

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.wroc.pl)
Lech Madeyski (Lech.Madeyski@pwr.wroc.pl, http://madeyski.e-informatyka.pl/)

Institute of Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
http://www.e-informatyka.pl/wiki/e-Informatica/
Wojciech Thomas (Editorial Office Manager).
Typeset by Wojciech Myszka with the LATEX 2𝜀 Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

Printed in the camera ready form

c○ Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2012

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
http://www.oficyna.pwr.wroc.pl;
e-mail: oficwyd@pwr.wroc.pl; zamawianie.ksiazek@pwr.wroc.pl

ISSN 1897-7979

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej. Order No. xxxx/2012.

http://madeyski.e-informatyka.pl/
http://www.e-informatyka.pl/wiki/e-Informatica/
http://www.oficyna.pwr.wroc.pl
mailto:oficwyd@pwr.wroc.pl
mailto:zamawianie.ksiazek@pwr.wroc.pl

Editorial Board
Co-Editors-in-Chief
Zbigniew Huzar (Wrocław University of Technology, Poland)
Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members
Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center Hagenberg, Austria)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Ludwik Kuźniarz (Blekinge Institute of Technology, Sweden)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wrocław University of Economics, Poland and Macquarie University Sydney,
Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Janis Osis (Riga Technical University, Latvia)
Łukasz Radliński (University of Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Comparison of MDA and DSM Technologies for the REA Ontology Model Creation
Zdeněk Meliš, Jaroslav Žáček, František Huňka . 7

Efficient Adoption and Assessment of Multiple Process Improvement Reference Models
Simona Jeners, Horst Lichter, Carlos Gomez Rosenkranz 15

A Knowledge-Based Perspective for Software Process Modeling
Noureddine Kerzazi, Mathieu Lavallee, Pierre N. Robillard 25

Reusable Object-Oriented Model
Jaroslav Žáček, František Huňka . 35

From Principles to Details: Integrated Framework for Architecture Modelling
of Large Scale Software Systems

Andrzej Zalewski, Szymon Kijas . 45
Time Domain Measurement Representation in Computer System Diagnostics
and Performance Analysis

Stanisław Wideł, Jarosław Flak, Piotr Gaj . 53
Static Analysis of Function Calls in Erlang

Dániel Horpácsi, Judit Kőszegi . 65
Software Engineering Team Project – lessons learned

Bogumiła Hnatkowska . 77

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 7–14, DOI 10.5277/e-Inf130101

Comparison of MDA and DSM Technologies
for the REA Ontology Model Creation

Zdeněk Meliš∗, Jaroslav Žáček∗, František Huňka∗
∗Faculty of Science, University of Ostrava

zdenek.melis@osu.cz, jaroslav.zacek@osu.cz, frantisek.hunka@osu.cz

Abstract
Using the ontology in information systems means an improvement of the possibility of solving tasks
based on domain knowledge. The quality design of the ontological model is base of well-functioning
system. In this area the most commonly used technology is MDA (Model driven development),
which provides solid base for modeling language’s metamodel definition. This article aims to
compare this technology with a new approach to visual modeling – the DSM (Domain-specific
modeling) technology. Using the narrow focus on specific domain and full code generation the DSM
allows easy and rapid development of the ontological system. The REA (Resource–Events–Agents)
ontology, intended for business processes modeling was used for comparison of these technologies.

1. Introduction

Currently the interest in developing information
systems based on ontology is growing. With
an increasing complexity of such systems, re-
quirements for modeling principles with the high
level of an abstraction to be able to transform
created models to basic structures of an infor-
mation system are growing [1]. The most com-
monly used technology is MDA that specifies
functional details by a progressive model trans-
formation. The DSM technology operates on
a different principle. It allows creating models
in a domain language and performs model val-
idation and verification and full code genera-
tion.

First paragraphs describe the definition of
the REA ontology and compared technologies –
MDA and DSM, their principles and character-
istics. The second part of the article deals with
their comparison.

2. The REA ontology

According to [2] the ontology is a specification
of a conceptualization. It is study of things that
exists or can exist in explicit domain. A concep-
tualization means an abstraction and simplified
view of the world. A specification means formal
and declarative representation [3]. The ontology
provides number of resources for intelligent sys-
tems, knowledge representation and knowledge
engineering processes [4].

The REA is a concept for designing enterprise
infrastructures based on ownership and their ex-
change. It is based on a concept of economic
exchanges and conversions that increases com-
pany’s value. According to [5] the ontology basis
contains 5 parts, as you can see on Figure 1:
– Economic resource – elementary economic re-

source that company wants to plan, monitor
and control. This resource can include raw
material, money, work, labor, etc.

8 Zdeněk Meliš, Jaroslav Žáček, František Huňka

Figure 1. Fundamental REA concepts [5]

– Economic agents – an individual, group or
company that controls economic resource and
cooperate with other economic agents. An
example can be customer, seller, employer,
company etc.

– Economic event – represents economic change
of resource (an increment or a decrement).
This change can be immediate or long-term.
An example can be work, using of services,
renting, etc.

– Commitment – promise or obligation to per-
form an economic event in future.

– Contract – a set of commitments and rules
(e.g. what happen when the commitment is
not fulfilled)
Figure 1 shows fundamental model of the

main concepts of REA ontology and links be-
tween them. One of the most important links
is duality that answers us the question why an
economic event occurs.

2.1. Levels distribution of the REA
model

We can extend a basic view level by adding other
entities to obtain an additional functionality. The
REA ontology can be divided according level of
an abstraction [6]:
– Value system level – the highest level of an

abstraction. It describes the resources flow

between the enterprise and its business part-
ners.

– Value chain level – it divides an enterprise
into strategically important activities. The
enterprise gains a competitive advantage by
doing these activities cheaper and better than
competitors [7]. The view of this level de-
scribes resources flow between individual busi-
ness processes.

– Model level – models describes transforma-
tion one economic resource into other, more
valuable for enterprise. Figure 2 shows some
concepts of model level and their links.

– Task specification level – the lowest level of
an abstraction, it is an application of the
model and contains raw company’s data.

Generally the REA model level is divided into 2
levels according functionality [5]:
– Operational level is the basic skeleton of

model. It describes events that already hap-
pened. Basic semantic abstractions of oper-
ational level are exchange, conversation and
the value chain. Exchange and conversation
increase an enterprise value and the value
chain describes connection of various REA
models into chain directly or indirectly con-
tributing creation of desirable features of the
final product or service. That final product
can be exchanged for a more valuable resource
with other economic agents.

Comparison of MDA and DSM Technologies for the REA Ontology Model Creation 9

Figure 2. Example of business process model

– Policy level is an extension of operational
level. It contains semantic abstractions de-
scribing what could, should or shouldn’t hap-
pen such as group, type, contract, etc.
Figure 2 shows an example of business pro-

cess model described by REA model level. It
contains basic concepts of operational level
and some semantic abstractions of the policy
level.

2.2. Usage of the REA framework

Traditional business processes modeling ap-
proaches, such as flow chart, data model, use
case, IDEF0, etc. use general concepts that are
inappropriate because of low model specificity
and therefore they cannot detect economical er-
rors and make automation. The REA ontology
uses specified concepts increasing amount model
information while maintaining the model simplic-
ity.

The REA model has internal rules for verify-
ing the model consistency thus prevents creating
of incorrect links. The result of this verification
is the model, which is responding to an answer
why the enterprise performs some activity and
hence why economic events happened. This is
a significant difference and a big advantage of

the REA ontology over other traditional model
solutions.

Another feature of the REA ontology is sim-
plicity and understandability of models for ordi-
nary users working with them. The model is also
precise enough for automation [5].

3. Model Driven Architecture

MDA is a specification of OMG consortium (Ob-
ject managment group) used for model driven
software development. Model is simplified view
of reality that defines formal set of elements to
describe an objective and a purpose of develop-
ment.

The reason for creating the MDA standard
was an effort to increase the level of abstrac-
tion. Anytime in the history increasing level of
abstraction led to increasing productivity.

3.1. MDA architecture

MDA is based on four-layer architecture (see Fig-
ure 3). The highest layer M3 is meta-metamodel.
It is an abstract language and a framework
for defining, specifying, designing and manag-
ing technologically independent metamodels and

10 Zdeněk Meliš, Jaroslav Žáček, František Huňka

Figure 3. MDA architecture [3]

serves as the base for defining modeling lan-
guage. The most commonly used language is
Meta-Object Facility (MOF).

The second layer M2 contains all metamod-
els and specifications defined by top layer. In
this layer there is usually defined UML lan-
guage and its concepts (e.g. classes, associa-
tions, ...). The third layer M1 includes real
world elements represented by metamodel con-
cepts. The lowest layer M0 contains things
of real world modeled in M1. This layer can
include instances of concepts defined in M1
layer, or specific or abstract instances of real
world.

3.2. MDA levels of abstraction

MDA defines 4 levels of an abstraction:
– CIM (the computational–independent model)

– contains basic domain model with low level
structure details. It models basic system re-
quirements and basic business processes.

– PIM (the platform-independent model) – it
is a model containing more details than CIM,
but it is still free from technological details.
Theoretically the PIM is assumed to be ex-
ecuted on a technologically independent vir-
tual machine. This model describes the most
of a system behavior.

– PSM (the platform-specific model) – in the
PSM details such as the code structure for se-
lected platform are generated, and constructs
of the final language and details enabling code
generation are completed (usually automati-
cally).

– Code – the source code can be understood
as the model of concrete realization on the
platform.

3.3. Ontology infrastructure based on
the MDA

The OMG Company tried to create an ontol-
ogy system based on MDA to approach ontology
systems to common programmers.

Figure 4 shows the ontology-based infrastruc-
ture made by MDA. The highest layer M3 con-
tains basic MOF defining meta-metamodel. The
M2 layer contains basic UML ontological profile
describing basic modeling language’s constructs
and Ontology Definition Metamodel (ODM),
which includes basic ontology concepts. This lan-
guage is based on OWL, which is the result of
the evolution of ontology languages. This layer
forms a logical layer of the semantic web and
allows mapping from ODM to OWL using XMI
and XSL format (based on XML). The M1 layer
contains general models based on higher layer

Comparison of MDA and DSM Technologies for the REA Ontology Model Creation 11

Figure 4. MDA based ontology infrastructure [3]

metamodels and M0 contains model instances
and raw data.

MDA technology does not distinguish the
type of the ontology - the general transformation
process can be applied to any ontology, including
the REA. The highest layer is MOF, M2 layer
includes the REA ontology UML profile and M1
layer consists individual models.

4. Domain-specific modeling

Domain-specific modeling (DSM) is a software
engineering methodology for software develop-
ment [8]. The main focus of DSM is automated
development in one narrow specific domain. The
advantage of narrow focus is possibility to use
domain terms in language including its graphi-
cal notification. DSM increases the level of an
abstraction above code concepts eliminating the
need for mapping of domain concepts into an-
other language and reduces mapping errors [9].

4.1. DSM architecture

The DSM architecture contains 3 parts: the lan-
guage, the generator and the domain framework.
The language comes directly from a problem
domain and provides an abstraction for solving
domain problems. Individual domain concepts
can form language objects, links, properties or
submodels. The language itself has two parts.
The syntax specifies language concept structure
and uses a grammar to perform model validation
and verification at the language level. The seman-
tic defines the meaning of individual elements.

The generator performs model transforma-
tion to pre-defined structure, usually the source
code which is complete and immediately exe-
cutable without any modifications. The generator
can produce documentations, metrics, statistics,
prototypes, tests and more.

The lowest layer is the domain framework
that performs multiple functions. It reduces com-
plexity of code, eliminates duplicity in code, de-

12 Zdeněk Meliš, Jaroslav Žáček, František Huňka

fines an interface for generator, provides integra-
tion with existing systems, etc.

4.2. Ontology infrastructure based on
the DSM

The figure 5 shows detailed DSM mapping of
the ontology system. The vertical part of dia-
gram shows the hierarchical ontological structure
where Upper Ontology defines abstract layer of
concepts usable in all domains, Core Ontology
defines concepts usable in similar domain, Do-
main Ontology defines specific domain concepts
and Application Ontology defines concepts that
are modified for DSL mapping [10].

Unlike MDA, the DSM technology is directly
dependent on the modeled ontology. Due the
strict dependence on the domain, procedure of
creation architectural layers of modeling system
is different for each ontology.

The language of the REA ontology is defined
by the UML profile and contains basic entities,
relationships rules that allow validation and ver-
ification of the model. The target platform is
hidden from user and no other action is required
for creating a functional model so the system is
able to work with an instance level of model. The
core of such system is the generator, perform-
ing a translation of the model into the target
platform code. Making of such generator is very
difficult, expensive and time-consuming and re-
quires domain expert participation. Once the
generator is created, models creation is very easy
even for nontechnical people.

5. Comparing MDA and DSM
principles

5.1. MDA result

The MDA is based on incremental transforma-
tions that specify model details through all ab-
straction levels. This approach allows transfor-
mation of any REA ontology model indepen-
dently on used entities, because transformation
process is not affected by the applied semantic
abstractions. The MDA structure allows easy

transformation of the REA ontology language to
any other language (e. g. to OWL language for
semantic web support) without modification of
the modeling system’s core. Very helpful function
may be the learning ability - the model learn
transformation details set by a model creator
and reuse them at the next transformation of
the model with the same combination of used
entities.

The big problem of this approach is that
a model creator must have programming skills
to be able set up required model details. Al-
though the learning ability can be helpful, it can
never provide a full model transformation into
source code. Also the transformation between
different languages can lead to implementation
errors during mapping and therefore it request
higher testing demands and resources.

5.2. DSM result

DSM is based on narrow domain focus. The lan-
guage of model comes directly from REA on-
tology. That allows performing validation and
verification check and the model eliminates the
need for mapping between any languages by us-
ing domain terms. Models are well readable for
people working with REA ontology and they do
not need any programming skill to create an
executable application from model.

The biggest problem of this approach is lim-
ited number of semantic abstractions that the
generator can contain. REA ontology contains
a lot of different semantic abstractions and some
of them replace some other, some of them can-
not be used together etc. Therefore it is not
possible to implement all combinations of them
into generator. Another problem is that REA
allows creating new semantic abstractions and
every modification of domain language requires
modification of generator and its recompilation
and redistribution. Generator recompilation can
cause older model incompatibility.

5.3. Comparing results

Development procedure of ontology systems us-
ing these technologies is different and each of

Comparison of MDA and DSM Technologies for the REA Ontology Model Creation 13

Figure 5. Ontological hiearchy [10]

them has positives and negatives. To model
the general ontology, which assumes with pos-
sible changes in the structure, it is better to
use the MDA technology but for the cost of
no user friendly development and higher test-
ing and resources requirements. In case of MDA
each transformation between two languages
has quadratic complexity O(n2) whereas the
DSM model transformation has linear complex-
ity O(n) [10].

If only few semantic abstractions will be used
(for example only one type of model will be cre-
ated by application) it is much better to use
DSM that has many advantages for REA ontol-
ogy development. Nowadays there are some DSM
modifications for supporting language changes
without generator recompilation such as Expand-
able DSM generator [11].

The cost of development by MDA technol-
ogy is equalized over whole developmental pe-
riod. The DSM has largest costs at beginning
of development, when the generator is built and
subsequent development of applications based
on the REA ontology has minimal costs because
of higher abstraction level and thus increased
productivity.

5.4. Extendable DSM generator

The basic idea of this approach is using some kind
of pug-in system for extending the functionality
of the generator. The modeling tool contains only
basic semantic abstractions and all additional se-
mantic abstractions are added through plug-ins
(containing script for generator), which can be
distribute via web services so modeling tool can
automatically download and install needed pack-
ages. The solution of extendable DSM generator
is described in [11].

6. Conclusion

Comparison of MDA and DSM technologies
showed the fundamental differences and ways
to using. Generally we can say that the REA
ontology is better supported by DSM technology
because it offers a lot of benefits such as using of
the domain knowledge, the model validation and
verification, low testing requirements and more.
Due to architectural structure the DSM usage
is limited by the narrow specific domain with
the constant ontology and the limited count of

14 Zdeněk Meliš, Jaroslav Žáček, František Huňka

semantic abstractions. For that reason it is better
to use the MDA technology if frequent changes
of semantic abstractions of the REA ontology
are expected. If large amount of modifications is
not expected, but the ontology is not constant,
the DSM extensible generator allowing changes
of some semantic abstractions can be used [11].

Before the development begins it is necessary
to perform basic analysis how will be the final
system used and then choose which technology
is better to that particular case.

Acknowledgement

The paper is supported by the grant reference
no. 6141 provide by IGA Faculty of Science Uni-
versity of Ostrava.

References

[1] C. Chang and L. Ingraham, Modeling and
designing accounting systems: using Access to
build a database. John Wiley & Sons, Inc., 2007.
[Online]. http://books.google.cz/books?id=N-
fzAAAAMAAJ

[2] T. Gruber, “A translation approach to portable
ontology specifications,” Knowledge Acquisition,
Vol. Volume 5, No. 2, 1993, pp. 199–220, iSSN
1042-8143.

[3] D. Gasevic, D. D., and D. V., Model Driven
Architecture and Ontology Development. New

York: Springer Berlin Heidelberg, 2006.
[4] B. Bennett and C. Fellbaum, Formal ontology

in Information Systems. IOS Press, 2006.
[5] P. Hruby, Model-driven design using business

patterns, ser. Springer eBooks collection: Com-
puter science. New York: Springer-Verlag, 2006.

[6] P. Hruby, M. Hucka, F. Huňka, J. Kasik, and
D. Vymetal, Víceúrovňové modelování pod-
nikových procesů (Systém REA), ser. Series on
Advanced Economic Issues. Ostrava: VŠB-TU
Ostrava, 2010.

[7] H. Sedlackova and K. Buchta, Strategicka ana-
lyza. C H Beck, 2006.

[8] M. Fowler, Domain-specific Languages. Addison
Wesley Longman, Inc., 2010.

[9] G. Guizzardi, L. Ferreira Pires, and M. van
Sinderen, “On the role of domain ontologies in
the design of domain-specific visual modeling
langages,” in Proceedings of the 2nd OOPSLA
Workshop on Domain-Specific Modeling Lan-
guages, J. Tolvanen, Ed. Birmingham, USA:
University of Alabama at Birmingham, 2002, pp.
25–38. [Online]. http://doc.utwente.nl/66750/

[10] M. Brauer and H. Lochmann, “Towards se-
mantic integration of multiple domain–specific
languages using ontological foundations,” Lec-
ture Notes in Computer Science, Vol. Volume
5021/2008, No. 2, 2008, pp. 34–48, available
at WWW: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.91.9973.

[11] J. Žáček, Z. Meliš, and F. Huňka, “Extendable
domain specific modelling generator based on
web services,” ECON, Vol. Volume 19, 2011, pp.
98–104.

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 15–24, DOI 10.5277/e-Inf130102

Efficient Adoption and Assessment of Multiple
Process Improvement Reference Models

Simona Jeners∗, Horst Lichter∗, Carlos Gomez Rosenkranz∗
∗Research Group Software Construction, RWTH Aachen University

simona.jeners@swc.rwth-aachen.de, lichter@swc.rwth-aachen.de,
rosenkranz@swc.rwth-aachen.de

Abstract
A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve
their processes. These process improvement reference models (IRMs) cover different domains
such as IT development, IT Services or IT Governance but also share some similarities. As there
are organizations that address multiple domains and need to coordinate their processes in their
improvement we present MoSaIC, an approach to support organizations to efficiently adopt and
conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common
meta-models. The resulting IRM integration model enables organizations to efficiently implement
and asses multiple IRMs and to benefit from synergy effects.

1. Introduction

Nowadays, the software market is expanding
and clients are requesting better, faster, and
cheaper software products. However, the Stan-
dish Group regularly reports that the failure rate
of IT-projects is still too high: 68% of IT-projects
do not meet their deadlines nor achieve the re-
quested quality or are cancelled [1]. One im-
portant impact factor to project success is the
quality of the applied IT-processes because soft-
ware quality heavily depends on these processes.
Hence, more and more organizations are obli-
gated to identify, structure, and improve their
processes systematically. Because the process
improvement road is quite long and expensive
it needs to be guided. To support process im-
provement different IT reference models such
as CMMI [2], ISO/IEC 15504 [3], COBIT [4]
or Functional Safety [5] may be considered and
applied. Improvement Reference models (IRMs)
are collections of best practices based on the
experience and knowledge of many organizations.
We call these best practices procedures. The

IRMs are published as maturity-, procedure- or
quality-models as well as standards or norms.
Although IRMs exist for different IT areas, such
as Software and System Development, IT Gov-
ernance, Software Safety or IT Services, they
may address similar topics. For example, project
or risk management is addressed in almost all
IRMs. The adoption of multiple IRMs allows
an organization to exploit synergy effects be-
tween them. On the one hand organizations
can address coordinately different and common
areas. On the other hand the weaknesses of
a single IRM can be overcome by the strengths
of others.

Although there is free information available
about each single IRM, there is no integrated
solution that makes a collection of IRMs more
transparent and supports organizations in the
adoption and assessment of IRMs. This lack of
transparency makes the effort for process man-
agement and assessment of multiple (evolving)
IRMs unnecessary high. The main problems that
hamper organizations to use the experience and
knowledge reflected by IRMs are:

16 Simona Jeners, Horst Lichter, Carlos Gomez Rosenkranz

– IRMs exist in different shapes, for mul-
tiple domains and cover many areas. As
already mentioned there are many types of
IRMs, such as norms, quality-models or stan-
dards, which vary in certain areas but also
share some ones in multiple IT domains. Or-
ganizations usually do not understand the
similarities and differences between the IRMs
in this collection.

– IRMs are based on different structure
and terminology. Because IRMs are devel-
oped for different IT domains and by different
institutions, each single IRM defines its own
specific structure and uses a specific set of
terms. Hence, different terms are used for the
same semantic concept. Both, the different
structure and different terminology hamper
to understand and adopt IRMs.

– IRMs may address similar topics. Al-
though IRMs exist for different IT areas,
they may address similar topics. For example,
project or risk management is addressed in
almost all IRMs. To efficiently adopt multiple
IRMs the organization must be able to eas-
ily compare the selected IRMs and identify
their similarities and differences. Procedures
of IRMs can be described either very gener-
ally or more concretely. The organizations
should recognize similar procedures to better
understand the abstract requirements of the
more general one. Furthermore, organizations
should be aware of the essence of similar pro-
cedures for a better overview and understand-
ing. The specific details of each IRM should
also be easy to identify if necessary.

– IRMs are changing. Since IRMs are up-
dated continuously and new IRMs are devel-
oped organizations must keep pace with their
evolution and must be able to understand
and apply the changes.

1.1. Goals and Solution Approach

In order to solve the problems mentioned above
we propose a new approach called MoSaIC
(Model based Selection of Applied Improvement
Concepts) aiming to achieve transparency and
to support organizations in an effective adop-

tion and assessment of multiple IRMs. The goals
associated with MoSaIC are:
– G1: Facilitate the understanding and avoid

misinterpretations of IRMs.
– G2: Identify similar procedures and extract

their essence as abstract practices.
– G3: Provide traceability between abstract

practices and their instances in the IRMs.
– G4: Allow an easy identification of the depen-

dencies between procedures or process areas
of different IRMs.

– G5: Support different levels of abstraction of
IRMs.

– G6: Support an easy update of changed IRMs
and an easy integration of new ones.
For short, we achieve transparency by a seam-

less and semantic integration of different IRMs.
Although the integration of IRMs is a central
issue of MoSaIC, it addresses further challenges
as well, e.g. the systematic selection of IRMs or
parts of IRMs that are best suited for an organi-
zation. To address this problem, not only IRMs
but also other information (e.g. business goals
or constraints) is integrated into MoSaIC. We
focus here on MoSaIC’s model based integration
approach of IRMs only.

1.2. Related Work

The need of a process architecture in a multi-
model context is mentioned in a series of articles
from SEI [6]. This raises the awareness to define
a generic and integrated model which allows de-
scribing different IRMs as well as organizational
processes. This model should make IRMs more
transparent and support organizations to find
similarities between different IRMs. Basic ele-
ments mentioned in [7], [6] or [8] such as inputs,
outputs, roles, their relations are part of our
integration model as well.

Ferreira et al. [9] present an approach to
achieve transparency of IRMs by comparing
IRMs. The problems mentioned above, the dif-
ferent abstraction levels of IRMs, their over-
lapping, and their complexity are also men-
tioned. This approach tries to solve these prob-
lems by defining metrics to manually compare
IRMs. A manually comparison of the IRMs

Efficient Adoption and Assessment of Multiple Process Improvement Reference Models 17

is performed in [10] to identify similar prac-
tices of different IRMs and their essence. We
also provide support for identifying abstract
practices but based on an automatic compar-
ison. Our best practices can be easily traced
to their instances in the different IRMs. The
traceability is also addressed in a case study
for the integration of large aerospace IRMs
[11]. Here, different types of traceability be-
tween activity, input or output elements are
defined. However, our approach extends one
traceability type by considering the semantic
relations between these elements. There are
many contributions in the literature to the in-
tegration of IRMs and their comparison. For
example in [12], [13] or [7], the authors de-
fine a common structure to link IRMs and re-
veal their similarities. For this purpose simi-
lar procedures of IRMs are connected manu-
ally. In contrast to the first two approaches we
model on a more fine grained level and iden-
tify procedure’ elements to support an auto-
matic comparison. The third approach also ad-
dresses this fine granularity, it connects simi-
lar elements of different procedures but does
not define what does similarity means. We dif-
ferentiate between different similarityrelations
to get a more accurate degree of similarity be-
tween IRMs. Soto and Münch [14] formalize and
automatically compare the IRMs and internal
processes but also by only considering the se-
mantic equivalence between the basic elements
(activities, stakeholder, and products). Their ap-
proach also addresses the problem of IRMs’ evo-
lution. Their comparison approach is used to
support the changes of the internal processes
or IRMs and to assure a continuously compli-
ance.

The remaining of this paper is organized as
follows. In the second section we describe the
elements and relations of the MoSaIC’s IRM inte-
gration approach. In section 3 we present excerpts
of a MoSaIC case study applied to model parts
of CMMI, COBIT and Functional Safety. Based
on this case study we finally discuss the results
of our evaluation and give an overview to future
work. Conclusions and a summary conclude this
paper in the last section.

