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1. Introduction

Background: With the growing advances in the digital world,
software development demands are increasing at an exponential rate.
To ensure reliability of the software, high-performance tools for bug
report analysis are needed.

Aim: This paper proposes a new “lterative Software Reliability”
model based on one of the most recent Software Development Life
Cycle (SDLC) approach.

Method: The proposed iterative failure rate model assumes that
new functionality enhancement occurs in each iteration of software
development and accordingly design modification is made at each
stage of software development. In terms of defects, testing effort,
and added functionality, these changing needs in each iteration are
reflected in the proposed model using iterative factors. The proposed
model has been tested on twelve Eclipse and six JDT software failure
datasets. Proposed model parameters have been estimated using
a hybrid swarm — evolutionary algorithm.

Results: The proposed model has about 32% and 55% improved
efficiency on Eclipse and JDT datasets, respectively, as compared to
other models like Jelinski Moranda Model, Shick—Wolverton Model,
Goel Okumotto Imperfect Model, etc.

Conclusion: In each analysis done, the proposed model is found to
be reaching acceptable performance and could be applied on other
software failure datasets for further validation.

With the growing advances in cutting-edge innovations in digital world, software develop-
ment demand from software industries is increasing exponentially. Due to limited budget,
high demand and lack of time, there is a high probability of fault occurrence in the newly
developed software, making reliability a concern. The reliability of software is considered
as the most crucial quality attribute [1]. At one end, software has made today’s life much
more comfortable but at other end failures in unreliable software may cause life threatening
issues to humans. So unpredictable software failures make life challenging due to the
decreasing reliability of the newly developed systems. Software reliability could be only

© 2025 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY-SA 4.0 license international.
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measured using bug report analysis of the software. Using the latest tools and techniques at
most care has been taken to develop reliable software, but practically a software developer
cannot produce defect-free software [2]. Therefore, there should be a way to avoid software
failures to further avoid severe losses to human life or any financial losses in industry.
The prerequisite of software developers is to know whether developed software is reliable
before they are dispatched to customers. In the competitive arcade of software development,
software industries must ensure the reliability of their software to satisfy their customers
and make an outlook in the global market [3-5]. As the size and complexity of software
grow, so does the number of errors per 1000 lines of code. It becomes more difficult to
obtain valuable data for reliability estimation. Software reliability models are only the
way to estimate software reliability. Many software reliability estimation models have been
developed or proposed in literature, but these developed models have been designed only
for specific software applications, works in particular environment and on specific datasets
and assumptions of the model. Thus, developing a new software reliability estimation model
is a question behind the software developers. There are mainly three reasons that reflect
the need to develop a new software reliability model.

— Existing models have been developed only based on traditional software development
approaches and do not incorporate the latest SDLC approach [6-10].

— Available research publication has only 31% experimental research, and in this, only
13% pure experimental work has been found [11]. The reason behind this is the narrow
failure dataset availability as software companies are not releasing their fault data for
public research.

— Existing models are made application-specific, and these can precisely estimate the
reliability of application-specific software only. These are not well proving their capac-
ity if applied to other applications. The models are further developed based on the
Non-homogeneous Poisson Process-based approach [12-23].

Software reliability models are divided into two categories: failure rate-based models and

NHPP behavior-based models. The first category of software reliability models used in

business and research were failure rate-based models [9]. However, these models need

enhancement to incorporate the latest software development methods and estimate soft-
ware reliability. Furthermore, more realistic assumptions need to be included in these
models to be more suitable in the latest software development environments for reliability
estimation. Keeping in mind the need to use the latest software development methods, the
authors recommend the iterative method as a top-down refinement approach for software
development. The more recent agile method, iterative enhancement method, and spiral
method are well-known models supporting the iterative software development process

[24,25]. The authors in this paper propose a failure rate model known as Iterative Software

Reliability (ISR) model which incorporates the behavior of these latest software development

methods, mainly the iterative SDLC approach [26], for estimating the reliability of big

data generating software. There is a necessity to add a factor that will reflect all shifting

needs based on the defect analysis in each software development process model [27-29].

Identifying a varying need in each iteration using some factor could be very beneficial

for iterative software development inappropriate resource usage. In this paper, varying

conditions in each iteration are represented with an iterative factor. The iterative element’s
value is determined by the iterative parameter, which ranges from 0 to 1 based on the
assumption that user acceptability improves with new capabilities in each iteration. The
value of an iterative factor is obtained, representing all the requirements that have been
changed from the previous iteration in current iteration releases using iterative parameters.



https://www.e-informatyka.pl/EISEJ/papers/2025/1/1

Sangeeta et al. e-Informatica Software Engineering Journal, 19 (2025), 250101

Value of iterative factor increases in some initial iterations because there is an abrupt
change in requirements due to many defects found and added functionality in an iteration.
Later, when the system has added almost all the functionalities for full implementation of
the system, the value of the modulation factor represents that the change in requirements
decreases, so its value changes from higher to lower one. When the value of the iterative
parameter reaches again near to one, it is assumed that the system is reliable enough and
has attained all the vital functionalities to fulfil the end-user needs. Thus, the iterative
parameter reflects the level of user acceptance at each phase. Further in the cutting-edge
software development environments, using the latest testing techniques, there is always
a possibility of removing more than one fault at a time. Fault introduction and removal
probabilities are well incorporated in the proposed ISR model development. To the best of
authors’ knowledge, no studies are available in the literature that includes such factor in
the ensemble for reliability estimation via software reliability models. Further, in modeling
software, reliability parameter estimation methods play an essential role. However, classical
numerical optimization techniques are highly based on constraints, and they may not
converge to maxima or minima in multimodal cases [7,30]. To address non-differential,
non-linear, and multimodal problems, new parameter optimization approaches based on
nature-inspired optimization algorithms are available [31,32]. This paper proposes model
parameter optimization using a hybrid swarm evolutionary algorithm [33]. This algorithm
incorporates the best feature of the artificial bee colony and differential evolution in
parameter estimation. Swarm evolutionary algorithm is a new hybrid swarm-evolutionary
algorithm for software reliability model parameter estimation is proposed in this paper.

This algorithm is centered on the social behavior of artificial bee colonies (Yang 2010a;

Abu-Mouti and El-Hawary 2012) and evolutionary behavior of DE algorithm (Storn and

Price 1997). Here swarm intelligence of employee bee is enhanced for providing exploitation

to provide a better local search of neighborhood positions using evolutionary principle

based DE algorithm. Onlooker bee phase has been improved here by incorporating a new
factor, showing the fitness probability of the ecological space.

The proposed ISR model is empirically validated using Eclipse and JDT software failure
datasets. Furthermore, the Goodness-of-fit of the proposed work is estimated using Sum of
Squared Errors (SSE), Mean Square Error (MSE), Accuracy of Estimate (AE), and Theil
Statistics (T'S). The proposed ISR model fits the estimation of software reliability under
the iterative software development process. Summary of the significant contribution of our
work is as follows:

1. Objective 1: To study existing software reliability estimation models and specially
failure rate behavior-based models.

2. Objective 2: To propose a new model that considers the behavior of the recently used
iterative software development life cycle processes.

3. Objective 3: To validate the proposed model (ISR) on twelve Eclipse common software
failure datasets and six JDT software failure dataset iterations.

4. Objective 4: To compare the proposed model with five existing models named Jelinski
Moranda Model, Shick—Wolverton Model, Goel Okumotto Imperfect debugging Model,
GS Mahapatra and P Roy Model and Modified SW Model.

Proposed ISR model is found to be supporting software developers and end-users in
estimating software reliability at each software development iteration and hence in software
systems evolution. The rest of the paper is structured as follows: Section 2 discusses
the existing literature in software reliability modelling and various parameter estimation
algorithms used in software reliability model development. Then, in Section 3 proposed
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software reliability model is discussed. In Section 4, experimental setup and results are
discussed. Section 5 discusses the threats to validity and finally Section 6 concludes the
paper with future scope.

2. Literature review

A thorough literature has been done by authors which is elaborated in 2 subsections of
this section. The first section focusses on development of software reliability models of the
software that has been developed using latest software development life cycle processes
(SDLC). The next subsection presents a survey of parameter optimization algorithm that is
the major requirement for precise software reliability measurement using software reliability
models. Already existing parameter optimization algorithms applied on software reliability
modeling can only better estimate the reliability of software that has been developed with
their specific assumptions and applications.

2.1. Software reliability models and their assumptions

About 300 software reliability models have been developed in the last four decades. The
developed models have specific environments, assumptions, and applications [34-40]. Failure
rate behavior-based models are used to analyze the program failure rate per fault and
study how failure changes at the time of failure in an interval of time. The JM model [8] is
the first to estimate software reliability. This behavior-based debugging approach assumes
the program initially has a fixed, constant, and unknown number of defects. The duration
between failures is considered to be independent and distributed exponentially in these
models. Table 1 discusses software reliability models along with their assumptions.

Table 1. Survey of Software Reliability Models

Reference  Year Application domain and assumptions Related to software reliability models

9] 1972  The first Markov process-based model assumes that the total number of initial
software defects is unknown and fixed. Furthermore, it assumes that the duration
between failures is always a random variable that is distributed exponentially.

[41] 1973 A Bayesian reliability growth model is presented here and assumes that the program
is complete to work for a continuous time-period between the failures. It also
considers a repair rule for program developers at each failure. It does not take into
account the program’s internal structure.

[42] 1988  This model fits well into a general framework of the Bayes problem and assumes
a Bayesian approach for inference by considering the conditions as an empirical
Bayes problem.

[10] 1978 The Hazard function is proportional to the current number of total fault content
and the time since the previous failure in this model originated from the JM model.

[43] 1977  This model extends the JM Model and SW Model; It allows more than one fault at
each time interval.

[44] 1979 It follows a Markov process like the JM Model. This characterizes the transition
between the modules while execution as following the Markov property.

[43] 1979  This is evolved using the JM and geometric model-based and follows Poisson

distribution-based failure rate. It assumes that the number of faults occurring at
intervals follows a Poisson distribution with an intensity rate of Dki-1.

[45] 1998 It has extended the JM geometric model by describing the behavior of software as
having safe and unsafe states.
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Table 1 continued

Reference  Year Application domain and assumptions related to software reliability models

[46] 1979  This model considers the phenomenon of imperfect debugging for software develop-
ment and testing.

[13] 1981 A variation of the JM model develops this model. And assumes that:

— Time separations between error detections

— Number of errors per written instruction

— Failure rate of the software is considered as proportional to current error content
in software.

[47] 1981  This model is presented as a particular case of the JM and NHPP models.

[48] 1985  This is evolved by considering the Bayesian process in the JM model and Mein-hold
and Singpurwalla model. It also assumes that it is easy to calculate the distribution
of undetected errors at the end of testing to see the relative effects of uncertainty in
several errors and fault detection efficiency.

[49] 1985 In this model, an alternative formulation of the JM and Little-wood models is
presented. Here a formulation in terms of failure rate rather than inter failure time
is given.

[50] 1991 It is assumed that various defects contribute differently to the failure rate. In
addition, the software’s structure is taken into account in this method.

[43] 2000  This model is extended from the JM Model. The effect of environmental factors has
been incorporated in the model development.

[51] 2003 A Moranda de-eutrophication model is proposed by assuming time between failures
as a statistically independent exponential random variable with a given failure rate.

[37] 1991 It has evolved from the JM model’s assumptions and formulates the total expected
software costs with two different release policies.

[51] 2006 This model extends the JM model by using a negative binomial prior distribution
for the number of remaining faults and a Gamma distribution for the rate at which
each fault becomes disclosed.

[15] 2011  This is the modification of the famous JM model, and it is based on cloud theory.

[16] 2012 This model considers imperfect debugging in fault removal and considers that when
a failure occurs, then the detected fault is assumed to be removed with probability p,
and it is not removed perfectly with probability ¢. It also assumes that a new fault
may be generated with probability r.

[52] 2016  They discussed that software reliability analysis can be done at various phases during
the development of engineering software. JM and SW SRGMs are two exceptional
cases of this general SRGM.

[53] 1985 This model proposes that the reliability of computer software may be evaluated
holistically by taking a Bayesian perspective, and it provides an alternate justification
for the widely utilized JM model.

[54] 2017 To estimate the parameters of the JM model, objective Bayesian inference was
developed. The Bayesian estimators, credible intervals, and coverage probability of
the parameters are obtained using Gibbs sampling.

[55] 2018 1) It takes into account the impact of software upgrades on subsequent releases.
2) It also implies that software problems are classified as soft or hard depending on
the amount of work and time required to correct them.

[56] 2018 They are assumed as a special case of the famous inflection S-shaped model and
generalized GO model. Special attention is given to non-existence issues of MLE.

[57] 2018 A variable 7 is considered as a random variable to represent the uncertainty of FDR
in the operating environment.

[58] 2019 The fault Removal process for multi-release OSS systems is assumed by considering
the concept of change point.

[22] 2018  Assumes that all corrected issues in a current software release are used to determine
the next software release; entropy-based methods assess uncertainty concerns.

[59] 2019 Complexity issues like the debugging process, coverage factor, and delay time
Function in a distributed computing environment are concerned.

[60] 2021  Uncertain factors are taken into account while developing a logistic growth model

for software reliability estimates.
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Table 1 continued

Reference  Year Application domain and assumptions related to software reliability models

[61] 2021 The extension predicts the software reliability of the Jelinski Moranda model to
a stack of feature-specific models.

[62] 2021  Application of EM algorithm is done to NHPP software reliability assessment with
generalized failure count data.

[63] 2020 The importance and need of software reliability from an industry perspective have
been discussed.

[64] 2020 A new statistical time series and ARIMA approach-based software reliability predic-
tion is proposed. time series based technique is very flexible as it needs a very few
assumptions.

[65] 2019 Quantitative Testing Effort based estimate of software Reliability for Multi Release

Open Source Software Systems is proposed. Testing Effort is assumed to be impacting
the number of faults generated in the software at a particular time interval.

[66] 2021  Green computing based software systems is discussed here with some new modulation
parameters that are quantifying the amount of fault introduced in the software.
[67] 2021 New iterative failure rate behavior based model is proposed for iterative software

development life cycle approach based softwares. In each iteration new fault may
be introduces and it assumes that some faults may gete flow from the previous

iterations.

[68] 2022 Grey-based approach for estimating software reliability under nonhomogeneous
Poisson process is proposed for software reliability assessment using mean value
function.

[69] 2022  Various Machine learning techniques can be used in software reliability prediction.

Various ML techniques have been used here for reliability prediction. But the dataset
required must be large enough here.

[70] 2023 During testing process optimal time management is a need and an approach using
S-curve two-dimensional software reliability growth model is proposed here.
[71] 2023 Reliability Assessment for Open-Source Software using Probabilistic approach is

proposed. For assessing reliability more accurately Imperfect debugging along with
Marine Predators Algorithm with six probabilistic models is used here.

[72] 2023 A new Model for software reliability growth estimation based on generalized inflection
S-shaped is proposed. This has considered fault reduction factor and optimal release
time for proposed model development.

[73] 2023  On the basis of assuming latest Emerging trends and future directions in software
reliability growth modeling. Engineering reliability and risk assessment is discussed.
[74] 2023 Testing coverage is used here for software reliability growth modeling and considers

uncertainty of operating environment.

2.2. Parameter optimization processes

Parameter optimization processes play a pivotal role in estimating the reliability of software.
Traditional techniques [30,73,74] have been found in use for the estimation of parameters
of software reliability models. Fatefully, all model parameters usually have non-linear
relationships. Because of this, traditional techniques for optimizing parameters suffer
various problems in finding the optimum value of models to predict software reliability
better. In recent years, meta-heuristic algorithms have become very popular due to their
simplicity, flexibility, derivative-free nature, and capability to avoid the local optima
problem. These algorithms explore the feasible solution space using some specified rules.
Several nature-inspired algorithms have been created in the literature and may be used
to address numerical optimization-based issues in various domains [75-83]. Mirjalili [79]
created a hybrid PSOGSA method for mathematical function optimization in 2010 by
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combining PSO and PSOGSA. Furthermore, In 2014, Mirjalili [83] presented a binary
optimization method based on a hybrid PSOGSA algorithm. Liu and Zhou [84] used
a new QPSO (Quantum Particle Swarm Optimization) technique to solve high-dimensional
complex issues in 2014. Li et al. [85] proposed ABC-assisted DE for ORPF (Optimal
Reactive Power Flow) in 2013. They have used ABC in the DE algorithm to recover the
shortcoming of large population requirements to avoid premature convergence. Tiwari et
al. [86] presented a hybrid ABC method with DE, which he used to solve welded beam
design issues. This method changed the employee bee phase position update equation
and utilized DE for the onlooker bee phase position update. Sangeeta et al. [87] have
suggested a magnetic navigation-based optimizer to analyze proper software reliability
model parameters. Tripathi [88] has used the military Dog algorithm to estimate phone

reviews and found it one of the most effective parameter estimation methods available.

Sangeeta et al. [89] have created an ecological space-based hybrid swarm evolutionary
method for parameter estimation in software reliability models. The authors [90] suggested
a firefly-based multi-level picture thresholding method. Khan, Jabeen et al. [91] has proposed
a new Metaheuristic algorithm in optimizing deep neural network model for software effort
estimation. Kassaymeh et al. [92] has developed a new swarm optimizer for modeling
software reliability prediction problems. Authors suggested that proposed algorithm can
be applied in various optimization problems. Lakra and Chug [93] has given a study on
Application of metaheuristic techniques in software quality prediction. Lilly, Jothi [94]
has enhanced software reliability and fault detection process using hybrid brainstorm
optimization-based LSTM Model. Kumar and Gopalan [95] have developed an efficient
parameter optimization of software reliability growth model by using chaotic grey wolf
optimization algorithm. Singh, Kumar et al. [96] has proposed a new Adaptive infinite
impulse response system identification using teacher learner-based optimization algorithm
and has analyzed good prediction on the basis of proposed algorithm. Rakhi and Pahuja
[97] has developed a method for solving reliability redundancy allocation problem using
grey wolf optimization algorithm. Kaushik et al. [98] has discussed about the role of neural
networks and metaheuristics in agile software development effort estimation. Yadav N. and
Yadav V. [99] proposed a software reliability prediction and optimization approach using
machine learning algorithms.

2.3. Insights of the literature survey

From the literature in Table 1 it has been found that failure rate behavior-based models
are the earliest models and these are the basis of newly proposed models. These models are
studying the program failure rate per fault and are considering only the traditional fixed
behavior-based waterfall approach for software development but this is a static and oldest
approach. There is a need to propose new model that consider latest method of software
development in software reliability analysis on the basis of Bug report analysis. Hybrid
algorithms are proving to be effective in a variety of domains. These techniques can be
used to estimate the parameters of software reliability models. These swarm evolutionary

algorithms are found to be performing good when applied to specific application and dataset.

To make their appropriate usage, a new algorithm specific to software reliability application
is used in this paper. This research employed a hybrid swarm evolutionary feature-based
ABC-DE method for the suggested model parameter estimation. The code for the algorithm
is available in the replication package available at https://zenodo.org/records/13147825.
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3. Proposed model

Failure rate behavior-based models are the oldest of the software reliability models. These
have primarily been used in academics and industry to assess software product reliability.
Considering the most recent software development environments and technology, a new
model based on the iterative software development cycle process has been proposed.
Traditional software development lifecycle methods focus on the models available in the
literature. The waterfall software development lifecycle method underpins all existing
models. However, modern software development approaches outperform the waterfall
software development life cycle methodology. These are life cycle processes that are iterative,
spiral, and adaptable. The suggested model uses the most up-to-date software development
methods, which are based on the iterative software development approach. The suggested
model, which is concerned with the iterative software development process, is developed from
a generic collection of failure-rate based models. The proposed Iterative Software Reliability
(ISR) model is derived from a general group of failure-rate models and is concerned
with the iterative software development process. The failure rate model incorporates
changing demands with additional capabilities in each software development iteration using
the iterative factor v that reflects varying requirements in each iteration. The changing
needs in each software development iteration include a report of bugs, additional features,
and the amount of testing effort. These parameters are used to identify the number of
flaws in each iteration that have been either injected or eliminated in each subsequent
software development iterations. The modulation factor () represents all of these shifting
requirements during the software development period. In future iterations, new mistakes
or mutually dependent errors may be introduced. With each iteration of the software
development life cycle, the suggested model implies that new defects will be inserted with
a probability (p;) and removed with (r;) each iteration. As a result, the varied demands in
each iteration are unique, and they change according to 1.

3.1. Modified reliability estimation model

3.1.1. Assumptions of proposed model

1. An iteration begins with an undetermined and constant number of software faults.
Each of the faults is either mutually dependent or independent, and they may equally
cause a failure during testing.

The time period between fault occurrences is thought to be independent.

4. The program failure rate is assumed initially to be constant; however, it varies with
each iteration at failure times.

5. The failure rate may increase or decrease, depending on the remaining faults in software
and the modulation factor.

6. Whenever a failure occurs in an iteration, an immediately debugging effort will be
initiated. Each iteration has the fault removal probability, not removed with a probability.
Instead, the fault is introduced with a probability. Here, probability.

7. When a fault occurs in iteration, it may not be ideally removed. This may pass in
successive iterations because the testing environment of each iteration is different
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from the operating environment. Regenerated fault in subsequent iterations introduces

imperfect debugging in the proposed model.
The initial iterative faults are fixed and constant but unknown for iteration. Later on, new
faults may get injected from the previous iteration, or new faults may get introduced in
the current iteration. Based on these faults, developers can change resource allocation in
debugging iteration. The Iterative factor represents the modified need for resources and
integrates the iterative SDLC process in software reliability modeling. Iterative element
defined in Equation (1).

v =p+1—p)/n0<p<10) (1)

Here, p the iterative parameter represents newly added functionality and level of user
acceptance in an iteration. Its value is near zero initially and becomes almost one until the
final software development iteration.

3.1.2. Model formulation

A(t;), i.e., the failure rate function is modeled in Equation (2).

At) = ¢ N—W(p—r) . i—1,2...N (2)

Here v — iterative factor that represents varying needs in each iteration n’~! — cumulative
number of failures N — number of initial faults ¢ — constant of proportionality F'(t;), i.e.,

cumulative density function and R (¢;), i.e., reliability function is given in eqations (3)
and (4)

1

3.1.3. Parameter estimation

There are three parameters N, n and ¢, these unknown parameters are measured at different
values of v. MLE function is used to estimate the value of all parameters. The probability
density function f(¢) for the Proposed Iterative Software Reliability (ISR) model is given
in Equation (5).

