e-Informatica

e-Informatica

.......

sssss

7
‘%;J Wroctaw University of Technology

Editors

Zbigniew Huzar (Zbigniew. Huzar@pwr.wroc.pl)
Lech Madeyski (Lech. Madeyski@pwr.wroc.pl, hitp://madeyski.e-informatyka.pl/)

Institute of Informatics
Wroctaw University of Technology, 50-370 Wroctaw, Poland

e-Informatica Software Engineering Journal
http: //www. e-informatyka.pl/wiki/e-Informatica/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
othervise, without the prior written permission of the publishers.

Printed in the camera ready form

© Copyright by Wroctaw University of Technology, Wroctaw 2011

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw

ISSN 1897-7979

Drukarnia Oficyny Wydawniczej Politechniki Wroctawskiej. Order No. xxx/2011.

Editorial Board

Co-Editors-in-Chief

Zbigniew Huzar (Wroctaw University of Technology, Poland)
Lech Madeyski (Wroctaw University of Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (VTT Technical Research Centre, Finland)

Sami Beydeda (ZIVIT, Germany)

Mikl6s Bir6 (Corvinus University of Budapest, Hungary)

Joaquim Filipe (Polytechnic Institute of Setibal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)

Félix Garcia (University of Castilla-La Mancha, Spain)

Janusz Gorski (Gdansk University of Technology, Poland)

Andreas Jedlitschka (Fraunhofer IESE, Germany)

Ludwik Kuzniarz (Blekinge Institute of Technology, Sweden)

Pericles Loucopoulos (The University of Manchester, UK)

Kalle Lyytinen (Case Western Reserve University, USA)

Leszek A. Maciaszek (Macqarie University Sydney, Australia)

Jan Magott (Wroctaw University of Technology, Poland)

Zygmunt Mazur (Wroctaw University of Technology, Poland)

Bertrand Meyer (ETH Zurich, Switzerland)

Matthias Miiller (IDOS Software AG, Germany)

Jirgen Miinch (Fraunhofer IESE, Germany)

Jerzy Nawrocki (Poznan Technical University, Poland)

Janis Osis (Riga Technical University)

Krzysztof Sacha (Warsaw University of Technology, Poland)

Rini van Solingen (Drenthe University, The Netherlands)

Miroslaw Staron (IT University of Géteborg, Sweden)

Tomasz Szmuc (AGH University of Science and Technology Krakéw, Poland)
Iwan Tabakow (Wroctaw University of Technology, Poland)

Rainer Unland (University of Duisburg-Essen, Germany)

Sira Vegas (Polytechnic University of Madrit, Spain)

Corrado Aaron Visaggio (University of Sannio, Italy)

Bartosz Walter (Poznan Technical University, Poland)

Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zielifiski (AGH University of Science and Technology Krakéw, Poland)

Contents

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study

Miroslaw Staron, Wilhelm Medig 7
Examining Correlations in Usability Data to Effectivize Usability Testing

Jeff Winter, Mark Hinley 25
ARINC Specification 653 Based Real-Time Software Engineering

Stawomir Samolej 39

Experience with instantiating an automated testing process in the context of incremental and
evolutionary software development

Janusz Gorski, Michal Witkowicz 51
Conversion of ST Control Programs to ANSI C for Verification Purposes
Jan Sadolewski L 65

Multiple tasks in FPGA-based programmable controller
Zbigniew Hajduk, Jan Sadolewski 7

e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 7-23, DOI 10.2478/v10233-011-0027-z

VERSITA

Factors Determining Long-term Success
of a Measurement Program: An Industrial Case
Study

Miroslaw Staron*, Wilhelm Meding**

* Department of Computer Science and Engineering, Chalmers | University of Gothenburg
** Ericsson SW Research, Ericsson AB

miroslaw.staron@ituniv.se, wilhelm.meding@ericsson.com

Abstract

Introducing measurement programs into organizations is a lengthy process affected by organizational
and technical constraints. There exist several aspects that determine whether a measurement
program has the chances of succeeding, like management commitment or existence of proper tool
support. The establishing of a program, however, is only a part of the success. As organizations
are dynamic entities, the measurement programs should constantly be maintained and adapted
in order to cope with changing needs of the organizations. In this paper we study one of the
measurement programs at Ericsson AB in Sweden and as a result we identify factors determining
successful adoption and use of the measurement program. The results of our research in this paper
are intended to support quality managers and project managers in establishing and maintaining

successful metrics programs.

1. Introduction

Several authors have already discussed factors
that determine successful measurement program
adoption at a company, e.g. [1, 2, 3]. The results
usually are focused on addressing the question
“How to establish a measurement program at
a company?” which is a prerequisite for the
success of the measurement program. Little,
however, has been said about the factors that
determine if a successfully implemented mea-
surement program °‘lives’ longer than just the
first project for which it was established (or un-
til the first re-organization). In this paper we
present a study which we conducted at Erics-
son AB, which identifies and prioritizes factors
important in long-term adoption of a measure-
ment program. Ericsson, being one of the largest
telecommunication equipment manufacturers in
the world, has a distributed organization and

a whole spectrum of projects (from small to
very large).

The main processes are stable in the orga-
nization despite re-organizations, process cus-
tomizations, and usage of various tools is normal
situations in the company — conditions which are
prevalent in software engineering and uncommon
in manufacturing industries. These factors make
the needs for measurement programs change con-
stantly and require the program to evolve. In
this paper we present results from a survey con-
ducted at the company assessing the success of
the measurement program and the measurement
systems used in it. The results of this survey
are combined with results of interviews with de-
signers of measurement systems in industry to
identify the success factors.

In contrast to existing body of knowledge
in software engineering, instead of focusing on
the establishment of the measurement program,

© Copyright by Wroclaw University of Technology, Wroctaw 2011

Miroslaw Staron, Wilhelm Meding

which most of the articles discuss, we focus on
addressing the question of ‘Keeping the mea-
surement program alive’ as identified by Clark
[4]. Therefore in our research we address the
following research question:

Which are the main factors determining a
long-term success of a measurement program?

By using the term ‘long-term’ we mean that
the measurement program is used in the orga-
nization in more than in a single project, that
it gets extended over time, and that it becomes
‘the new way of working’ in the organization
(gets integrated in the organization in the every-
day work) — the studied measurement program
is in existence for 5 years at the time of this
study.

The main contribution of our work is identifi-
cation of four key roles in establishing long-term
measurement programs: section manager, stake-
holder, quality manager and designer of mea-
surement systems. A number of success fac-
tors which are associated with each of the
role separately and with several roles together
(which is shown through cluster analysis us-
ing K-Means tests for clusters). These fac-
tors help the roles in being effective and effi-
cient when establishing measurement programs.
By efficient we mean that it is possible to
run measurement program for an organization
of several hundred employees with small re-
sources (ca. 2 full-time employees) dedicated
for measure collection, analysis and presenta-
tion. We present our factors with short ex-
perience reports of how this worked on the
case of the studied organization; these guide-
lines are intended to help other practitioners
in realizing measurement programs in other
companies.

The paper is structured as follows. Section
2 presents the most related research in the field.
Section 3 presents the design of the study and
with its subjects, objects, and instruments. Sec-
tion 4 presents the elicited success factors pre-
ceded by the direct results of the case study.
Section 5 evaluates validity of our study while
section 6 presents the conclusions.

2. Related work

We investigated the following publications in or-
der to elicit factors important when introducing
metric programs into organizations in general,
and not to be constrained only to Ericsson’s
context:

— Umarji and Emurian [1]: the study describes
the use of technology adoption theory when
implementing metric programs with focus on
social issues. One of the important results
from that study was the importance of the
factor “ease of use”. When developing our
framework we invested in making the frame-
work easy to use and making the presentation
of the indicators easy to interpret.

— Gopal et al. [5] and Gopal et al. [6]: these
studies present results and conclusions from
a survey about metric program implemen-
tation conducted with managers at various
levels (over 200 data points). The results indi-
cated the importance of such factors as man-
agement commitment and the relative low
importance of such factors as data collection.
In order to check how important the frame-
work is for the managers who we work with,
we included the line manager and the project
manager in our interviews when evaluating
the framework.

— Atkins et al. [2]: among other aspects, this
paper discusses how metrics can be reused by
projects working on similar things in parallel.
We used their experiences when reasoning
about the reuse of metrics between different
instances of the framework.

— Lawler and Kitchenham [7]: based on the
experiences of several case studies, this paper
discusses the issues of using metrics at dif-
ferent levels and combining metrics together
(e.g. combining metrics from particular de-
signers to provide the status of the whole
project). This work affected the design of the
framework in such a way that the metrics in
the framework can be reused and combined
in a way consistent with the study by Lawler
and Kitchenham.

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study 9

— Kilpi [3]: this paper describes how a metric
program was implemented at Nokia. We used
their experiences when evaluating the frame-
work.

— Niessink and van Vliet [8, 9]: these studies
describe external factors important for soft-
ware metric implementation, including the
importance of the goal of software measure-
ment processes. Our experiences support this
conclusion, and the need for the monitoring
status and progress resulted in finally choos-
ing the ISO/IEC 15939 standard as a basis
for our work with metrics.

— de Panfilis et al. [10]: this study describes
experiences from introducing a GQM-based
metric program. Our experiences showed
slightly contradicting picture that one of the
most important aspects is not the sole mo-
ment of adoption of a program (as advocated
by GQM) and possibilities of using subjective
metrics, but the use of objective metrics to
monitor entities over longer periods of time.
A more detailed guidelines supporting the in-
troduction of metric programs can be found
in Goodman [11] or [12].

— framework presented by Diaz-Ley et al. [13]
can be seen as suitable for smaller enter-
prises whereas the set of success factors and
the framework from Ericsson [14] is targeted
mainly for larger enterprises with a number
of management levels. The main difference
between the large and small-medium enter-
prises in the context of our work is the fact
that the larger enterprises are organized us-
ing significantly more levels of management
and multiple dimensions of management —
e.g. project managers are usually not line
managers.

One of the observed issues in program adop-
tion is the reuse of measures. As Jorgensen [15]
shows, this is not an easy task due to the poten-
tial different definitions of measures. Jorgensen
shows contrasting definitions of measures if qual-
ity is defined as “a set of quality factors”, “
satisfaction”, and “software quality related to er-
rors”. Our research recognizes the needs for view-
ing the same aspects (e.g. quality) from differ-
ent perspectives — depending on the stakeholder.

user

These needs are also recognized by the Ericsson’s
measurement team which we collaborated with.

The concept of a measurement system is not
new in engineering or in software engineering —
measurement instruments and systems are one of
the cornerstones of engineering. In software engi-
neering, we are used to working with metric tools
rather than measurement systems. The difference
is that metric tools and measurement instru-
ments seem to be very similar, but metric tools
and measurement systems are not. Measurement
instruments (in other engineering disciplines) are
suited for single purposes and usually collect
one metric (e.g. voltage) whereas metric tools
collect usually a number of metrics at the same
time (e.g. length of the program, its complex-
ity). Our framework is placed on top of metric
tools with the focus on presenting calculating
and presenting indicators rather than collecting
metrics and is intended to be composed of mul-
tiple measurement instruments (metric tools).
Other examples of measurement systems built in
the same principles are:

— A measurement system presented by Wisell
[16]: where the concept of using multiple
measurement instruments to define a mea-
surement system is also used widely at the
studied organization.

— Computerized measurement systems in other
disciplines facilitating the concept of measur-
ing instruments, as presented in the follow-
ing papers: [17, 18, 19, 20, 21, 22, 23, 24].
All these measurement systems are (i) us-
ing the concept of measurement instruments,
(ii) used in established engineering fields or
physics, (iii) focused on monitoring current
value of an attribute (status in our case) not
on collecting metrics. Although differing in
domains of applications these measurement
systems show that concepts which the mea-
surement team adopted from the interna-
tional standards (like [25]) are successfully
used in other engineering disciplines.

— Lawler and Kitchenham [7] present a generic
way of modeling measures and building more
advanced measures from less complex ones.
Their work is linked to the TychoMetric [26]
tool. The tool is a very powerful measure-

10

Miroslaw Staron, Wilhelm Meding

ment system framework, which has many ad-
vanced features not present in the Ericsson’s
framework (e.g. advanced ways of combining
metrics). TychoMetric provides a possibility
of setting up advanced and distributed (over
several computers) filters and queries for mul-
tiple data sources as it is intended to cover
all (or at least very many) kinds of metrics
and projects.

3. Study design

In our case study we study the measurement
program at Ericsson where several measurement
systems are used (over 200 at the time of study-
ing). The concept of a measurement system has
been adopted from the existing standards on
metrology [25] where it is defined as a set of mea-
suring instruments assembled in order to measure
quantities of specific kinds. In the case of software
engineering the quantities are dependent on the
purpose of measurement and the measured enti-
ties. An entity can be a project, process, product,
team, etc. and a quantity can be project length,
number of activities in the process, lines-of-code
in the product, team size, etc. The measurement
systems built by the organization are developed
according to the ISO/IEC 15939:2007 standard
[27]. More details about the measurements are
presented in subsection 3.2.

3.1. Sample

The sample in our study was chosen using conve-
nience sampling with blocking: we asked experts
with different roles:

— Stakeholder (1 person): A project manager
for whom a measurement system was built.
The project manager used the measurement
system to monitor and control his project
during the whole project execution.

— Manager (1 person): A section manager re-
sponsible for resources and competence.

— Quality manager (2 persons during 1 inter-
view — i.e. 1 data point): Two quality man-
agers working with measurement in the orga-
nization. They do not develop measurement

systems, but are involved in their design and
evaluation.

— Designer of measurement systems/quality
manager (1 person): A quality manager re-
sponsible for designing, developing, and main-
taining measurement systems in the organi-
zation. This manager was the most insightful
into the details of how measurement systems
are structured and about their limitations.
These roles covered all persons involved in

establishing, development, and maintenance of

both measurement programs and measurement
systems. All interviewees have several years of
experience with working with measurements at

Ericsson.

3.2. Objects

The study object in this case study is the mea-
surement program at one of the units of Ericsson
which develops large products for the mobile
telephony network. The size of the organization
is several hundred engineers and the size of the
projects can be between 80 and 200 engineers.
Projects are more and more often executed ac-
cording to the principles of Agile software de-
velopment and Lean production system referred
to as Streamline development (SD) within Eric-
sson [28]. A noteworthy fact is that in SD the
releases are frequent and that there is always
a release-ready version of the system: referred
to as Latest System Version [28]. This means
that the measurement program used in the or-
ganization was designed to monitor and control
software development on a continuous basis as
opposed to controlling projects which have begin-
ning and end. The streamline development also
posed requirements on measures — they should
guide the operation of the Streamline develop-
ment programs towards improvements during
the execution, i.e. without the possibility of do-
ing post-mortem analyses or baselining towards
previous projects.

The measurement program was a continuous
activity for a number of years and was constantly
improved. The last year, however, the organiza-
tion succeeded in establishing the ‘measurement
culture’ in the organization and developed sev-

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study 11

eral measurement systems according to ISO/IEC

15939 standard [27]. This standard contributed

to establishing common measurement processes

and vocabulary of indicators, base/derived mea-
sures, and information products. The studied
organization complemented this standard with

the ISO VIM (Vocabulary in Metrology, [25])

which contributed with the definitions and un-

derstanding of such concepts as measurement
system, measuring instrument, base quantity,
measurement process.

ISO/IEC 15939 was used to structure the
measurement process at the studied organization
and all documentation and information about
it. In particular the web pages were named “In-
dicators”, “Base/derived measures”, “Measure-
ment systems”, etc. This ambient use of ISO/IEC
15939 quickly resulted in spreading the vocabu-
lary of the standard in the organization.

ISO VIM standard was used to struc-
ture the information within the measure-
ment systems (i.e. MS Excel files) and to
provide definitions of the concepts mea-
sured. When possible the measurement team
also reused definitions from ISO/IEC 25000
series of standards (Software Quality Re-
quirements and Evaluation) and ISO/IEC
9126 [29].

The goal of the measurement program was to
constantly improve the operational excellence of
the unit of Ericsson w.r.t. productivity, product
and process quality and technology leadership.
The measurement program was designed using
the ISO/IEC 15939:2002 (and later using :2007
edition) with the purpose to support stakeholders
at multiple levels of organizations, for example:
— Project managers: to support them in moni-

toring the progress of the project and assist-
ing them in addressing questions like “Will
we finish on time?” or “How much resources
do we need to maintain/improve the quality
of the product?”

— Product managers/owners: to support them
in monitoring and improving quality of prod-
ucts, i.e. assisting them in addressing ques-
tions like “How to achieve O-defects at the
release date?” or “Will we have good quality
at <milestone>?”

— Line managers (at the section, department
and unit level): to support them in mon-
itoring the status of the organization and
making long-term decisions about products,
projects and competence in the organization,
i.e. assisting them in addressing questions
like: “Will we have enough resources to satisfy
needs of <project X>7”

The measures used in the measurement pro-
gram varied from management measures (e.g.
financial) to technical (e.g. number of defects
discovered during testing), and used at several
levels of abstraction. We were able to study a
number of measurement systems, e.g. measure-
ment systems for :

— Measuring reliability of network products in
operation for the manager of the product
management organization; example measures
in this measurement system are:

— Product downtime per month in minutes

— Number of nodes in operation
— Measuring project status and progress — for

project managers who need to have daily up-
dated information about such areas as require-
ments coverage in the project, test progress,
costs, etc.; example measures in this measure-
ment system are:

— Number of work packages finished during

the current week

— Number of work packages planned to be

finished during the current week

— Number of test cases executed during the

current week

— Cost of the project up till the current date
— Measuring post-release defect inflow — for

product managers who need to have weekly

and monthly reports about the number of
defects reported from products in field; ex-
amples of measures:

— Number of defects reported from field op-

eration of a product during the last month

— Number of nodes in operation last month

— Number of nodes which reported defects
— Summarizing status from several projects —

for department manager who needs to have

an overview of the status of all projects con-
ducted in the organization, e.g. number of
projects with all indicators “green”

12

Miroslaw Staron, Wilhelm Meding

These measurement systems were instanti-
ated for a number of projects and products. Each
of these instances had a distinct individual as
stakeholder (in the role of project manager, prod-
uct manager, etc.) who used the measurement
system regularly.

Measures used in these measurement systems
were both collected automatically from databases
or manually from persons when the data is not
stored in databases (e.g. by asking the project
manager how many designers are assigned to
remove defects from the software in a particular
week, with detailed measures are described in
[30]). The sources of information were defined
in the measures specification and the infrastruc-
ture specification for the particular measurement
systems (e.g.[31]).

The measures were designed using an
in-house developed framework [32] based on the
ISO/IEC 15939 standard. The framework was
structured around the concepts of information
product and indicator; the development of mea-
surement systems started with discussions with
stakeholders with two questions: “What do you
need to know?” and “Why do you need to know
it?” in the context of their management role.
Model-Driven-Engineering approach was used
when designing, implementing and validating
measurement systems [31]. This approach has
led to optimizing the number of data collected
and the reduction from over 3000 measures to
ca. 30 reusable (indicators).

The measurement program was built upon
the concept of tools present in every desktop at
the company — MS Office. Automated tools were
built on top of MS Excel 2003 to collect data,
perform measurements, store data, and present
the most important information in form of indi-
cators — all according to the ISO/IEC 15939:2007
standard. Detailed description of the technolo-
gies used behind this program are described by
Staron and Meding [14].

3.3. Instruments

The main instrument used in our study was ques-
tionnaire which we used during the interviews.
Another instrument was an interview with the

measurement systems designer/quality manager.

The questionnaire was originally used by Jef-

fery and Berry [33] as a means of predicting the

success of a measurement program in industry.

The analysis of answers to these questions and a

further interview result in identifying the main

factors which determined successful implementa-
tion of measurement program, in a similar way
as identifying the factors in other industrial case

studies [34, 35].

The questionnaires contained a list of ques-
tions; each of these was to be evaluated how
well it was fulfilled. The evaluation was done
by assigning a score on the scale 0 — 3, where
0 — this requirement is not fulfilled at all, 1 —
this requirement is fulfilled to some extent, 2 —
this requirement is fulfilled almost fully, and 3
— this requirements is completely fulfilled. This
scale was according to the original questionnaire
presented by Jeffery and Berry [33]. We modified
the scale by adding N/A (Not Applicable) to
the scale. An example question is presented in
subsection 3.3.

We also added new questions, which were
identified as factors important in successful im-
plementation of measurement programs by [36].
All questions, including the ones added, were
grouped according to the categories from the
original paper [33]:

— Context(C) — questions about the background
of the measurement program, the needs for
it,

— Inputs(I) — questions about the input to the
measurement program and its resources,

— Process — questions about the process of col-
lecting measurements, process responsibilities
and measure teams, with subcategories
— Process motivation and objectives (PM)
— Process responsibility and metrics team

(PR)

— Process and data collection (PC)

— Process training and awareness (PT)

— Product(P)- questions about the measure-
ments as products of the measurement pro-
cess.

The full list of questions from the original
questionnaire can be found in [33]. Our com-
plete list of questions is presented below, and the

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study

C1: Were the goals of the measurement program congruent with the goals of the business?

0 1

2 3 N/A

Figure 1. Example question in the questionnaire

added questions are annotated with (A) before
the question:

C1: Were the goals of the measurement pro-
gram congruent with the goals of the busi-
ness?

C2: Could the measured staff participate in
the development of the measures?

C3: Had a quality environment been estab-
lished?

C4: Were the processes stable?

C5: Could the required granularity be deter-
mined and was the data available?

C6: Was the measurement program tailored
to the needs of the organization?

C7: Was senior management commitment
available?

C8: Were the objectives and goals clearly
stated?

C9: Were there realistic assessments of
pay-back period (e.g. 2 years)?

(A) C10: Was the process planned to be in-
crementally implemented?

I1: Was the program resourced properly?

12: Were resources allocated to training?

I3: Were at least three people assigned to the
measurement program?

I4: Was research done?

(A) I5: Were existing metrics materials used?
(A) 16: Was the data seen to have integrity?
(A) I7: Was the data easy to collect collected?
(A) I8: Was the data set determined incre-
mentally?

P1: Were the measures clear and of obvious
applicability?

P2: Did the end result provide clear benefits
to the management process at the chosen
management audience levels?

P3: Was feedback on results provided to those
being measured?

P4: Was the measurement system flexible
enough to allow for the addition of new tech-
niques?

P5: Were measures used only for pre-defined
objectives?

PC1: Were the important initial metrics de-
fined?

PC2: Were tools for automatic data collection
and analysis developed?

PC3: Was a metric database created?

PC4: Was there a mechanism for changing
the measurement system in an orderly way?
PC5: Was measurement integrated into the
process?

PC6: Were capabilities provided for users
to explain events and phenomena associated
with the project?

PC7: Was the data cleaned and used
promptly?

PC8: Did the objective determine the mea-
sures?

(A) PC9: Was the measurement program con-
stantly improved?

PM1: Was the program promoted through the
publication of success stories and encouraging
exchange of ideas?

PM2: Was a firm implementation plan pub-
lished?

PM3: Was the program used to assess the
individuals?

PR1: Was the metrics team independent of
software developers?

PR2: Were clear responsibility assigned?
PR3: Was the initial collection of metrics sold
to data collectors?

14

Miroslaw Staron, Wilhelm Meding

— PT1: Was adequate training in software met-
rics carried out?

— PT2: Did everyone know what was being mea-
sured and why?

The interviewees were not presented with
additional material during the interview, as they
understood the measurement program and had
extensive experience with it.

As an addition to the questionnaire, we send
a question to the designer of measurement sys-
tems/quality manager before the interview in or-
der not to influence his answers by the questions
in the questionnaire. The question was: “What
are the most important factors that determine
whether a measurement system is successfully
implemented and used in the organization?” We
deliberately narrowed the question to measure-
ment system as we wanted to obtain information
which covered the issues not addressed by the
questionnaire.

In the end we performed also a workshop with
the quality managers, section manager, and de-
signer of measurement systems/quality manager
where we presented the results and validated our
findings.

3.4. Analysis methods

In the study we use descriptive statistics when
analysing the results from the questionnaires.
We provide a total percentage of score for each
category from Section 3.3. The max score (i.e.
100%) is when all applicable questions are ranked
as 3 (requirements are completely fulfilled) by
all stakeholders (i.e. 3 * 4 = 12, and 12 is the
100% score for each questions applicable for all
stakeholders). We do not account for non-equal
variances in the descriptive statistics as we do
not perform hypotheses testing methods that
would require doing so.

To test for significant differences between
roles, we use also the Friedman test [37]. Our
hypotheses are:

— HO: There is no difference between roles.
— HI1: There is a difference between roles.

Testing these hypotheses allows for assessing
whether the different respondents perceived (as-
sessed) the measurement program differently, or

whether there is a consensus on how the program
is implemented.

In order to further test for which questions
the respondents were uniform and for which their
answers were disperse, we use the hierarchical
cluster analysis for between-variable (roles) and
between-treatment (questions) clusters [38]. We
use dendrograms for visualizing the results.

Using the cluster analysis provided us with
the statistical means of suggesting groups of suc-
cess factors. The suggested groups were then eval-
uated together with the study subjects whether
they should be grouped into a more compound
success factor.

4. Results and analysis

The results are presented in the following parts:
(i) results from questionnaires, (ii) success fac-
tors identified by the designer of measurement
systems/quality manager, and (iii) the list of
success factors identified and generalized from
both (i) and (ii).

4.1. Questionnaire results

The percentage of requirements fulfilled for each
category is presented in table 1.

Table 1. Percentage of requirements fulfilled

Category | Number of questions | Score
Context 10 79%
Input 8 80%
Process 17 64%
Product 5 76%

The table shows that the input and context
are categories with the requirements fulfilled to
the largest extent. The process is the category
with requirements fulfilled to the least extent.
This seems to be natural as the organization and
its measurement program constantly evolves, and
so do the measurement processes. The summa-
rizing descriptive statistics per respondent are
presented in table 2.

The descriptive statistics show that stake-
holder was the most positive respondent, which

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study 15

Table 2. Descriptive statistics per respondent

Respondent Median | Number of 3’s | Number of 0’s
Designer of measurement systems/Quality manager 2 19 7
Quality manger 2 14 6
Stakeholder 3 25 2
Section manager 3 21 1

was a desired effect (since the ‘survival’ of the
measurement program depends on stakeholders
using the measurement systems). After the pre-
sentation of these results the designer of measure-
ment systems/quality manager provided us with
feedback on his low assessment results. The re-
sults were caused by the designer of measurement
system/quality manager having a complete pic-
ture of the further work to improve the existing
measurement program in the company.

The Friedman test resulted in rejecting the
null hypothesis with the p-value of 0.00042. With
the total number of questions over 30, the g-value
was below 0.05. Having rejected the null hypoth-
esis we can conclude that the respondents had
different view on the measurement program and
perform the hierarchical cluster analysis.

The hierarchical cluster analysis for
between-variables (roles) clusters results in the
dendrogram presented in figure 2.