2. The MoSaIC IRM Integration
Approach

In the following we describe the MoSaIC way
to integrate IRMs. First, we motivate and give
a short overview of our integration approach.
Then we present in detail the two meta-models
of MoSaIC that provide the basis for a model
based IRM integration approach.

The main idea of MoSaIC’s IRM integration
approach is to normalize IRMs based on a joint
structure and on a common set of terms. Ac-
cording to mega modeling theory [15], we can
normalize by defining appropriate meta-models.
We have analyzed published IRM meta-models,
e.g. the one of CMMI, extracted and added only
elements that are sufficient to achieve the goals
defined at the beginning of this paper.

To model different IRMs the same way we
have developed the so called Integration Struc-
ture Meta-Model (IS Meta-Model). It defines core
and additional IRM element types introduced by
different IRMs as well as fine grained IRM con-
cept element types, such as activities, artifacts
or roles. While the core and additional element
types allow providing a rough overview of the
most important aspects of IRMs, the conceptual
elements types allow the integration of concrete
and abstract IRMs and a detailed comparison
of IRMs. A IRM concept (concept for short) is
a word or the smallest combination of words that
has a unique meaning in the context of IRMs.
For example “project plan” or “work breakdown
structure” are concepts used in IRMs. Concepts
can be derived from activities, roles, inputs and
outputs of IRMs.

For each IRM, such as CMMI, SPICE, CO-
BIT or ITIL, we have extracted the core, ad-
ditional and conceptual information and cre-
ated respective IRM Integration Structure Mod-
els (IRM-ISMs). Mappings from the single
IRM-ISMs to the IRMs’ original structures pro-
vide more information if needed.

Furthermore, IRMs should be modeled using
the same terminology. We introduce a mecha-
nism to translate and map the terms/concepts
used by each single IRM to a common norma-
tive set of terms/concepts. For this purpose we

18 Simona Jeners, Horst Lichter, Carlos Gomez Rosenkranz

CMMI-ISM ITIL-ISM

COBIT-ISM Functional Safety-ISM

ICM

CMMI ITIL

COBIT

MoSaIC IRM Integration Model

Structure mapping from IRM to its ISM Concept mapping from ISM to ICM

IS Meta Model IC Meta Model

Instance Of

Figure 1. Architecture of the MoSaIC IRM integration approach

have created a model containing the closure of
all IRM concepts, called Integration Concept
Model (ICM). For each specific conceptual el-
ement in a IRM-ISM there is a corresponding
general ICM concept. A general concept defined
in the ICM can be mapped to several finer con-
ceptual elements of one single IRM or of sev-
eral different IRMs if these together are seman-
tically equivalent to the general concept. The
ICM concepts can be seen as dictionary entries
having synonyms and explanations in the differ-
ent IRM-ISMs. This conforms to what is called
Linguistic concordance (list of words with their
immediate contexts) and supports a better un-
derstanding and avoidance of misinterpretations
of the IRMs’ content. Obviously, the ICM is the
sole instance of its meta-model, the Integration
Concept Meta-Model (IC Meta-Model) and links
all IRM-ISMs.

In order to model the semantic of IRMs ap-
propriately and to further improve their compre-
hension we have enhanced our meta-models by
attributes and semantic relations (e.g. to model
similarity between concepts). For example, an
ICM concept has a definition attribute (usually
given by an expert) or ICM concepts may be
related by a generalizationOf relation. To sum-
marize, the ICM specifies the common concept
language for IRMs and facilitates the understand-
ing of their content.

Figure 1 schematically depicts the purpose
and application of both meta-models and their
respective concrete models IRM-ISMs and ICM.
The different structures of IRMs are represented
by different geometrical shapes while the dif-
ferent used terminology is symbolized by differ-
ent small geometrical internal shapes. For each
IRM a corresponding IRM-ISM is shown (e.g.
CMMI-ISM) being part of the overall MoSaIC
IRM Integration Model. All ISMs are instances
of the IS Meta-Model. Hence, all ISMs use the
same set of element types which makes them
analyzable and comparable. ICM (the only in-
stance of its IC Meta-Model) is part of MoSaIC’s
IRM Integration Model as well. It defines all
concepts and semantically links all IRM-ISMs by
connecting related concepts across the borders
of single IRMs.

Figure 2 shows the most important elements
of the Integration Structure Meta-Model.
For the representation we use a notation similar
to UML class diagrams. We have grouped the
elements in three packages:
1. Core contains elements mostly defined by

meta-models of existing IRMs.
2. Add-Ons offers elements that are not always

present in all IRMs.
3. Concepts contains elements to model con-

cept information of IRMs on a fine grained
level.

Efficient Adoption and Assessment of Multiple Process Improvement Reference Models 19

Concepts

Core Add-Ons

ReferenceModelCategory

ProcessArea Goal
defines

Procedure

isAchievableBy
dependsOn

Level ProductLevel

ProcessLevel

OrganzationalLevel

requires

requires

ProcedureElementQualityAttribute Junction

explicitlyRequired
isPlural

RoleRef

Role

Activity

Artifact explicitlyRequired
isPlural

ArtifactRef

type : ContextType

Context

concept

ConceptualElement

involves

performs

produces

needs

refersTo

refersTo

ConjunctionDisjunction

isPerformedIn

connects

requires

defines

<<enum>>
ContextType

Time
Mode
Site

Figure 2. The Integration Structure Meta-Model

Package Core. The top element of this pack-
age is called ReferenceModel. It represents a cer-
tain IRM and is structured by means of Cate-
gories. A Category defines a certain topic that
is addressed in one or more processes defined
by the IRM. A ProcessArea addresses a topic
to be improved and is part of exactly one Cat-
egory. Each ProcessArea defines one or more
Goals. The requirements to achieve the goals
are described by Procedures. A Procedure de-
fines one or more Activities with their Roles,
Inputs and Outputs (called Artifacts). By means
of the dependsOn relation dependencies between
Procedures are modeled (e.g. if a procedure
needs as input the output of another proce-
dure).

Package Add-Ons. ReferenceModels may de-
fine Levels. A Level represents a degree that an
organization can reach by applying the IRM. By
means of the relation requires a hierarchy of lev-
els can be modeled. Three special kinds of levels
are defined: OrganizationalLevel, ProcessLevel
(i.e. a level of a ProcessArea) and ProductLevel.
An OrganizationLevel may require a certain Pro-

cessLevel and may also require that certain Pro-
cessAreas are established in the organization.

Package Concepts. Our approach to inte-
grate different IRMs is centrally based on the
notion of Concepts. Therefore, we model the spe-
cific conceptual elements of each single IRM in
the respective ISM as well as their corresponding
general concepts in the ICM. This enables to link
similar specific concepts of different IRMs and
to compare IRMs.

Activities, Roles, and Artifacts of IRMs are
concrete ConceptualElements. An Activity may
involve Roles and is performed by one or more
Roles; it usually needs and produces Artifacts.
Because a certain Role or Artifact can be used
in different Procedures of a IRM, only their refer-
ences are associated with Activities. Hence, Ac-
tivities, RoleRefs and ArtifactRefs are the central
aspects of a Procedure, abstractly modeled by
class ProcedureElement. ProcedureElements have
additional information that specifies their usage
in Procedures. For example, they may be charac-
terized by QualityAttributes (e.g. “formally ap-
prove the project plan”). Furthermore, they may

20 Simona Jeners, Horst Lichter, Carlos Gomez Rosenkranz

<<enum>>
RelationType

composedOf
definedBy
generalizationOf

<<enum>>
ConceptType

Activity
Procedure
Artifact
Method
Tool
Resource
Role
Undefined

type : ConceptType
isAtomic : Boolean
definition : String

Concept

type : RelationType

ConceptRelation

connects

Figure 3. The Integration Concept Meta-Model

be connected by the logical relations Conjunction
or Disjunction, because a procedure may require
multiple ProcedureElements of the same type (e.g.
“eliminate or minimize project risks”). By means
of the Junction’s self composition relation each
combination of logical relations can be modeled
(e.g. “carrying out the applicable overall, the
E/EPS and software lifecycle phases”).

However, there are some differences between
the concrete ProcedureElements. One the one
hand, Roles and Artifacts mentioned in a proce-
dure can be explicitlyRequired or not. For ex-
ample, in “define the project plan” the arti-
fact “project plan” is explicitly required whereas
“eliminate the faults in the software” may lead
to model the artifact “software without faults”
which is not explicitly required. We also model
the multiplicity of an artifact or role (isPlural) to
allow a precise comparison. On the other hand,
Activities may be performedIn different Contexts
(e.g. “approve the plan before project initiation”).
As context information is conceptual information
as well, Contexts are special ConceptualElements
and as they are elements of procedures they are
also special ProcedureElements. A Context usu-
ally explains its Activity (e.g. “maintain the pro-
gramme by controlling the projects”), but it may
also specify a temporal relation (e.g. “approve
the plan before project initiation”) or specify
a local relation (e.g. “review requirements spec-
ification in the IT department”). The different
context types are modeled by an attribute of
type ContextType.

Figure 3 depicts the elements of MoSaIC’s
Integration Concept Meta-Model. Although
it has a pretty simple structure it is sufficient
to model the world of IRM concepts with their
relations. Obviously, a Concept (which is a term

or a combination of terms from a IRM) is the
main element. A Concept always has a Concept-
Type and may be related to other Concepts by so
called ConceptRelations which are typed as well.
The ConceptType determines the role of a Con-
cept in a certain context (e.g. “work breakdown
structure“ may be an Artifact but also a Method
depending on the context). ConceptRelations are
used to model similarities between concepts. A
Concept may be composedOf other Concepts. For
example “requirements” is composedOf “func-
tional requirements” and “non-functional re-
quirements”. Furthermore, a Concept may be
a generalizationOf a more concrete Concept (e.g.
the concept “stakeholder” is more general than
“project manager”). In addition, a Concept may
be definedBy other Concepts. For example, the
concept “plan the involvement of stakeholder” is
defined based on the concept “stakeholder”. If
a Concept is self-contained, it is called atomic
(attribute isAtomic). Atomic concepts are usually
defined by experts. Currently, initial sets of con-
cept and concept relation types are offered. This
architecture is flexible and open to introduce new
concept and concept relation types if needed.

In the next section we describe the applica-
tion of the both meta-models to ease their under-
standing and to show their modeling abilities.

3. Application of the Meta-Models

In order to evaluate the appropriateness of
the developed meta-models we have performed
a mid-size case study considering some parts of
COBIT, CMMI and FS.

Although each IRM focuses on a specific IT
domain they are similar in certain aspects. Be-

Efficient Adoption and Assessment of Multiple Process Improvement Reference Models 21

Plan involvement

of stakeholder

Stakeholder involvement plan

Consider

ident. of pers.
Person

Department

Organization

Plan involvement

isGeneralizationOf

CMMI-ISM

COBIT-ISM

ICM FS-ISM

Stakeholder

AF

R

C

R

A

C

C

C

C

C

A

R

R

R Consider

ident. of org.

A

Consider

ident. of dept.

A

Execute IT-project

Obtain stakeh.

participation

In execution of project

in IT-programme

For carrying out

SW phases

For carrying out the

applicable overall

For carrying out

HW phases

Plan involvement

of stakeholder

composedOf

composedOf

Stakeholder

Obtain stakeh.

commitment

R

A

CXT

C C

C

C

A

CXT

CXT

CXT

C

Execute project
C

C C

Figure 4. Excerpt of a MoSaIC IRM Integration Model

cause the aim of our case study was to explic-
itly show the similarities between the considered
IRMs and therewith their integration, we selected
designated procedures that contain similar con-
ceptual elements: we consider procedures the
following IRMs-elements: CMMI practices, the
sentences of COBIT control objectives and Func-
tional Safety requirements (CMMI PP SP2.6:
“Plan the involvement of identified stakeholder”
with the typical work product “stakeholder in-
volvement plan”; COBIT PO10.4: “Obtain com-
mitment and participation from the affected
stakeholders in the (..) execution of the project
within the context of the overall IT-enabled in-
vestment programme”; Functional Safety, Part
1, 6.2.1b: “Consider the identification of the per-
sons, departments and organizations which are
responsible for carrying out (..) the applicable
overall, E/E/PES or software safety lifecycle
phases”).

Figure 4 depicts the developed models. Each
ISM contains conceptual elements, such as activi-
ties (A), artifacts (AF), or roles (R). The COBIT-
and FS-activities are described by additional con-
text information, contexts (CXT) are added and

linked to the respective activities. The associ-
ations of ISM conceptual elements with their
correspondent concepts (C) in the ICM integrate
the procedures of the different IRMs. For exam-
ple, the CMMI-ISM activity “Plan involvement
of stakeholder” is composed of the COBIT- and
FS- activities. Another example of similarity be-
tween the modeled procedures is given by the role
“Stakeholder”. While CMMI and COBIT use this
term, it is represented in FS by the three roles
“Departments”, “Persons” and “Organizations”.
Therefore, we can easily identify the similarities
between these procedures. Furthermore, we can
easily extract the essence by identifying only
the general concepts: perform the activity “plan
the involvement of the stakeholder” for the “exe-
cution of the project”, involve the “stakeholder”
and produce the output “stakeholder involvement
plan”. The ICM allows identifying the relations
of these general concepts to the more concrete
concepts in the ISM of the corresponding IRMs:
the organization can easily identify the details
(e.g. in FS the stakeholder are represented by
persons, departments, organizations). Therefore,
the traceability between the abstract practice

22 Simona Jeners, Horst Lichter, Carlos Gomez Rosenkranz

and the more detailed instances in the IRMs is
supported.

The dependencies between the procedures of
a IRM or different IRMs can also be identified.
The procedures that share similar artifacts are
interdependent: one procedure uses the output
of another procedure as input. For example the
CMMI procedure PP 2.7 “Establish and main-
tain the overall project plan” produces the output
“project plan” that is used as input in the CO-
BIT procedure PO10.7 ”The project plan (. . .)
should be approved in line with the programme
and project governance framework”.

4. Experiences and Future Work

In the following we describe the experiences
gained with the developed IRM integration ap-
proach. Furthermore, we propose some ideas to-
wards further research and ideas concerning the
application of the MoSaIC IRM integration ap-
proach.

4.1. First Experiences

The modeling of selected parts of CMMI, CO-
BIT and Functional Safety showed that the IS
and IC meta-models offer a stable structure for
integrating the chosen IRMs. However, modifi-
cations of the meta-models may be possible af-
ter gaining more experience in modeling further
IRMs.

The IRM specific ISMs as well as the central
ICM were created manually. Because our ap-
proach is based on fine grained IRM information,
a large number of conceptual elements had to
be modeled. Thereby, redundant definitions of
semantically equivalent concepts in the ICM had
to be avoided. Furthermore, we always tried to
relate new concepts to existing ones in case of
similarity (by “composedBy”, “generalizationOf”
or “definedBy” relations). However, the manual
modeling was not always easy and sometimes it
was difficult to model concepts consistently.

Based on our experience we evaluate our IRM
integration approach in relation to the goals
listed in section 1.1 as follows.

The created ISMs and the ICM allow a seman-
tic integration of IRMs. Because each IRM-ISM
contains the most important IRM information it
provides a condensed overview for organizations
(G1). Furthermore, the ICM eases the under-
standing and avoids misinterpretations of terms
and concepts used in IRMs, because the concepts
are associated with their synonyms and contexts
in the IRM-ISMs. Every new IRM may enrich the
description of a concept and ease its comprehen-
sion. Therefore, the more IRMs are integrated,
the smarter the ICM will become. This approach
is a kind of crowdsourcing where organizations
work together to improve the ICM by model-ing
more and more IRMs. Furthermore, the created
ICM connects the different terms used in the
IRMs and connects the procedures of different
IRMs. Therefore, the organizations can easily
identify the dependencies between these different
IRMs (G4).

Our approach supports a detailed comparison
of IRM procedures. The fine grained model ele-
ments, the concepts connecting the procedures,
and the semantic concept relations allow identi-
fying similar procedures and their essence (G2).
The extracted abstract practices help organiza-
tions to avoid redundancies and to reduce the
effort in the adoption and assessment of multi-
ple IRMs. The implementation of the abstract
practices of certain IRMs assures the adoption
of these IRMs. If necessary, the organizations
can easily identify the details in the IRMs with
the help of the traces (G3). These traces are
useful also in the assessments. By considering
the abstract practices of certain IRMs, it can be
roughly assessed if these are implemented in the
organizations. Finally, the details of the IRMs
can be traced and be assessed.

The fine granularity of the models (ISMs and
ICM) enables to model IRMs on different levels
of abstraction: abstract, concrete IRMs and even
internal processes can be easily integrated in the
MoSaIC Integration Model (G5). This integra-
tion supports a better understanding of a certain
area that is addressed by both of them (G1).
Finally, changes on existing IRMs or new IRMs
can be integrated in the MoSaIC Integration
Model (G6). This is done by creating or updat-

Efficient Adoption and Assessment of Multiple Process Improvement Reference Models 23

ing the respective ISM and adding or updating
the connections between the changed or newly
created ISM and the central mediator, the ICM.
The integration of a new IRM implies adding
new concepts to the ICM in case they are not
already defined.

4.2. Future Work

The proposed approach realizes a sound basis
to integrate IRMs. However, more research has
to be done to fully achieve all defined goals and
to facilitate the application of MoSaIC’s IRM
integration approach.

Because the manual modeling of IRMs is
a time consuming and error-prone process, a ded-
icated tool box is needed. Currently we have
developed only sparse tool support based on
the implementation of the meta-models as Ecore
models in the Eclipse Modeling Framework [16].
By means of the respective generated tree-based
editors we are able to manually create and main-
tain the ISMs and the ICM. A more sophisti-
cated tool box should support the IRM expert
e.g. to cope with the consistency problem and
to model the fine grained conceptual elements.
Furthermore, a semiau-tomatic tool performing
a syntactical and linguistic analysis of the IRM
documents may generate recommendations to
model the conceptual elements properly. For ex-
ample, prepositions like “based on” or “in line
with” may require modeling a respective artifact.
Because the IRM documents are written very
differently, modeling recommendations can not
only rely on syntactic rules. For example, in some
IRM documents the activities of procedures are
written by nouns while in others verbs are used.
Hence, a plain syntactical analysis of the docu-
ments is not sufficient. Further rules are needed
to transform the language used in the original
documents in a “normalized” language. We will
investigate if rules used to precisely write require-
ments ([17]) could be adopted to transform the
original text in a “normalized” language (e.g. the
passive or noun form of a verb is transformed in
its active form). This may allow a semiautomatic
extraction of conceptual elements and their mod-
eling in the Integration Structure and Concept

Model. Furthermore, the tool box should be able
to adapt and improve its generated recommen-
dations according to modeling decisions done by
IRM experts.

Currently we are developing a new approach
to compare IRMs based on the information stored
in our models. At the moment, the identification
of similarities and the comparison has to be done
manually be an expert. Our new approach should
enable a tool supported automatic comparison of
IRMs and the determination of coverage degrees
of procedures, respectively of considered IRMs.

5. Conclusions

In this paper we have presented MoSaIC, a model
based approach to integrate reference models.
The core idea is to represent each IRM in a ded-
icated Integration Structure Model (ISM) and
the common concepts in one central Integration
Concept Model (ICM).

The IRMs’ integration achieves transparency
and reduces complexity of IRMs. As the
IRM-ISMs are instances of their common
meta-model they normalize the different struc-
tures of the IRMs and provide a rough overview.
Due to the modeled fine granularity, the common
structure enables to semantically integrate differ-
ent IRMs. The ICM normalizes the different con-
cept terminology of the IRMs and forms a land-
scape of IT terms and their relations. Through
common concepts and their semantic relations,
this model facilitates the understanding of IRMs.
A better understanding is supported also by the
integration of general and concrete IRMs. Fur-
thermore, it supports a detailed comparison of
IRMs that allows to identify similar and interde-
pendent procedures and helps organizations to
avoid redundancies in the adoption and assess-
ment of multiple IRM. Therefore, they will be
able to efficiently and asses adopt multiple IRMs.

First experience and results with the pre-
sented approach are promising; we were able to
effectively model the integration of some process
areas of three IRMs. We expect that the results
of our future work will make the integration of
IRMs more accurate and comfortable.

24 Simona Jeners, Horst Lichter, Carlos Gomez Rosenkranz

References

[1] “CHAOS summary 2009,” The Standish Group,
Boston, Tech. Rep., 2009. [Online]. http://
www.statelibrary.state.pa.us/portal/server.pt/
document/690719/chaos_summary_2009_pdf

[2] “CMMI for development, version 1.3,”
Software Engineering Institute, Carnegie
Mellon University, Tech. Rep. CMU/SEI
2010-TR-033, ESC-TR-2010-033, 2010. [Online].
http://www.sei.cmu.edu/reports/10tr033.pdf

[3] ISO/IEC 15504 Information Technology Process
assessment. Part 1: Concepts and vocabulary,
Part 2: Performing an assessment, Part 3: Guid-
ance on performing an assessment, Part 4: Guid-
ance on use for process improvement and process
capability determination, Part 5: An exemplar
Process Assessment Model, ISO/IEC Std., 2007.

[4] “Control objectives for information
and related technology version 4.1,”
ISACA, Tech. Rep., 2007. [On-
line]. https://www.isaca.org/bookstore/Pages/
Product-Detail.aspx?Product_code=CB4.1

[5] IEC 61608 or Functional safety of elec-
trical/electronic/programmable electronic
safety-related systems, IEC Std., Rev. 2, 30
April 2010.

[6] J. Siviy, P. Kirwan, L. Marino, and
J. Morley, “Process architecture in a
multimodel environment. white paper,”
Software Engineering Institute, Tech. Rep.,
2008. [Online]. http://www.sei.cmu.edu/library/
assets/multimodelSeries_wp4_processArch_
052008_v1.pdf

[7] D. Malzahn, “Assessing – learning – improving,
an integrated approach for self assessment and
process improvement systems,” in ICONS 09,
the Fourth International Conference on Systems.
Gosier, Guadeloupe, France: IEEE Computer
Society Conference Publishing Services, 2009,
pp. 126–130.

[8] Y. Wang, G. King, A. Dorling, and H. Wickberg,
“A unified framework for the software engineering
process system standards and models,” in 4th
IEEE International Software Engineering Stan-
dards Symposium and Forum, Curitiba , Brazil,
1999.

[9] A. Ferreira, L. Machado, and M. C. Paulk,
“Quantitative analysis of best procedures mod-

els in the software domain,” in 17th Asia Pa-
cific Software Engineering Conference, 2010, pp.
433–442.

[10] Y. Wang, G. King, and H. Duncan, “Deriving
personal software processes from current soft-
ware engineering process models,” in European
software process improvement: proceedings of the
EuroSPI 2000 Conference, Copenhagen, Den-
mark, 2000.

[11] O. Armbrust, A. Ocampo, J. Münch,
M. Katahira, Y. Koishi, and Y. Miyamoto,
“Establishing and maintaining traceability
between large aerospace process standards,”
in 5th International ICSE Workshop on
Traceability in Emerging Forms of Software
Engineering, 18 May 2009, pp. 36–40.

[12] A. Ferchichi, M. Bigand, and H. Lefèbvre,
“An ontology for quality standards integra-
tion in software collaborative projects,” in
Model Driven Interoperability for Sustainable
Information Systems, J.-P. Bourey, Ed., Mont-
pellier, FRANCE, 2008, pp. 17–30. [Online].
http://ceur-ws.org/Vol-340/paper02.pdf

[13] L. Liao, Y. Qu, and H. Leung, “A software pro-
cess ontology and its application,” in Interna-
tional Workshop on Future Software Technology
(IWFST-2005), Shanghai, 2005.

[14] M. Soto and J. Muench, “Using model compari-
son to maintain model to standard compliance,”
in ICSE Workshop Comparison and Versioning
of Software Models (CVSM 2008), Leipzig, Ger-
many, 17 May 2008.

[15] J.-M. Favre, “Megamodelling and etymology,”
in Transformation Techniques in Software
Engineering, ser. Dagstuhl Seminar Pro-
ceedings, J. R. Cordy, R. Lämmel, and
A. Winter, Eds., No. 05161. Dagstuhl,
Germany: Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006. [Online]. http:
//drops.dagstuhl.de/opus/volltexte/2006/427

[16] D. Steinberg, EMF : Eclipse Modeling Frame-
work. Upper Saddle River, NJ: Addison-Wesley,
2009.

[17] K. Pohl and C. Rupp, Requirements Engineering
Fundamentals A study Guide for the Certified
Professional Requirements Engineering Exam
Foundation Level IREB compliant. Rocky Nook,
Inc, Santa Barbara, 2011.

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 25–33, DOI 10.5277/e-Inf130103

A Knowledge-Based Perspective for Software
Process Modeling

Noureddine Kerzazi∗, Mathieu Lavallée∗, Pierre-N. Robillard∗
∗Laboratoire de Recherche en Génie Logiciel, 2500 chemin de Polytechnique,

Montr[Pleaseinsert\PrerenderUnicode{Ãľ}intopreamble]al H3T 1J4, Canada, École Polytechnique de Montréal
Noureddine.Kerzazi@Polymtl.ca, Mathieu.Lavallee@Polymtl.ca, Pierre.Robillard@Polymtl.ca

Abstract
As the acquisition and sharing of knowledge form the backbone of the software development
process, it is important to identify knowledge discrepancies between the process elements. Explicit
representation of the knowledge components within a software process model can provide a means
to expose these discrepancies. This paper presents an extension of the Software and System Process
Engineering Metamodel (SPEM), to be used as a new knowledge modeling layer. The approach,
which is based on ontologies for knowledge representation, constitutes an explicit method for
representing knowledge within process models. A concept matching indicator shows the state of
the process model in terms of the concept gaps for each task within the process. This indicator
could lead to more informed decision making and better management of the associated risks, in
terms of team competency, documentation quality, and the training required to mitigate them.