£ =0 [N - BTG Lep-ste] -
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Likelihood function L(N) is calculated in Equation (6) using Equation (5).

[aﬂZH{ GE )(’”)H (6)

Log-likelihood function in parameter estimation needs calculation of partial derivatives
w.r.t. N,n and ¢, respectively. It then equates them to zero. Maximum likelihood estimates
of parameters are obtained using (7), (8), and (9).

B3 [v- =) @)

> vty )
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4. Experimental setup and results

4.1. Collection of bug data used in experimentation

The proposed ISR model is tested using a bug report taken from the Tera Promise repository.
Datasets were preprocessed using various preprocessing techniques like outlier analysis,
removal of redundant/missing values, etc. The datasets obtained after preprocessing are
available at the repository https://zenodo.org/records/13147825 to encourage replication
of the results. The bug report contains a table with bug id, summary, description, time,
associated commit, commit status, and saved files. Dataset is extracted from this file and
structured in a required format. The multiple iteration dataset from this bug report is used
in this paper to test the capability of proposed model to predict the remaining number of
errors, reliability, and failure intensity of the OSS system.

2. Results

The proposed ISR model objective is to estimate the precise reliability growth of the
software and includes the model parameters N,n,¢,~,p and r. Probability p and r is
dependent on the type of project and human skill involved in software testing. Based on
these factors, the number of faults removed in testing is assumed to be 96%, and the
number of faults introduced is considered as 2%. v is defined as the new modulation
factor showing the changing needs of the iterative software development process. v values
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are calculated using the modulation parameter (u). The calculated values of v and p
with varying parameters N, n, and ¢ are estimated using the hybrid Artificial Bee Colony
and Differential Evolution Algorithm (the code for the used algorithm is available in the
replication package; link available at https://zenodo.org/records/13147825) to maximize
the log-likelihood function value. Model parameter values are estimated using the MLE
technique. 80% of data has been used to estimate parameters. The predicted number of

remaining errors, i.e., the expectation, is calculated for each value of modulation factor (7).

Goodness-of-fit for the Proposed Iterative Software Reliability (ISR) model is measured
using SSE, MSE, AE, and TS for each application dataset [33]. These statistics are used
further for comparison between iterations of datasets. Initially, the system is assumed to be
having minimum features. Later on, with time, the requirements of the end-users need to
be fulfilled; they can add more and more features to the system. These additional changes
in upcoming iterations may incorporate some new errors and reduce errors from the earlier
iterations. Depending on these new conditions, there is a need to change the iterative

system development. Accordingly, the proposed work the parameter changes its shape.

In the proposed Iterative Software Reliability (ISR) model, estimated values of represent
additional feature changes incorporated in the current iteration, differing from previous
ones. For initial iteration releases of Eclipse and JDT open-source software systems, the
value should be estimated so that a critical sample of requirements is implemented with the
minor features in the system. As time passes and more and more iterations are added with
changing functionality in each iteration, the value should fluctuate from lower to higher
with the user acceptance and increase in functionality of the system with time. Depending
on values, it is estimated for each iteration release, and the model is implemented.

4.3. Result analysis

In this section the analysis of Eclipse software and JDT software failure dataset is done
using Proposed model and other failure rate behaviour models. Table 2 shows the failure
rate based models used in this research work and Table 3 shows the parameter estimation
using Eclipse software failure dataset on various existing models along with the proposed
model.

Table 2. Summary of failure rate based software reliability models

No. of actual

Sr. no. Model name Failure intensity
parameters

1 Jelinski-Moranda model 2t) = [N = (i —1)] 2
Schick—Wolverton model 2t) = ¢[N — (i = 1)t 2

3 Goel-Okumotto imperfect debugging 2(t) — [N — p(t — 1)] 3
model

4 G.S. Mahapatra and P. Roy model [16] 2(t) = fIN —p(i—1) +r(z —1)] 4

5 Modified S-W model 2(t) = p[N — (n2-1)] 3

6 Proposed Iterative Software Reliability 2t)=¢ {N = M(p —r) 6
(ISR) model (i—-1)

11
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Table 3. Parameter estimation using Eclipse software failure dataset

Predicted number
of remaining errors

12

Model name

Parameter estimated values (fit)

expectation remarks
(fit) (predicted)

Iteration 1.0

JM model ¢ =5T4E—6,N =4 2 over estimation
GOI model ¢ =1.64E—5,N =3 1 exact estimation
SW model ¢ =2.124E—6,N =3 1 exact estimation
Mahapatra model ¢=T7TE-7,N =3 1 exact estimation
SWM model ¢ =223E—5,N =2,n=>58 0 under estimation
Proposed ISR model ¢ = 2.86E—5, N =5,n =11,y = 2.2666, u = 0.3419 3 over estimation

Iteration 2.0

JM model ¢ =2.68E—5,N =8 —11 under estimation
GOI model ¢ = 2.89E—6, N = 28 9 over estimation
SW model ¢ =4.70E—6, N = 28 9 over estimation
Mahapatra model ¢ =2.53E—5, N =23 4 under estimation
SWM model ¢ =1.52E—6, N = 9,n = 209 —10 under estimation
Proposed ISR model ¢ =4.70E—6, N = 27, n = 362,~ = 2.8763, over estimation
w=0.2779
Iteration 2.1
JM model ¢ = 5.039E—6, N = 27 4 under estimation
GOI model ¢ = 1.95E—6, N = 26 3 under estimation
SW model ¢ = 3.83E—6, N = 29 6 exact estimation
Mahapatra model ¢ = 3.20E—6, N = 28 5 under estimation
SWM model ¢ =1.36E—5, N = 18,n = 316 -5 under estimation
Proposed ISR model ¢ = 1.67TE—6, N = 30,n = 415, = 2.6343, 7 over estimation
u = 0.2999
Iteration 3.0
JM model ¢ =240E—6, N = 124 48 over estimation
GOI model ¢ =1.3TE—6, N = 100 24 over estimation
SW model ¢ =2.92E—5, N =121 45 over estimation
Mahapatra model ¢ =1.25E—6, N = 125 49 over estimation
SWM model ¢ =129E—6, N = 123,n = 298 47 over estimation
Proposed ISR model ¢ = 2.98E—5, N = 102,n = 5690, = 3.7891, 26 over estimation
u=0.2188
Iteration 3.1
JM model ¢ =2.99E-5, N = 100 -8 under estimation
GOI model ¢ =3.0TE-7, N =126 18 under estimation
SW model ¢ =2.99E—-5 N =125 17 under estimation
Mahapatra model ¢ = 6.62E—6, N = 130 22 under estimation
SWM model ¢ = 1.36E—5, N = 135,n = 4979 27 under estimation
Proposed ISR model ¢ = 2.96E—5, N = 136,n = 6132,y = 3.2217, 28 exact estimation
w=0.2519
Iteration 3.2
JM model ¢ =221E—-6, N = 122 27 over estimation
GOI model ¢ = 8.61E—6, N = 106 11 under estimation
SW model ¢ = 5.40E—6, N =90 -5 under estimation
Mahapatra model ¢ =1.25E—6, N = 115 20 under estimation
SWM model ¢ =2.08E—6, N = 132,n = 4108 37 over estimation
Proposed ISR model ¢ = 2.98E—5, N = 122,n = 6910, = 2.5788, 27 over estimation

1 = 0.3055

Iteration 3.3
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Table 3 continued

JM model

GOI model

SW model
Mahapatra model
SWM model
Proposed ISR model

¢ =2.95E—5, N = 117
¢ =1.25E—6,N = 115
¢ =2.95E—5, N = 123
¢ = 3.06E—6, N = 114

¢ =5.31E—6, N = 121,n = 3129
¢ = 2.96E—5, N = 123,n = 7879, v = 2.3121,

1= 0.336

22
20
28
19
26
28

under estimation
under estimation
over estimation
under estimation
over estimation
over estimation

Iteration 3.4

JM model

GOI model

SW model
Mahapatra model
SWM model
Proposed ISR model

¢ = 8.28E—6, N = 53
# = 3.06E—6, N = 50
$=2.93E—5,N = 54
¢ =1.63E—5, N =55

¢ = 1.72E—5, N = 52, n = 2094
¢ =2.92E—5, N = 53,n = 1411, v = 2.7295,

1 = 0.2908

13
10
14
15
12
13

over estimation
under estimation
over estimation
over estimation
over estimation
over estimation

Iteration 3.5

JM model

GOI model

SW model
Mahapatra model
SWM model
Proposed ISR model

¢ = 1.63E—6, N = 30
¢ = 3.81E—6, N =29
¢ =1.70E—7, N = 29
¢ = 3.81E—6, N = 29

# = 1.26E—5, N = 17,n = 2663
¢ = 2.82E—5, N = 25,n = 416,y = 2.6434,

1 = 0.2990

over estimation
over estimation
over estimation
over estimation
under estimation
under estimation

Iteration 3.6

JM model

GOI model

SW model
Mahapatra model
SWM model
Proposed ISR model

¢ =6.24E—7, N = 28
¢ = 3.208E—6, N = 28
¢ = 3.7AE—6, N = 27
¢ =6.65E—7, N = 28

¢ =2.97E—5,N = 17,n = 2624
¢ = 2.94E—5, N = 30,n = 401, v = 2.0435,

= 0.3747

exact estimation
exact estimation
under estimation
exact estimation
under estimation
over estimation

Iteration 4.1

JM model

GOI model

SW model
Mahapatra model
SWM model
Proposed ISR model

$ = 2.20E—5, N = 19
¢ =1.58E—5N =17
$=1.93E—5,N = 19
¢ = 5.53E—6,N = 17

¢ = 2.68E—5, N = 8,n = 1529
¢ = 2.87E—5,N = 16,n = 136,y = 1.1258,

1 = 0.7026

over estimation
over estimation
over estimation
over estimation
under estimation
over estimation

Iteration 4.2

JM model

GOI model

SW model
Mahapatra model
SWM model
Proposed ISR model

¢ =1.92E—5, N = 31
# = 3.20E—6, N = 30
¢ = 6.50E—6, N = 31
¢ =T729E—7,N = 31

¢ =2.97E—5, N = 30,n = 3729
¢ = 2.82E—5, N = 32,n = 513,y = 1.00009,

1 = 0.9904

(ol REN BEN S EEN |

exact estimation
under estimation
exact estimation
exact estimation
under estimation
over estimation

13
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4.3.1. Data analysis of Eclipse software

In the first released iteration of the Eclipse project, the estimated value of v is 2.2666
and represents that the software has fewer features with the least number of bugs. A new
iteration is released, more and more features are added, and value - reflects all changing
requirements incorporated in the next released iteration. The value v reflects minute
changes in minor iteration releases because it involves only a few feature addition and bug
fixing. After iteration 2.0, iteration 2.1 has been released with minor feature addition and
bug fixing. The value of « this iteration is 2.8763 in iteration 2.0, but within a minute, it
changes in iteration 2.1 v, takes the value as 2.6343. This value is differing by only a small
amount from the value in iteration 2.0. In major iteration release 3.0, the value is vy 3.7891,
showing the major change in its value from the 2.1 version. Further in minor releases of
iteration 3.0, values v are changing as 3.2217, 2.5788, 2.3121, 2.7295, 2.6434, and 2.0435
for iteration numbers 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6, respectively. Similarly, in iteration 4.0,
the « parameter’s value reflects all major iteration’s requirement updates, the value ~
is 1.1258, and in its minor iteration release 4.1, the value v is 1.0009. Using estimated
parameter values, prediction of the remaining number of errors is made, remarks are made
whether the model overestimates, underestimates, or precisely estimates the number of
faults remaining in the system.

Y versus p .
KL versus version no.
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Figure 1. The plot of v versus p for Figure 2. The plot of u versus iteration for
Eclipse dataset Eclipse dataset

Figure 1 represents how the modulation factor values change with respect to the modulation
parameter for each iteration. Estimated values of the parameter are significantly reflecting all
the changing requirements for each upcoming iteration numerically. These values meaningfully
represent how much impact is of adding and removing new features with user acceptance in
each upcoming iteration.

Figure 2 represent how the value of changes increases with the growth of the iterative
software development process.

Table 4. Goodness-of-fit estimated using Eclipse software failure dataset

Sr. No. Model SSE MSE AE TS
Iteration 1.0

1 JM model 5.23 5 0.333 59.761
2 GOI model 1.51 1 0.0189 26.721
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Table 4 continued

3 SW model 17.31 17 0.666 110.19
4 Mahapatra model 1.26 1 0.013 26.722
5 SWM model 5 4.9 0.297 65.94
6 Proposed ISR model 1.24 0.666 0.012  37.79
Iteration 2.0

1 JM model 375.51 17.045 0.225 27.664
2 GOI model 92.005 4.181 0.125 13.702
3 SW model 218.81 9.909 0.266 21.092
4 Mahapatra model 55.46 2.51 0.166 12.371
5 SWM model 528.7 15.89 0.495 34.57
6 Proposed ISR model 45.12 2.5 0.125 10.594
Iteration 2.1

1 JM model 452.2 16.74 0.054 22.985
2 GOI model 133.34 4.925 0.035 12.468
3 SW model 126.6 4.666 0.034 12.136
4 Mahapatra model 131.31 4.851 0.039 12.374
5 SWM model 118.67 3.89 0.028 13.9

6 Proposed ISR model 101.02 4.391 0.023 14.42
Iteration 3.0

1 JM model 56948 605.82 0.302 43.602
2 GOI model 45510.1 559.22 38.978
3 SW model 39981 494.69 0.292 36.507
4 Mahapatra model 55122.2 586.4 0.395 42.898
5 SWM model 66890.4 679.32 0.279  54.89
6 Proposed ISR model 39705.2 484.14 0.584 52.069
Iteration 3.1

1 JM model 6091.1 45.45 0.016 8.476
2 GOI model 1018.8 7.59 0.005 3.465
3 SW model 1123 8.38 0.0065  3.639
4 Mahapatra model 1015 7.57 0.005 3.56

5 SWM model 2000.7 15.9 0.006 5.69

6 Proposed ISR model 1589.82 12.22 0.007 4.551
Iteration 3.2

1 JM model 13940.73 119.14 0.05 15.655
2 GOI model 7246.05 61.931 0.042 11.287
3 SW model 12585 107.564 0.111 14.871
4 Mahapatra model 7794.28 68.973 0.107 12.416
5 SWM model 9685.12 89.67 0.357 20.85
6 Proposed ISR model 952.2 8.136 0.034 4.091
Iteration 3.3

1 JM model 6810.14 58.239 0.025 10.945
2 GOI model 9371.1 80.094 0.042 12.835
3 SW model 7318.81 62.547 0.034 11.342
4 Mahapatra model 22174 18.948 0.05 9.243
5 SWM model 2903.9 27.872 0.068 12.09
6 Proposed ISR model 2203.05 19.495 0.025 7.099
Iteration 3.4

1 JM model 1153.32 23.53 0.058 50.122
2 GOI model 1545.41 1320.9 0.546 52.124
3 SW model 1153.73 23.53 0.049 15.914
4 Mahapatra model 905.4 18.46 0.058 14.099
5 SWM model 3589.96 29.79 0.089 34.956
6 Proposed ISR model 520.23 11.55 0.039 12.809

15
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Table 4 continued

Iteration 3.5

1 JM model 373.3 15.542 0.153 24.526
2 GOI model 137.74 5.7083 0.076 14.864
3 SW model 551.1 22.958 0.152 29.808
4 Mahapatra model 137.8 5.708 0.077 14.864
5 SWM model 489.74 18.24 0.0204 24.95
6 Proposed ISR model 86.62 4.3 0.077 12.88
Iteration 3.6

1 JM model 199.91 7.654 0.036 16.064
2 GOI model 160.01 6.154 0.071 14.402
3 SW model 154.54 5.923 0.056 14.129
4 Mahapatra model 152.23 5.864 r|0.046  14.037
5 SWM model 315 14.92 0.184 23.68
6 Proposed ISR model 91.15 4.136 0.035 14.669
Iteration 4.1

1 JM model 286.65 22 0.266 48.025
2 GOI model 111.21 8.538 0.256 29.91
3 SW model 284.86 22.1 0.266 48.025
4 Mahapatra model 129 9.923 0.133 32.254
5 SWM model 178.22 7.34 0.0836  18.48
6 Proposed ISR model 49.95 5.444 0.246  26.335

Iteration 4.2

1 JM model 441.12 15.206 0.323 20.576
2 GOI model 121.21 4.172 0.24 10.778
3 SW model 193.34 6.655 0.289 13.612
4 Mahapatra model 166.65 5.724 0.224 12.624
5 SWM model 704.86 26.87 0.593 49.056
6 Proposed ISR model 72.235 2.88 0.129 10.688

The Goodness-of-fit of the models is shown in Table 4. From the analysis of results,
it is found that the Proposed ISR model is fitted well in terms of SSE, MSE, and AE in
iterations 1.0 and 2.1. But GOI model is beating the Proposed Iterative Software Reliability
(ISR) model in terms of TS in iteration number 1.0 of the Eclipse software failure dataset.
In iteration 2.0 Proposed ISR model is beating other models in terms of SSE and AE but
also performing good. SW, and SWM are performing better than the proposed ISR model.
In iteration 3.0, the Proposed Iterative Software Reliability (ISR) model performs better
than other SSE and MSE, but its AE and TS values are exhausted by other models. In
iteration number 3.1 Proposed Iterative Software Reliability (ISR) model is found to be less
fitted than other models. Again, in further iterations of 3.2, 3.3, 3.4, 3.5, 3.6, and 4.2, the
Proposed ISR) model estimates parameters more precisely than other models. In iteration
number 3.3 and 4.1, the Proposed ISR model is not much good than the Mahapatra model
in terms of MSE and TS. But they are performing a good fit than other models in terms of
SSE, MSE and TS. From all the data analysis done in Table 4, it is found that the Proposed
Iterative Software Reliability (ISR) model is performing fighting fit in terms of various
Goodness-of-fit criteria and can be used for predicting the reliability of system software.

Optimal iteration releases can be selected based on reliability. The iterations 3.3, 3.6,
and 4.1 are found to have higher reliability, and there are fewer falls in reliability values of
these versions than other released iteration reliabilities. All iteration’s reliability values
are found to be decreasing up to 89%. Failure intensity graphs in Figure 4 show how
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Figure 3. The plot of the reliability function Figure 4. Plot of failure Intensity

for various iterations of the Eclipse failure dataset  for various iterations for Eclipse failure dataset

much there is a decrease in failure behavior as the number of fault count increases. The
iterations 3.3, 3.6, and 4.1 releases have a much-decreasing failure rate. There decrease in

failure rate behavior is depicting that with time, the reliability of these systems increases.

Reliability analysis has been done in Figure 3 and failure Intensity has been shown in
Figure 4. Developers could decide the quality of the released iteration using estimated
reliability. This is also helpful for end-users in choosing which iteration release will be most
reliable in the future.

4.3.2. Result and data analysis of JDT dataset

In this section, analysis of the JDT software failure dataset is done using the proposed

Iterative Software Reliability (ISR) model and other failure rate behavior-based models.

Table 5 is showing the estimated values of model parameters.

Table 5. Parameter estimation using JDT software failure dataset

Predicted number
of remaining errors

Model Name Parameter estimated values (fit) .
expectation remarks
(fit) (predicted)

Iteration 3.2.0
JM model ¢ = 2.35E—6, N = 50 3 under estimation
GOI model ¢ =8.16E—7, N = 56 9 under estimation
SW model ¢ =2.1TE—6, N = 58 11 under estimation
Mahapatra model ¢ =1.21E—6, N =57 10 under estimation
SWM model ¢ =2.91E-5,N =52,b=1723 5 under estimation
Proposed ISR model ¢ =2.91E—-5, N = 60,n = 1788,y = 4.8479, 13 over estimation

w=0.1710
Iteration 3.3.0
JM model ¢ =2.78E-5,N =9 -5 under estimation
GOI model ¢ =1.48E—5, N = 16 2 under estimation
SW model ¢ =4.7T0E—6, N =8 —6 under estimation
Mahapatra model ¢ = 8.92E—6, N = 26 12 over estimation
SWM model ¢ =2.99E-5, N =9,n = 1028 -5 under estimation
Proposed ISR model ¢ = 2.97E—5, N = 19,n = 179,~ = 3.8869, 5 over estimation

w=0.2140

17
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Table 5 continued

Iteration 3.4.0

JM model ¢ = 8.86E—6, N = 18 7 over estimation
GOI model ¢ = 2.35E—6, N = 18 7 over estimation
SW model ¢ =3.83E—6, N = 16 5 over estimation
Mahapatra model ¢ =1.03E—5, N = 28 17 over estimation
SWM model ¢ =291E-5,N =13,n = 1124 2 under estimation
Proposed ISR model ¢ =2.92E-5 N = 18,n = 119,y = 2.9993, 7 over estimation
u = 0.2680
Iteration 3.5.0
JM model ¢ =2.49E—-5 N =8 4 over estimation
GOI model ¢ =1.06E—6, N = 13 9 over estimation
SW model ¢ =2.92E-5,N =10 6 over estimation
Mahapatra model ¢ =4.T78E—-7,N =5 1 exact estimation
SWM model ¢ =231E-5,N =3,n =137 -1 under estimation
Proposed ISR model ¢ =2.96E—-5, N = 7,n = 25,7 = 2.0918, 3 over estimation
©=0.3670
Iteration 3.6.0
JM model ¢ =293E-5,N =4 -8 under estimation
GOI model ¢ =2.01E-5,N =11 -1 under estimation
SW model ¢ =2.99E—-5, N =29 over estimation
Mahapatra model ¢ =1.26E—5, N =85 T3 over estimation
SWM model ¢ =134E—5, N =15,n =134 3 exact estimation
Proposed ISR model ¢ =2.67TE—5, N = 18,n = 171,y = 1.1529, 6 over estimation
u=0.678
Iteration 3.7.0
JM model ¢ = 1.50E—6, N =16 7 over estimation
GOI model ¢ =1.58E—6, N =13 4 over estimation
SW model ¢ = 5.40E—6, N = 26 17 over estimation
Mahapatra model ¢ =5.30E—6, N =12 3 exact estimation
SWM model ¢ =2.69E—5, N = 14,n = 1599 5 over estimation
Proposed ISR model ¢ = 2.74E—5, N = 15,n = 78,y = 1.052, 6 over estimation
nw=0.724

A predicted number of errors estimated using the Proposed Iterative Software Reliability
(ISR) model is found to be representing accurate estimation when compared with the actual
dataset values. There is a slight deviation only because of the poor debugging behavior in
the iterative software development process. Remarks are made about whether the model
underestimates, overestimates, or precisely estimates the number of remaining errors in
the system.