The dendrogram shows that the quality
manger(s) and the section manager have the most
similar opinions. The stakeholder’s opinion was
the least similar to the rest of the respondents.
A closer analysis (indicated in Table 2) showed
that the stakeholder was more positive than other
respondents to the measurement program and its
fulfilment of requirements. This, in turn indicated
that the organization was successful in spreading
the measurement systems and establishing the
measurement program.

The hierarchical cluster analysis for
between-treatments (questions) cluster results in
the dendrogram presented in Figure 3.

The results show that there are questions
where the different respondents do not agree —
e.g. question 21. After a closer analysis we found
that these are the questions about aspects not
familiar to some of the respondents — e.g. stake-
holder (project manager) was not aware that we
have a large metrics database. An example of a
group of questions where the respondents agreed

is: PR1, PR2, C5, C6, I5, 16, and I8 (in the
middle of the figure). A closer analysis revealed
that these were the questions which scored 3 (the
top rank) by all stakeholders.

4.2. Measurement Systems Designer’s
perception: success factors

The list of factors which are identified as im-
portant by the designer concerned the way in
which measurement systems are developed and
deployed in the organization. These factors were
not added to the questionnaire, because they
were at a much lower level than the question-
naire — they concerned technical aspects of build-
ing measurement systems and measuring instru-
ments rather than establishing a measurement
program in the organization.

The measurement systems designer/quality
manager identified the following factors (without
prioritizing them):

1. Work according to the standards (also identi-
fied in [39]), which is important as it ensures
that:

a) all measurement systems are built and

presented in the same way

b) there is a well known nomenclature re-
garding measurement systems

c) all steps regarding building and maintain-
ing of measurement systems are well de-
fined.

d) ISO/IEC 15939 is a very solid standard
that is recommended for Software Engi-
neering.

2. Always providing certain base measures, e.g.
defect statistics for projects and products.
a) Using standards like ISO/IEC 25000

(SQUARE) is recommended.

3. Definition and use of a known process to
get information about all main elements of a
measurement system (e.g. stakeholder, infor-
mation need, indicators). In particular there

16 Miroslaw Staron, Wilhelm Meding

* *# & = * * HI ERARCHTITCA AL C L U S TER AN AL Y S IS * % % % =%

Dendrograun using Average Linkage (Between Groups)
Rescaled Distance Cluster Combine

C A S E] S 10 is 20 2S
Labe 1l MNum F————————— +————————— ‘—————— - —— ————————— ———————— -+

Quality manager
Section manager
Designerf/Qm
Stakeholder

W R b N
L

Figure 2. Dendrogram for between-variables clusters

CASE 0 5 10 15 20 25
Label Num 4========= esEEES. $mmmmmnan- temmm————— $mmmmmm——a +
PTZ 35
P3: 38 ﬂ—
C10 10
I3: 13
PS: 40 _,
PC2 26 _—
Cl1: 1 :]—
cq: 4
I4: 14
PC1 25
C3: 3
Cc8: 8
PR1 22
PR2 23 —
CS: S
I6: 16
18: 18
Cé6: 6
IS: 15
Il: 11
P1: 36
I7: 17
PC? 31
PC9 33
PC6 30
PT1 34 :I_
[or 3] 2
PM1 19 _—
PCS 29
C9: 9 :’—
PM2 20
PM3 21

Figure 3. Dendrogram for between-treatment clusters

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study 17

should always be a stakeholder for the mea-

surement system

a) The stakeholder should have a real and le-
gitimate power in the project —e.g. project
manager or section manager. Otherwise
there is a real risk of waste, i.e. measure-
ments are not used for decision making.

Specify and implement measurement systems

in a constant way, e.g. logical and physical

views of architectural design, implementation
technology, and/or knowledge base.

a) maintain the infrastructure and measures
so that it can be deployed on large scale

Use pre-defined infrastructure and allocated

areas for storing measures and information

about the measures (define the measurements
database).

a) It is important to keep the values of mea-
sures for future use and future analyses.
Using simple databases with structure of
information in accordance to ISO/TEC
15939 is recommended.

Present the main information (e.g. indica-

tors) in a simple, non-ambiguous, and suc-

cinct manner

a) present details in another place, which is
linked from the main information presen-
tation

b) Gadget in MS Windows Vista/7 or Wid-
gets for MacOS are recommended since
they provide the stakeholders with infor-
mation without the need for them to be
active (for example, please see [30]).

7. Ensure reliability of the measurement system

— provided information should be reliable and

up-to-date.

a) We recommend using indicators of infor-
mation quality [40].

Ensure that the necessary knowledge is in

place (for details see also [14])

a) stakeholders should know how to interpret
the information and make adjustments to
measurement systems

b) designers of measurement systems should
know the standards and implementation
technology for the measurement systems.

The above factors are related to how mea-

surement systems are built and deployed in the

organization. They have an effect on the mea-
surement program, to which other factors apply
as well.

4.3. Success factors

In this section we focus on the factors, which
have not been identified previously, and do not
re-consider the importance of such factors as:

— Management commitment [6]: Measurement
program as a “shadow” activity of employ-
ees without management support stand no
chances of success as it is the managers who
decide whether new methods/tools/ways of
working are introduced or not. When we de-
signed the first measurement systems the
commitment was rather hard to obtain. The
turning point came when we showed the re-
sults of our predictions to one of the project
managers and his response was “If these pre-
dictions are correct, then we cannot let this
happen”; this was followed by his actions to
adjust resources and avoiding problems in the
project. This fist “success” helped us to get
strong commitment from the project manager
and in turn (gradually) from other project
managers and line managers.

— Team commitment [6]: Without the commit-
ment from the team being measured the in-
formation quality might be low, which jeop-
ardizes the reliability of the data. In the case
of the studied organization the team commit-
ment was obtained after about 1 year of using
measurement systems for making decisions
for one project. The team has realized that
the measurements help them to visualize the
goal and achieve it.

— Making measurements part of processes [41]:
Putting new burdens on persons in the or-
ganization is never popular and should be
avoided. It is much better to use ‘probes’
which measure in-process data from the tools
already used at the organization. This min-
imizes the threat that other activities are
prioritized over measuring for the persons be-
ing measured. In our case this was reduced by
using automation based on MS Excel. Since
everyone in the organization knew MS Excel

18

Miroslaw Staron, Wilhelm Meding

virtually no learning was involved; automa-

tion reduced even the burden of processing

and presenting the information (see [14]).

We see the above factors being prerequisites
for a successful program and these factors were
present in the studied organization. What we
have observed in the organization was the grad-
ual (over ca. 2 years) change of culture. The
concept of “main measures” was discussed in the
organization at the beginning whereas in the end
only the indicators were considered.

Table 3 presents factors which we identified
as important when implementing measurement
programs when performing the program evalua-
tion at Ericsson. These factors are important for
different roles, which is indicated by a cross in the
column denoting particular stakeholder (D/QM
— Designer/Quality manager; QM — Quality man-
ager; SH — Stakeholder, SM — Section manager).

The above factors have already been identi-
fied and they are mostly related to the process
of establishing the measurement program. After
being established, the program needs to be main-
tained in order not to be dropped. Therefore we
identify the following:

1. Working according to the ISO/IEC 15939
standard: A standardized nomenclature
(ISO/IEC 15939 [27] and ISO/IEC Vocab-
ulary on Metrology [25]), terminology and
proven processes are key factors in the
long-term adoption. Using standards make
the effort less person-dependent and inter-
pretation dependent. It makes reuse across
organizations easier, as also indicated in [43].
In our case we follow: ISO/IEC 15939:2007,
ISO/IEC Vocabulary on Metrology, and
ISO/IEC 9126.

2. Providing information quality indicators: In-
formation is as good as it is reliable and
up-to-date. Providing information, especially
automatically should also indicate the qual-
ity of the information provided. An existing
model can be used (e.g. [44, 45]) or a ded-
icated one can be developed. The issues to
address when indicating information quality
are: providing the data which is up-to-date,
correctly processed, complete, and unbiased.

In our work we use the following indicators

of information quality:

a) Timeliness (the information presented to
the stakeholder is up-to-date, e.g. from
today, this month, or current — depending
on the purpose),

b) Completeness (the information contains
no missing values),

c) Correctness (there were no errors in cal-
culation),

d) Accuracy (the data sources contain the
updated information)

Automated data collection based on simple
software tools (also identified in [46]): mea-
sures should be collected automatically to
minimize the burden of data collection to the
(usually) already busy organization. If not
automated the program will eventually be
rejected. In our work we use MS Excel and
Visual Basic for Applications to automate the
data collection and processing. By develop-
ing measurement systems, the organization
gains competence on working with measures
and does not rely on external entities when
building and maintaining the measures.
Individual stakeholders for each measurement
system: (related to “Use in decision making”
from [6]): there is one role/individual in
the organization whose information need is
satisfied with the measurement system (a.k.a.
producing data inside their range of validity
as identified in [46]; identified also in [47] as
using different strokes for different people). If
this is not the case, then the measurements
are not used in the decision process and
thus become ineffective. Stakeholders should
be able to adjust the measurements to the
situations that can happen over time (e.g. by
adjusting decision criteria for indicators).
Direct benefits to the organization: The re-
sults from the measurement program should
be applicable in the organization “now” and
not after a period of time. The most cur-
rent activities are usually prioritized, and
benefiting from measures in decision process
depends on using current data to satisfy
current information needs.

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study 19

Table 3. Factors important for long-term success identified in our study

Factor D/QM | QM | SH | SM
Congruence of measurement goals with business goals b X
Incremental implementation of the program X X
Participation of measured staff in program development b X
Quality environment X X
Process stability b

Availability of data at the required granularity b X X b
Tailoring measurements to organization needs b X X b
Clear objectives and goals (also in [1]) X X X
Proper program resourcing (proper metric team) X X
Conducting research prior to/during measurement program development X X b
Using existing metric materials X X X b
Integrity of the data X X X X
Using existing data for processing X X be
Data set determined incrementally X X X X
Clear measures of obvious applicability X X
Clear benefits for the management process X

Providing feedback to those being measured X
Flexibility for adding new measurements (also in [1]) X X X
Pre-defined objectives for the measures x
Initial definition of important metrics (also in [42]) X X X
Automatic data collection and processing (also in [1, 42]) X X X X
Metric database b X b
Mechanisms for adjusting measurement systems to changing needs X

Integrating measurement into the process X

Stakeholders are able to explain the meaning of metrics values b X
Using data in clean and prompt way (also in [42]) X X X X
Measures are determined by objectives X X X
Constant improvement of the measurement program X X X X
Independent metric team (from developers) X X X X
Clear assignment of responsibilities be X X X
Adequate training in software metrics X X

Devoted measurement team: the measure-
ments are collected throughout the organi-
zation, but there is a team of specialists
who help to define and introduce measure-
ments. These specialists are also responsi-
ble for maintenance of the measurement pro-
gram. Evidence of such a team being a
positive factor has also been found when
introducing modelling into large organiza-
tions [48], which, although seems unrelated,
is similar to introducing measures (as a
new way of working). In the case of the
studied organization the measurement team
consists of quality managers, section man-
agers, technology specialists and researchers
— which is similar to the team of special-
ists when introducing models — modelling

specialists, technology specialists and re-
searchers.

Measurement collection effort should be mini-
mal: (also identified in [46, 47]), which means
that using already collected data (at least
initially) is a good point. Every organization
collects data from their processes (e.g. such
high level data as project cost), and such
data should be used when the measurement
program is being established to show that
measurement programs provide positive sup-
port. After the measurement program has
been adopted, the measures should be refined
to optimize the data collection and fulfilment
of stakeholders’ information needs.
Providing standard base measures: Certain
base measures, e.g. product performance,

20

Miroslaw Staron, Wilhelm Meding

should always be provided if applicable to
support benchmarking and reuse. However,
the number of measures provided in this
way should be optimized w.r.t. needs and
costs for collecting them. Example base mea-
sures provided in the studied organization are:
In-Service-Performance, resource allocation,
number of work packages completed.

9. Reusing base measures: Costs of measures
collection should be optimized and measures
should be aimed at being reused. Therefore
the measures should be specified, described,
and stored in repositories which would en-
able reusing them — e.g. for benchmarking or
measuring improvements over time.

10. Using measures specifications and specifica-
tion of their instantiation: The measures are
specified in relation to the kinds of measured
entities — e.g. measures of a project (one sin-
gle project), like number of designers. These
measures are then instantiated for different
projects. The distinction is important since
measurement systems might be different be-
cause they measure different projects (enti-
ties) or measure projects and processes (dif-
ferent kinds of entities).

11. Do not use the program to assess individuals:
It is important not to create negative atti-
tude to the program (a.k.a. Fear of adverse
consequences in [47, 1]) by creating situa-
tions that measurements are to assess the
work /performance of individuals.

The above factors are ordered according to their

importance — factors 1 being the most important

one.

5. Validity evaluation

We identify the threats to validity of our study
using the categories presented by Wohlin et al.
[49].

The main external validity threat of our study
is the fact that we studied only a single organi-
zation. However, the found success factors are
consistent with the trends observed in literature
and do not seem to be organization or process
specific. The underlying technology for imple-

menting automation is based on MS Excel which
is used in almost every company and is not an
Ericsson-specific tool. The add-ons for Excel with
measurement instruments are specific, but these
do not influence the generalizability of the re-
sults.

The main construct validity threat is related
to mono-operation bias, which is a bias intro-
duced by observing a single phenomenon at a
single point of time and thus not capturing the
full breadth of the phenomenon. This is a typical
threat to operationalizations in single-case case
studies. Our research is a summary of a 2 year
action research project research and the respon-
dents in the study were involved in measurement
activities for a number of years.

The main threat to the internal validity of
our findings is the maturation effect as it was
a 2 year project. Naturally this is a threat, but
to some extent the maturity effect is desired in
studies like this. The primary goal of our action
research project was not to observe whether the
measurement program was correct, but to es-
tablish and maintain a measurement program.
In this manner, the maturity effect is a desired
“cultural change” effect in the organization.

Finally, the main threat to conclusion valid-
ity is related to the fact that we have not used
grounded theory to analyze interview material,
but rather asked direct questions to the respon-
dents and the interviewee. It was a deliberate
choice since the authors were part of the team
establishing the measurement program and we
had this opportunity to reduce the ‘noise’ in the
interview data by asking direct questions and
using experience to reason about the answers.
We use the statistical analysis when possible to
evaluate the significance of some of the claims
we made.

6. Conclusions

Software development projects are entities where
change is prevalent and constant adaptations are
predominant — especially if the projects are to
meet their goals and deliver quality software. A
long-term success of a measurement program

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study 21

requires its constant adaptation towards the
change in software projects, a situation unlike
in manufacturing industries. The studied organi-
zation has chosen not to use GQM in order to
be more flexible when adopting their measure-
ment program and take advantage of adjusting
interpretations of measures (embedded in the
concept of indicator) and to be able to combine
the ISO/IEC 15939 standard with measurement
theory from other engineering disciplines. The
decision to remain independent from tool ven-
dors and do not purchase off-the-shelf solution
provided the organization with ability to remain
the core measurement competence in-house, and
hence be more reactive to changing needs of the
organization.

The organization combined three key ele-
ments when establishing and maintaining the
measurement program: the use of international
standards, significant experience base, and re-
search activities. This combination contributed
to the success of a measurement program con-
stantly grows in the organization. By including
researchers in the process of developing, estab-
lishing, and maintaining both the measurement
program and the measurement systems, the com-
pany benefited from external competence, but
did not rely on external entities to establish the
program. This elevated the competence of the
measurement team and resulted in publications
related to measures, e.g. [50].

In this paper we described factors contribut-
ing positively to the success of a long-term mea-
surement program. These factors are based on
the experience of the team working with the
measurement program and have been obtained
through interviews and surveys.

Our further work is focused on observing
threats to the working measurement program
and identifying these threats over a longer pe-
riod of time (at least 3 years). Identifying such
threats would help to prevent withdrawing from
the measurement program in the organizations.

7. Acknowledgements

The project has been partially sponsored by
the Swedish Strategic Research Foundation
(www.stratresearch.se) under the program Mo-
bility in IT. It was also partially sponsored by
Ericsson Software Architecture Quality Center
and Ericsson Software Research.

We would like to thank the involved managers
and engineers at Ericsson for their support in
this study.

References

[1] M. Umarji and H. Emurian, “Acceptance issues
in metrics program implementation,” in 11th
IEEE International Symposium Software Met-
rics, H. Emurian, Ed., 2005, pp. 10-29.

[2] K. L. Atkins, B. D. Martin, J. M. Vellinga, and
R. A. Price, “Stardust: implementing a new
manage-to-budget paradigm,” Acta Astronau-
tica, vol. 52, no. 2-6, pp. 87-97, 2003, tY - JOUR.

[3] T. Kilpi, “Implementing a software metrics pro-
gram at nokia,” IEEE Software, vol. 18, no. 6,
pp. 72-77, 2001.

[4] B. Clark, “Eight secrets of software measure-
ment,” IEEE Software, vol. 19, no. 5, pp. 12-14,
2002.

[5] A. Gopal, T. Mukhopadhyay, and M. S. Krish-
nan, “The impact of institutional forces on soft-
ware metrics programs,” IEEE Transactions on
Software Engineering, vol. 31, no. 8, pp. 679694,
2005, 0098-5589.

[6] A. Gopal, M. S. Krishnan, T. Mukhopadhyay,
and D. R. Goldenson, “Measurement programs
in software development: determinants of suc-
cess,” IEEE Transactions on Software Engineer-
ing, vol. 28, no. 9, pp. 863-875, 2002, 0098-5589.

[7] J. Lawler and B. Kitchenham, “Measurement
modeling technology,” IEEE Software, vol. 20,
no. 3, pp. 68-75, 2003, 0740-7459.

[8] F. Niessink and H. van Vliet, “Measurement
program success factors revisited,” Information
and Software Technology, vol. 43, no. 10, pp.
617-628, 2001, tY - JOUR.

[9] ——, “Measurements should generate value,

rather than data,” in 6th International Software

Metrics Symposium, 2000, pp. 31-38.

S. De Panfilis, B. Kitchenham, and N. Morfuni,

“Experiences introducing a measurement pro-

gram,” Information and Software Technology,

vol. 39, no. 11, pp. 745-754, 1997, tY - JOUR.

[10]

22

Miroslaw Staron, Wilhelm Meding

[11]

[12]

[13]

[18]

[19]

[20]

[21]

P. Goodman, Practical implementation of soft-
ware metrics, ser. International software quality
assurance series. London: McGraw-Hill, 1993,
192042989 Paul Goodman.

K. H. Moeller, Software metrics: a practitioner’s
guide to improved product development. London:
Chapman-Hall, 1993.

M. Diaz-Ley, F. Garcia, and M. Piattini, “Im-
plementing a software measurement program in
small and medium enterprises: a suitable frame-
work,” IET Software, vol. 2, no. 5, pp. 417-436,
2008.

M. Staron, W. Meding, and C. Nilsson, “A frame-
work for developing measurement systems and its
industrial evaluation,” Information and Software
Technology, vol. 51, no. 4, pp. 721-737, 2008.
M. Jorgensen, “Software quality measurement,”
Advances in Engineering Software, vol. 30, no. 12,
pp. 907-912, 1999.

D. Wisell, P. Stenvard, A. Hansebacke, and
N. Keskitalo, “Considerations when designing
and using virtual instruments as building blocks
in flexible measurement system solutions,” in
IEEE Instrumentation and Measurement Tech-
nology Conference, P. Stenvard, Ed., 2007, pp.
1-5.

A. Sehmi, N. Jones, S. Wang, and G. Loudon,
“Knowledge-based systems for neuroelectric sig-
nal processing,” IEE Proceedings-Science, Mea-
surement and Technology, vol. 141, no. 3, pp.
215-23, 2003.

J. Feigin and K. Pahlavan, “Measurement of
characteristics of voice over ip in a wireless lan en-
vironment,” in IEEFE International Workshop on
Mobile Multimedia Communications, K. Pahla-
van, Ed., 2003, pp. 236-240.

M. Foote and D. Horn, “Video measurement
of swash zone hydrodynamics,” Geomorphology,
vol. 29, no. 1-2, pp. 59-76, 1999, tY - JOUR.
N. P. Kolev, S. T. Yordanova, and P. M.
Tzvetkov, “Computerized investigation of robust
measurement systems,” Instrumentation and
Measurement, IEEE Transactions on, vol. 51,
no. 2, pp. 207-210, 2002, 0018-9456.

R. F. Kunz, G. F. Kasmala, J. H. Mahaffy, and
C. J. Murray, “On the automated assessment of
nuclear reactor systems code accuracy,” Nuclear
Engineering and Design, vol. 211, no. 2-3, pp.
245-272, 2002, tY - JOUR.

A. N. Zaborovsky, D. O. Danilov, G. V.
Leonov, and R. V. Mescheriakov, “Software and
hardware for measurements systems,” in The
IEEE-Siberian Conference on FElectron Devices
and Materials, D. O. Danilov, Ed. IEEE, 2007,

[23]

[35]

pp- 53-57.

H. Zhiyao, W. Baoliang, and L. Haiqing, “An
intelligent measurement system for powder
flowrate measurement in pneumatic conveying
system,” IEEE Transactions on Instrumentation
and Measurement, vol. 51, no. 4, pp. 700-703,
2002, 0018-9456.

G. Kai, “Virtual measurement system for muzzle
velocity and firing frequency,” in 8th Interna-
tional Conference on Electronic Measurement
and Instruments, 2001, pp. 176-179.
International vocabulary of basic and general
terms in metrology = Vocabulaire international
des termes fondamentauzx et généraux de métrolo-
gie, 2nd ed. Geneéve, Switzerland: International
Organization for Standardization, 1993.
“Tychometrics,” Predicate Logic, 2007.
ISO/IEC 15989:2007 Systems and software en-
gineering — Measurement process, International
Standard Organization and International Elec-
trotechnical Commission Std., 2007.

P. Tomaszewski, P. Berander, and L.-O. Damm,
“From traditional to streamline development -
opportunities and challenges,” Software Process
Improvement and Practice, vol. 2007, no. 1, pp.
1-20, 2007.

ISO IEC 9126, Software engineering, Product
quality Part: 1 Quality model, International Stan-
dard Organization / International Electrotechni-
cal Commission Std., 2001.

M. Staron and W. Meding, “Defect inflow pre-
diction in large software projects,” e-Informatica
Software Engineering Journal, vol. 4, no. 1, pp.
1-23, 2010.

, “Using models to develop measurement
systems: A method and its industrial use,” vol.
5891, pp. 212-226, 2009.

M. Staron, W. Meding, G. Karlsson, and C. Nils-
son, “Developing measurement systems: an in-
dustrial case study,” Journal of Software Main-
tenance and Fvolution: Research and Practice,
pp. n/a—n/a, 2010.

R. Jeffery and M. Berry, “A framework for evalu-
ation and prediction of metrics program success,”
pp- 28-39, 1993.

M. Staron, L. Kuzniarz, and L. Wallin, “Factors
determining effective realization of mda in in-
dustry,” in 2nd Nordic Workshop on the Unified
Modeling Language, K. Koskimies, L. Kuzniarz,
J. Lilius, and I. Porres, Eds., vol. 35. Abo
Akademi, 2004, pp. 79-91.

——, “A case study on industrial mda realization
- determinants of effectiveness,” Nordic Journal
of Computing, vol. 11, no. 3, pp. 254-278, 2004.

Factors Determining Long-term Success of a Measurement Program: An Industrial Case Study

23

[36]

[44]

T. Hall and N. Fenton, “Implementing effec-
tive software metrics programs,” Software, IEEE,
vol. 14, no. 2, pp. 55-65, 1997, 0740-7459.

D. Altman, Practical Statistics for Medical Re-
search. Chapman-Hall, 1991.

D. F. Morrison, Multivariate statistical methods,
3rd ed., ser. McGraw-Hill series in probability
and statistics. New York: McGraw-Hill, 1990.
L. Westfall, “Are we doing well, or are we doing
poorly?” p. 20, 2005.

M. Staron and W. Meding, “Ensuring reliability
of information provided by measurement sys-
tems,” vol. 5891, pp. 1-16, 2009.

C. A. Dekkers and P. A. McQuaid, “The dan-
gers of using software metrics to (mis)manage,”
IT Professional, vol. 4, no. 2, pp. 24-30, 2002,
1520-9202.

J. D. Herbsleb and R. E. Grinter, “Conceptual
simplicity meets organizational complexity: case
study of a corporate metrics program,” in Soft-
ware Engineering, 1998. Proceedings of the 1998
International Conference on, R. E. Grinter, Ed.,
2003, pp. 271-280.

F. Garcia, M. F. Bertoa, C. Calero, A. Vallecillo,
F. Ruiz, M. Piattini, and M. Genero, “Towards
a consistent terminology for software measure-
ment,” Information and Software Technology,
vol. 48, no. 8, pp. 631-644, 2006.

Z. R. Pendic, L. Kovacevic, and J. Stupar, “An

approach to evaluation of quality of integrated
information systems,” Annual Review in Au-
tomatic Programming, vol. 14, no. Part 2, pp.
63-68, 1988.

B. K. Kahn, D. M. Strong, and R. Y. Wang,
“Information quality benchmarks: Product and
service performance,” Communications of the
ACM, vol. 45, no. 5, pp. 184-192, 2002.

F. J. Buckley, “Standards-establishing a stan-
dard metrics program,” Computer, vol. 23, no. 6,
pp. 85-86, 1990, 0018-9162.

S. L. Pfleeger, “Lessons learned in building a
corporate metrics program,” Software, IEEE,
vol. 10, no. 3, pp. 67-74, 1993, 0740-7459.

P. Baker, S. Loh, and F. Weil, “Model-driven
engineering in a large industrial context - a mo-
torola case study,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in
Computer Science, vol. 3713, 2002, pp. 476-491.
C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,
B. Regnell, and A. Wesslen, Ezperimentation in
Software Engineering: An Introduction. Boston
MA: Kluwer Academic Publisher, 2000.

M. Staron and W. Meding, “Predicting weekly
defect inflow in large software projects based on
project planning and test status,” Information
and Software Technology, p. (available online),
2007.

e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 25-37, DOI 10.2478/v10233-011-0028-y

VERSITA

Examining Correlations in Usability Data to
Effectivize Usability Testing

Jeff Winter*, Mark Hinely**

*School of Computing, Blekinge Institute of Technology
** UIQ Technology AB

jeff.winter@bth.se, mark.hinely@bredband.net

Abstract

Based on a case study performed in industry, this work deals with a statistical analysis of data
collected during usability testing. The data is from tests performed by usability testers from two
companies in two different countries. One problem in the industrial situation is the scarcity of
testing resources, and a need to use these resources in the most efficient way. Therefore, the data
from the testing is analysed to see whether it is possible to measure usability on the basis of one
single metric, and whether it is possible to judge usability problems on the basis of the distribution
of use case completion times. This would allow test leaders to concentrate on situations where
there are obvious problems. We find that it is not possible to measure usability through the use of
one metric, but that it may be possible to gain indications of usability problems on the basis of an
analysis of time taken to perform use cases. This knowledge would allow the collection of usability
data from distributed user groups, and a more efficient use of scarce testing resources.