1. Introduction

Software engineering is knowledge-intensive [1],
and so the acquisition and sharing of knowledge
form the conceptual backbone of software process
modeling. However, the latest version of SPEM
[2], the Object Management Group (OMG)’s de
facto standard devoted to software process mod-
eling, does not support this knowledge concern.
We tackle the issue in this paper by presenting
an extended SPEM framework which focuses on
the knowledge-oriented perspective of process
modeling. Our approach responds to the need
to provide process engineers with the means to
perform knowledge assessments within processes,
and we do this by integrating knowledge con-
cepts within SPEM-based software process mod-
eling. This knowledge-oriented perspective has
been integrated into our previous work related
to the implementation of a domain-specific lan-
guage for software process modeling (DSL4SPM
tool) [3].

In addition, the paper tackles the issue of
knowledge discrepancies in the software process
model, with the purpose of providing an indica-
tor of a knowledge gap relating to any activity
represented in that model.

The benefit of introducing knowledge con-
cepts into software process modeling is to en-
able the identification of knowledge gaps between
prescribed activities and the available resources.
When such a gap is identified, the project man-
ager can evaluate the risks it represents, and
provide the developers with additional training
as required [4]. The objective of this SPEM
extension is thus to provide process engineers
with a mean to document domain knowledge
constraints directly into their process models.

The paper is organized as follows: Section 2,
Related Works, presents theoretical background
related to ontologies and knowledge representa-
tion. Section 3, Extension of SPEM, describes
the SPEM extension developed to enable knowl-
edge integration and gap measurement. Section

26 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

4 presents the visualization of the knowledge gap
measure, along with its interpretations. Finally,
section 5 presents concluding remarks and sug-
gestions for future work.

2. Related Works

The background theory of this work relates to
three main areas: software process modeling,
knowledge management theories, and the use
of ontologies. Knowledge management has been
extensively studied, in the social sciences litera-
ture in particular. The purpose of this section is
to highlight the salient concepts of the theories
on which this approach is based.

2.1. Knowledge Management Theories

According to Davenport and Prusak [5], Knowl-
edge Management (KM) can be defined as a pro-
cess that relates to three issues: knowledge cre-
ation, knowledge representation, and knowledge
sharing. This subsection highlights representa-
tive theories from the fields of management and
the cognitive sciences, management theories em-
phasizing knowledge creation and representation,
and cognitive theories emphasizing knowledge
representation and storage.

In considering the management point of view,
Nonaka & Takeuchi [6] identify two types of
knowledge: tacit (T) and explicit (E). Tacit
knowledge is personal and context-specific. It can-
not, by definition, be explicitly expressed by an
individual, but it frames his behavior. In contrast,
explicit knowledge is externalized knowledge, and
it supports communication, either formally or
informally, and does so independently of who
“knows”. Within a software process, tacit knowl-
edge resides in roles, while explicit knowledge
resides in artifacts.

In considering the cognitive point of view,
Novak and Canas [7] define knowledge as a struc-
tured set of interrelated concepts. They argue
that learning involves the assimilation (i.e. inter-
nalization) of new concepts into existing cogni-
tive structures. This theory is also embraced by
cognitive psychologists, who assert that we learn

by assimilating new concepts and propositions
into existing cognitive structures, rather than
through rote memorization [8]. So, representing
knowledge in a structure of concepts [9] is in
agreement with how cognitive psychologists be-
lieve we store knowledge in the brain.

Moreover, concepts can be organized in an
ontology to simplify manipulation, sharing and
reuse. An ontology is defined as “a formal explicit
description of concepts in a domain” [10].

According to Anderson [11], there are two
kinds of knowledge: declarative knowledge and
procedural knowledge. Declarative knowledge is
the factual or conceptual knowledge that a person
has. It can be described and shared with others
(e.g. facts about a programming language). Pro-
cedural knowledge is the knowledge of how to per-
form tasks, and focuses more on action than on
information. This second type of knowledge is dif-
ficult to describe, but is nevertheless important,
particularly in problem-solving (e.g. the experi-
ence of using a debugger). Robillard [1] presents
an integrated view of various knowledge concepts
in software engineering. Even though there is an
abundance of theoretical knowledge models in the
literature, there are few methods for integrating
knowledge into the software process modeling
field, as reported by Bjørnson & Dingsøyr in
their systematic review [12]. With the recogni-
tion that knowledge is the primary source of an
organization’s innovation potential, our aim in
this work is to superpose the knowledge-oriented
perspective over the activity-oriented layer of
the software process model, in order to provide
a method for representing and managing knowl-
edge in the software development process. The
first step is to extend the SPEM-based processes
with attributes related to knowledge. In this way,
cognitive theory is used to represent:
– the knowledge required to carry out a task

(considered as the core of the action),
– the knowledge provided by the artifacts and

roles linked to this task.
The second step is to compare the knowledge

required for the SPEM elements, such as artifacts,
roles, and tasks, in order to identify gaps. The
final step is to visualize the knowledge matching
between tasks.

A Knowledge-Based Perspective for Software Process Modeling 27

2.2. Ontology for Knowledge
Representation

We chose an ontological representation among
other formalisms for three reasons. First, cogni-
tive psychologists, like Ausubel [8], affirm that
people do not learn by rote memorization, but
rather by summarizing, structuring, and relat-
ing concepts, and then assimilating them into
existing cognitive structures. Based on this the-
ory, the ontology domain was developed with
the main aim of building knowledge reposito-
ries using a tree of interrelated concepts [13].
Second, we want to represent knowledge bases
in a modular way, so that the model would be
extendable and scalable to accommodate new
items in the future. Third, we need a standard
representation (e.g. RDF/XML or OWL 2.0) to
be able to share knowledge bases and reuse them
in different contexts.

Recently, more and more researchers have
been using ontologies to understand soft-
ware processes [14, 15]. According to Anquetil
et al. [14], software system maintenance is
a knowledge-intensive task, which can be sup-
ported with an ontology, and such an ontology
can provide a good understanding of the applica-
tion. The authors argue that many of the difficul-
ties associated with software maintenance origi-
nate from knowledge management problems, and
they propose a technique for knowledge extrac-
tion. Ferreira et al. [15] propose the integration
of ontologies into the model driven architecture
(MDA) paradigm.

In this work, we implement an interface, in
addition to the basic process modeling one, to
import multiple external ontologies.

3. Extension of SPEM

SPEM 2.0 is the OMG’s standard for software
process modeling [2]. It is based on UML and
is dedicated to describing the components of
software processes. According to its specification,
a software process is a set of activities, each
of which is composed of one or more tasks per-
formed by an abstract active entity, called a Role.

The Role is responsible for one or more tangible
entities, called Work Products. Roles describe
the responsibilities and a set of skills to facilitate
their assignment to real people. Work Products
are pieces of information produced by, or used
by, Tasks.

However, SPEM supports activity-oriented
modeling, which focuses on a structural break-
down of activities, and not knowledge modeling.
There is therefore a need to extend SPEM to
take into account a knowledge-oriented modeling
perspective.

3.1. Integrating Knowledge Component
into SPEM

Figure 1 shows the conceptual integration of
the knowledge component into SPEM, the gray
classes coming from the SPEM 2.0 specification.
Note that Work Product Use is the generic term
for the inputs and outputs of tasks, such as Ar-
tifacts, in the specification. The concept-based
knowledge repository is structured as a tree of
the ConceptNode element.

RoleUseWorkProductUse TaskUse

MethodContentUse

BreakdownElement

UseRelation

ConceptNode

Properties

Figure 1. Extension of SPEM to support ontology.
Elements in grey derive from the SPEM
specifications. The extension is in white

The ConceptNode class represents a con-
cept of the repository’s tree-structured ontology.
A node is associated with a list of properties.
The ConceptNode is linked to process elements
through the Relationship class. The Relationship
class has one property, which enables the mod-

28 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

Ontologie(s)Product
Ontology

Project
Ontology

Process
Ontology

Figure 2. The specific form used to indicate the knowledge concepts needed for a task

eler to assign concepts to the process elements
in a declarative way, a procedural way, or both.
In this model, concepts do not yet have prop-
erties. The only relationship possible between
concepts is an inheritance relationship,“is-a” .
Future extensions may permit the expression of
more properties and relationships.

According to Nosek and Roth [16], a visual
representation of knowledge is clearly better for
comprehension and conceptualization than a tex-
tual one. This paper presents visual modeling
instead of the textual descriptions common in
a number of specialized knowledge tools.

Figure 2 shows the specific form that allows
knowledge modeling. The task is the core element
of the process model; the process engineer has to
indicate which knowledge concepts are needed to
carry out each task, and, for each concept, the
relationship with the process element (e.g. proce-
dural and/or declarative) must be specified. The
process engineer retrieves the related concepts
required for each task from the concept ontology.

As shown in the upper-left corner of Figure
2, the ontology is organized according to three
dimensions: product, project, and process. This
multi-dimensional ontology approach (i.e. merg-
ing of ontologies) was motivated by validation
experiments. The feedback of the participants

revealed the need for a different level of knowl-
edge. Some participants wanted a process on-
tology (e.g. role skills, artifacts, and guidance).
Others asked for a project management ontol-
ogy (e.g. assignment of human resources to roles,
competency management). Still others were in-
terested in a product ontology (e.g. API docu-
mentation, programming languages, techniques
for understanding the source code, etc.). The
results showed the need for a flexible and artic-
ulated tool, which can accommodate ontologies
for multiple levels of knowledge.

3.2. Concept Maps for Knowledge
Representation

The following four steps are required to evaluate
the concept mapping between SPEM elements,
which refers to process entities such as Activities,
Roles, and Artifacts, as defined in the SPEM
specification.
1. Parameterization. The first step is to spec-

ify the ontology, which is the formalization
of the concept structure. The process engi-
neer first loads a default or adapted concept
tree. Then, the project team gathers and
organizes the knowledge concepts relevant
to the project context. As seen in Figure 2,

A Knowledge-Based Perspective for Software Process Modeling 29

three concept trees are proposed by default,
each one linked to an abstract level of knowl-
edge (process, project, and product). Each
concept may have a finer-grained structure
represented with a number of attributes.

2. Modeling. For every task in the process
model, references are set to a subset of con-
cepts required for achieving the task. For
every concept, the process engineer specifies
the way in which the concept is required, fol-
lowing Anderson’s model: declarative and/or
procedural. For all incoming links to each task
(e.g. from Work Products, Roles, Guidance),
references are set to a subset of concepts
provided by this element.

3. Compute mismatch. For every task, the
system searches all incoming links, retrieves
the concepts provided, and compiles the re-
sults. A concept required by the task is con-
sidered fully mapped if it can be provided
by at least one of the input elements linked
to this task. It is considered inadequately
mapped if it is partially mapped (e.g. pro-
vided as declarative, when it is required to
be procedural). Finally, it is considered not
mapped if it is not provided by any SPEM
element linked to this task.

4. Visualize the results. The concept match-
ing indicator displays the results of concept
mapping (as shown in Figure 3 below, which
depicts knowledge mismatches). The user can
visualize the resulting mismatches between
prescribed knowledge and the available re-
sources.

3.3. Algorithm for Knowledge Mapping

A formalism based on the conventional Vector
Space Model (VSM) [17] is used to enable a sim-
ple visualization of the knowledge mismatch ob-
served. VSM is used to compute the similarity be-
tween the knowledge required to carry out each of
the prescribed tasks and the knowledge provided
by the available roles, artifacts, and guidance. Co-
sine similarity measures are used to compute the
similarity between two vectors of concepts char-
acterized by n attributes (n-dimensional space).
The results of this mapping are used to build the

concept matching indicator. The first step is to
link the process model to the ontology file, which
contains a set of n concepts (Cn) relevant to
the whole process. Thus, the knowledge required
to carry out a given task ti is represented by
a vector:

→
ti= {C1, C2, ..., Cn}∗

→
I (1)

where Ii = 1 if the concept is required, and 0 if
not. According to Anderson [10], concepts can be
classified in two categories: procedural or declara-
tive, both of which are denoted by a vector (p,d).
To simplify the illustration, we present only the
Anderson attribute for the knowledge concept,
which will be sufficient for most practical pur-
poses. Let t′T be the vector representing a set of
typed concepts required for task T:
→
t′T = {C1(p, d)t′ , C2(p, d)t′ , ..., Cn(p, d)t′}∗ →I

(2)
The next step is to link the source elements

(i.e. other linked SPEM elements, such as Role,
Artifact, and Guidance) of each task. These el-
ements gather the concepts provided, instead
of the concepts required. Let p′E be the vector
representing a set of typed concepts provided by
a given element E:
→
p′E= {C1(p, d)p′ , C2(p, d)p′ , ..., Cn(p, d)p′}∗ →I

(3)
The similarity between the vector t′T and the

p′E of each of the elements provided is obtained
by the cosine calculation. This gives a way of
interpreting the quality of the mapping between
the set of required knowledge concepts for each
Task and the set of knowledge concepts provided.

‖ p′E ‖ =
√
C1(p, d)2

p′ + ...+ Cn(p, d)2
p′

‖ t′T ‖ =
√
C1(p, d)2

t′ + ...+ Cn(p, d)2
t′

D =

√√√√
n∑

i=1
(Ci(p, d)t′ − Ci(p, d)p′)2

cos θ = ‖ p
′
E ‖2 + ‖ t′T ‖2 −D2

2 ‖ p′E ‖‖ t′T ‖

(4)

where the cosine values vary between 0 and 1:

30 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

p’ values t’ values Deviation
C1(p)+C2(d)+C3(p,d) C1(p)+C2(d)+C3(d) 30◦

C1(p,d)+C2(d)+C3(d) C1(p,d)+C2(d)+C3(d) 0◦

C1(p,d)+C2(p)+C3(p) C1(p)+C2(p,d)+C3(d) 60◦

Table 1. Calculation example

– If the required and provided concept vectors
coincide completely, which means a perfect,
complete concept mapping, the cosine is equal
to 0.

– If the two vectors have no concepts in com-
mon, it means that all the concepts are un-
mapped and/or unused, and the cosine is
equal to 1.

– Otherwise, the result mapping should be be-
tween 0 and 1.
The cosine angle values range between 0◦ and

90◦. To improve readability all angle values are
doubled, which enables a two quadrants (180◦)
representation, as shown in Figure 3.

Table 1 provides some examples of the calcu-
lation method.

4. Concept Matching Visualization
Examples

As illustrated in Figure 3, the graph is divided
into three zones (dark grey, medium grey, and
light grey). An arrow pointing toward the right
and within the light grey zone indicates a good
match. An arrow pointing toward the left and
within the dark grey zone indicates a poor match.
The size of these colored zones is customizable,
however, and the modeler can indicate the ac-
ceptance threshold for each zone. Each arrow
represents a task of the process. The angle of the
arrow represents the degree of knowledge match-
ing for the given task. For example, the Test
Plan Writing task (a horizontal arrow pointing
to the right) is completely mapped, which means
that all the concepts required for this task are
provided, while the UI Specification task (a hori-
zontal arrow pointing to the left) presents a com-
plete mismatch between the prescribed concepts
required to perform this task and the concepts
available within the team resources. There can
be as many zones as needed by the project.

4.1. Acceptable Match

The Behavioral Model Creation task, shown in
Figure 3, is in the acceptable zone. This task
is concerned with the creation of use cases, se-
quence diagrams, state diagrams, etc. To per-
form this task, a modeling language concept (C1)
is required for both declarative and procedural
knowledge. Declarative knowledge is needed to
understand the theory behind this modeling lan-
guage and procedural knowledge will enable the
role to perform the task. Similarly, an analysis
technique concept (C2) is required. A guideline
concept (C3) is also required, since the diagrams
produced must follow the templates of the or-
ganization. Basic declarative knowledge on the
requirement elicitation technique (C4) is also re-
quired since the input of this task is the require-
ments document. The t′T vector of this task is
therefore:
→
t′T =

→
C1 (p, d)t′+

→
C2 (p, d)t′+

→
C3 (p, d)t′+

→
C4 (d)t′

(5)
It is found that this is not fully consistent

with the concepts provided to the task. The
roles are proficient in terms of the modeling
language (C1), as they both have declarative
knowledge and procedural experience. This is,
however, a transformation task, requiring the
transformation from requirements into diagrams.
The roles are not familiar with this challenge, but
hands-on training with a professional is planned.
Declarative and procedural support for the anal-
ysis technique (C2) is therefore ensured. The
requirements document presents declarative facts
on the guideline to be used (C3). Is is also well
enough detailed as to ensure that the require-
ments elicitation technique (C4) is well defined.
The p′E vector of this task is therefore:

→
p′E=

→
C1 (p, d)p′+

→
C2 (p, d)p′+

→
C3 (d)p′+

→
C4 (d)p′

(6)

A Knowledge-Based Perspective for Software Process Modeling 31

The angle is then measured between the two
vectors. Formula 7 shows the vectors in coordi-
nate form, grouped by concepts, as well as the
cosine and angle calculations.

→
t′T = {(1, 1)t′ ; (1, 1)t′ ; (1, 1)t′ ; (0, 1)t′}
→
p′E = {(1, 1)p′ ; (1, 1)p′ ; (0, 1)p′ ; (0, 1)p′}

cos θ = ‖ p
′
E ‖2 + ‖ t′T ‖2 −D2

2 ‖ p′E ‖‖ t′T ‖

= 6 + 6− 1
2 ∗
√

6 ∗
√

6
' .92

θ ' 22◦

(7)

This angle has been multiplied by two in Figure
3 to facilitate the visualization on a half-plane
instead of a quadrant.

The measure shows that the concept match-
ing is acceptable, albeit not perfect. The lack
of procedural knowledge for the guideline con-
cept implies that the diagrams might not fol-
low the prescribed format appropriately. The
main concepts are, however, correctly covered,
which confirms that this task should not present
a knowledge challenge.

4.2. Unacceptable Match

The task Test Cases Redaction shown in Figure 3
is in the inacceptable zone. This task builds test
cases from the test plan and the architectural
models for the application. Formula 8 presents
the mismatch measure, where C1 is testing tech-
nique, C2 is programming language, C3 is pro-
gramming technique, C4 is modeling language
and C5 is guideline. Programming is a critical
concept here because the test cases are written
in the programming language of the application.
Good tests must also be tailored to the applica-
tion itself, requiring the primary role to read and
understand the code.

The resource assigned to the role for the Test
Cases Redaction task was not a competent pro-
grammer. This creates a serious issue for this
task, which will probably create poor quality
test cases, if anything at all. This problem is not

obvious to the process designer as processes focus
on the flow of data, and not on the knowledge
required to handle this data.

4.3. Discussion on the Examples

These two examples show the risks faced by
the project manager. An example presented by
Jensen and Scacchi [18] shows that processes de-
signed with only workflows in mind can overlook
critical details. In their case, a process defined
in a rich hypermedia presentation overlooks the
workload of the Release Manager, resulting in
a process bottleneck. The authors manage to find
the problem through process simulation, but it
could also be found through knowledge analy-
sis. The Release Manager is required to produce
many different documents but is not supported in
this work. This will results in long delays between
releases, as the Release Manager must acquire
all required knowledge prior to producing each
document.

5. Concluding Remarks and Future
Work

This paper proposes a SPEM extension describ-
ing a new approach to concept mismatch iden-
tification in software process development. This
approach enables the visualization of knowledge
discrepancies in software process modeling. Such
visualization provides new insights into key prac-
tices from the knowledge management viewpoint.
An ontological approach coordinates knowledge
representation in each SPEM element by linking
the process model to one or more ontologies,
according to the level of abstraction needed.

The concept matching indicator presents the
state of the process model in terms of knowl-
edge and the degree of deviation of each task
within the process. This indicator could lead
to more informed decision making; for example,
in the recruitment of new competencies or the
addition of more roles to support the primary
role performing the task at hand. As a result,
the knowledge-oriented view complements the

32 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

Figure 3. An example of the concept matching indicator

activity-oriented view, thereby fostering a better
understanding of complex processes.

Future work will focus on organizational
methods that support knowledge creation and
propagation related to knowledge flows among
software process models. The goal will be to
study the propagation of knowledge throughout
all the phases of the software process.

It will also seek ways to better integrate the
expressivity of common ontological languages
like RDF and OWL into our mismatch identifi-
cation mechanism. This would expand our cur-
rent tree-structured approach to resemble more
flexible structures like the OWL-based SKOS
structures.

Acknowledgment

We thank Olivier Gendreau for providing the
project data used for our post-analysis. This
work was partly supported by the “Fonds de
Recherche sur la Nature et les Technologies”
council of Québec (FQRNT) under Grant 127037
and NSERC grants A0141 and 361163.

References

[1] P.-N. Robillard, “The role of knowledge in
software development,” Communications of the

ACM, Vol. 42, No. 1, January 1999, pp. 87–93.
[2] OMG, “Software & systems process engineering

meta-model specification version 2.0,” http://
www.omg.org/spec/SPEM/2.0/, 2008, accessed:
10/Aug/2012.

[3] N. Kerzazi and P.-N. Robillard, “Multi-perspec-
tive software process modeling,” in 8th ACIS In-
ternational Conference on Software Engineering
Research, Management and Applications (SERA
2010), 2010.

[4] R. Martinho, D. Domingos, and J. Varajao,
“Concept maps for the modelling of controlled
flexibility in software processes,” IEICE Trans-
actions on Information and Systems, Vol. E93-D,
No. 8, August 2010, pp. 2190–2197.

[5] T. H. Davenport and L. L. Prusak, Working
Knowledge: How Organizations Manage What
They Know. Harvard Business School Press,
1998.

[6] T. Nonaka and H. Takeuchi, The Knowledge-Cre-
ating Company: How Japanese Companies Cre-
ate the Dynamics of Innovation. New York:
Oxford University Press, 1995.

[7] J. D. Novak and A. J. Cańas, “The the-
ory underlying concept maps and how to
construct them,” http://cmap.ihmc.us/
publications/researchpapers/theorycmaps/
theoryunderlyingconceptmaps.htm, 2000,
accessed: 10/Aug/2012.

[8] D. P. Asubel, The psychology of meaningful ver-
bal learning. New York: Grune & Stratton,
1963.

[9] Y. Wang, “On concept algebra and knowl-

A Knowledge-Based Perspective for Software Process Modeling 33

edge representation,” in 5th IEEE International
Conference on Cognitive Informatics, 2006, pp.
320–231.

[10] N. F. Noy and D. L. McGuiness, “A guide to
creating your first ontology,” Stanford University,
Technical Report SMI-2001-0880, 2001.

[11] J. R. Anderson, M. Matessa, and C. Lebiere,
“ACT-R: a theory of higher level cognition and its
relation to visual attention,” Human Computer
Interaction, Vol. 12, No. 4, 1997, pp. 439–462.

[12] F. Bjørnson and T. Dingsøyr, “Knowledge man-
agement in software engineering: A systematic
review of studied concepts, findings and research
methods used,” Inf. Softw. Technol., Vol. 50,
No. 11, October 2008, pp. 1055–1068.

[13] J. R. Anderson, The Architecture of Cognition.
Harvard University Press, 1983.

[14] N. Anquetil, “Software maintenance seen as a
knowledge management issue,” Information and
Software Technology, Vol. 49, No. 5, May 2007,

pp. 515–529.
[15] N. Ferreira and R. J. Machado, “An ontol-

ogy-based approach to model-driven software
product lines,” in 4th International Confer-
ence on Software Engineering Advances (ICSEA
2009), 2009, pp. 559–564.

[16] J. T. Nosek and I. Roth, “A comparison of formal
knowledge representation schemes as communi-
cation tools; predicate logic vs semantic network,”
International Journal of Man-Machine Studies,
Vol. 33, No. 2, August 1990, pp. 227–239.

[17] G. Salton and C. S. Yang, “A vector space model
for automatic indexing,” Communications of
the ACM, Vol. 18, No. 11, November 1975, pp.
613–620.

[18] C. Jensen and W. Scacchi, “Experience in discov-
ering, modeling, and reenacting open source soft-
ware development processes,” in International
Software Process Workshop, 2005.

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 35–44, DOI 10.5277/e-Inf130104

Reusable Object-Oriented Model

Jaroslav Žáček∗, František Huňka∗
∗Faculty of Science, University of Ostrava

jaroslav.zacek@osu.cz, frantisek.hunka@osu.cz

Abstract
This paper analysis approaches and possibilities of executive model aimed to MDA approach. The
second part of the article proposes guideline to create executive model, describes basic interactions
to object oriented approach and shows possibilities of creating a core of executable model in Java
programming language. Annotations are used for executive model object extension. Reflection
concept is used for model execution and synchronization provides extended Petri net formalism
defined in [1]. The model has been tested on LFLC software package developed by IRAFM,
University of Ostrava to prove the whole concept.

1. Introduction

In present days model transformations in
object-oriented programming are focused to
speed and automation. The criteria for trans-
formation are concrete programming language,
model expressivity and domain usability. In ad-
dition the elevation of abstraction should be ap-
plied to make modeling easy and simple. Main
advantages of this approach are noticeable dur-
ing initial analysis of application or when user
needs to automate some processing. During key
requirement identification the higher abstraction
level is needed. Reducing model abstraction con-
cretizes this initial design with transformations.
Transformation ends on source code level and
model becomes platform dependent. But in any
time the user can transform model to higher
abstraction level and make necessary changes.
All these tasks can be done using automated
tools and changes are applied on lower source
code level. This approach is very useful in agile
programming methodologies and enables very
fast model changes. One option is to divide mod-
els to different levels of abstraction and make
a transformation between them. Model transfor-
mation process is described in [2] specifications

and it is know as a Model-driven architecture
(MDA). MDA is a registered trademark of Object
Management group. The MDA architecture was
established in 2001. A lot of transformation tools
for platform independent model (PIM) to plat-
form specific model (PSM) were developed since
2001. Tools allows to transfer abstract model to
concrete using with technologies such as Web Ser-
vices, EJB, XML/SOAP, CSharp, CORBA and
others. In addition another standard established
in the past such as MetaObject Facility (MOF),
Unified Modelling Language (UML),Common
Warehouse Metamodel (CWM) and XML Meta
Interchange (XMI) are available for MDA sup-
port. MDA architecture consists of 4 layers spec-
ified as a M0 – M3 and every layer in this spec-
ification represents a different level of abstrac-
tion. MOF is used for initial domain identifica-
tion. MOF is specified as a M3 layer in a MDA
specification. This layer is a domain specific lan-
guage, which is used for metamodel description.
By this language user can describe M2 lower
layer. We can consider UML as an object-oriented
metamodel and Web Services or Petri’s nets as
a non-object-oriented metamodel. Models based
on MDA architectures are not focused on model
execution. These models are focused on platform

36 Jaroslav Žáček, František Huňka

independent model transformation to platform
specific model and changing level of abstraction.