Figures 5 and 6 are showing v and u behavior with respect to change in iterations. With
each iteration, the value of functionality changes and corresponding to its requirements are
made in upcoming iterations. Accordingly value of yu and changes their shape quantitatively,
as shown in Figure 5. Figure 6 is showing the behavior of  with change in iteration numbers.
At initial iteration number 3.2, there are the least features and maximum changing needs
from the end-users; the value v p are 4.8479 and 0.171, respectively. These values are varying
in the same way in each iteration release. For example, in iteration 3.3, the value = is 3.8869
and p is 0.2140. For iteration 3.4 value ~ is 2.9993, and the value p is 0.2680 showing
perfectly how the requirements and functionality change in each iteration with end-user
acceptance. In the end, v values move towards completion of end-user requirements, and
acceptance level also increases, the value of v the changes as 1.1052 and p as 0.7240.
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Figures 5 and 6 are showing well, the iterative behavior of software development using
~v and u values.

Table 6. Goodness-of-fit of JDT software failure dataset

Sr. No. model SSE MSE AE TS
1 JM model 179.79 11.187 0.0169 29.133
2 GOI model 317.67 5.561 0.011 6.719
3 SW model 1056 15.678 0.018 19.083
4 Mahapatra model 56500.09 991.228 0.915 89.706
5 SWM model 2989.06 29.689 0.0214 41.075
6 Proposed ISR model 171.89 3.226 0.0169 5.585
Iteration 3.3.0
1 JM model 404 33.666 0.285 63.089
2 GOI model 989.9 61.825 0.666 68.479
3 SW model 589.1 40.78 0.39 69.93
4 Mahapatra model 604.01 37.75 0.388 53.515
5 SWM model 486.32 33.96 0.31 65.94
6 Proposed ISR model 31 2.583 0.114 16.295
Iteration 3.4.0
1 JM model 37 12.33 0.6 82.02
2 GOI model 206.56 17.16 0.285 45.051
3 SW model 750.9 68 0.301 90.789
4 Mahapatra model 1241.01 103.41 1.112 110.574
5 SWM model 1839.56 146.92 1.947 130.05
6 Proposed ISR model 91 11.37 0.214 3.365
Iteration 3.5.0
1 JM model 57 4.384 0.066 21.44
2 GOI model 76.53 25.33 1.6 117.551
3 SW model 3019.9 119.05 4.037 289.68
4 Mahapatra model 38225 318.54 8.5 613.678
5 SWM model 20687 156.94 5.923 493.8
6 Proposed ISR model 18 -24.002 0.2 66.057
Iteration 3.6.0
1 JM model 76 7.6 0.333 34.194
2 GOI model 46721 359.39 6.6 613.8259
3 SW model 12089 367.83 17.89 156.9
4 Mahapatra model 11534 384.477 16.001 144.8
5 SWM model 34834.09  329.21 5.093 542.056
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Table 6 continued

Sr. No. model SSE MSE AE TS

6 Proposed ISR model 192 21.3333 0.2 44.45
Iteration 3.7.0

1 JM model 280 45002 0.071 35.133

2 GOI model 90.011 9.001 0.166 37.21

3 SW model 200.9 11.08 0.189 49.057

4 Mahapatra model 952 8.1368 2.478 40.091

5 SWM model 1109.23 57.34 0.373 169.78

5 Proposed ISR model 54 9.0001 0.166 25.5181

Table 6 shows the Goodness-of-fit measures of the Proposed Iterative Software Reliability
(ISR) model and other models. The iteration number 3.2 performs better than other models
except in terms of AE compared to the GOI model. The Proposed Iterative Software
Reliability (ISR) model is estimating values in a best fitted way than other models in
iteration 3.3. In case of iteration 3.4 for proposed Iterative Software Reliability (ISR) model,
AE value is comparatively higher than the Mahapatra model, but it performs well in
other cases. For iteration number 3.5, the JM model beats the Proposed Iterative Software
Reliability (ISR) model in terms of T'S. In Iteration number 3.6, the proposed Iterative
Software Reliability (ISR) model works well, compared to other models, except that it
deviates well from the JM model at SSE, MSE, and TS values. For iteration number 3.7
proposed Iterative Software Reliability (ISR) model is fighting with all other models except
at MSE and AE, where there is a bond in its performance with other models. Overall
proposed Model is fitted well for estimating the parameters of the models and can be used
for estimating the reliability of JDT systems.

The Proposed Iterative Software Reliability (ISR) model’s reliability analysis using the
JDT dataset is done in Figure 7. Failure intensity in Figure 8 is depicting the iteration’s
failure rate at each failure interval. There is a decreasing rate of failure at each iteration.
In the initial iteration of JDT software, the failure rate decreases with low intensity; later
on, when most bugs have been removed and almost all functionalities have been added, the
iteration failure rate starts falling at high intensity. For example, in iteration numbers 3.6
and 3.7, there is a more decreasing failure rate than other iterations. This decreasing failure
rate depicts that there is always an increase in end-user acceptance level and reliability with
added functionalities and bug removal in each successive iteration. In the final iteration
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release, the software is at its full implementation of functionalities and ready for conclusive
acceptance from the end-users.

4.3.3. Statistical evaluation

From the above discussion, we concluded that the proposed ISR model outperformed all
the other models for both datasets, Eclipse and JDT. To statistically evaluate the results,
we have used a non — parametric Friedman test. It is used to evaluate whether statistical
difference also exist among various models when applied over multiple iterations. For
Friedman test, the following hypotheses are created and then the value of x? is used to
test the null hypothesis:

Null Hypothesis (Hp): There is no statistical difference between the performances of the
compared models (JM model, GOI model), SW model, Mahapatra model, SWM model and
the proposed ISR model). Alternative Hypothesis (H1): There exists statistical difference
between the performances of the compared Models (JM model, GOI model), SW model,
Mahapatra model, SWM model and the proposed ISR model). Friedman test was applied
on all the performance measures for both the datasets. The p-values and the chi-square
values given by Friedman test in shown in Table 7. From the Table 7, we can observe that
for all the cases except one, the p-values proved that the results are significant at the 0.05
level of significance over 5 degrees of freedom. Since, the p-value is less than the significance
level of 0.05 (shown in bold), the null hypothesis is rejected and alternate hypothesis is
accepted. Thus, we say that there is statistical significant difference in the performance
of the compared models. The ranks obtained by each model when using SSE, MSE, AE
and TS are shown in Tables 8 and 9 for Eclipse and JDT datasets, respectively. The rank
demonstrates the performance of all the models (lowest numerical rank value shows the
highest performance). From Tables 8 and 9, we can observe that the top rank (shown in
bold) is obtained by the proposed ISR model is all the cases for both the datasets. This
demonstrates that the proposed ISR model is significantly better than the other compared
models with respect to all the performance measures.

Table 7. Friedman results (p-value and x? value)

SSE MSE AE TS
Dataset p value x2 p value x> p value x> p value 2
Eclipse 0 35.048 0 30.431 0.063 10.483 O 22.464
JDT 0.001 20 0.013 14.476  0.003 18.341 0.004 17.524

Table 8. Mean ranks obtained using Friedman test on Eclipse dataset

Models SSE  MSE AE TS
JM model 5 5.04 429 4.79
GOI model 325 346 3.17 288
SW model 4.17 421 413 3.63
Mahapatra model 258 254 329 238
SWM model 475 433  3.92 492

Proposed ISR model 1.25 1.42 2.21 2.42
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Table 9. Mean ranks obtained using Friedman test on JDT dataset

Models SSE MSE AE TS
JM model 2 2.67 2.08 233
GOI model 3.83 3.5 3.08 3.5
SW model 3.83 4.33 4.33  4.33
Mahapatra model 5 4.67 533 4.33
SWM model 5 4.5 4.5 5.17

Proposed ISR model 1.33 1.33 1.67 1.33

4.4. Discussion

The suitability of the model is shown on time-domain data sets. The Proposed Iterative
Software Reliability (ISR) model is more adaptive to observed time-domain failure data
sets than other failure rate models. Adaptation has been made possible because of the
modulation parameter p used in the model. As the software development moves towards
completion, this parameter changes its values according to added functionalities and user
acceptance level in each successive iteration of software development. This parameter
assumes that there is added functionality and user acceptance in each iterative development
cycle. According to the functionality added in each iteration, there is a change in the
requirements of iterative software development. The users’ varying needs are reflected
with modulation factors in the Proposed Iterative Software Reliability (ISR) model. The
Proposed Iterative Software Reliability (ISR) model provides a good fit for the observed
failure data. Values estimated in Tables 3 and 5 shows acceptable parameter values at
all weights . With each iteration, functionality values and user acceptance increase
(demonstrated by the value of modulation parameter that increases from lower to higher).
There is a corresponding change in needs for iteration development (shown by modulation
factor). Values of modulation factor and modulation parameter change suitably with each
upcoming iteration in both the failure datasets, demonstrating well the iterative software
development behavior. Depending on the values of the estimated parameters, the number
of remaining faults in terms of expectation is calculated. In some cases, the prediction
deviates by a small amount due to the introduction and removal of mutually dependent
and independent faults in each iteration. This verifies the imperfect debugging phenomenon
associated with each iterative software development. The Goodness-of-fit for models is
shown in Tables 4 and 6 regarding SSE, MSE, AE, and TS values. The Proposed Iterative
Software Reliability (ISR) model fits well in both the failure datasets used. The Proposed
Iterative Software Reliability (ISR) model has outstanding performance in data analysis
of both the failure datasets than JM, GOI, SW, Mahapatra et al. and SWM models
in terms of Goodness values. In all iterations of datasets, Proposed Iterative Software
Reliability (ISR) model reliability increases as several iterations proceeds. The last iteration
is assumed to be the reliable iteration. This change in reliability is showing a value-added
software development process. All models have been implemented using a hybrid PSO-GSA
algorithm for parameter estimation. The Proposed Iterative Software Reliability (ISR)
model shows considerable performance with a hybrid algorithm even with more parameters
than other models.
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5. Threats to validity

In this section, we discuss potential threats which may affect the findings of the study.

Conclusion validity threat in the proposed work is mitigated after evaluating the statistical
viability of results with the use of two statistical tests. Researchers in this work have
proposed a new Software reliability estimation model for reliability estimation of Eclipse
and JDT software’s. Proposed work has been compared with most relevant models available
in the literature. Although no models is well fitted to all the failure datasets, each model is
having its own assumptions and it works significantly well mainly for that type of dataset
only for which it has been developed. Although other model comparison is done in the
proposed research here for Eclipse and JDT software datasets and selection of most optimal
model was not the primary aim of the study, this threat exists. However, to reach to
a useful set of parameters, all the possible combinations of various parameters need to
be explored. Parameter estimation plays an important role in the performance model
development. Model parameters have been estimated and well pruned using hybrid swarm
evolutionary algorithm. Another important factor which we considered was the use of stable
performance metrics as Sum of Squared Errors, Mean Square Error, Absolute Error and
Theil statistics to deal with the imbalanced nature of the datasets and models. Finally, the
use of different datasets and models based on different assumptions also helps to reduce the
conclusion validity threat. It may be noted that the models developed in the study can be
used to detect software reliability at different iterations of software development. However,
further studies should be conducted for analyzing the suitability of proposed model for

determining change and acceptance levels at levels of iterations in the software development.

This acts as a limitation to the applicability of the reported results. External validity
threat concerned with the generalizability and replicability of the results is reduced in the
proposed work due to the use of popular Tera Promise repository datasets used in this
study which are freely available for the researchers to replicate the result, its findings and
to conduct additional research. However more datasets belonging to different domains and
applications need to be considered to ensure generalizability of the results. Further varied
percentage of change-prone parameters of proposed model using hybrid swarm evolutionary
algorithm across different datasets guarantees generalizability of the results. However, the
study investigated parameter estimation using only hybrid swarm evolutionary algorithm
only. Future experiments which involve more parameter estimation techniques likely using
Machine learning or deep learning should be conducted to enhance the generalizability of
the obtained results.

6. Conclusion and future scope

The majority of existing failure rate models are based on the classic waterfall software
development lifecycle process model. However, new software development techniques, such as
iterative life cycle processes, have been created and shown to be more effective than waterfall
software development lifecycle processes. The Proposed Iterative Software Reliability (ISR)
model makes use of the iterative nature of software development. The Proposed Iterative
Software Reliability (ISR) model uses a modulation factor to represent the changing demands
in each iteration. Software development features reduce at the end; accordingly modulation
factor changes its value. Debugging is never perfect, so imperfect debugging has been
incorporated by assuming fault introduction and removal. A realistic iterative software
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development feature has been added to the Proposed Iterative Software Reliability (ISR)
model perfectly and accurately. The Goodness-of-fit measure of the models is done using
SSE, MSE, AE, and TS values. The Proposed Iterative Software Reliability (ISR) model
fits all application datasets for each analysis and fulfils all the authentic assumptions during
iterative software development. The proposed model has major beating SSE, MSE, AE, and
TS values than JM, GO, SW, SWM, and Mahapatra et al. models when applied on both
the datasets. According to various Goodness-of-fit measures, the proposed model is about
52% significant from other models in the case of Eclipse failure data analysis for iteration
1.0. Tt performs by about 30% using 2.0 to 2.1 and 3.0 to 3.6 iterations. Similarly proposed
model has about 35% higher goodness than other used models. When the JDT software
failure dataset is analyzed for Proposed Iterative Software Reliability (ISR) model fitness,
the proposed model beats other failure rate models by about 55%. In each analysis done,
the Proposed Iterative Software Reliability (ISR) model is found to be reaching acceptable
performance and could be applied on other software failure datasets for further validation.
Other reasonable criteria for finding Goodness-of-fit for the model can be developed, and
a method for finding upper and lower bounds for estimation can be proposed in the future.

Data availability

Both the code for the algorithm and the datasets obtained after preprocessing are vailable
in the replication package available at https://zenodo.org/records/13147825.
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1. Introduction

Background: Modern Code Reviews (MCR) are frequently adopted
when assuring code and design quality in continuous integration
and deployment projects. Although tiresome, they serve a secondary
purpose of learning about the software product.

Aim: Our objective is to design and evaluate a support tool to help
software developers focus on the most important code fragments
to review and provide them with suggestions on what should be
reviewed in this code.

Method: We used design science research to develop and evaluate
a tool for automating code reviews by providing recommendations
for code reviewers. The tool is based on Transformer-based machine
learning models for natural language processing, applied to both
programming language code (patch content) and the review com-
ments. We evaluate both the ability of the language model to match
similar lines and the ability to correctly indicate the nature of the
potential problems encoded in a set of categories. We evaluated the
tool on two open-source projects and one industry project.
Results: The proposed tool was able to correctly annotate (only true
positives) 35%—41% and partially correctly annotate 76%-84% of
code fragments to be reviewed with labels corresponding to different
aspects of code the reviewer should focus on.

Conclusion: By comparing our study to similar solutions, we con-
clude that indicating lines to be reviewed and suggesting the nature
of the potential problems in the code allows us to achieve higher
accuracy than suggesting entire changes in the code considered in
other studies. Also, we have found that the differences depend more
on the consistency of commenting rather than on the ability of the
model to find similar lines.

Modern Code Reviews (MCR) [1,2] is a common practice in continuous integration and
deployment companies. A modern code review is a practice that evolved from software
inspections advocated by Fagan et al. [3] already in 1976, but it adapts to modern tools and
the ability to peer review smaller segments of code (commits) pushed by developers to the
main branch of the code. MCR is integrated into modern software development pipelines
and all leading configuration management platforms enable this way of working. Git and

© 2025 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY-SA 4.0 license international.
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Gerrit [4,5] are two examples of such tools, where the developers can review other’s code
before it is integrated with the main branch.

Although MCR is a lightweight process compared to the original inspection process of
Fagan, it is still a tiresome process and can result in delays when delivering the product [6].
It is also a process known to miss important quality issues [7]. To address the problem, the
majority of current research efforts are targeted towards either eliminating this activity by
automated code repairs [8], improving the tools used for code reviews [9], or even predicting
which lines of code should be reviewed manually [10,11].

However, one of the main limitations of the automated code repair activities is the low
success rate (ca. 30% at best, [8]). The major drawback of the automated suggestion for
which code fragments to review is the lack of information on why and what should be
reviewed exactly in that code fragment. Furthermore, MCR has secondary goals in addition
to quality assurance. It is often perceived as a good way of onboarding developers into new
projects and learning within the team [12,13]. Therefore, in this paper, we address the
research problem of:

To which degree can we suggest relevant review guidance for a given code fragment
based on historical data?

We address this question by designing and constructing an automated code review
assistance platform — ACoRA. The platform is based on the idea that a programming
language can be treated as a natural language from the perspective of machine learning
language models [14]. It employs a Transformer-based language model [15] to search for
lines of code similar to those under review that were previously commented on. Later, it
analyzes the comments to highlight the aspects of code on which the reviewer should focus
while reviewing a given code fragment. It performs a multi-class / multi-label classification
according to the proposed taxonomy [16] and aggregates the results over the comments
for similar lines to guide the reviewers’ focus. ACoRA can be integrated with MCR tools to
learn from the previous reviews to be able to suggest what should be reviewed in a given
code fragment.

We use design science research as our methodology as prescribed by [17] and evaluate
ACoRA on both open-source projects and together with an industrial partner. The results
show that we can suggest completely correct recommendations (only true positives) in
35%-41% of the fragments and partially correct in 76%-84% of the fragments. The results
are better than the results of similar studies (e.g., suggesting code that repairs a defect or
suggesting a review text itself).

The paper is structured as follows. Section 2 summarizes the most relevant related
research. Section 3 describes the ACoRA platform and Section 4 details our research method-
ology. Sections 5 and 6 present and discuss the results of evaluating ACoRA and Section 7
discusses the threats to validity. Finally, Section 8 presents the conclusions and outlines
the further work in this area.

2. Related work

The field of using natural language processing models for programming tasks is developing
rapidly. In this section, we provide the current and the most relevant related research in
this area.
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2.1. Natural Language Processing models applied to code

“On the naturalness of software” by [14] is a seminar work that started a number of research
directions in using machine learning for programming tasks. This paper shows that there
exist several approaches for using natural language processing machine learning models in
software engineering, with a focus on such tasks as program repair or defect finding.

In fact, this field became very popular and a survey by [18] formalized a hypothesis
about the naturalness of programming languages: “The naturalness hypothesis. Software
is a form of human communication; software corpora have similar statistical properties
to natural language corpora; and these properties can be exploited to build better software
engineering tools.” This hypothesis provided a foundation to classify approaches to pro-
cessing programming languages, but the most important contribution of this work is the
classification of the tasks where the hypothesis is used (at least initially, when it was
formulated): code-generating models, representational models of code, and pattern mining
models. The paper also reviewed each of these application areas and found a significant
number of models and applications. For example, for the code-generating models, they
found 49 studies, and the number is certainly higher today. Our work, however, is focused
on studying the last area — pattern mining of code, although focused on applying these
techniques to a specific task — code review support. That area showed a significantly smaller
set of studies — 10 studies in 2018.

2.2. Using language models for code repair and generation tasks

One of the first models, which is used in several studies, is the representation of code using
information about the program’s abstract syntax tree — code2vec, as introduced by [19].
The underlying concept behind code2vec is that a program’s code should be represented as
a feature vector using information taken from the grammar of the programming language.
The feature vector carries information about whether a code fragment is a definition of
a function, a single statement, or even a specific type of token. The approach has been
demonstrated to work well when translating programming languages or finding meaningful
synonyms. However, it has one disadvantage. Namely, it requires the program to compile,
which is quite problematic in industrial contexts as well as in the context of MCRs. Since
the focus of MCR is, per definition, one commit, then the set-up of the entire code2vec
alongside compilers can be problematic, as we found in our previous studies [6].

As opposed to the grammar-based language models, a new trend emerged when BERT
models [20] showed significant progress in the area of natural language processing, in
particular in translation between programming languages. One of the first BERT-based
models in this area is CodeBERT designed by [21]. The model is pre-trained for programming
languages like JavaScript or Python along with the English natural language. The model
supports translations between a natural language and a programming language for such
tasks as writing programs based on natural language commands or summarization of
programs in natural languages (documentation generation).

Program generation and translation of natural language to programs are also the base
tasks for the TransCoder models presented by Facebook Research. An example of such
a task is the deobfuscation task, where the models change identifiers in the program to ones
that are more meaningful for software developers, as presented by [22]. The performance of
the model is impressive and in the best-case scenarios achieves an accuracy of 67.6%.
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AlphaCode as presented by [23], is another prominent example of current state-of-the-art
models in program generation. The model is trained to solve problems from programming
competitions and uses the same technology. The application of the model demonstrates
that it can generate programs based on natural language specifications and also ranks in
the top 54.3% compared to ca. 5000 participants. The main difference of this model is that
it is trained to solve “artificial” programming tasks, which are not the same as software
engineering tasks in the industry. Our work is based on the same principles as AlphaCode
(using transformer models) but aligned with the industrial needs and requirements.

However, the accuracy depends on the dataset and the task of the model. An example
of a problem, which is significantly more relevant to the industrial context is program
repair. There, the newest models, such as Review4Repair [24], can achieve an accuracy of
above 30%, which is still a significant improvement from the previous models. Review4Repair
solves the task of fixing a given defect based on finding and adapting code fragments from
Git. The problem is significantly more difficult than deobfuscation or program generation
since the new code fragment has to fit in the existing context. A similar approach was
followed by Tufano et al. [25] who studied the possibility of adapting Text-To-Text Transfer
Transformer (T5) to either automatically suggest changes in the code under review or to
generate such changes based on the reviewer comments. These ways of using language
models are the most similar to our approach, with the difference that we do not generate
code fragments but guide the focus of the reviewers by indicating lines of code similar
to the previously commented ones with hints on potential reasons for comments. Thus,
we solve a modified version of this problem. As opposed to Review4Repair, we provide
a recommendation for a software developer, who needs to react, rather than providing
a solution that needs to be automatically approved (e.g., through testing).

