
e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 7–26, DOI 10.5277/e-Inf140101

On Visual Assessment of Software Quality

Cezary Bartoszuk∗, Grzegorz Timoszuk∗, Robert Dąbrowski∗, Krzysztof Stencel∗
∗Institute of Informatics, University of Warsaw

cbart@students.mimuw.edu.pl, gtimoszuk@mimuw.edu.pl, r.dabrowski@mimuw.edu.pl,
stencel@mimuw.edu.pl

Abstract
Development and maintenance of understandable and modifiable software is very challenging.
Good system design and implementation requires strict discipline. The architecture of a project
can sometimes be exceptionally difficult to grasp by developers. A project’s documentation gets
outdated in a matter of days. These problems can be addressed using software analysis and
visualization tools. Incorporating such tools into the process of continuous integration provides a
constant up-to-date view of the project as a whole and helps keeping track of what is going on in
the project. In this article we describe an innovative method of software analysis and visualization
using graph-based approach. The benefits of this approach are shown through experimental
evaluation in visual assessment of software quality using a proof-of-concept implementation — the
Magnify tool.

1. Introduction

Software engineering is concerned with devel-
opment and maintenance of software systems.
Properly engineered systems are reliable, efficient
and robust. Ideally, they satisfy user require-
ments while their development and maintenance
is affordable. In the past half-century computer
scientists and software engineers have come up
with numerous ideas for how to improve the dis-
cipline of software engineering. Edgser Dijkstra
in his article [1] introduced structural program-
ming which restricted imperative control flow to
hierarchical structures instead of ad-hoc jumps.
Computer programs written in this style were far
more readable, easier to understand and reason
about. Another improvement was the introduc-
tion of the object-oriented paradigm [2] as a for-
mal programming concept in Simula 67. Other
improvements in software engineering include
e.g. engineering pipelines and software testing.
In the early days software engineers perceived
significant similarities between software and civil
engineering. However, it has soon turned out that

software differs from skyscrapers and bridges.
The waterfall model [3] that resembles engineer-
ing practices was widely adopted as such, de-
spite its original description actually suggesting
a more agile approach. Contemporary develop-
ment teams lean toward short iterations or so
called sprints rather than fragile upfront designs.
Short feedback loops allow customers’ opinions
to provide timely influence on software develop-
ment. This improves the quality of the software
delivery process.

In the late 1990s the idea of extreme pro-
gramming (XP) emerged [4]. Its key points are
straightforward: keep the code simple, review it
frequently and test early and often. Among nu-
merous techniques, XP introduced a test-driven
approach to software development (today known
as TDD). This approach encloses programming
in a tight loop with three rules: (1) one cannot
write production code unless there is a failing
test; (2) when there is a failing test, one writes
the simplest code for the test to pass; (3) after
the test passes one refactors the code in order
to remove all the duplicates and improve design.

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_8/einformatica2014Art1.pdf

8 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

This approach notably raised the quality of pro-
duced software and the stability of development
processes [5].

The emergence of patterns and frameworks
had a similar influence on architectures as de-
sign patterns and idioms did on programming.
Unfortunately, there seems to be no way to test
architectures in a similar way to testing code
with TDD. Although we have the ideas of how
to craft the architecture, we still lack the ways
to either monitor the state of an architecture or
enforce it. The problem skyrockets as software
gains features without being refactored prop-
erly. Moreover, development teams change over
time, work under time pressure with incomplete
documentation and requirements that are sub-
ject to frequent changes. Multiple development
technologies, programming languages and coding
standards make this situation even more severe.

Our research pursues a new vision for man-
agement of software architecture. It is based on
an architecture warehouse and software intelli-
gence. An architecture warehouse is a repository
of all software system and software process arti-
facts. Such a repository can capture architecture
information which was previously only stored
in design documents or simply in the minds of
developers. Software intelligence is a tool-set for
analysis and visualization of this repository’s
content [6–8]. That includes all tools able to
extract useful information from the source code
and other available artifacts (like version control
history). All software system artifacts and all soft-
ware engineering process artifacts being created
during a software project are represented in the
repository as vertices of a graph. Multiple edges
of this graph represent various kinds of depen-
dencies among those artifacts. The key aspects
of software production like quality, predictabil-
ity, automation and metrics are then expressed
in a unified way using graph-based terms. The
integration of source code artifacts and software
process artifacts in a single model opens new
possibilities. They include defining new metrics
and qualities that take into account all architec-
tural knowledge, not only the knowledge about
source code. The state of software (the artifacts
and their metrics) can be conveniently visualized

on any level of abstraction required by software
architects (i.e. functional level, package level,
class or method level).

This article demonstrates a new idea and its
proof-of-concept implementation – the tool Mag-
nify. Magnify is focused on quick assessment and
comprehension of software architectures. It visu-
alizes relative importance of components, their
quality and the density of their inter-connections.
The importance is rendered using the size of
symbols that depict components. It can be com-
puted using multiple arbitrary metrics. In our
experiments we utilized PageRank as a measure
of component importance, which behaved well
in practice. In order to visualize quality of a
component we used colors, where as usual green
denoted good quality, while red denoted poor
quality. Again, there are multiple metrics that
can be used to denote code quality. The examples
presented in Section 7 use lines of code as the
measure of quality. Such a simple metric may
seem unreliable. However, it reflects the com-
plexity of units of code (e.g. a class) and clearly
indicates complicated entities. The initial results
obtained from Magnify were presented in [9, 10].

The main contribution of this article when
compared to our previous works [6–11] is the ap-
plication of Magnify to a number of open-source
projects and thorough analysis of the results.
In our opinion Magnify can provide valuable in-
sights into a project for architects and developers
as discussed below.

We have considered numerous usage scenar-
ios of Magnify. Assume newcomers approaching
the project. They use this visualization to find
starting points for their journey through develop-
ment artifacts. They can even analyze whether
it is worth joining a project. If the most im-
portant components are bright red and/or the
coupling between those components is dreadfully
dense, perhaps it is better not to embark this
project. Architects can use the tool for everyday
assessment of the system under their supervision.
They can quickly notice e.g. (1) an unexpected
emergence of a new important component, (2)
a surprising degradation of a component, (3) a
change in quality of a component (i.e. changing
color from green to red), or (4) local or global

On Visual Assessment of Software Quality 9

thickening of the web of dependencies among
components.

The article is organized as follows. Section 2
addresses the related work. Section 3 recalls the
graph-based model for representing architectural
knowledge. Section 4 presents the method of
quick assessment of software architecture. Sec-
tion 5 presents usage scenarios of Magnify, and
Section 6 shows its architecture. Section 7 demon-
strates the application of Magnify to selected
open-source projects. Section 8 concludes.