Executable UML (also known as xUML or
xtUML) is a part of UML specification and aimed
to execution compared to regular UML diagram
and offers needed standard extension for execu-
tion.

Executable UML is defined by these elements:
– Class diagram – defines classes and interac-

tions between their associations for the do-
main

– Statechart diagram – defines the states, activ-
ities and state transitions for a class instances

– Domain chart – describes a modeled domain
and relations to other domains

– Action language – defines the actions or op-
erations that perform processing on elements
In fact the Executable UML is an extension

to MDA platform and enables making execu-
tive models on M1 level from elements described
above. An executive model on a higher level of
abstraction is created and this model is trans-
formed to programming language source code,
mostly 3rd generation programming language.

A framework called M3 action has been de-
veloped to make executive modeling easy. This
framework has been transformed to open-source
project called MXF (Model eXecution Frame-
work). Framework extends model with so called
action scripts, which express model execution se-
mantic. By these extensions user is able to change
model quickly without any implementation or
compilation.

2. Problem formulation

Basic formulation of executive modeling has been
described in introduction. As a context of prob-
lem we consider MDA architecture on Fig. 1. A
bottom layer contains data and is an instance
of M1 layer, which creates a model. There is no
execution on M0 layer because M0 contains data
with no context and therefore higher abstrac-
tion to express interactions. Interaction between
data is realized on M1 layer, where the classes
and their relationships are described. These re-
lationships realize method calling. Fast relation-

ship changing is suitable for modeling. By the
thought of changing relationship means change
any method calling in any object in the model.
Ideally user is able to change relationships and
inner class attributes during simulation.

Figure 1. MDA architecture

This execution approach is usually realized
on M1 level, which is closed to platform indepen-
dent model. User can examine classes and their
attributes state, make a direct relationship to
another class, step the simulation process and
ideally read class values in the real time.

2.1. The MDA

The MDA architecture introduced by OMG
group was developed to support model-first soft-
ware development. At first a very abstract model
is created, then model is transformed to lower
levels of abstraction. Transformations end when
model is suitable to generate application source
skeleton in corresponding programming language.
Automated tools to speed up the process and re-
duce errors caused by writing code by program-
mer are available and support this approach.

Model doesn’t concern execution and ensures
just metadata reflection of workflow. According
to [2] MDA is defined by these points:
– Models
– Abstraction
– Platform
– Model Transformation
– The MDA value proposition

MDA specification defines model as a formal
specification of functions, structure and system
behavior. UML has been chosen as formalism.

Reusable Object-Oriented Model 37

According to OMG definition the source code
can be concern as a model because this code
has a formal specification (all code structures
has an exact semantic) and models real machine
code, which is available as a program language
transformation by compiler or interpreter. This
point of view is not interested for object-oriented
approach and therefore this model will be con-
sidered as a UML model.

Referential model for open distributed pro-
cessing (MR-ODP) is marked as a suppression
of irrelevant detail according to ISO 10746-2 [3].
Model with a high level of abstraction has natu-
rally less detail a posteriori to realization than
model with a lower level of abstraction. MDA has
been created to start development on a higher
level of abstraction and then transform created
model to lower level of abstraction until source
code is generated. Therefore model drives entire
software architecture development.

2.2. Model transformation

MDA generates source code by model transfor-
mation. Initial model is platform independent
with higher level of abstraction and determined
by following points:
– Represents business functionality not tight

to technological platform.
– s a detailed model (mostly UML).
– Independent on programming language or

operating system.
– Creates baseline to platform-specific model.

PIM is transformed to platform-specified
model (PSM) and is adapted to use with target
platform. PSM model includes information about
business platform and creates PIM mapping to
target platform, creates source code skeleton and
associated artifacts. As an artifact we can con-
sider deployment descriptor, documentation and
build files.

This description implies that we can define
a PIM, which can be reusable for different plat-
forms, appropriate PIM to PSM mapping and
PSM to source code compiler to target platform
as well. In additional this process can by autom-
atized by tools. This transformation is one way
only. If the change on lower PSM layer is realized

this change cannot be applied on a higher levels
in automate process. However, this change could
be in a direct conflict with initial modeled pur-
pose. Conversion between PIM to PSM model
cannot be realized fully automatically. For exam-
ple tools cannot determine if account must be
marked as an entity EJB or session EJB during
the translation.

2.3. The MDA Value proposition

Programming language is an instrument to execu-
tive model expressed in UML. This fact has been
considered as a disadvantage of model transfor-
mation because by this transformation model be-
comes platform dependent on operating system or
specific programming language. Programming lan-
guage lifetime is limited and when new program-
ming language becomes in use old source code is
become useless andmust be transferred. Presently
using platform independent on operating sys-
tem approach minimizes the risk of boundedness
source code to platform. Using Java technology
in these days minimizes boundedness risk. Com-
pany’s processes are changing and PIM must re-
spond to these changes. The MDA advantage is to
preserve high-level views to solve problems – PIM.

2.4. The MDA Execution

In original MDA architecture design was no exe-
cution at all. Modeling starts at higher layer and
by concretizing model and decomposing (model
transformation) the new code is generated. Gen-
erated code contains class skeleton. Function in-
teractions between classes are represented by
UML relationships only and class itself carries
no executive information, instantiation approach
or input and output methods. Main disadvantage
of this approach is that model cannot use com-
ponents developed before and model cannot be
executed and debugged. PSM to PIM transforma-
tion can be made from class diagram (low model
view), but this transformation is difficult, cannot
be done automatically and for right model identi-
fication archetype patterns [2] must be used. To
make MDA architecture running automatically
an Executable UML extension must be applied.

38 Jaroslav Žáček, František Huňka

2.5. M3 Action – Model Execution
Framework

M3 action, mostly known as a MXF, is a project
focused on executive modeling on a higher
level of abstraction (M3). A new language has
been defined to describe interactions between
elements [4]. Language is based on UML Ac-
tions/Activities. From executive point of view,
a more abstraction view is available compare to
Executable UML. MXF and Executable UML
cannot change level of abstraction and creates
executable models on a single layer. Metaob-
ject instantiation is performed in M3 abstraction
level; therefore tool cannot identify a design pat-
tern of the implementation. Compare to UML
the MXF supports aspect-oriented programming
due to M3 abstraction level.

One of the main goals of object-oriented
programming is reusing components. In all ap-
proaches described above there is no mecha-
nism to integrate reusable components to model
or make model with reusable components. Ap-
proaches discuss creating class skeleton of model
in programming language with no direct execu-
tion. Model created that way cannot be debugged
without changing source code and add some new
functionality. MDA architecture is able to gen-
erate model from bottom to up (elevate level
of abstraction) by using the archetype patterns,
but this model lost executive ability by perform
this transformation. Executable UML tries to
minimize MDA disadvantage by adding more in-
formation to object interaction in the model. By
applying these techniques an executable model
with higher abstraction level from reusable com-
ponents cannot be created.

3. Defining a new modeling approach

MDA, Executive UML and MXF don’t include
the requirements to executive model:
– Create model form reusable components.
– Concerning design patterns.
– Flexible change when component is replaced.
– Function and debugging with no code compi-

lation.

– Change the level of abstraction.
These requirements can be realized with min-

imal generality reduction by extension of object
metamodel and applying a reflection tool.

3.1. Reflection

Reflection as a term in information science means
ability to read and change program structure and
behavior during the program running. Consid-
ering to object-oriented programming approach,
reflection means ability to read and change object
attributes, read and execute the object methods,
passing calling results and instantiate new ob-
jects. Generally the reflection is able to read
object metamodel during program running with-
out changing any object attributes. Reflection
is widely used with Smalltalk programming lan-
guage and scripting languages. Reflection can be
used as a universal tool to make object persis-
tent [5] or to generate project documentation.

Reflection enables creating a new object in-
stance entered by name during program run-
ning. Following source codes are in Java program-
ming language, but same function can be done
with .NET platform and languages defined under
Common Language Specification. Basically there
are two requirements to programming languages:
– Ability to read object metadata and

work with them as a metamodel (object
self-identification).

– Some tool to enable object metamodel exten-
sion.
The metamodel that carries information

about class must be discovered before instan-
tiation.

Fig. 2. shows a representation of metamodel
reference. That reference has been found during
program running by providing his name – String
data type. Execution wrapper is a standalone
class. Inner attribute saves metamodel references
and instantiated object. For every object is cre-
ated his instance, special cases as a Library Class
are covered by metamodel extension explained
in 3.2.2.

At first a constructor must be found to instan-
tiate a class. A simple model has been created
for model testing purpose. Model is limited to

Reusable Object-Oriented Model 39

Figure 2. Pointer to object metamodel

non-parametric constructor. During instantiation
the metamodel is searched and first constructor
is called. Result of instantiation is saved to class
realizing execution. A method to create instance
with no instantiation number limit is described
in Fig. 3.

More complex instantiation method is ex-
tended by instance count parameter and factory
method name. Factory method specification is
presented in virtue of factory method name in-
consistency [6].

3.2. Analyzing class

Reflection can read all object metadata, all in-
ner attributes, methods, input parameters and
return value can be identified. A new class has
been created (Fig. 4.) to metamodel verification.
Reflection is applied to find the metamodel and
all methods are called one by one. Metamodel
contains a list of all methods including methods
marked as a private by modifier.

Discovered metamodel will be used as an
input information to create a graphic model rep-
resentation. In this graphic representation an
order of method calling can be changed if all in-
put attributes and return values have same type.

Eleven modifiers are defined by Java program-
ming language. Modifiers can be characterized
as a possible access to objects. In Fig. 3. the
modifier is set to private therefore a violation
of object-oriented programming is occurred. But
it isn’t a mistake from instantiation point of
view. According to Library Class design pattern,
the constructor is defined as an empty construc-
tor therefore Library Class instantiation doesn’t
change inner state of object. Other classes using
a factory method to instantiation requires at
least a metamodel extension for factory method
identification. Change can be done on graphic
model representation level as well. According to
reflection all identifiers can be changed, which
gives user powerful tool to make changes during
the program/model running.

40 Jaroslav Žáček, František Huňka

Figure 3. Basic instantiation method

Figure 4. Invoking methods

If reflection is used to create executive model
a question of speed of entire executive lifecycle
needs to be consider. Supporting class ensures
not just initial instantiation but calling methods
and passing parameters as well. According to
some sources reflection API is slow. Confirmed
by [5] this affirmation is not based on true. By
application of Amdahl’s law a formula is derived:

Slowdown = Rtime + Work
Ntime + Work

where Rtime is a micro benchmark measurement
of a reflection solution and Ntime is a micro
benchmark measurement for nonreflective solu-
tion. Work is a relative amount and can be in-
terpreted as a Work = Ntime * x , where x is
a factor of scaling, which determines time spend
with other things. By substitution a formula to

slowdown can be derived:

Slowdown =
Rtime
Ntime + x

1 + x

This interpretation of Amdahl’s law en-
ables to set referential unit of performance.
Rtime/Ntime ratio should be about the same
for processors no matter the speed at which the
clock is running. After value substitution of in-
stantiation dynamic proxy the ration is equal
to 329.4 and slowdown is about 1900% when
work is less than 17 times NTime. This num-
bers seem high but to print “Hello World!” in
Java programming language the value of work is
equals to 36,000 times Ntime, which a slowdown
is under 1%. Therefore there is no noticeable
slowdown if reflection technique is applied.

Reusable Object-Oriented Model 41

3.3. Class metamodel

According to [7] a metamodel is a domain-specific
language oriented towards the representation of
software development methodologies and endeav-
ours. After adjusting to class diagram metamodel
we can say that metamodeling is an ability to
express interactions between classes from meta-
model – inner object state. Metamodeling is the
act and science of engineering metamodels. Ba-
sic metamodel contains information necessary
to class representation in concrete programming
language.

Two approaches can be use to get metamodel.
Model can be obtained from descriptors made
before which are tight with created class. This
form of implementation is very simple, however
descriptor maintenance becomes difficult. When
descriptors are defined in high amount the main-
tenance becomes confusing. If the class doesn’t
contain descriptors, it cannot be used for meta-
model purpose. This type of approach is applied
in object-relation mapping known as a Hibernate
project.

Second option is use a reflection and read
entire object metamodel. This information is
obtained during program running and therefore
enables dynamic 3rd part library linking with no
additional library changes. When class name is
provided the reflection interface can read all class
attributes, methods, return values and modifiers
and pass these values to process on a higher level,
typically GUI. In some cases detail information
must be known to use class metamodeling. Ba-
sic metamodel is not sufficient therefore a new
tool for user metamodel extension needs to be
found. Reflection must be able to use these exten-
sions during object instantiation and modeling.
Annotations are a quiet suitable for user meta-
model extension. Annotations are special type
of syntactic metadata, which can be add to class
source code and extend metamodel expressivity.
Metamodel expressivity extension is shown on
Fig. 5.

Interface on Fig. 5. is implemented by a class
and extends user description part. Reflection
allows reading these values and directly decides
during program running. In this case a definition

of instance is presented. Class carries information
about instantiation limit in the metamodel and
solves interaction between design patterns and
a class model.

Figure 5. Metamodel extension

A model can be realized based on previous
recommendations. For a low price – less general-
ity – model solves all problem points identified
above. Model will support to plug 3rd part com-
ponents, design patterns will be instantiated in
a right way. Model is executable in any time and
brings immediately operational picture of mod-
eling reality. This model is realized by reflection
as a supporting mechanism for execution and
debugging during program running. Reflection
makes model free to use 3rd part components.
Model makes instantiation of these components
and other classes, calls corresponding methods
defined in model and passes parameters.

3.4. Basic entity view

Graphics representation of basic model scheme
suggests Fig. 6. Final list of atomic classes are
available. This list represents single classes but
relationships are simplified from methods to ob-
ject links. In simplified model an antecedent has
only one consequent and antecedent pass result
process directly to consequent. Reflection realizes
a passes of result and instantiation in right way
with interaction to design patterns. Design pat-
tern accuracy ensures the extended metamodel.
Model input and output is defined. Every element
in model has only one input and one output.

More complex metamodel presents Fig. 7.,
which is extension of basic model. This model is
closer to reality because some entities presented
in the model has more then one input. Output is
limited to one because of programming language
limitation. A synchronization problem occurs if
method has more then one input. In this case we

42 Jaroslav Žáček, František Huňka

Figure 6. Basic model

Figure 7. Extended model

must apply object-valued Petri net introduced
in [1].

3.5. Class view

For an executive model representation based on
reflection and annotations is more useful to cre-
ate a class view. This class view shows Fig. 8.,
where every entity from Fig. 7. is transformed
into the class. UML notation is chosen willfully
because of wide using in practice. Every class
contains an internal and external method. Inter-
nal methods are marked with private modifier,
external with public modifier. Same approach
is applied to attributes. Modeling process starts
when user enters initial values and the small-
est stem in simulation is one executed method.
An internal state of object is changed during

method execution or when the return value is
generated. Returned value is passed to the next
class. User can observe every object attribute
and read return value after every step of execu-
tion. This feature enables reflection. User can
also change interactions between objects during
program running. User is able to use internal
methods by changing modifiers. Internal state
of the object can be edited as well. These fea-
tures give user ability to create the executive
model with no source code writing. This can be
advantageous when result cannot be predicted
but result might influent consequent components
– chaining calculation. Nowadays many examples
can be found. User gets possibility to create more
complex structures and debug these structures
after every step with no compiling. Model al-
lows plugging some new classes during simulation.

Reusable Object-Oriented Model 43

Figure 8. Extended model

Figure 9. Level of abstraction

Metamodel, read by reflection, allows creating
graphical object representation in a model. Final
relationships between classes can be saved by
structured XML document. XML assigns unique
identifiers to classes, defines inputs and outputs
and mutual return value passing.

3.6. Elevate level of abstraction

Very important model feature is ability of ele-
vate model of abstraction. In strict metamodel-
ing framework an instance-of operator is allowed
only within layers in a same linguistic level. How-
ever if we consider ontological level we can use
instance-of operator on any layer. By linking on
different layers new entities arises. These entities
describe [7], namely Clabject (class-object) and
Powertypes. On Fig. 9. is shown a mechanism
to elevate level of executive model abstraction.

Model created by user consists of several classes
and interactions between them. Classes are part
of the entity box. This executive model is trans-
formed to single entity after debugging and test-
ing and carries description of significance and
defines input and output point. Entity becomes
a part of entity box as a single atomic element
and therefore is available to future modeling of ex-
ecutive models. User can edit created entity and
modify internal relationships or whole classes.

4. Conclusion

This paper introduces a practical proposal of new
executive modeling approach introduced on [8].
First part of the paper defines problem domain
and related approaches to create executive mod-
els. Following paragraph describes a reflection

44 Jaroslav Žáček, František Huňka

application to executive model, which enables
component integration. All proposals are pro-
grammed and integrated with Java programming
language. Reflection can slow model processing
therefore an Amdahl’s law is applied to prove
that there is no significant computer processing
slowdown. Created model has been verified on
LFLC software and brought a significant speedup
during changing inferential mechanism. By im-
plementing object-valued Petri net formalism
introduced in [1] synchronization problems in
complex models has been managed well. Para-
graph 3.6 clarifies a possibility of elevate level
of abstraction of the new executive model where
the future work will continue.

Acknowledgement

This paper is supported by IGA no. 6141, Faculty
of Science, University of Ostrava.

References

[1] J. Žáček and F. Huňka, “Object model synchro-
nization based on petri net,” in Mendel 2011:

17th International Conference on Soft Computing,
June 15-17, 2011, R. Matousek, Ed. Brno: Brno
University of Technology, 2011, pp. 523–527.

[2] J. Arlow and I. Neustadt, Enterprise patterns
and MDA: building better software with archetype
patterns and UML. Boston: Addison-Wesley,
2004.

[3] “ISO/IEC 10746-2:1996 information tech-
nology – open distributed process-
ing – reference model: Foundations,”
1996. [Online]. http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html

[4] M. Soden, “Operational semantics for MOF
metamodels.” [Online]. http://www.metamodels.
de/docs/tutorial_draft_v1.pdf

[5] I. R. Forman and N. Forman, Java reflection in
action. Greenwich, Conn.; London: Manning;
Pearson Education, 2005.

[6] E. Gamma, Design patterns: elements of reusable
object-oriented software. Reading, Mass.:
Addison-Wesley, 1995.

[7] C. A. González Pérez and B. Henderson-Sellers,
Metamodelling for software engineering. Chich-
ester, UK; Hoboken, NJ: John Wiley, 2008.

[8] J. Žáček and F. Huňka, “CEM: class
executing modelling,” Procedia Computer
Science, Vol. 3, 2011, pp. 1597–1601.
[Online]. http://www.sciencedirect.com/science/
article/pii/S1877050911000561

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 45–52, DOI 10.5277/e-Inf130105

From Principles to Details: Integrated Framework
for Architecture Modelling of Large Scale

Software Systems

Andrzej Zalewski∗, Szymon Kijas∗
∗Institute of Automatic Control and Computational Engineering, Warsaw University of Technology

a.zalewski@elka.pw.edu.pl, s.kijas@elka.pw.edu.pl

Abstract

There exist numerous models of software architecture (box models, ADL’s, UML, architectural
decisions), architecture modelling frameworks (views, enterprise architecture frameworks) and even
standards recommending practice for the architectural description. We show in this paper, that
there is still a gap between these rather abstract frameworks/standards and existing architecture
models. Frameworks and standards define what should be modelled rather than which models
should be used and how these models are related to each other. We intend to prove that a less
abstract modelling framework is needed for the effective modelling of large scale software intensive
systems. It should provide a more precise guidance kinds of models to be employed and how
they should relate to each other. The paper defines principles that can serve as base for an
integrated model. Finally, structure of such a model has been proposed. It comprises three layers:
the upper one – architectural policy – reflects corporate policy and strategies in architectural
terms, the middle one –system organisation pattern – represents the core structural concepts
and their rationale at a given level of scope, the lower one contains detailed architecture models.
Architectural decisions play an important role here: they model the core architectural concepts
explaining detailed models as well as organise the entire integrated model and the relations between
its submodels.

1. Introduction

Large scale software intensive systems are built
to serve country- or worldwide organisations em-
ploying thousands of users. They span across
the organisation’s entities and locations often
needing to cope with distributed data storage
management and processing. The research pre-
sented in this paper has been motivated by the
lack of effective approaches to the modelling of ar-
chitecture of such systems. This is caused by the
gap existing between the modelling frameworks
and software architecture models.

The modelling frameworks classify informa-
tion describing system structure rather than in-
dicate precisely how this information should be
represented with appropriate architecture mod-
els. On the other hand, existing models and
modelling approaches usually represent selected
viewpoint on system architecture, however it is
not clear how these different models should be
integrated to create an effective architecture mod-
elling engine.

The research envisaged in this paper is aimed
at integrating various models and modelling ap-
proaches into a uniform, integrated framework

46 Andrzej Zalewski, Szymon Kijas

providing a precise guidance on employed models
and structure of their relations. The rest of the
paper is organised as follows: state-of-the-art in
architecture modelling is analysed in section 2,
section 3 presents the basic rulesguiding the de-
sign of an integrated architecture model, section
4 contains a proposition of such an integrated
architecture model illustrated with a real world
example, concept summary and range of further
research comprise section 5.

2. State-of-the-art in Architecture
Modelling

Architectural description of software-intensive
systems seems to be a well established practice. It
is defined by IEEE Std 1471-2000 and draft stan-
dard ISO/IEC 42010:2007 [1]. These standards
comprise the most important concepts of the
architecture genre as: stakeholders’ viewpoints,
stakeholders’ concerns, architecture views [2] and
even architecture rationale [3]. However, these
standards do not indicate how architecture mod-
elling should be done in practice, i.e. what kind
of models shall be used, how such a suite of archi-
tecture models should be organised, verified etc.

We argue that this challenge have not been
met yet at least in case of the modelling of large
scale software systems. The above standards are
rather of a declarative than of an imperative
style.

Enterprise architecture frameworks as Zach-
man Framework [4,5] or The Open Group Archi-
tecture Framework (TOGAF) [6] belong to the
same declarative genre: they classify information
describing architecture neither indicating how
this information should be represented and what
models shall be applied nor how different classes
of information are interwoven and interact with
each other.

On the other hand, there is a large variety of
architecture description languages (ADL). ADL’s
as ACME, Wright, Aesop, UniCona and xADL
(for full reference see [7]) have not reached the
level of industrial application maturity. In con-
trast: Unified Modeling Language (UML) plays
a role of an industrial standard, however, because

of its origin, it is rather recognized as a set of
models of software than system architecture. No
wonder, UML is mainly applied in the context
of 4+1 views [2] of software architecture (logical
view, process view, physical view, development
view, scenarios).

Architectural decisions [8, 9] are often per-
ceived as another wave in architecture modelling
– compare “third epiphany” in [3]. The idea that
systems architecture, as every design, results
from a set of decisions seems to be strongly
appealing to both engineers and scientists. Ar-
chitectural decisions can potentially represent
any architectural concept belonging to any archi-
tectural view [3]. On the contrary to the other
architecture models as UML or ADL’s architec-
tural decisions help to capture design rationale,
which is a part of tacit knowledge which usually
evaporates as soon as design is ready or as archi-
tect is gone. This ability to capture design intent
is perceived as the most important advantage
that architectural decisions provide.

However, hopes that architectural decisions
alone will become an effective model of software
architecture seem to be unfounded, especially in
case of large scale software systems. The funda-
mental limitations of this modelling approach
have been investigated in our former paper [10].
Architectural decisions are represented as text
records, sometimes accompanied with illustrating
diagrams [11]. The limitations of textual models
are well-known in the genre of software engineer-
ing. Therefore, sets of hundreds of architectural
decisions necessary to sufficiently represent ar-
chitecture of a large system, are difficult to com-
prehend, analyse, verify and ensure completeness
and consistency or even just to navigate through
them.

This creates a substantial risk that modelling
approaches based only on architectural decisions
will collapse under their own weight as they cre-
ate complexity of their own rather than helping
to control complexity of system architecture. The
effort and cost necessary to create and maintain
such a large set of architectural decisions can
discourage engineers and managers from using
them at all. The existence of standards (e.g.
IEEE-1471) and commercial modelling frame-

From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems 47

works (e.g. TOGAF) should indicate that archi-
tecture modelling have matured to the industrial
application. However, the gap between the declar-
ative standards/frameworks and concrete archi-
tecture models still exists. For this reason, newer
frameworks and models still emerge – compare
recent developments: architectural decisions [12],
recent versions of TOGAF [6] or Archimate nota-
tion and modelling approach [13] both promoted
by The Open Group.

The challenge is to make an efficient mod-
elling framework out of the existing models and
frameworks (at least parts of them), in accor-
dance with existing standards.

3. The Basic Rules for the Design of
an Integrated Model of System
Architecture

The observations presented below are supposed
to exploit the advantages of the models and ap-
proaches presented above, while trying to min-
imise their drawbacks. They are aimed at provid-
ing foundation for integrated models of software
architecture.
1. Design rationale should be captured

only for the most important design el-
ements. Hence, architectural decisions
should express only the core design
concepts that are necessary to compre-
hend the structure of a given design
component. They should by no means
express design details.
The value of good system architecture is that
it defines a kind of a skeleton defining basic
organisation of every system’s entity. This
skeleton should remain almost unchanged
throughout the life time of a given system
entity. Here are just two examples of such
skeleton-decisions:
– design pattern (e.g. broker, model-view-con-

troller) defines fundamental design struc-
ture of a given software component usu-
ally remaining unchanged as long as the
component exists;

– decision that the corporate systems will
be integrated at two levels: domain and

enterprise: there will be systems (e.g. En-
terprise Service Bus – ESB , Business
Process Management – BPM) integrating
systems belonging to certain domains (e.g.
sales, financial management) and a sepa-
rate system integrating domains at corpo-
rate level – provides a structure, to which
future system developments have to be
tailored.

Representing these basic structural concepts
does not require modelling of all the details
with architectural decisions as diagrammatic
models are usually more efficient. This should
help to overcome the intrinsic limitations of
architectural decisions simultaneously mak-
ing ADL/UML models easier to comprehend.