Finally, the latest commercial achievement in this line of research is the GitHub
Copilot!, which is based on OpenAI’'s GPT-4 model. GitHub Copilot tool can provide
both suggestions for new code fragments based on natural language comments of what the
code should do, and based on the previous code that has been written (code completion).
Our model solves a simpler problem but is trained on a codebase selected by the software
developers, which does not pose any legal issues, as they can choose to use the model only
on their previous code.

2.3. Modern code reviews

The focus of our work, i.e., code review processes in the continuous integration/deployment
context, has industrial roots. The MCR process is effort-intensive and can vary in quality.
One of the seminal papers about MCR, and its industrial role, is the study of code
reviews at Google [26]. Among other findings, [26] presents identifying code ownership and
readability as important factors in the process of code review. They have also found that
code reviews should be done on smaller parts of the code to make the process faster, which
has implications for the technology used to support the code reviews. The smaller fragments
of code require the models to use non-grammar-based approaches. It also poses requirements
for being specific when providing recommendations. These implications have also been
identified in our previous studies [6] and therefore ACoRA generalizes the review suggestions
as well as provides recommendations on arbitrary code fragments, e.g., individual lines.

"https://copilot.github.com
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One of the fundamental challenges when applying machine learning to code reviews is
our ability to understand what a good code review [27] is studied the concept of code review
and source code change from the perspective of how a good change, or review, is defined in
the literature. They verified their studies based on industrial practice. Small size of the
change, clear context, and relevant suggestions are some of the identified factors. In ACoRA,
we follow these findings and provide generalized suggestions about the potential nature of
the problem and its context (examples of similar lines of code previously commented on
and the comments) to help the developers make the most of the suggestions.

One of the challenges we encounter in our work is the ability to characterize and
categorize code review comments. [28] studied a set of code review comments from over
2000 software developers. Their study used pre-defined, fine-grained categories of code
reviews and achieved an accuracy of 63.9%. This shows that the accuracy of the ACoRA’s
BERT4Comments model (above 86%) is in line with other models performing automatic
classification of pull-request comments, e.g., [29-31].

Continuing in this area, the state-of-the-art models for review recommendation use
ensembles and several matches to provide a good recommendation. For example, automating
code review tool CORE, presented by [32], uses a corpus of 57000 code review comments
and obtains results at the level of 11% (recall for one suggestion) and 48% (recall for ten
suggestions). The results are improvements of two orders of magnitude compared to the
previous tools. The low recall for the first suggestion, however, can be linked to the fact
that the CORE tool generates natural language suggestions, i.e., a text for the comment.
In order to reduce the complexity, ACoRA suggests categories of problems rather than
generating the text. Our results outperform CORE’s recall for a single suggestion.

Instead of providing suggestions for code reviews in general, there are tools that focus
on specific types of suggestions. An example of such a tool is the RAID tool, as presented
by [33]. The tool focuses on identifying code refactoring opportunities based on analyzing
code reviews in MCR. The tool results in significant improvements in the code base, e.g.,
by reducing the size of the codebase. It also, like ACoRA, uses software developers in the
loop to make the assessment of the quality of the recommendations.

Tufano et al. [34] studied the strengths and weaknesses of contemporary code-review
automation approaches. They identified three types of code-review automation tasks, i.e.,
code-to-comment, code and comment-to-code, and code-to-code. The first one, code-to-
comment, is about generating review comment text for a piece of code under review that
would match the comment made by a human expert reviewer. ACoRA partially fits into
this category. However, instead of generating a comment, we aim to guide the focus of the
human reviewers, first to the lines that might need their attention, secondly by suggesting
what they should focus on when reviewing the code, and finally by showing examples of
comments for similar lines. By doing so, we limit the weaknesses of similar tools that use
historical code-review comments to generate review comments, such as CommentFinder
[35], since we do not narrow the recommendation to a proposal of a single comment but
rather guide the focus of the reviewer.

Finally, the field of MCR, has been developing rapidly, and there are several systematic
reviews on the topic, e.g., by Badampudi et al. [36,37], by Davila and Nunes [38], and
by Cetin et al. [39]. We can summarize the current state-of-the-art as being focused on
either understanding the process of code reviews or providing tool support. Our work
contributes to the latter, in particular by creating a support tool. We automate the process
and support learning (onboarding new project members, solution discussions) rather than
replacing core reviewers.
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3. Automated Code Review Assistant platform

Automated Code Review Assistant? (ACoRA) is a platform for automated review recommen-
dations based on historical code reviews. In general, it covers two processes: a configuration
process and a recommendation process (see Figure 1).
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Figure 1. Overview of the use of ACoRA. First, the integration leader configures ACoRA.
Then, software developers use ACoRA to check their code before it is integrated
with the entire product code

The integration leader, or another continuous integration specialist, configures ACoRA
once when the system is being set up. Later, this process can be periodically repeated in
order to update the recommendations. Software developers and architects use ACoRA to
check the quality of their source code before it is integrated with the entire codebase of
the product. Since ACoRA uses code fragments, it can be used as part of the continuous
integration toolchain or as an add-on to a development environment.

The configuration process presented in Figure 1 consists of two independent subprocesses.
The first one is to pre-train/fine-tune a neural network language model @ (CodeEmbedder)
using a codebase @ that seems similar to the target codebase on which one wants to apply
ACoRA. Alternatively, one can use publicly available pre-trained models (e.g., CodeBERT,

2ACoRA - https://github.com/mochodek/acora
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CodeT5+, etc.). The second sub-process is to train/fine-tune a review-comment classifier @
(CommentClassifier) using a dataset of manually labeled comments @. Finally, one needs
to establish a reference database of past code reviews ® that includes commented code
chunks and reviewer comments classified with CommentClassifier.

A configured ACoRA can provide recommendations ® as shown in Figure 2 by searching
for similar lines in the reference code reviews database ® to those currently under review.
As we can see in Figure 2, ACoRA suggested the reviewer to focus on line 3 by providing
recommendations about the potential nature of the problem (code_data) and an example
of a similar line from the reference code database. New comments provided by reviewers
can be classified with CommentClassifier and stored in the database ®.

B [ ACORADemo x |+ = B =

< C QA O localhost:8889 6 1= L 8

ACORA Demo

Please paste your code here:

This line would trigger a change
request and the problem is related

to the data.
Review focus:
1 x =123 [ code_data 100.0% | Show similar

- Magic number, either document what it means or use a define for it.

ACoRA provides an example line
from the reference code, which can
help the software developer to
understand the problem.

Figure 2. Demonstration of ACoRA as a stand-alone web service, to be used by software developers.
After submitting a code fragment, different lines in this fragment are provided
with recommendations on what to fix

3.1. CodeEmbedder language models

The core component of ACoRA is a language model used to transform programming language
text to its vector representation. As the ACoRA design follows the pipe and filter architectural
style, one can either use a built-in infrastructure to train such a model (BERT4Code) or
employ one of the publicly available pre-trained models for generating code embedding
vectors by adding a new filter component. For instance, in this study, we use three proven
pre-trained models, i.e., CodeBERT, GraphCodeBERT, and CodeT5+, as well, as BERT4ACode
models pre-trained from scratch.

The BERT4Code model is based on the BERT (Bidirectional Encoder Representations
from Transformers) language model [20], which is a deep artificial neural network implement-
ing a multi-layer bidirectional Transformer architecture [15] (however, technically, it uses
only the Transformer Encoder stack). The language model is trained and evaluated during
the configuration phase of ACoRA and used in the recommendation phase. The pipeline for
training follows the same principles as the established approaches like TransCoder and
CodeGen [40]:
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1. Tokenization: where each code fragment is transformed into a set of tokens. We use
a modified version of WordPiece tokenizer [41] that split tokens not only based on
whitespace characters but also on operators, brackets, etc. [42]. Optionally, ACoRA allows
to convert the out-of-vocabulary tokens into their symbolic form [43], e.g., a variable
identifier number0 would be replaced by a signature a0 (a sequence of small letters
proceeded with a sequence of digits).

2. Padding: where each code fragment is transformed to a vector of the same size, 128 tokens
in our case.

3. Embeddings extraction: a fragment of code is transformed into its embedding represen-
tation using four last hidden layers of BERT4Code (by following the recommendations
for the original BERT model [20]).

In the training phase, we pre-train a BERT4Code model using the same procedure as

for the original BERT model [20]. This process is used by other BERT-inspired models [44].

The inputs to the model are pairs of code fragments (in 50% of cases these are consecutive

fragments). The model is simultaneously trained on two tasks — Masked Language Model

(MLM) and Next Sentence Prediction (NSP). For the former, 15% of tokens in a sequence

is being masked and the goal of the network is to guess the original ones. For the NSP

task, the network needs to respond to whether the second provided code fragment directly
proceeds from the first one. The BERT4Code models studied in this paper consist of four
layers (384 neurons in each of the hidden layers; 8 attention heads). We use compact BERT
models [45] since programming languages are more formal (and structured) than natural
languages. Also, such networks can be pre-trained on commodity hardware affordable even
for small organizations.

In the inference phase, each code fragment is inputted to the BERT4Code model, and the
embedding vector output is used when calculating the similarity between code fragments.

3.2. CommentClassifier language model

ACoRA provides a default implementation of CommentClassifier called BERT4Comments?.
It is a language mode structurally similar to the BERT4Code model, except that it is based
on the official pre-trained BERT model (12-layer), which is further fine-tuned to classify
review comments. The BERT model was pre-trained on a large corpus of plain text for the
masked word prediction and next sentence prediction tasks. Such a pre-trained BERT model
can be further fine-tuned to a specific downstream task. The input to BERT4Comments is
one review comment and the output is a set of categories describing what the comment is
about. The process is shown in Figure 3.

The taxonomy of the comments is taken from our previous work [16], and is shown in
the top row of Figure 3. The categories of the taxonomy are as follows:

code__design — the comment is about a structural organization of code into modules,
functions, classes, or similar, e.g., “code snippet inherited from original dissector. I have
refactored the code to have the decompression in a single place now it should be a bit
better”. It is also about overriding, e.g., “this will not work for TA5. Why not simply
override dataCoding before the switch?”, and dead/unused code, e.g., “This is duplicated
code, put outside the if-else.”.

3BERT4Comments is is also available at the Huggingface repository: https://huggingface.co/mochodek/
comment-bert-subject together with a complementary model to annotate comment purpose https://
huggingface.co/mochodek/comment-bert-purpose
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Figure 3. BERT4Comments architecture [16]

code__style — the comment is about the layout of the code/readability issues, for example:
“add blank line” or “formatting: remove space after 4”.

code__naming — the comment is about issues related to naming code constructs, tables,
for example “please use lowercase for field name => ’isakmp.sak.nextpayload’ ” or “Add
name of dissector XXX: use custom...”

code__logic — the comment is about algorithms used, operations on data, calling functions,
creating objects, and also the order the operations are performed, for example “missing
validation of chunk size, potential buffer overflow?” or “should this be initialized with
NULL or something?”

code__io — the comment is about input/output, GUI, for example: “What about showing
the hub port, i.e., ’address:port’? So the normal endpoints would display as ’address.end-
point’ and split would display as ’address:port’” or “Debug output to be removed?”.

code__data — the comment is about data, variables, tables, pieces of information, and
strings, for example: “You probably want encoding ENC__BIG__ENDIAN here. You could
also use proto_tre_add__item-ret()int() here to avoid fetching the value twice. This is true
for other places in the code too” or “Are these ports registered with IANA? If not, I am
not sure if they should be used here”.
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code__api - the comment is about an existing API or suggestions on how the API should
evolve, for example: “This needs to remain the same as before. The dissection must continue
therefore the latest offset must be updated after adding to the tree. offset += dissect_ -
dsmcc__un__session_nsap(tvb, offset, pinfo, sub_sub_ tree)” or “If they are non-standard
and uncommon, I would replace them with: dissector__add_ for_decode_ as(“udp.port”,
otrxd__handle)”.

code__doc — the comment concerns the documentation or comments in the source code,
for example: “Which 3GPP document specifies this AVP?” or “Maybe remove this comment
now? We do not support older drafts anymore”.

compatibility — the comment is related to the operating system compatibility, tools
compatibility, versions, or issues that appear only on certain platforms, e.g.: “the Ubuntu
failure is to the revert of my previous change (only on_ btnImport_ clicked() call must be
guarded)” or “I can empirically confirm that /proc/self/exe somehow expands to the real
path. So this code would probably have no effect on Linux”.

rule__def — the comment can be used to elicit a definition of coding/style rules, note it
has to explain the broader context, e.g., “’add blank line’ is not a definition since we don’t
know why the blank line should be added here; on contrary, "use space for indent (like rest
of file)’ states that spaces should be used for indentation (in general)” or “remove comment
when it doesn’t help understanding the code”.

config commit_ patch_ review — the comment is about patches, commits, or review
comments, for example: “To be done in the next patch set” or “Right, if you decide to do
a formatting patch, it is best to do that in a separate change”.

config_ building_ installing — the comment is about a process of building, installing,
and running the product, for example “This is not required. Already done by the install
script” or “let’s remove this example, installing binary packages across different distros is
not supported and we should not recommend users to skip signature checking, etc”.

Naturally, this taxonomy can be used manually to understand and classify each comment,
but the best support is to use an automated classifier of these comments. The classifier
needs to be based on techniques from natural language processing and has to utilize
a pre-trained model as the number of comments in a typical repository is not in parity
with the diversity of the natural language constructs available.

The proposed taxonomy consists of categories representing high-level problem areas to
direct the focus of reviewers. However, it is possible to extend or even replace our taxonomy
with other taxonomies like the one proposed by Tufano et al. [34] that defines low-level
code issues that are raised during MCRs.

In our previous study [16], we trained and validated BERT4Comments models on the
dataset of 2,672 MCR comments from three open-source projects, i.e., Wireshark, The
Mono Framework, and Open Network Automation Platform (ONAP). The accuracy of
the models ranged from 0.84 to 0.99 (mean = 0.94). The mean Matthews Correlation
Coefficient (MCC) value was equal to 0.60, which can be considered a moderate to strong
correlation [46]. Finally, the average Area under the ROC Curve (AUC) was equal to 0.76,
which is an acceptable value for a classifier according to [47].
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4. Research methodology

In this work, we use design science research (DSR) methodology as described by Wieringa
[17]. The first step recommended by DSR is problem formulation, which usually entails the
need to organize artifact development and treatment design into more distinct parts [48].

The evaluation is structured into the initial evaluation, where we study open-source
projects in-depth, and the external evaluation, where we apply ACoRA on an industrial
project with an industrial partner — Bosch Gmbh.

The reproduction package for the study containing datasets and scripts used to perform
the analyses (with the exclusion of confidential data) is publicly available*.

4.1. Problem formulation

In the context of our study, the question of “To what degree can we suggest relevant
review guidance for a given code fragment based on historical data?” has two parts, two
sub-questions:
RQ1: To what degree does the language embedding model find similar code fragments?
RQ2: How relevant are the review comment suggestions with respect to the nature of
the problem identified by reviewers?
RQ1 addresses our need to understand how well language embedding models (CodeEmbedders)
find similar code fragments. We need to know whether the lines that are matched as similar
are relevant — whether two given lines can be judged as similar or not. The similarity is
a concept that depends on the textual content of the line, its context, and the semantics of
a line, and there is no good measure for that [49]. Therefore, in our work we approximate
similarity by changes in code fragments — we can change a code fragment so that it is textually
different but has a resemblance in terms of its purpose and context. We seed changes to
code fragments and assess the fragments returned by the language model as similar. The
changes are designed to exemplify types of problems that the reviewers comment on, i.e.,
the taxonomy presented in Subsection 3.2 and studied in [16].
RQ2 addresses the problem of how well the review suggestions correspond to the sug-
gestions that a code reviewer would provide. Since the review comments are specific to
the code fragments commented on, we need to generalize them, and therefore we use
the comment taxonomy and BERT4Comments as the means to provide such suggestions.
As learning-by-example has been identified as an important aspect of MCR, we provide
a similar line and its comment as an example. RQ2 also addresses the challenge related to
the reproducibility of suggestions and their generalizability. Since the review comments
are specific to the code fragment, they cannot be directly provided as suggestions for
other code fragments (even similar ones). However, they can capture problems that can
be generalized and these generalized suggestions can be used as guidance for the software
developers reviewing the new code fragment.

4.2. Treatment design

To address the research questions and ensure that ACoRA supports both the automation
of code reviews and the possibility of training new project members, it is integrated into
a continuous integration pipeline, as shown in Figure 4.

“Reproduction package — https://zenodo.org/records/13870908.

11
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Figure 4. ACoRA integrated into a CI pipeline

The integration is done using docker containers, i.e., we designed ACoRA as a microservice
that can be plugged into a continuous integration pipeline. It has several components
designed according to the pipes and filters architectural style that allow for flexibility
in implementing and replacing the components. The tool can be configured to provide
feedback offline, as shown in Figure 2. The detailed design is described in Section 3.

4.3. Initial treatment evaluation and improvements

To evaluate the code review platform, we chose to use two separate open-source projects,
which had an open Gerrit code review tool instance available for public access. For the
initial treatment evaluation, we chose two open-source projects:

—  Wireshark (https://www.wireshark.org) — an open-source network protocol analyzer,
developed by professionals from leading telecommunication companies.

—  Cloudera (https://www.cloudera.com) — an open-source cloud hosting solution, devel-
oped by a professional community.

Both projects are professionally developed and we chose them because of the size and
quality of the code reviews in Gerrit. These two products are also rather specific, so the
variety of use cases is not considered as a factor in assessing code reviews. In particular,
when discussing the selection with our industrial partner, we wanted tools that were either
in C/C++ or Java, developed by professional developers, and had a specific purpose. We
considered using other tools like Android to study, but the diversity of the product (mix
of C, C++, and Java), as well as the number of use cases (it is an operating system), made
it not fit our requirements.

First, we prepared for the evaluation by performing the following steps:

Step 1: Clone a repository at a selected revision (#base_rev).

Step 2: Obtain a CodeEmbedder model either by pre-training BERT4Code on the code
downloaded in Step 1 or by choosing one of the pre-trained language models,
i.e., CodeBERT [21], GraphCodeBERT [50], or CodeT5+ [51].

Step 3: Fetch the MCR review comments for the revisions following the #base_rev and
the specific code fragments that were reviewed (all-code dataset).

Step 4: Use the CommentClassifier (i.e., BERT4Comments trained on the manually la-
beled dataset of MCR comments [16]) to classify the MCR comments in the
all-code dataset.
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Then, we performed the following steps to address RQ1:
Step 5: Select a sample of the code fragments from the all-code dataset (up to 11
fragments per each of the taxonomy categories).
Step 6: Introduce changes to the code fragments based on the taxonomy (modified
dataset).
Step 7: Assess the similarity of the matched code fragments.
We decided to select and study four Transformer-based CodeEmbedders (Step 2). First, we
pre-trained BERT4Code according to the process described in Subsection 3.1. This represents
a scenario where a CodeEmbedder is pre-trained on a small but very representative codebase
(an intra-organization usage). Then, we employed three language models pre-trained on large
code corpora that are publicly available, i.e., CodeBERT, GraphCodeBERT, and CodeT5+. The
former model is a BERT-based model pre-trained on combined inputs of natural language
texts and code. GraphCodeBERT augments the inputs with the information about data
flow. Finally, CodeT5+ is an example of a large Transformer-based model. Although our
goal was not to determine what is the best possible CodeEmbedder, the variety of selected
models allowed us to gain early insights regarding the differences in how ACoRA performs
depending on the embedding model it uses.

In Step 6, we modified lines to investigate how sensitive to such changes CodeEmbedders
embeddings are when they are used to find similar lines. We selected up to 10 lines for
each of the comment categories from our taxonomy and introduced the following types of
changes related to the category of comments they belong to:

9

— config _commit__patch_ review — since most of the comments belonging to that
category refer to lines of code that are commented, we decided to add/modify/replace
particular parts of the text in a line, e.g., a person’s name, commit identifier referred
to in a line, a part of variable identifier, etc.,

Original: %% Copyright (C) 2010-2012 The Async HBase Authors. All rights reserved.®
Modified: %x Copyright (C) 2010-2012 The another company Authors. All rights
reserved.®

Original: % * scanners through the @link KuduScanToken API. Or use MapReduce.®
Modified: ® * scanners through the @link AnotherPatch API. Or use MapReduce.®
Original: %Change-Id: I1d6dfc4314091eb6f3eef418c5al7ed37£7a1200%

Modified: ®Change-Id: I2d6dfc4314091eb3d3eef418c5al7ed37£7a1200%

— code__logic — we changed the logic of the code by modifying the operators being used,

Original: % return percent/4;%

Modified: ® return percentx4;%

Original: % else if (containers_total != 0) *
Modified: % else if (containers_total == 0) *®
Original: % offset += 4_%

Modified: % offset -= 4_*

13
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code__data — we changed either the values or the types of variables,

Original: % int64_t time_elapsed = 0;%
Modified: ® int32_t time_elapsed
Original: % percent += 100;%
Modified: % percent += 1000;%

1]
o
3

code__style — we added /removed indentation/trailing whitespaces,

Original: ¢ int num_micro_batches = %
Modified: ®int num_micro_batches = *
Original: ¢ if (packet_num > 0) {*
Modified: % if (packet_num > 0) {*

code__doc — we commented /uncommented lines using inline or block comments,

Original: % return 11_%*
Modified: % // return 11_%*
Original: %/* packet_list.cpp®
Modified: %packet_list.cpp®

code__io — we modified sub-words in identifiers to their synonyms or changed abbrevi-
ations to full words,

Original: % LOG(ERROR) << s;*

Modified: % LOG(PROBLEM) << s;%

Original: % ctx_menu_.addSeparator()_*
Modified: % context_menu_.addSeparator()_*

code__api — we added/removed some parameters from function headers/calls,

Original: % ascendlex_destroy(&scanner)_*%

Modified: ® ascendlex_destroy(&scanner, force)_*

Original: % DCHECK_EQ(out_length, cleartext[i].size());*®

Modified: ® DCHECK_EQ(out_length, cleartext[i].size(out_length));*

code__naming — we changed the character case for some identifiers,

Original: %#define USBLL_POISON OxFE%
Modified: %#define usbll_poison OxFE*
Original: % gint bytes_consumed_*
Modified: ® gint Bytes_Consumed_*
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— code__design — we modified /removed the keywords or names of identifiers,

Original: % if ( skipped > 0 )%

Modified: ® while( skipped > 0 )*

Original: % LZ4F_freeDecompressionContext (1z4_ctxt) _*
Modified: ® LZ4F_freeCompressionContext(1z4_ctxt)_*

— compatibility — we added a suffix _v2 to some identifiers,

Original: % struct hf_tree tree = 0_*
Modified: % struct hf_tree tree_v2 = 0_%
Original: %find_path(PCAP_INCLUDE_DIR*
Modified: ®find_path_v2(PCAP_INCLUDE_DIR*

To assess the matched code fragments in Step 7, we used the ranking of the recommen-
dations. The fragment that is returned as the closest one (calculated as the Minkowski
distance, used by ACoRA, between the embedding vectors) is ranked 1, the second closest is
ranked 2, and so on. For practical reasons, we only report up to rank 10, and for higher
ranks, we only report that the rank is higher than 10. In this case, we assess how well
CodeEmbedder can match the modified line to the original line.