2. Related work

The idea described in this article has been con-
tributed to by several existing approaches and
practices. A unified approach to software sys-
tems and software processes has already been
presented in [12]. Software systems were per-
ceived as large, complex and intangible objects
developed without a suitably visible, detailed
and formal descriptions of how to proceed. It
was suggested that software process should be
included in software project as parts of programs
with explicitly stated descriptions. The software
architect should communicate with developers,
customers and other managers through software
process programs indicating steps that are to
be taken in order to achieve product develop-
ment or evolution goals. Nowadays, the process
of architecture evolution is treated as an impor-
tant issue that severely impacts software quality.
There have been proposed formal languages to
describe and validate architectures, e.g. architec-
ture description language (ADL) [13]. In that
sense, software process programs and programs
written in ADLs would be yet another artifact
in the graph recalled in this paper.

Multiple graph-based models have been pro-
posed to reflect architectural facets, e.g. to rep-
resent architectural decisions and changes [14],
to discover implicit knowledge from architecture
change logs [15] or to support architecture anal-
ysis and tracing [16]. Graph-based models have
also become helpful in UML model transforma-
tions, especially in model driven development
(MDD) [17]. Automated transitions (e.g. from

use cases to activity diagrams) have been con-
sidered [18] along with additional traceability
that could be established through automated
transformation. An approach to automatically
generate activity diagrams from use cases while
establishing traceability links has already been
implemented (RAVEN) [19,20].

As the system complexity increases the role
of architectural knowledge also gains importance.
There are multiple tools that support storing and
analyzing that knowledge [21–24]. Architectural
knowledge also influences modern development
methodologies [25, 26]. It can be extended by
data gathered during software execution [27].
The aspect of tracing architectural decision to
requirements has been thoroughly investigated
in [28–30]. An analysis of gathering, management
and verification of architectural knowledge has
been conducted and presented in [31]. Changes
made in architecture management during last
twenty years has been summarized in the sur-
vey [32].

There are also approaches to trace the archi-
tecture and its possible deterioration. The Struc-
ture101 tool [33] uses the Levelized Structured
Map (LSM) to trace dependencies and to parti-
tion a system into layers. Another method called
Hyperlink Induced Topic Search is used in [34] to
evaluate object-oriented designs by link analysis.
The method has been verified to identify God
classes and reusable components. Furthermore,
the idea of architectural constraints [35] in the
form of constraint coupling can aid preventing
architectural decay. However, the methodology
and the tool Magnify described in this article are
visual and not limited to layered architectures.
Moreover, Magnify does not require adding new
artifacts to a project (like constraints). Every
software project can be evaluated by Magnify
just as it is.

Visualization of software architecture has
been a research goal for years. The tools like
Bauhaus [36], Source Viewer 3D [37], Gevol [38],
JIVE [39], evolution radar [40], code_smarm [41]
and StarGate [42] are interesting attempts in
visualization. However none of them simultane-
ously supports aggregation (e.g. package views),

10 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

drill-down, picturing the code quality and depen-
dencies.

3. Graph model

In this Section we recall the theoretical model [7]
for the unified representation of architectural
knowledge. Such a model caters for the following
key needs: (1) natural scalability, (2) abstraction
from programming paradigms, languages, specifi-
cation standards, testing approaches, etc, and (3)
completeness, i.e. all software system and soft-
ware process artifacts [12] are represented. The
model is based on a directed labeled multigraph.
A software architecture graph is an ordered triple
(V,L, E). V is the set of vertices that reflect
all artifacts created during a software project.
E ⊆ V × L × V is the set of directed labeled
edges that represent dependencies (relationships)
among those artifacts. L is the set of labels which
qualify artifacts and their dependencies.

Vertices of the project graph are created when
artifacts are produced during software develop-
ment process. Vertices can represent parts of the
source code (modules, classes, methods, tests),
documents (requirements, use cases, change re-
quests), coding guidelines, source codes in higher
level languages (yacc grammars, web service spec-
ifications, XML schemata), configuration files,
make files or build recipes, tickets in issue track-
ing systems etc. Vertices may be of different
granularities (densities).

Vertices are subject to modifications during
software development. It happens due to changes
in requirements, implementation process, bug
fixing or refactoring. Therefore, vertices must be
versioned. Versions are recorded in labels con-
taining version numbers (revisions) attached to
vertices and edges. Thus, multiple vertices can
exist for the same artifact in different version.
Example 3.1. A method can be described by
labels showing that it is a part of the source code
(code); written in Java (java); its revision is 456
(r:456); it is abstract and public.

3.1. Transformations

Transformations give the foundation for the soft-
ware intelligence layer of the toolkit [6]. Our
graph model is general and scalable as tested
in practice [11]. However, in the case of a large
project the model becomes too complex to be
human-tractable as a whole. Software architects
are interested both in an overall (top-level) pic-
ture and in particular (low-level) details. Select-
ing a specific subgraph is an example of a trans-
formation (e.g. in a graph of methods with a
call relation properly defined, the subgraph of
methods that call the given method). Queries
that compute such transformations are compu-
tationally inexpensive. Usually they only need
to traverse a small fraction of the graph. An-
other important family of transformations are
transitions. A transition maps a graph into a new
graph and may introduce new vertices or edges,
e.g. lifting the dependency relation from the level
of classes (a class depends on another) to the
level of packages. Further example of a transfor-
mation is a map that adapts a higher level of
abstraction, e.g. hiding fields and methods while
preserving class dependencies. Transformations
can be combined.
Example 3.2. For a given software graph G =
(V,L, E) and a subset of its labels L′ ⊆ L, the
filter is a transformation G|L′ = (V ′,L′, E ′) where
V ′ and E ′ have a label in L′.
Example 3.3. For a given software graph G =
(V,L, E) and t : L × L 7→ L′, the closure is the
graph Gt = {V,L′, E ′}, where E ′ is the set of new
edges resulting from the transitive closure of t
calculated on pairs of neighboring edges from E.

3.2. Metrics

The graph-based approach is in line with best
practices for metrics [43, 44]. It allows the trans-
lation of existing metrics into graph terms [45].
It ensures that they can be efficiently calculated
using graph algorithms. It also allows designing
new metrics, e.g. such that integrate both soft-

On Visual Assessment of Software Quality 11

ware system and software process artifacts. In
our model metrics are specific transformations
that map to the set of real numbers. For a given
software graph G = (V,L, E), a metric is a trans-
formation m : G 7→ R where R denotes real
numbers and m can be effectively calculated by
a graph algorithm on G.
Example 3.4. For a software graph G let CF
be the counting function CF (n, η1, η2, η3) =
#{m ∈ V | type(n) 3 η1 ∧ type(m) 3 η2 ∧ ∃e ∈
E : source(e) = n∧target(e) = m∧type(e) = η3},
where n ∈ V, η1, η2, η3 ∈ L. For a node n with a
label in set η1, CF counts the number of nodes m
with a label in set η2 such that there is an edge e
of label η3 from n to m. CF can be implemented
on G in O(|G|) time.
Example 3.5. Let NOC (Number Of Chil-
dren) denote a metric that counts the num-
ber of direct subclasses. Calculating such met-
ric in graph-based model reduces to filtering
and counting neighbors. It can be done quickly,
i.e. in O(|G|) time. Using the counting func-
tion NOC is implemented simply as: NOC (c) =
CF(c, class, class, inherits).
Example 3.6. Let WMC (Weighted Method
per Class) denote a metric that counts

∑n
i=1 ci

where ci is the complexity of the i-th method in
the class. If each method has the same complex-
ity, WMC is just the number of methods in the
class. Using the counting function the number
of methods in a class is implemented simply as:
WMC (c) = CF(c, class,method, contains).

