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Table 3. Testing Paths Weight(TPW)

Pi N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TPW
P1 1 2 3 4 7 8 9 18 – – 200
P2 1 2 3 5 7 8 9 18 – – 188
P3 1 2 3 6 7 8 9 18 – – 216
P4 1 2 3 4 7 10 11 12 13 18 466
P5 1 2 3 5 7 10 11 12 13 18 454
P6 1 2 3 6 7 10 11 12 13 18 482
P7 1 2 3 4 7 10 11 14 15 18 577
P8 1 2 3 5 7 10 11 14 15 18 565
P9 1 2 3 6 7 10 11 14 15 18 593
P10 1 2 3 4 7 10 11 14 16 18 512
P11 1 2 3 5 7 10 11 14 16 18 500
P12 1 2 3 6 7 10 11 14 16 18 528
P13 1 2 3 4 7 10 17 18 – – 242
P14 1 2 3 5 7 10 17 18 – – 230
P15 1 2 3 6 7 10 17 18 – – 258

Figure 8. ATM Nodes Tree

best testing path. In other words, we want to se-
lect a second best testing path, which contains
as many different nodes as possible compared
to the first best testing path. Emanuela et al.
[12] used the similarity function to reduce the
test cases. To select the second best path, we
used node non-similarity criterion. Based on the
non-similarity degree between the best path and
others, the testing paths eliminated were those
with the biggest similarity degree. There is a
probability for getting more than one test path
with the same degree of non-similarity criterion;

the highest weight of non-similar nodes is the
factor used to choose one of them.

In ATM testing path there are four paths
(P1, P2, P4 and P5) met the highest non-similar
criterion, non-similar path with the highest

Table 4. Non-similar paths weight

Pi Non-similar Nodes Weight
P1 4, 8 and 9 118
P2 5, 8 and 9 106
P3 6, 8 and 9 134
P4 4, 12 and 13 285
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nodes weight is selected. Table 4 represents
those paths with non-similar node weights. P3

has two conditions necessary (non-similarity and
highest weight) for being chosen as the second
best testing path. Both testing paths (best and
second best testing path) cover more than 74%
of system details.

7. Conclusion

In this paper the ICTM has been improved to
detect specifications automatically. These speci-
fications are used to generate test cases. To con-
trol the consistency of relationships in Hu, we
proposed an algorithm to enter the class hier-
archy relationships in a systematic way. Consis-
tency relationship entering techniques support
the reliability of ICTM.

In this paper, a restructured algorithm was
proposed to remove duplication sub-trees, either
at the same top level or at different top levels.
This technique can offer more pruning and pro-
duce legitimate and non-duplicated test cases.
Testing path selection was one of the concerns
in this work in order to reduce the number of
expectation flows. Test paths have been deter-
mined and one has been selected automatically
to be the best among them. The best testing
path covers most of the system units and avoids
the undesirable time needed to execute all test
paths. To improve the percentages of coverage,
we propose the selection of additional test paths
based on dissimilarity to the best test path.

In future work we will conceder to use class
diagrams, OCL and sequence diagrams to rep-
resent software specifications to provide other
additional information. Therefore, by combining
these two UML specifications in future work we
will be able to capture most of the system spec-
ifications.
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