To address RQ2, we focused on evaluating the quality of ACoRA’s recommendations by
performing the following steps:

Step 8: Divide the all-code dataset into reference database and validation dataset based
on a selected revision (#split_rev) — remove duplicates so both datasets consist
only of unique code fragments.

Step 9: Use ACoRA to provide recommendations for the code fragments in the wvalidation
dataset based on the reference database.

Step 10: Assess the relevance of the recommendations.

To evaluate the relevance of the suggestions, we start by dividing the code fragments
in all-code dataset into the reference database and validation dataset to mimic how ACoRA
would be used. We eliminate the duplicated code fragments so we do not bias the results
by over-representing a given code fragment. We then use the reference database as a basis
for providing recommendations for the code fragments in validation dataset. We apply the
following filtering criteria to mitigate the impact of the following issues related to data
quality:

— MCR comments attached to empty lines or code-block opening/closing — we remove
lines that contain less than three characters — unfortunately, we observed that sometimes
comments concerning fragments of code are attached by reviewers to lines such as
closing or opening of code blocks or to empty lines proceeding or preceding a given code
fragment. As a result, there is no logical association between the comment provided by
the reviewer and the line of code in the data.

— Acknowledgment comments — we remove comments being classified by the BERTAComments
model as acknowledgment (e.g., “Thank you”, “Done”) since these are irrelevant from
the perspective of providing suggestions to reviewers.

— Reviewers’ discussion not resulting in change requests — we remove the lines for which
there were no comments classified by BERT4Comments as change_request. Since not
all comments provided by reviewers have to be relevant, we assume that the discussions

15
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between reviewers that do not result in requesting a change to be made in code are not

useful as the basis for automatic recommendations.

In order to evaluate the correctness of the suggestions, we calculate how many of
the suggested categories overlap with the original categories, compared to the number of
categories in the original line, according to Formula 1. In the formula, O is the overlap
ratio, NV is a set of categories of comments in the new line and R is the set of categories of
comments for the reference line.

NNR
o= INOF| i | (1)

Formula 1 is designed so that the correct suggestion means that the overlap ratio is 1.0
while a suggestion that misses all categories is 0.0. A partial suggestion is between these
values, with the better suggestions being closer to 1.0.

Finally, the quality of recommendations provided by automatic tools such as ACoRA
depends on how similar the lines and comments in the reference database are with respect
to the new code being targeted for review. Therefore, we perform the analyses for three
scenarios. In the first scenario, we force ACoRA to provide recommendations for every line
in validation dataset, no matter how similar or different are the reference and validation
lines. In the following two scenarios, we use a maximum distance threshold between the
line-embedding vectors generated by CodeEmbedders to control whether a recommendation
should be made or not. We calculate these thresholds based on the distribution of distances
between the most similar lines in the reference database (10th and 50th percentile). We
assume that lowering the distance threshold should result in increasing the relevance of
comments with the cost of decreasing the number of cases for which the recommendation
could be provided.

4.3.1. Wireshark and Cloudera

In the Wireshark and Cloudera projects, we focused on the subset of the projects written
in C as our goal was to use the same base language model for all three evaluations. In
the industrial validation, we limited the search to a smaller number as our visit time was
limited. Project-specific parameters are presented in Table 1.

These three projects are selected since we validate slightly different aspects in each
context, as prescribed by both design science research [17] and action research [48]. In
Wireshark, we focused on the curation of the dataset for training. In Cloudera, we focused
on the scalability of the approach and sensitivity to noise in the dataset, and in industry,
we focused on the usability of the suggestions from the perspective of a software developer.

The BERT4Comments used in the study was trained on a subset of manually curated
and labeled Wireshark codebase. The curation was done by:

— Removing the pairs <line, comment> which are wrong, e.g., when the review comment
does not comment on anything specific to that line.

— Rewriting the comment to make the text more general and less specific to a particular
line, e.g., by changing a comment about datatype int to a comment about a datatype
in general.
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Table 1. Project specific parameters used in our research design

Parameter Wireshark Cloudera Industry

Revision (#base_rev) (Step 1)  5e34492a7e 10e3cec127 N/A

Pre-train BERT4Code (Step 2) 20 epochs, batch size 32, the same the same
sequence length 128

Review comments (Step 3) 2015-02-23 2022-01-26  2021-11-24

Reference database (Step 8)

— comments 40,430 74,000 N/A

— unique code fragments 9,930 29,599 15,000

Validation dataset (Step 8)

— comments 46,850 174,630 N/A

— unique code fragments 12,789 51,034 10 commits

Filtered suggestions (Step 9) 1,582 4,738 10 commits

Note 1: The Wireshark community has migrated from Gerrit to GitLab and its old Gerrit instance is no
longer available therefore we only use data up until 2019-12-31. Note 2: We are not allowed to publish
some information regarding the industrial source code (N/A)

We used the same approach in our previous work and the accuracy and MCC for
BERT4Comments were 0.86-0.98 (Accuracy) and 0.32-0.62 (MCC) [16]. Therefore, the
evaluation of BERT4Comments is outside of the scope of this article.

4.4. Evaluation at the industrial partner

To understand the limitations of ACoRA, we design an evaluation of the tool at our industrial
partner. The evaluation was done in the following way.

First, we pre-trained ACoRA’s BERT4Code on the source code from an open-source project
suggested by the company employees as being similar to their code (19218513 lines of
code). Next, we fetched code and comments from a Gerrit instance of a selected project at
the company. For practical reasons, we limited the dataset to 500 patches, which included

approximately 18000 lines of code — 15000 with comments and 3000 without comments.

The commented lines were used as the reference database in this study.

Second, we tested ACoRA on 10 selected commits from another project as the validation
dataset. We asked the company representatives to extract 10 commits containing code
fragments that were commented on by a code reviewer, based on the method used to
evaluate software measures [52]. We used ACoRA to provide suggestions for the code based
on the comments in the reference database. The company representatives were asked to
judge the correctness and actionability of each recommendation. We adjusted ACoRA to be
over-sensitive, i.e., provide more suggestions for reviews, in order to challenge the industrial
partners to check whether more lines should be commented on in the evaluated commits.

5. Results

5.1. Wireshark
5.1.1. RQ1: Finding similar lines — Wireshark

The recommendations provided by ACoRA are based on finding similarities between the
lines under review and the lines previously commented on by reviewers. ACoRA performs

17
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that task by measuring the distance between line embeddings generated by CodeEmbedder.
Unfortunately, the neural-network-based language models work as black boxes and we
cannot tell exactly what relationships between tokens and code lines they capture. There-
fore, we decided to study this phenomenon by investigating how sensitive the selected
CodeEmbedders’ code-line representations are to certain types of modifications introduced
to lines when used to search for line similarities. We modify a line of code, ask ACoRA
to search for similar lines to the modified one, and calculate the ranking position of the
original line in the lines recommended by ACoRA. If the ranking position of the original line
is greater than one, it means that the change introduced to the line caused it to be more
“similar” to some other lines in the dataset than to the original line from which it was
derived. The dataset included 35000 Wireshark lines (including the 100 original lines that
were modified), therefore, it was rich in examples of lines that could be identified as more
similar to the modified lines than the original ones.

Figure 5 shows the distributions of ranking positions of original lines in the recommen-
dations provided for their modified counterparts in the dataset when CodeT5+ was used as
a CodeEmbedder. Although none of the CodeEmbedders appeared unanimously superior,
ACoRA using CodeT5+ seems to provide the best overall results (the results for the remaining
CodeEmbedders are presented in Table 2). For all CodeEmbedders, the changes made in the
commented lines belonging to config_commit_patch_review and code_style categories
appeared as difficult. Also, BERT4Code, CodeBERT, and GraphCodeBERT all had problems
with detecting similarities for the code_doc category, which was not the case for CodeT5+.
Finally, CodeT5+ performed slightly worse than BERT4Code for the code_data category.

We analyzed each of the cases where the original line was not provided as the first
recommendation to study and hypothesize about what differences in code make the studied
CodeEmbedders’ embeddings recognize lines as similar or not.

For the changes made to the lines belonging tocode_io, the top suggestions made by
ACoRA were the original lines. Therefore, the changes made to these lines were not significant
enough (with regards to how the lines are represented by CodeEmbedders’ embeddings) to
make any other lines more similar to them than their original lines.

config_commit_patch_review — ACoRA using CodeT5+ found five perfect matches (the
original line appears as the first recommendation). These lines were modified by chang-
ing the e-mail addresses of reviewers, changing the commit hash, or a website address.
CodeBERT and GraphCodeBERT failed to match the lines with modified e-mail addresses,
while BERT4Code matched only the lines with modified change hashes. Still, the recom-
mendations for the remaining lines in this category seemed valid, despite the fact that
the original lines were not provided as top recommendations. For instance, when we
modified one of the lines having the structure of Petri-Dish: Name Surname <e-mail
address> by changing the person’s name and e-mail address, the original line appeared
as the sixth recommendation, however, all ACoRA suggestions seemed equally valid since
they all had exactly the same structure but contained names and addresses of other
people. We made similar observations for other lines, e.g., for the line “Reviewed-on:
https://code.wireshark.org/review/33705” that we modified by changing the review
identifier to 52705. The original line appeared as the recommendation number 42, however,
all proceeding lines in the ranking had exactly the same structure but different review
identifiers (e.g., “Reviewed-on: https://code.wireshark.org/review/22515”).

code_logic — the changes we made for commented lines belonging to this category were
mostly simple operator overloading (e.g., “<” — “>”). ACoRA using CodeT5+ was able to
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Table 2. Similarity of modified lines to their original counterparts
for Wireshark (all CodeEmbedders)

CodeEmbedder /taxonomy category Original line similarity rank
config__commit__patch__review 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 21 2 - - 1 - - - = 4
CodeBERT 5 - - -1 - - 1 - — 3
GraphCodeBERT 4 - - - 1 _ 5
CodeTb+ 5 1 1 - _ 1 _ )
code__logic 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 8 1 - 1 - - - - - - _
CodeBERT 9 - - 1 - - - - - - _
GraphCodeBERT 079 - - - - - - - - - _
CodeTb5+ 9 1 — — _ _
code__data 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 10 - _ _
CodeBERT 9 - - - - - - - - - 1
GraphCodeBERT 9 - - - - - - - - - 1
CodeTb+ 9 ) I _
code__style 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 1 — — _ 9
CodeBERT 4 - - -1 - - - - - 5
GraphCodeBERT 8 - - - 1 - - - - _ 1
CodeT5+ 9 - - _ _ 1
code__doc 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 1 2 _ _ _ N
CodeBERT 6 - - - 1 - - - - - 3
GraphCodeBERT 8 - - - - - - - - - 2
CodeTb5+ 10 - = — _ _
code__10 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 10 — - _ _
CodeBERT 0 - - - - - - - _
GraphCodeBERT M9 - - - - - - - - = _
CodeT5+ 10 - _ _
code__api 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 10 — _ _
CodeBERT s - - 1
GraphCodeBERT 0% - - - - - - - - = _
CodeT5+ 00 - - = _ _
code__naming 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 4 3 - 1 - - _
CodeBERT 8 -1 - - - - - - _ 1
GraphCodeBERT 9 - - - .
CodeT5+ 9 1 - _
code__design 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 6 e _ 3
CodeBERT 9 - - - - - - - - 1
GraphCodeBERT 10 - . _
CodeTb5+ 10 — _ _
compatibility 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code o - - - - - - - - _
CodeBERT 9 - - 1
GraphCodeBERT 9 - - - - - - - - - 1
CodeT5+ o - - - - - - - - _
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Figure 5. Similarity of modified lines to their original counterparts
for Wireshark (CodeT5+)
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indicate the modified line in the first place in nine out of ten cases. However, in the only case
that the modified line was ranked second, the indicated similar line seemed more similar to
the original line than its modified version. The original line was “ *buf = '\0'_ /* NULL
terminate */” and was modified by removing the pointer operator *. The most similar line
found by ACoRA was “ xbuf = '\0'; /* NULL terminate */” which differs by a single
character and has the pointer operator. Interestingly, ACoRA using GraphCodeBERT indicated
all modified lines as the most similar to the original ones. However, taking into account the
above, this might not necessarily be the best result. Finally, BERT4Code performed slightly
worse and suggested eight out of ten modified lines. The two exceptions were the lines: “if
(tree) {” modified to “if ( ! tree) {” and “DISSECTOR_ASSERT (pos+chunk_size <=
length) _” changed to “DISSECTOR_ASSERT (pos+chunk_size > length)_”. In the case of
the former, the line that was considered more similar by ACoRA was the line “if (len >
length) {” — a conditional expression that has the same number of indenting whitespace
characters but uses a different operator (“>" instead of negation). The original line has
no operator at all, which might be the cause of recognizing this line as more similar. For
the latter line, the recommendations were less clear to us. The top recommended line was
“g_free(temp_name)”, which is also a function call, but in contrast to the modified line,
there are no operators used to calculate the values of function parameters being passed.

code_data — only ACoRA using BERT4Code provided all ten modified lines as top suggestions,
however, the remaining CodeEmbedders were also very accurate with nine out of ten correct
suggestions.

code_style — we observed mixed results for this category. ACoRA using CodeT5+ or
GraphCodeBERT correctly indicated nearly all modified lines (nine and eight, respectively),
while for BERT4Code and CodeBERT in nine and five cases the modified line was ranked
beyond top ten suggestions. After analyzing the worst cases, we could observe that tab
() was often “recognized” as a visibly different token than space (). For instance, when
we removed indentation spaces from the line “,,,,,if (api_version >= 4 ) {”, the
most similar line suggested by ACoRA was “._if (tokenlen >= 1) {”. Similarly, the top
match for the line “__.. _if (is_encrypted && !docsis_didssect_encrypted_frames)”
modified by changing two indentation tabs (—._) to four spaces (Luuu) Was “Luuu
if (is_from_server && session->is_session_resumed)”. Therefore, the presence of
indentation spaces influenced, to a large degree, the embedding vector for these lines. These
observations were consistent among the other studied examples. Therefore, it seems that
using BERT4Code or CodeBERT embeddings for finding similar lines is sensitive to the number
and type of indentation whitespaces. We hypothesize that it might be a consequence of
how BERT models are trained. One of the tasks used to pre-train BERT is next sentence
prediction (i.e., next line of code prediction in the case of BERT4Code). In programming
languages, such as C/C++, whitespaces are used by programmers to indent code blocks to
improve code readability. Therefore, it seems that the number of trailing whitespaces could
be an important code-feature that a BERT model uses when it is pre-trained on source lines
of code. Also, using spaces for indentation (typically 2 or 4) is preferred over tabs within
the Wireshark community, therefore, using tabs for that purpose could be considered as an
anomaly. Finally, this property of BERT4Code does not have to be necessarily perceived as
its weakness, since it could help identify issues related to wrong indentation in the code.

code_doc — again, we observed that ACoRA using CodeT5+ or GraphCodeBERT was visibly bet-
ter in finding modified lines than the variants using BERT4Code or CodeBERT. CodeT5+-based
ACoRA correctly indicated all of the modified lines and provided them as top-ranked sugges-
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tions. At the same time, it seems that the toggle between a commented /non-commented
line seemed to visibly influence the embeddings generated by BERT4Code Only for one of the
modified lines, its original counterpart was returned as the top recommendation. However,
since the line was a long (113 characters), inline comment, by removing the “//” we
made it an invalid C/C++ line (“// Adapted from sample code in https://raw...”)
and difficult to match by any other line in the dataset. For the remaining lines, when
a non-commented line was turned into a commented line, the suggestions provided by
ACoRA became mostly commented lines. For instance, for the line “return 11_” modified to
“// return 11_", the top recommendation was “// Hex dump -x” (both lines have four
proceeding spaces and one space between “//” and the following token). The original line
was ranked as the 30,903rd suggestion. Similarly, when we converted a commented line into
a non-commented line, the suggested lines were also non-commented lines. For instance, for
the line ”/* packet_list.cpp” changed to "packet_list.cpp”, the top suggestion was
"cfutils.h” (the following suggestions were also mainly names of files). Interestingly, only
at position 22 of the ranking was the first valid C/C++ code line consisting of an include
statement (“#include "packet-ssl-utils.h"”) that also contained the name of a file
(with the word “packet”). The original line was returned as the 5464th recommendation.

code_api — only the variant of ACoRA using CodeBERT did not top-ranked all the modi-
fied lines. It struggled with finding modified lines for “col_append_fstr(pinfo->cinfo,
COL_INFO, "[zstd decompression failed]")_” and “decompress_lz4 (tvbuff_t *tvb,
packet_info *pinfo _U_, int offset, int length, tvbuff_t **decompressed_tvb, int
*decompressed_offset)”. In the case of the second line the modified line appeared at the
75th position of the ranking.

code_naming — ACoRA using CodeT5+ suggested nine out of ten modified lines in the first place
while the remaining one was the 2nd recommendation. For other CodeEmbedders, in most cases,
the original lines were either provided as a top suggestion or within the top 2 or 4 lines. All the
perfect matches were lines that did not include method /function call, e.g., “#define USBLL_-
POISON OxFE.” For method calls, we observed that changing the casing was against the conven-
tion used by the Wireshark community. The suggested lines had similar structures and often
included calls to function with similar identifiers. For instance, for the line “prefs_register_-
enum_preference (smpp_module, "decode_sms_over_smpp",” that we modified toPrefs_-
Register_Enum_Preference(smpp_module, "decode_sms_over_smpp",”, the top sugges-
tionwas “prefs_register_uat_preference(someip_module, "_udf_someip_parameter_-
list", "SOME/IP Parameter List",”.

code_design — ACoRA using CodeT5+ or GraphCodeBERT correctly suggested all ten modified
lines as the most similar to the original ones. The variant using CodeBERT missed one
of the modified lines and ranked it at 173rd place. For BERT4Code, six out of ten lines
a change made to an identifier or adding/removing a keyword (adding else to an if
statement; removing a static keyword) resulted in suggesting the original line at the top
of the ranking. The lowest ranking position (219) was observed for an if statement "if
( skipped > 0 )” converted to a while statement "while ( skipped > 0 )” (the same
as the one missed by CodeBERT). However, the top suggestion seemed more adequate than
the original line since it was also a while statement "while (cert_list_length > 0).
Therefore, once again, it is not clear whether, in this case, the most similar line is the
modified line or the one suggested by ACoRA.

code_compatibility — ACoRA variants using BERT4Code and CodeT5+ were able to correctly
indicate the modified lines. However, the two remaining CodeEmbedders missed only one
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line each that were ranked at positions 101 and 373 by CodeBERT and GraphCodeBERT,
respectively.

5.1.2. RQ2: Relevance of recommendations — Wireshark

We based the evaluation for Wireshark on the dataset containing lines from 3,475 revisions.
We wanted to balance the number of entries in reference and validation databases. Therefore,
we added the first 1,760 revisions (40,430 comments) to the former database and the
remaining 1,715 revisions (46,850 comments) in the latter one. We made the split timewise
(2 years each).

We performed three analyses using different thresholds for matching lines belonging
to the reference and walidation databases. The thresholds were calculated based on the
distance measured between the CodeEmbedder’s embedding vectors representing the lines
within the reference database (the distance to the closest line in the reference database
other than the line itself). Such a strategy allowed us to avoid biasing the observations by
choosing such thresholds arbitrarily. Finally, we applied the filtering criteria described in
Section 4. As a result, we obtained 1,582 recommendations to be analyzed.

Figure 6 shows the quality of ACoRA’s recommendations (measured using the O measure)
for ACoRA using CodeT5+ (plots for the remaining CodeEmbedders are available in the repro-
duction package) depending on the maximum distance threshold between the recommended
and original lines, while the mean O values for all CodeEmbedders are presented in Table 3.
When we set the threshold to the 10th percentile of the distances in the reference database,
99.6% of suggestions were relevant (only true-positive suggestions), however, the threshold
limited the number of recommendations to 232 lines only (ca. 15% of all recommendations).
As we increased the distance threshold to the 50th and 100th percentile, the number of
relevant recommendations decreased to 82.8% and 40.7% while the number of irrelevant
recommendations increased to 5.4% and 15.9%, respectively. This shows, unsurprisingly,
that the possibility of providing correct recommendations for reviewers strongly depends on
the contents of the reference database. However, even for the worst-case scenario (i.e., always
recommending the comment of best-matching line in the reference database), ACORA was
able to provide at least partially relevant recommendations for 84.1% of the cases. These
observations were consistent among other CodeEmbedders, with only minor differences in
their accuracy of recommendations or the number of recommended lines depending on
the threshold. We observed a trade-off between the number of recommended lines and the
number of correct suggestions. Therefore, we cannot firmly state that either of the models
is unanimously superior.

Table 3. Evaluation of the overlap of recommended vs. actual categories for Wireshark
(all CodeEmbedders)

<10th perc. dist.  <50th perc. dist.  <100th perc. dist.