1. Introduction

The background to this study is the situation
faced by companies developing and testing con-
sumer products for a mass market. The study
is based on a long research cooperation between
Blekinge Institute of Technology (BTH) and UIQ
Technology AB (UIQ), an international company
established in 1999. UIQ, who developed and
licensed a user interface platform for mobile
phones, identified a need to develop a flexible
test method for measuring the usability of mobile
phones, to give input to design and development
processes, and to present usability findings for
a number of stakeholders at different levels in
the organization. This need resulted in the de-
velopment of UIQ Technology Usability Metrics
(UTUM). UTUM was successfully used in opera-
tions at UIQ until the closure of the company in
2009.

Together with UIQ we found that there is a
need for methods that can simplify the discovery
of usability problems in mobile phones. There is
also a desire to find ways of identifying usability
problems in phones without having to engage the
test leader in every step of the process, with the
ability to do it for geographically dispersed user
groups. However, we also realise that even if it
is found to be possible to identify problem areas,
for example through a simple measurement of
one metric, or through an analysis of completion
times, this would not identify the particular as-
pects of the use cases that are problematic for the
users. It would simply indicate use cases where
the users experienced problems. This means that
further studies would still have to be performed
by test leaders together with users, to examine
and understand what the actual problems consist
of, and how they affect the way that users expe-
rience the use of the phone. This must be done

© Copyright by Wroclaw University of Technology, Wroctaw 2011

26

Jeff Winter, Mark Hinely

in order to create design solutions to alleviate
the problems.

As we discuss in greater detail in section 3
of this article, the role of the usability tester is
central in many ways, and it is a role that is not
easily filled. It demands particular personal qual-
ities, knowledge and experience. It involves the
ability to communicate with people on many or-
ganisational levels, the ability to observe, record
and analyse the testing process, and the ability
to present the results of testing to many different
stakeholders. Since there is a scarcity of people
who can fill this role, it would ease the situa-
tion for companies wanting to perform usability
testing if these resources could be used in the
most efficient way possible. This is the principle
behind the need to identify problematic use cases
without having to involve the test leader in every
step of the process.

If it is possible to identify use cases that are
problematic, without requiring the presence of
the test leader, this will allow companies to pin-
point which areas require further testing, so that
test leaders can work more efficiently. Since we
are working with a mass-market product, being
able to do this remotely, for widely dispersed
groups, would also be an advantage for the com-
pany, in order to test solutions in different geo-
graphical areas without requiring the usability
tester to travel to these areas before there is seen
to be a need, and to reduce the amount of testing
that needs to be done on-site.

These needs are the basis of this article. In
this work, we examine the metrics collected in
the UTUM testing, to study the correlations
between the metrics for efficiency, effectiveness,
and satisfaction, to see whether we can measure
usability on the basis of one metric, and we ex-
amine whether it is possible to develop a simple
method of automatically identifying problem ar-
eas simply by measuring and analysing the time
taken to perform different use cases.

2. Research Questions

The aim of this study is to examine whether
there is a simple measurement to express usabil-

ity, and to find if it is possible to streamline the
discovery of problematic use cases. To do this,
we examine the correlation between metrics for
efficiency, effectiveness and satisfaction that have
been collected during the testing process. These
are the different elements of usability as specified
in ISO 9241-11:1998 [1],). This is done in order
to see whether there are correlations that allow
us to discover usability problems on the basis
of a simple metric. To satisfy the needs within
industry, this metric should preferably be one
that can easily be measured without the presence
of the test leader. Based on this situation, we
have formulated two research questions:

— RQ1: What is the correlation between the
different aspects of usability (Effectiveness,
Efficiency and Satisfaction)?

- RQ2: Can a statistical analysis of
task-completion time allow us to discover
problematic use cases?

The first research question is based on the
idea that there may be a sufficiently strong cor-
relation between the 3 factors of usability that
measuring one of them would give a reliable in-
dication of the usability of a mobile phone. The
second research question is based on the theory
that there is an expected distribution of comple-
tion times for a given use case and that deviations
from goodness of fit indicate user problems.

This study is a continuation of previous ef-
forts to examine the correlations between metrics
for efficiency, effectiveness and satisfaction. A
previous study by Frekjeer et al [2] found only
weak correlations between the different factors
of usability, whereas a study by Sauro [3] showed
stronger correlations between the different ele-
ments. The results of this study will be placed
in relation to these studies, to extend knowledge
in the field. This is also a continuation of our
previous work, where we have examined how
the UTUM test contributes to quality assurance,
and how it balances the agile and plan-driven
paradigms (see e.g. [4, 5, 6, 7]).

Examining Correlations in Usability Data to Effectivize Usability Testing 27

3. Usability and the UTUM Test

UTUM is an industrial application developed and
evolved through a long term cooperation between
BTH and UIQ. UTUM is a simple and flexible
usability test framework grounded in usability
theory and guidelines, and in industrial software
engineering practice and experience.

According to ISO 9241-11:1998 [1], Usability
is the extent to which a product can be used
by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a spec-
ified context of use. Effectiveness is the accuracy
and completeness with which users achieve spec-
ified goals. Efficiency concerns the resources ex-
pended in relation to the accuracy and complete-
ness with which users achieve goals. Satisfaction
concerns freedom from discomfort, and positive
attitudes towards the use of the product.

UTUM measures the usability of products on
a general level, as well as on a functional level. Ac-
cording to Hornbaek [8], amongst the challenges
when measuring usability are to distinguish and
compare subjective and objective measures of
usability, to study correlations between usability
measures as a means for validation, and to use
both micro and macro tasks and corresponding
measures of usability. Emphasis is also placed
on the need to represent the entire construct of
usability as a single metric, in order to increase
the meaningfulness and strategic importance of
usability data [3]. UTUM is an attempt to ad-
dress some of these challenges.

An important characteristic of the UTUM
test is the approach to understanding users and
getting user input. Instead of simply observing
use, a test expert interacts and works together
with the users to gain insight into how they ex-
perience being a mobile phone user, in order to
gain an understanding of the users’ perspective.
Therefore, users who help with UTUM testing
are referred to as testers, because they are doing
the testing, rather than being tested. The repre-
sentative of the development company is referred
to as the test leader, or test expert, emphasising
the qualified role that this person assumes.

The test experts are specialists who bring in
and communicate the knowledge that users have,

in accordance with Pettichord [9], who claims
that good testers think empirically in terms of
observed behaviour, and must be encouraged to
understand customers’ needs. Evidence in Mar-
tin et al [10] suggests that drawing and learning
from experience may be as important as taking
a rational approach to testing. The fact that the
test leaders involved in the testing are usability
experts working in the field in their everyday
work activities means that they have consider-
able experience of their products and their field.
They have specialist knowledge, gained over a pe-
riod of time through interaction with end-users,
customers, developers, and other parties that
have an interest in the testing process and re-
sults. However, these demands placed on the
background and skills of test leaders mean that
these types of resources are scarce, and must be
used in the most efficient way possible.

A second characteristic of UTUM is making
use of the inventiveness of phone users, by al-
lowing users to participate actively in the design
process. The participatory design tradition [11]
respects the expertise and skills of the users, and
this, combined with the inventiveness observed
when users use their phones, means that users
provide important input for system development.
The test expert has an important role to play
as an advocate and representative of the user
perspective. Thus, the participation of the user
provides designers, with the test expert as an
intermediary, with good user input throughout
the development process.

The user input gained through the testing is
used directly in design and decision processes.
Since the tempo of software development in the
area of mobile phones is high, it is difficult to
channel meaningful testing results to recipients at
the right time in the design process. To address,
this problem, the role of the test expert has been
integrated into the daily design process. UTUM
testing is usually performed in-house, and results
of testing can be channelled to the most criti-
cal issues. The continual process of testing and
informal relaying of testing results to designers
leads to a short time span between discovering a
problem and implementing a solution.

28

Jeff Winter, Mark Hinely

The results of testing are summarised in a
clear and concise fashion that still retains a focus
on understanding the user perspective, rather
than simply observing and measuring user be-
haviour. The results of what is actually qualita-
tive research are summarised by using quantita-
tive methods. this gives decision makers results
in the type of presentations they are used to
dealing with. Statistical results are not based on
methods that supplant the qualitative methods
that are based on PD and ethnography, but are
ways of capturing in numbers the users’ attitudes
towards the product they are testing.

A UTUM test does not take place in a labo-
ratory environment, but should preferably take
place in an environment that is familiar to the
person who is participating in the test, in order
that he or she should feel comfortable. When this
is not possible, it should take place in an envi-
ronment that is as neutral as possible. Although
the test itself usually takes about 20 minutes,
the test leader books one hour with the tester, in
order to avoid creating an atmosphere of stress.
The roles in testing are the test leader, who is
usually a usability expert, and the tester.

In the test, the test leader welcomes the tester,
and tries to put the tester at their ease. This in-
cludes explaining the purpose of the test, and
saying that it is the telephone that is being tested,
not the performance of the tester. The tester is
instructed to tell the test leader when she or
he is ready to begin the use case, so that the
test leader can start the stopwatch to time the
use case, and the tester should also tell the test
leader when the use case is complete.

The tester begins by filling in some of their
personal details and some general information
about their phone usage. This includes name,
age, gender, previous telephone use, and other
data that can have an effect on the result of the
test, such as which applications they find most
important or useful. In some circumstances, this
data can also be used to choose use cases for
testing, based on the tester’s use patterns.

For each phone to be tested, the tester is given
time to get acquainted with the device. If several
devices are to be tested, all of the use cases are
performed on one device before moving on to the

next phone. The tester is given a few minutes
to get acquainted with the device, so that he
or she can get a feeling for the look and feel of
the phone. When this has been done, the tester
fills in a Hardware Evaluation, a questionnaire
based on the System Usability Scale (SUS) [12]
about attitudes to the look and feel of the device.
The SUS was developed in 1986 by John Brooke,
then working at the Digital Equipment Com-
pany. The SUS consists of 10 statements, where
even-numbered statements are worded negatively,
and odd-numbered statements are worded posi-

tively.
1. I think that I would like to use this system
frequently.

2. I found the system unnecessarily complex.

I thought the system was easy to use.

4. T think that I would need the support of a
technical person to be able to use this system.

5. I found the various functions in this system
were well integrated.

6. I thought there was too much inconsistency
in this system.

7. I would imagine that most people would learn
to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I
could get going with this system.

The answers in the SUS are based on Likert
style responses, ranging from “Strongly disagree’
to “Strongly agree”. The Likert scale is a widely
used summated rating that is easy to develop
and use. People often enjoy completing this type
of scale, and they are likely to give considered
answers and be more prepared to participate in
this than in a test that they perceive as boring
([13] p. 293).

Brooke characterised the SUS as being a
“Quick and Dirty” method of measuring usability.
However, Lewis and Sauro state that although
SUS may be quick, it is probably not dirty, and
they cite studies that show that SUS has been
found to be a reliable method of rating usability
[14]. SUS has been widely used in the industrial
setting, and Lewis and Sauro state that the SUS
has stood the test of time, and they encourage
practitioners using the SUS to continue to do

@

i

Examining Correlations in Usability Data to Effectivize Usability Testing 29

so, and show how SUS can be decomposed into
Usability and Learnability components, beyond
showing the overall SUS score [14]. In a study
of questionnaires for assessing the usability of a
website, Tullis and Stetson found that the SUS,
which was one of the simplest questionnaires
studied, was found to yield amongst the most
reliable results across sample sizes, and that SUS
was the only questionnaire of those studied that
addressed all of the aspects of the users’ reactions
to the website as a whole [15].

In a UTUM test, the users perform the use
cases, the test leader observes what happens,
and records the time taken to execute the tasks,
observes hesitation or divergences from a natural
flow use, notes errors, and counts the number
of clicks to complete the task. Data is recorded
in a form where the test leader can make notes
of their observations. The test leader ranks the
results of the use case on a scale between 0 -
4, where 4 is the best result. This judgement is
based on the experience and knowledge of the
test leader. This means that the result is not
simply based on the time taken to perform the
use case, but also on the flow of events, and
events that may have affected the completion of
the use case.

After performing each use case, the tester
completes a Task Effectiveness Evaluation, a
shortened SUS questionnaire [12] concerning the
phone in relation to the specific use case per-
formed. This is repeated for each use case. Be-
tween use cases, there is time to discuss what
happened, and to explain why things happened
the way they did. The test leader can discuss
things that were noticed during the test, and
see whether his or her impressions were correct,
and make notes of comments and observations.
Even though the test leader in our case does not
usually actively probe the tester’s understanding
of what is being tested, this gives the opportunity
to ask follow up questions if anything untoward
occurs, and the chance to converse with the tester
to glean information about what has occurred
during the test.

The final step is an attitudinal metric repre-
senting the user’s subjective impressions of how
easy the phone is to use. This is found through

the SUS [12], and it expresses the tester’s opinion
of the phone as a whole. The statements in the
original SUS questionnaire are modified slightly,
where the main difference is the replacement of
the word “system” with the word “phone”, to
reflect the fact that a handheld device is being
tested, rather than a system. This SUS ques-
tionnaire results in a number that expresses a
measure of the overall usability of the phone as a
whole. In general, SUS is used after the user has
had a chance to use the system being evaluated,
but before any debriefing or discussion of the
test. In UTUM testing, the tester fills in the SUS
form together with the test leader, giving an
opportunity to discuss issues that arose during
the test situation.

The data collected during the test situation
is used to calculate a number of metrics, which
are then used to make different presentations
of the results to different stakeholders. These
include the Task Effectiveness Metric, which is
determined by looking at each use case and deter-
mining how well the telephone supports the user
in carrying out each task. It is in the form of a re-
sponse to the statement “This telephone provides
an effective way to complete the given task”. It is
based on the test leader’s judgement of how well
the use case was performed, recorded in the test
leader’s record and the answers to the Task Effec-
tiveness Evaluation. The Task Efficiency Metric
is a response to the statement “This telephone is
efficient for accomplishing the given task”. This is
calculated by looking at the distribution of times
taken for each user to complete each use case.
The distribution of completion times is used to
calculate an average value for each device per use
case. The User Satisfaction Metric, is calculated
as an average score for the answers in the SUS,
and is a composite response to the statement
“This telephone is easy to use”. For more informa-
tion regarding different ways of presenting these
metrics and data, see ([7], Appendix A).

A previous study by Winter et al [6] showed
that two different groups of stakeholders existed
within UIQ. The first group was designated as De-
signers represented by e.g. interaction designers
and system and interaction architects, represent-
ing the shop floor perspective. The second group

30

Jeff Winter, Mark Hinely

was designated as Product Owners, including
management, product planning, and marketing,
representing the management perspective. These
two groups were found to have different needs
regarding the presentation of test results. These
differences concerned the level of detail included
in the presentation, the ease with which the in-
formation can be interpreted, and the presence
of contextual information included in the presen-
tation. Designers prioritised presentations that
gave specific information about the device and
its features, whilst Product Owners prioritised
presentations that gave more overarching infor-
mation about the product as a whole, and that
were not dependent on including contextual in-
formation.

These results, and more information on
UTUM in general, are presented in greater de-
tail in [7] (chapter 4 and Appendix A). A video
demonstration of the test process (ca. 6 minutes)
can be found on YouTube [16].

4. Research Method

The cooperative research and development work
that led to the development of UTUM has been
based on an action research approach according
to the research and method development method-
ology called Cooperative Method Development
(CMD) (see e.g. [17]). CMD is an approach to
research that combines qualitative social science
fieldwork, with problem-oriented method, tech-
nique and process improvement. CMD has as
its starting point existing practice in industrial
settings, and although it is motivated by an in-
terest in use-oriented design and development
of software, it is not specific for these methods,
tools and processes.

This particular work is based on a case study
[18] and grounded theory [19] approach. A case
study is “an empirical enquiry that investigates
a contemporary phenomenon within its real-life
context, especially when the boundaries between
phenomenon and context are not clearly evident”
([18], p- 13). The focus is on a particular case,
taking the context into account, involving multi-
ple methods of data collection; data can be both

qualitative and quantitative, but qualitative data
are almost always collected ([13] p. 178). Case
studies have their basis in a desire to understand
complex social phenomena, and are useful when
“how” or “why” questions are being asked, and
where the researcher has little control over events
([18], p- 7). A case study approach allows the
retention of characteristics of real life events [18].

The data in this case study has been analysed
in a grounded theory approach. Grounded theory
(GT) is both a strategy for performing research
and a style of analysing the data that arises from
the research ([13], p. 191). It is a systematic but
flexible research style that gives detailed descrip-
tions for data analysis and generation of theory.
It is applicable to a large variety of phenomena
and is often interview-based and ([13], p. 90) but
other methods such as observation and document
analysis can also be used ([13], p. 191). We have
not attempted to work according to pure GT
practice, and have applied a case study perspec-
tive, using ethnography [20] and participatory
design [11].

5. Subjects and Context

The data in this study were collected in tests per-
formed by UIQ in Sweden and by a tester from
a mobile phone manufacturer in England. The
testing was performed in a situation where there
are complex relationships between customers,
clients, and end-users, and complexities of how
and where results were to be used. The phones
were a UIQ phone, a “Smart phone” of a compet-
ing brand, and a popular consumer phone. The
use cases were decided by the English company,
and were chosen from their 20 most important
use cases for a certain mobile phone. The use
cases were:
— UCL1. Receive and answer an incoming call
— UCQC2. Save the incoming call as a new contact
- “Joanne”
— UCS3. Set an alarm for 8 o’clock tomorrow
morning
— UCA4. Read an incoming SMS and reply with
“I'm fine”

Examining Correlations in Usability Data to Effectivize Usability Testing 31

— UC5. Make a phone call

(0708570XXX)

— UCG6. Create a new SMS - “Hi meet at 5” and
send to Joanne (0708570XXX)

The test group consisted of 48 testers. The
group consisted of 24 testers from Sweden, and
24 testers from England, split into 3 age groups:
17 - 24; 25 - 34; 35+. Each age group consisted
of 8 females and 8 males. The size of the group
was in order to get results from a wide range of
testers to obtain general views, and to enable
comparisons between age groups, cultures and
genders. Normally, it was not deemed necessary
to include so many testers, as small samples have
been found to be sufficient to evaluate products.
Dumas and Reddish [21] for example, refer to
previous studies that indicate in one case that
almost half of all major usability problems were
found with as few as three participants, and in a
second case that a test with four to five partici-
pants detected 80% of usability problems, whilst
ten participants detected 90% of all problems.
This indicates that the inclusion of additional
participants is less and less likely to contribute
new information. The number of people to in-
clude in a test thus depends on how many user
groups are needed to satisfy the test goals, the
time and money allocated for the test, and the
importance of being able to calculate statistical
significance.

However, even though this can be seen from
the point of view of the participating organisa-
tions as a large test, compared to their normal
testing needs, where the data collected consisted
of more than 10 000 data points, the testing was
still found to be a process where results were
produced quickly and efficiently. In this case, the
intention of using a larger number of testers was
to obtain a greater number of tests, to create
a baseline for future validation of products, to
identify and measure differences or similarities
between two countries, and to identify issues with
the most common use-cases. Testers were drawn
from a database of mobile phone users who have
expressed an interest in being testers, and who
may or may not have been testers in previous
projects.

to Marten

6. Validity

Regarding internal reliability, the data used in
this study have been collected according to a
specified testing plan that has been developed
over a long period of time, and that has been
used and found to be a useful tool in many design
and development projects. The risk of participant
error in data collection is small, as the test is
monitored, and the data is verified by the test
leader. The risk of participant bias is also small,
as the testers are normal phone users, using a
variety of different phones, and they gain no par-
ticular benefits from participating in the tests
or from rating one device as being better than
another. The fact that much of the data has
been in the form of self evaluations completed by
the testers themselves, and that the testing has
been performed by specialized usability experts
minimizes the risk of observer error. The risk of
observer bias is dealt with by the presence of
the two independent test leaders, allowing us to
compute inter-observer agreements. The use of
multiple methods of data collection, including
self assessment, test leader observation and mea-
surement, and the collection of qualitative data,
allow us to base our findings on many types and
ways of collecting data.

In regard to external validity, the fact that the
testing has been performed in two different coun-
tries may be seen as a risk, but the two countries,
Sweden and England, are culturally relatively
close, which should mean that the results are
comparable across the national boundaries. The
tasks performed in the testing are standard tasks
that are common to most types of mobile phones,
and should therefore not affect the performance
or results of the tests. The users are a cross
section of phone users, and the results should
thus be generalisable to the general population
of phone users.

To ensure the statistical conclusion validity,
we use statistical methods that are standard in
the field, and use the SPSS software package
PASW Statistics 18 for statistical analysis.

32

Jeff Winter, Mark Hinely

7. Data Sets, Possible Correlations
and Analysis Steps

The test data has been split into three sets of
data. This division is based on the metrics col-
lected in the attitudinal questionnaires and the
times recorded by the test leader during testing.
These data sets concern satisfaction, effectiveness
and efficiency, as called for by ISO 9241-11:1998
[1]. The sets of test data are:

Set 1: SUSuapp - Based on the System Us-
ability Scale (SUS) [12], which consists of 10,
5-scale Likert questions. The evaluation is a user
appraisal of satisfaction, based on one evaluation
per phone and tester. It is a summary of the
use cases performed on the individual phones.
It provides us with a total of 144 data points -
48 per phone (48 testers, 3 phones, 1 SUS per
phone).

Set 2: TEEuapp - Based on a Task Effec-
tiveness Evaluation (TEE), which consists of 6,
5-scale Likert questions. It is a user appraisal
based on one evaluation per phone, use case and
tester. The tester fills in this evaluation directly
after completing each of the 6 use cases on each
of the three phones. It provides us with a total
of 864 data points - 144 per use case task (48
testers, 6 use cases, 3 phones).

Set 3: TIMEreal - This is used to represent
efficiency, and is the time taken in seconds to
complete a use case task. It is a test leader mea-
surement based on one number per phone, use
case and tester. The test leader measures the
time for the tester to complete each of the use
cases on each of the phones. This provides us
with 864 data points- 144 per use case task (48
testers, 6 use cases, 3 phones).

As a complement to these data, we also
make use of a spreadsheet, the Structured Data
Summary (SDS) [22] that is used to record
qualitative data based on the progress of the
testing. This contains some of the qualitative
findings of the testing and the SDS shows is-
sues that have been found, for each tester,
and each device, for every use case. Comments
made by the testers and observations made
by the test leader are stored as comments
in the SDS.

The first step in the data analysis is to inves-
tigate the strength of the correlations between
the metrics for satisfaction, effectiveness and ef-
ficiency. The second step is to investigate if the
distribution of time taken to perform use cases
can provide a reliable indication of problematic
use cases, and in which way this should be ana-
lyzed and shown. If this is successful, it should
be possible to discover use cases that exhibit
poor usability by looking at the shape of the
distribution curve. The third step is to verify the
fact that the distribution of time can be used to
illustrate the fact that certain use cases exhibit
poor usability. This can be done by comparing
with the data recorded in the SDS for these use
cases, to see if the test leader has noted problems
that users experienced. If this is found to be the
case, this indication could be used when testing
devices, to identify the areas where test leader
resources should be directed, thus allowing a
more efficient use of testing resources.

STEP 1: Investigate the correlation be-
tween Satisfaction, Effectiveness and Efficiency.
For each phone each tester completed a
SUS-evaluation (SUSuapp). SUSuapp gives an
appraisal score from 0-40. The correlation be-
tween the SUSuapp, and TEEuapp might be
calculated using Pearson’s correlation coeffi-
cient, Spearman rank correlation coefficient, or
Kendall’s rank correlation coefficient (Kendall’s
Tau). The most reasonable method could be
Spearman or Kendall’s tau, as these deal with
data in the form of ranks or ordering of data,
and do not assume normal distribution of the
data, on which the Pearson coefficient is based.
Spearman is preferred by some, as it is in effect
a Pearson coefficient performed on ranks, but
Kendall’s Tau is usually preferred, as it deals
with ties more consistently [13]

The SUSuapp data is the result the 144 Likert
appraisals, which could normally be assumed to
exhibit a normal distribution. However, in some
of the other data distributions, we have observed
a positive skew that also suggests that Spear-
man may be a better choice. Also, the central
concentration of the data causes many ties in
ranks, which could make Kendall’s Tau more
appropriate.

Examining Correlations in Usability Data to Effectivize Usability Testing 33

The tests that include TIMEreal may be more
difficult to deal with. Since the TIMEreal data is
continuous, while the other data is of Likert-type,
it may be difficult to see any linear relationships.
However, the same tests should still be performed.
The results of the analysis are found in Table 1.

The analysis shows only weak to moderate
correlations between the different factors. This
is particularly obvious regarding Kendall’s tau,
which as previously mentioned is probably the
best indicator given the type of data involved
here. This supports the findings of Frokjeer [2],
who state that all three factors must be measured
to gain a complete picture of usability. It contra-
dicts the results of Sauro et al [3], who showed
stronger correlations, although even Sauro et al
state that it is important to measure all three
factors, since each measure contains information
not contained in the other measures.

These results do not support our conjecture
that there is a sufficiently strong correlation be-
tween the 3 factors of usability that simply mea-
suring one of them would give a reliable indica-
tion of the usability of a mobile phone.

STEP 2: Investigating if the distribution of
time can provide a reliable indication of prob-
lematic use cases. We find that TIMEreal data,
for time taken to complete a given use case,
corresponds well with a Rayleigh distribution
(Ray(2*mean)) with a shape parameter that is
twice the mean of the data. Data points that
end up in the tail fall under a specific degree
of probability of belonging to the Ray(2*mean)
distribution. This means that the use cases with
a “long tail” are those that the testers found to
be troublesome (see Fig 1).

Figure 1 illustrates one use case. The right
hand diagram is the seconds to complete the
use case divided into ten evenly spaced fre-
quency intervals. The diagram to the left is the
Ray(2*mean) probability distribution. For ex-
ample, we see that 2 on the x-axis has a 28%
chance belonging to the Rayleigh distribution,
and that is where we have a frequency of 70+
data points. 6 on the x-axis has a less than 1%
chance of belonging to the distribution and we
see that 6 in our data is empty. This would mean
that the points in our data set in ranges 7-10

are beyond all probability influenced by some-
thing more than the excepted random difference
between different testers. Our interpretation is
that these are the use cases where “something
went wrong”. This result suggests that it may be
possible to discover use cases where users have
problems, by examining the distribution of the
time taken to perform the use case.

STEP 3: Verifying the “long tail” method
of identifying troublesome use cases. Here we
analyse which use cases the testers have experi-
enced as exhibiting poor usability by analysing
the distribution of time taken to complete the
use case. This is cross tabulated with data from
the SDS [22], the spreadsheet containing some of
the qualitative findings of the testing. The SDS
shows issues that have been found, for each tester,
and each device, for every use case. Comments
made by the testers and observations made by
the test leader are stored as comments in the
spreadsheet.

Given the fact that the intention of this work
is to find ways that simplify the discovery of
problematic use cases, and the fact that the test
is designed to be flexible and simple to perform
and analyse, we attempted to find some simple
heuristic that could help us differentiate between
the use cases with high and low levels of prob-
lems. We ordered the use cases according to their
coefficients of variation, which is the standard
deviation divided by the mean time taken to
perform the use case. This allows us to standard-
ize the use cases, in order to give a basis for
comparison.