2. Models representing the details of sys-
tems architecture should be chosen ad-
equately to the class and properties
of the modelled system as well as its
stakeholders’ concerns.
This observation is a consequence of the for-
mer one: core concepts can effectively be
modelled with architectural decisions, while
efficient modelling of design details can only
be done with appropriately chosen models.
Efficient architecture models will be differ-
ent for different classes of systems – com-
pare e.g. Service Oriented Architecture (SOA)
and real-time systems. It is also worth noting
that different models can be useful for differ-
ent stakeholders’ concerns – e.g. performance,
security, reliability. Hence, the contents of
integrated model should be chosen with re-
spect to both the selected class of systems
and concerns of architecture stakeholders.

3. Architectural decisions should explain
detailed models
Models of systems architecture like ADLs or
UML are usually easier to comprehend when
their underlying concepts are clearly stated –
e.g. it is much easier to analyse a class dia-
gram for model-view-controller component if
you know in advance that this pattern has
been followed. It is often difficult to deduce
such an intent straight from the class diagram
itself. Linking architecture decisions with ar-
chitecture models can make ADLs more ef-

48 Andrzej Zalewski, Szymon Kijas

ficient. This is quite an opposite approach
to [11], where architectural decisions are il-
lustrated with diagrams. In fact, both possi-
bilities are included in the proposed model.

4. Architecture should be represented at
different levels of detail/scope/view
(scope [14]), being useful for different
stakeholders
The complexity of large scale software sys-
tem architecture results from the fact that
organisation of software systems can be per-
ceived at different levels of details and from
the viewpoints of different stakeholders. This
is both virtue (helps to cope with systems
complexity) and vice (the relations between
models at different levels of scope and/or
belonging to different views are by no means
clear increasing the overall architecture model
complexity).

5. Architectural decisions related to the
detailed models can become a kind of
an index helping to navigate through
them
The architectural decisions are a versatile
model of system architecture modelling effi-
ciently only its core concepts. As such they
can be used to integrate all the models across
all the levels of scope, detail and views. If
detailed models are appropriately linked to
the core architectural decisions they can be
used as a kind of an index to the detailed
models.

6. Integrated model should support sys-
tems evolution
Almost all the software systems are subject to
changes throughout their lifetime. Hence, ar-
chitecture models representing current-state
system architecture only are of a limited use
nowadays. Mechanisms of capturing changes,
presenting model snap-shots for a selected
moment of time should accompany an inte-
grated architecture model.

7. Support alignment of systems architec-
ture with business strategy/policies
The need for the alignment with business
strategy and policies does not have to be
explained. However, it is usually difficult to
assess whether architecture of systems or IT

products really supports business strategy.
Therefore, integrated architecture model shall
make such an assessment easier.

8. Promote and enable validation/verifi-
cation of one model against other con-
nected ones (especially higher level
models).
As architectures are modelled at different lev-
els of scope, detail and from different points
of view these models can potentially be as-
sessed/verified/validated one against another.
This requires that architecture models are ap-
propriately organised and interrelated with
each other.

4. The Integrated Model of Large
Scale Software System Architecture

The concepts of integrated model of large scale
software systems will be illustrated with an ex-
ample of a real system used in the banking sector.
The system presented in fig. 1 has been developed
to support the exchange of various kinds of in-
formation and documents (claims, direct debits,
information concerning accounts moved from one
bank to another, etc.) between banks and other
institutions (e.g. bailiffs’ offices, social security
agencies). Additionally, it is used as a fail-over
communication channel in case of a failure of
the main clearing system. The system generally
follows the service oriented architecture scheme
providing both www and web services interfaces
to its functionality.

The overall structure of the proposed inte-
grated model of software architecture has been
presented in fig. 2. It comprises the following
tiers:
– Architectural Policy: comprises a set of

clauses that translate the enterprise strategy
and relevant policies to a set of principles
shaping the architecture of corporate IT sys-
tems. Architectural Policy is represented as
a set of clauses being simply text records con-
sisting of the following fields (similar to the
architecture principles of TOGAF [6]): a.p.
policy rule name, a.p. policy rule, a.p. rule
explanation. As Architectural Policy reflects

From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems 49

Figure 1. Banking data and document exchange system

enterprise strategy and relevant policies in the
architectural categories it can provide criteria
for the assessment of the alignment between
system architecture and business strategy or
enterprise policies.
Our example: if the corporate strategy says
that the mission of the company is to pro-
vide fully secure services to banking sector,
it can be translated into a number of archi-
tectural policy clauses – e.g. “all in-coming
and out-going data is securely transferred”,
“all the processing of clients data can be
back-traced”, “all the users have to be se-
curely authorised before accessing its ser-
vices”. These rules can be used to veri-
fy/assess the rules of system organisation
pattern (in our example: the first architecture
policy clause applies to the rules concerning
communication framework selection and data
input organisation (see below).

– System Organisation Pattern: is set of
architectural decisions (called System Organ-
isation Pattern Rules) representing core con-
cepts organising system (this extends the
idea presented in [15]) at different levels of
scope [14]: enterprise, domain, system/appli-
cation, component. These basic decisions in-
clude but are not limited to:
– Decomposition into set of domains/sub-

systems/applications: defines organisation

of system functionality – from conceptual
or business (domain) to technical level
(applications/subsystems).
Our example: the following domains
have been defined: Human Resources
(HR) Management, Finance Management,
Clearing Systems, Digital Signature and
Auxiliary Services. The „Data exchange
system” belongs to Clearing Systems Do-
main. It has been divided into 15 subsys-
tems/modules (comp fig. 1)

– Geographical and organizational alloca-
tion of system entities: defines both the
deployment of system entities in terms
of organization’s geography and organiza-
tion structure.
Our example: The components of „Data
exchange system” are supposed to be de-
ployed in central company’s data cen-
tre, client applications will be provided
throughout the company and its clients.

– Organisation of data input: indicates
where and how the data is fed into the
system.
Our example: The data will enter/leave
the system via central interfaces only:
WWW interface, web service interface and
file interface.

50 Andrzej Zalewski, Szymon Kijas

Figure 2. The overall structure of the integrated architecture model for large scale software systems

– Data storage distribution: defines how
permanent data is distributed among
databases;
Our example: Lack of distributed data
(all of data are allocated in one central
database) eliminates the need for dis-
tributed data storage management and
allows for short transactions only.

– Distributed data storage management: de-
fines the means of database synchroniza-
tion, data transmission between remote
locations etc.

– Transaction management: concerns the
selection of mechanisms and/or solutions
that are used to ensure transactional pro-
cessing.

– Communication framework: defines com-
munication mechanisms between equiv-
alent system entities (e.g. queuing solu-
tions).
Our example: subsystems exchange data
only via database; clients communicate
with the system via SSL channel.

– Core pattern/style selection: the selection
of design patterns or architectural styles
that define the overall structure of a given
architecture entity.
Our example: all the subsystems are sup-
posed to follow three-tier architecture.

These decisions are supposed to be repre-
sented as text records as in [9, 16]. Other
models can be employed here as they emerge.

– Detailed Architecture Models: represent
details of system architecture. Obviously the
suite of models used at this level has to be
tailored to the class and properties of the
modelled system. We plan to develop such
a model suite for SOA systems as an integral
part of our research and a mean of valida-
tion of our concepts. Obviously, other suites
should also be developed for other domains
or classes of systems.
The detailed structure of the contents of the
integrated architecture model has been pre-
sented in fig. 3. The following properties could
be observed from the model presented in
fig. 3:
– Rules of system organisation pattern can

be related to a number of architectural
policy clauses, which should support the
assessment of strategic alignment of sys-
tem architecture;

– A number of rules of system organisation
pattern can be applied to a given detailed
model, sometimes detailed model can be
used to illustrate a given rule;

– System organisation pattern rules belong
to one of the levels of scope and describe
architectural entities defined at this level;

From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems 51

Figure 3. Class diagram illustrating dependencies between model entities

– Association between system organisation
pattern rules and detailed models indi-
cates models of a given system entity.

The dependencies that may exist between
system organisation pattern rules have not
been shown to make the class diagram more
legible, however, enterprise level rules, can
be applicable to some lower level decisions,
especially domain ones, the latter ones to
the system/application rules etc. etc. These
dependencies can be used to verify whether
lower level models are compliant with higher
level ones.

5. Summary. Further Research
Prospects

The integrated system architecture model pre-
sented in section 4 fulfils most of the premises
enumerated in section 3. Architectural decisions
model only core architectural concepts at a given
levels of scope (rule 1, 3, 4), relations established
between them and detailed models provide for
the indexing of detailed models (rule 5). Align-
ment with business strategy (rule 7) is ensured
with Architectural policy being an integral com-
ponent of the model.

Further research is needed to:
– Define model suites for different classes of

systems and their stakeholders (rule 2) – our
research is heading towards identification of
such a suite for SOA systems – these are sup-
posed to include at least: BPMN as business

process models (at different levels of detail)
and LOTOS as a formal model of concurrent
processing in Business Processes providing
for extended verification capability;

– Enhance integrated model with mechanisms
supporting system evolution (rule 6);

– Although model is structurally ready for the
assessment of one model against another one,
effective analysis/assessment techniques can
be developed when full suite of models is de-
fined as well as verified properties are know.
This can only be done in the context of a cer-
tain genre of software-intensive systems as
e.g. service-oriented systems. (rule 8).

– Develop tool support the integrated architec-
ture model.

Acknowledgment

This work was sponsored by the Polish Ministry
of Science and Higher Education under grant
number 5321/B/T02/2010/39.

References

[1] Recommended Practice for Architectural
Description of Software-Intensive Systems,
http://standards.ieee.org/findstds/standard/
1471-2000.html, IEEE Std., 2000.

[2] P. Kruchten, “The 4+1 view model of architec-
ture,” IEEE Software, Vol. Volume 12, No. 6,
1995, pp. 45–50.

[3] R. C. Philippe Kruchten and J. C. Dueñas, “The
decision view’s role in software architecture prac-

52 Andrzej Zalewski, Szymon Kijas

tice,” IEEE Software, Vol. Volume 26, No. 2,
Mar/Apr 2009, pp. 36–42.

[4] J. Zachman, “Framework for information sys-
tems architecture,” IBM Systems Journal, Vol.
Volume 26, No. 3, 1987, pp. 276–292.

[5] ——. (2010) Zachman framework. http://www.
address.org/.

[6] The Open Group Architecture Framework (TO-
GAF). http://www.zifa.com. The Open Group.

[7] A. W. Kamal and P. Avgeriou, “An evaluation
of ADLs on modeling patterns for software ar-
chitecture,” LNCS Springer, Nov 2007, 3rd In-
ternational Workshop on Rapid Integration of
Software Engineering techniques (RISE).

[8] A. Jansen and J. Bosch, “Software architecture
as a set of architectural design decisions,” IEEE
Computer Society, 2005, pp. 109–120, 5thWork-
ing IEEE/IFIP Conference on Software Archi-
tecture (WICSA’05).

[9] J. Tyree and A. Akerman, “Architecture deci-
sions: Demystifying architecture,” IEEE Soft-
ware, Vol. Volume 22, No. 2, Mar 2005, pp.
19–27.

[10] A. Zalewski and S. Kijas, “Architecture
decision-making in support of complexity con-
trol,” LNCS Springer, Vol. Volume 6285, 2010,

pp. 501–504.
[11] F. N. Rafael Capilla and J. C. Dueñas, “Modeling

and documenting the evolution of architectural
design decisions,” IEEE CS Press, 2007, proc.
2nd Workshop Sharing and Reusing Architec-
tural Knowledge Architecture, Rationale and
Design Intent.

[12] P. Kruchten, “An ontology of architectural de-
sign decisions,” Rijksuniversiteit Groningen, Oct
2004, pp. 54–61, in 2nd Groningen Workshop on
Software Variability Management.

[13] ArchiMate R© 1.0 specification. http://www.
opengroup.org/archimate/doc/ts_archimate/.

[14] R. Malan and D. Bredemeyer, “Less is more
with minimalist architecture,” IEEE’s IT Pro-
fessional, Sep/Oct 2002.

[15] A. Zalewski, “Beyond ATAM: Architecture anal-
ysis in the development of large scale software
systems,” LNCS Springer, Vol. Volume 4758,
Sep 2007, pp. 92–105, first European Conference,
ECSA 2007 Aranjuez, Spain.

[16] P. A. Neil B. Harrison and U. Zdun, “Using pat-
terns to capture architectural decisions,” IEEE
Software, Vol. Volume 24, No. 4, Jul/Aug 2007,
pp. 38–45.

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 53–64, DOI 10.5277/e-Inf130106

Time Domain Measurement Representation in
Computer System Diagnostics and Performance

Analysis

Stanisław Wideł∗, Jarosław Flak∗, Piotr Gaj∗
∗Faculty of Automatic Control, Electronic and Computer Science, Silesian University of Technology

stanislaw.widel@polsl.pl, jaroslaw.flak@polsl.pl, piotr.gaj@polsl.pl

Abstract
Time analysis is a common approach for testing and detecting methods for the performance analysis
of computer systems. In the article it is shown, that measuring and identifying performances based
on a benchmark is not sufficient for the proper analysis of the computer systems behavior. The
response time of the process is often composed of the execution of many subprocesses or many
paths of execution. Under this assumption, it is presented, that both convolution and deconvolution
methods can be helpful in obtaining time distributions and modeling of complex processes. In such
a modeling the analysis of measurement errors is very important and was taken into consideration.
The example of using the methods in buffering process is also discussed.

1. Introduction

Performance analysis and diagnostics of system
software is a difficult problem even for simple
computer systems. In working systems many
processes run simultaneously and influence each
other, so time analysis is a complex task. The
time analysis includes a number of different
approaches. The most important ones are the
worst-case time analysis, the performance analy-
sis, and benchmark tests. Each of the methods
has its specific features, advantages, and disad-
vantages. However, in the time analysis, a con-
volution operation, as a mathematical tool for
analyzing the composition of processes, could be
helpful.

1.1. Worst-case time analysis

The worst-case time analysis usually concerns
industrial systems with strong time constraints
(hard real-time system) [1]. Such systems require
time determinism. The determinism is specified

by values of the response time due to process
requirements. From the perspective of the pro-
cess, exceeding the maximum response time is
unacceptable. Therefore, the primary parame-
ter of evaluation of the system is the maximum
response time. Time analysis is performed on
the basis of pessimistic execution time of specific
tasks in the system. These times are based on the
maximum allowable time specification (time-out)
for hardware and software and algorithms that
determine the performance of a given system
component.

This approach is sufficient to answer the ques-
tion whether the system during the design phase
meets time requirements imposed by the indus-
trial process. However, it does not provide the
information about a typical operation, in partic-
ular, about average processing time of the tasks.
A statistical approach, which provides additional
information on characteristics of a real working
system, is taking into account time distributions
of the tasks.

54 Stanisław Wideł, Jarosław Flak, Piotr Gaj

In the time analysis, the response times of
the system are measured. As a result of a contin-
uous observation of response times that occur at
specific points of time, a discrete function of re-
sponse times is obtained. By measuring the time
for analysis, the area of analysis can be extended
to analyze other values after recording the data
containing the system response times. It can take
into account not only the maximum values but
also other values. The probability mass function
of response times may be its representation. In
this way the phenomena observed in the mea-
surements can be interpreted statistically using
the probability mass function.

However, the analysis and statistical interpre-
tation of measurement results of the computer
system response time turns out to be far more
complex than the time analysis based on the
expected time limits that result from time deter-
minism.

1.2. Performance analysis

The performance analysis is a good method for
finding errors in the process of creating and run-
ning the software, especially for systems oper-
ating in a continuous mode. The performance
analysis usually involves the measurement of av-
erage values, whilst the time analysis is based
on the analysis of maximum values. The follow-
ing applications of the performance analysis of
computer systems [2] can be distinguished:
– comparison of alternative solutions;
– checking the influence of new functionality

on the system;
– tuning the system;
– monitoring the relative changes in system

performance (acceleration, deceleration);
– detection of errors in creation and develop-

ment of software;
– performance planning for solutions that do

not exist yet.
Monitoring and the performance analysis is a fun-
damental detection test used by departments
of quality control in the companies producing
systems operating in a continuous mode. An
important advance in these applications would
be a possibility of transforming the methods

of performance measuring of computer systems
from a test of simple detection to the methods of
diagnosis. The diagnostic tests can detect perfor-
mance degradation. However, it is important not
only to detect the degradation, but also to iden-
tify the component (subsystem), which caused
the performance degradation. Diagnostic meth-
ods are intended to identify this element, such
as locating the bottleneck in the system. Note
also, that without the measurement process, it is
not possible to enter any phase of validation or
verification process in the performance evaluation
study, presented in [3].

The performance analysis and time analy-
sis are distinct areas of computing research. In
the performance analysis the essential impor-
tance is attached to the probabilistic analysis
and statistical models. In the time analysis of
real-time systems the main problem is to identify
time determinism in operation of the system.
An open question is whether these areas have
a common part. The method proposed in this
article can be a common part of these two areas,
with particular emphasis on the possibility of
using measurements to diagnose the system. It
may be an extension of measurement methods
towards a diagnosis, in terms of determining the
cause of changes in performance and searching
for items that should be corrected.

1.3. Benchmarks

As mentioned before, in the time analysis of
computer systems the worst-case analysis and
analysis based on average values are normally
used. Benchmarks are widely applied for compar-
ing various properties of systems. On the other
hand, the performance analysis usually measures
average values. Such measurements are insuffi-
cient to identify many important characteristics
of the system, for example the worst-case analy-
sis, and do not provide much information which
measurement data should provide. If there is
degradation of performance, then benchmarks
do not provide the answer to the question about
the reason.

Based on the assumption that correct imple-
mentation works better and more efficiently than

Time Domain Measurement Representation in Computer System Diagnostics and Performance Analysis 55

implementation with functional errors, the proto-
type of the new system can be quickly diagnosed.
Using the performance tests [4] for detecting
errors and verifying the correctness of implemen-
tation requires:
– development of criterion for quantitative eval-

uation of system performance;
– development of measurement methods and

measurements on referencing systems;
– development of model of the system;
– determination of asymptotic limits;
– searching for states of system performance

and methods of identification;
– searching for measures of performance, based

on parameters easily accessible by measure-
ment;

– studying the statistical features of real sys-
tems;

– development of measurement methods for
non-stationary systems.
One of the common approaches [5] applicable

to the testing and debugging of prototype appli-
cations is measuring the performance [6]. Instead
of decomposition of the system and verification
of the particular components, subsystems, or
functions, the performance of the whole system
is examined.

2. Benchmark-type tests

Benchmarks usually measure performance for
a particular workload. Let us analyze how the sys-
tem behaves for such particular load. Symbols in
the description of benchmarks presented here are
used in the descriptions of queuing systems [7].
Let systems x, y, z have the same structure and
consist of the following resources: processor cpu,
disk hdd and network card net. Suppose that for
the systems tests, workload references η1, η2, η3
have been developed for the maximum workload
of the individual elements of the system, i. e.
cpu, hdd and net respectively. The measurement
results indicate a measure of performance, which
is assigned to the system by a benchmark test.
During benchmark testing, when testing a single
element of the system, other elements are also in-
volved. For example, during the test of the drive

hdd, the CPU, DMA and memory operations
also take part.

Workloads η1, η2 and η3 have the following
properties. For fractional ε we choose the work-
load η1, for maximum use of the resource cpu

η1 → U (cpu) = 1− ε (1)
where U (cpu) is resource utilization. Level of re-
source utilization is in the range [0-1]. Then the
following relationship holds between the response
time R of the system and the response timeR(cpu)

of the cpu.
R ≥ R(cpu) (2)

In the test η1 the resource with the maximum
workload is the cpu. The resource cpu is the bot-
tleneck then, so the system cannot have a better
response time R than the response time of the
most loaded resource. So similarly for the test
η2, where the most loaded resource is hdd.

η2 → U (hdd) = 1− ε (3)
then

R ≥ R(hdd) (4)
For η3 test

η3 → U (net) = 1− ε (5)
and then

R ≥ R(net) (6)
Using a model of the system in which tasks per-
formed by the system are served by resources,
the average system response time R̄, according
to the Little law [8], [9], [10], [11], is

R̄ = N̄

X
− Z̄ (7)

where N̄ is the average number of clients in the
system, X is the throughput, that is the number
of tasks performed per time unit, Z is the average
time (interval) between tasks generated for the
system. Throughput is understood as defined in
queuing theory and is the ratio of processed tasks
during the observation time T . Using operational
research approach we can determine the current
value of X by counting the number of processed
tasks in the system during the observation time
T . Assuming that tasks are executed in series
(not in parallel) and D(i) is working time of the

56 Stanisław Wideł, Jarosław Flak, Piotr Gaj

resource i, working time D of all resources is
D =

∑

i

(D(i)) (8)

It is typically assumed for the benchmark tests
that realization runs for one client only and there
is no interval between tasks. So Z = 0 and N = 1.
Thus, if there is only one task, this task does not
wait, so the time of execution of the task in all
resources is the response time of the system. So,
if N = 1 then R = D. For each of the systems x,
y and z the same rule applies, so

N = 1→ R(i) = D(i) = B(i)V (i) (9)
where B(i) is the execution time of the task in the
resource i, V (i) is the number of visits (execution)
of the task in the resource i. The working time
of the resource consists of several visits of the
task. In benchmark tests the value B(i) is usually
large because typical tasks are long. Thus the
number of visits V (i) in the resource is reduced.

Assume, that for the workload η1 and the
same number of visits Vη1 in the systems x, y
and z, the system x has the shortest working
time of the cpu resource. Thus the system x has
the best cpu unit.

min (D(cpu)
x , D(cpu)

y , D(cpu)
z) = D(cpu)

x (10)
Similarly, assume that for the workload η2 and
the same number of visits Vη2

min (D(hdd)
x , D(hdd)

y , D(hdd)
z) = D(hdd)

y (11)
For the workload η3 and the same number of
visits Vη3

min (D(net)
x , D(net)

y , D(net)
z) = D(net)

z (12)
Little law [12] and assumptions Z = 0 i N = 1,
usually adopted for benchmarks, show that

R̄ = 1
X

(13)

The following conclusions may be drawn from
the above considerations. For the workload η1
the system x has always the shortest response
time R of all systems x, y and z.

Rx = min (Ri), i ∈ {x, y, z} (14)

The throughput Xx of the system x is
Xx = max(Xi), i ∈ {x, y, z} (15)

For the workload η2:

Ry = min(Ri), i ∈ {x, y, z} and
Xy = max(Xi), i ∈ {x, y, z} (16)

Similarly, for the workload η3:

Rz = min(Ri), i ∈ {x, y, z} and
Xz = max(Xi), i ∈ {x, y, z} (17)

The system with the best cpu always is the best
in the test η1, in which cpu is the most loaded
resource.

The obtained results of the benchmark allow
to determine the arrangement and relationship
between systems x, y and z. For various bench-
marks the measurements as response time R and
throughput X are obtained. If the benchmark is
based on R, then the system is better if it receives
lesser value of the test result. If the benchmark is
based on X, then the system is better if a greater
value follows from the test.

Though the results obtained in this analy-
sis are simple, they show that benchmark tests
reflect only simple dependencies occurring in
the system. In order to stimulate the system in
real-world conditions, for example in test ηj , the
number of clients must be more than one. We
can also expect that the interval between tasks
will be non-zero. Then the relations between V (i)

and B(i) are changed, so
N > 1, Z > 0, V (i)

x,y,z 6= V (η)
x,y,z, B

(i)
x,y,z 6= B(η)

x,y,z

(18)
In such case the formula (9) does not apply and
the formula (7) is valid instead of (13). The con-
clusion is that benchmark tests do not reflect
the complexity of executing tasks in the real
system. They also cannot be used as a measure-
ment method in the validation and projection
phase [3].

More information on the system operation
can be achieved from the deeper analysis of re-
sponse times of the processes. The response time
of the process is the composition of the response
times of its subprocesses. For such an analysis
the operations of convolution and deconvolution

Time Domain Measurement Representation in Computer System Diagnostics and Performance Analysis 57

Interval number

Interval value ̅

p
ro

b
ab

il
it

y

p
x

px – histogram py – histogram pz – convolution

p
ro

b
ab

il
it

y
 p

y

p
ro

b
ab

il
it

y
 p

z

 ̅ 𝑧 𝑧2 𝑧3 𝑧4 𝑧

 1 2 3 1 2 3 1 2 3 4 5

Figure 1. Histogram z calculated on base histograms of processes x and y for three ranges of values:
minimum, mean, and maximum

performed on histograms of response times are
helpful.

3. The convolution method in the
time analysis of systems

Though convolution is well known method, its
application in analyzing response time character-
istics of particular components of complex system
is a relatively novel approach [13], [14], [15], [16].

In the article it is particularly shown, that the
convolution is relatively easy method to use, but
the deconvolution is very sensitive when using for
time characteristics measured in different times
in independent components.

The presented method of time analysis of
a compound computer system is based on convo-
lution of two functions representing time-specific
behavior of two subsystems that are parts of that
system [17]. Convolution is considered one of the
most important operations in the field of digital
signal processing. Assume the existence of two
independent subsystems x and y. A composition
of both is a system z, so

z = x+ y (19)
The equation (19) represents also time depen-
dences. It means that response time of system z
is the sum of response times of subsystems x and
y. Under this assumption it can be consequently
stated, that the probability mass function pz of
the response time of system z is equal to the

convolution of probability mass function px and
py of response times of subsystems x and y.