Graph metrics depend only on the graph’s
structure. They are independent of any program-
ming language. Hence storing and integrating all
architectural knowledge in one place facilitates
tracing not only dependencies in the source code
but also among documentation and meta-models.
This opportunity gives rise to new graph-defined
metrics concerned with software processes.
Example 3.7. Let CHC (Cohesion of Classes)
denote a metric that counts the number of
strongly connected components of this graph. A
software is cohesive if this metric is 1. In the
graph-based model it is computed quickly, in time
O(|G|).

4. Software analysis method

Our method uses software architecture graphs
(see Section 3). Its goal is quick assessment
and comprehension of software projects. Assume
a software architecture graph G = (V,L, E)
such that L|V = {package, class} and L|E =
{contains, calls, imports}. A package contains
classes and packages. A package imports a pack-
age. A class calls a class. We also apply a tran-
sition of G that combines the relation contains
of packages and classes and the relation calls
between classes. Its result is the relation calls
among packages.

4.1. Visualization

A quick assessment and comprehension of a soft-
ware project can be done by a visualisation of the
two dimensions: (1) importance and (2) quality
of software artifacts. Following the research on
warehousing and analysis of architectural knowl-
edge [6, 7], we visualize the software in the form
of a planar representation of the directed multi-
graph of software artifacts and their relations.
We render the two dimensions using size and
color. The size of a node depicts its artifact’s
importance. The color of a node shows its arti-
fact’s quality. Intuitively, a big node denotes an
important artifact, while a small node denotes
an unimportant one. A green node denotes an
artifact of good quality, while a red node denotes
an artifact of poor quality. An artifact depicted
as a big red node should gain attention of soft-
ware architects and engineers because of its high
importance and poor quality. Figure 1 shows
basic examples.

As defined in Section 3, the graph-based
model embraces all types of artifacts that oc-
cur in a software project and all types of their
relations. Those include non-software artifacts
like use cases or artifacts related to the software
development process and additional attributes
for graph vertices and edges. We can e.g. enrich
the calls relation with the attribute call count
collected during a runtime analysis [46]. This
kind of data can be obtained using frameworks

12 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

(a) No metrics (b) Quality metrics (c) Importance metrics (d) Both kinds of metrics
Figure 1. Software artifacts – their importance and quality

(a) Package tree (b) Imports relationship (c) Runtime call count
Figure 2. Relationships between software artifacts – static and dynamic

like Kieker [27]. Such dimension as call count
can be depicted by thickness of graph edges. A
thick edge denotes frequent calls and a thin edge
denotes rare calls (see Figure 2c).

4.2. Analysis

In this section we assume a software project with
the following properties. (1) Static data, like the
source code, has been uploaded into its software
architecture warehouse. (2) Dynamic data, like
the runtime log of procedure calls, has been up-
loaded into its software architecture warehouse.
(3) These data have been preprocessed, in particu-
lar different project metrics have been calculated.
This allows the preparation of a visualisation of
this software project that facilitates its interest-
ing multi-dimensional analysis. Let us review the
key points of the presented approach.

We have to select artifacts to be depicted as
nodes of the graph. The size of this collection

is first of all determined by the abstraction
level of the assessment. Then further filters or
transformations can be applied (see Section 3).
Figure 3 shows two abstraction levels. Figure 3a
shows a smaller collection of top-level packages.
Figure 3b shows a bigger collection of low-level
classes.

There can be multiple intuitions behind the
definition of the importance of artifacts, e.g.
the amount of work needed to adjust the rest
of the system if this part of code gets changed.
Consequently, there can be different algorithms
that implement those intuitions with different
semantics. In particular PageRank [47] assigns
higher importance to more popular nodes. The
more edges point a node, the higher is its rank.
Such measure properly reflects the practical im-
portance of software artifacts. Figure 4 shows
sample visualizations. Figure 4a does not show
importance, while Figure 4b has big nodes for

On Visual Assessment of Software Quality 13

(a) Aggregated artifacts (b) Fine grained artifacts
Figure 3. The importance and the quality at different levels of abstraction

(a) No importance measure applied (b) PageRank as importance measure
Figure 4. Two visualizations of nodes – with and without importance shown

important packages and small nodes for less im-
portant packages.

There can also be multiple intuitions behind
the definition of the quality of artifacts. One
possible interpretation is the local complexity for
which there are numerous possible metrics. One of
the most popular is Cyclomatic Complexity [48].
Figure 5 shows quality of artifacts visualized for
two different projects. The one from Figure 5a
seems to have low local complexity as most arti-
facts are green-brownish. The one from Figure 5b
has few artifacts with reasonable local complexity.

When the measure of quality is also a measure
of complexity, it does not have to be independent

from the PageRank. The more complex the class,
the more links it usually has. Those links tend
to raise the PageRank. In our experiments (see
Section 7), we have not observed this dependency.
The quality measure has been the average num-
ber of lines of code per class. It is obviously also
a complexity measure. However, the pictures gen-
erated by Magnify do not confirm its substantial
dependency on PageRank.

Architects usually start depicting a system
at the top-level where vertices are packages. For
most of the software projects they are granular
enough and their amount remains comprehensi-
ble for a human. When an architect moves to a

14 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

(a) Low local complexity of artifacts (b) High local complexity of artifacts
Figure 5. The quality of artifacts - low vs. high local complexity

Figure 6. The complexity of relations may require applying model transformations.

lower abstraction level where nodes are classes,
the picture gets complicated. In such case, inter-
esting edges are of several kinds. They are: (1)
a dependency of a class on another class, if the
former knows about the latter. (2) an inclusion
of a method in a class, a class in a package, a
package in its parent package, (3) a call between
two classes, if any method of the first class calls
the second class. Moreover, some of dependen-
cies cannot be observed just by processing source
code at the design time. Modern programming
languages provide means for dynamic calls. Thus,
runtime analysis is required. At some abstraction
levels a dense net of dependencies may occur (see
Figure 6). For such cases, our model offers mul-

tiple graph transformations to support software
architects and engineers, like filtering, mapping,
zooming etc.

5. Magnify

Magnify is a proof-of-concept implementation
of the ideas presented in this article. It visu-
alizes software projects as graphs. The project
including its source code can be downloaded
from https://github.com/cbart/magnify.
We start from browsing through potential user
groups that can be interested in using Mag-

On Visual Assessment of Software Quality 15

nify. The following sections describe real world
situations where our tool can prove useful.