This calculation gave us a spread between
0.481 and 1.074. To give a simple cut-off point
between Lower and Higher problem use cases, we
set a boundary where a coeflicient of variation
of 0.6 is regarded as High problem, thus dividing
the set of use cases into two groups. We also use
a simple heuristic to judge an acceptable level
of problems when performing a use case. The
test leader registers problems observed whilst
performing the use case by a letter “y” in the
SDS, with an explanatory comment. One tester
may have experienced more than one problem,
and all of these are noted separately, but we
chose to count the number of individuals who

34

Jeff Winter, Mark Hinely

Kendell’s tau_b Spearman’s rho
Correlation | Sig. Correlation | Sig. Pearson Sig.
coefficient (2-tailed)| Coefficient | (2-tailed)| Correlation | (2-tailed)
SUSuapp/ | 0.599** 0.000 0.758%* 0.000 0.710%* 0.000
TEEuapp
SUSuapp/ | -0.408** 0.000 -0.573%* 0.000 -0.485** 0.000
TIMEreal
TIMEreal/ |-0.490%* 0.000 -0.663** 0.000 -0.595** 0.000
TEEuapp
**Correlation is significant at the 0.01 level (2-tailed)
Table 1. Correlations between elements of usability
0.3
/\ "
0,25
[\ °°
0,2 %
0,15 / \ L wsarat
\ .
0,1
\ .
0,05
\ 10
0 i ’ ’) 0
0,0000 2,0000 4,0000 _ 6,0000 _ 8,0000 10,0000 L2 3 4 s e 5 s 5

Figure 1. Rayleigh distribution and spread of times to perform use case

had experienced problems, rather than the num-
ber of problems. The seriousness of the problems
could range from minor to major. However, since
the ambition was to find a simple heuristic, we
have not performed any qualitative analysis of
the severity of the problems, but have simply
noted number of users who had problems. We
refer to this as No USERS.

In this case, the cut-off point was set as being
less that 33% of the total number of testers. We
assume that use cases where more than 33% of
users had some kind of problem are High problem,
and worthy of further examination.

Table 2 illustrates the cases and their catego-
rization as High or Low problem for Coefficient
of variation and No USERS.

We performed Fisher’s exact test on the set
of data shown in Table 2. This test can be used
in the analysis of contingency tables with a small
sample. It is a statistical test that is used to

determine if there are non-random associations
between two categorical variables. The results
of performing Fisher’s exact test are shown in
Table 3.

Since the values given by Fisher’s exact test
are below 0.05 they can be regarded as significant,
meaning that there is a statistically significant
association between Coeflicient of variation and
No_ USERS as we have defined them.

As can be seen in table 3, all of the cases (5)
where No_ USERS indicated a high rate of prob-
lems are discovered by the coefficient of variation
being high. On the other hand, a high coefficient
of variation also points to just as many cases that
do not have a high rate of problems. However,
the results still show that a number of use cases
(8) can, with high probability, be excluded from
the testing process, allowing for more efficient
use of testing resources. Simply by calculating

Examining Correlations in Usability Data to Effectivize Usability Testing

35

Case No. 1123|456 |78
Coefficient of variation | L | L | L | L | L | L | L | L
Severity LIL|L|L|L|L|L]|L
Case No. 911011 12|13 |14 |15| 16|17 |18
Coefficient of variation | H| H | H | H| H| H|H | H | H | H
Severity H H H| H/ H|L|L|L|L|L
Table 2. Use cases and their categorization as High or Low problem
No_ USERS
High Problem Low Problem Total
Coefficient of High Problem | 5 5 10
variation
Low Problem | 0 8 8
Total 5 13 18
Exact Sig. (2-sided) | Exact Sig. (1-sided)
Fisher’s Exact Test 0.036 0.029

Table 3. Coefficient of variation * No USERS & Fisher’s exact test

the coefficient of variation, 8 of 18 cases could
be excluded from more expensive testing.

To conclude, the SDS records the fact that
the test leader observed that users experienced
problems when performing use cases, and there
is found to be an association between the use
cases where a larger proportion of users expe-
rienced problems, and those use cases with a
high coefficient of variation. This suggests that
it is possible to identify potentially problematic
use cases simply by measuring the time taken to
perform use cases and analysing the distribution
of those times.

This article is based on research that was
performed previous to the cessation of activities
in UIQ. The limited number of tests that were
available to be included for analysis in this study,
the fact that the testing as it was performed was
not designed as an experiment with this purpose
in mind, and that this is a post factum analysis
mean that the results must be read with some
caution. However, the results we have obtained
from this analysis do indicate that this is an
interesting area to study more closely.

This means that it may be possible to for-
mulate a “time it and know” formula that can
be tested in new trials. This could be used to
give a “problem rating” to individual use cases
that could categorize the degree of problems that
the user experienced. It would allow a simple
categorization of use cases without needing the
presence of the test leader, simply by measuring
the time taken to perform the use cases, in order
to identify the areas where test leader resources
should be directed, thus allowing a more efficient
use of testing resources.

8. Discussion

The aims of this study have been twofold: to
examine the correlation between the different
aspects of usability (Effectiveness, Efficiency and
Satisfaction) to find whether there is one sim-
ple measurement that would express usability,
and; to discover if it is possible to streamline
the discovery of problematic use cases through
a statistical analysis of task-completion time,

36

Jeff Winter, Mark Hinely

which would allow scarce testing resources to be
concentrated on problematic areas.

The analysis detailed above shows that, for
the material collected in our study, the corre-
lations between the factors of usability are not
sufficiently strong to allow us to base usability
evaluations on the basis of one single metric. This
means that it is important that all three factors
are measured and analysed, and as discussed
previously, the test leader is an important figure
in this process. This supports previous work that
stresses the importance of measuring all of these
aspects. This was stated to be the case even by
those researchers who found stronger correlations
between the different aspects measured.

However, we do find that it may be possible
to discover potentially problematic use cases by
analysing the distribution of use case completion
times. This would mean that it is possible to
collect data which indicate which use cases are
most important to concentrate testing resources
on. This could be done without without the pres-
ence of a test leader. Many companies involved
in developing and producing mass-market prod-
ucts already have a large base of testers and
customers who participate in different ways in
evaluating features and product solutions. By
distributing trial versions of software to different
user groups, and by using an application in a
mobile phone that measures use case completion
time, and submits this data to the development
company, it should be possible to collect data
in a convenient manner. The development com-
pany could distribute instructions to users and
testers, who could perform use cases based on
these instructions, and the telephone itself could
transmit data to the company, which could form
the basis of the continued analysis and testing
process. This data would be especially valuable
since it could be based more on the use of the
telephone in an actual use context, rather than
in a test situation.

From an analysis of the distribution of com-
pletion times it is thus possible to gain indica-
tions of problem areas that need further atten-
tion. However, it is impossible to say, simply by
looking at the completion times, what the prob-
lem may be. To discover this, and to develop

design suggestions and solutions, it is still neces-
sary for the test leader to observe and analyse the
performance of the use cases that are indicated
as problematic.

Future work would be to test the findings
made here, by performing further tests on a
greater number of devices, and comparing the
results with UTUM testing as it is normally per-
formed. It is also possible to study cases where
the statistics indicate that there are problems,
and other devices where this was not apparent
in the statistics, and compare the results. Fur-
ther work would also be to test the heuristics
used in our analysis, to find if there are more
accurate ways of distinguishing between low and
high problem use cases.

9. Acknowledgements

This work was partly funded by The Knowledge
Foundation in Sweden under a research grant for
the software development project “Blekinge — En-
gineering Software Qualities”, www.bth.se/besq.
We would like to thank Associate Professor Claes
Jogréus for reading our work and giving advice
regarding statistical methods, and all of our part-
ners from UIQ Technology AB, for their help and
cooperation.

References

[1] ISO 9241-11 (1998): Ergonomic Requirements
for Office Work with Visual Display Terminals
(VDTs) - Part 11: Guidance on Usability, Inter-
national Organization for Standardization Std.,
1998.

[2] E. Frekjaer, M. Hertzum, and K. Hornbek,
“Measuring usability: Are effectiveness, efficiency,
and satisfaction really correlated?” in Conference
on Human Factors in Computing Systems, vol.
Proceedings of the SIGCHI conference on Hu-
man factors in computing systems. The Hague,
Netherlands: ACM Press, 2000, pp. 345-352.

[3] J. Sauro and E. Kindlund, “A method to stan-
dardize usability metrics into a single score,” in
CHI 2005, ser. Proceedings of the SIGCHI con-
ference on Human factors in computing systems.
Portland, Oregon, USA: ACM Press, 2005, pp.
401-409.

Examining Correlations in Usability Data to Effectivize Usability Testing

37

[4]

[12]

J. Winter, K. Ronkko, M. Ahlberg, M. Hinely,
and M. Hellman, “Developing quality through
measuring usability: The UTUM test package,”
in ICSE 2007, ser. 5th Workshop on Software
Quality, at ICSE 2007, 2007.

J. Winter, K. Roénkkoé, M. Ahlberg, and
J. Hotchkiss, “Meeting organisational needs and
quality assurance through balancing agile & for-
mal usability testing results,” in CEE-SET 2008,
ser. Preprint of the third IFTP TC2 Central and
East European Conference on Software Engi-
neering Techniques, Z. Huzar, J. Nawrocki, and
J. Zendulka, Eds., Brno, 2008.

J. Winter and K. Rénkko, “Satisfying stakehold-
ers’ needs - balancing agile and formal usability
test results,” e-Informatica Software Engineering
Journal, vol. 3, no. 1, p. 20, 2009.

J. Winter, “Measuring usabiilty - balanc-
ing agility and formality,” Licentiate Thesis,
Blekinge Institute of Technology, 2009.

K. Hornbazk, “Current practice in measur-
ing usability: Challenges to usability stud-
ies and research,” International Journal of
Human-Computer Studies, vol. 64, no. 2, pp.
79-102, 2006.

B. Pettichord, “Testers and developers think
differently,” STGFE magazine, vol. Vol. 2,
no. Jan/Feb 2000 (Issue 1), 2000. [Online].
Available: http://www.io.com/~wazmo/papers/
testers _and_ developers.pdf

D. Martin, J. Rooksby, M. Rouncefield, and
I. Sommerville, ““Good” organisational reasons
for “Bad” software testing: An ethnographic
study of testing in a small software company,”
in ICSE ’07. Minneapolis, MN: IEEE, 2007.
D. Schuler and A. Namioka, Participatory De-
sign - Principles and Practices, 1st ed. Hillsdale,
New Jersey: Lawrence Erlbaum Associates, 1993.
J. Brooke, “SUS: A quick-and-dirty usability

[13]

[14]

[15]

[16]

[17]

[21]

[22]

scale,” 1986.

C. Robson, Real World Research. Oxford, Eng-
land: Blackwell Publishing, 1993, vol. 2.

J. R. Lewis and J. Sauro, “The factor structure
of the system usability scale,” in LNCS 5619, vol.
Proceedings of the human computer interaction
international conference (HCII 2009),. Springer
Verlag, 2009, pp. 94-103.

T. S. Tullis and J. N. Stetson, “A
comparison of questionnaires for assess-
ing website usability,” 2004. [Online].

Available: http://home.comcast.net/~tomtullis/
publications/UPA2004TullisStetson.pdf

BTH, “UIQ, usability test,” Aug. 2008. [Online].
Available: http://www.youtube.com/watch?v=
5IjIRIVwgeo

Y. Dittrich, K. Rénkko, J. Erickson, C. Hans-
son, and O. Lindeberg, “Co-operative method
development: Combining qualitative empirical
research with method, technique and process
improvement,” Journal of Empirical Software
Engineering, vol. 13, no. 3, pp. 231-260, 2007.
R. K. Yin and S. Robinson, Case Study Research
— Design and Methods, ser. Applied Social Re-
search Methods Series. Thousand Oaks, Cal.:
SAGE publications, 2003, vol. 3.

B. G. Glaser and A. L. Strauss, The discovery
of grounded theory : strategies for qualitative
research. Piscataway, NJ.: Aldine Transaction,
1967.

K. Ronkko, “Ethnography,” in Encyclopedia of
Software Engineering (accepted for publication),
P. Laplante, Ed. New York: Taylor and Francis
Group, 2010.

J. Dumas and J. Redish, A Practical Guide to
Usability Testing. Exeter, England: Intellect,
1999.

G. Denman, “The structured data summary
(SDS),” 2008.

e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 39-49, DOI 10.2478/v10233-011-0029-x

VERSITA

ARINC Specification 653 Based Real-Time
Software Engineering

Stawomir Samolej*

*Faculty of Electrical and Computer Engineering, Rzeszow University of Technology

ssamolej@prz.edu.pl

Abstract

This paper reports successive steps of a real-time avionic pitch control application creation. The
application structure follows a new real-time systems development profile published in ARINC
specification 653. The paper mentions some main ARINC specification 653 features and shows
the subsequent application creation levels: control system units distribution, timing requirements
definition, application implementation and tests. It describes the author’s experience gained during
an avionic hard real-time system development and focuses on real-time software engineering details

of the application creation.

1. Introduction

Real-time applications gradually evolve form
simple one-task embedded programs to large
multi-task and distributed systems. Modern
large real-time applications are usually based on
real-time operating systems (such as VxWorks
[1], PikeOS [2], LynksOS [3], WindowsCE [4],
and Linux RTAI [5]), or are written in real-time
languages (Ada 2005 [6] or Spakr [7]). These
applications should be developed according to
well defined practical rules expressed e.g. in [8, 9].
Real-time tasks are given priorities according to
a predictable policy (such as Rate Monotonic
or Deadline Monotonic Policies). Inter-task com-
munication protocols prevent the system from
deadlocks and unpredictable delays during exe-
cution (by Priority Inheritance or, if possible, by
Priority Ceiling Resource Access Protocol appli-
cation). The data exchange between distributed
applications should be predictable. Naturally,
such rules can be applied in modern real-time op-
erating systems APIs or in Ada language, but less
advanced developers often encounter problems,
especially in case of complex software.

To make the real-time system development
less cumbersome, several groups of experts have
developed some practically applicable real-time
design patterns. Among the set of well de-
fined code-generation oriented design patterns
the POSIX standard [10], HOOD [11] and
HRT-HOOD [12] methods and Ada Raven-
scar Profile [13] can be indicated. They define
good real-time system programming techniques
and are partly supported by some automatic
real-time software code generators. Subsequently,
the real-time design patterns have been inte-
grated with dedicated software toolkits such as
Matlab-Simulink [14], SCADE SUITE [15] or
IBM Rational Rose RealTime [16]. These tools
allow to design graphically the real-time software,
giving as the output a real-time system structure
(IBM Rational Rose), both structure and selected
algorithms implementation (SCADE SUITE),
or complete real-time application code and en-
vironment generated for a specific hardware
(Matlab-Simulink). Moreover, SCADE SUITE
enables to develop a complete hard real-time sys-
tem source code that conforms to international
safety standards DO-178B (up to level A for

© Copyright by Wroclaw University of Technology, Wroctaw 2011

40

Stawomir Samolej

Military and Aerospace Industries), IEC 61508

(at SIL 3 by TUV for Heavy Equipment, and

Energy), EN 50128 (at SIL 3/4 by TUV for Rail

Transportation), and IEC 60880 (for Nuclear

Energy).

It is also worth noting that international
standardization organizations have recently pub-
lished some new standards or specifications re-
garding modern real-time systems development.
The ARINC (AERONAUTICAL RADIO, INC)
specification 653 [17] or the SAE (Society of Au-
tomotive Engineers) Standard AS5506 [18] are
examples of such documents. To the author’s
opinion the new documents bring a new quality
in real-time systems development. They provide
a new abstraction layer in the real-time soft-
ware design process which makes possible to cre-
ate complete large distributed real-time systems.
This paper deals with the ARINC specification
653 (ARINC 653) based hard real-time systems
development.

The ARINC 653 was developed by aviation
experts to provide “the baseline environment
for application software used within Integrated
Modular Avionics (IMA) and traditional ARINC
700-series avionics”. It is closely connected with
the Integrated Modular Avionics (IMA) concept
[19, 20, 21]. Primary objective is to define a gen-
eral purpose APEX (APplication/EXecutive) in-
terface between Operating System (O/S) of the
avionics computer and application software.The
specification includes interface requirements be-
tween application software and O/S and list of
services which allow the application software to
control scheduling, communication, and status of
internal processing elements. Over a period of 6
years from the specification announcement:

— the ARINC 653 based software has been imple-
mented in A380, A400M and B787 airliners,

— at least three commercial real-time op-
erating systems (WxWorks 653, PikeOS,
LynksOS-178 RTOS) have been updated to
offer the APEX,

— four European-founded and focused on the
ARINC 653 — based software development
research projects (PAMELA, NEVADA, VIC-
TORIA and SCARLETT) have been created.

This paper describes some details concerning
real-time programming rules included in AR-
INC 653. A Pitch Control Application created
within SCARLETT [22] project by Research
Group from Rzeszéw University of Technology
(RGRUT) illustrates the ARINC 653 based de-
velopment process. The following sections are
organized as follows. At first, the ARINC 653
is introduced. Secondly, the Pitch Control Ap-
plication development is presented. The final
part describes the future RGRUT’s research and
implementation plans.

2. ARINC specification 653

Airborne real-time systems have been evolving
from the so-called “federated” structure to Inte-
grated Module Avionics (IMA) [19, 20, 21]. The
IMA concept has been introduced in European
funded research projects, PAMELA, NEVADA
and VICTORIA. The result of the projects was
the first generation of IMA (IMA1G), currently
on-board of A380, A400M and B787 aircraft.
Following the IMA concept, modern on-board
avionic subsystems (software applications) are
grouped in a limited set of standard micropro-
cessor units. The units and other electronic de-
vices communicate via standard network inter-
face — Avionics Full Duplex Switched Ether-
net (AFDX) [23, 24]. The group of federated
applications executed until now on separate
microprocessor units (and communicating by
means of ARINC standard 429 based devices
[25], for example) must become a set of real-time
processes executed on one hardware module.
This module will be managed by a dedicated
real-time operating system. Provided that the
operating system offers a standard API and ful-
fills safety requirements, such solution signifi-
cantly broadens portability of avionic applica-
tions and allows to develop and certify hard-
ware and software independently. Current im-
plementation of IMA covers limited range of
aircraft functions but shows some significant
benefits, i.e. aircraft weight reduction and lower
maintenance costs.

ARINC Specification 653 Based Real-Time Software Engineering 41

2.1. Partitions

The IMA assumes that a set of time-critical
and safety-critical real-time applications (avion-
ics units) may be executed on one microprocessor
module. To cope with this level of criticality, new
real-time operating system architecture has been
suggested. ARINC 653 [17] defines generic struc-
ture of the system. Figure 1 shows the logical
structure of RTOS suggested in it.

The key concept introduced in the specifica-
tion is the partition. It creates a kind of con-
tainer for an application and guarantees that
execution of the application is both spatially and
temporally isolated. The partitions are divided
into two categories, application partition and sys-
tem partition. The application partitions execute
avionics applications. They exchange data with
the environment by means of specific interface
— APEX (APplication/EXecutive). The system
partitions are optional and their main role is to
provide services not available in APEX, such as
device drivers or fault management.

2.2. Hardware-Software Module
Architecture

The ARINC 653 also includes some recommenda-
tions on microprocessor module architecture for
the dedicated real-time operating system. Gen-
eral diagram of the architecture is presented in
figure 2. Each module includes one or more mi-
croprocessors. The hardware structure may re-
quire some modification of core operating system
but not the APEX interface. All processes that
belong to one application partition (real-time
tasks) must be executed on one microproces-
sor. It is forbidden to allocate them to differ-
ent microprocessors within the module or split
them between modules. The application program
should be portable between processors within
the module and between modules without any
modifications of the interface to operating sys-
tem core. Processes that belong to one parti-
tion may be executed concurrently. A separate
partition-level scheduling algorithm is responsi-
ble for this. Inter-application (partition) commu-
nication is based on the concept of ports and

channels. The applications do not have the infor-
mation at which partition the receiver of data is
executed. They send and receive data via ports.
The ports are virtually connected by channels
defined at separate level of system development.

Temporal isolation of each partition has been
defined as follows. A major time frame, activated
periodically, is defined for each module. Each
partition receives one or more time partition
windows to be executed within this major time
frame. Generally, time partition windows consti-
tute a static cyclic executive [9]. Real-time tasks
executed within the partition can be scheduled
locally according to priority-based policy. The
order of the partition windows is defined in a
separate configuration record of the system.

Health Monitor (HM) is an important ele-
ment of the module. HM is an operating system
component that monitors hardware, operating
system and application faults and failures. Its
main task is to isolate faults and prevent failure
propagation. For example, the HM can restart a
partition when detects application fault.

By assumption, the applications (or parti-
tions) may be developed by different providers.
Therefore an integrator of the IMA system de-
velopment process is necessary. This person col-
lects data regarding resources, timing constraints,
communication ports and exceptions defined in
each partition. The collected data are transferred
into configuration records. The configuration
record for each module is an XML document
interpreted during compilation and consolidation
of software.

2.3. APEX Interface

APEX (APplication/EXecutive) interface defini-
tion is the main part of ARINC 653. The APEX
specifies how to create platform-independent soft-
ware that fulfills ARINC 653 requirements. Main
components of the interface are:

— partition management,

— process management,

— time management,

— memory management,

— interpartition communication,
intrapartition communication,

42

Stawomir Samolej

Application Application System System
Application <L\ Partition 1 Partition n Partition Partition
Software
Layer
1 (I
A A v
APEX Interface : 1
1
" I
- 1 1
System
Core < Specific
Software Functions
Layer

Hardware

Figure 1. Logical real-time operating system structure created according to ARINC specification 653 ([17],
pp- 4).

— health monitoring.

The APEX interface provides separate set of
functions enabling the user to determine actual
partition mode and change it. The application
may start the partition after creation of all appli-
cation components. It is also able to obtain the
current partition execution status. Interpartition
health monitoring procedures can stop or restart
the partition.

The application may be constructed as a set
of (soft or hard) real-time processes, scheduled
according to priorities. APEX process manage-
ment services can:

— create process and collect process status or

ID,

— start, stop, suspend or resume process,
— prevent from process preemption,
— change the process priority.

The APEX manages both aperiodic and pe-
riodic processes. Periodic processes are activated
regularly. Additionally, a separate parameter
called “time capacity” is attached to each of
them. It defines time frame (deadline) within
which single instance of task must finish compu-
tations. When a process is started the deadline

is set to current time plus time capacity. The
operating system periodically checks whether the
process completes processing within the allotted
time. Each process has a priority. During any
rescheduling event the O/S always selects for the
execution the highest priority process in “ready”
state.

There are no memory management services
in APEX because partitions and associated mem-
ory spaces are defined during system configura-
tion. The ARINC 653 assumes, for safety reasons,
that the whole memory is statically allocated to
partitions and processes before the partition or
application starts. It is expected that memory
space is checked either at build time or before
running the first application.

Interpartition (inter-application) communi-
cation is based on queuing port and sampling
port communication units. The queuing port
provides interpartition message queue, whereas
the sampling port shares variables between the
ports. During system integration, the ports are
connected by means of channels defined in sys-
tem configuration tables. The ports communicate
with other partitions or device drivers within the

ARINC Specification 653 Based Real-Time Software Engineering 43

8w - .
= 9(: Application Application
é E —> Soﬂ(:/\f/are Soft(\)ﬂf/are System Partition(s)
el Partition 1 Partition 2
<7 A 4 4
APEX
v v

LOGICAL COMMUNICATIONS

PARTITIONING

EXCEPTION HANDLING
OPERATING SYSTEM

SCHEDULER HEALTH MONITOR

!

! {

CORE
ENVIRONMENT
SOFTWARE

MEMORY MANAGEMENT
PHYSICAL COMMUNICATIONS
DEVICE HANDLERS

CORE
PROCESSOR

HARDWARE INTERFACE SYSTEM

CONTEXT SWITCHING BIT

INTERRUPT HANDLING

CORE

! !

COMMUNICATIONS
MEDIA

MMU CLOCK

INTERRUPT CONTROLLER BITE

HARDWARE

Figure 2. Hardware-software architecture of typical module according to ARINC 653 specification ([17], pp.
11).

module, or exchange data between modules (by
means of AFDX network interfaces).

The synchronization of processes belonging to
one partition may be achieved by appropriate ap-
plication of counting semaphores and events. The
inter-process communication within the partition
(intrapartition communication) is implemented
by means of APEX buffers (shared message
queues) and APEX blackboards (shared vari-
ables). It is possible to define a time-out within
which process waits for the data, if not available
immediately. The process may be blocked for the
specified time only.

The ARINC 653 Health Monitor is an ad-
vanced exception handing engine. Three error
levels are defined:

— Process Level which affects one or more pro-
cesses in the partition,

— Partition Level with only one partition af-
fected,

— Module Level which affects all partitions
within the module.

Both Partition Level and Module Level errors

are handled by a set of procedures installed by

the system integrator. The Process Level errors

can be handled by the programmer. Separate

sporadic task called “error handler” can be regis-

tered for each of the partitions. When the Health

Monitor detects an error at the process level it

calls the error handler. The handler recognizes

the error and, depending on the error, can:

— log it,

— stop or restart the failed process,

— stop or restart the entire partition,

— invoke the registered error handler process
for the specific error code.

To the author’s knowledge four real-time op-
erating systems meet ARINC 653 requirements,
i.e. Wind River VxWorks 653 [1], Sysgo PikeOS
[2], LynuxWorks LynxOS-178 RTOS, and Lynux-
Works LynxOS-SE RTOS [3].

3. ARINC 653 based Pitch Control
System Development

This section describes an ARINC 653 based sam-
ple avionics subsystem development. The objec-

44

Stawomir Samolej

tive is to create a distributed hard real-time
application to control a pitch angle of typical
airliner (Pitch Control Application — PCA). Sub-
sequent development steps are: control system
definition, control procedures allocation to hard-
ware units, timing requirements assessment, ap-
plication structure design, system programming,
testing. Preliminary version of the PCA has been
proposed in [26]. Papers [27] and [28] report on
stages of PCA development and some extensions
to detect control system malfunctions.

3.1. Control System Definition

The system controls two actuators (brushless
motors) connected to a load (elevator). Each
actuator is controlled by separate cascade of con-
trollers shown in figure 3. The single actuator
control system includes internal current control
loop, velocity control loop (PID2, PID4), and po-
sition control loop (PID1, PID3). The Flight Con-
trol Algorithm (FCA) is a supervisory module
that generates position demand signal for both
actuator control subsystems. It collects signals
from the pilot, aircraft, and actuators. The refer-
ence signal is a force or shift of control side-stick
moved by the pilot. The FCA module corrects
the reference signal using the actual aircraft pitch
angle. The PCA includes also Error Estimator
that collects some control signals and estimates
quality of control system during runtime. It also
produces separate output for system operator.
The entire Pitch Control Application has been
modeled in Matlab-Simulink [14] software toolkit.
All control procedures and settings have been
designed following control engineering rules.