While executing the measurements for time
analysis purposes, it is possible to record the
average and minimum values, beside the max-
imum ones. The simplest case for introducing
the method is when three ranges of values exist:
minimum, mean, and maximum. The maximum
value is collected during the worst-case analysis
of a real-time system. The average and minimum
values can be used in performance analysis. In
addition to evaluation of the ranges, there is
a need to know how often each value occurs. In
the following discussion it is assumed that x and
y are independent random variables, such as:
x ∈ {xmin, x̄, xmax}; y ∈ {ymin, ȳ, ymax} (20)

For each value of the random variable, the prob-
ability of taking a given value can be determined.
Thus, the probabilities that a variable represents
the minimum, mean, and maximum value are
known. The division of x and y into three values
with the same intervals is used to derive the
equations (21 - 23). The example of the con-
volution of two histograms is presented in Fig.
1. The consecutive probabilities of the resulting
histogram pz for convolution shown in Fig. 1
could be calculated by simple formulas:

pzmin = pxminpymin;
pz2 = pxminpy2 + pyminpx2

(21)

58 Stanisław Wideł, Jarosław Flak, Piotr Gaj

pz3 = pxminpymax + px2py2

+ pxmaxpymin;
pz4 = px2pymax + py2pxmax

(22)

pzmax = pxmaxpymax (23)
The convolution method can be the useful

tool for calculating time probability distributions.
Thus, more information could be obtained than
only minimum, average and maximum values.
Referring to the definition of convolution, e.g.,
in [18], pz is a convolution of px and py.

pz = px ∗ py =
∫ ∞

0
px(τ)py(t− τ)dτ (24)

The generalization of probability distribution pz
for discrete values takes the following form:

pzi =
i∑

j=0
pxjpyi−j (25)

In the following considerations, the discrete coun-
terparts of the continuous functions of probability
distribution are used.

4. A case of compound process

Let us show an example of application of convo-
lution for analyzing a simple process of writing
data. Suppose the system uses the data buffering
mechanism shown in Fig. 2. Buffering is imple-
mented using two possible paths x(1) and x(2).
The first one writes data to the buffer. This path
is realized with probability p1. The second path
writes data to the buffer with t0 delay, due to
waiting for the access to the buffer. This path
is realized with probability 1− p1. These paths
are modeled by two statistical processes with
the exponential response time, shifted relative to
each other at t0 and probabilities: p1 and 1− p1
(Fig. 3a and Fig. 3b).

The two events are complementary. The dis-
tribution of the sum of these events (26) is shown
in Fig. 3c. The write operation y is represented
by the distribution py of response times, shown
in Fig. 4b. It could be written as:

px = p1px
(1) + (1− p1)px(2) (26)

where: px(1) – probability mass function of exe-
cution time x(1) of buffering with delay, px(2) –
probability mass function of execution time x(2)

of buffering without delay, px – probability mass
function as result of compound execution time
x(1) and x(2).

Thus
pz = px ∗ py (27)

where: py – probability mass function of time
execution of write operation, pz – probability
mass function of write operation with buffering.

The distribution of the sum of events (Fig.
4a) in convolution with the py distribution (Fig.
4b) gives the resulting distribution (Fig. 4c). The
resulting distribution can be observed by mea-
suring the system z response time for write oper-
ations. Such a specific characteristic (dual peek)
can be detected in practice [19]. So, the observed
distribution can be analyzed in a better way than
while obtaining only minimum, average and max-
imum values. The characteristics is explained as
a convolution of component processes [20].

Changing the time of waiting for the access to
the buffer represented by parameter t0 and chang-
ing the probability p1 of this waiting, change the
shape of the resulting distribution. Resulting
distributions for p1 = 0.5 and various t0 are
presented in Fig. 5.

Depending on the parameters of the model,
different characteristics of system response time
distributions can be obtained. The distributions
can be in the form of one peek or even separated
dual peeks in some cases. So the measured practi-
cal results can vary depending on the behavior of
the process. Distributions for t0 = 55 and various
p1 are presented in Fig. 6.

The advantage of the method based on convo-
lution over other methods is the opportunity to
observe the entire time probability distribution
instead of selected values. Another advantage
is the ability of simulation of behavior of the
system for the case when some component or
its time characteristic has to be changed. Then,
by substituting the time distribution only for
this component and then making the convolu-
tion with distributions of other components, the
time distribution for the whole system can be
calculated.

Time Domain Measurement Representation in Computer System Diagnostics and Performance Analysis 59

ݐ , ,ଵ

,(ଵ)ݔ (ଶ)ݔ

⇒

ݔ = (ଵ)ݔଵ + (1 − (ଶ)ݔ(ଵ

 ⇒ ݕ

 py

ݖ = ݔ ∗ ݕ

x(1)
t0

y

1-p1

x(2)

p1

Figure 2. The example of system for writing with buffering

a) b) c)

Figure 3. Distributions of response time for an example of a write system. t0 = 55, p1 = 0.25

a) b) c)

Figure 4. Resulting distribution pz as convolution of distribution px (’if’ of events x(1) and x(2)) with the
distribution py

5. Analysis of measurement errors

In order to produce a good method of system
analysis there is a necessity to consider that
errors may occur in measurements. It may be
caused by either inaccuracy of measurement or
impossibility to measure all subsystems in the
same time, so the measurements may be col-
lected in different times. The result is the time
inconsistency errors of consecutive measurement

processes. Analysis of influence of measurement
errors is important particularly in the opera-
tion of deconvolution. This process is not simple
and clear because of sensitivity of deconvolution
method. Convolution has the features as sep-
aration, commutativity, and associativity. The
proofs are in [17].

The goal of deconvolution is to calculate time
probability distribution for component y knowing
time probability distributions of system z and

60 Stanisław Wideł, Jarosław Flak, Piotr Gaj

a) b)

c) d)

Figure 5. Distribution pz for p1 = 0, 5 a) t0 = 40 b) t0 = 60 c) t0 = 80 d) t0 = 140

a) b)

c) d)

Figure 6. Distribution of pz for t0 = 0.5 a) p1 = 0.1 b) p1 = 0.25 c) p1 = 0.5 d) p1 = 0.6

Time Domain Measurement Representation in Computer System Diagnostics and Performance Analysis 61

component x. If the form of an error in mea-
surements zm and xm is known, then the result
of equation (29) is identical to the solution of
equation (28), under the condition that x and y
are not distorted.

y = z − x (28)
y = zm − xm (29)

While measuring, a real response time, the zm
value is measured instead of z. It contains mea-
surement errors ex and ey both for x and y, so

zm = x+ ex + y + ey (30)
The total measurements error e consists of errors
related to constituent processes (31).

e = ex + ey (31)
Based on (30) and considering commutativity
feature, the measured value zm is:

zm = x+ y + e (32)
To determine the value of y the two separated
measurements have to be performed. During the
one measurement the value xm is collected (33):

xm = x+ ex (33)
During another measurement the value zm is
collected (34):

z(error)
m = x(error) + y (34)

There are errors acquired during the measure-
ment of zm. The x(error) is a response time from
sub-system x during zm measurement. These
errors are immeasurable so instead of xm the
measured value is marked as x(error) in the case.
It is also assumed that the values are similar
(35).

x(error) ≈ xm (35)
The differences in the above values result from
the facts that in the measurement of xm the error
ey does not exist and also consecutive measure-
ments of x are taken in different times. Thus,
the assumption of the method while obtaining
y is using xm instead of x(error) in (34). From
(34) the two mechanisms are considered. The
first mechanism of occurring errors and the error
analysis is done below in the form of (36).

y(error)
zm = z(error)

m − x (36)
Formula (36) describes a situation in which the
measurement error is introduced, because during

the real system observation (z) the subsystem
x behaves like xm. Some environmental distur-
bances interact with the system x which do not
exist during the observation of the isolated sub-
system x. This disturbed subsystem is denoted
as xm. Unfortunately, the disturbances are not
directly measurable. For the mean value the equa-
tions (37-40) represent the error introduced dur-
ing the measurement.

ȳ(error)
zm = z̄(error)

m − x̄ (37)

ȳ(error)
zm = x̄m + ȳ − x̄ (38)

ȳ(error)
zm = x̄+ e+ ȳ − x̄ (39)

ȳ(error)
zm = ȳ + e (40)

The result from (40) shows that measured mean
value from y is charged with error e. If the cal-
culations are not executed for the mean but for
the probability mass functions pzm and px, then
the result is as below:

py(error)
zm = pz(error)

m
/

deconv px (41)

py(error)
zm = (pxm ∗ py) /

deconv px (42)

py(error)
zm = (px ∗ pe ∗ py) /

deconv px (43)
The equation (41) shows how the wanted py
distribution can be obtained. The distribution
found in such a way is laden by error pe convolved
with the true distribution py (44):

py(error)
zm = py ∗ pe (44)

The second mechanism of occurring errors during
the measurements, other than shown in equation
(37), is considered below:

y(error)
xm = z − xm (45)

For the above formula (45) and during observa-
tion of the real system z the data is not affected
by measurement errors derived from the sub-
system x. Unfortunately, the interferences occur
during the observation of the subsystem x and
produce xm. For the mean value the equations
(46-48) represent error (45), introduced during
the measurement.

ȳ(error)
xm = z̄ − x̄m (46)

ȳ(error)
xm = x̄+ ȳ − x̄− e (47)

62 Stanisław Wideł, Jarosław Flak, Piotr Gaj

Figure 7. Example of the error influence: px, py, and pz on the left, pz, px(error) and deconvolved py on the
right

ȳ(error)
xm = ȳ − e (48)

The equations (45) and (36) differ only in arith-
metic operation in the equations (40) and (48).
From the arithmetic point of view the mean value
calculations (37-40, 46-48) are fully feasible for
the any set of measurement data. Unfortunately,
the situation changes radically for the applica-
tion of deconvolution. The usage of inconsistent
data i.e., collected from the consecutive mea-
surement series taken at different times is not
possible in a mathematically obvious way. The
reason is high error sensitivity of the deconvolu-
tion operation. In order to perform the system
decomposition (28), the data collected during
the different ranges in the time of system activ-
ity can be used only with full awareness of the
influence of the described error. Fig. 7 illustrates
the phenomenon of deconvolution sensitivity. The
example is based on the convolution of signals px
and py and then the deconvolution of received pz
and disturbed px marked as px(error). px(error) is
slightly changed (near the value 2) in comparison
to the original px. It can be seen, that small dis-
turbance (error) of time probability distribution
of component x causes very large disturbance in

resulting probability distribution after deconvo-
lution. For a probability mass functions pz and
pxm, while using deconvolution, it is impossible
to take into account the type of error (45), as
shown in equations (49, 50).

py(error)
xm = pz

/
deconv pxm (49)

py(error)
xm = (px ∗ py) /

deconv (px?+?pe) (50)
Equation (50) by the usage of the operator ’?+?’
presents the mathematical problem which results
in non-resistance of the methods of deconvolu-
tion to the error type (45). If pe is not convolved
with px, then deconvolution made on the basis of
the polynomial division method produces a large
computational instability.

The presented considerations (37-50) show
two different phenomena of errors. For the mean
value the equations (37-40) compared to (46-48)
differ only in the value of the error sign. Consider-
ing only the average values, the distinction of the
mechanisms of error generation is unnecessary.
However, it differs in the case of deconvolution of
probability mass function. In the case (43-44) the
considerations are fully mathematically correct.

Time Domain Measurement Representation in Computer System Diagnostics and Performance Analysis 63

The error values are added (convolved) (44) to

the value of probability mass function py(error)
zm .

More precisely: added errors are the values of
probability mass function pe. Unfortunately, us-
ing the deconvolution method is mathematically
incorrect for the case (49-50). This is because
the correctness of the physical implementation
of measurement is not met. In the measuring
method assumes that the measurements of the
systems x and z are taken at different times.
Thus the circumstances where the time signals
are measured in physical conditions, in which the
convolution of probability mass functions of sig-
nals exist, do not occur. It can be only supposed
that for the separated measurements z1..zl and
x1..xk, and for the stable running conditions, the
probability mass function px was the same in
both measurements. Unfortunately, if px is chang-
ing during the measurement z1..zl in relation to
the measurement x1..xk, then the assumptions
are not met and deconvolution method fails. In
the calculation of the mean value (46-48) this
problem does not occur.

6. Conclusions

While collecting measurement data, i.e., the re-
sponse times, one does not receive only one state
of the system, but a composition. Complex sys-
tems are non-linear, their analysis cannot be
based on the simple method of measurement
and analysis. The considerations conducted here
show that measurements of the execution time
of processes have much more complex statistical
description than for example a simple description
coming from benchmark tests. A statistical de-
scription delivers a dynamic character in contrary
to a fixed value obtained in a given moment of
system activity. The model of a queuing system,
with appropriately selected assumptions, and ig-
noring insignificant details may, but may not,
simulate basic rules of the system to be modeled.

The system usually works as many processes
executed through many paths. The convolution
method could be a useful tool for the analysis
of behavior of complex processes and their time

analysis, in a statistical meaning. Response times
of the system, for many operations, sometimes
give characteristic forms of probability mass func-
tions that can be explained as the convolution
of response times of subprocesses. Using the pre-
sented method, the entire time probability dis-
tributions of the system can be obtained. The
method could also be used to simulate changes in
any component of the system by simply modify-
ing its probability mass function and then calcu-
lating the convolution. However, using modeling
and convolution for diagnostics of a system re-
quires experience. The analysis method depends
heavily on the recorded measurement values. In
such a modeling also measurement errors must
be considered, particularly in deconvolution pro-
cess. The deconvolution method may be also
considered as a tool for such an analysis i.e., for
obtaining time distribution of the component of
the system for which the measurement cannot
be collected. However, as shown above, decon-
volution is a sensitive method and difficult for
a practical application.

References

[1] G. Pratl, D. Dietrich, G. P. Hancke, and W. T.
Penzhorn, “A new model for autonomous, net-
worked control systems,” IEEE Transactions on
Industrial Informatics, Vol. 3, No. 1, feb. 2007,
pp. 21 –32.

[2] D. J. Lilja, Measuring Computer Per-
formance: A Practitioner’s Guide. Cam-
bridge University Press, 2005. [Online]. http:
//books.google.pl/books?id=R8RLniX5DNQC

[3] E. D. Lazowska, Quantitative system per-
formance: computer system analysis us-
ing queueing network models. Prentice-Hall,
1984. [Online]. http://books.google.pl/books?
id=NNZQAAAAMAAJ

[4] D. A. Menascé, V. A. F. Almeida, L. W. Dowdy,
and L. Dowdy, Performance by design: computer
capacity planning by example. Prentice Hall
PTR, New Jersey, USA, 2004.

[5] G. Bjedov, “Using open source tools for perfor-
mance testing,” Google London Test Automation
Conference (LTAC) Google Tech Talks, Septem-
ber 2006. [Online]. http://video.google.com

[6] R. Blum, Network performance open source
toolkit: using Netperf, tcptrace, NIST Net, and
SSFNet. Wiley Pub., 2003. [Online]. http:

64 Stanisław Wideł, Jarosław Flak, Piotr Gaj

//books.google.pl/books?id=ECt5ycQ9D7YC
[7] T. Czachórski, Modele kolejkowe systemów

komputerowych, ser. Skrypty Uczelniane
- Politechnika Śląska. Wydawnictwo Po-
litechniki Śląskiej, 1994. [Online]. http:
//books.google.pl/books?id=50KkPgAACAAJ

[8] J. D. C. Little, “A proof for the queuing formula:
L = λW,” Operations Research, Vol. 9, No. 3,
May/June 1961, pp. 383–387.

[9] S. Stidham, Jr., “A last word on L = λW,” Op-
erations Research, Vol. 22, No. 2, March/April
1974, pp. 417–421.

[10] F. Beutler, “Mean sojourn times in Markov
queueing networks: Little’s formula revisited,”
Information Theory, IEEE Transactions on,
Vol. 29, No. 2, mar 1983, pp. 233 – 241.

[11] P. W. Glynn and W. Whitt, “Extensions of the
queueing relations L = λW and H = λG,” Op-
erations Research, Vol. 37, No. 4, July/August
1989, pp. 634–644.

[12] L. Lipsky, Queueing Theory A Linear Alge-
braic Approach. Springer New York, 2009.
[Online]. http://dx.doi.org/10.1007/978-0-387-
49706-8_3

[13] J. P. Lehoczky, “Real-time queueing theory,”
in Real-Time Systems Symposium, 1996., 17th
IEEE, dec 1996, pp. 186 –195.

[14] J. L. Diaz, D. F. Garcia, K. Kim, C.-G. Lee,
L. Lo Bello, J. M. Lopez, S. L. Min, and
O. Mirabella, “Stochastic analysis of periodic
real-time systems,” in Real-Time Systems Sym-
posium, 2002. RTSS 2002. 23rd IEEE, 2002, pp.
289 – 300.

[15] L. Abeni, N. Manica, and L. Palopoli, “Efficient

and robust probabilistic guarantees for real-time
tasks,” Journal of Systems and Software,
Vol. 85, No. 5, 2012, pp. 1147 – 1156.
[Online]. http://www.sciencedirect.com/science/
article/pii/S0164121211003232

[16] M. Santos, B. Lisper, G. Lima, and V. Lima,
“Sequential composition of execution time dis-
tributions by convolution,” Proc. 4th Work-
shop on Compositional Theory and Technology
for Real-Time Embedded Systems (CRTS 2011),
November 2011, pp. 30–37.

[17] J. Yeh, Real analysis: theory of measure and
integration. World Scientific, Danvers, USA,
2006. [Online]. http://dx.doi.org/10.1007/978-0-
387-49706-8_3

[18] A. Mattuck, Introduction to analysis. Prentice
Hall, 1999. [Online]. http://books.google.pl/
books?id=N0FkQgAACAAJ

[19] S. Wideł, J. Flak, and P. Gaj, “Interpretation
of dual peak time signal measured in network
systems,” in Computer Networks, ser. Communi-
cations in Computer and Information Science,
A. Kwiecień, P. Gaj, and P. Stera, Eds. Springer
Berlin Heidelberg, 2010, Vol. 79, pp. 141–152.
[Online]. http://dx.doi.org/10.1007/978-3-642-
13861-4_14

[20] ——, “Analysis of time measurements in
network systems using decomposition on
subprocesses,” in Computer Networks, ser.
Communications in Computer and Information
Science, A. Kwiecień, P. Gaj, and P. Stera, Eds.
Springer Berlin Heidelberg, 2011, Vol. 160, pp.
70–79. [Online]. http://dx.doi.org/10.1007/978-
3-642-21771-5_9

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 65–76, DOI 10.5277/e-Inf130107

Static analysis of function calls in Erlang
Refining the static function call graph with dynamic call information

by using data-flow analysis

Dániel Horpácsi∗, Judit Kőszegi∗
∗Department of Programming Languages and Compilers, Eötvös Loránd University, Budapest, Hungary

daniel_h@inf.elte.hu, kojqaai@inf.elte.hu

Abstract
Functions and their relations can affect numerous properties and metrics of a functional program.
To identify and represent the functions and their calling connections, software analysers commonly
apply semantic function analysis, which derives the static call graph of the program, based on its
source code. Function calls however may be dynamic and complex, making it difficult to statically
identify the callee. Dynamic calls are determined just at run-time, static analysis therefore cannot
be expected to fully identify every call.
Nevertheless, by utilising the results of a properly performed data-flow analysis as well as taking
ambiguous references into account, numerous dynamic calls are discoverable and representable.
We consider cases where the identifiers of the callee are statically determined, but they flow into
the call expression from a different program point, and also, we manage to handle function calls
whose identifiers are not fully identifiable at compile-time. By utilising the improved reference
analysis, we extend the static call graph with various information about dynamic function calls.
We investigate such a function call analysis in the programming language Erlang.

1. Introduction

To overview the components of the software,
to identify relations and dependencies, and to
find out properties, we can apply static source
code analysis. The analysis can be followed by
semi-automatic code transformations correcting
design weaknesses, based on the analysis results.
Both software transformation tools and reverse
engineering techniques operate on programs, and
involve many sorts of static code analysis.

Consider the case of refactoring tools [1, 2],
where code transformations never should change
the semantics of the program being refactored.
Despite the fact that such automatic code trans-
formation tools often involve user interaction,
the code modifications made are directed mostly
by the information gathered from the source
code. Consequently, the correctness of the trans-
formations highly depends on the accuracy of

the static analysis carried out before the actual
transformation steps.

In this paper we focus on the analysis of
inter-procedural relationships. In different pro-
gramming languages there are different call con-
structs, including dynamic ones that may be
unidentifiable at compile-time and therefore usu-
ally are omitted by static analysers. However,
the data bindings that determine dynamic calls
may be looked up by use of static data-flow
analysis, and if the function identifiers are stat-
ically given in the code, we can successfully lo-
cate them and identify the referred function. We
concentrate on the analysis of call constructs
present in Erlang [3, 4], a dynamically typed
functional programming language. The presented
approach aims to refine function call graphs [5]
by means of static analysis of dynamic func-
tion calls. By utilising the more sound call
graph we can improve different sorts of static

66 Dániel Horpácsi, Judit Kőszegi

analysis as well as refactoring code transforma-
tions.

In the next sections we introduce the main
types of function call constructs – including dy-
namic ones – and also we precisely define the
connection between call expressions and function
entities in terms of formal semantic rules. In ad-
dition, concepts of ambiguous dynamic calls and
opaque functions are introduced in order to rep-
resent partially unidentifiable function references
as well. Finally, we define formal relationships
between the function entities, merging all the
call information into the call graph and show
a simple case study.

2. Call constructs

We suppose that the functions of a program are
grouped into modules and are dynamically typed
(like in Erlang). With this, a function may be
identified by a 3-tuple (so-called MFA) that in-
cludes the name of the module the function is
located in, the name of the function, and the
number of its formal parameters (called ’function
arity’). This function descriptor can be written
in the form of module:function/arity.

MFA-call Apply-call

identifiers as literals static dynamic

identifiers as expressions dynamic dynamic

Figure 1. Static and dynamic calls

Call constructs are sorted in order to ease
their analysis; Figure 1 shows the main groups.
Syntactically, we consider two types of function
call: MFA-calls and apply-calls. The former one
is the common way to invoke a subroutine, while
apply-calls may be regarded as symbolic calls
so that they refer to a special function named
’apply’ which then results in another call. For this
use, both the function to be called and its argu-
ments are specified within the arguments of the
apply-call. When called, it executes the named
function on the specified arguments and then
returns its result. Basically, apply-calls behave
very similarly to MFA-calls, however, the main

difference in use lies in the way the parameters
are constructed and then passed to the callee.

Beside the syntactic grouping, we make a dis-
tinction between static and dynamic call meth-
ods. Function calls may affect the data-flow
within the program, and interestingly, data-flow
may also take effect on function calls so that
function calls may be constructed by means
of run-time data. Programming languages usu-
ally support meta-programming techniques like
handling the program itself as data or creat-
ing statements at run-time (’eval’ methods).
A special case of the latter technique is the
run-time construction of function calls, where
the identifier(s) of the called routine may
be determined just at execution-time, simi-
larly to the construction of actual function pa-
rameters. There are many programming lan-
guages that support meta-programming (and
dynamic call constructs), including script lan-
guages (like JavaScript, Ruby, Python) as well
as functional languages, such as Erlang and
Scheme.

2.1. MFA-calls

In Erlang, MFA function calls provide the stan-
dard way of executing a function from inside
another one. These call expressions can be writ-
ten using the following syntax:
module_name:function_name(arg1, ...,argN)

Each of module_name and function_name must
be either an identifier (atom literal) or an Er-
lang expression that evaluates to an identifier
determining the name of the callee. Observe that
the arity is fully defined at compile-time, with
the number of parameters actually enumerated
between the parentheses. When a call is written
in the above syntax and both function identi-
fiers are given as atom literals, we say that the
function call is a static MFA-call. It is said to
be static because the identifiers of the function
are given statically, at the location of the call.
Most static analyser software can successfully
observe such call constructs and can build the
corresponding call graph, however, they simply
omit dynamic call methods.

Static analysis of function calls in Erlang 67

In dynamic MFA-calls, either the module
name or the function name is given with
non-literal expressions (for instance, with vari-
ables). Static analysis of such calls requires some
kind of data-flow analysis which uncovers the
origin of the data (for example, the values bound
to the variables).

2.2. Apply-calls

As we already mentioned, there is another call
construct in Erlang, the so-called apply-call,
which is based on a built-in higher-order func-
tion called apply. (We note that similar call
constructs exist in various programming lan-
guages.) This construct is dynamic by nature,
since the identifiers of the called function are
given by means of the arguments of another rou-
tine, which is evaluated certainly just at run-time.
The apply-calling expressions can be written us-
ing the following syntax:
apply(module_name,function_name,arg_list)
where arg_list ≡ [arg1, ...,argN]

The call primarily refers to a built-in func-
tion called apply that is located in the module
erlang (one may refer to it as erlang:apply/3).
Its parameters determine the secondarily referred
function that is being called at run-time. Each
of module_name and function_name must be
either an identifier (atom literal) or an Erlang
expression that evaluates to an identifier, while
arg_list should evaluate to an Erlang list whose
length precisely determines the arity of the callee
at run-time.

Listing 1 shows a simple apply-call. Since the
identifiers are given as atom literals, one may
regard this simple case as a static apply-call.
However, as we already stated, apply-calls are
dynamic by their nature, so in this paper we will
treat and analyse apply-calls as fully dynamic
constructs. In Listing 2 a more complex example
shows a function call referring to the same func-
tion whilst demonstrating possible difficulties of
static analysis implemented on dynamic function
calls. Note that we already came to the need of
data-flow analysis and additional static analysis
methods, which motivates us to examine our pos-

sibilities on static analysis of dynamic function
calls.

Listing 1. Simple apply-call
apply(io, format , ["hello", []]).

Listing 2. More complex apply-call
f() -> {format , io}.
g() -> {F, M} = f(),

Rest = [[]],
Args = ["hello" | Rest],
apply(M, F, Args).

3. Static analysis of function calls

In the context of static, context-insensitive call
analysis, “function” stands for an identifier (or
a signature) of a routine, that is a (possibly mini-
mal) set of data that can unambiguously identify
the routine. Basically, static function analysis
aims to extract these function descriptors and
their calling connections into a sound function
call graph, which can be used within further
analysis or program transformations. We assume
that each routine of the program under analysis
has such a function descriptor (also referred to
as semantic function entity).

