XML.
Master’s thesis, Jawaharlal Nehru University
New Delhi, India, 2003.

[23] D. Sokenou. Generating test sequences from
UML sequence diagrams and state diagrams.
Informatik für Menschen, 2(94):236–240, 2006.



e-Informatica Software Engineering Journal (http://www.e-informatyka.pl/wiki/e-Informatica)
is an international journal that concerns theoretical and practical issues pertaining
development of software systems, and focuses on experimentation in software engineering.

The purpose of e-Informatica is to publish original and significant results in all areas of
software engineering research.

The scope of e-Informatica includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress
is laid on empirical evaluation.

Topics of interest include, but are not restricted to:
• Software requirements engineering and modeling
• Software architectures and design
• Software components and reuse
• Software testing, analysis and verification
• Agile software development methodologies and practices
• Model driven development
• Software quality
• Software measurement and metrics
• Reverse engineering and software maintenance
• Empirical and experimental studies in software engineering
• Evidence based software engineering
• Systematic reviews
• Object-oriented software development
• Aspect-oriented software development
• Software tools, containers, frameworks and development environments
• Formal methods in Software Engineering.
• Internet software systems development
• Dependability of software systems
• Human-computer interface
• AI and knowledge based software engineering
• Project management

The submissions will be accepted for publication on the base of positive reviews done by
international Editorial Board (http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board)
and external reviewers. English is the only accepted publication language. To submit
an article please enter our online paper submission site.

Subsequent issues of the journal will appear continuously according to the reviewed and
accepted submissions.