3.2. Distribution of Control Procedures

The Pitch Control Application has been devel-
oped according to a set of restrictions formulated
by the system integrator. One of the restrictions
requires selected control procedures to be allo-
cated on different hardware modules. Figure 4
illustrates the desired PCA control modules allo-
cation. Hardware Module 1 (HM1) includes the
FCA, Error Estimator and position controllers
(PID1 and PID3, compare fig. 3). Hardware Mod-

ules 2 and 3 (HM2 and HM3) include velocity
controllers (PID2 and PID4, compare fig. 3). The
next restriction is that the FCA, Error Estimator
and all the PID controllers should be software
modules whereas the current controllers must be
included into motor drives hardware. The hard-
ware modules are connected via AFDX network.
The network structure has also been imposed by
the system integrator.

According to the requirements the
hardware-software environment follows the IMA
philosophy. Therefore the FCA and Error Es-
timator control blocks belong to one ARINC
653 based application partition, as two separate
real-time tasks. All PID controllers are separate
real-time tasks each of which belongs to separate
application partition. The partition structure
physically and temporally isolates the main
control application subsystems. It also enables
reallocation of PID control procedures between
hardware modules, what is another application
requirement.

3.3. Timing Requirements

The Pitch Control Application has been devel-
oped to fulfil the ARINC 653 real-time param-
eters shown in figure 5 and table 1. The time
capacity (deadlines) and task periods have been
chosen taking into account both actuator dynam-
ics and computing power of hardware units. The
partition including the FCA and Error Estima-
tor periodic real-time task acquires 6 [ms] time
slot and 20 [ms] deadline. It is executed in two
3-millisecond time frames (fig. 5). The partitions
with PID1 and PID3 control procedures are ac-
tivated every 5 [ms] and executed within 1 [ms]
time frame. Similarly, PID2 and PID4 real-time
tasks are activated every 5 [ms|, but their dead-
lines are extended to 2[ms| since Hardware Mod-
ules 2 and 3 provide lower computing power than
Hardware Module 1. The major time frames in
figure 5 include some “System” slots. These slots
may be used by other software modules loaded
on hardware. The HARD attribute attached to
each of the real-time tasks instructs the Health
Monitor (built into the operating system) that
if any task misses its deadline, the core operat-

ARINC Specification 653 Based Real-Time Software Engineering

45

Motor Gear
pos er] PID1 fspd dem spderp] PID2 ftorqgdem Controller fcurrent Box and | Load
Error and Drive Sensors
Estimator
Lmc)tor spd
A
pos dem urr spd
Pilot urr po
l urr po
Flight Motor Gear
» Con'trOI [~Pos dem: pos er] PID3 fspd dem spder] PID4 korqgdemy Controller fcurrent Boxand P Load
Algorithm and Drive Sensors
; Lmotor spd:
urr spds
urr po:
urr po
4 Aircraft 4 urt po

urr po:

Figure 3. Pitch control system architecture

Hardware Module

<&
<

1 Hardware Module 2

Motor

- 150} o I E
g | o O 37 e«
o o (5 e
(o)
(@)
A 4
A
/ ———————— Motor
! AFDX Network : [
1
Pilot I !
A | N
I L &
AFDX y AFDX | | g3
Switch 1 |~ ~| Switch 2 I =
I S
|
[
|
|

NN

Hardware Module 3

Figure 4. Allocation of Pitch Control System procedures on the Hardware Units

ing system must be informed. In consequence,
this forces the operating system to take appro-
priate action. The Health Monitor procedures
may even reload the whole partition that misses
timing constraints. It has been assumed that the
maximum communication delay in the AFDX
network should not exceed 7 [ms].

All of the algorithms applied in the PCA are
either controllers or simplified numerical proce-
dures which solve some differential equations.
During the development the worst case comput-

ing time for each of the algorithm has been eval-
uated. Experimental checks have proved that the
algorithms meet their timing constraints.

As mentioned before, the PCA timing restric-
tions have been provided by control engineers who
specified the system. P2 and P3 partitions acquire
1 [ms] time frames for computations and are ac-
tivated every 5 [ms|. This guarantees sufficient
frequency (200Hz) of PID algorithm repetition,
so sufficient quality of control. P1 partition is 4
times “slower” than others without adverse effect

46 Stawomir Samolej
Major cycle (frame)
-< >
Minor cycle
- >
S S
s g by (sp) £ - ™ T e ~— [52] £ - ™
S2E |8 2 bla| g2E |&|8 % 0| o
D w E o o S o | o D w E o o S o | o
™ — -— (sp] — — ™ — -~ ™ — — [ms]
Hardware Module 1
Major cycle Major cycle
¢) y >
Minor cycle Minor cycle o
IS 1S
[0} N by <t
@) @ o
> o > o
(D) %)
™ N [ms] ™ N [ms]

Hardware Module 2

Hardware Module 3

Figure 5. PCA timing requirements

Table 1. PCA real-time tasks parameters

Control Procedure | Stack Size | Base Priority | Period | Time Capacity | Deadline
FCA 4096 18 20 20 | HARD
Error Estimator 4096 17 20 20 | HARD
PID1 4096 20) 1 HARD
PID3 4096 20 5 1| HARD
PID2 4096 20 5 2 | HARD
PID4 4096 20 5 2 | HARD

on quality of control. This preserves some com-
putational time for other applications installed
on the same hardware module.

3.4. Application Structure

The Pith Control Application structure is shown
in figure 6. Apart from control procedures allo-
cation strategy of figure 4, figure 6 shows the
partitions and the intra- and interpartition com-
munication structure. The first (P1) partition
loaded into the Hardware Module 1 includes two
real-time tasks, the Flight Control Algorithm
(FCA) and Error Estimator. The FCA task col-
lects signals from Pilot, Aircraft and actuator

modules and produces the desired pitch angle
signals for position controllers (PID1, PID3).
The Error Estimator monitors both communi-
cation channels and quality of control during
runtime. The algorithms applied in the Error
Estimator have been presented in [27, 28]. The
second (P2) partition includes the first posi-
tion controller algorithm (PID1), running as
separate real-time task. Identically, the third
(P3) partition includes the second position con-
trol algorithm (PID3). The fourth (System Par-
tition) collects all signals exchanged between
hardware modules and transfers them to the
AFDX network. The Hardware modules 2 and
3 have the same hardware-software structure.

ARINC Specification 653 Based Real-Time Software Engineering 47

They include one system partition and one ap-
plication partition. The application partitions
(P4 and P5) involve single real-time tasks with
speed control PID algorithm. The system parti-
tions provide inter-hardware module communi-
cation.

For the intrapartition communication, AR-
INC 653 blackboards have been applied, whereas
the interpartition communication is based on
ARINC 653 sampling ports and channels. Black-
boards and sampling ports seem most suitable
communication units for the system, since they
are in fact shared and protected data regions.
They always provide the latest acquired data.
It is possible to set their properties in such a
manner that they do not block the real-time
tasks, even if they are empty. It is assumed that
some of data packages produced by “fast” control
blocks may be lost due to the “slow” ones. From
real-time software engineering point of view all
communication mechanisms applied in the PCA
are shared variables and monitors [9]. This solves
the mutual exclusion problem. The shared vari-
ables are accessed (at the operating system level)
according to Priority Inheritance Protocol [8, 9].
One can check that the PCA communication
structure does not include deadlocks.

Due to “external” partition scheduling and
simple application structure, the priorities of lo-
cal task are used mostly for the precedence con-
straints definition. The tasks priorities (defined
within the partitions — compare tab. 1) reflect
the order of the computations, the tasks should
follow. This approach is essential especially in P1
partition. It is expected that the FCA real-time
task is terminated before the Error Estimator
task begins.

4. System Programming and Testing

The PCA has been finally implemented in C lan-
guage for VxWorks 653 [29, 30, 31] and PikeOS
[32, 33, 34] operating systems, with APEX inter-
face applied for PCA structure generation. From
the programmer’s point of view, each partition
defined during the application development is
a separate program. The program consists of a

set of real-time tasks. The tasks exchange data
by means of APEX blackboards or send and re-
ceive data via sampling ports. Timing constraints
are attached to the tasks. Each task involves
main function which collects data from the input
communication objects (blackboards or sampling
ports), calls appropriate control block algorithm,
sends computed data to output objects, and fi-
nally suspends execution. The function is peri-
odically activated by core operating system.

The PCA is a distributed real-time control ap-
plication, so implementation tests have involved
three main areas, i.e. communication, timing
constraints and control algorithms. Firstly, the
communication structure of the application has
been assessed and all channels and data struc-
tures checked. Secondly, Worst Case Execution
Time (WCET) for each of the real-time task
has been measured and the meeting of timing
constraints both at the process and the partition
level evaluated. The measured time has been
compared with partition time slots defined at
the beginning. Thirdly, the control procedures
applied in the application have been tested, both
as separate function blocks and as complete set
of cooperating software modules.

To the author’s experience, good practice
for the ARINC 653 programmer is to prepare
working document that explains:

— ports introduced in the application,

— channels’ description (how to connect the
ports with other ports),

— time budget (partition window) allocated to
the partition,

— time period within which the application (par-
tition) should run again,

— memory requirements.

Some extra records with internal structure
of the application will also help. Typically the
application developer should provide:

— parameters of real-time tasks (IDs, stacks,
priorities, deadlines, periods, criticalness
<HARD/SOFT>),

— internal communication structure (black-
boards and buffers, their IDs, capacities, tasks
attached),

48

Stawomir Samole;j

Hardware Module 1

Hardware Module 2

P1 P2 P3 System partition System partition P4
Error .
Estimator
PID1 ‘ "
v > > PID3 : AFDX ’
| AFDX driver driver A - M
FCA D
[|
I [‘ i I8 9 o M1 M2 13 20 21 22 23 P4 25 2 80 29 28 1415 o7
’ A ’ ‘ A 4 A A AL A A
Hardware Module 3
System partition P5
= PID4
AFDX1 AFDX '
driver . M

Aircraft 4—,_'

838281 i§ 7

Figure 6. PCA structure

— communication timeouts (attached to APEX
function calls to read data from blackboards
or buffers),

— internal error handler procedure actions.

According to IMA philosophy the prepared ap-

plications (partitions) in a form of binary files

equipped with such documents are sent to the
system integrator.

5. Conclusions and Future Research

The paper reports emerging trends and design
patterns in real-time systems development. It is
focused on ARINC 653, where a new standard for
real-time systems design is introduced. Successive
steps of a typical ARINC 653 based application
(Pitch Control Application PCA) development
are described. The application has been designed
as contribution of Rzeszéw University of Technol-
ogy to European SCARLETT [22] project. In the
current state of the PCA development, the appli-
cation is being integrated with other hardware
and software modules delivered by SCARLETT

partners. It is expected that the final PCA ap-
plication test will reveal whether the current
hardware-software environment conforming with
ARINC 653 is able to execute some distributed
hard real-time applications successfully.

6. Acknowledgments

Research reported in the paper is funded
by SCARLETT 7th European Frame-
work Project, Grant Agreement No.
FP7-AAT-2007-RTD-1-211439. Some of hard-
ware components used in the research pub-
lished within this paper were financed by
the European Union Operational Program —
Development of Eastern Poland, Project No.
POPW.01.03.00-18-012/09.

References

[1] Wind River WWW Site. [Online]. Available:
http://www.windriver.com/

[2] SYSGO WWW Site. [Online].
http://www.sysgo.com/

Available:

ARINC Specification 653 Based Real-Time Software Engineering

49

[3]

[18]

[19]

[20]

Lynux Works WWW Site. [Online]. Available:
http://www.lynuxworks.com/

WindowsCE WWW Site. [Online]. Available:
http://www.microsoft.com/

Linux RTAT WWW Site. [Online]. Available:
https://www.rtai.org/

J. Barnes, Programming
Addison-Wesley, 2006.

——, High Integrity Software, The SPARK Ap-
proach to Safety and Security. Addison-Wesley,
2003.

G. C. Buttazzo, Hard Real-Time Computing Sys-
tems: Predictable Scheduling Algorithms and Ap-
plications. Kluwer Academic Publishers, 1997.
A. Burns and A. Wellings, Real-Time Systems
and Programming Languages. Pearson Educa-
tion Limited, 2001.

“IEEE Std 1003.1, 2004 Edition,” IEEE, Tech.
Rep., 2004.

J.-P. Rosen, HOOD an Industial Approach for
Software Design. Elsevier, 1997.

A. Burns and A. Wellings, HRT-HOOD: A struc-
tured design Method for hard Real-Time Ada
Systems. Elsevier, 1995.

A. Burns, B. Dobbing, and T. Vardanega, “Guide
for the use of the ada ravenscar profile in high
integrity systems,” University of York, Technical
Report YCS-2003-348, Jan 2003.
Matlab-Simulink WWW Site. [Online]. Available:
http://www.mathworks.com/

Scade Suite = WWW Site. [Online].
Available: http://www.esterel-technologies.com/
products/scade-suite/

IBM Rational Rose RealTime WWW Site.
[Online]. Available: http://www-01.ibm.com/
software/awdtools/developer/technical /
Avionics Application Software Standard Inter-
face Part 1-2, ARINC Specification 653P1-2,
2005.

SAE AS5506 Standard: Architecture Analysis
and Design Language (AADL), 2006.

P. Bieber, E. Noulard, C. Pagetti, T. Planche,
and F. Vialard, “Preliminary design of future
reconfigurable ima platforms,” in ACM SIGBED
Review - Special Issue on the 2nd International
Workshop on Adaptive and Reconfigurable Em-
bedded Systems. ACM, Oct 2009.

P. Parkinson and L. Kinnan, “Safety-critical

Ada 2005.

mn

[21]

[27]

[28]

software development for integrated modular
avionics,” Wind River, Wind River White Paper,
2007.

J. W. Ramsey, “Integrated Modular Avionics:
Less is More Approaches to IMA will save
weight, improve reliability of A380 and B787
avionics,” Avionics Magazine, 2007. [Online].
Available: http://www.aviationtoday.com/av/
categories/commercial/8420.html

SCARLETT Project WWW Site. [Online].
Available: http://www.scarlettproject.eu
“AFDX: The Next Generation Interconnect for
Avionics Subsystems,” Avionics Magazine Tech.
Report, Tech. Rep., 2008.

Aireraft Data Network Part 7 - Avionics Full
Duplex Switched Ethernet (AFDX) Network, AR-
INC Specification 664 P7, 2005.

ARINC 4}29: Mark 33 Digital Information Trans-
fer Systems (DITS), 1996.

S. Samolej, A. Tomczyk, J. Pieniazek,
G. Kopecki, T.Rogalski, and T. Rolka,
“VxWorks 653 based Pitch Control System
Prototype,” in Development Methods and
Applications of Real-Time Systems, L. Trybus
and S. Samolej, Eds. WKL, 2010, ch. Chapter
36, pp. 411420, (in Polish).

T. Rogalski, S. Samolej, and A. Tomczyk, “AR-
INC 653 Based Time-Critical Application for
European SCARLETT Project,” Aug 2011, ac-
cepted for presentation at the ATAA Guidance,
Navigation, and Control Conference, 8-11 Aug
2011 Portland, Oregon, USA.

S. Samolej, A. Tomczyk, and T. Rogalski, “Fault
Detection in a ARINC 653 and ARINC 644 Pitch
Control Prototype System,” Sep 2011, accepted
for publication in: Development, Analysis and
Implementation of Real-Time Systems, L. Try-
bus and S. Samolej eds., WKL, 2011, (in Polish).
VaWorks 653 Configuration and Build Guide 2.2,
Wind River, 2007.

VaWorks 653 Configuration and Build Reference,
2.2, Wind River, 2007.

VaWorks 653 Progmer’s Guide 2.2, Wind River,
2007.

PikeOS Fundamentals, Sysgo AG, 2009.
PikeOS Tutorials, Sysgo AG, 2009.

PikeOS Personality Manual: APEX, Sysgo AG,
2009.

e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 51-63, DOI 10.2478/v10233-011-0030-4

VERSITA

Experience with instantiating an automated
testing process in the context of incremental and
evolutionary software development

Janusz Gorski*, Michal Witkowicz*
*Departament of Software Engineering, Gdansk University of Technology

jango@pg.gda.pl, miwi@eti.pg.gda.pl

Abstract

The purpose of this article is to present experiences from testing a complex AJAX-based
Internet-system which is under development for more than five years. The development process
follows incremental and evolutionary lifecycle model and the system is delivered in subsequent
releases. Delivering a new release involves both, the new tests (related to the new and/or modified
functionalities) and the regression tests (after their possible refactoring). The article positions
the testing process within the context of change management and describes the applied testing
environment. Details related to documenting the test cases are given. The problem of automation
of tests is discussed in more detail and a gradual transition from manual to automated tests is
described. Experimental data related to the invested effort and the benefits resulting from tests
automation are given. Plans for further development of the described approach are also presented.

1. Introduction

Testing can serve both, verification and valida-
tion purposes. It can generate considerable costs
(according to [1] it is not unlikely that testing
consumes 40% or more of the total development
effort) and therefore defining testing objectives
and strategy belong to the key decisions to be
made in a software development project. This
includes not only the answer to how much we
want to spend on testing but also what, when and
how to test to maximize benefits while keeping
the costs in reasonable limits. It is well known
that testing cannot prove absolute correctness of
a program [2] and can consume (practically) un-
limited resources. On the other hand, testing can
prove (and does it in practice) that the program
includes faults. Therefore, an important crite-
rion to be used in practice is to drive the testing
process in a way that increases the likelihood of
fault detection. In practical situations it means

that we are interested in such test cases selection
criteria which result in tests that have the highest
potential for detecting significant faults within
given time and budgetary constraints. Signifi-
cant faults are these which have highly negative
impact on the program behavior in its target en-
vironment. For instance, a fault which is never or
very rarely activated within a given operational
context of a program is less significant than a
fault which is activated in (almost) every usage
scenario, unless the former fault is considered
to be ‘catastrophic’ in which case it should be
eliminated even for a very high price.

Current tendency is that the number of ap-
plication programs developed for use in Internet
increases rapidly. The complexity of such appli-
cations grows. As they are often used to support
businesses, commerce and other services, the ex-
pectations related to their dependability increase.
This requires employment of more sophisticated
assurance processes. To maintain their usabil-

© Copyright by Wroclaw University of Technology, Wroctaw 2011

52

Janusz Gérski, Michal Witkowicz

ity, such programs have to follow the evolution
of their requirements and target environments.
Therefore, in addition to the common corrective
maintenance practices, they have to be subjected
to the perfective and adaptive maintenance pro-
cesses [3]. A program, instead of being considered
as the final result of its development process, is
better understood as an object which appears in
time in subsequent incarnations, following an evo-
lutionary process. An important question then is
not only how to ensure the expected dependabil-
ity of the program, but in addition how to main-
tain the assumed level of guarantees throughout
the program evolution. Without such change in
the attitude we can end up with a product which
quickly disintegrates in time and in consequence,
the users lose their interest in it.

Changes of a program undermine the confi-
dence in its reliability. Even a very small change
(for instance one single bit) can result in a dra-
matic loss of reliability (for instance, the pro-
gram stops to work entirely). A widely adopted
solution is to have regression testing in place,
meaning that the program is subjected to a des-
ignated set of test cases each time it has been
modified. With careful selection of these test
cases, a positive result of all tests supports the
claim that the reliability of the modified program
remains unchanged. Depending on the scope of
the changes involved, the regression test suite is
being modified to reflect the program evolution.

In present business environments, time is
considered a very valuable asset and shortening
time-to-market of new products and services is
among the highest priorities. This is reflected in
the growing popularity of incremental delivery
of software products, where the product is deliv-
ered as a series of subsequent increments, each
increment representing some added value for the
users. From the software assurance viewpoint we
are facing here the same situation as in software
evolution. The product is growing and each sub-
sequent increment is expected not to decrease its
dependability comparing to its predecessor.

Combining incremental development with
software evolution is the common situation which
calls for strengthening software assurance prac-
tices and building them into the software process

from the very beginning. This has been reflected
in the agile approaches to software development
where testing is brought to the front of the pro-
cess by integrating it with the requirements spec-
ification (specifying requirements by test cases)
and running tests as soon as the first increments
are coded.

The purpose of this paper is to present a
case study involving instantiation of an auto-
mated testing process during development of a
substantial Internet application TCT [4, 5] based
on AJAX technologies. The application follows
the evolutionary and incremental development
process model. The data presented in this paper
were collected during the period of more than
five years of development and evolution of TCT.

The application is based on AJAX technolo-
gies [6, 7]. AJAX radically changes the protocol
of interaction between the Internet browser and
the server. The granularity of exchanged mes-
sages drops down from a full page to a page
element and such elements are exchanged asyn-
chronously in a way which is highly transparent
to the user. The result is that the user has a
feeling of working interactively without delays
caused by page reloading.

Moving to the AJAX technologies has sig-
nificant impact on program testing. Numerous
techniques, e.g. these described in [8, 9] become
non-applicable or can be applied only partially.
In Table 1 we assess some of them following [8].

Table 1 demonstrates that only selected tech-
niques (in particular, these based on the so called
test recording and replaying) and some tools of
the xUnit type (e.g. squishWeb or Selenium) are
suitable for testing AJAX-based software. Other
techniques are not applicable or require signifi-
cant modifications.

The TCT application considered in this pa-
per is following the incremental and evolutionary
development process. The objective is to deliver
subsequent increments while maintaining a sat-
isfactory level of reliability and keeping the de-
velopment effort in reasonable limits. To achieve
this we had to invest in automation of tests which
proven to be particularly beneficial.

The paper first sets the scene, explaining the
object of testing, its architecture and the pro-

Ezxperience with instantiating an automated testing process in the context. ..

93

Table 1. Web testing techniques applied to AJAX-based applications [8]

Testing Adequate | Problems Tools
Model-based no Web models extracted are par- | research
tial; existing Web crawlers are not
able to download site pages
Mutation-based no Mutant operators are never being | not-existing
applied to client Web code; the
application of mutant operators
is difficult
Code Coverage partially | It is difficult to cover dynamic | Javascript: Coverage val-
events and DOM changes; cov- | idator
erage tools managing a mix of | Java: Cobertura, Emma,
languages are not available Clover, etc.
Languages mix: not avail-
able
Session-based no It is impossible to reconstruct the | research
state of the Web pages using only
log-files
Capture/Replay yes Javascript, asynchronous HTTP | not ok: Maxq, HTTPUnit,
and xUnit requests and DOM analysis are | InforMatric, etc.
not always supported partially ok: Badboy,
HTMLUnit, etc.
ok: squishWeb, Selenium,
etc.

cess of its development. Then we describe the
testing process and explain how it developed in
time. Next, we present subsequent steps towards
automation of the testing process together with
the collected data which characterize the perfor-
mance of the automated tests. We also highlight
the main factors which, in our opinion, had the
most significant influence on these results. In
conclusion we also present the plans for further
improvement of the process as the application
grows and its usage context becomes richer.

2. Object of testing

The object under test was an Internet applica-
tion called TCT, being a part of the Trust-IT
framework [4, 5]. The objective of Trust-IT is
to provide methodological and tool support for
representation, maintenance and assessment of
evidence-based arguments. From the user’s per-
spective, TCT implements a set of services. They

cover eighteen groups of key system functionali-
ties accessible by a user (listed in Table 6). Multi-
ple instantiations of the services are deployed for
different groups of users (presently we run some
sixteen such instantiations). Each instantiation
supports different ‘projects’ which are used by
different users. The users work independently and
in parallel, accessing the services by an Internet
browser.

Trust-IT together with the TCT tool has been
developed in a series of projects supported by
EU 5 and 6! Framework Programmes'. The
tool was already applied to analyze safety, secu-
rity and privacy of I'T systems and services from
different domains, including healthcare, automo-
bile and business. Presently TCT is being used
to support processes of achieving and assessing
conformance to norms and standards, in particu-
lar in the medical and business domains (more
information can be found in [10]). Further appli-
cation domains are being investigated, including
monitoring of critical infrastructures.

L 5" FR UE Project DRIVE, IST-12040, 6" FR UE Integrated Project PIPS IST-507019, 6!* FR UE STREP

Project ANGEL IST-033506

54

Janusz Gérski, Michal Witkowicz

2.1. Application architecture

The architecture of TCT follows the rich
client-server model which is illustrated in Figure
1 [11]. The model includes three layers: database
server PostgreSQL [12], application server JBoss
[13] and a client written in JavaScript [14] in ac-
cordance with AJAX (Asynchronous JavaScript
and XML) [6]. The client is automatically up-
loaded to the browser of the end user.

AJAX-based
Web
Client

J

JBoss
Application
Server

PostgreSQL
Database
Server

Figure 1. The architecture of TCT

The lowest layer (the database) implements
the business logic as a set of stored procedures.
The intermediate layer is based on J2EE [15] and
links the database with the client. Communica-
tion between these layers is based on web services
and SOAP (Simple Object Access Protocol) [16].

Each layer is a complex program: presently
the database stores some 135 procedures, the
intermediate layer and the client layer have 141
classes and 139 classes correspondingly. The two
higher layers include additional structure (inter-
nal layers) to provide for better understandability
and maintainability.

2.2. Increments and evolution

Following earlier prototypes, the development of
the present TCT tool was initiated in December
2005. At the beginning, the objectives and the
scope of the required functionalities were identi-
fied and the delivery of the functionalities was
planned as a series of increments. The intention

was to follow the incremental development model
[17, 18] by producing deliverables in subsequent
iterations, where each iteration involves require-
ments gathering and analysis, design, implemen-
tation and testing. In effect, each iteration results
in the release of an executable subset of the final
product, which grows incrementally from itera-
tion to iteration to become the final system.

However, it has been soon realized that fol-
lowing the incremental model in a strict sense
is not relevant. As TCT was being developed in
the context of on-going research and the research
objectives (and consequently the results) were
shaped and scoped by the results of the experi-
ments and the feedback received from the partic-
ipants of these experiments, the requirements for
TCT were changing, following a learning curve.
Therefore we had to switch to a more complex,
incremental and evolutionary development model,
which can be characterized as follows [19]: it im-
plies that the requirements, plans, estimates, and
solutions evolve and are being redefined over the
course of the iterations, rather than being fully
defined and ‘frozen’ during the major up-front
specification step before the development iter-
ations begin; evolutionary model is consistent
with the pattern of unpredictable discovery and
change in new product development.

From the testing perspective the incremen-
tal and evolutionary development process poses
important challenges: (1) to maintain reliability
of the subsequent increments it was necessary to
have the regression testing in place from the very
beginning, and (2) to follow the evolution of the
application, the set of regression tests could not
be treated as monotonic (i.e. extended by the new
test cases reflecting the current increment while
preserving the already used test cases); instead
it had to evolve following the changes introduced
to the already existing functionalities.

So far, TCT has been delivered in eight re-
leases: four of them were related to the major
changes and the remaining four were related to
the localized changes of the application. To reflect
this scope of change, the former are also called
main releases and the latter intermediate releases.
The difference between the two is based on the as-
sessment of the impact of the introduced changes

Ezxperience with instantiating an automated testing process in the context. ..