In the following sections we define the con-
nection between expressions of the source code
and semantic function entities involved in the
program, in terms of formal semantic rules. While
describing the semantics, we suppose that the
program code is represented by an abstract syn-
tax tree, so semantic rules instance syntax ele-
ments as subtrees of the semantic program graph
(3-layered, labelled extension of the abstract syn-
tax tree, including the static semantics of the
program). Most of the concepts described in
the paper have been implemented in Refactor-
Erl [2], a source code analyser and transformer
tool, wherein many other kinds of static seman-
tic analysis can be carried out on Erlang pro-
grams [6].
Data-flow analysis. The analyser framework
of RefactorErl includes, in addition to many kind
of analysis, a data-flow analyser, which is able to
carry out 0th order and 1st order data-flow anal-

68 Dániel Horpácsi, Judit Kőszegi

ysis [7]. Its backward data-flow reaching relation
returns all the expressions affecting the queried
one. However, in the case of dynamic call analysis
we only need the ends of the reaching paths, that
is, those nodes that may potentially uncover the
possible values of expressions. We introduce the
concept of compact data-flow reaching, which
performs pure closure on the data-flow relation
and consequently returns only the nodes in which
the reaching terminates. If such an expression
is a literal, we found a possible value of the ex-
pression. Within the dynamic call analysis, we
use the 0th order compact backward data-flow
reaching relation.
Auxiliary definitions. Previously we shortly
introduced the syntax of Erlang function call
expressions. In this paper we only use a small
subset of the language syntax, on which we build
in the course of defining semantic rules, so the
syntax of the whole language is not specified by
formal means. Basically, Erlang programs consist
of forms (mostly functions) grouped into mod-
ules, where each function embodies a sequence of
expressions. In Erlang programs, atoms (named
constants) are used to identify entities, e.g. mod-
ules and functions.
In the rest of the paper,
– EAtom denotes the set of Erlang atom literal

expressions
– EList is the set of all expressions that con-

struct list values
– E denotes the set of all Erlang expressions

(including EAtom and EList as well).
We define some sets of semantic values (domains):
– Atom = set of possible atom values
– Atom′ = Atom ∪ {⊥}
– N≥ = {n≥|n ∈ N} where n≥ ≡ [n..∞)
– N′ = N ∪ N≥ ∪ {⊥}
And also, we define a total ordering on the ele-
ments of N≥ (n, m ∈ N):

n≥ ≤ m≥ if n ≤ m

Now, the following functions are defined over the
syntactic elements and map onto the semantic
domains, giving the bridge between syntax and
semantics.

V al : EAtom 7→ Atom
V al(e) returns the value given by the evalua-
tion of the atom expression e.

Length : EList 7→ N′
Length(e) gives the length of the Erlang list
value represented by the expression e. Note
that it maps to N′ and therefore may return
either a concrete number, a lower bound, or
the ⊥ symbol.
If the list length is only partially analysable
and thus a lower bound is calculable, then
Length(e) ∈ N≥. Also, if we cannot calculate
the list length at all, then Length(e) = ⊥.

0fcb
;⊆ E × E

e1
0fcb
; e2 means that the value of e1 flows into

e2 in 0th order using compact reaching [7].
Finally, we define the set of semantic function
entities and define a function that returns such
entities based on their 3-tuple descriptor. Note
that each of the function identifiers may be un-
defined (⊥).
SemFun

The semantic function entities involved in the
analysed program

Function : Atom′ ×Atom′ × N′ 7→ SemFun
Function(m, f, a) returns the function entity
identified by its module name, function name
and arity.

In the following, e1
L

−−−→ e2 denotes a binary
relation between e1 and e2, which is a directed
graph edge (being labelled by L) between the
two graph nodes (e.g. expression occurrences) on
the implementation level.

3.1. Semantics of MFA-calls

In order to define the syntax of MFA-calls, we
use the previously introduced sets of language
elements. The abstract syntax of an MFA-call is
the following.

eMFA ≡ eMN :eFN (e1, . . . ,en)
In the above line, eMFA is a node belonging to an
MFA-call expression referring to a function with
exactly n parameters. We only assume that the

Static analysis of function calls in Erlang 69

module name (eMN), the function name (eFN),
and the actual parameters (e1, . . . , en) are given
as Erlang expressions.

eMFA, eMN , eFN , e1, . . . , en ∈ E

The following semantic rules define relations
between syntactic elements and semantic entities.
We have already seen that the parameters of an
MFA-call are explicitly enumerated within the
call, thus the arity of the callee is easy to calcu-
late. Consequently, the potential difficulties may
arise during the analysis of module and function
names, since they may flow into the expressions
eMN and eFN from an arbitrarily far point of the
program (e.g. from another module or another
application). Our goal is to uncover the possible
values of these expressions by use of data-flow
analysis in order to refine the call graph with the
dynamic call relations.

Static calls. First of all, we define the rule of
static MFA-calls, shown in rule MFA1. It is pretty
straightforward, but apparently a necessary part
of the model. In this case both the module name
and the function name are given as atom literals,
so the identifiers are given just at the point of
the call. One can see that the values of the atom
expressions together with the parameter count
exactly identify the function being referred. The
call expression is linked to the function entity
labelled by funref (static function reference).
Fully identifiable dynamic calls. When the
module name or the function name is not explic-
itly given as an atom literal, however, by applying
data-flow reaching we can successfully find out
some possible values of the expression(s), we can
identify some possible callee. Such references are
said to be dynamic and unambiguous.

The call expression is linked to all the possible
functions, labelled by dynref (dynamic function
reference). Listing 3 shows a dynamic MFA-call
in which the identification of the module name re-
quires data-flow analysis. The name comes from
another function call, the outer call is analysed
by using the rule MFA2.

Listing 3. Fully identifiable dynamic MFA-call
iomodule () -> io.
f() -> (iomodule ()): format ("hello ",[]).

Ambiguous function calls. Now let us define
a previously not detailed kind of call reference.
Namely, in the case if an element of the func-
tion descriptor cannot be determined by using
data-flow analysis either, we are not able to fully
identify the potentially referred functions. The
reason why we are not able to calculate, for exam-
ple, a function name, is that the data-flow path
ends not in an atom literal but in another kind
of expression from which the reaching cannot be
continued. In order to be able to consider such
cases, we introduce the concept of ambiguous
function references, where one identifier of the
callee is unable to be precisely calculated. List-
ing 4 demonstrates a call whose module reference
is unknown. Even in this case we note a function
reference, however, not to a fully defined function.
Instead, we define opaque functions and create
references to these special function entities.

We note that we do not deal with function
calls not specifying at least two of the three main
identifiers of a function (module name, function
name, and arity). Opaque functions consequently
only have exactly one undefined field in their de-
scriptor. In addition, there is a special case that
may appear during the analysis of apply calls,
namely, when the argument list is only partially
present, and based on it we can calculate a lower
bound of the function arity. This issue will be
detailed in the section of apply-call analysis. An
overview of dynamic/ambiguous calls and their
analysis is present in Figure 2.
Partially identifiable MFA-calls. As we men-
tioned, in the case of ambiguous references one
of the three main function identifiers is unable to
be determined by means of static analysis. Since
the arity is exactly given by syntax of MFA-calls,
the uncertainty may come from the identification
of the names.

Suppose that the function name is deter-
minable. If there is a case in which we cannot
determine the name of the referred module, we
cannot completely identify the potentially re-
ferred functions. In order to indicate this, we
create a reference that points to an opaque func-
tion whose module name is unknown (⊥). See
rule MFA3.

70 Dániel Horpácsi, Judit Kőszegi

If the module name is determinable and the
function name is not, we analogously get to the
rule for MFA-calls with unidentifiable function
names (see rule MFA4).

Listing 4 demonstrates a function call where
the function name comes from a case expression
and can be either “foo” or an arbitrary atom
read from the standard input. Observe that while
analysing this example we should apply each of
rule MFA2 and rule MFA4, since the first case
clause gives a fully identified name, in contrast
with the second one, which refers to a value that
is unknown at compile-time. Consequently, the
call expression is related to two different func-
tions: with dynref to a fully defined function,
and with ambref to an opaque function entity.

Listing 4. Ambiguous MFA-call
Fun = case read_int () == 0 of

false -> foo;
true -> read_atom ()

end ,
module:Fun(ok, 0)

In Listing 5 we show a call that is skipped
during the function analysis in order to avoid
storing calling relations that are not specified
enough and would excessively expand the call
graph.

Listing 5. Unanalysed MFA-call
{Mod , Fun} = {read_atom(), read_atom ()},
Mod:Fun(0)

3.2. Semantics of apply-calls

An apply-call may be regarded as a meta-call that
primarily refers to the erlang:apply/3 built-in
function and secondly refers to the function spec-

ified in the call parameters. The abstract syntax
of apply-calls is the following.

eAPP ≡ apply(eMN ,eFN ,eArgs)
In the above line, eAPP is a node belonging to an
apply-call expression. We only assume that the
module name (eMN), the function name (eFN),
and the actual list of parameters (eArgs) are given
as legal Erlang expressions (thus the argument
list does not have to be a list expression actually).

eAPP, eMN , eFN , eArgs ∈ E

The following semantic rules define dynamic call
relations between call expressions and function
entities.
Fully identifiable apply-calls. In case of
apply-calls, the module and function names as
well as the argument lists may be constructed
arbitrarily far from the call point. Provided that
applying data-flow reaching we can successfully
find out the possible value of the name expres-
sion(s) as well as the length of the argument list,
we can fully identify the callee. Such cases are
called to be dynamic, unambiguous references.
The call expression is linked to all the possibly
referred functions, labelled by dynref. Listing 6
shows an apply-call that requires data-flow anal-
ysis, but it is still possible identify the callee by
using rule APP1.

Listing 6. Fully identified apply-call
MN = io,
FN = format ,
Args = ["hello"],
apply(MN, FN, Args)

Partially identifiable apply-calls. Similarly
to MFA-calls, apply-calls may be ambiguous,
which means we cannot certainly identify every
callee. Any component of the 3-tuple identifying

MFA-call Apply-call

all identifiers are calculable dynamic dynamic

one of the identifiers is incalculable ambiguous ambiguous

module and function names plus a lower bound of the arity are calculable — ambiguous

at least two key identifiers are incalculable skipped skipped

Figure 2. Dynamic call types in detail

Static analysis of function calls in Erlang 71

eMN ∈ EAtom, eFN ∈ EAtom

eMFA
funref
−−−→ Function(V al(eMN), V al(eFN), n) (MFA1)

ex
0fcb
; eMN ey

0fcb
; eFN

eMN /∈ EAtom ∨ eFN /∈ EAtom, ex ∈ EAtom, ey ∈ EAtom

eMFA
dynref
−−−→ Function(V al(ex), V al(ey), n)

(MFA2)

ez
0fcb
; eMN ex

0fcb
; eFN ex ∈ EAtom, ez ∈ E \ EAtom

eMFA
ambref
−−−→ Function(⊥, V al(ex), n)

(MFA3)

the function may be incalculable at compile-time,
resulting in uncertain function references. In-
terestingly, due to the way the arguments are
passed to the function, there may appear situa-
tions where only a lower bound of the function
arity is calculable.

Suppose that the function name along with
the arity are determinable. If there is a case in
which the name of the referred module cannot
be calculated by use of data-flow analysis either,
we cannot fully identify the potentially referred
functions. In order to indicate this, the call ex-
pression is linked to an opaque function entity
whose module name is undefined (see rule APP2).
The rest of the identifiers are read out from the
code, while the relation is labelled by ambref
(ambiguous function reference).

We analogously construct a rule for ambigu-
ous apply-calls with an incalculable function
name (see rule APP3). The expression eAPP is
linked to an opaque function whose containing
module name and arity can be read out from the
code, however, its name is set to ⊥ (undefined).
The reference is labelled by ambref.

Listing 7. Ambiguous apply-call
MN = io,
FN = if read_int () == 1 -> format;

true -> read_stdin ()
end ,

apply(MN, FN, ["hello "])

Listing 7 shows an example in which the func-
tion name comes from a conditional statement.
The analysis uncovers that it may have the value
format, but on the other hand, it may come from
the standard input as well. This results in two

relations, based on the rules APP1 and APP3:
a dynamic reference goes to io:format/1 and an
ambiguous one to io:⊥/1.

Now suppose that the module name and the
function name are determinable. If we cannot
gather any information about the arity of the
function by use of data-flow analysis either, a ref-
erence points to an opaque function whose arity
component is unknown (⊥), indicating that the
function reference is ambiguous in the arity (see
rule APP4).

Sometimes, even if we cannot determine the
arity, we still have a chance to calculate a lower
bound of the parameter count (it happens if the
length of the tail of an argument list is incalcu-
lable). If we can uncover such a bound, it will
be indicated beside the fact that the function
reference is ambiguous. To avoid creating lots of
opaque functions, we do not associate separate
functions to each different lower bound of the
arity the call may refer to. Instead, we identify
the greatest lower bound and we link only one
opaque function to the call, using the minimum
of the lower bounds as arity. Let us define the
following predicate.

AL(eList) = eList
0fcb
; eArgs ∧ Length(eList) ∈ N≥

So AL(e) is true if and only if e flows into the
argument list of the call and its length is not fully
known, but its lower bound can be calculated
with static analysis.

By utilising the AL predicate, we can give
the rule for the calls with lower-bounded arities
(see APP5). The rule shows that even if many
lower-bounds of the arity are calculable, we unify
them into a single one, which is actually the

72 Dániel Horpácsi, Judit Kőszegi

ex
0fcb
; eMN ez

0fcb
; eFN ex ∈ EAtom, ez ∈ E \ EAtom

eMFA
ambref
−−−→ Function(V al(ex),⊥, n)

(MFA4)

ex
0fcb
; eMN ey

0fcb
; eFN eL

f0cb
; eArgs

ex, ey ∈ EAtom, eL ∈ EList, Length(eL) ∈ N
eAPP

dynref
−−−→ Function(V al(ex), V al(ey), Length(eL))

(APP1)

ez
0fcb
; eMN ex

0fcb
; eFN eL

f0cb
; eArgs

ex ∈ EAtom, ez ∈ E \ EAtom, eL ∈ EList, Length(eL) ∈ N
eAPP

ambref
−−−→ Function(⊥, V al(ex), Length(eL))

(APP2)

greatest lower bound of the arity. As N≥ is a to-
tally ordered set, the function minimum can be
used to get the minimal element.

Listing 8. Lower bounded arity in an apply-call
msg() -> if is_young(user ()) ->

[$h,$i,$ |read_stdin ()];
true ->

[$h,$e,$l,$l,$o,$ |read_stdin ()]
end.

f() -> apply(io, format , msg ()).

In listing 8 we demonstrate the use of
rule APP5. In this example there are two dif-
ferent lower-bounded argument lists belonging
to the call: one with length 3≥, and another one
having 6≥ elements. Consequently, the greatest
lower bound is 3, and thus the arity of the am-
biguously referred opaque function is 3≥.

The “may be” relation

Let us define
mfa : SemFun 7→ Atom′ ×Atom′ × Int′

where mfa(f) results in the 3-tuple function de-
scriptor identifying f . We claim that

mfa(Function(m, f, a)) = (m, f, a)
In the previous sections we have introduced dy-
namic and ambiguous function references, which
relate expressions to function entities. Also, we
presented the use of opaque functions, giving

the opportunity to precisely represent ambigu-
ous references. However, these opaque functions
are special, they may not be regarded as legal
elements of the function call graph.

To integrate opaque functions into the call
graph, the first step we do is associating these
functions to fully defined ones. This relation is
called may_be, and it connects opaque functions
to non-opaque ones that are potential targets
of ambiguous calls. Namely, if the unambiguous
and the ambiguous functions are identical in the
two identifier components defined in the opaque
function, the concrete function corresponds to
the opaque one. In other words, the concrete
function may only differ in the one identifier that
is undefined in the opaque function. This relation
is defined by rule MAY1.

A special kind of opaque function has a lower
bound of its arity. While looking for possible
may_be connections, one has to take into account
not only the names but also the lower bound of
the opaque function. A concrete function entity
may be associated with a fully defined one only
if their names are equal and the concrete arity
complies with the lower bound (see rule MAY2).

With the above relation we successfully in-
cluded the information about ambiguous refer-
ences and opaque functions into the model of
semantic functions by associating opaque enti-
ties with concrete ones. Thus we do not have to
consider and directly handle opaque functions
during further analyses.

Static analysis of function calls in Erlang 73

ex
0fcb
; eMN ez

0fcb
; eFN eL

f0cb
; eArgs

ex ∈ EAtom, ez ∈ E \ EAtom, eL ∈ EList, Length(eL) ∈ N
eAPP

ambref
−−−→ Function(V al(ex),⊥, Length(eL))

(APP3)

ex
0fcb
; eMN ey

0fcb
; eFN eL

f0cb
; eArgs

ex ∈ EAtom, ey ∈ EAtom, eL ∈ EList, Length(eL) = ⊥
eAPP

ambref
−−−→ Function(V al(ex), V al(ey),⊥))

(APP4)

ex
0fcb
; eMN ey

0fcb
; eFN eList

f0cb
; eArgs

ex, ey ∈ EAtom, eList ∈ EList, Length(eList) ∈ N≥

eAPP
ambref
−−−→ Function(V al(ex), V al(ey), Arity)

(APP5)

where Arity = min{Length(eList) | eList ∈ EList ∧AL(eList)}

Extending the call graph

Let us define the function
Body : SemFun 7→ P (E)

where Body(f) contains all expressions that are
inside the function body of f (if f is actually
defined in the code). If f has no definition, then
Body(f) is an empty set.

Consider a function call expression e and the
function entity that contains this expression (that
is, f ∈ SemFun and e ∈ Body(f)). The basic
part of the call graph is built upon the informa-
tion gathered about static MFA-calls. Namely, if
the expression inside f refers to the function f ′,
the call graph contains an edge from f to f ′.

e
funref
−−−→ f ′

e ∈ Body(f)
f

funcall
−−−→ f ′

However, in our representation there are other
kinds of function calls registered, so to be able to
distinguish the different call types, we label the
edges of the call graph. Static calls are labelled
by funcall.

Another group of function calls that we can
successfully identify is the unambiguous dynamic
call. In such calls the identifiers of the callee may
be defined not at the call but at another program
part, provided that they are fully calculable with
data-flow reaching.

e
dynref
−−−→ f ′

e ∈ Body(f)
f

dyncall
−−−→ f ′

In our call graph the unambiguous dynamic calls
are labelled by dyncall. These references are as
certain as static ones are, that is, neither ap-
proximation nor heuristics are applied during
analysis.

The third kind of analysed references are am-
biguous references. A such function reference
always points to an opaque function entity, which
is not fully defined. We do not include opaque
functions into the call graph, instead, we asso-
ciate such functions with fully defined ones. The
latter relation is called may_be. Consequently,
the combination of the ambiguous reference and
the may_be relation determines the ambiguous
function calls.

e
ambref
−−−→ f ′ f ′

may_be
−−−→ f ′′

e ∈ Body(f)
f

ambcall
−−−→ f ′′

By applying this rule, a function with an
ambiguous call expression will be linked to all
the functions the call may refer to. Apparently, a
call may only refer to exactly one function, how-
ever, static analysis cannot determine which of
the ambiguously called functions will be actually
called at run-time.

74 Dániel Horpácsi, Judit Kőszegi

mfa(f) = (⊥, n, a) ∨mfa(f) = (m,⊥, a) ∨mfa(f) = (m, n,⊥) mfa(f ′) = (m, n, a)
m, n ∈ Atom, a ∈ N

f
may_be
−−−→ f ′

(MAY1)

mfa(f) = (m, n, i≥) mfa(f ′) = (m, n, j)
m, n ∈ Atom, i, j ∈ N, j ≥ i

f
may_be
−−−→ f ′

(MAY2)

4. Use cases in the RefactorErl
refactoring tool

By refining the call graph with dynamic invo-
cations, we get a deeper and more accurate in-
sight into the inter-procedural relationships of
the system under analysis. While performing dif-
ferent code analysis, refactoring transformations,
or cyclic dependency examination, we can utilise
the refined function call information. Basically,
the refined call relation influences the preciseness
of almost every function-related refactoring steps
and code analysis (also including code clustering,
whose result highly depends on call relations).

Side effect analysis. So far, in the case of
expressions containing dynamic calls, we could
not decide whether they have side effects or not,
since we did not know which function is being
called within the expression (potentially having
side effects). By default, the Refactorerl tool
regards every dynamic call as side effected until
any analysis has successfully proved the contrary.

With the new call analysis results we are able
to refine the static analysis of side effects. When
an unambiguous dynamic call is recognised, we
can identify the callee and propagate its side ef-
fects related properties. In the example below we
have a function named f which calls the function
foo via an apply-call. If foo is provably side effect
free, then f is certainly side effect free as well.
f(S) -> apply(m, foo , [S]).

Refactoring. The result of the side effect
analysis obviously has impact on code refactor-
ing transformations, since they are based on the
static code analysis. For instance, when we re-
order the arguments of a function, the actual
parameters in the calls to this function should
also be reordered. However, if any of the parame-
ters might have side effects, we do not allow the

transformation, as it might violate the behaviour
preservation principle of refactoring (note that
in Erlang, the arguments of a call are evaluated
strictly from left to right). Now with the help of
dynamic function call analysis we can reduce the
number of the expressions with indeterminate
dirtiness, thus we can allow much more transfor-
mations to perform.

As an other example, in case of renaming
a function we should replace all occurrences of
the old function name with the new one. If we did
not recognise the dynamic references of a func-
tion, we would not be able to change the function
name inside those expressions and consequently
we would completely modify the meaning of the
program. Listing 9 shows a module whose func-
tion plus is called dynamically. We rename plus
to add (Listing 10). If we did not have dynamic
call analysis, no references would be renamed,
resulting in undefined function calls and run-time
errors.

5. Conclusions

In this paper we presented that the function
analysis and the data-flow analysis can be effec-
tively combined and we also defined how static
function call graphs of Erlang programs can be
extended with dynamic call references uncov-
ered by use of data-flow analysis. We successfully
classified the dynamic call constructs of the lan-
guage both on the syntax level and based on
the way the function identifiers and call argu-
ments are constructed and passed to the call.
We defined static and dynamic calls, as well as
MFA-calls, apply-calls, whose syntax definition
was formally discussed. Also, we formally defined
the connection between dynamic call expressions
and their callee, and we introduced the concept

Static analysis of function calls in Erlang 75

Listing 9. Original
-module(m).

plus(A,B) -> A + B.

f(A,B) -> apply(m,plus ,[A,B]),
Fun = plus ,
m:Fun(A,B).

Listing 10. Renaming plus to add
-module(m).

add(A,B) -> A + B.

f(A,B) -> apply(m,add ,[A,B]),
Fun = add ,
m:Fun(A,B).

of ambiguous calls. Ambiguous references are
not calculable at compile-time and therefore are
not fully identified by static analysis, but we
presented a method that represents ambiguous
calls by opaque function entities and may_be
relations in order to include them into the call
graph. Finally, we precisely formalised how the
newly defined references can refine the static call
graph.

6. Related results

As far as we are aware of existing static anal-
yser tools for the Erlang programming language,
only TypEr (Type Annotator of Erlang Code [8])
extends its call graph — built from static func-
tion calls — with a subset of possible dynamic
calls. Unlike other Erlang type analyses (e.g.
soft-typing by Nystrom [9] and sub-typing by
Marlow and Wadler [10]), the success typing
method of TypEr is present in the Erlang/OTP
environment. In case of dynamic MFA-calls it
tries to use the result of a kind of data-flow
analysis to gather out the module and function
names. In contrast to our analysis method, it
extends the call graph with a dynamic call only
if both the module and function names are clearly
deducible, while apply-calls and ambiguous calls
are completely ignored.

Other dynamically typed functional (and
scripting) languages provide similar dynamic
function call constructs. There are a large
number of papers investigating static analy-
sis and typing of dynamically typed languages.
For JavaScript [11] as well as for Scheme [12]
well-defined typing, data- and control-flow anal-
ysis methods have been developed. Nevertheless,

to our best knowledge, none of these has detailed
the consideration of dynamic call constructs.

In imperative languages, a commonly applied
method to construct dynamic calls is using func-
tion pointers (variables that point to the address
of functions). Building call graphs in the face of
pointers requires points-to analysis to provide
accurate results, which means we have to esti-
mate the contents of pointer variables by prop-
agating pointer assignments, copies, and arith-
metic across program data flows. There is a large
body of theoretical work on various pointer anal-
yses [13] and their application for call-graph
construction with different degrees of cost and
precision [14,15].

7. Future work

We presented how data-flow analysis can help to
refine the function call graph, however, data-flow
relations can also be adjusted according to the
new information about dynamic calls. Conse-
quently, the data-flow analysis and the function
analysis mutually influence each other. It would
be interesting to define an iterative algorithm
that produces more and more precise data-flow
information and call graph, to examine the cost
and result of each iteration step, and to give
a reasonable termination condition.

When function references cannot be identi-
fied with the use of data-flow analysis either, we
may apply analyses taking run-time details into
account. Possibilities include symbolic evaluation
as well as dynamic analysis.

Further development steps could deal with
eval expressions, which are applicable for evalu-
ating any Erlang code stored in a string. Such

76 Dániel Horpácsi, Judit Kőszegi

constructs could result in additional dynamic
function calls, as the evaluated string may con-
tain function calls to be analysed in some way.
The static analysis of eval constructs present in
Erlang is an open question.

Acknowledgement

We would like to thank Zoltán Horváth, Róbert
Kitlei and Melinda Tóth for their help and sup-
port given during our research. The project was
supported by TECH_08_A2-SZOMIN08.

References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts, Refactoring: Improving the Design
of Existing Code. Addison-Wesley Professional,
July 1999.

[2] “RefactorErl Home Page,” 2011,
http://plc.inf.elte.hu/erlang.

[3] F. Cesarini and S. Thompson, ERLANG Pro-
gramming, 1st ed. O’Reilly Media, Inc., 2009.

[4] “Open Source Erlang,” 2011,
http://www.erlang.org.

[5] B. G. Ryder, “Constructing the Call Graph of
a Program,” IEEE Trans. Softw. Eng., Vol. 5,
No. 3, 1979, pp. 216–226.

[6] Z. Horváth et al., “Modeling semantic knowledge
in Erlang for refactoring,” in International Con-
ference on Knowledge Engineering, Principles
and Techniques, KEPT 2009, Selected papers,
ser. Studia Universitatis Babeş-Bolyai, Series In-
formatica, Vol. 54(2009) Sp. Issue, Cluj-Napoca,
Romania, Jul 2009, pp. 7–16.

[7] M. Tóth, I. Bozó, Z. Horváth, and M. Tejfel, “1st
order flow analysis for Erlang,” in 8th Joint Con-

ference on Mathematics and Computer Science,
MACS 2010, 2010.