5.1. Software architects

Nowadays well managed software teams have a
sophisticated infrastructure that aids efficient
development and reduces risks. Tools and tech-
niques used in a modern software project should
include e.g.: version control, unit testing, con-
tinuous integration, code review, code analysis
tools including copy paste detectors, complex-
ity metrics, bug finders, automatic deployment,
stand-ups, short iterations or sprints, planning
meetings and retrospectives. Our tool fits in this
scheme as a code analysis tool that can be run
frequently (e.g. for each revision, hour or day).

Software architects can use Magnify to obtain
an up-to-date holistic view that shows how the
overall development is proceeding in terms of
emerging code artifacts and dependencies. The
architects can quickly notice if recent changes
break e.g. software modularity or other archi-
tectural ideas. Magnify can also be used during
retrospectives. It allows a scrum master to vi-
sualize different revisions of software. The team
can quickly see what was the effect of the given
sprint of their work.

5.2. Software engineers

Software teams can use Magnify to continuously
analyze their own software in order to improve
its quality. They can also use Magnify as a tool
for analyzing foreign projects. Assume a software
engineer wants to join a new project. Typically,
he/she would contact the development team and
check what programming languages, tools, li-
braries, techniques and practices they use. If
he/she wanted to check the quality of the system
under development, he/she would check its test
coverage, run a static code analysis and observe
the software in runtime environment. Magnify
offers a view of a project from a unified high-level
perspective that gives all those valuable insights.

Consider a perspective where an open-source
solution is incorporated into the system being
developed. The usual approach is to introduce

abstractions between this system and the third
party library or framework. This significantly in-
creases the flexibility. The development team can
also upgrade the third party software and only
reimplement a façade to make everything work.
Sometimes, though, this is not an option. When
an open source software does not provide all the
functionality that is needed, there exist only few
possible solutions. The team can introduce the
needed changes into the next versions of the open
source itself. Sometimes the ideas of the team do
not match the concept of the library’s architect.
Then an implementation of such changes in the
library’s main branch becomes a management
problem. Even if the changes get allowed, their
implementation and review gets time consuming.
The other way is to fork the open source project
and develop the needed changes in house. One
of the consequences of choosing this path is the
lack of support from the library’s authors. In
this case the team might want to examine the
third party software before they start contribut-
ing. As described in Section 5.1 they can use
various tools to investigate the quality. Among
those tools Magnify provides a starting-point
view of the project, depicting it as-is in a unified,
high-level perspective. In Section 7 we present
examples of software project properties that are
well visualized using Magnify.

5.3. Computer scientists

Magnify can also be used for scientific software
inspection. Thanks to flexibility of the graph
model presented in Section 3, Magnify is an ef-
fective software analysis framework. Scientists
that analyze software can easily implement graph
transformations and custom code metrics. The
graph model and the architecture described in
Section 6 allow using a plethora of well known
graph algorithms in their research.

6. Architecture

Magnify is a JVM application with web interface.
In this Section we describe the architecture of
our tool.

16 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

Visualization (SVG) Control (JavaScript, DOM)
Presentation (d3.js)

Data boundary (HTTP, REST, JSON)
HTTP server (Scala, Play)

Graph views (Scala, Gremlin)
Graph database (Tinkerpop, Blueprints, Neo4j)

Figure 7. The architecture of the visualisation part of Magnify

Nowadays there are numerous storage tech-
nologies available. For the last 30 years the
database community has been dominated by re-
lational databases with popular database man-
agement systems like Oracle, Postgres, MySQL,
Microsoft SQL Server or SQLite. During that
time so called SQL databases were the default
choice as persistence layers. Most recently the
movement of the NoSQL emerged. It is focused
on non-relational (sometimes even schema-less)
database technologies including column-oriented
database management systems (e.g. Google’s
BigTable and Apache HBase), key-value stores
(e.g. Riak and Redis), document stores (e.g. Mon-
goDB and CouchDB) and graph databases (e.g.
Neo4j and OrientDB). When implementing Mag-
nify we considered multiple options for the stor-
age layer. The graph databases always seemed
the most in line with our graph model described
in Section 3. Tinkerpop Blueprints is a standard
model for working with graph databases on the
JVM. With its flexible query language Gremlin
and a simple graph model, it made easy to im-
plement needed graph transformations. Thanks
to Blueprints Graph implementations we were
able to use ready implementations of needed
algorithms. For example, we use a PageRank
implementation from the Java Universal Net-
work/Graph Framework (or JUNG) thanks to
the provided Blueprints JUNG implementation.

The main feature of Magnify is visualisation
of the software graph. There are abundant techni-
cal possibilities to achieve such goal in a browser.
For two-dimensional diagrams that are composed
of simple shapes, SVG (scalable vector graphics)
seems to be the simplest solution. Elements of an
embedded SVG image are plain old XML tags
and thus belong to the DOM. Thanks to that
they can be manipulated and can react to DOM

events (click, hover, etc.) such as any other parts
of HTML page.

In Magnify we used a library called d3.js, i.e.
a multi-purpose visualisation framework. It offers
tools for creating, manipulation of SVG graphics
and reacting to DOM events. In Magnify we used
a custom force directed graph. We use Force At-
las as our layout algorithm with attracting force
on edges, repulsive charges and gravity on graph
nodes. In practice it has proved to be a fine way
to visualize software graph on a plain.

There are disparate data formats to represent
a property graph model presented in Section 3.
One of the most popular is the Graph XML Ex-
change Format (GEXF) format. The schema of
GEXF is extensible enough to contain all the
required properties of nodes and edges. It can
be read by popular graph manipulation tools
like Gephi. At the moment of writing Magnify
supports graph import and export in JSON for-
mat. This was the most convenient format for
integration with other tools in our research.

7. Experimental evaluation

In this Section we show the results of apply-
ing Magnify to the following eight open-source
projects: Apache Maven 3.0.4, JLoXiM rev.2580,
Weka 3.5.7, Spring Context 3.2.2, JUnit 4.10,
Cyclos 3.7, Play 1.2.5, Apache Karaf 3.0.0 RC1.
The projects significantly vary in size, quality,
purpose and design. JLoXiM is a research project
developed by students. It was a case-study in our
previous experiments [11]. The remaining seven
projects are well-recognized systems, frameworks
and libraries.

For each system we present its visualisa-
tion created by Magnify and sample conclusions

On Visual Assessment of Software Quality 17

drawn from this view. Wherever a listed conclu-
sion concerns only a part of the visualization, we
add an oval to the figure in order to indicate the
subject area. We label these ovals with identifiers
of observations.

7.1. Apache Maven 3.0.4

Apache Maven is a build automation tool. It
serves a similar purpose to Apache Ant. It com-
piles, packages and deploys projects. Maven sup-
ports dependency management. It can download
external modules and plugins from remote repos-
itories like the Maven 2 Central Repository. Fig-
ure 8 shows its visualizations.
Observation 7.1. org. apache. maven. model
is well encapsulated.