95

| 2008 2007

2008

2009 200 2011

Cr 4 |Gt 1[G 2 [Gtr 3 [Gtr 4 (Gt 1 [t 2 [atr 3 [Gtr 4

Ctr 1 [er 2 [Gtr 3 [Ctr 4

Gtr 1 [Gr 2 [Gtr 3 [Ctr 4 [Gtr 1 |Gt 2 [Gtr 3 [Gt 4 (Gt 1 [Gtr 2]

TCTEditar 1.0
TCTEditar 1.1
TCTEditar 1.2
TCTEditar 2.0
TCTEdar 3.0
TCTEditar 3.1
TCTEditar 3.2
TCTEdiar 4.0
TCTEdbar 4.1

| W | @ ;| s W] R =

Figure 2. The history of development of TCT

Reported
issue

Build inventory of
reported
issues

Stored
issue

Select issues to
resolve

Move to next
release?

Test|result (failure)

I

Test
case

Testing

Repository of
test results

I

Repository of
issues

Main repository of
test cases

Issue to | be solved

Plan
solution
implementation

Solution
implementation plan

Solution
implementation plan

!

Implement
issues
solution

implementation

Figure 3. Testing in the context of change management process

and the resulting need for the thoroughness of re-
gression tests. The history of TCT releases is illus-
trated in Figure 2. The releases are numbered by
two digits, where the first one denotes the number
of the main release, whereas the second denotes
the intermediate release related to the main one.

Throughout the whole evolution, the archi-
tecture of the application remains stable. The
changes were mainly related to functionality
(adding new functions, changing existing func-
tions, removing obsolete functions) and to the
applied technologies.

3. Testing in the context of change
management

The testing process is embedded in the broader
process of change management. The model of the
change management process is shown in Figure 3.

The process implements mechanisms for re-
porting the issues related to the application and

for maintaining a related repository of issues.
The repository is based on the MantisBT plat-
form [20]. The repository is being periodically
reviewed, which results in selecting the issues
to be resolved. The selected issues are assigned
priorities and then are grouped together in pack-
ages, each package containing the issues which
can be solved by a common maintenance action.
Not all issues require changes in software, for
instance some are related to the way a user in-
teracts with the system and can be solved by
improving user’s documentation and training.
The issues which call for software changes are
dealt with in the next steps of the process. First,
the necessary changes are subjected to planning
and then an explicit decision about implement-
ing the plan is bring made, after assessing the
resources needed for such implementation and
the resulting impact. The plan for the change
and the change implementation process provide
input to the step of updating the test cases. The
new and updated test cases are then stored in

56

Janusz Gérski, Michal Witkowicz

the tests repository forming the new suite of the
tests to be performed. The repository of test
cases is implemented using Subversion (SVN)
[21]. After implementing the change, the tests
are being applied.

For a given release of the application, depend-
ing on if it is related to a main release or to a
intermediate release, the scope of related testing
differs. In the former case, the tests include both,
the tests covering the new functionality and the
full set of regression tests. In the latter case, the
tests cover the new/changed functionality and
only a subset of the regression tests is included.
Limiting the scope of regression tests for a local-
ized change is based on the assumption that the
impact of the change is limited and is unlikely
to affect the whole scope of the functions.

The testing process is illustrated in Figure
4. Tt starts with building the current repository
of test cases which is a subset of the tests main-
tained in the main repository of test cases. The
selection criteria depend on if we are testing a
main or an intermediate release of the system.
In the former case the current repository is sim-
ply a copy of the main repository. In the latter
case it is a proper subset of the main repository.
Then, the selected test cases are run and the
results are collected in the repository of test re-
sults. The results of the tests are then analyzed
and assessed. In case of failed tests, there are
two possibilities: (1) inserting new issues to the
repository of issues (for further processing) or
(2) updating the current repository of tests. The
former possibility takes place if removing the
cause of the test failure involves a significant
change; then introducing this change is left to
the next releases of the system. The latter possi-
bility is in place if (due to a negative test result)
an immediate and localized change is introduced
to the software which affects the corresponding
tests kept in the current repository. The decision
on which alternative is chosen is taken by the
tests manager and involves consultation with the
representatives of key groups of the users.

START
Main repository of Select Current repository of
test cases test cases test cases
Test|case
A
N Perform Repository of
tests test results
Test|result
Assess Repository of
test results issues
Test| result (failure)
NO YES
Move to next STOP

release?

Figure 4. Two phase testing process

After assessing the test results, the decision
is being made concerning the continuation of the
testing process. If all the issues detected during
the previous phase are deposited to the reposi-
tory of issues, the testing process stops and the
next release is delivered to the users. If however,
some immediate changes were introduced to the
software, the tests kept in the current repository
are executed again.

3.1. Specification of test cases

Each test case is represented in accordance with
a predefined structure. It includes the following
elements:
— Identifier - a unique name of the test case.
The name suggests the tested functionality;
— Author - identification of the person respon-
sible for this test case;
— Feature - brief, intuitive description of the
tested feature;
— Scenario - description of the related testing
scenario including:
— summary of the scenario,
— description of the initialization phase,

Ezxperience with instantiating an automated testing process in the context. . . 57

— the list of actions necessary to complete

the test case,

— description of the closing phase of the test

case;

— Success criterion - specification of how to
assess that the test case completed success-
fully.

An example test case specification is given
in Table 2. The objective of this test case is to
check if authentication of the users assigned to
different roles works correctly.

3.2. Manual execution of test cases

At the beginning, all test cases were executed
manually. The testers were following the test
scenarios specified for each test case. If a test
case does not pass the success criterion, the tester
immediately reports this as an issue to be solved.
The issue specification includes details of the
sequence of actions which led to the failure.

If the currently reported issue is similar to
an issue already reported, then the existing issue
description is being updated instead of inserting
the new one. Assessment of this ‘similarity’ was
left to the tester. And this appeared to be a weak
point in issues reporting. Because analyzing the
existing descriptions was boring, the testers often
did not go deeply into the details and just con-
cluded that the issue has been already reported
and its description did not need any update. The
result was that sometimes an important infor-
mation was not included in the issue description,
which adversely impacted fault diagnostics and
correction.

4. Automation of test case execution

Manual execution of the process illustrated in
Figure 4 consumed significant resources for both,
complete regressions tests (full suite of regression
tests performed for each main release of the sys-
tem) and partial regression tests (for the releases
related to the localized software changes). This
had negative impact on the delivery time of subse-
quent releases and slowed down the development
process.

To deal with the above problems we decided
to invest in automation of test case execution. A
separate testing system was developed based on
the TestNG library [22] and the server and the
library offered by Selenium Remote Control [23].
The testing system maintains the TCT system
metaphor which is being updated in parallel to
the subsequent releases of TCT. The metaphor
is used to activate these functions of TCT which
are callable from an Internet browser. In con-
sequence, these functions are being activated
automatically.

Each result of an automated test case is struc-
tured in the XML format (Extensible Markup
Language) [24] and inserted to a file. Such reports
are periodically reviewed and the detected issues
are inserted to the issues repository.

Figure 5 illustrates an example fragment of
the code implementing the testing scenario shown
in Table 2. Method 1 attempts to log a user in,
assuming the role ‘viewer’. Method 3 implements
the logging sequence. It includes a check if the
required element has been visualized. Method 2
finalizes the test scenario and logs the user out.

5. Experiences

So far, there were eight system releases (see Fig-
ure 2) including four main releases and four inter-
mediate ones. Testing of the three first releases
(two main and one intermediate) was performed
by a team of five testers. The process was manual
and consumed significant resources. Testing of
the second main release was performed by a team
of four testers and with partial automation of
test cases (automated testing did not play an
important role yet and was just experimented
with). The third main release was tested with
30% test cases already automated. The testing
process involved two testers.

The results achieved were so encouraging that
the effort in test case automation was increased
which resulted in that for the fourth main re-
lease (Release 4.0 in Figure 2) the number of
automated test cases reached 95%. This resulted
in radical decrease of the effort to execute test

58 Janusz Gérski, Michal Witkowicz

Table 2. An example of test case specification

Identifier SystemFunctions_ Login

Author Michat Witkowicz

Feature Access to system functions for different user roles - system login
Scenario Summary:

Make sure that all possible roles have accounts in the system (viewer, developer,
assessor and admin). Then login to the system as a user assuming different
roles.

Initialization:

Check if login screen is properly displayed (find DOM element with
id=“tct_login_data_form”). If not, the user is likely to be logged in; log the
user out (SystemFunctions_Logout). Then, if the login screen is properly
displayed - do nothing.

Actions:

1. Input user login and password.

2. Press “log in” button.

3. Check if the root node named “Projects” of the projects tree is displayed
(max. waiting time = 10 sec.).

4. Log out the user.

5. Check if the login screen is correctly displayed (find DOM element with
id=“tct_login _data_form”; max. waiting time = 10 sec.).

6. Repeat the steps 1-5 for every possible user role: admin, developer, assessor
and viewer.

Finalization:
Repeat the Initialization phase again.
Success criterion | Users assigned to all different roles are able to log in to the system

Method 1. test
Q@Test (groups = {"TCT","viewer"})
public void test() throws InterruptedException {
cmdContainer.loginPage.logIn(viewerUser.getLogin(), viewerUser.getPasswd());
}
Method 2. tearDownTest
Q@AfterMethod
public void tearDownTest() throws InterruptedException {
cmdContainer.mainMenuBar. logout () ;
}
Method 3. logln
public void logIn(String userName, String password)
throws InterruptedException, SeleniumException {
selenium.type("login_username", userName);
selenium.type("login_password", password);
selenium.click("button_logIn");
cmdContainer.waitForElementPresent ("dom=document.
getElementById(’projects_root’) .parentNode.childNodes[3].firstChild",
cmdContainer.loadPageDelay) ;

3

Figure 5. An example test case code

Ezxperience with instantiating an automated testing process in the context. .. 59

cases and in significant shortening of the delivery
time for this release.

The progress in test cases automation is il-
lustrated in Figure 6.

95%

100% -
90% -+
80%
70% -
60%
50% -
40% 30%
30% -

20%

10% - 0% 0%
- -
0% T T

Release 1.0 Release 2.0 Release 3.0 Release 4.0

Figure 6. The progress of the test cases automation

Automation of test cases is not free, how-
ever. In our experience, one man-day resulted in
automation of approximately five test cases (to
automate 67 test cases we needed 14 man-days).
However, comparing to the effort needed for man-
ual execution of test cases during testing of subse-
quent system releases, this effort was acceptable
(more details are given in Table 4 and 5).

When it comes to the cost of maintaining
automated test cases, it depends on a scope of
changes in the application in the next release. Ob-
viously, the maintenance of test cases was more
expensive while preparing a main release of the
system. For example, for the fourth main release
it has been observed that one man-day resulted in
approximately three updated test cases and total
16 man-days were needed for tests maintenance
(see Table 4 and 5). For intermediate releases,
usually only few test cases needed to be updated,
and the total effort was significantly less.

The total numbers of test cases for the sub-
sequent main releases of the system are given in
Figure 7.

Tables 3, 4 and 5 summarize the effort needed
for testing the four main releases and illustrate
the gain (in terms of effort) resulting from test
cases automation.

236

250 222

185
200

133
150 ~
100 ~

50 +

Release 1.0 Release 2.0 Release 3.0 Release 4.0

Figure 7. The numbers of all test cases for the main
releases of the system

Test cases were following system development
and evolution. This was not only because new
test cases were being introduced but also be-
cause some test cases became obsolete and some
other were merged together or modified. As the
result, periodic refactoring [25] of test cases was
necessary, to maintain test cases integrity and
understandability. In particular, such refactor-
ing was performed before testing the release 4.0
which resulted in reducing the number of test
cases from 236 (in release 3.0) to 133.

The coverage by test cases of the key system
functionalities of the release 4.0 is shown in Table 6.

Tables 7 and 8 illustrate the numbers of issues
reported during testing of subsequent main re-
leases (Table 7) and during exploitation of these
releases (Table 8).

During the exploitation phase, the reported
problems were classified in accordance with the
different categories of the maintenance objec-
tives [26]: adaptive, corrective, preventive and
perfective. On the other hand, all issues detected
during testing were classified as corrective.

Figure 8 compares numbers of different issues
detected during exploitation and Figure 9 com-
pares the issues of corrective category between
testing and exploitation phases.

From figures 8 and 9 we can see that for re-
lease 2.0, testing detected some 30% of corrective
issues whereas the remaining 70% were detected
in the exploitation phase. For the release 3.0 this
proportion looks better and may indicate the
positive influence of tests automation. For the
release 4.0 this proportion looks much better:
automated tests detected nearly 100% of correc-
tive issues. However, it should be noted that the

60

Janusz Gérski, Michal Witkowicz

Table 3. Number of test cases and number of testers involved in testing of main releases

Release # # of test cases # of manual test | # of automated test | # of testers
cases cases
1.0 185 185 0 5
2.0 222 222 0 4
3.0 236 169 67 2
4.0 133 6 127 2
Table 4. Distribution of testing effort for main releases
Release # Application de- | Specification/ Maintenance Execution Total effort
sign Implementation
1.0 - 5 man-days 0 15 man-days 20 man-days
2.0 - 1 man-day 6 man-days 18 man-days 25 man-days
3.0 10 man-days 15 man-days 5 man-days 20 man-days 50 man-days
4.0 0 14 man-days 16 man-days 3 man-days 33 man-days
Table 5. Distribution of testing effort for automated tests
Release # Application de- | Specification/ Maintenance Execution Total effort
sign Implementation
3.0 10 man-days 14 man-days 0 2 man-days 26 man-days
4.0 0 14 man-days 16 man-days 2 man-days 32 man-days
Table 6. Test case coverage
Functionality Number of test cases
Copy, cut and paste functions 27
Accessibility of basic system functions 14

Tree of projects and versions
Management window for administrators
Tree of trust cases

Access rights management
Appraisal mechanism
Management on links

Tree element expand and collapse
Refresh function

Import and export

Login and logout

Management of user settings
Behaviour of tree icons
Management of repositories
Reference nodes

Report generator

Traversal tool

e S e E N R SR B R R= =Y B R

Ezxperience with instantiating an automated testing process in the context. ..

61

Table 7. The number
of reported issues
during testing of

main releases

Table 8. The number of reported issues during exploitation of main releases

Release # | Issues Release # | Adaptive | Corrective | Preventive | Perfective | Sum of issues
1.0 15 1.0 1 47 0 38 86
2.0 56 2.0 4 173 18 75 270
3.0 20 3.0 5 39 1 32 7
4.0 63 4.0 0 1 2 3

300 -
270
-
250 +
200 + 173 mAdaptive
B Corrective
150 & Preventive
[Perfective
100 86 e o oSum
s 4 47 38 39,
8
. 1o . é 5 5 . 01023 ‘

Release 1.0 Release 2.0

Release 3.0

Release 4.0

Figure 8. Issues distribution during maintenance of the TCT system

173
180 ~ —

160

140

120

100

m Issues reported during testing

80

Corrective issues reported during
exploitation

60 a7

63
56
39
40
20
15
20 1

Release 1.0 Release 2.0 Release 3.0

Release 4.0

Figure 9. Corrective issues detected during testing and exploitation

exploitation period of release 4.0 amounts for just
three months (whereas for release 2.0-12 months
and for release 3.0-10 months). To make these
data more comparable we calculated the ‘issues
density’ metrics (dividing the number of detected
issues by the system exploitation period). The
result is shown in Table 9.

The above numbers should not be over in-
terpreted, however. To assess the influence of
the testing process on the reliability of the TCT
system we would have to take into account other
factors for which we have no quantifiable data

Table 9. Corrective issues density for the last three
main releases

Release # | Issues per month
2.0 14,41
3.0 3,9
4.0 0,33

yet. This involves for instance the influence of
the ‘size’ system change or the operational pro-
file during system exploitation. Nevertheless, at
least one relationship can be clearly observed: as
the number of different users of the subsequent

62

Janusz Gérski, Michal Witkowicz

system releases increases, in the light of the data
presented in Table 9, the claim of increasing
reliability of the system gains more credibility.

The presented results suggest that there is
still a considerable opportunity to improve the
effectiveness of the testing process. However, we
cannot ignore the fact that the defects detected
during testing are usually the ‘big’ ones (i.e. such
that disable or significantly disturb the usage of
the system), whereas the defects detected during
exploitation are usually ‘small’ and rarely prevent
the users from using the system. However, it is
also worth to note that the difference between
‘big’ and ‘small’ defect is context dependent and
what is ‘small’ from one user’s perspective (not
noticeable at all or slightly disturbing) can be
considered ‘big’ from the perspective of another
user with different operational profile. Although
we did not yet collected enough data to differen-
tiate between the different impact of the defects,
we are well aware of this problem and intend to
exploit it while planning for the next steps of
test process improvement.

6. Conclusions and plans for the
future

The decision about automation of test cases, in
particular with respect to the regression tests,
has been positively verified in practice as it re-
sulted in considerable reduction of the tests exe-
cution effort and contributed to removing subjec-
tivity from execution and interpretation of tests
and their results. Despite relatively high cost of
the implementation and maintenance of auto-
mated tests, the total testing effort decreased
and a significant gain in system reliability has
been observed.

In our particular case we could observe that
perfective maintenance had a considerable share
in system changes. This is because the system
is being developed in the context of a research
process which generates new ideas and discovers
new ways of system usage. It can be expected
that for systems developed in a business context
the influence of this type of changes would be
less significant.

In the near future we plan for delivering the
next (intermediate) release of the system. This
involves the ongoing effort of designing new test
cases (checking the new functionalities) and refac-
toring the existing test cases. Nevertheless, the
goal of having 100% regression tests fully auto-
mated seems to be not realistic due to the present
limitations of the Selenium platform [23].

To exploit the potential of improving the ef-
fectiveness of the testing process (illustrated in
Figure 9) and to take into account the differ-
ences between ‘big’ and ‘small’ faults we plan
for introducing to our testing process the risk
based selection of test cases [27, 28, 29, 30]. This
will take into account different usage scenarios
and the consequences related to system failure
within these scenarios. This information will be
then traced back to the system functionalities
and reflected in ‘weighting’ of the related test
cases. These weights will be taken into account
while planning for the test coverage of critical
functions.

The next main release of the system will in-
volve a significant change of technology, espe-
cially in relation to the client layer (see Figure
1). To deal with this change we also plan for
extending the scope of unit testing of system
components. For better control of tests coverage,
mutation testing [31] is also considered.

References

[1] I. Sommerville, Software Engineering, eighth edi-
tion ed. England: Pearson Education, 2007.

[2] R. Patton, Software Testing, second edition ed.
United States of America: Sams Publishing,
2006.

[3] P. Grubb and A. A. Takang, Software Mainte-
nance Concepts and Practice. Singapore: World
Scientific Printers, 2003.

[4] J. Gérski, “Trust-it - a framework for trust cases,’
in Proc. Workshop on Assurance Cases for Secu-
rity - The Metrics Challenge. Edinburgh, UK:
The 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks
DSN, 2007, pp. 204-209.

[5] J. Gorski et al., “Trust-it research project,” in-
formation Assurance Group, Gdansk University
of Technology (18.10.2011). [Online]. Avail-
able: http://iag.pg.gda.pl/iag/?s=research&p=
trust cases

)

Ezxperience with instantiating an automated testing process in the context. ..

63

[6]

[7]

8]

[18]

[19]

D. Crane, E. Pascarello, and D. James, Ajaz in
Action. Manning Publications Co., 2006.

J. Eichorn, Understanding AJAX: Using
JavaScript to Create Rich Internet Applications.
Prentice Hall, 2006.

A. Marchetto, P. Tonella, and F. Ricca, “Test-
ing techniques applied to ajax web applications,”
2007, workshop on Web Quality, Verification
and Validation (WQVYV), at the International
Conference on Web Engineering.

A. Mesbah, “Analysis and testing of ajax-based
single-page web applications,” Ph.D. disserta-
tion, Delft University of Technology, 2009.
NOR-STA, “Support for achieving and as-
sessing conformance to norms and stan-
dards,” (04.11.2011). [Online]. Available:
http://www.nor-sta.eu/

L. Cyra, J. Miler, M. Witkowicz, and M. Ol-
szewski, “Advanced design solutions of a rich
internet application,” in Zwinnosé © dyscyplina
w inZynierit oprogramowania, A. Jaszkiewicz,
B. Walter, and A. Wojciechowski, Eds., Politech-
nika Poznanska. Poznan: Nakom, 2007, pp.
35-47, (In Polish).

PostgreSQL. (10.06.2010). [Online]. Available:
http://www.postgresql.org/
JBoss. (10.06.2010). [Online].
http://www.jboss.org/

D. Flanagan, JavaScript: The Definitive Guide.
O’Reilly, 2001.

SunMicrosystems, “Developer resources for java
technology,” (10.06.2010). [Online]. Available:
http://java.sun.com/

Available:

W3C, “Simple object access protocol,”
(10.06.2010). [Online]. Available: http://www.
w3.org/TR /soap/

C. Larman and V. R. Basili, “Iterative and incre-
mental development: A brief history,” Computer,
vol. Volume 36, no. 6, pp. 47-56, June 2003.
PCMagazine-Encyclopedia, “Iterative devel-
opment,” (06.04.2011). [Online]. Available:
http://www.pcmag.com/encyclopedia/

C. Larman, Agile and Iterative Development: A
Manager’s Guide. Addison-Wesley Professional,

[20]
[21]
[22]

23]

[24]

[25]

[29]

[30]

[31]

2003.

Mantis. (10.06.2010).
http://www.mantisbt.org/
Subversion. (10.06.2010). [Online]. Available:
http://subversion.tigris.org/
Testng. (10.06.2010). [Online].
http://testng.org/

Selenium, “Selenium web application test-
ing system.” [Online]. Available: http:
//seleniumhq.org/projects/remote-control /
W3C, “Extensible markup language,”
(10.06.2010). [Online]. Available: http://www.
w3.org/XML/

A. V. Deursen, L. Moonen, A. Bergh, and
G. Kok, “Refactoring test code,” in Proceedings
of the 2nd International Conference on Ezxtreme
Programming and Flexible Processes in Software
Engineering. Sardinia, Italy: XP2001, 2001, pp.
92-95.

E. B. Swanson, “The dimensions of maintenance,’
in Proceedings of the 2nd international confer-
ence on software engineering, San Francisco,
1976, pp. 492-497.

R. Black, Advanced Software Testing - Vol. 2:
Guide to the Istqgb Advanced Certification as an
Advanced Test Manager. USA: Rock Nook Inc.,
2009, vol. 2.

R. Black and N. Atsushi, “Advanced risk based
test results reporting: putting residual quality
risk measurement in motion,” Software Test &
Quality Assurance, vol. Volume 7, no. issue 8, pp.
28-33, 2010.

R. Black, K. Young, and P. Nash, “A
case study in successful risk-based test-
ing at ca,” (06.04.2011). [Online]. Available:
http://www.softed.com /resources/

F. Redmill, “Theory and practice of risk-based
testing,” Software Testing, Verification and Re-
liability, vol. Volume 15, pp. 3—20, 2005.

Y. Jia and M. Harman, “An analysis and survey
of the development of mutation testing,” CREST
Centre, King’s College London, Technical Report
TR-09-06, 2009.

[Online]. Available:

Available:

)

e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 65-76, DOI 10.2478/v10233-011-0031-3

VERSITA

Conversion of ST Control Programs to ANSI C
for Verification Purposes

Jan Sadolewski*

*Department of Computer and Control Engineering, Rzeszow University of Technology

js@prz-rzeszow.pl

Abstract

The paper presents a Behavioral Interface Specification Language for control programs written
in ST language of IEC 61131-3 standard. The specification annotations are stored as special
comments in ST code. The code and comments are then converted into ANSI C form for further
transformation with Caduceus and Why tools. Verification of compliance between specification

and code is performed in Coq.

1. Introduction

In some safety oriented applications control pro-
grams should be formally proved before deploy-
ment in the controllers. Control systems are usu-
ally programmed in languages of IEC 61131-3
standard, however ANSI C is typically used for
prototype systems. The IEC standard defines
five programming languages, i.e. LD, IL, FBD,
ST and SFC, allowing the user to choose the one
suitable for particular application. Instruction
list (IL) and Structured Text (ST) are text lan-
guages, whereas Ladder Diagram (LD), Function
Block Diagram (FBD) and Sequential Function
Chart (SFC) are graphical ones.

Recently developed compiler called MatPLC
[1] converts the code from ST, IL, FBD and LD
languages into ANSI C form. It seems that the
main purpose of MatPLC developers was to pro-
vide equivalent ANSI C code for small hardware
platforms and prototypes, where IEC languages
are not available.

This paper presents somewhat different ap-
proach to code conversion, focusing instead on
extension of ST language towards formal verifi-
cation of compliance between specification and
implementation. The conversion can also be used

for design by contract method [2] in which clauses
describe specification. The approach employs
open source software Caduceus [3], Why [4] and
Coq [5], whose connection can be used for formal
verification of ANSI C programs. The specifica-
tion is based on adaptation of JML language [6]
for ST. Special annotations stored as comments
express Dijkstra Weakest Preconditions [7] for
programs, functions and function blocks (Pro-
gram Organization Units in ST). The method
presented here starts from ST source code with
annotations and uses automated tools to obtain
lemmas whereas approach described in chapter
[8] starts from function blocks models written
in Why language by hand. The annotation ex-
tending ST language was proposed in [9] and
currently developed features are presented here.

The paper is organised as follows. Current
state of verification of C programs, and corre-
sponding concept of verification of ST programs
are presented in Section 2. Next section briefly
describes assertions and useful constructs of JML
language adapted to ST. Section 4 describes
translation of ST code with specification annota-
tions to ANSI C with corresponding annotations.
The translation is made automatically by pro-
gram STVCGen developed for the purpose of

9 The research has been supported by MNiSzW under the grant N N516 415638 (2010-2011).

© Copyright by Wroclaw University of Technology, Wroctaw 2011

66

Jan Sadolewski

this paper. Code translation takes into account
three aspects: (1) translation of POU interfaces
into C language functions, (2) conversion of POU
ST code into equivalent C form, (3) translation
of specification annotations into C form for Ca-
duceus. Example of conversion of TON standard
function block (timer), supplemented with spec-
ification annotations is presented in Section 5.
Section 6 describes verification process of C code
of the TON block (it becomes a function). The
verification is processed half-automatically with
standard tactics from Coq prover. For one of the
lemmas the whole proof tree is presented, which
can be of some help for similar examples.

2. Verification Concept

Freely available software such as Caduceus, Why
and Coq can be used to verify correctness of pro-
grams written in ANSI C language. These tools
may prove compliance between specification and
implementation, or help to find mistakes and
side effects. Specifications of programs are stored
in annotations placed in special comments as
BISL code (Behavioral Interface Specification
Language). The Caduceus program converts the
annotated C code to Why language (Fig. 1, sec-
ond and third blocks). In the following step, Why
generator produces verification lemmas based on
Dijkstra Weakest Preconditions. Such lemmas
are stored in Coq format, for further proving
with tactics. If all the lemmas are proved, then
correctness of the code is confirmed.

Control programs are typically written in ST
language, so as to use such approach it is nec-
essary to convert ST to C at the beginning, as
shown in Fig. 1. A prototype tool called STVC-
Gen described in Section 4 converts ST language
code supplemented with specification annota-
tions into C code with corresponding annota-
tions. This is further converted by Caduceus into
Why program. After applying Why generator we
obtain a collection of lemmas to be proved by
Coq.