CodeEmbedder n mean O n mean O n mean O
BERT4Code 233 0.98 465 0.78 1582 0.61
CodeBERT 233 0.99 366 0.83 1553 0.60
GraphCodeBERT 237 0.99 324 0.85 1609 0.61
CodeT5+ 232 0.998 297 0.88 1474 0.61
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Figure 6. Evaluation of the overlap of recommended vs. actual categories for Wireshark (CodeT5+)

5.2. Cloudera
5.2.1. RQ1: Finding similar lines — Cloudera

We modified up to 10 lines for each of the categories in our taxonomy and searched for
similar lines in the dataset of 35000 lines of code coming from Cloudera. Figure 7 presents
the distributions of ranking positions of the original lines recommended by ACoRA using
CodeT5+ while Table 4 summarizes the results for all CodeEmbedders. Similar to Wireshark,
most of the original lines were found as the most similar to their modified counterparts.

config_commit_patch_review — most of the lines belonging to this category were com-
ments. Even for the recommendations having the original line ranked at 114 position, the
top suggestions seemed justifiable. For instance, the top recommendation for the line “//
initial transaction.” modified by adding an e-mail address at the end was “/// @note
The replication factor should be an odd number and range in” — the presence of
@ that was in the added e-mail address could have made the line more similar than the
original line. The second case was the line “ASSERT_FALSE (empty has_user ());” modified
by negating the parameter of the call (!empty...). Although the original line was ranked
at the 16th position, the other 13 top suggestions were also the assert functions calls.

code_logic — ACoRA variants using CodeT5+, CodeBERT, and GraphCodeBERT correctly
indicated all modified lines as top suggestions, while ACoRA using BERT4Code missed two
lines. The first one was the line “if (schema_elem.__isset.field_id) {” modified by
negating the condition (!). The first six recommendations were also if statements with
negations, e.g., the top recommendation was the line“if (!step.has_add_column()) {”
The second line was “return percent/4;” with the operator changed to multiplication (*).
All recommendations were return statements. However, the top recommendation contained
a pointer reference instead of the multiplication “return *this;”

code_data — ACoRA variants using CodeT5+ and GraphCodeBERT correctly indicated mod-
ified lines, however, the two remaining CodeEmbedders missed only up to two lines. For
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Table 4. Similarity of modified lines to their original counterparts for Cloudera
(all CodeEmbedders)

CodeEmbedder /taxonomy category original line similarity rank
config__commit__patch__review 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code T 1 1 - - - - - - = 2
CodeBERT 9 - - 9
GraphCodeBERT 8 - - - _ 3
CodeT5+ 8 1 1 - _ _ 1
code__logic 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 7T - - - - -1 1 - - _
CodeBERT 9 - - - - - = _
GraphCodeBERT 9 - - - - - - - - -
CodeTb5+ 9 - - _ _
code__data 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 8 _ 2
CodeBERT 9 - - - - - - - - -
GraphCodeBERT 07 - - - - - - - - _ _
CodeTb5+ 0 - - - — _ _
code__style 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 4 2 1 - - 2
CodeBERT 9 - - - _
GraphCodeBERT 8 - - - - = = - _
CodeT5+ 9 - - - - _
code__doc 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 2 - - - 7
CodeBERT 5 — - - - - 1 - - 1 2
GraphCodeBERT 8 -1 - - - - - - - _
CodeT5+ 9 - - = — — _
code__10 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 6 1 1 - - 2
CodeBERT 0 - - - - - - - _
GraphCodeBERT M9 - - - - - - - - = _
CodeTb5+ 9 — 1 B _ _
code__api 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 10 - - _
CodeBERT 6 - 1 - - - 3
GraphCodeBERT 0% - - - - - - - - = _
CodeT5+ 10 - - _ -
code__naming 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 5 1 - 1
CodeBERT 6 - 92 - - - - - - _ 1
GraphCodeBERT 7T - 2 - - - _
CodeT5+ 9 I - _ _
code__design 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 8 — S _ 1
CodeBERT 8 [ _
GraphCodeBERT 9 - . _
CodeT5+ 9 - - - = — — _
compatibility 1 2 3 4 5 6 7 8 9 10 11+
BERT4Code 6 1 - 2 - 1 - - - - _
CodeBERT 6 2 - - 1 - - - - - 1
GraphCodeBERT 10 - _
CodeT5+ o - - - - - - - - _
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Figure 7. Similarity of modified lines to their original counterparts for Cloudera (CodeT5+)

BERT4Code two missed cases were the same line “int percent = 0;” modified by changing
the declared type to double and string.

code_style — ACoRA variants using CodeT5+ and CodeBERT correctly suggested all modified
lines, while GraphCodeBERT missed one of the lines and recommended it as the 39th
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similar line. For ACoRA using BERT4Code, we observed more original lines recommended at
high-ranking positions than for Wireshark, however, also the nature of changes made to the
lines was slightly different. Two lines for which the top recommendations were the original
lines were modified by removing a single indenting space (from six to five). Another one
was adding an additional space between the and operator (&) and function call (“&&
std::find...” to “&&,ustd: :find...”). Our general observation was that the the bigger
the difference in the number of indention spaces the less similar the original and modified
lines were. The extreme case was the line “,, L uuuint num_micro_batches = ” with
all indention spaces removed (the original line was provided as the 282nd recommendation).

code_doc — ACoRA variants using CodeT5+ and GraphCodeBERT correctly indicated ten and
nine out of ten modified lines and performed visibly better than the remaining variants of
ACoRA using CodeBERT and BERT4Code. For these two models, we made a similar observation
to Wireshark that converting between commented and non-commented lines made them
perceived as non-similar. For BERT4Code, two exceptions were (1) an inline comment
changed to a single-line block comment and (2) an inline comment with preceding //
modified to /// for which the original lines were provided as the first suggestions.

code_io — ACoRA variants using CodeBERT and GraphCodeBERT correctly indicated all ten
modified lines as the most similar to the original ones. ACoRA using CodeT5+ made only one
mistake, however, the top-suggested line was a similar logging statement to the original
one. For ACoRA using BERT4Code changing the names to synonyms led to most modified
lines being recognized as the most similar to their original counterparts. The two extreme
cases were the lines “LOG(ERROR) << s;” and “return server_->Init();” modified by
changing ERROR to PROBLEM and server to computer. Interestingly, for the latter, one
of the top suggestions was the line “return client->DeleteTable(p.table_name);”
containing a word client used in a similar context, which could mean that the word
computer was perceived by the model to be more similar to the word client than to the
word server.

code_api — three ACoRA variants using BERT4Code, CodeT5+, and GraphCodeBERT correctly
indicated all ten modified lines as the most similar to the original ones. The exception was
the ACoRA variant using CodeBERT which correctly suggested six lines but in three cases the
modified line appeared beyond the first ten positions of the ranking (592, 328, and 943).

code_naming — only ACoRA variant using CodeT5+ was able to correctly indicate all modified
lines as the most similar to the original ones. The variants using GraphCodeBERT and
CodeBERT were slightly worse. For the variant of ACoRA using BERT4Code, we made similar
observations as for Wireshark. However, we observed three lines for which the original
lines were recommended as a 10+ option. The first one was changing the casing in
the name of struct “struct TestData {” (TestData to test_data). The second one
was changing “L0G.debug(...” to “log.debug(...". Interestingly, it turned out that
a line “log.info(...” was found as one of the top three recommendations. The third
line contained a call to a function “QUERY_OPT_FN(...” which identifier was changed to
“query_opt_fn(....” These changes had the biggest impact on similarity among the three
lines and the original line was ranked at the 307th position.

code_design — ACoRA variants using CodeT5+ and GraphCodeBERT correctly provided
all the modified lines as top-suggestions. Both BERT4Code and CodeBERT did not pro-
vide correct suggestions for one line — “FragmentState* fragment_state;” modified
to “RuntimeState* fragment_state;”. Interestingly, the top suggestions were nearly
identical lines “RuntimeState* state;” and “Server State* server;.
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Figure 8. Evaluation of the overlap of recommended vs. actual categories for lines for Cloudera
(CodeT5+)

compatibility — again, ACoRA variants using CodeT5+ and GraphCodeBERT correctly
provided all the modified lines as top-suggestions. For BERT4Code, we made a similar
observation as for Wireshark that adding a suffix _v2 to identifiers allowed for recognizing
the original lines as very similar. Even for the cases where the top suggestion was not the
original line, all of the recommended lines had a very similar structure. For instance, for
the modified line “import java.io.IOException_v2;” all six suggestions were imports
with “import java.io.InputStreamReader;” as the top recommendation.

5.2.2. RQ2: Relevance of recommendations — Cloudera

We followed the procedure described in Section 4 to select a sample of 29599 lines as
a reference database and 51024 lines as the wvalidation database. For Cloudera, we focused
on scaling up the size of the validation dataset. The reference database was extracted from
the 74K review comments that we initially fetched from the Gerrit instance, while the
lines included in the walidation database were extracted from the remaining (ca. 174K)
comments fetched in later runs. Next, we applied the filtering criteria, which resulted in
4738 recommendations to be analyzed.

Table 5 presents the mean O values for all CodeEmbedders depending on the similarity
distance thresholds. The mean O value for the 10th percentile ranges between 0.69 and 0.89,
dropping to 0.53-0.57 for the 100th percentile. The plot in Figure 8 shows that when all the
recommendations were considered, the ACoRA variant using CodeT5+ provided irrelevant
suggestions in 23.7% of the lines (1158 lines), i.e., the overlap between the actual categories
and the recommended categories was 0%. For 76.3% of the lines (3721 lines), ACoRA
recommended at least one of the categories correctly. For 35.0% of the lines (1707 lines),
the match was fully correct, i.e., the recommended categories were the same as the actual
categories of the comment. Once we lowered the distance threshold (a minimum distance
between the embedding vectors), we observed that the relevance of the recommendations
increased. For the threshold equal to the 50th percentile of the distances in the reference
database, the percentage of relevant recommendations increased to 46.5%, and for the most
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strict threshold corresponding to the 10th percentile, 72.4% of suggestions were relevant.
Again, we observed a trade-off between the accuracy of the ACoRA and the number of
recommended lines depending on the choice of a CodeEmbedder model.

Table 5. Evaluation of the overlap of recommended vs. actual categories for Cloudera
(all CodeEmbedders)

<10th perc. dist.  <50th perc. dist. <100th perc. dist.

CodeEmbedder n mean O n mean O n mean O
BERT4Code 139 0.89 1997 0.57 4738 0.53
CodeBERT 85 0.69 1816 0.61 4343 0.54
GraphCodeBERT 62 0.73 1599 0.59 4513 0.55
CodeT5+ 58 0.83 1037 0.68 4879 0.57

We can conclude that the recommendations provided by ACoRA are relevant for the
majority of cases (76.3%) and that the differences are often observed in a few categories
(1-3), even when no similarity threshold is used.

5.3. Evaluation at the industrial partner

When evaluating the tool at the industrial partner, we analyzed a number of commits:

1. Comment on keyword const in a function parameter list. The reviewer asked for
removing the keyword, i.e., changing the parameter to a non-constant variable. ACoRA
identified this line as well, with the recommendation that code_logic should be
investigated. In the database of examples, there was only one similar comment, but it
was used in another context; therefore most of the examples were not relevant.

2. Reviewer questioned the re-location of a code fragment — he/she asked whether the code
was moved correctly. ACoRA could not isolate the code fragment which was relevant,
instead identified most lines in the commit as problematic, with different suggestions.
The examples were mostly not relevant.

3. A reviewer commented on the name of a function, asking for a change of the name
(not the entire signature). ACoRA identified the line with the name of the function as
problematic, but the suggestion was to fix the code__logic instead of code_naming.

4. Reviewer asked to change a number of #define statements to const. ACoRA identified
all such statements correctly, e.g., #define x 1 and omit statements which should be
omitted, e.g., #define (x | y), which cannot be changed to a const. There were no
relevant examples of the comments database and therefore the provided examples were
not relevant.

During the discussion, we identified two major challenges for making this type of tool
usable at the company.

The first challenge was the ability to capture the context of the code — not the lines
before or after the commented line, but the ability to trace what has been done to the line
in its context. For example:

— whether the line was newly added as part of the entire block or just a single line,

— whether the line was added as part of a large commit (e.g., more than three files were
changed),

— whether the code block where the line is located has been in the code-base from
the beginning or was added in a recent few commits (if it was not added in the
commit-under-review).
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— what was previously discussed in this code block, e.g., whether there was a discussion
about a design solution for this block, naming conventions, etc.

Understanding the context of a reviewed line in this way would mimic the understanding
of the context of the code reviews by human reviewers.

The second challenge was the ability to use meta-data in model training and prediction.
The meta-data could contain the information of the context as in the first challenge, and
the meta-information about the committed code fragment — its complexity, size, type of
changed code (e.g., the role of the class/module), type of the system (e.g., safety-critical
vs. web back-end). This information is available to the code reviewers as they know the
system, but it is not available to tools like ACoRA (or even systems like CodeX [53]).

6. Implications for practitioners

The key takeaway from our study for practitioners is that a complex problem of automatic
code review and repair can be simplified to a simpler problem of searching for similar lines
to those under review and providing a summary of issues previously raised by reviewers to
increase the accuracy of automatic code review support under the cost of increasing human
involvement in the review process. Another general lesson from our study is that setting
a similarity threshold while searching for similar lines of code based on language model
embeddings is a critical success factor. Our study shows that such a threshold should not
be set arbitrarily but should come from understanding how similar or different the code is
in the considered codebase. To tackle this problem, we propose determining the threshold
by sampling a codebase and using a percentile-based approach that allows for balancing
recall (higher percentile) and precision (lower percentile). Finally, we show that the concept
proposed by ACoRA can be implementedre using different CodeEmbedder models. Although
neither of the studied Transformer-based models turned out to be unanimously superior, we
suggest using large pre-trained models (e.g., CodeT5+) as a default option, however, in the
scenario where a codebase is unique (e.g., contains only in-house developed components or
developers use unique, company-specific coding guidelines), one might consider pre-training
a BERT4Code model from scratch, as it can be easily done even using standard graphics
processing units (GPU).

7. Validity evaluation

In our validity analysis, we use the framework advocated by Wohlin et al. [54], comple-
mented with the threats specific to studies embedded in external context as prescribed by
Weringa [17].

In the category of construct validity, our major threat is the use of machine-learning
language models to extract features. Although it is modern technology, using word em-
bedding networks does not allow us to construct a vocabulary manually. This means that
we do not know whether language constructs important for programmers (e.g., keywords)
are important for the neural network too. Our mitigation strategy is to study different
techniques for feature extraction (presented in [55] and [56]). We have also examined the
results of the similarity of lines, manually in this paper, in order to understand whether
this is a threat in our case.
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Another construct validity threat is our classification of comments. Although it is based
on our previous studies [16] and the systematic review by [38], it is a generalization of a nat-
ural language in a specific context. To minimize the risk of bias towards a project-specific
language, we used pre-trained models that provide the same classifications based on several
projects.

The most important threat to conclusion wvalidity is measuring the relevance of the
suggestions provided by ACoRA. A single comment can relate to several issues belonging to
different taxonomy categories. This means that there is a risk that this is a multi-label
classification problem. Unfortunately, the multi-label classification makes the evaluation
of ACoRA suggestions challenging, as they must be assessed across multiple categories
simultaneously. Simplifying this assessment to a binary evaluation for individual categories
might seem straightforward, but it fails to capture the nuanced reality of multi-faceted
feedback. Therefore, we used a measure that captures the overlap between categories to
tackle this issue. Also, to minimize the threat of making wrong conclusions, we manually
analyzed a sample of suggestions with non-overlapping categories between suggested and
actual comments.

When conducting the study, we chose to evaluate it at a company. We’ve selected one
of our collaboration partners based on the domain — embedded systems, long experience
with programming, and access to experienced architects (>10 years). However, there could
be a threat to internal validity associated with how we worked with the company. Since
ACoRA uses source code from a company to operate, we set it up to connect directly to the
company’s code repository at their premises. We extracted code changes and the associated
comments, as prescribed by the process of using ACoRA. The time for that was limited due
to access to the premises and experts, and therefore, we could not conduct this evaluation
for an extensive period of time. We collected and analyzed the data on-premises while
presenting the results off-site (via MS Teams). This could mean that there is a risk that
we missed an important aspect of the evaluation or that we did not manage to select the
most optimal code fragments to discuss (the selection was random).

Finally, since our evaluation is performed on two open source projects and one industrial
project, there is a risk of being too specific, i.e., an external validity risk. We have considered
this and therefore asked the company about this specific aspect, as well as we manually
examined the results (random samples of results). We concluded that the company or
project is not the decisive factor but the availability and quality of the data. We applied
ACoRA on two other projects (one industrial and one open source), where we extracted
a handful of comments only. The low number of data points did not provide any results,
and therefore, they are not included, but we’ve learned about the limitations and, therefore,
claim that the results are generalizable. They are generalizable to contexts where the
number of commented code fragments is >1000 and when the comments are linked (in
the tool) to code fragments and not to entire commits/patches. Also, we assume that
the comments and lines of code in the historical database are similar to the lines in the
code under review — thus, we generalize our findings to an intra-organization/process
application of the proposed approach. More studies are needed to find if we can generalize
findings across different projects. Such studies are planned for our future work. Also,
we suspect that the accuracy and usefulness of the proposed approach might decrease
even in an intra-project application scenario if the context changes visibly over time,
making the historical database of comments invalid (e.g., the nature of the project changes
significantly, and quality standards evolve). Another threat to external validity concerns
the number of code lines selected per comment-taxonomy category while investigating
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the tool’s ability to find similar lines for each category. We randomly queried the dataset
to obtain representative samples of lines of code and comments belonging to particular
taxonomy categories (within our dataset); however, we are not able to assess how well
they cover the whole spectrum of lines/comments in these categories. Finally, we identified
one more threat to external validity that regards the selection of “mutation” operations
we applied to modify lines of code. We made these choices subjectively to ensure that
they regard those code constructs that are decisive while categorizing a given line of code
into a particular taxonomy category. However, we are aware that the variety of such code
constructs that seem valid in the context of each category goes beyond the examples we
provide.

8. Conclusions and future work

Code reviews are an integral part of modern software development, usually being integrated
with the continuous integration/deployment pipelines. Although there are tools that
automatically check the quality of source code, code reviews are still needed — they provide
the ability to comment on design aspects that cannot be formalized into checking rules,
they provide the ability to discuss design choices, and, not least important, they are a way
of onboarding new project members.

Although it has already been found that we can pinpoint which code fragments (even
down to a single line of code) would attract attention from reviewers, there is little support
for providing suggestions on what to focus on. In this work, we address this problem by
designing and evaluating a tool for automatically providing these suggestions based on the
previous review discussions available in code repositories. The tool uses a machine-learning
based language model and searches for similar lines of code to those under review that
were previously commented on. It analyzes the previous reviewers’ comments to indicate
the aspects of the code the reviewer should focus on while reviewing a given fragment
of code. The suggestions are based on company/community-specific culture and provide
a way to speed up the review process while allowing new team members to understand the
code and participate in the code review discussions.

By using two open-source projects and one industry project, we studied to which
degree it is possible to provide code reviewers with a suggestion on what they should
focus on when reviewing a given code fragment. The results show that the tool can give
fully correct suggestions (only true positives) in 35%-41% of the fragments and partially
correct suggestions in 76.3%-84.1% of the fragments. Compared to the state-of-the-art
tools for code repair, this is higher but requires human intervention (it is the reviewer who
has to review the code in the end). Also, we showed that one can control the recall and
precision of such recommendations by changing a similarity threshold between the code
fragments (for the distance between the line-embedding vectors). By setting the threshold
to the 10th percentile of the distances in the reference dataset, we were able to increase
the correctness of recommendations even to 72%-99%, however, at the cost of sacrificing
the number of recommendations provided by ACoRA. Therefore, a key takeaway from our
study for practitioners is that a complex problem of automatic code review and repair
can be simplified to the problem of finding previously commented-on lines of code that
are similar to those under review and summarizing the issues raised by reviewers. This
approach allows for increasing the accuracy of automatic code review support, however, at
the cost of increasing human involvement in the review process.
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In future work, we plan to conduct a deeper analysis and comparison of machine-learning
language models and code representations to study their impact on the accuracy of ACoRA.
We plan to expand this study to design a pre-configured tool set-up to identify specific
aspects, e.g., security vulnerabilities in source code and SQL injection checks, and evaluate
them in an industrial context. In particular, we want to create portable (between contexts)
reference databases designed to detect certain types of issues in the code.
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1. Introduction

Background: Early identification of software vulnerabilities is an
intrinsic step in achieving software security. In the era of artificial
intelligence, software vulnerability prediction models (VPMs) are
created using machine learning and deep learning approaches. The
effectiveness of these models aids in increasing the quality of the
software. The handling of imbalanced datasets and dimensionality
reduction are important aspects that affect the performance of VPMs.
Aim: The current study applies novel metaheuristic approaches for
feature subset selection.

Method: This paper performs a comparative analysis of forty-eight
combinations of eight machine learning techniques and six meta-
heuristic feature selection methods on four public datasets.
Results: The experimental results reveal that VPMs productivity
is upgraded after the application of the feature selection methods
for both metrics-based and text-mining-based datasets. Additionally,
the study has applied Wilcoxon signed-rank test to the results of
metrics-based and text-features-based VPMs to evaluate which out-
performed the other. Furthermore, it discovers the best-performing
feature selection algorithm based on AUC for each dataset. Finally,
this paper has performed better than the benchmark studies in terms
of Fi-score.

Conclusion: The results conclude that GWO has performed
satisfactorily for all the datasets.

The prediction of software vulnerabilities composes an essential step to provide software
quality and security. Vulnerability, according to ISO/IEC 27000:2018, is a flaw in a control
or asset that one or more threats could exploit. A few instances that illustrate the harm
caused by software vulnerabilities are the open-source programs Heartbleed, ShellShock,
and Apache Commons; well-known web browser plugins like Adobe Flash Player and Oracle
Java. Millions of internet users have had their security jeopardized by browser plugins, and
thousands of businesses and clients worldwide have been put in danger by open-source
software. Furthermore, 1.7 million USD in financial damages have also been reported [1]
as a result of software malfunction. Organizations had to pay 1.4 million USD in 2017
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and 1.3 million USD in 2018 to cope with cyberattacks as a result of cybercrimes [2].
The National Institute of Standards and Technology (NIST) documented an exponential
growth in software vulnerabilities since 2016 [3]. Software developers’ negligence regarding
the security facets during the initial phases of development causes security issues in later
stages. Vulnerabilities provide possibilities for attackers to perform criminal activities
and their sales at a very high price [4]. They are known to be the subgroup of faults,
as are less in number than faults [5]. A fault in the software specification, development,
or configuration is considered a vulnerability if the security policy is violated during its
execution [6]. Detection and fixing of vulnerabilities before the deployment stage aids in
reducing testing costs and maintaining their market reputation.