Let us focus on the group of packages on top
of Figure 8b. When we point its center with the
mouse, a tooltip will inform that the name of
this package is org.apache.maven.model. Only
four packages are visible outside this group:
building, io, plugin and resolution. That
means that all the other artifacts inside org.
apache.maven.model can change without affect-
ing the rest of the system. In fact when you
take a look at the structure of Maven subpro-
jects, you can see these two: maven-model and
maven-model-builder. The subproject maven-
model contains mostly tests and only one pub-
lic non-test class. The subproject maven-model-
builder contains all the other classes under the
model package. Thus, in case of org.apache.
maven.model subprojects the directory structure
properly reflects underlying code dependencies.
Observation 7.2. Dependencies around org.
apache. maven. artefact form a dense net-
work.

There is an entanglement on the bottom
side of the picture around org.apache.maven.
artefact. The gray area in Figure 8a shows
substantial amount of dependencies. This means
that the code in this part of the project is tightly
coupled. Therefore, if some pieces change, nu-
merous other items will be affected. Fixing this
tight coupling is not easy as it requires diving
deeper into the code and refactoring the design
of how the classes cooperate.

Observation 7.3. The overall local complexity
is satisfactory.

Apart from the package tree, Figure 8c shows
both the importance and local complexity of
nodes. Most of the nodes are green-brownish.
Thus, the overall quality of classes is satisfactory.

7.2. JLoXiM, revision 2580

JLoXiM is an experimental semi-structured
database management system. It is developed by
a team of students that is subject to frequent
changes. This makes it an interesting case for
analysis of architectural changes [11]. Figure 9
presents the visualisation of this system by Mag-
nify.
Observation 7.4. Parts of JLoXiM have mod-
ular structure and are well encapsulated.

When we look at Figure 9, we can graphically
divide the system into two parts. The bottom
part has dense dependencies. The top part con-
tains few aggregates of packages. The groups of
packages on top have numerous internal edges,
i.e. dependencies inside the aggregate. However,
the dependencies between the groups are notably
reduced.

The top part seems well designed from the
architectural point of view. Low level of density
between the aggregates indicates that they are
loosely coupled. Thus, all the pieces are easily
exchangeable. This substantially increases the
ease of development and the flexibility of the
resulting solution.

On the other hand the groups themselves are
far more dense inside than outside. This means
that there are classes that are closely related.
Therefore, one could form modules that would
be both easily interchangeable and easy to under-
stand by developers. Unfortunately, they are not
always packaged as the package dependencies
would suggest.
Observation 7.5. JLoXiM is not well packaged.

In Figure 9 red edges form the package tree.
In several parts of JLoXiM the dependencies
go against packaging, i.e. there are sections of
the package tree that are highly coupled even
though they are not packaged together. When
Magnify applies more attractive power to depen-

18 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

(a) Package dependencies (b) Package tree with dependencies (c) Package tree, local metrics
and package importance

Figure 8. The visualisation of Maven 3.0.4 using Magnify

dencies, the package tree itself looks like a tangle.
Since there are abundant dependencies on pieces
of code that are not close in the package tree,
browsing the code is particularly difficult. Track-
ing the flow requires jumping back and forth
from one package to another. A way to avoid
that inherent complexity is to repackage classes
in a more natural manner that embraces their
dependencies.
Observation 7.6. There are no God Modules
in JLoXiM.

A God Module is a piece of code that contains
too many responsibilities and seems to do every-
thing. In Magnify its size skyrockets compared to
the other nodes. Besides few slightly bigger nodes,
packages of JLoXiM are more or less of the same
size. Therefore, the architecture is balanced.

Indeed, when one inspects the code with text
processing tools, it becomes obvious that besides
the five most often imported classes (that are
value objects), all the others are imported less
than 100 times each. This is not too much for
approximately 2100 classes in the whole project.
Observation 7.7. Less than a half of JLoXiM
code is touched at runtime by the test suite.

Besides dependencies (gray edges) and pack-
age tree (brown edges) Figure 9 presents also
yellow edges which visualize the control flow. The
thicker is a yellow edge the more flow went from
one package to another during the runtime moni-
toring session. This kind of experiment performed
on different environments can yield interesting re-
sults. One could monitor how control flow passes

in a production environment. This kind of moni-
toring brings a significant performance overhead.
On the other hand plugging it into only small
percent of production instances should not affect
the overall performance too much. However, it
can produce a significant amount of important
data. Another scenario might be capturing call
count during running an acceptance test suite.
For example, if a team wants to introduce con-
tinuous deployment in their release and drifts
towards fully automatic shipping, then their ac-
ceptance test suite will have to embrace most of
the code. In this case visualizing call count can
prove interesting in two ways. (1) It can help
identify dead flows that are not needed any more
and have become clutter over the history of this
system development. (2) It can point out impor-
tant flows that are not covered by acceptance
test scenarios.

7.3. Weka 3.5.7

Weka is a collection of machine learning algo-
rithms. It is used mainly for data mining and
contains tools for classification, regression, clus-
tering, association rules and more. Figure 10
presents visualizations of Weka packages using
Magnify.
Observation 7.8. Weka classes are large and
complex.

The first things to notice at Figure 10b are
red nodes. The red color of nodes indicates that
per-package average local complexity of Weka

On Visual Assessment of Software Quality 19

Figure 9. The visualisation of JLoXiM r2580 using Magnify.

classes is notably high. Thus the code is difficult
to grasp and maintain. Fortunately the prob-
lem of local complexity is easy to fix. Modern
tools including IDEs provide numerous methods
that help moderating local complexity of classes.
With series of refactorings one could significantly
reduce this inherent complexity.
Observation 7.9. Weka does not have modular
architecture.

Dependencies between packages do not seem
to form any modular patterns. The graph is rela-
tively dense for such a small project. Compared
to the previous flaw this one is far more diffi-
cult to fix. Repackaging and module formation
usually requires deep understanding of the sys-
tem under refactoring as well as the domain it
works in.

Observation 7.10. weka.core might be a God
Module.

The package node weka.core seems to be far
bigger than all the others. Moreover, it holds a
significant number of dependencies and seems to
be the central place of the system. The bugs in
this part are potentially destructive.

The package weka.core contains 80 classes
itself, which is far too much. We looked in more
depth at weka.core.Utils. This class is approx-
imately 2000 lines long. It contains unrelated util-
ity static methods. To our surprise the quality of
the underlying code is fairly good. The methods
themselves are short and concise, but there are
too many of them. A simple refactoring that will
significantly improve this structure consists in
extracting classes containing cohesive methods

20 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

(a) Package tree, dependencies (b) Local complexity, importance
Figure 10. The visualisation of Weka 3.5.7 using Magnify.

like string manipulation, statistics, comparisons
and so on.