3. Behavioral Interface Specification
Language for ST

The main purpose for introducing the BISL lan-
guages was to define behaviour of components
of developed code. Such languages are used in
design by contract programming methods. Gen-
erally speaking the BISL languages are based
on assertions, examined at run-time. Some lan-
guages like Eiffel and Why use build-in clauses
for storing such assertions, but popular languages
like Java and C use special kind of comments
beginning with '@ character.

An assertion is a part of code composed of
conditional Boolean expression, which should be
satisfied when evaluated at specific place of the
executed program (i.e. it returns true). Typical
assertions from popular languages are shown in
Tab. 1. They are used solely for testing purposes,
and their code is not compiled into the final dis-
tribution. Assertion failure may be represented
by message box, with exception or interruption
of program execution. The message may involve
current call stack, place in source code, etc.

Design by contract uses two special asser-
tions, i.e. requires to denote preconditions, and
ensures for postconditions. They must be kept
near developed code, in the form of special com-
ments beginning with '@’ mentioned above. The
assertions express conditions, which must be
satisfied when given subroutine is called, and
conditions guaranteed at its termination.

Java Modelling Language (JML) is an exam-
ple of a BISL language, which uses comments to
store annotations. This feature allows for code mi-
gration between compilers of different providers,
which do not support annotations. Program Or-
ganization Units (POUs) from IEC standard are
similar to lightweight Java objects, so JML can
be adapted as a base of BISL language for ST.
Naturally, only a subset of JML will suffice for
verification problem considered here.

Adaptation of JML for ST language is pre-
sented at Tab. 2. The clauses are grouped ac-
cording to their types. Each clause has its own
range. Range instruction means that correspond-
ing clause can be placed where instruction or ex-
pression is expected. Ranges local and global re-

Conversion of ST Control Programs to ANSI C for Verification Purposes 67

Caduceus

ST code with
annotations

STVCGen | ANSI C code
conversion | with annotations

—»
conversion

Why program

Why
generator

Correct
program

Verification || Cod
lemmas prover

Figure 1. Method for verification of ST programs

Table 1. Assertions in popular languages

[ANSI C, POSIX [Delphi

I

#include <assert.h>
void additem(struct
ITEM *itemptr)

{ assert(itemptr

procedure ModifyStorage
(AStorage: TStorage;

const s: string); begin
Assert (AStorage <> nil,

{ int index;

System.Diagnostics
.Debug.Assert

!= NULL); >7); AStorage.Data := s; | (index > -1);
.} ... end; .}
Table 2. Adaptation of JML in ST language
’ Type \ Standard JML \ ST adaptation \ Range ‘
assert assert instruction
Assertions ensures ensures: local
requires requires: local
Localise \at \at or at instruction
modifiers \old \old instruction
Quantifiers \exists \exists mixed
\forall \forall mixed
Invariant invariant invariant: instruction
label label: instruction
logic logic: global
Declarations ghost ghost: local
predicate predicate: global
axiom axiom: global
Function return \result or
\result . local
value function name
. set set: instruction
Operations - -
assigns assigns: local
W-F iteration variant variant: instruction

fer to POU or whole project, respectively. Clause
whose use depends on the context has the range
mixed.

Verification clauses are located inside corre-
sponding program unit. For example, annotation
clause of function block is written after identifier
with the name of the block. The clause must
contain at least ensures section, but it often in-
volves requires and assigns, especially when
annotated POU is a program which modifies
global variables. There are two ways to access
return value of function, i.e. \result or function
name, which is specific for ST language. Verifica-
tion is based on memory states [10], which con-
tain variable values at specified moment of execu-

tion. Modifier \old represents variable value at
the beginning of execution, obtained in previous
cycle. Similarly, modifier \at denotes variable
value at specified location in the code, declared
with label.

Sometimes additional function that does not
appear in the original code may help in construc-
tion of specification. The function can be reached
by global logic clause. Additional local variables
can be used to express the specification. Such
variables are defined by ghost clause and oper-
ated on by set clause. The predicate declares
additional logic function, which returns Boolean
value. The axiom generates new axiom which
can be used by the prover. Quantifiers appear in

68

Jan Sadolewski

declarations of loop invariants. They may also
examine if the loops are well founded.

More details on adaptation of JML for ST
are given in [9].

4. Conversion of ST to ANSI C

As indicated in Section 2, conversion of POUs
from ST language into ANSI C code is needed
to use open source tools for program verifica-
tion. The STVCGen tool based on ST compiler
from CPDev package [11] executes the conver-
sion. Components of the compiler are classes in
C+# language, so they can be reused with typi-
cal mechanisms like inheritance and overriding.
Main goal while developing the STVCGen has
been to get a compiler quickly from existing
code of CPDev. The parser is built according
to top-down scheme with syntax-directed trans-
lation [12]. It recognises meaning of ST code
and produces corresponding ANSI C code. In
addition to translating ST, the parser collects
annotations and generates code for Caduceus or
Frama C tools'.

Code translation is performed in three as-
pects, i.e. concerning POUs, instructions, and
annotations, respectively. The first one is to trans-
late POUs into C language functions. If POU
is a function, then translation proceeds directly.
Return value must be declared only to conform
with the code. Translation of function block or
program is more complicated. Function block is
translated into C function in the following way:
— block inputs are converted into function pa-

rameters,

— block outputs become function parameters,
however declared as pointers,
— local variables are also declared as pointer

parameters,

— all pointer parameters produce extra
requires expression with different base ad-
dresses.

An ST program is translated into C as follows:

— global variables remain global in C,

— local variables become function parameters,
declared as pointers,

— local function block instances are ignored, but
their pointer parameters are also declared as
additional pointers.

The conversion cases are illustrated in Fig. 2. ST

variable types are converted into corresponding

C types, with equivalents presented in Table 3.
The second aspect is to convert instruction

code into valid C form. Generally speaking, code

shape in both languages is similar, so examples
presented at Fig. 3a where OP is arithmetic or
logic operator are natural. Most of ST operators
have equivalents in C, so C code construction
involves operator replacements and parentheses
in case of different priorities. The problem arises
when converted variable after conversion is de-
clared as a pointer. In such case each instance
must appear in C code with a star and parenthe-
ses. If an ST operator does not have C equiva-
lent (like power **), STVCGen replaces it with
function provided by header file bundled with
the tool, as in Fig. 3a (macros). Some ST op-
erators have more equivalents in C code. For
example AND operator may be logical operator
between Boolean expressions bexpr; and bexprs
(Fig. 3b), and can be also used for bitwise cal-
culations in digital expression involving dexpr;
and dexprs. When such operator (AND, OR, NOT)
appears in source code, the compiler checks if
the expression evaluates to Boolean. If yes, the
logical operator is used, otherwise bitwise one.

Conversion of NOT operator may lead to one of

two macros. When the operand is Boolean then

the NOT operator is converted to ’!” in C hidden
under _BOOL__NOT__ macro. If the operand is
bitwise, NOT is converted to ’~’ in _BIT__NOT__.

Some ST and C constructs are very similar,
as IF statement in Fig. 3c. Conditional Boolean

expression remains valid after conversion into C.

This does not happen however, in case of FOR loop

whose conversion depends on values in source

code. If the constant imz in Fig. 3d is greater
than zero, then the equivalent C statement uses
less or equal comparison and increment operator.

If the constant is lower than zero, then the C

statement uses greater or equal comparison and

decrement operator.

! Due to different annotations, Caduceus or Frama-C are chosen by compiler settings.

Conversion of ST Control Programs to ANSI C for Verification Purposes 69

ST declaration
FUNCTION name

c ’

2| x2 : BYTE,— |
S END_VAR

I |VAR p : INT; END VAR

END_FUNCTION

VAR INPUT
X1 : INT; — |
X2 : BYTE; END_VAR

Y2 : DWORD; END V.
VAR p : INT; VAR

END_FUNCTION_ BLOCK

Function block
<
=

Gl : DWORD; — |

G2 : REAL; END_VAR

END_PROGRAM

FUNCTION BLOCK fbnme f—— pvoid fbnme (
. wshort X1,

/,,float* Y1,
/short* P)
{

PROGRAM pname runsigned int G1;
VAR _GLOBAL i < float G2;

. short* u,
/qfloat* d vi,

€| VAR u INT;///V
g d fbnme;— |

O |END VAR

S _

ANSI C code

float name (

short X1,

unsigned char X2)

{

float return name = 0.0;
short p = 0;

unsigned char X2,

unsigned int* Y2,

void pname (

unsigned int* d Y2,
short* d p)
{

Figure 2. Conversion of three types of POUs into C

Calls of instances of function blocks require
more effort, because values of local and output
variables from previous execution must be pre-
served. As shown before in Fig. 2, the program
pname uses a hypothetical function block fbname
with the instance called d, so additional func-
tion inputs (beginning with d_) have also been
declared. Call of the instance d in ST and the
translation to ANSI C are presented in Fig. 4.
The single variable d does not exist here, but
is replaced by corresponding arguments of the
converted program. Such approach produces less
complicated verification lemmas, which can be
proved half automatically.

The third aspect of conversion is to change
annotations describing a POU in ST language

into equivalent form in C with necessary modifi-
cations and supplements.

Converted annotations do not differ much
from original ones, except operator syntax and
removal of some characters not needed by Ca-
duceus (ST assertional extension involves char-
acters that specify range and objective of some
clauses). However, the conversion generates ad-
ditional components in specification, mostly de-
scribing pointer properties and arithmetic, in-
cluding different base addresses for pointer vari-
ables and their non-NULL values. Since pointers
do not exist in ST, therefore each variable, so
also a pointer, is allocated at different address.
Values different than NULL are preserved by task
allocator, which can execute programs only with

70 Jan Sadolewski

Table 3. Type conversion

‘ ST type ‘ C type H ST type ‘ C type ‘
BOOL char BYTE unsigned char
SINT char INT short
WORD unsigned short DINT int
DWORD unsigned int LINT long long
REAL float LREAL double
LWORD unsigned long long || TIME int
DATE_AND_TIME | unsigned long long || TIME OF_DAY | unsigned int

ST construction | ANSI C code
a) expr OP expr, expr, OP expr,
expr ** expr, ‘ power (expr , expr)
b) bexpr AND bexpr, ‘ bexpr && bexpr,
bexpr OR bexpr, bexpr, I bexpr,
dexprl AND dexpr2 ‘ dexprl & dexpr2
dexpr OR dexpr dexpr | dexpr
1 2 1 2
NOT bexpr, ‘ ! (bexpr)) _BOOL__NOT__|
NOT dexprl ~(dexprl) _BIT NOT__ - macros
¢)|IF bexpr THEN if (bexpr) A
instrl ‘ instrl
ELSE } else {
instr ‘ instr
2 2
END_IF }

END_FOR

d) | FOR cv:=im1 TO for(cv:=im1; cv<=im2;
im, BY im, cvt=im) { instr }
DO
for(cv:=im; cv>=im;
cv—=im3) { instrl}

instrl
|

Figure 3. ST code conversion to C form

d(X1l:=u, X2:= fbnme ((*u), DWORD TO BYTE (G1),
DWORD TO BYTE (G1)) ; d vl, d v2, d p);

Figure 4. Conversion of function block call

Conversion of ST Control Programs to ANSI C for Verification Purposes 71

complete set of parameters. The example in Fig. 5
presents an instance of assertional ST extension
and converted form in ANSI C for Caduceus. The
clause requires is directly converted into desti-
nation form and supplemented with expression
(denoted by circled 1) which by the clause \valid
indicates non-NULL values of pointer variables,
and by the clause \base_addr assures different
addresses pointed by the pointers. The use of
pointer variables at C side also requires assigns
clause (circled 2), which defines variables changed
by the function.

Application of the three translation aspects
in STVCGen produces coherent ANSI C code,
which can be handled by verification tools like
Caduceus, Why and Coq.

5. Example of TON function block

As stated in Sec. 2, the sequential verification pro-
cess consists of source code transformations from
ST language with annotations through ANSI
C and Why into verification lemmas (Fig. 1).
The example considered now involves function
block TON (on-delay timer) of Fig. 6a, whose
input-output time plots are shown in Fig. 6b.
The plots can be split into three parts (states)
denoted by the circled digits. The ST source
code with specification annotations at the be-
ginning is presented in Fig. 7. Each part of
the plot is associated with a single line in
ENSURES specification clause. In design by con-
tract approach the clause expression and block
interface (inputs and outputs declaration) are
written by designer. Construct var<>FALSE im-
plies that Boolean variable var equals TRUE. It
is necessary, because strict Boolean type does
not exist in C language. Here it is simulated
by integer value zero (FALSE) and non-zero
(TRUE).

The implementation code beginning from
IF defines instructions to be performed. The
REQUIRES clause defines constraints. If they are
not satisfied, execution of the block may return
invalid results. The constraints are also used in
verification. The ST code from Fig. 7 is trans-

lated by STVCGen to ANSI C form presented
in Fig. 8 (in printable version?).

According to Sec. 4, function block TON be-
comes function in C, and requires clause is
strengthened with \valid and \base_addr con-
structs. Block outputs and local variables become
pointers in C, so additional clause assigns is
necessary to deal with pointer arithmetic while
proving. Transformation of function block body
applies statement conversion and pointer substi-
tution of some variables.

6. ANSI C Verification

The ANSI C code of Fig. 8 is further converted
with Caduceus which produces equivalent pro-
gram in Why code (Fig. 2). In the next step the
Why tool generates verification lemmas, which
must be proved to confirm program correctness.
Details of Caduceus and Why conversion are
skipped due to limited space. Here we focus on
the lemmas produced by Why generator. In case
of TON function (Fig. 8), Why produces 12 lem-
mas which must be proved with Coq Proof Assis-
tant. First four lemmas refer to correct allocation
of variables declared as pointers. One of them
is presented in Fig. 9, remaining lemmas have
different variable in the goal part (last not in-
dented line). They are easily proved with default
tactic intuition. Fifth lemma listed in Fig. 10
deals with first possible execution of the program
and is more complex. Using intuition tactic to
prove it leads to undetermined value. This means
that intuition must be replaced by elementary
tactics.

At first intros tactic is applied, which in-
troduces local hypothesis into the context. The
following repeat split splits the goal into five
subgoals (denoted as circled numbers in Fig. 11).
The first subgoal can be proved by sequential
reduction of subsequent memory states (subst
intM_global with appropriate number), and
caduceus tactic, when reduction reaches the ini-
tial state. The second subgoal invloves contra-
diction in hypotheses, so one of the opposite
hypotheses is passed as argument to the absurd

2 Actually STVCGen produces output with a lot of brackets, so it is not easily readable.

72

Jan Sadolewski

FUNCTION BLOCK fbnme
(*@REQUIRES: X1>0;— |
ENSURES :
¥2=\old (P) +X1 AND
Y1=\old (Y1) +1; *)

VAR INPUT

X1 INT;

X2 BYTE; END_VAR
VAR _OUTPUT

Y1 REAL;

Y2 DWORD; END_VAR

VAR P INT; END_VAR

+/*@requires
@——P»\valid (Y1)

(X1>0) &&
&& \valid(Y2) &&
\valid (P) &«& \base_addr (Y1) !=
\base_addr (Y2) && \base_addr
(Y1) !'=\base_addr (P) &&
\base_addr (Y2) !=\base_addr (P)

rassigns *Y1, *Y2, *P

ensures (Y2==\old (*P)+X1l) &&
(Yl==\old (*Y1)+1) */

void fbnme (short X1,

unsigned char X2, float* Y1,

unsigned int* Y2, short* P)

{...

Figure 5. Converting assertional extension with supplements

TON
IN

PT ET

b)

Figure 6. TON function block: a) symbol, b) time plots

FUNCTION BLOCK TON
(*@REQUIRES:
ENSURES:

(C(ET < PT) AND (\old(Q)=FALSE) AND (IN<>FALSE)
(((ET = PT) AND (\old(Q)=FALSE) AND (IN<>FALSE)) ==> (Q<>FALSE));

VAR_INPUT 1IN : BOOL; PT : TIME; END_VAR
VAR_OUTPUT Q : BOOL; ET : TIME; END_VAR
VAR L_STIME : TIME; LC : TIME; END_VAR
IF IN THEN

IF NOT Q THEN

(PT > TIME#Oms) AND (ET >= TIME#Oms) AND (ET <= PT);
((IN = FALSE) ==> ((ET=TIME#Oms) AND (Q=FALSE))) AND

==> (Q=FALSE)) AND
*)

LC := CUR_TIME() - L_STIME;
IF LC >= PT THEN Q := TRUE; ET := PT;
ELSE ET := LC;
END_IF
END_IF
ELSE
Q := FALSE; ET := TIME#Oms; L_STIME := CUR_TIMEQ);
END_IF

END_FUNCTION_BLOCK

Figure 7. Source code of TON function block

Conversion of ST Control Programs to ANSI C for Verification Purposes

73

/*@requires (((PT>0x00000000) && (*ET>=0x00000000)) && (*ET<=PT)) &&
\valid(Q) && \valid(ET) && \valid(L_STIME) && \valid(LC) &&
\base_addr(Q) !'=\base_addr (ET) && \base_addr(Q) !=\base_addr (L_STIME) &&
\base_addr(Q) !=\base_addr(LC) && \base_addr(ET)!=\base_addr(L_STIME) &&
\base_addr (ET) !=\base_addr(LC) && \base_addr(L_STIME) !=\base_addr(LC)

assigns *Q, *ET,
ensures ((IN==0)
(CCC(*ET<PT) && (\old(¥Q)==0)) && (IN!=0))
((((¥ET==PT) && (\old(*Q)==0)) && (IN'=0))
void TON (char IN, int PT, char* Q, int* ET,
{
if (IN) {
if (_BOOL__NOT__(*Q)) {
xLC = CUR_TIME() - x=L_STIME;
if (xLC >= PT) { *Q = 1; *ET = PT; }
else { *ET = *LC; }
}
} else {
*Q = 0; *ET = 0x00000000;
}
¥

*L_STIME, *LC

=> ((*ET==0x00000000) && (*Q==0))) &&

=> (*Q==0)) &&
=> (xQ!=0))) */
int* L_STIME, int* LC)

*L_STIME = CUR_TIMEQ);

Figure 8. Result of ST conversion to ANSI C

Lemma TON_impl_po_1 :

forall (IN: Z), forall (PT: Z), forall (Q: (pointer global)),
forall (ET: (pointer global)), forall (L_STIME: (pointer global)),
forall (LC: (pointer global)), forall (alloc: alloc_table),

forall (intM_global: (memory Z global)),

forall (HW_1: ((CCCCCCCCCCPT > 0 /\ (acc intM_global ET) >= 0) /\

(acc intM_global ET) <= PT) /\ (valid alloc
(valid alloc L_STIME)) /\ (valid alloc LC))

~((base_addr Q) = (base_addr ET))) /\
~((base_addr Q) = (base_addr L_STIME))) /\
~((base_addr Q) = (base_addr LC))) /\

~((base_addr
~((base_addr
~((base_addr
(valid alloc Q).

ET) = (base_addr L_STIME))) /\
ET) = (base_addr LC))) /\

Q)) /\ (valid alloc ET)) /\
/\

L_STIME) = (base_addr LC)))), forall (HW_2: IN <> 0),

Figure 9. First lemma generated by the Why

tactic. Two generated subgoals are proved with
assumption. The third subgoal is proved in the
same way as the first one. The fourth subgoal,
after introduction of additional hypothesis and
decomposition of the conjunction in hypothesis
HW_1, can also be proved like the first subgoal.
The fifth subgoal requires more effort, be-
cause it begins with not_assigns clause for
pointer arithmetic. However, standard scheme

described in [3] can be applied to prove corre-
sponding lemmas, extended here to handle four
pointer variables (instead of one). At first the
intros A B C3 tactic is applied. Then we must
duplicate the last lemma C so many times, as
to match the number of variables declared as
pointers, except the first one (so three here).
It is done with generalize C and intro D, or
E, or F tactics (see Fig. 11). Next the apply

3 A sequence of Latin letters is used for brevity. If one of them is already used in the lemma, it can be replaced

with another unique name.

74

Jan Sadolewski

Lemma TON_impl_po_5 :
forall
forall
forall
forall
forall

(intM_global: (memory Z global)),

(IN: Z), forall (PT: Z), forall (Q: (pointer global)),
(ET: (pointer global)), forall (L_STIME: (pointer global)),
(LC: (pointer global)), forall (alloc: alloc_table),

(HW_1: (CCCCCCCCCCCPT > 0 /\ (acc intM_global ET) >= 0) /\

(acc intM_global ET) <= PT) /\ (valid alloc Q)) /\ (valid alloc ET)) /\
(valid alloc L_STIME)) /\ (valid alloc LC)) /\

~((base_addr Q) = (base_addr ET))) /\
~((base_addr Q)
~((base_addr Q)

(base_addr LC))) /\

~((base_addr ET) = (base_addr L_STIME))) /\

~((base_addr ET) = (base_addr LC))) /\
~((base_addr L_STIME) = (base_addr LC)))),

(base_addr L_STIME))) /\

forall (HW_2: IN <> 0),
forall (HW_3: (valid alloc Q)), forall (result: Z),
forall (HW_4: result = (acc intM_global Q)),

forall
forall
forall
forall
forall
forall
forall
forall
forall
forall
forall
forall
forall
forall
forall
forall

(HW_5: result = 0),
(result0O: Z), forall (HW_7:
(resultl: Z),
(HW_8: resultl =
(HW_9: (valid alloc LC)),
(intM_globalO: (memory Z global)),

(HW_11: (valid alloc LC)),
(result2: 72),

(HW_12:
(HW_13:
(HW_14:
(HW_15: intM_globall =
(HW_16: (valid alloc ET)),
(intM_global2: (memory Z global)),

result2 >= PT),

(valid alloc L_STIME)),

(acc intM_global L_STIME)),

(HW_10: intM_globalO = (upd intM_global LC (resultO - resultl))),
result2 = (acc intM_global0O LC)),

(valid alloc Q)), forall (intM_globall: (memory Z global)),

(upd intM_globalO Q 1)),

(HW_17: intM_global2 = (upd intM_globall ET PT)),

((((IN = 0 -> (acc intM_global2 ET) = 0 /\ (acc intM_global2 Q) = 0)) /\
((((acc intM_global2 ET) < PT /\ (acc intM_global Q) = 0) /\ IN <> 0 ->
(acc intM_global2 Q) = 0))) /\ ((((acc intM_global2 ET) = PT /\

(acc intM_global Q) = 0) /\ IN <> 0 -> (acc intM_global2 Q) <> 0))) /\
(not_assigns alloc intM_global intM_global2 (pset_union (pset_singleton
LC) (pset_union (pset_singleton L_STIME) (pset_union (pset_singleton ET)
(pset_singleton Q)))))).

Figure 10. Fifth lemma generated by Why

pset_union_eliml in C is applied for hypoth-
esis C to eliminate first set in the union of sets
with pointer variables (pset). For the second
hypothesis D the tactic elim2 is applied first,
followed by eliml as before. The remaining E
and F hypotheses require increase of elim2 ap-
plications by one, followed by single eliml in D,
and not in the last F. After these steps the tactic
apply pset_singleton_elim in _ applied for
all four hypotheses provides pure distinction be-

tween addresses of pointer variables. Last steps
involve the approach used already to prove the
first and third subgoal, i.e. subst intM_global
tactic to reduce memory states, terminated by
final caduceus tactic.

The remaining lemmas 6, 8, 9, 10 and 11
are proved automatically with intuition tactic.
Lemmas 7 and 12 can be proved similarly as
lemma 5.

Conversion of ST Control Programs to ANSI C for Verification Purposes

75

intros

'

repeat split

<Dsubst intM global2 ®absurd (IN=0) ®subst intM global2 @intro
subst intM globall subst intM globall decompose [and] HW_1
subst intM global0 ‘/\ subst intM global0 subst intM global2
caduceus assumption assumption caduceus subst intM globall
subst intM globalO
caduceus
© v v
intros A B C apply pset union elim2 in D apply pset singleton elim in C
generalize C apply pset union eliml in D apply pset singleton elim in D
intro D apply pset _union elim2 in E apply pset _singleton elim in E
generalize C apply pset _union elim2 in E apply pset singleton elim in F
intro E apply pset union eliml in E subst intM global2
generalize C apply pset union elim2 in F subst intM globall
intro F apply pset union elim2 in F subst intM globall
apply pset union eliml in C apply pset union elim2 in F caduceus
| |

Figure 11. Tactics of proof tree for TON function block lemma

The method presented here can be used for
verification of simple functions, function blocks
and programs which do not call other function
blocks. The limitation is caused by annotation
injection arising when a subroutine is called, so
some kind of decomposition must be used to deal
with it. More information on decomposition can
be found in [8].

7. Summary

The application of Behavioral Interface Specifi-
cation Language for ST language of IEC 61131-3
standard concerning control programs has been
presented. The annotations to ST code express
specification of function, function block or pro-
gram, which after conversion to C can be used for
formal verification of compliance between speci-
fication and implementation. Such approach is
typical for design by contract method applied
while developing advanced applications. Step-
wise conversion by STVCGen, Caduceus and
Why tools produce verification lemmas which
can be proved by Coq with a set of appropriate
tactics. Till now several function blocks and pro-
grams have been verified. The examples involve
combinatorial logic (binary multiplexer, two-bit
sum, heater control), sequential logic (flip-flops,

water level control, wood sorting machine), and
sequential logic with time constraints (cargo lift).

Specification in the form of annotations is
transparent for compilers which do not support
such assertions. Therefore for practical reasons,
one general purpose IEC 61131-3 compiler may
be used for verification, and another one, dedi-
cated to particular hardware, applied for imple-
mentation. The presented compiler may be also
extended to perform dynamic run-time verifica-
tion, as provided by JML with some supporting
tools.

Future work will concentrate on direct con-
version from ST language into Why code, with-
out limitation of available types. The types con-
strained by Caduceus conversion will be trans-
formed to suit types provided by Coq or by ex-
ternal libraries. Naturally, direct conversion will
require some additional algorithms to construct
proofs of the lemmas.

References

[1] E. Tisserant, L. Bessard, and M. de Sousa, “An
open source IEC 61131-3 integrated development
environment,” in 5th Int. Conf. Industrial Infor-
matics. Piscataway, NJ, USA, 2007.

[2] B. Meyer, “Applying “design by contract”,”
Computer, vol. 25, no. 10, p. 40-51, 1992.

[3] J.-C. Fillidtre, T. Hubert, and C. Marché, “The

76

Jan Sadolewski

Caduceus verification tool for C programs,” [on-
line] http://caduceus.lri.fr, 2008.

J.-C. Fillidtre, “The Why verification tool.
tutorial and reference manual,” [online]
http://www.Iri.fr, 2010.

Y. Bertot and P. Castéran, Interactive The-
orem Proving and Program Development.
Springer-Verlag, Berlin Heidelberg, 2004.

G. T. Leavens, A. L. Baker, and C. Ruby, JML:
a Notation for Detailed Design, ser. Behavioral
Specifications of Businesses and Systems, 1999.
E. W. Dijkstra, A Discipline of Programming.
Prentice-Hall, Inc., 1976.