The vulnerability prediction models (VPMs) are devised to predict vulnerable and
non-vulnerable components and therefore, the quality of these models is essential for the
security of the software systems. Researchers and engineers are striving to build accurate
VPMs, thus ensuring the quality and security of the systems. Research studies have
previously used software assurance techniques such as static analysis, dynamic analysis,
fuzz-testing, code inspections, etc. to identify security vulnerabilities [7]. Due to the huge
time consumption and high false positive rate problems in conventional techniques, machine
learning and deep learning-based VPMs gained interest. Commonly, VPMs are executed
in the testing phase of the overall Software Development Life-Cycle (SDLC) in order to
prioritize the inspection efforts (e.g., static analysis testing, dynamic testing, etc.). The
model will identify which files are likely to have vulnerabilities if their features are collected
at the file level, while vulnerable methods may be detected if the dataset is generated at
the method level. Some studies on vulnerability prediction used text mining data, while
others used software measures similar to those used in fault prediction models [8].

Hence, VPMs can be modeled as metrics-based, text-mining-based, or a combination
of both datasets. In metrics-based VPMs, the components are determined using software
metrics, e.g., cohesion, coupling, and complexity metrics that predict the vulnerability [9].
In text-mining-based VPMs, source code is converted into tokens and these tokens or text
features predict the vulnerable components [10]. Vulnerability datasets are imbalanced
which leads to biases in the prediction models as the majority class is favored over the
minority class [11]. Most studies have used data balancing methods to handle class imbalance
problems [8,12] and hyperparameter optimization (HPO) methods for choosing the optimal
hyperparameters of classifiers [13-17].

Machine learning techniques also face the problem of the high dimensionality of the
dataset. The performance of classifiers degrades when the classification parameters are
increased. Therefore, to improve the efficacy of the model, the feature subset size should
be decreased. Dimensionality reduction is an effective method to remove redundant or
irrelevant features and thereby upgrade the performance, lowering computational complexity,
constructing generalized models, and reducing storage [18,19]. Two major approaches have
been proposed for dimensionality reduction: feature synthesis and feature selection [20].

In the case of feature synthesis, dimensional space is transformed from high to low
whereas, in feature selection, a subset of given features is chosen by removing redundant
or features with no predictive information. Feature selection methods are categorized as
a filter, wrapper, hybrid, and embedded. Further two methods exist to describe how the
features can be evaluated such as feature ranking and subset selection. In the feature
ranking method, each feature is given a score based on some criteria, and the features with
insufficient scores are removed [21]. In the subset selection method, an optimal subset is
found out of all possible subsets. If there are n initial features, the search space for the best
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subset comprises all feature subsets, which is equal to 2n different states. In other words,
the value of each property is evaluated independently in the property ranking algorithms,
and the relationship between characteristics is not taken into account.

Feature selection algorithms based on metaheuristics are emerging in the field of
vulnerability prediction [22-24]. These methods presume that the features are independent
of one another and that any potential relationship between the features is ignored. Although
this basic assumption decreases the computational complexity of the feature selection
approach, it may reduce its performance in many circumstances. Choosing a feature subset
is an NP-Hard task. The best subset can be identified simply by assessing all feasible subsets
using an exhaustive search approach. Although this method guarantees an optimal feature
subset, even for medium-sized datasets, finding the optimal answer is time-consuming and
even impractical. Because evaluating all feasible subsets is prohibitively expensive, a feature
subset must be searched that is acceptable in terms of both computing complexity and
suitability. Metaheuristic algorithms are one technique to solve complex optimization and
NP-Hard issues. Metaheuristic approaches are categorized as evolutionary algorithms and
swarm intelligence (SI). SI algorithms used approximate and non-deterministic strategies
to explore and exploit the search space to obtain near-optimal solutions. Swarm-based
approaches are the most prevalent type of nature-inspired metaheuristic group [22].

1.1. Motivation

Efficient VPMs are important for ensuring the security and quality of the software [8]. Their
performance is affected by the imbalanced datasets, the selection of optimal hyperparameters
for machine learning algorithms, and the dimensionality of the datasets. Recent studies
have worked on improving it by incorporating data balancing methods, HPO, reducing
the dimensionality through feature synthesis, filter-based feature ranking, and also using
metaheuristic algorithms for feature subset selection. In [23], the researchers have applied
the dual HPO, where the problem of imbalanced datasets is handled and the selection
of appropriate hyperparameters is done, to optimize VPMs. Research studies related to
feature selection or dimensionality reduction have been explored for the past few years but
metaheuristic feature selection methods have not been explored much.

To the best of our knowledge, we have come across two papers [24] and [25] that use
such techniques. So, exploring such an area could be beneficial for the researchers to
know the impact of the combination of metaheuristic feature selection and machine
learning techniques on VPMs. The research paper [24] uses the grey-wolf optimization
(GWO), particle swarm optimization (PSO), and genetic algorithm (GA) metaheuristic
feature subset selection methods, random forest (RF) machine learner, and SMOTE
resampling technique on metrics PHP dataset. In [25], Diploid Genetic algorithms with
deep learning networks (Long Short Term Memory and Gradient Recurrent Unit) on
software vulnerability prediction are applied. The deep SYMbiotic-based genetic algorithm
model (DNN-SYMbiotic GAs) is used in this suggested method to solve challenges involving
the prediction of software vulnerabilities. The current study is motivated to extend the
paper [24] where it performs a comparative analysis of the various combinations of three
other metaheuristic algorithms and seven other machine learning techniques. Moreover, it
has not only worked on metrics datasets but also on text-features-based datasets.
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1.2. Contributions

The contributions are as follows:

— This paper performs the experiments using two datasets; one is in PHP language
and other in JavaScript. The PHP dataset [10] consists of three projects (Drupal,
PHPMyAdmin and Moodle) and is released in two forms, i.e., software metrics and
text features. The JavaScript dataset [12,26] contains software components (methods)
from several projects and contains also both metrics and text features. Since all the
datasets are imbalanced therefore SMOTE resampling technique is applied to balance
the datasets.

— The current study performs a comparative analysis of six metaheuristic algorithms such
as PSO, GA, GWO, salp swarm algorithm (SSA), harris hawk optimization (HHO), and
whale optimization algorithm (WOA) combined with eight machine learning algorithms
namely random forest (RF), naive bayes (NB), adaboost (AB), support vector machine
(SVM), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), and
multilayer perceptron (MLP).

The paper has framed the following research questions:

RQ 1. Has all the metaheuristic feature selection and machine learning combinations
improved the efficacy of VPMs?

Previous studies have experimented with improving the efficiency of VPMs using optimal
hyperparameters settings [23], applying data balancing techniques and dimensionality
reduction methods [20]. The research study [24] used feature selection algorithms namely
PSO, GA, and GWO on only metrics-based PHP datasets with random forest machine
learner and SMOTE technique. Second [25] has proposed a new VPM based on the
SYMbiotic genetic algorithm and deep learning techniques on metrics-based PHP datasets.
Through this question, the current study will explain whether all metaheuristic feature
selection and machine learning combinations have improved the performance of VPMs.

RQ 2. Which one statistically performed better metrics-based or text-mining-based VPMs
in the context of feature selection?

Walden et al. [10] have mentioned in their paper that text-mining-based VPMs have
performed better than metrics-based VPMs for within-project prediction. In the case of
cross-project prediction, metrics-based VPMs performed slightly better. The motive of
this research question is to observe that on applying a metaheuristic feature selection
method which VPM (metrics and text-mining) has significantly performed better. For the
significant comparison, the paper applied Wilcoxon signed rank test.

RQ3. Which metaheuristic feature selection algorithm has performed the best?
Rhmann [24] has shown that PSO-RF has performed better than other benchmark stud-
ies. It has concluded that GA, PSO, and GWO-based RF outperformed the existing
machine-learning algorithms. The current study applied all the possible combinations of
eight machine learners with the six metaheuristic feature selection methods. The research
question aims to find out which feature selection method has performed the best to help
the researchers in improving the efficiency of VPMs.

1.3. Paper organization

The rest of the paper is structured as: Section 2 represents the research works related
to the current study, Section 3 explains the background knowledge, Section 4 provides
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the research methodology, Section 5 provides the results, Section 6 discusses the results,
Section 7 defines the threats to validity, and Section 8 concludes the paper. The appendix
includes the detailed results tables and metrics description of the datasets.

2. Related work

To build effective VPMs research studies have emphasized the early prediction of vulnerable
components using machine learning algorithms. Therefore, handling the factors affecting
the performance of VPMSs such as optimal hyperparameters, imbalanced datasets, feature
selection, etc. is essential. In this section, we have discussed the research works that include
VPMs and feature selection techniques.

Ghaffarian and Shahriari [7] have reviewed machine learning and data-mining techniques
to curb the effect of software vulnerability. It has stated various software vulnerabilities. In
addition, it has been mentioned that the vulnerability datasets are imbalanced and affect
the efficiency of machine learning algorithms. Kaya et al. [8] show the impact of feature
types, classifiers, and data-balancing techniques on VPMs. It has covered three feature
types such as metrics, text, and a combination of metrics and text features. Experiments
are performed using seven machine classifiers and four data sampling techniques on the
PHP datasets namely Drupal, Moodle, and PHPMyAdmin. Evaluation is done through the
performance metrics precision, recall, AUC, Fi-score, and specificity. The conclusion states
that for smaller datasets Drupal and PHPMyAdmin, the random forest has outperformed
other classifiers, and for larger datasets, i.e., Moodle, Rusboost has outshined.

Walden et al. [10] have created vulnerability datasets based on PHP open-source
projects as most of the vulnerabilities are observed in web applications. The datasets
include two feature types such as software metrics and text features. Random forest and
under-sampling techniques are used for classification and balancing the dataset, respectively.
The performance metrics used are recall and inspection ratio. The paper has experimented
on both software metrics-based and text mining-based VPMs. In addition, it has been
found that text-mining-based models outperformed metrics-based models. Ferenc et al. [12]
predict the vulnerabilities in JavaScript programs using static code metrics. It has proposed
the JavaScript dataset by extracting the vulnerability information from public databases
such as Node Security Project, GitHub code fixing patches, and the Snyk platform. The
paper has applied a grid search algorithm for parameter tuning, resampling techniques to
balance the data, and eight machine learning algorithms including deep learning algorithms
to find the best-performing VPMs. Finally, it concludes that the k-nearest neighbor has
performed best with an F-measure of 0.76, over-sampling has improved recall but diminishes
precision, and under-sampling increases precision and decreases recall.

Stuckman et al. [20] analyzed the impact of dimensionality reduction techniques (fea-
ture selection, principal component analysis, and confirmatory factor synthesis) on the
productivity of VPMs. It has used Smote and under-sampling techniques for balancing
the data and resulted in smote showing low recall, low inspection rate, and high f-measure
therefore it is better than the under-sampling method. In addition, dimensionality re-
duction techniques performed well for cross-project prediction rather than within-project
prediction. Chen et al. [21] have empirically analyzed the effect of feature selection methods
on machine learning. It has used filter-based ranking methods due to the high cost of
computation of other methods. The paper has applied ChiSquared, F-score, GainRatio,
InfoGain, Ginilndex, FisherScore, and ReliefF filter-based ranking methods on three PHP
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datasets using a random forest machine classifier. The paper has shown an increase in the
performance of VPMs.

Bassi and Singh [23] examine the effect of dual HPO on metrics-based VPMs. This
study proposes an approach for optimizing hyperparameters for machine learners and data
balancing strategies using the Python framework Optuna. It compared six combinations of
five machine learners and five resampling approaches using default values and optimized
hyperparameters for experimentation. The article discovered that dual HPO outperforms
HPO on learners and HPO on data balancers. Furthermore, it investigated the impact of
data complexity measures and concluded that HPO did not increase the performance of
datasets with substantial overlap.

Rhmann [24] has proposed a new technique by combining the grey-wolf metaheuristic
technique and random forest. The paper has emphasized finding the best subset of relevant
features. It has shown that metaheuristic algorithms combined with random forest performed
better than other machine learning algorithms. Particle swarm optimization with random
forest outperforms the baseline methods. Sahin et al. [25] suggest a unique deep learning
method and SYMbiotic Genetic algorithm for software vulnerability prediction. They have
applied Diploid Genetic algorithms with deep learning networks on software vulnerability
prediction. The deep SYMbiotic-based genetic algorithm model (DNN-SYMbiotic GAs) is
employed in this suggested method to solve challenges involving the prediction of software
vulnerabilities. On many benchmark datasets from the PHPMyAdmin, Moodle, and Drupal
projects, extensive experiments are carried out. According to the results, the suggested
approach (DNN-SYMbiotic GAs) improved vulnerability prediction, which implies better
software quality prediction.

Viszkok et al. [26] have worked on the dataset produced by [12] by including the process
metrics and observed that F-measure has improved by 8.4%, precision by 3.5%, and recall
by 6.3%. Kalouptsoglou et al. [27] have used three feature types of metrics, text-tokens,
and a combination of both to model the VPMs. It has proposed a text token-based dataset
of JavaScript programs used in [12] and a new metric Fy-score. The paper concludes that
text-tokens-based models perform better than metrics-based models in terms of Fy-score
and the combination has not made much difference in the predictive performance.

Wang and Yao [28] tackled the class imbalance problem in defect prediction models
by using under-sampling techniques, ensemble-learning techniques, and threshold moving
techniques on naive bayes and random forest classifiers. The paper concludes that balanced
random under-sampling shows a better defect prediction rate. Adaboost has performed
best in increasing the efficacy of SDP models. The overall performance is measured using
G-mean, AUC, and balance metrics. Shin et al. [29] evaluated the VPMs using code
churn, complexity, and developer activity metrics on Linux and Firefox projects. The
model has an inspection rate of less than 30% and a recall of 70%. Shin and Williams
[30] analyze whether fault prediction models also work for vulnerability prediction by
performing experiments on Mozilla Firefox which contains 21% of files with faults and 3%
of files with vulnerabilities. It concluded that fault prediction models are equally capable
as VPMs in predicting vulnerabilities. Furthermore, it suggested the models attain better
recall and low false positives.

Lagerstrom et al. [31] experimented on the Google Chromium project to inspect the
relationship that software vulnerabilities have with two types of metrics namely architecture
coupling metrics and component-level metrics. The results reveal that vulnerable files are
in correlation with both types of metrics. Zhang et al. [32] proposed a VULPREDICTOR
that works on the combination of software metrics and text features. The paper performed
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experiments on three PHP datasets Drupal, Moodle, and PHPMyAdmin. It has achieved
the Fi-score of 0.683 and EffectivenessRatio@20% to 75%. Abunadi et al. [33] explain how
cross-project prediction techniques are useful in software vulnerability prediction. This
paper results in the high recall, precision, and F-measure of J48 and random forest but
has not applied data balancing techniques.

Khalid et al. [34] proposed NMPREDICTOR which consists of two tiers. The first tier
contains 6 classifiers that are built on the training set of labeled metrics and text features
files. In the second tier, a meta-classifier combining all 6 classifiers random forest, J48, and
naive bayes (both metrics and text) is built. This paper has experimented on PHP datasets
and resulted in the highest Fj-score of 0.848. Catal et al. [35] implemented a web service
for software vulnerability prediction. The paper uses the Azure machine learning platform
to build the web service. Several machine learning algorithms are applied to the PHP
datasets. For the performance evaluation, the Area under the ROC (AUC) metric is used.
This paper concludes that the multilayer perceptron model has produced the best results.

Li and Shao [36] surveyed the prediction of software vulnerabilities using feature
selection-based machine learning. This paper has classified the existing research works into
4 different feature types such as metrics, text mining features, graph, and taint analysis. It
has discussed the advantages and challenges of machine learning in software vulnerability
prediction. Solutions to the three main challenges namely selection of relevant features, class
imbalance, and label data high cost are illustrated and further work has been discussed
for the future. Rostami et al. [22] compares and categorizes various feature selection
methods. The paper focuses on increasing the accuracy of prediction models through
the use of metaheuristic algorithms. It has analyzed the performance of eleven swarm
intelligence-based feature selection methods on six medical datasets from the UCI repository
and three machine learning algorithms namely support vector machine, naive bayes, and
adaboost. In addition, it has discussed the pros and cons of each metaheuristic algorithm.

Apart from the above research studies, there are deep learning methods that are less
sensitive to feature selection methods. Sonekalb et al. [37] provide an SLR which aims to do
a detailed analysis and comparison of 32 primary works on DL-based vulnerability analysis
of program code. It discovered a wide range of proposed analysis methods, code embeddings,
and network topologies. They go over these strategies and alternatives in great depth and
identify the current level of research in this field and suggest future directions by collating
commonalities and contrasts in the techniques. To facilitate a stronger benchmarking of
approaches, it also presents an overview of publicly available datasets. This SLR serves as an
overview and jumping-off point for researchers interested in performing deep vulnerability
analysis on program code.

Li et al. [38] have introduced VulDeePecker, the first deep learning-based vulnerability
detection system, to relieve human experts from the tiresome and subjective labor of
manually defining features and lowering the false negatives that are experienced by previous
vulnerability detection systems. To assess the performance of VulDeePecker and other
deep learning-based vulnerability detection systems that will be created in the future, they
have gathered and made publicly available a relevant dataset. According to experimental
findings, VulDeePecker can yield significantly fewer false negatives (with acceptable false
positives) than other methods. They also applied VulDeePecker to 3 software products
(Xen, Seamonkey, and Libav) and find 4 vulnerabilities that were “silently” patched by
the vendors when they released later versions of these products but are not listed in
the National Vulnerability Database; in contrast, these vulnerabilities are almost entirely
missed by the other vulnerability detection systems they tested.
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Zhou et al. [39] propose Devign, a general graph neural network-based model for
graph-level classification through learning on a rich set of code semantic representations,
which is inspired by the work on manually-defined patterns of vulnerabilities from various
code representation graphs and the most recent development in graph neural networks.
To effectively extract meaningful features from the learned rich node representations for
graph-level classification, it contains a unique Conv module. The model is trained on
manually labeled datasets constructed from four diverse, large-scale open-source C projects
that use real source code with high levels of complexity and variation rather than the
synthesis code employed in earlier efforts.

Li et al. [40] introduced a vulnerability detector, which can simultaneously achieve
a high detection capability and a high locating precision, powered by deep learning called
VulDeeLocator. The challenges while designing VulDeelLocator include how to support
accurate control flows and variable define use relations, how to achieve high locating
precision, and how to support semantic relations between the definitions of types as well
as macros and their uses across files. They overcome these challenges by utilizing two novel
concepts: (i) using intermediate code to accept more semantic information, and (ii) using
the idea of granularity refinement to identify vulnerable areas. VulDeeLocator finds 18
verified vulnerabilities (also known as true-positives) when applied to 200 files randomly
chosen from three different real-world software applications. Sixteen of these correspond
to known vulnerabilities; the other two are not documented in the National Vulnerability
Database (NVD) but have been “silently” corrected by Libav’s manufacturer when fresh
versions are released.

Kalouptsoglou et al. [41] explores if combining deep learning and software metrics
might improve cross-project vulnerability prediction. Several machine learning models,
including deep learning, are assessed and contrasted using a dataset of prominent real-world
PHP software applications. Feature selection is evaluated for its impact on cross-project
prediction. There investigation suggests that using software metrics and deep learning can
improve vulnerability prediction models’ performance across projects. The study found
that cross-project prediction models perform better when projects share similar software
metrics.

2.1. Comparisons with existing works

Table 1 compares our work with the existing works where PHP and JavaScript datasets are
used. It describes the feature selection techniques, performance metrics applied, machine
learning techniques used, whether data balancing is performed or not, features for modeling
VPMs, i.e., metrics, text features, or combination of both. The current work is highly
inspired by Rhmann et al. [24] and tried to work on different combinations of machine
learning methods and metaheuristic feature selection methods. It is observed that the
proposed work has tried to incorporate maximum performance metrics which suit the
imbalanced datasets.

Previous works have included the PHP dataset and JavaScript datasets separately
but this paper includes both to validate the work. In addition to this, it includes four
performance metrics, eight machine learning algorithms, six feature selection methods,
SMOTE resampling technique, two feature types, and finally two different language datasets
with distinct granularity levels.
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3. Background knowledge

This section contains a brief explanation of the machine learning techniques (Section 3.1),
resampling techniques used for balancing the datasets (Section 3.2), feature selection
algorithms (Section 3.3), and performance evaluation metrics (Section 3.4).

3.1. Machine learning techniques

Machine Learning Techniques majorly are supervised and unsupervised. Supervised machine
learning algorithms work on labeled data and unsupervised works on unlabeled data. The
current paper uses eight supervised machine learning algorithms namely, random forest,
support vector machine, k-nearest neighbor, adaboost, naive bayes, logistic regression,
decision tree, and multilayer perceptron. For comparisons with baseline methods, we are
using these algorithms.

3.1.1. Decision tree (DT)

Decision trees (DT) are non-parametric supervised machine learning algorithms [42]. This
classifier is structured as a tree where internal nodes are the features, branches depict
decision rules and each leaf node gives the outcome.

3.1.2. Random forest (RF)

The random forest (RF) algorithm gives the output by taking a majority of the votes from
numerous decision trees. RF is simple and can handle large datasets efficiently [43].

3.1.3. Naive Bayes (NB)

Naive Bayes is the supervised machine learning algorithm based on Bayes’ theorem,
assuming that there is independence among the features of the class. NB models are of
four categories: Gaussian NB (GNB), Multinomial NB (MNB), Bernoulli NB (BNB), and
Complement NB (CNB) [44].

3.1.4. Adaboost (AB)

Adaboost, called adaptive boosting, is the boosting algorithm where weak learners are
sequentially added and trained by weighted training data to build strong classifiers. The
classification output is predicted by calculating the mean weights of the weak classifiers. It
can use different base learners to boost its performance but is affected by noisy data and
outliers [45].