7.4. Spring context 3.2.2

Spring is one of the most popular enterprise ap-
plication frameworks in Java community. It pro-
vides an infrastructure for dependency injection,
cache, transactions, database access and many
more. Figure 11 shows how it looks in Magnify.
Observation 7.11. Spring is well designed.

The dependency graph is noteworthy sparse
with a few dependencies between packages. Thus,
the overall coupling in the code is low and/or
the packages are self-dependent.
Observation 7.12. Packages are of equal im-
portance.

The only packages that are indicated as im-
portant are empty vendor packages: the root
package, org and org.springframework. These
packages are not used to store code. They just
form a namespace for the project. All packages
that contain any classes are of same importance.
This resembles a well balanced piece of software.
Observation 7.13. The overall quality of code
is satisfactory.

There are no bright red packages in the pic-
ture. Most of nodes are colored from green to
red-brownish. This means that on average classes

are small in most of packages. With smaller
classes it is far easier for developers to get to
know the code. If a class is small enough, even
if the code inside is complex, the idea behind it
will be easy to understand.

7.5. JUnit 4.10

JUnit is a unit testing framework for Java.
Started by Kent Beck and Erich Gamma it
gained popularity and it is still helping test drive
modern Java projects. Figure 12 shows its visu-
alizations.
Observation 7.14. Overall code quality is good.

We can see that all important packages are
green and the web of dependencies is manageable.
Observation 7.15. Not all parts of JUnit were
executed during our test example.

The runtime data visible in Figure 12c are
call counts inside JUnit library gathered while
running one of our test suites. The yellow edges
do not touch all the packages of this small library.
In this particular case the reason might be that
our test case did not use all the features JUnit
has to offer.
Observation 7.16. Some runtime dependencies
are not in line with static dependencies.

One can also spot one peculiar thing. Near
the bottom right corner of Figure 12f we can

On Visual Assessment of Software Quality 21

(a) Dependencies and complexity (b) Package tree and importance
Figure 11. The visualisation of Spring context 3.2.2 using Magnify.

(a) Package tree (b) Package dependencies (c) Runtime data

(d) Package tree, metrics (e) Package dependencies, metrics (f) Runtime data, metrics
Figure 12. JUnit 4.10 visualized with Magnify

see three black nodes. These are (from top to
bottom) the org package, the root package and
the junit package. There are two thin runtime
flow edges adjacent with the root package. Our
first thought when analyzing this visualisation
was that there are some classes in the root pack-
age that are accessed via the reflection. A deeper
investigation had proven that these edges show
the use of dynamic proxies which get compiled
into classes that end up in the root package.

7.6. Cyclos 3.7

Cyclos is a complete on-line payment system. It
also offers numerous additional modules such as
e-commerce or communication tools. The project
allows local banks to offer banking services that
can simulate local trade and development. Cyc-
los is published under the GPL license. Figure
13 presents visualizations of this system in the
Magnify tool.

22 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

(a) Package tree (b) Package dependencies (c) Full information
Figure 13. The visualization of Cyclos 3.7 using

Magnify.

Observation 7.17. The network of dependen-
cies is exceptionally dense.

The experience shows that software systems
with abundant inter-dependencies tend to be
difficult in comprehension, maintenance and de-
velopment. Such systems are also exceptionally
fragile. In dense dependency networks a software
engineer struggling to understand a piece of code
must read through several other pieces this piece
is dependent on. Cyclos is fragile because a bug
in one part of code affects multiple other parts.
Furthermore, a modification, an improvement or
refactoring of a single piece of code causes copi-
ous additional changes since its neighborhood is
always big.
Observation 7.18. The local complexity of
classes is manageable.

Figure 13b shows few packages in which
classes are big on average. That means that
overall complexity of the classes themselves is
acceptable.
Observation 7.19. Cyclos should be split into
cooperating subsystems.

Cyclos is a profound example of a system
that should be split into orchestrated group of
communicating systems. This kind of refactoring
would significantly improve the quality of this
software itself as well as the costs of further devel-
opment. In our opinion, the introduction of the
Service Oriented Architecture or the Microkernel
with Services would benefit the developing team.
This way system parts would have clearly defined
boundaries, e.g. in the form of RPC interfaces.

Since dealing with separate services makes it
more difficult to depend directly on implementa-
tion details, it discourages high coupling between
services. As long as services are loosely coupled
and small, the code inside them can be fairly
complex, since rewriting a single service from
scratch is significantly less costly than rewriting
the whole system.

7.7. Play 1.2.5

Play is a popular Scala and Java web frame-
work. It is built on a lightweight, stateless and
web friendly architecture. Play is heavily influ-
enced by dynamic language web frameworks like
Rails and Django. That makes a simpler develop-
ment environment when compared to other Java
platforms like JEE or Struts. Figure 14 shows
visualisation of Play using Magnify.
Observation 7.20. The package structure is
flat.

Figure 14 shows a small project with fair
amount of dependencies. The height of the pack-
age tree is small. Unlike classic JVM package
trees this kind of flat package structure is typical
for dynamic languages. The packaging approach
the Play team has taken emphasizes the influ-
ence by popular rapid application development
web frameworks from the family of dynamic lan-
guages.
Observation 7.21. The package play seems
like a do-it-all framework façade.

On Visual Assessment of Software Quality 23

Figure 14. The visualization of Play 1.2.5 using Magnify.

The biggest node corresponds to the project
root package play. Bright red color reveals po-
tentially high complexity of classes inside. It is
customary in dynamic languages to expose most
of library or framework functionality through few
classes contained in a single name space. Among
other things, beginners can more easily find all
the needed endpoints. For example, in Scala they
can simply import play._ and have access to
all the features they need.

7.8. Apache Karaf 3.0.0 RC1

Apache Karaf is a small OSGi container in which
various components and applications can be de-
ployed. Karaf supports hot deployment of OSGi
bundles, native operating system integration and
more. Figure 15 shows Magnify visualizations of
Apache Karaf.
Observation 7.22. Apache Karaf is well pack-
aged.

Even though Karaf is split into plentiful pack-
ages, the number of dependencies is small. Most
subtrees of package hierarchy have only a sin-
gle dependency on the rest of the system. That
implies a well packaged system.
Observation 7.23. Local code quality is fair.

Figure 15 shows that overall code quality in
Karaf is good. There are only few packages where
average class size is alarming. The only refactor-
ing we can suggest is to encapsulate subpack-
ages of org.apache.karaf.shell which tend to

spread a web of dependencies in the top part of
the picture.

8. Conclusions

In this article we described the tool Magnify. We
explained how architects could use Magnify in
order to quickly comprehend and assess software.
The idea is to automatically generate a visuali-
sation of the software such that architects can
instantly see the importance and the quality of
software components. They can do it at the level
of abstraction they require.

We have also performed experimental eval-
uation of our approach. The experiments have
proven that a sparse software graph and almost
uniformly distributed node sizes mean a proper
modular architecture. On the other hand, one
node dominating others in size might also mean
a shared kernel architecture, where other func-
tionalities are implemented as services floating
around the kernel.