J. Sadolewski, Verification of complex programs
for control systems, ser. Methods of producing
and applying real time systems. Wydawnictwa
Komunikacji i Lacznosci, 2010, (in Polish).

[9]

[12]

——, “Assertional extension in ST language of
IEC 61131-3 standard for control systems dy-
namic verification,” Pomiary Automatyka Robo-
tyka, no. 2, pp. 305-314, 2011, (in Polish).

R. Bornat, “Proving pointer programs in Hoare
logic,” in Mathematics of Program Construction.
Springer-Verlag. London, 2000, pp. 102-126.

D. Rzonca, J. Sadolewski, A. Stec, Z. Swider,
B. Trybus, and L. Trybus, “Open environment
for programming small controllers according
to IEC 61131-3 standard,” Scalable Comput-
ing Practice and Ezxperience, vol. 10, no. 3, pp.
325-336, 2009.

K. D. Cooper and L. Torczon, Engineering a
Compiler. Morgan Kaufmann, San Francisco,
2003.

e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 77-85, DOI 10.2478/v10233-011-0032-2

VERSITA

Multiple tasks in FPGA-based programmable
controller

Zbigniew Hajduk*, Jan Sadolewski*, Bartosz Trybus*

*Faculty of Electrical and Computer Engineering, Department of Computer and Control Engineering,
Rzeszow University of Technology

zhajduk@kia.prz.edu.pl, js@kia.prz.edu.pl, btrybus@kia.prz.edu.pl

Abstract

An FPGA-based execution platform for PLC controllers with capability to run multiple control
tasks is presented. The platform, called multi-CPCore, uses hardware virtual machines to execute
control tasks defined in CPDev engineering environment. The tasks consist of one or more programs
written in IEC 61131-3 languages, such as ST, IL or FBD. They may run with different cycles
and communicate via global variables. Parallel programming mechanisms like process image and
semaphores are provided to handle potential conflicts when accessing shared resources.

1. Introduction

CPCore (Control Program Core) is an exe-
cution platform for programmable logic con-
trollers (PLCs) designed in FPGA technol-
ogy. Hardware-implemented TEC 61131-3 vir-
tual machine [1, 2] is its main feature. CP-
Core is programmed in CPDev engineering
environment (Control Program Developer) [3],
which integrates tools for programming, sim-
ulation, hardware configuration, on-line test-
ing and running control applications on dif-
ferent platforms. Programs can be written in
ST and IL textual languages (Structured Text,
Instruction List) and in FBD graphical lan-
guage (Function Block Diagram). CPDev com-
piler produces universal executable code called
VMASM (Virtual Machine Assembler), inter-
preted at the target controller by the CPDev
virtual machine (runtime). Software virtual ma-
chine written in C is available for multiple target
platforms with general-purpose CPUs (ARM,
AVR or x86). However, interpretation takes
time, so portability of the VMASM code is

achieved at the price of slower program execu-
tion.

On the contrary, CPCore platform involves
FPGA-based hardware virtual machine which
directly executes VMASM code. This results in
much shorter execution time, from several to a
few hundred times, when compared with typi-
cal microcontrollers [1]. Similar solutions have
been presented in [4, 5]. The CPCore hardware
machine is actually a 32-bit microcontroller that
executes VMASM code generated in CPDev envi-
ronment. The microcontroller is built according
to Harvard architecture with separate data and
program buses. A prototype PLC controller im-
plemented in CPCore technology is shown in
Fig. 1. The main board (upper left) includes Xil-
inx FPGA chip, real-time clock, SRAM, NVRAM
and Flash memories. Analog and binary inputs
and outputs are handled by slave boards (right
side of Fig. 1). The operating panel (lower left)
involves LCD display, LEDs and push buttons.

Ability to run multiple IEC control tasks
at the same time has been introduced to the
CPCore platform recently and is described here.

! The research has been supported with MNiSzW grant N N514 412736 (2009-2011).

© Copyright by Wroclaw University of Technology, Wroctaw 2011

78

Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

Fach task is executed by a single hardware ma-
chine core. The cores are independent and run in
parallel, creating a multiprocessor architecture
(multi-CPCore).

The paper is organized as follows. At first,
program execution is characterized. Then the
multiple task capabilities are described from
the programmer’s viewpoint, with the process
of creating tasks and setting their parameters.
Main aspects of resource sharing are covered, i.e.
accessing common hardware blocks and using
semaphores for mutual exclusion. Finally, hard-
ware structure of the multi-CPCore platform is
presented.

2. Program execution

Source programs for the CPCore controller are
processed by the CPDev compiler which gener-
ates VMASM universal executable code [3]. The
VMASM code can be executed by the controller
hardware machine (ezecutor). Functional side of
the machine corresponds to IEC 61131-3 stan-
dard [2] and provides the following capabilities:
— Handling TEC data types: Boolean BOOL,
integer BYTE, SINT, INT, WORD, DINT,
LINT, DWORD, LWORD, real REAL,
LREAL, time and date TIME, DATE,
TIME_OF_DAY, DATE_AND_TIME.

— Execution of functions: arithmetic ADD,
SUB, MUL, DIV, MOD, numerical SQRT,
LOG, SIN, ASIN, EXP, Boolean NOT, AND,
OR, XOR, bit shift SHL, ROL, comparison
GT, GE, LT, EQ and others.

— Program flow control by means of jumps
JMP, JZ, JNZ, calls of function blocks CALB,
early exit RETURN, memory handling MCD,
MEMCP (Move from Code to Data, Memory
Copy).

— Hardware function blocks: invoking blocks
implemented in FPGA hardware (called also
native blocks).

— Parallel programming instructions: global
variable handling (Sec. 4.1), semaphore
operations LOCK, UNLOCK, TRYLOCK
(Sec. 4.3).

The IEC standard also defines multi-element
variable types, i.e. arrays and structures. The
machine handles these two types by means of a
few dedicated commands, e.g. AURD/AUWD
read/write data from/to indexed array.

Basic logical registers of the hardware ma-
chine are listed in Table 1. Since accumulator
does not exist in VMASM specification, results
of commands are stored in variables. Task cycle
can be configured and monitored by the machine
during program execution. Actual task cycle (last
value) is particularly useful for on-line testing
(commissioning). Status! stores exception flags,
including cycle overflow, therefore appropriate
reaction can be programmed.

3. CPCore programming with
multiple tasks

In the multi-CPCore solution, each task con-
tains its own control algorithm compiled into
VMASM. The task is executed by separate in-
stance of the hardware machine. This means that
multi-CPCore can be viewed as a group of virtual
controllers.

According to IEC 61131-3 standard, engineer-
ing project of control system is created in hier-
archical manner, i.e. by defining controller con-
figuration, implementing algorithms in programs
and function blocks, and assigning them to tasks.

3.1. Creating POUs

In the CPDev environment, the user creates a
set of so-called Program Organizational Units
(POUs). The POUs can be written in ST lan-
guage or two other languages of IEC 61131-3
standard, i.e. IL and FBD. Main window of
CPDev in Fig. 2 shows sample configuration with
four POUs, whose names are seen in the project
tree on the left. The tree also contains global
variables used in the project. START, STOP
and ALARM represent digital inputs, while the
other, MOTOR, PUMP, OUTO...OUT3 are out-
puts (all are BOOLs). The global variables are
followed by two tasks (described later) and li-
braries with blocks used by POUs. The first

Multiple tasks in FPGA-based programmable controller

79

Figure 1. CPCore controller prototype

POU, START STOP, has been created as an
FBD diagram (center part of Fig. 2). It turns
MOTOR on if START is pressed, provided that
STOP and ALARM are not set. MOTOR con-
tinues running after releasing START. PUMP is
turned on and off 5 seconds after the MOTOR.
Time delay (T#b5s) is introduced by two func-
tion blocks, TON and TOF. The second POU,
MOVE__UNIT, subsequently turns on and off a
set of devices in a loop. The algorithm written
in ST (right side of Fig. 2) sequentially sets to
TRUE one of the global variables OUT0...OUT3
assigned to binary outputs. It is done every 2 sec-
onds (t#2s) by using system clock (CUR_TIME
function).

Besides START_STOP and MOVE_ UNIT,
there are also two other POUs in the project tree,
namely LCD__CH and DISPB. The first one is
a hardware function block which puts a charac-
ter onto the CPCore LCD. DISPB is another
function block which uses LCD_ CH internally

to display a string. The block can be invoked by
other POUs to print some messages. The two
blocks will be described in Sec. 4.2.

3.2. Defining tasks

The user creates a task by selecting appropriate
POUs and assigning them to the task. The POUs
assigned to the task are executed sequentially in
the order defined by the user. The task can group
a set of POUs written in different IEC languages.
In the sample project of Fig. 2 two task are
defined, TASK SS and TASK MU. Creation of
TASK SS will be described in more detail.
Task definition is done in CPDev window
of Fig. 3. Task name must be entered first, so
TASK__SS here. Then task type is selected to
indicate execution mode. TASK SS will be ex-
ecuted cyclically, with cycle time of 1 millisec-
ond. Cyclic task is most common choice, but one
can also select “As soon as possible” (endless

80

Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

Table 1. Logical registers of hardware machine

Register Function
Program counter Indicates next VMASM command
Data offset Index to data area being used

Call stack pointer

Pointers to call stack (POUs)

Data stack pointer

and data stack

Task cycle
Actual task cycle

Configured
and measured task cycle

Cycle counter

Counts cycles (from reset)

Statusl

VM status word (array index faulty,
time cycle exceeded, cold start, etc.)

RTC clock

Absolute time

File Edit View Insert Project Tools ‘Window Help
DEH AL S] - | B .
StartStop
= POU
P START_STOP ol o
P MOVE_UNIT 014 IF Cour'lt,er = [THEH
ﬁ LCD_CH als sTime := CUR_TIME (] ;
ﬂ DISPE 0lg Counter := 1;
=) (. Global variables 017 END_IF
mm START ol IF CUR_TIME|)-sTime »>= t/2s THEH
[+ wrm STOP ol sTime := CUR_TIME(]:
wm ALARM 0zo IF Counter < & THEN
[+ MOTOR 0zl Counter := Counter * Z;
wm PUMP 0zz ELSE
+ rm OUTO 0z3 Counter := 1;
= OUT1 024 END_IF
o OUT2 0z5 EHD_IF =
o OUT3 o - 3
(=5 Tasks
- 0z7 IF C t = 1 THEH
I Task ss 028 3;2;2 TRUE
B TASK_MU ELSE . =
[=-{7 Libraries =
Basic_blocks 030 OUTO := FALSE:
IEC_61131 O3 END_IE]
02z IF Counter = 2 THEH
033 OUT1 := TRUE:
034 ELSE
035 OUT1 := FALSE:;
03¢ END_IF
037 IF Counter = 4 THEH b
10l < [[)]
POU lHesoutces” Types | i] ‘ o IL‘
@ Diagram verification started
@ Diagram verification finished (erore: 0, warnings: 0]

Figure 2. CPDev environment window with two POUs

loop) or single execution (not implemented yet
in multi-CPCore prototype). POU assignment
is done by moving available programs from the
right list to the left (Fig. 3). Two POUs are avail-
able here, START STOP and MOVE_UNIT.
The other POUs of the project, LCD_ CH and
DISPB, do not appear in the window because
they are function blocks, not programs. In
case of TASK_SS, only START STOP is se-
lected for execution. The other task, TASK MU

(Fig. 2), involves the MOVE_UNIT program
and is also executed cyclically with period of
10 ms.

4. Task communication and resource
sharing

As mentioned before, the tasks in multi-CPCore
are run independently by their own executors.

Multiple tasks in FPGA-based programmable controller

81

Task properties

Task name: |TASK_S5

Task type:

Cycle interval; |1 [v]

Executed programs:

o=

Time unit: | ms [v]
Ayvailable programs:

START_STOP
MOVE_UNIT

Cancel

Figure 3. Defining a task for multi-CPCore controller in CPDev

However, as parts of control project, they must
communicate and exchange variables. Basic prob-
lem in parallel programming is to get access to
shared resources. Multi-CPCore can be viewed
logically a set of virtual PLCs, which share the
same peripherals (inputs and outputs, display,
real-time clock, etc.).

4.1. Global variables

Data exchange between CPCore tasks is per-
formed by means of global variables. Such way of
task communication is also recommended in IEC
standard [2]. Global variables can be accessed
by programs and tasks. In the sample project
of Fig. 2, START and STOP are used in both
tasks (TASK__SS and TASK_MU) to activate
corresponding devices (not shown, however, in
the part of MOVE_UNIT code).

Upon start of the configuration,
multi-CPCore executes special initialization
code generated by CPDev compiler, which
sets initial values of the global variables (e.g.
STOP:=FALSE). This is done before any task
is invoked.

To avoid conflicts related to sharing global
variables between tasks, CPCore executors oper-
ate on so-called process images. At the start of
the cycle, the task is provided with current copy

of the global variables (local shadows). When
the task is executed, only the shadows are used,
so change of global values caused by other tasks
does not affect calculations. When the cycle is
about to end, the calculated shadows are stored
in the global variables. Synchronization is done
only for the variables that have been modified
within the cycle.

4.2. Accessing hardware blocks

Two types of function blocks are available in the
CPCore platform, i.e. program blocks and hard-
ware blocks. The first ones are created in CPDev
environment in one of IEC languages. The plat-
form also supports a set of dedicated hardware
blocks used to access low-level functions or to
speed up calculations.

As an example, access to the hardware block
LCD CH mentioned above is described now.
LCD__CH displays a character on the controller
LCD. First, the user creates a new function block
(new POU) and chooses ST as implementation
language. However, instead of writing an imple-
mentation, only the following declaration of the
block is entered:

FUNCTION_BLOCK LCD_CH

(*$HARDWARE_BODY_CALL ID:0004; Align:4;
Extra:0;*)

82

Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

(*$PLACE_UID_VARx*)
VAR_INPUT
C:BYTE;
END_VAR
VAR_OUTPUT
END_VAR
END_FUNCTION_BLOCK

As seen, single block input is declared (a
BYTE value) and no outputs. There is also
no body code, however the directive HARD-
WARE_BODY CALL instructs the compiler
to assign the declaration to particular hardware.
In CPCore, the LCD__CH block has a unique
identifier 4 (ID:0004). After the declaration is en-
tered, an instance of the block can be created and
invoked from a program as any other function
block.

However, since hardware blocks usually con-
trol peripherals, their usage in parallel environ-
ment is somewhat limited due to potential con-
flicts. Typically, such block cannot be concur-
rently executed by two or more tasks. This is
called mutual exclusion and can be achieved in
two ways.

Some hardware block calls from multiple
tasks are queued internally by the CPCore and
then executed sequentially. Task execution may
be delayed due to queue processing, but the col-
lision does not occur. This mechanism applies
mostly to simple blocks executed in one-shot
manner. LCD__ CH and some flip-flops are exam-
ples of queued hardware blocks.

Assignment of hardware block to particular
executor (virtual machine) during configuration
of CPCore is another way of avoiding conflicts
during the calls. In such arrangement, only that
executor will be able to call the block. Other
tasks cannot call the block directly, however a
software solution can be implemented to provide
access to the block functionality via a dedicated
task. In CPCore this applies to UART and 1-wire
interface handling blocks.

Fig. 4 shows CPDev hardware configurer win-
dow which allows to set up hardware blocks
for CPCore controller. The upper area activates
blocks related to standard peripheral services
(UART, LCD, 1-wire interface) and a type con-
version block. The lower part contains a list of

IEC standard blocks implemented in hardware.
Contrary to software-implemented blocks they
are executed extra fast, so the overall perfor-
mance of the algorithm is increased. In case of
CPCore, one can use RS and SR flip-flops, coun-
ters, triggers and timers. Here, two instances of
TON and TOF blocks are defined, for instance to
be used in START STOP diagram (Fig. 2). Ac-
cording to the settings, the hardware configurer
generates appropriate libraries for the CPCore
FPGA chip.

4.3. Mutual exclusion with semaphores

Sometimes hardware solutions described above
are not sufficient to provide collision-free native
block calls. The problem arises especially when
a hardware block is called in the code of another
function block. For example, DISPB is a conven-
tional function block written in ST, used to print
a string on LCD display. DISPB executes actual
printing by calling LCD_CH hardware block for
every character. Although DISPB can be used
by any task, if printing loop is in progress in
one task, the other tasks cannot get access to
the display. Otherwise consistency of the display
would be violated.

Multi-CPCore programmer can use
semaphores for task synchronization and mu-
tual exclusion. A semaphore is a global in-
teger variable accessed from tasks by LOCK
and UNLOCK functions. Unlocking increments
semaphore value, while locking decrements it.
When the semaphore value is zero, the locking
task is suspended until one of other tasks unlocks
the semaphore. Semaphores prohibit tasks from
running critical part of code, when that part is
currently executed.

To provide mutual exclusion upon DISPB
call, a semaphore should be created, i.e. VSEM
below, with initial value 1. Then the following
code protects the printing loop from re-entry.
LOCK (VSEM) ;

FOR i:=1 TO 16 DO
LCD_PUTCHAR(c:=str[i]) (* in str array *)

END_FOR
UNLOCK (VSEM) ;

(* 16 chars are kept *)

Multiple tasks in FPGA-based programmable controller

83

([7: Add input

File Binary I/0 Hardware blocks Help

-
“ | Add input

Binary /0 | Analog 1jo Hardware blocks |Features| Code View |

(=]

£ Add output

=
i Delete
c

uild-In Hardware block:
[~ UART port
[~ LCD display

T Properties

[~ 1-wire protocol

[~ Hardware type converter

;‘_ Toggle input support

IEC blocks implermented in hardware

=
i Delete
=

=)
@ Properties
T

ZE Toggle output sup... MName Type ‘ Signal Select ‘ Instance number
r HWw'_TON HFE_TOMN 12 o
| Add block instance Hw _TOF HFE_TOF 13 i}

Generate ! |

Creates new binary input

Figure 4. Configuring hardware blocks for the CPCore controller

When a task enters the code, it locks the
semaphore by decrementing it. So the printing
begins. When another task tries to enter the code
while printing, the semaphore value is zero, so
that task will be suspended and queued. After
the first task unlocks the semaphore, one of the
queued tasks is resumed and can execute another
printing.

5. Hardware structure

Simplified block diagram of the multi-CPCore
controller implemented in FPGA is shown in
Fig. 5. The design is based on symmetric mul-
tiprocessor architecture [6]. Multiple hardware
machine cores in the center of Fig. 5 are hardware
machines (executors) which run concurrently. Im-
plementation of the hardware machine core has
been described in [1]. In the actual CPCore they
are additionally equipped with a floating point
unit [7] (useful for continuous control). Each
core, being in fact a specialized microprocessor
with dedicated program and data memories, is
responsible for execution of a single task.

Apart from the machine cores, there is also
another unit, called initiator core. It is a simple
processor responsible for initialization of selected

locations in global variable memory. The initia-
tor core is triggered on power up or after a new
configuration is loaded into the controller. Only
after completing the initialization, other cores
begin to work.

As described in Sec. 4.1, communication be-
tween machine cores is implemented through
common global memory. Collision free access to
that memory is provided by the global memory
and I/O access arbiter block (Fig. 5). Handshak-
ing protocol is applied for data transfer between
the cores and the arbiter. This is a part of the
process image mechanism described in Sec. 4.1.

A core, which needs to access the global mem-
ory, sets a request signal. The arbiter successively
analyses request occurring at its ports and grants
access to the global memory. Granting the access
to particular core is confirmed by acknowledg-
ment signal. At the end of data transfer, the
core releases the request. In response, the arbiter
releases the acknowledgment and begins scanning
other ports for request signals.

The global memory address space is divided
into two ranges. The lower range, starting from
address 0 up to a configured value, is reserved for
addressing input/output devices (peripherals),
such as digital input and output modules. The
upper range maps physical synchronous RAM

84

Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

FUNCTION
BLOCK 1

FUNCTION . FUNCTION
BLOCK 2 BLOCK m

it

3L it

‘ HARDWARE FUNCTION BLOCK SPLITTER ‘

HARDWARE FUNCTIONAL
BLOCK INTERFACE

HARDWARE FUNCTION BLOCK ACCESS ARBITER

&=

=

HARDWARE MACHINE HARDWARE MACHINE
CORE 1 COREn
A S jE
|
» o) A ~=
5 2 PORT 1 - PORT n
> ==
; —> 8 % GLOBAL MEMORY AND I/0O ACCESS ARBITER
me E0O
x m >
£ 4 jE INPUT/OUTPUT
Q 9 INTERFACE
GLOBAL
C:> MEMORY INITIATOR CORE
T INPUT/OUTPUT
EXPANSION CIRCUIT

PERIPHERALS

Figure 5. Simplified block diagram of multi-CPCore FPGA implementation

memory, used to hold global variables. Hardware
machine cores access the input/output devices
in the same way as accessing the global memory
(i.e. via the arbiter). Additional expansion circuit
is needed to connect peripherals to input/output
interface of the arbiter block.

The CPCore FPGA-based controller has been
equipped with facility to integrate hardware func-
tion blocks. Special mechanism for data transfer
between such blocks and executing machines has
been designed and implemented. As described
in Sec. 4.2, there are two options for connecting
hardware blocks. The first one assumes that each
core has its own set of hardware blocks. The sec-
ond one shown in Fig. 5 implements the idea of
sharing hardware blocks among executing cores.
In this case, each core can invoke any of available
blocks. This capability requires the use of arbiter
block, which ensures collision-free access to the
blocks. The hardware function block access ar-
biter (Fig. 5) operates similarly to the global

memory access arbiter. However, the hardware
function block splitter, which consists mainly of
a set of multiplexers, is additionally required to
connect the arbiter to hardware blocks.

Communication module is an important com-
ponent of the CPCore platfrom [8]. It provides
data transfers with CPDev environment, espe-
cially for on-line monitoring and commissioning
purposes. The communication module ensures
full read and write access to the global variable
area, as well as to program and data memories
of each hardware machine core. It also performs
special functions like in-circuit debugging.

A prototype controller with multi-CPCore
technology shown earlier in Fig. 1 consists of
eight executing machine cores what allows for
execution of up to eight concurrent control
tasks. Four hardware function blocks (UART,
alphanumeric LCD, 1-wire bus, hardware type
conversion) are available. The prototype has
been implemented in Xilinx Spartan-6 FPGA

Multiple tasks in FPGA-based programmable controller

85

XC6SLX100-3FGG676, with the main circuit
board described in [9]. The chip employs 31099
6-input LUTs (49% of all available in FPGA)
and 13513 slice registers (10%).

6. Summary

Multi-CPCore FPGA-based PLC execution plat-
form has been described. The platform integrates
several hardware machines, each handling one
control task. FPGA implementation results in
short execution times, if compared to standard
microcontroller-based solutions. The CPCore
tasks run concurrently and independently, as
a set of virtual PLCs. Each task can be set up
with its own cycle time. As a result, CPCore
controller can handle different applications at
the same time. For example, it can execute fast
logic control concurrently with continuous con-
trol, and also handle HMI operating panel. Such
functionalities are available in industrial comput-
ers, but CPCore technology can be applied for
much smaller devices.

Multi-CPCore is programmed and configured
in CPDev engineering environment, compatible
with TEC 61131-3 standard. The tasks are com-
posed of programs written in ST, FBD or IL
languages. In addition to standard libraries, a
library of hardware blocks is available to access
peripherals and speed up operations. Task syn-
chronization mechanisms have been developed
to eliminate conflicts while accessing hardware
resources in parallel environment.

References

[1] Z. Hajduk, B. Trybus, and J. Sadolewski, “Hard-
ware implementation of virtual machine for pro-
grammable controllers,” in Metody wytwarza-
nia i zastosowania systemow czasu Tzeczywistego,
L. Trybus and S. Samolej, Eds. Warszawa:
Wydawnictwa Komunikacji i Lacznosci, 2010, ch.
Chapter 5, pp. 333-342, (in Polish).

[2] IEC 61131-3 standard: Programmable Controllers
— Part 8. Programming Languages, IEC Std., 2003.

[3] D. Rzofica, J. Sadolewski, A. Stec, Z. Swider,
B. Trybus, and L. Trybus, “Open environment for
programming small controllers according to TEC
61131-3 standard,” Scalable Computing: Prac-
tice and Ezxperience, vol. Volume 10, no. 3, pp.
325-336, 2009.

[4] D. Gawali and V. Sharma, “FPGA Based
Micro-PLC Design Approach,” Advances in Com-
puting, Control, and Telecommunication Tech-
nologies, International Conference on, vol. 0, pp.
660-663, 2009.

[5] M. Adamski and J. L. Monteiro, “From inter-
preted Petri net specification to reprogrammable
logic controller design,” in Proc. IEEE Int. Symp.
Industrial Electronics (ISIE 2000), vol. 1, 2000,
pp. 13-19.

[6] P. Huerta, J. Castillo, C. Pedraza, J. Cano, and
J. I. Martinez, “Symmetric multiprocessor sys-
tems on FPGA,” in IEEFE Int. Conf. on Reconfig-
urable Computing and FPGAs. ReConFig ’09,
2009, pp. 279-283.

[7] Z. Hajduk, “Floating-point arithmetic unit for a
hardware virtual machine,” Pomiary Automatyka
Kontrola, vol. 57, no. 1, pp. 82-85, 2011, (in Pol-
ish).

[8] ——, “Communication module for a hardware
implemented virtual machine,” Elektronika — kon-
strukcje, technologie, zastosowania, no. 5, 2011,
(in Polish).

[9] ——, “PLC controller prototype with a hardware
virtual machine,” FElektronika — konstrukcje, tech-
nologie, zastosowania, no. 4, pp. 114-118, 2011,
(in Polish).

e-Informatica Software Engineering Journal (http://www.e-informatyka.pl/wiki/e-Informatica)
is an international journal that concerns theoretical and practical issues pertaining
development of software systems, and focuses on experimentation in software engineering.

The purpose of e-Informatica is to publish original and significant results in all areas of
software engineering research.

The scope of e-Informatica includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress
is laid on empirical evaluation.

Topics of interest include, but are not restricted to:
e Software requirements engineering and modeling
e Software architectures and design
¢ Software components and reuse
¢ Software testing, analysis and verification
¢ Agile software development methodologies and practices
e Model driven development
e Software quality
¢ Software measurement and metrics
e Reverse engineering and software maintenance
e Empirical and experimental studies in software engineering
¢ Evidence based software engineering
e Systematic reviews
¢ Object-oriented software development
e Aspect-oriented software development
¢ Software tools, containers, frameworks and development environments
e Formal methods in Software Engineering.
e Internet software systems development
¢ Dependability of software systems
e Human-computer interface
¢ Al and knowledge based software engineering
¢ Project management

The submissions will be accepted for publication on the base of positive reviews done by
international Editorial Board (http://www.e-informatyka.pl/wiki/e-Informatica_- Editorial Board)
and external reviewers. English is the only accepted publication language. To submit
an article please enter our online paper submission site.

Subsequent issues of the journal will appear continuously according to the reviewed and
accepted submissions.

http://www.e-informatyka.pl/wiki/e-Informatica

e-Informatica

ISSN 1897-7979