[8] T. Lindahl and K. Sagonas, “Typer: a
type annotator of erlang code,” in Proceed-
ings of the 2005 ACM SIGPLAN workshop
on Erlang, ser. ERLANG ’05. New York,
NY, USA: ACM, 2005, pp. 17–25. [Online].
http://doi.acm.org/10.1145/1088361.1088366

[9] S.-O. Nyström, “A soft-typing system for Erlang,”
in Proceedings of the 2003 ACM SIGPLAN
workshop on Erlang, ser. ERLANG ’03. New
York, NY, USA: ACM, 2003, pp. 56–71. [Online].
http://doi.acm.org/10.1145/940880.940888

[10] S. Marlow and P. Wadler, “A practical
subtyping system for Erlang,” SIGPLAN Not.,
Vol. 32, August 1997, pp. 136–149. [Online].
http://doi.acm.org/10.1145/258949.258962

[11] S. H. Jensen, A. Møller, and P. Thiemann, “Type
Analysis for JavaScript,” in Proc. 16th Interna-
tional Static Analysis Symposium, SAS ’09, ser.
LNCS, Vol. 5673. Springer-Verlag, August 2009.

[12] O. Shivers, “Control-Flow Analysis in Scheme,”
in PLDI, 1988, pp. 164–174.

[13] B. Steensgaard, “Points-to analysis in almost
linear time,” in Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, ser. POPL ’96. New
York, NY, USA: ACM, 1996, pp. 32–41. [Online].
http://doi.acm.org/10.1145/237721.237727

[14] E. Horváth, I. Forgács, Ákos Kiss, J. Jász, and
T. Gyimóthy, “General flow-sensitive pointer
analysis and call graph,” in Proceedings of the
Estonian Academy of Sciences, Engineering,
Vol. 11, December 2005, pp. 286–295.

[15] A. Milanova, A. Rountev, and B. G. Ryder, “Pre-
cise call graph construction in the presence of
function pointers,” In Proceedings of the Second
IEEE International Workshop on Source Code
Analysis and Manipulation, Tech. Rep., 2001.

e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 77–85, DOI 10.5277/e-Inf130108

Software Engineering Team Project –
lessons learned

Bogumiła Hnatkowska∗
∗Faculty of Computer Science and Management, Institute of Informatics, Wrocław University of Technology

bogumila.hnatkowska@pwr.wroc.pl

Abstract
In the 2010/11 academic year the Institute of Informatics at Wroclaw University of Technology
issued ’Software Engineering Team Project’ as a course being a part of the final exam to earn
bachelor’s degree. The main assumption about the course was that it should simulate the real
environment (a virtual IT company) for its participants. The course was aimed to introduce issues
regarding programming in the medium scale, project planning and management. It was a real
challenge as the course was offered for more than 140 students. The number of staff members
involved in its preparation and performance was more than 15. The paper presents the lessons
learned from the first course edition as well as more detailed qualitative and quantitative course
assessment.

1. Introduction

Most of the Technical Universities offer a course
‘Team project’ for the under graduate students
but rather rarely such a course is a part of final
exam to earn bachelor’s degree.

Polish Ministry of Education published ’Stan-
dards of education for Computer Science faculty
(Bachelor studies)’ in 2007 [1]. The document not
only forced the Universities to offer the course
mentioned above, but also gave the opportunity
to treat it as a part of bachelor’s thesis. The
Institute of Informatics at Wroclaw University
of Technology seized this chance and included
’Software Engineering Team Project’ in the set
of obligatory courses. The course was issued first
time in the 2010/11 academic year in the winter
semester. However, the course was elaborated
based on experiences gained from others, previ-
ously offered, courses.

The aim of the paper is to present the
lessons learned from the first course edition as
well as more detailed qualitative and quantita-
tive course assessment. The gained experiences

could be helpful in organizing similar courses,
and the description could serve for comparison
purposes.

The paper is organized as follows. Section 2
presents the course assumptions, while Section 3
– the process of course preparation. Section 4
gives a detailed description of the course imple-
mentation. The course evaluation is the main
part of Section 5. It presents valuable statistics,
interesting observations and lessons learned. The
last Section 6 summarizes the paper.

2. Course design

The main assumption about the course was that
it should simulate the real environment (a virtual
IT company) for its participants. The course was
aimed to introduce issues regarding programming
in the medium scale, project planning and man-
agement. It was a real challenge as the course was
offered for more than 140 students. The number
of staff members involved in its preparation and
performance was more than 15.

78 Bogumiła Hnatkowska

The aim of the course was to develop some-
thing useful for a customer (usually a software
product), and possibly to deploy it in a target
environment. The course was thought as a fi-
nal checking of the effects of previously offered
courses, as it demanded the broad knowledge of
software engineering.

According to [2] the Software Engineering
Team Project was placed at the 3rd level of ma-
turity:

Defined. Class projects are undertaken based
on a defined, documented, and standardized pro-
cess. The instructor relies on an established pro-
cess which serves as a foundation for further
process improvement. Course practices can be
consistently implemented, regardless of the pres-
ence or absence of certain key instructors.

We have also implemented some practices
from the 4rd maturity level [2]:

Quantitative Managed. Course projects are
quantitatively measured using statistical methods.
Measurements on student projects are gathered
and analyzed for further improvement.

The course schedule was planned for only
10 weeks of very intensive work. A student was
given 15 ECTS points for the course, what was
translated into 40 hours per week of work for each
course participant (9 hours at the Institute, and
31 hours for the private study). No other forms
than project were involved in the course. Course
design was prepared and is further presented
according to the suggestions given in [3]. The
description considers following issues:
– team formation,
– team supervision,
– problem statement and assignment,
– team communications,
– team assessment,
– development process.

2.1. Team formation

There are two possibilities for team formation [3]:
1. students create teams by themselves,
2. students are assigned to the teams.

We followed the first scenario, as it was easier
from managerial point of view. The students
were expected to organize themselves into four

people teams (exceptionally, 3 or 5 people were
allowed). The team was organized based on stu-
dent’s previous experiences. The general assump-
tion was that the team is self-organizing with
inter-changeable roles.

2.2. Team supervision

To simulate the reality, students should have a
considerable amount of freedom. On the other
hand, since students usually had no project expe-
rience, some amount of supervision, monitoring
and guidance was needed to ensure sufficient
progress and a successful result [3]. It was the
responsibility of a team supervisor. Each supervi-
sor looked after 1–4 teams (in one case 8 teams).

Project’s supervisor played many roles. First
of all his/hers responsibility was to formulate a
project subject and its requirements (both func-
tional and non-functional). In that way the per-
son became a product owner. He or she was also
responsible for steering the project complexity.
The supervisor was allowed to reduce the scope
(if it occurred unrealistic) or to extend it (if the
capability of the team was greater). He/she also
decided about final product assessment. Addi-
tional responsibility of the person was to give
continuous feedback to the teams.

2.3. Problem statement and assignment

Each team selected a subject of the project from
the list of themes, proposed by academic teach-
ers playing the role of supervisors. Teams were
also allowed to propose something interesting
by themselves (the proposals were assessed by
the supervisors, and after acceptance were real-
ized). As the course was a part of the final exam,
all themes had to be accepted by Department
Authorities before the start of classes.

2.4. Team communications

Team members needed to communicate quite
often. The responsibility of the University was
to prepare the conditions for that. Depending
on the type of project and the decision of the
supervisor the team met at the University (orga-

Software Engineering Team Project – lessons learned 79

nized lessons): once per week for 9 hours, twice
a week for 4,5 hours or three times a week for
3 hours. In one classroom at most 4 teams were
working in the same time. Each had access to
computers, and a blackboard. In [3] there was a
suggestion, that each team should create and reg-
ularly maintain a web page, and have documents
repository.

2.5. Assessment

The supervisor was responsible for determining
student’s final grade. There are two common
approaches to students’ assessment [3]:
1. to give each team member the same grade

and,
2. to give each team member a grade based on

his individual contribution.
We combined both of them. In general the whole
team obtained the same grade. It was offered bas-
ing on product quality, documentation quality,
and the product presentation. The main focus
was put on the final product itself. Its presence
was a necessary condition to pass the course.
The second element taken into account was the
student engagement. To motivate the students
to better work, the supervisor was allowed to
give a student so called yellow card to indicate
that his/her engagement in the project was too
low, and the quality of his/hers artifacts were
bad. The first yellow card decreased the final
grade by 1, while the second yellow card became
a red card and meant that the student failed the
course.

We pondered over including peer to peer as-
sessment component to the student’s assessment
recommended by many authors [3, 4], but finally
we rejected this idea. We had bad experiences in
using it in past projects. The students did not
want to fairly judge each other. Similar results of
formally conducted experiments were reported
in [5].

2.6. Development process

The course assumption was that a development
process should involve all necessary stages of
software development from requirements to im-

plementation and testing. A stage of project
deployment was welcomed. The selected devel-
opment process should fit to different projects’
characteristics.

3. Course preparation

Preparation for the course was rather a long
process which took about 6 months. The au-
thorities of Institute of Informatics appointed
8 people team for that purpose. The staff
members team involved experts from differ-
ent domains: software engineering, data bases,
computer networks, programming languages,
and net administrators. The team consisted
of people with experiences in providing team
projects before, what resulted in some publica-
tions, e.g. [6].

The main task of the team was to develop
course’s recommendations including methodolo-
gies (both development and managerial), best
practices, and supporting tools. It was expected
that the team will also prepare educational ma-
terials for both: the faculty staff members, and
students attending the course.

The task was challenging of many reasons:
(1) very short time of project realization (only 10
weeks), (2) diversity of projects’ subject (the rec-
ommended tools, techniques and practices must
have been adjusted to all of them).

The outcomes of the course preparation pro-
cess included a report, published as an internal
document by the Institute of Informatics, cov-
ering all the topics mentioned above as well as
some publications presented on the National Con-
ference in Software Engineering [7], and on the
International Conference ISAT [8].

The main recommendations were as follows:
– methodologies: Scrum methodology was se-

lected as a basic one, as it fited to different
kinds of projects which could be done in an it-
erative manner. The team considered several
methodologies, both agile (Scrum, XP) and
heavier ones e.g. UP, RUP. The UP method-
ology was recommended only for typical soft-
ware development projects, for which the
strong need for documentation existed. The

80 Bogumiła Hnatkowska

assumption was that each project should use
at least: Product backlog, and Sprint back-
log [9]. The Sprint backlog should contain
tasks together with time evaluation (for at
least 90% of sprint capability, about 30 h
a week for each team member). The other
artifacts (e.g. specifications, documentations
etc.) were under supervisor jurisdiction,

– best practices: The staff team analyzed the
best practices for all above mentioned soft-
ware development processes, trying to define
a minimal set of the most useful ones (oblig-
atory practices). The selected practices in-
cluded: iterative development (sprints), and
self-organizing team with daily meetings [9].
Since each development process includes re-
quirement specification, the requirements
were presented with the use of product back-
log. Requirement analysis, if it is possible,
should be based on use-cases specification.
The coding standards should be used at im-
plementation stage. The other recommended
(but not obligatory) practices included: source
code sharing, TDD development, and contin-
uous integration,

– tools: Team Foundation Server (TFS) [10]
was selected as a primary supporting tool,
mainly because the University obtained pro-
fessional support from the Microsoft Pol-
ska Company; the tool allows to plan re-
leases, sprints, and tasks according to Scrum
methodology; it offers also other useful capa-
bilities, as source code management system,
or continuous integration support. It inte-
grates well with Microsoft Visual Studio and
good enough with Eclipse platform. Moreover,
it offers a web site for each projects, and is a
good mean for communication purposes (e.g.
Wiki). The functionality is available by the
Internet. Students were also allowed to use
virtual machines to deploy their solutions.

Before running the course, the staff team pre-
sented the assumptions about it to all members of
the Institute, e.g. organization details. Moreover,
a training covering the usage of the Team Founda-
tion Server in the context of Scrum methodology
was conducted.

4. Course implementation

The course was attended by 37 groups (146 stu-
dents) supervised by 17 people. Each supervisor,
as a product owner, set a number of releases,
a number of sprints, and a length of sprints.
Mostly, the projects had one release (66%), or
two (32%). One project had three releases (2%).
Sprints lasted 7 days (89%) or 14 days (11%).
The capacity for 7 days iterations was calculated
usually for 30h/iteration/person (10 teams) or
40h/iteration/person (27 teams) – it was under
supervisor jurisdiction.

The subjects were very diverse, e.g. Con-
ference management system, Team competi-
tion management system, System for collection
and analyzing samples of handwriting, Virtual
campus of Wroclaw University of Technology,
Collision-free motion of a group of autonomous
vehicles – an algorithm using the Webots en-
vironment. A few subjects came from industry,
e.g. System for support decision making based on
data collected in a data warehouse. The results of
some projects are visible in the Internet: [11–13].

5. Course assessment

5.1. Quantitative assessment

To compare different teams, and to find out ex-
isting shortcomings a quantitative assessment of
the course was done. The measure values were
taken from the TFS (product backlog, and sprint
backlog) which was the obligatory managerial
tool for all teams, and their supervisors. However,
one team of unknown reasons did not use the
TFS, so it was excluded from further considera-
tion. The research questions were formulated as
follows:
– What was the number of product back-

log items (PBI), and sprint backlog items
(tasks)?

– How many hours did the teams spend on
tasks realizing during the whole project?

– What was the coverage (in percent) of the
declared capacity?

Software Engineering Team Project – lessons learned 81

Statistic The number The number The number Capacity coverage
of PBI of tasks of work hours [%]

Average 22,68 128,33 792,50 0,77
Minimum 4,00 32,00 40,00 0,04
Maximum 89,00 313,00 1698,00 1,77
Standard deviation 19,53 68,76 375,76 0,36

Table 1. The basic measures for projects obtained from TFS tool

I wanted to establish the parameters of a ’typi-
cal’ project which could serve as a reference for
other projects. The answers for the questions are
presented in Table 1.

The number of PBI fluctuated from 4 to 89,
with the average 22,68. Lower numbers of PBI
usually meant that the granularity of them was
bigger. In many cases where the PBI number
was below 10, a development process was rather
a waterfall than iterative one with PBI elements
representing requirement specification, analysis,
design etc., and the tasks associated with them
were done in many sprints.

The number of tasks for a project ranged
from 32 to 313 (the average was equal to 128,33).
Lower number of tasks usually meant that they
were very long (sometimes they were estimated
for more than 30h) or that most of the tasks were
not documented in the TFS (for a team with 32
tasks, the coverage of the declared capacity was
23%, and for another team with 37 tasks, the
coverage was only 0,04%). A team with the high-
est number of tasks (313) defined – during the
whole project – a lot of small (2–4 hours) tasks.
The coverage of the declared capacity fluctuated
from 0,04% (for a team that defined only 37
tasks for 40 hours) to 170% (for a team with
the tasks estimated for 1698 hours). Probably, in
the former case, the team did not use the TFS
tool, while in the later case, the duration of tasks
were overestimated; half of them lasted more
than 8 hours, many – 20 hours. The average of
the capacity coverage was equal to 0,77%. The
number of teams with the capacity in the range
[80%;120%] was equal to 17, only 2 teams defined
the tasks for more than 120%.

The additional research questions were about
other good practices the teams could use, mainly,
how many teams used the source control version
tool, integrated with the TFS? (20 teams, 54%),

how many teams registered bugs in the TFS?
(8 teams, 21%, while only 5 had more than 3
bugs), how many teams used automatic tests?
(5 teams) It should be mentioned that the data
were collected only from the TFS tool. From
the qualitative assessment of the course I know
that some teams used another system of version
control, e.g. Git.

Because in [3] there is a suggestion to make
available some projects as good examples, I tried
to classify projects (product bakclog, sprints, str-
pint backlog) stored into the TFS into three
groups of quality: (1) target (2) minimal (3)
non-accepted.

To do that a checklists with disqualifying
questions were defined. Below the checklist to
disqualify a project to have a target quality is
presented:
1. PBI not associated with iterations,
2. Tasks not associated with PBI items, or some

sprints without the tasks at all,
3. Tasks without time evaluated,
4. Very long tasks – lasted more than 30h,
5. Mistakes in PBI and/or tasks descriptions,

e.g. many repetitions of the same PBI defini-
tion,

6. PBI realized in waterfall manner (tasks asso-
ciated with PBI were realized during many
sprints),

7. Capacity coverage outside the range [70%;
130%],

8. States of sprints and tasks not changed prop-
erly.
The elements disqualifying a project to have

a minimal quality are as follows:
1. 1–5 as for target quality,
2. Capacity coverage outside the range [50%;

150%].
According to the rules defined above we had

6 projects with target quality, 17 – with mini-

82 Bogumiła Hnatkowska

Statistic Course Quality of supporting Course
usefulness materials organization

Average 4,66 3,37 4,32
Minimum 2,00 1,00 1,00
Maximum 5,00 5,00 5,00
Standard deviation 0,65 0,96 0,82

Table 2. The assessment of course components steaming from closed questions

mal quality, and 14 – with non-accepted quality.
The number of bad projects seems to be too
big, but I hope that in the next edition this
number will decrease as there are some good
examples.

The conclusion from the facts presented
above is that the supervisors need to better
monitor the usage of the TFS tool. The limits
(min, and max) for the number of hours for a
person/week must be defined and obeyed – the
recommended value is 30. The maximal duration
for task estimation (8 hours) must be strongly
obeyed.

5.2. Qualitative assessment

To perform qualitative assessment of team
project a questionnaire for the students were
prepared. The questionnaire questions were as
follows:
1. (Closed question): Assess the following ele-

ments in the scale from 1 (the worst mark)
to 5 (the best mark):
– Course usefulness: . . .
– Quality of supporting materials: . . .
– Course organization: . . .

2. (Open question) Which elements of the course
were the most valuable?

3. (Open question) Which elements of the course
need to be improved/changed in the next is-
sues?
The questionnaires were filled after the final

exams, so telling the truth, we asked bachelors
about their opinion. The questionnaires were
available in two forms: paper and digital one
(published in the Internet). We gained the an-
swers from 93 students from 146 who managed
to finish the course (what gives 64% response
rate). The answers for the closed questions are
presented in Table 2.

The grades for all components were rather
high – the highest for course usefulness, the
smallest for course supporting materials. It is
something that should be improved in the next
edition.

The questionnaire consisted mainly of open
questions. It was a challenge to analyze them. I
had defined some synonyms that were present
in different answers, and next counted the num-
bers of people, who used these synonyms in their
answers. The results are presented below. The
threshold, below which the answers are not pre-
sented, was set to 10.

Figure 1 presents how many people pointed
out a specific element to be the most valuable.

As it is easily to observe, the team work (39
answers) and agile methodology (38) were per-
ceived as the best choices. An opportunity to
acquaintance the new technologies (17) and to
put different pieces together (to build the whole
project from the beginning to the end – deploy-
ment, 17 answers) was inspiring experience. The
students appreciated also regular meetings as
the means that motivated them to hard work
(14) – they needed to answer 3 questions at the
beginning of each meeting (what was done, what
problems were encountered and what is going to
be done to the next meeting). The team members
also thanked for interesting themes that allowed
them to deeply involve to the project (11).

Of course not all elements were the full suc-
cess. Figure 2 presents the elements that need to
be improved.

First of all the students complained about
the short time of the project (24 answers). The
Project Management Course was run in parallel
with the team project. The students reasonably
suggested to move Project Management Course
one semester back. They also found TFS envi-
ronment quite difficult and suggested to do a

Software Engineering Team Project – lessons learned 83

Figure 1. Number of answers for the questionnaire question nr 2

Figure 2. Number of answers for the questionnaire question nr 3

training before vacations (20). The access to the
TFS was not such efficient the students expected
(19). The students wanted also to meet more of-
ten (this opinion was given by the team members
who had organized meeting only 1 per week). The
students suffered a little from not clear enough
assessment system (10).

The same questions were asked to the aca-
demic teachers playing the role of projects’ su-
pervisors. But the results were very similar to
those obtained from the students.

Below a list of possible improvements is pre-
sented.

Course preparation:
– Project Management course should be moved

to the 6th semester,
– Training of the tools used within a course

should be provided in the 6th semester of
during vacations,

– Supporting materials should be improved.
Supporting tools:

– Performance parameters (throughput, re-
sponse time) of the TFS should be better,

– Opportunity of usage of another popular sup-
porting tool should be considered.
Course organization:

84 Bogumiła Hnatkowska

– Give the students a longer time for their own
topics formulation,

– Attract more topics from the industry,
– Make an assessment system more transpar-

ent.

6. Conclusions

The Software Engineering Team Project starting
from 2010/11 academic year is a compulsory
subject to all students of Informatics at Wroclaw
University of Technology. Many universities offer
a team engineering course as a part of the stud-
ies, e.g. [3, 14–17], but there are some important
differences between them and our proposal:
– Course outcome: system prototype versus a

working release of a system, often with its
installation version and a user manual,

– Focus: educational aims versus put things
together (part of the final exam),

– Methodology: due to documentation reasons
rather heavier methodologies versus as light
methodology as possible,

– Accompanying courses: lecture or seminars
versus none.
We found the first course edition as a success,

however some elements could be improved. The
weakest part of the course was the assessment.
More strict rules for it should be defined, espe-
cially taking into account the number of working
hours. We are going to introduce an obligatory
presentation of the project before the members
of faculty staff (the last time it was under a
supervisor jurisdiction). We are also going to
reward the best project with the highest grade
(5.5). At that moment we are preparing to the
second edition of the course for more than 160
students, e.g. a new version of training materials
is under development. The number of topics com-
ing from industry is a little bit higher than the
last year. We hope that we manage to eliminate
shortcomings and not to lose good points.

References

[1] Rozporządzenie ministra nauki i szkolnictwa
wyższego z dnia 12 lipca 2007. (2007). [Online].

http://www.bip.nauka.gov.pl/_gAllery/21/97/
2197/20070712_rozporzadzenie_standardy_
ksztalcenia.pdf

[2] J. Collofello and C. H. Ng, “Assessing the pro-
cess maturity utilized in software engineering
team project,” Journal of Engineering Educa-
tion, Vol. 90, No. 1, 2001, pp. 75–78.

[3] M. Bielikova and P. Navrat, “Experiences with
designing a team project module for teaching
teamwork to students,” Journal of Computing
and Information Technology, Vol. 13, No. 1,
2005.

[4] N. Clark, P. Davies, and R. Skeers, “Self and peer
assessment in software engineering projects,” in
Proc. of 7th Australasian Computing Education
Conference (ACE 2005), D. T. A. Young, Ed.
CRPIT, 2005, pp. 91–100.

[5] N. Herbert, “Quantitative peer assessment:
Can students be objective?” in Proc. of 9th
Australasian Computing Education Conference
(ACE 2009), S. Mann and S. Mann, Eds. CR-
PIT, 2009, pp. 63–71.

[6] I. Dubielewicz and B. Hnatkowska, “Improving
software development process implemented in
team project course,” in Proc. of the 8th Inter-
national Conference on Computational Science,
Part II. Berlin: Springer-Verlag, 2008, pp. 687
– 696.

[7] ——, “Praktyki w inzynierii oprogramowania –
perspektywa pracy zespolowej,” in Inzynieria
oprogramowania w procesach integracji syste-
mow informatycznych, C. O. Janusz Gorski,
Ed. Gdansk: Pomorskie Wydawnictwo
Naukowo-Techniczne PWNT, 2010, pp. 121–228.

[8] ——, “Best practices in students team projects,”
in Information systems architecture and technol-
ogy: IT models in management process, Z. Wil-
imowska, Ed. Wroclaw: Oficyna Wydawnicza
Politechniki Wrocławskiej, 2010, pp. 487–497.

[9] R. Levin. Understanding scrum –
best practices guide. (2010). [On-
line]. http://www.brighthub.com/office/project-
management/articles/68791.aspx

[10] J. Meier, J. Taylor, P. Bansode, A. Mack-
man, and K. Jones. Team development with
visual studio team foundation server. (2007,
Sep). [Online]. http://msdn.microsoft.com/en-
us/library/bb668991.aspx

[11] Collision-free motion of a group of au-
tonomous vehicles – an algorithm using the
webots environment. (2011). [Online]. http:
//www.youtube.com/watch?v=tzm2uU8_nQA

[12] Laboratory of the distributed computer
networks portal. (2011). [Online]. http:

Software Engineering Team Project – lessons learned 85

//156.17.130.12/Main.aspx
[13] Virtual campus of wroclaw university of

technology. (2011). [Online]. http://www.ii.pwr.
wroc.pl/WirtualnyKampusPWr/index.html

[14] D. Delaney and G. Mitchell. Tutoring
project-based learning: a case study of a third
year software engineering module at nui. (2005).
[Online]. http://www.aishe.org/readings/2005-
2/contents.html

[15] G. Dobbie and G. Bartfai, “Teaching software
engineering in a computer science department,”

in Proc. of International Conference Software
Engineering: Education and Pracitce, Dunedin,
New Zealand, 1996, pp. 58–63.

[16] Unit of study engg1805 professional
engineering & it. (2011). [Online]. http:
//sydney.edu.au/engineering/it/~engg1805/
Documents/ENGG1805CourseOutline.pdf

[17] M. Zaigham, “A framework for software engi-
neering education: A group projects approach,”
International Journal of Education and Infor-
mation Technologies, Vol. 1, 2007.

e-Informatica Software Engineering Journal (EISEJ) is an international, open access, peer-reviewed journal
that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and data mining in software engineering.

The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all
areas of software engineering research.

The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures,
technologies and tools used in processes along the software development lifecycle, but particular stress is laid on
empirical evaluation.

e-Informatica Software Engineering Journal is published online and in hard copy form. The online version
(which is our primary version) is open access, which means it is available at no charge to the public.

Topics of interest include, but are not restricted to:

— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
— Search-based software engineering

Papers can be rejected administratively without undergoing review for a variety reasons, such as being out of
scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods
via structured abstract or the evaluation of the proposed solution (empirical evaluation is strongly suggested).

The submissions will be accepted for publication on the base of positive reviews done by international Editorial
Board and external reviewers.

English is the only accepted publication language. To submit an article please enter our online paper submission
site.

Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
https://mc.manuscriptcentral.com/e-InformaticaSEJ
https://mc.manuscriptcentral.com/e-InformaticaSEJ