Magnify is a general tool that can adopt other
quality metrics and importance estimates. Al-
though PageRank as the algorithm to compute
importance have proven to be effective in practi-
cal applications, its adequacy can be questioned.
For example, a common technique for encapsu-
lating a module in an object-oriented language
involves depending on a module’s interfaces and
obtaining instances via a façade. PageRank im-

24 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

(a) Package dependencies (b) Package tree (c) Importance and quality
Figure 15. The visualisation of Karaf 3.0.0-RC1 using Magnify.

portance of the façade will be significantly higher
than importance of implementation classes. This
usually is a poor reflection of the real importance.

Magnify can be extended in disparate direc-
tions. Currently Magnify supports only Java.
Adding support for other programming languages
requires registering a new parser. Its duty is to
analyze source files and add specific nodes and
their relations into the graph database. Since the
graph-based representation of the source code is
language agnostic, all the analysis done inside
Magnify will work equally well for any language
with notions of packages, classes and methods.

Furthermore, even though certain local com-
plexity measures might depend on a program-
ming language, most of them do not. The cyclo-
matic complexity that takes into account execu-
tion paths can be computed in the same way for
most programming languages. Moreover, most
languages use the same keywords for branching
and loops. Thanks to that and the syntactic na-
ture of the cyclomatic complexity one can write
an implementation that works well with most of
the popular programming languages.

Magnify is implemented using standards
for representation, storage and visualisation of
graphs, e.g. Blueprints API or the GEXF graph
format. Measures of importance of a node de-
pend only on the used graph model. Thus, any
algorithm working on those standard graph tech-
nologies will do.

References

[1] E. W. Dijkstra, “Letters to the editor: go to
statement considered harmful,” Commun. ACM,
Vol. 11, No. 3, 1968, pp. 147–148.

[2] J. McCarthy, M. I. of Technology. Com-
putation Center, and M. I. of Technology.
Research Laboratory of Electronics, Lisp one
five programmer’s manual. Massachusetts
Institute of Technology, 1965. [Online]. http:
//books.google.pl/books?id=68j6lEJjMQwC

[3] W. Royce, “Managing the development of large
software systems: Concepts and techniques,” in
WESCOM, 1970.

[4] K. Beck, “Embracing change with extreme pro-
gramming,” IEEE Computer, Vol. 32, No. 10,
1999, pp. 70–77.

[5] R. Kaufmann and D. Janzen, “Implica-
tions of test-driven development: a pilot
study,” in Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and appli-
cations, ser. OOPSLA ’03. New York, NY,
USA: ACM, 2003, pp. 298–299. [Online].
http://doi.acm.org/10.1145/949344.949421

[6] R. Dąbrowski, “On architecture warehouses and
software intelligence,” in FGIT, ser. Lecture
Notes in Computer Science, T.-H. Kim, Y.-H.
Lee, and W.-C. Fang, Eds., Vol. 7709. Springer,
2012, pp. 251–262.

[7] R. Dąbrowski, K. Stencel, and G. Timoszuk,
“Software is a directed multigraph,” in ECSA, ser.
Lecture Notes in Computer Science, I. Crnkovic,
V. Gruhn, and M. Book, Eds., Vol. 6903.
Springer, 2011, pp. 360–369.

[8] R. Dąbrowski, G. Timoszuk, and K. Stencel,
“One graph to rule them all software measure-
ment and management,” Fundam. Inform., Vol.
128, No. 1-2, 2013, pp. 47–63.

http://books.google.pl/books?id=68j6lEJjMQwC
http://books.google.pl/books?id=68j6lEJjMQwC
http://doi.acm.org/10.1145/949344.949421

On Visual Assessment of Software Quality 25

[9] C. Bartoszuk, G. Timoszuk, R. Dąbrowski, and
K. Stencel, “Magnify - a new tool for software
visualization,” in FedCSIS, M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., 2013, pp.
1473–1476.

[10] C. Bartoszuk, R. Dąbrowski, K. Stencel, and
G. Timoszuk, “On quick comprehension and
assessment of software,” in CompSysTech,
B. Rachev and A. Smrikarov, Eds. ACM, 2013,
pp. 161–168.

[11] R. Dąbrowski, K. Stencel, and G. Timoszuk, “Im-
proving software quality by improving architec-
ture management,” in CompSysTech, B. Rachev
and A. Smrikarov, Eds. ACM, 2012, pp.
208–215.

[12] L. J. Osterweil, “Software processes are software
too,” in ICSE, W. E. Riddle, R. M. Balzer, and
K. Kishida, Eds. ACM Press, 1987, pp. 2–13.

[13] M. T. T. That, S. Sadou, and F. Oquendo, “Us-
ing architectural patterns to define architectural
decisions,” inWICSA/ECSA, T. Männistö, A. M.
Babar, C. E. Cuesta, and J. Savolainen, Eds.
IEEE, 2012, pp. 196–200.

[14] M. Wermelinger, A. Lopes, and J. L. Fiadeiro,
“A graph based architectural (re)configuration
language,” in ESEC / SIGSOFT FSE, 2001, pp.
21–32.

[15] A. Tang, P. Liang, and H. van Vliet, “Software
architecture documentation: The road ahead,”
in WICSA, 2011, pp. 252–255.

[16] H. P. Breivold, I. Crnkovic, and M. Larsson,
“Software architecture evolution through evolv-
ability analysis,” Journal of Systems and Soft-
ware, Vol. 85, No. 11, 2012, pp. 2574–2592.

[17] J. Derrick and H. Wehrheim, “Model transfor-
mations across views,” Sci. Comput. Program.,
Vol. 75, No. 3, 2010, pp. 192–210.

[18] T. Kühne, B. Selic, M.-P. Gervais, and F. Ter-
rier, Eds., Modelling Foundations and Applica-
tions, 6th European Conference, ECMFA 2010,
Paris, France, June 15-18, 2010. Proceedings,
ser. Lecture Notes in Computer Science, Vol.
6138. Springer, 2010.

[19] RAVENFLOW, RAVEN: Requirements Au-
thoring and Validation Environment.
www.ravenflow.com, 2007. [Online]. http:
//www.ravenflow.com

[20] J. Whitehead, “Collaboration in software
engineering: A roadmap,” in 2007 Fu-
ture of Software Engineering, ser. FOSE
’07. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 214–225. [Online].
http://dx.doi.org/10.1109/FOSE.2007.4

[21] P. Kruchten, P. Lago, H. van Vliet, and T. Wolf,

“Building up and exploiting architectural knowl-
edge,” inWICSA, IEEE Computer Society Wash-
ington, DC, USA. IEEE Computer Society,
2005, pp. 291–292.

[22] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and
M. Ali Babar, “A comparative study of architec-
ture knowledge management tools,” Journal of
Systems and Software, Vol. 83, No. 3, 2010, pp.
352–370.

[23] D. Garlan, V. Dwivedi, I. Ruchkin, and B. R.
Schmerl, “Foundations and tools for end-user ar-
chitecting,” in Monterey Workshop, ser. Lecture
Notes in Computer Science, R. Calinescu and
D. Garlan, Eds., Vol. 7539. Springer, 2012, pp.
157–182.

[24] I. Gorton, C. Sivaramakrishnan, G. Black,
S. White, S. Purohit, C. Lansing, M. Madi-
son, K. Schuchardt, and Y. Liu, “Velo: A
knowledge-management framework for modeling
and simulation,” Computing in Science Engi-
neering, Vol. 14, No. 2, march-april 2012, pp. 12
–23.

[25] N. Brown, R. L. Nord, I. Ozkaya, and M. Pais,
“Analysis and management of architectural de-
pendencies in iterative release planning,” in
WICSA, 2011, pp. 103–112.

[26] R. L. Nord, I. Ozkaya, and R. S. Sangwan, “Mak-
ing architecture visible to improve flow man-
agement in lean software development,” IEEE
Software, Vol. 29, No. 5, 2012, pp. 33–39.

[27] A. van Hoorn, J. Waller, and W. Hasselbring,
“Kieker: a framework for application perfor-
mance monitoring and dynamic software analy-
sis,” in ICPE, D. R. Kaeli, J. Rolia, L. K. John,
and D. Krishnamurthy, Eds. ACM, 2012, pp.
247–248.

[28] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and
I. Mistrík, Eds., Relating Software Requirements
and Architectures. Springer, 2011.

[29] G. Spanoudakis and A. Zisman, “Software trace-
ability: a roadmap,” Handbook of Software Engi-
neering and Knowledge Engineering, Vol. 3, 2005,
pp. 395–428.

[30] A. Egyed and P. Grünbacher, “Automating re-
quirements traceability: Beyond the record &
replay paradigm,” in ASE, IEEE Computer So-
ciety Washington, DC, USA. IEEE Computer
Society, 2002, pp. 163–171.

[31] P. Kruchten, “Where did all this good archi-
tectural knowledge go?” in ECSA, ser. Lecture
Notes in Computer Science, M. A. Babar and
I. Gorton, Eds., Vol. 6285. Springer, 2010, pp.
5–6.

[32] D. Garlan and M. Shaw, “Software architecture:

http://www.ravenflow.com
http://www.ravenflow.com
http://dx.doi.org/10.1109/FOSE.2007.4

26 Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel

reflections on an evolving discipline,” in SIG-
SOFT FSE, T. Gyimóthy and A. Zeller, Eds.
ACM, 2011, p. 2.

[33] B. Merkle, “Stop the software architecture ero-
sion,” in SPLASH/OOPSLA Companion, W. R.
Cook, S. Clarke, and M. C. Rinard, Eds. ACM,
2010, pp. 295–297.

[34] A. Chatzigeorgiou, S. Xanthos, and
G. Stephanides, “Evaluating object-oriented
designs with link analysis,” in ICSE, A. Finkel-
stein, J. Estublier, and D. S. Rosenblum, Eds.
IEEE Computer Society, 2004, pp. 656–665.

[35] M. Ziane and M. Ó. Cinnéide, “The case
for explicit coupling constraints,” CoRR, Vol.
abs/1305.2398, 2013.

[36] R. Koschke, “Software visualization for reverse
engineering,” in Software Visualization, ser. Lec-
ture Notes in Computer Science, S. Diehl, Ed.,
Vol. 2269. Springer, 2001, pp. 138–150.

[37] J. I. Maletic, A. Marcus, and L. Feng, “Source
viewer 3d (sv3d) - a framework for software vi-
sualization,” in ICSE, L. A. Clarke, L. Dillon,
and W. F. Tichy, Eds. IEEE Computer Society,
2003, pp. 812–813.

[38] C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts,
and K. Wampler, “A system for graph-based
visualization of the evolution of software,” in
SOFTVIS, S. Diehl, J. T. Stasko, and S. N.
Spencer, Eds. ACM, 2003, pp. 77–86, 212–213.

[39] S. P. Reiss, “Dynamic detection and visualization
of software phases,” ACM SIGSOFT Software
Engineering Notes, Vol. 30, No. 4, 2005, pp. 1–6.

[40] M. D’Ambros, M. Lanza, and M. Lungu, “The
evolution radar: visualizing integrated logical
coupling information,” in MSR, S. Diehl, H. Gall,
and A. E. Hassan, Eds. ACM, 2006, pp. 26–32.

[41] M. Ogawa and K.-L. Ma, “code_swarm: A de-
sign study in organic software visualization,”
IEEE Trans. Vis. Comput. Graph., Vol. 15, No. 6,
2009, pp. 1097–1104.

[42] K.-L. Ma, “Stargate: A unified, interactive vi-
sualization of software projects,” in PacificVis,
IEEE Computer Society Washington, DC, USA.
IEEE, 2008, pp. 191–198.

[43] F. Abreu and R. Carapuça, “Object-oriented
software engineering: Measuring and controlling
the development process,” in Proceedings of the
4th International Conference on Software Qual-
ity, 1994.

[44] J. M. Roche, “Software metrics and measure-
ment principles,” SIGSOFT Softw. Eng. Notes,
Vol. 19, January 1994, pp. 77–85. [Online].
http://doi.acm.org/10.1145/181610.181625

[45] S. R. Chidamber and C. F. Kemerer, “A
metrics suite for object oriented design,” IEEE
Transactions on Software Engineering, Vol. 20,
June 1994, pp. 476–493. [Online]. http://portal.
acm.org/citation.cfm?id=630808.631131

[46] V. Markovets, R. Dąbrowski, G. Timoszuk,
and K. Stencel, “Know thy source code: Is
it mostly dead or alive?” in BCI (Local), ser.
CEUR Workshop Proceedings, C. K. Georgiadis,
P. Kefalas, and D. Stamatis, Eds., Vol. 1036.
CEUR-WS.org, 2013, pp. 128–131.

[47] S. Brin and L. Page, “The anatomy of a
large-scale hypertextual web search engine,”
Computer Networks, Vol. 30, No. 1-7, 1998, pp.
107–117.

[48] T. J. McCabe, “A complexity measure,” IEEE
Trans. Software Eng., Vol. 2, No. 4, 1976, pp.
308–320.

http://doi.acm.org/10.1145/181610.181625
http://portal.acm.org/citation.cfm?id=630808.631131
http://portal.acm.org/citation.cfm?id=630808.631131

	Introduction
	Related work
	Graph model
	Transformations
	Metrics

	Software analysis method
	Visualization
	Analysis

	Magnify
	Software architects
	Software engineers
	Computer scientists

	Architecture
	Experimental evaluation
	Apache Maven 3.0.4
	JLoXiM, revision 2580
	Weka 3.5.7
	Spring context 3.2.2
	JUnit 4.10
	Cyclos 3.7
	Play 1.2.5
	Apache Karaf 3.0.0 RC1

	Conclusions
	References