3.1.5. Support Vector Machine (SVM)

SVM is used to construct the best decision boundary called a hyperplane that separates
multidimensional space into classes to place new data points in the correct class. SVM
consists of various kernel functions (linear, polynomial, radial basis function, and sigmoid)
used for the decision function. It has the overfitting issue, which arises when the number
of features is much larger than the number of samples [46].

11
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3.1.6. K-Nearest Neighbor (KNN)

KNN classifies the data points by calculating the distance among them. New data points
are classified by comparing them with the stored data. The value of & is crucial to determine
as a smaller value may cause underfitting and a larger value may cause overfitting [47].

3.1.7. Logistic regression (LR)

Logistic regression predicts the probability of the target variable. In other words, dependent
variables are predicted through the independent variables set [48].

3.1.8. Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is a feed-forward neural network that has three layers namely
the input layer, hidden layer, and output layer. The input layer receives the signal for
processing, the hidden layer acts as the computational engine and the output layer performs
the prediction and classification tasks. MPs are used for non-linearly separable problems
[49].

3.2. Resampling techniques

Resampling techniques are used to handle the class imbalance problem by balancing the
datasets. The results may favor the majority class if the datasets are imbalanced. Therefore,
to avoid biased results data balancing is important. Resampling Techniques are further
classified as Under-sampling, Over-sampling, and Hybrid Sampling.

O 6 O Majority class samples
Minority class samples
(o) + o o0 + y p

0 “r-""'o Q. 0

O

® Randomly selected minority
class sample x,

/ O <P \ 0 & 5 K-nearest neighbors of x,
$ x O ® Randomly selected sample £,
(@) 6 / from the 5 neighbors
O . O |+ Generated synthetic minority
T instance

Figure 1. SMOTE process

The current study balances the dataset using SMOTE technique because it may not
lead to loss of data and is highly used in previous studies. SMOTE [50] executes the
k-nearest neighbor algorithm for synthetic sample generation. First, the minority class
vector is found; second, the value of k is selected; third, compute the distance between
minority data points and any neighbor to plot a synthetic sample; and Lastly, the above
step is repeated until the dataset is balanced. SMOTE obviates overfitting problems and
increases the performance of the classifiers by generalizing the decision boundaries [51].
Figure 1 explains the SMOTE! process.

"https://rikunert.com/smote__explained
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3.3. Feature selection algorithms

Previous studies have used feature synthesis algorithms for dimensionality reduction.

Metaheuristic algorithms are of two types: Evolutionary Algorithms (EA) and Swarm
Intelligence (SI). EA includes mechanisms based on biological evolution like mutation,
reproduction, recombination, and selection. In EA, the initial population of individual
solutions is generated randomly and a fitness function is used which is responsible for the
quality of the solutions. After multiple iterations, the initial population evolved and reaches
global optimization. Genetic algorithms are one example of evolutionary algorithms. SI is
inspired by nature where each factor takes a simple task and exhibits a global intelligent

behavior by having a factoring relationship with one another and their random reactions.

There exists a plethora of SI-based feature selection algorithms such as particle swarm
optimization (PSO), Gravitational Search Algorithm (GSA), Ant Colony Optimization
(ACO), Differential Evolution (DE), Artificial Bee Colony Optimization (ABC), Firefly
Algorithm (FA), Cuckoo Optimization Algorithm (COA), Bat Algorithm (BA), Grey Wolf
Optimization (GWO), Salp Swarm Algorithm (SSA), Whale Optimization Algorithm
(WOA), and Harris-Hawk Optimization (HHO).

This paper has incorporated 6 feature subset selection metaheuristic algorithms. It has
applied three metaheuristic algorithms GA, PSO, and GWO from the base paper [24] but
with seven other machine learning algorithms which are highly popular [2]. In addition to
this, whale optimization (fish-based), harris hawk (bird-based), and salp swarm(sea-based)

algorithms are mostly used in prediction areas like fault and defect prediction [52-55]].

Furthermore, the study used the feature selection code from GitHub? which contained 13
metaheuristic algorithms and we tried to implement the latest and swarm-based algorithms
which were HHO, WOA, and SSA.

3.3.1. Genetic algorithms (GA)

A genetic algorithm is a population-based metaheuristic algorithm that imitates natural
evolutionary mechanisms. It involves initial population production, selection of good
solutions, fitness function definition, crossover, and mutation. Initial population generation
includes all the possible solutions to the given problem. The fitness function assigns the
fitness score to each individual and the individual with a higher fitness score has a higher
chance of being selected. The selection phase creates a region with a high probability of

producing the best solution. Reproduction has two operators: crossover and mutation.

Crossover interchanges the genetic information of two parents for reproduction. The child
population generated is the same in size as the parent population. New genetic information
is added to a new child population by changing some bits in the chromosome called
Mutation [22].

3.3.2. Particle swarm optimization (PSO)

Particle swarm optimization is inspired by the food search of a flock of birds or a school of
fish. A bird flying in search of food randomly, and sharing its discovery can help in getting
the best hunt for the entire flock. Each particle dynamically adjusts its velocity depending
on its flying experiences and others in the group. Each particle keeps a record of its best
result called pbest (personal best) and the best value of any particle called gbest (global

https://github.com/JingweiToo/Wrapper-Feature-Selection-Toolbox-Python /tree/main/FS
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best). The position of every particle is modified depending on its current position and
velocity, the distance between pbest and its current position, and finally distance between
gbest and its current position [22].

3.3.3. Grey Wolf optimization (GWO)

Grey Wolf is inspired by grey wolves and mimics the hunting process of grey wolves in
nature. Grey wolves live in groups of 5-12 individuals and follow a hierarchical management
system. The social hierarchy of grey wolves consists of Alpha («) the head of the group
and their orders are directions followed by other wolves. Beta (/3) are the subordinates that
aid « in making decisions. Delta (4) are scouts which report to o and 3. Lastly, Omega (w)
is at the bottom of the management system and is accountable for internal relationships.
Grey Wolf Hunting has three phases: chasing and approaching the prey, encircling and
harassing the prey, and attacking the prey [22].

3.3.4. Whale optimization algorithm (WOA)

A whale optimization algorithm is a metaheuristic algorithm inspired by the hunting
mechanisms of humpback whales. It is easy to implement and robust. Humpback whales
search for food in multidimensional space. The algorithm imitates the bubble-net foraging
method of searching and attacking the prey by the whales. When the whale locates its
prey, it forms a bubble-net spiral path and reaches upwards to the prey. There are three
stages to explain predation behavior: surrounding the prey, bubble net attack, and hunting
the prey [22].

3.3.5. Salp swarm algorithm (SSA)

A salp swarm algorithm is stimulated by the sea salps’ swarming behavior [55]. The salp
population is divided into leaders and followers. The salp chain is created when salps
shape the swarm in heavy oceans. The leader lies in the front of the chain and the rest are
the followers. The SSA algorithm starts with the initialization of the group of solutions
randomly. Further, the iterative improvement process tries to reach the global optimum.
Follower salps update their position based on the leader’s position. To reach the desired
solution the process is executed repeatedly [22].

3.3.6. Harris Hawk optimization (HHO)

Harris Hawk optimization algorithm is stimulated by the cooperative hunting behavior of
harris hawks. They work in groups and attack the prey from all directions to surprise it.
It has three stages which include surprise pounce, trailing the prey, and other attacking
mechanisms. The first stage is Exploration which is to find and discover the prey or best
candidate solution, second stage is the transformation from exploration to exploitation
depending on the external/escaping energy of the prey. The third and final stage is
Exploitation in which the prey is attacked hard or soft depending on the energy left with
the prey [22].
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3.4. Performance measures

The efficacy of the machine learning algorithms is evaluated using performance measures.

Accuracy is measured by adding all correct predictions divided by the total predictions
made by a machine learning algorithm. Since our datasets are imbalanced therefore we tend
to use performance metrics that provide results without any biases [56]. The performance
metrics Area under ROC curve (AUC), Precision, Recall, and Fj-score are highly used in
previous studies so keeping in mind the comparative analysis, the current study also used
the same metrics.

4. Research methodology

This section includes the experimental datasets, setup, performance results, statistical
comparisons, and discussions of the results. Experiments are executed to evaluate the
various combinations of metaheuristic feature selection and machine learning methods to
analyze which combination has shown the highest performance.

4.1. Datasets

This paper uses eight datasets out of which six datasets (metrics and text-features) belong
to PHP language and two datasets (metrics and text features) are based on JavaScript

language. These are publicly available labeled datasets with labeling “NO” and “YES”.
The paper focuses on binary classification hence the datasets are suitable for the purpose.

The granularity level for PHP datasets is “file” whereas, for a JavaScript dataset, it is
a method /function. This indicates whether the components for vulnerability prediction are
files or methods. The experiments are first performed on the PHP dataset then to check

the validity of the work, it is implemented on another publicly available JavaScript dataset.

—  PHP Dataset?: Drupal is the content management system with 202 total files and
62 vulnerable files. Moodle is a learning management system with 2924 total files and
24 vulnerable files. PHPMyAdmin is an open-source administration for MySQL with
322 total files and 27 vulnerable files.

— JavaScript Dataset®®: The JSVulnerability dataset is collected from the Node Security
Platform and the Snyk Vulnerability Database. It consists of 12125 total functions and
1496 vulnerable functions.

— All the metrics-based and text-mining-based datasets are downloaded and saved in CSV
files. VPMs are trained on numerical features called software metrics, which are the
characteristics of source code. Text-mining-based VPMs are trained on text features
called tokens gathered from source code using various text mining techniques such
as Bag-of-words (BOW), Term Frequency (TF), Term Frequency-Inverse Document
Frequency (TF-IDF), etc.

— Each CSV file that contains metrics datasets shows the dependent and independent
variables. The dependent variable determines whether the file/function is vulnerable or
not, depending on the values of independent variables. PHP dataset has 13 independent

3http://seam.cs.umd.edu/webdata
*http:/ /www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet /
Shttps://sites.google.com /view /vulnerability-prediction-data/home
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variables and one dependent variable. The JavaScript dataset contains 35 independent
variables and one dependent variable.

— Table 2 describes the versions, no. of total files, no. of vulnerable files, no. of vulnerabil-
ities, metrics features, and text features of the datasets used for experimentation

— Table 9 (refer to Appendix) gives the metrics description of the PHP and JavaScript

datasets.
Table 2. Dataset descriptions

Dataset Version  Total files Vulnerable  Vulnerabilities Metrics Text

/functions files/functions features
Drupal 6.0 202 62 97 13 3811
PHPMyAdmin 3.3.0 322 27 75 13 5232
Moodle 2.0.0 2924 24 51 13 18306
JSVulnerability — 12125 1496 — 35 12942

4.2. Text mining

Text mining is the preprocessing of textual features and converting them into vector
form which is the input for machine learning algorithms [57,58]. There exist a lot of
methods for performing text mining such as Bag-of-words (BOW), Term-Frequency (TF),
Term-Frequency inverse document frequency (TF-IDF), sequence of tokens, etc.

Recent studies [8, 10,20, 32, 34]] have mainly used BOW for preprocessing PHP dataset
text features and for JavaScript datasets BOW and sequence of tokens have been used
[12,26,27]. BOW calculates the number of occurrences of each word/token in the whole
file/method. In text-mining-based VPMs, each token is considered a feature in the source
code. To obtain text features from the source code of the Drupal dataset, the study first
saved the textual dataset in Microsoft Access. There is a total of 202 files for the Drupal
dataset and each file is labeled as vulnerable or not. To convert the source code into vector
form, textual analysis is performed on the source code to remove redundant features, white
spaces, punctuation marks, arithmetic, and logical operators. Then a dictionary /vocabulary
is created which includes all the tokens associated with a key (see: Fig. 2). Each row in the
MS-Access table represents a file which is compared against the dictionary to find out the
occurrence of each token in the file. Finally, the CSV file is generated that contains the
value of each token in the file. CSV file is further processed in MS-Excel to create each
column heading indicating text-feature shown in Figure 3.

4.3. Experimental setup

In this paper, experiments are performed on four metrics and four text-features datasets. In
addition to this, six metaheuristic feature selection approaches and eight machine learning
algorithms are used. SMOTE technique is applied, keeping in view the imbalanced nature
of the datasets. The experiments are performed in Jupyter notebook python by replicating
the pseudocode mentioned in [24] with some additions mentioned in Algorithm below.
The new pseudocode presented in Table 3, includes eight datasets and four evaluation
metrics (precision, recall, AUC, Fj-score). Every metaheuristic and machine learning
algorithm uses this pseudocode to get the desired results. The number of generations and
Population size is set to 100 and 10, respectively. The hyperparameters of machine learning,
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[|n] Tokens IsVulnerable
o 12 T_QPEN_TAG T_FUNCTION(db_status_report) { ) {. no
1 13 T_OPEN_TAG T_STRING ( , T_LNUMBER ) : T_STRIM. . yes
2 14 "TOPENTAG TFUNCTIONdrupalgetform TVARIABLEfor. .. veas
3 15 T_OPEN_TAG T_FUNCTION(image_gd_info) { ) { T_... no
4 16 T_OPEN_TAG T_FUNCTION(image_get_availabla_too. . no
197 7 “TOPENTAG TSTRING TLNUMBER TSTRING TLNUM... ves
198 8 T_OPEN_TAG T_STRING (, ); T_FUNCTION{update. .. ves
190 © T_OPEN_TAG T_FUNCTION(db_guery) { T_VARIABLE... no
200 10 ‘T_OPEN_TAG T_REQUIRE_ONCE ; T_FUNCTION(db_sta. .. no
201 11 T_OPEN_TAG.T_REQUIRE_ONCE ; T_FUNCTION(db_sta. . no
(Mandequal’: "taray". ‘larraycast’s ‘tas’ Cthoolcastt Cthooleanand’: ‘thooleanor’: threak’s  ‘lcase’ ichone's “Ivariableyear” Ivariableyes’s “tvarablezel
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#m 0 4 0 0 2 2 Q (1] 1] 1] ] o
Figure 2. Conversion of source code into vector form
Metaheuristic
Feature Software
Trainin i Vulnerabili
| & Lyl SMOTE Sele_ctlon L o ty Performance
Dataset Algorithms + rediction Results
Machine
Softwafg N Learning
Vulnerability Algorithms
Datasets
Testing
Dataset

Figure 3. Working methodology
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Table 3. Algorithm

Input: Dataset (D)

Output: Optimized cross-validated results (precision, recall, AUC, Fi-score)

1. Initialize the initial population of metaheuristic as: {a1, a2, as,...,a,} where a; = [0,1], 0 means
feature is not selected, 1 means feature is selected and n is the number of features in the dataset

2. Take the fitness function as Fi-score of ML on the subset of D.

3. Repeat step 1 and 2 until the desired number of iterations or we get maximum F-measure = 1.

Pseudo-code of Metaheuristics-ML

Input: Vulnerability Dataset = D{Drupal,,,, Drupal,, Moodle.,, Moodle,, PHPMyAdmin,, , PHPMyAdmin,,
JavaScript,, , JavaScript, }
Output: Optimal values of precision, recall, AUC, Fj-score
1. Initialize the values: Number of dimension = independent features of dataset, Number of genera-
tion = n, population size = N, Take initial candidate solution as {a1, a2, as, ..., a,} where a; = [0,1]
n is the number of features in the dataset
2. For each iteration:
—  Selection features set D’ from D
— Divide D’ into 80:20 ratio {Dyr, Die}
—  Preprocess and standardize the dataset D’
— Train a ML with D;r
—  Evaluate the ML with 10-fold cross validation.
—  Return fitness = F)-score
After n generation or Fi-score = 1
Best Fi-score, precision, recall, AUC on 10-cross validation.
End

data balancing, and metaheuristic feature selection techniques are set to default. The main
focus of this study is to compare the different combinations of ML and metaheuristic
techniques hence the optimized hyperparameters are to be considered in the future. Figure
3 represents the working methodology of the VPMs. 80% of the dataset is split to train
the machine learning classifier, and the classifier’s performance is measured using 10-cross
validation. The obtained F-measure serves as a fitness function for metaheuristic algorithms.
The metaheuristic algorithm selects the best features based on the optimized AUC, precision,
recall, and F-measures.

5. Results

The results are gathered after performing experiments and are represented in Tables
A2-A9 of the Appendix. Tables A2—-A5 show metrics-based results and Tables A6-A9
show text-mining-based results. Each table gives the evaluation metrics (AUC, Precision,
Recall, Fij-score) values of each combination of machine learning algorithms and feature
selection methods. Furthermore, there lies a column named “N_ features” that depicts the
count of features selected for every combination. In addition to this, for metrics-based
datasets, the index of features selected is also mentioned but for text-features-based datasets,
describing the index would be cumbersome. The bold values indicate the highest value of
each performance metric among each machine learning algorithm and the yellow shaded
+ bold values indicates the highest value of each performance metric across all machine
learning algorithm per dataset. Tables 4 and 5 represent the best-performing metaheuristic
technique for each machine learning algorithm in each dataset.
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Table 4. Best AUC values of metaheuristic feature selection for metrics-based VPMs
in all machine learning algorithms

Machine learning Best performing
Dataset technique metaheuristic technique AUC
RF SSA 0.9643
SVM SSA 0.8928
KNN HHO 0.9658
Drupal DT SSA 0.9652
AB GWO 0.9656
NB GWO 0.8939
LR GA 0.9286
MLP WOA 0.8927
RF SSA 0.9573
SVM GWO 0.8659
KNN PSO 0.9616
DT SSA 0.9968
Moode AB GWO 0.9745
NB GA 0.8031
LR WOA 0.8756
MLP GA 0.9439
RF HHO 0.9661
SVM GA 0.8306
KNN GWO 0.9161
. DT GWO 0.9833
PHPMyAdmin AB SSA 0.9609
NB SSA 0.7638
LR SSA 0.8649
MLP GWO 0.9149
RF GA 0.9705
SVM GA 0.8035
KNN SSA 0.9322
JavaScript DT PSO 0.9605
AB PSO 0.8923
NB PSO 0.6929
LR GA 0.7362
MLP HHO 0.8745

5.1. Results for metrics-based VPMs

Table 4 describes the best-performing metaheuristic feature selection algorithm for each
machine learning technique in the metrics-based VPMs:

— for Drupal, KNN-HHO has performed highest with AUC 0.9658,

— for Moodle, DT-SSA has performed highest with AUC 0.9968,

— for PHPMyAdmin, DT-GWO performed highest with AUC 0.9833,

— for JavaScript, RF-GA performed best with AUC 0.9705.

5.2. Results for text-features-based VPMs

Table 5 describes the best-performing metaheuristic feature selection algorithm for each
machine learning technique in the text-features-based VPMs:

— for Drupal, MLP-GWO has performed highest with AUC 0.9986,

— for Moodle, DT-GWO has performed highest with AUC 0.9561,

— for PHPMyAdmin, AB-GWO performed highest with AUC 0.9879,
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— for JavaScript, NB-HHO performed best with AUC 0.9998.

Table 5. Best AUC values of metaheuristic feature selection for text-feature-based VPMs in all
machine learning algorithms

Machine learning Best performing
Dataset technique metaheuristic technique AUC
RF GWO 0.9666
SVM GA 0.9289
KNN GWO 0.9929
Drupal DT GA 0.9648
AB GA 0.9648
NB PSO 0.9289
LR GWO 0.9982
MLP GWO 0.9986
RF HHO 0.9469
SVM SSA 0.8031
KNN PSO 0.9421
DT GWO 0.9561
Moodle AB GWO 0.9315
NB GA 0.8631
LR HHO 0.9144
MLP GWO 0.9144
RF GWO 0.9833
SVM GWO 0.9152
KNN GA 0.9833
. DT GWO 0.9859
PHPMyAdmin AB GWO 0.9879
NB SSA 0.8474
LR PSO 0.9666
MLP GWO 0.9878
RF WOA 0.9995
SVM HHO 0.9788
KNN WOA 0.9896
JavaScript DT WOA 0.9994
AB GWO 0.9995
NB HHO 0.9998
LR GWO 0.9912
MLP WOA 0.9995

The findings show that different machine learning algorithms have different best-performing
metaheuristic feature selection techniques. The No-Free-Lunch (NFL) theorem states that
no optimization or machine learning algorithm is good enough to solve all issues [59]. As
a result, there is no guarantee that a single metaheuristic will uncover the best set of
characteristics across all problem domains. Given these considerations, there is always the
possibility of generating superior results with novel feature selection metaheuristics.

5.3. Statistical tests and results

Tables 6-9 show whether the feature selection methods have improved the performance of
VPMs by comparing the values of each performance metric for both software metrics and
text features-based datasets. The highest value of performance metrics is considered among
different feature selection algorithms. Furthermore, the Wilcoxon signed rank statistical
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test [60] is applied to identify whether text-mining-based VPMs perform better than
metrics-based VPMs. The authors have performed hundred iterations of machine learning
algorithm on different (metrics and text mining) datasets without feature selection and
with feature selection. Considering Tables 6-9, for instance, hundred performance values
(X-Samples) of RF(metrics) is compared with X-Samples of RF(text) in the without feature
selection case. Similarly, the ML+FS combination with highest performance values are
selected and their iterative values (X-Samples) are compared using Wilcoxon signed rank
test. The significant p-value is considered to be 0.05.

The hypothesis is as follows:
Hp: Text-mining-based VPMs are better than metrics-based VPMs.
If the p-value is less than 0.05 then accept Hg, otherwise reject Hy. Accepting the hypothesis
indicates that text-mining-based VPMs are better than metrics-based VPMs and rejecting
the hypothesis indicates that metrics-based VPMs are better than text-mining-based VPMs.
Tables 6-9, highlight the cases where the p-value is less than 0.05, therefore null hypothesis
is accepted in them indicating text-mining-based VPMs are better than metrics-based
VPMs.

6. Discussion

Imbalanced datasets, hyperparameter settings, and dimensionality of the dataset have
degraded the performance of VPMs. This study is performed to find whether the com-
bination of multiple metaheuristic feature selection and machine learning algorithms
increases the efficacy of VPMs. In addition to this, the performance of text-features-based
and metrics-based VPMs are compared. Furthermore, the focus is on finding the best
metaheuristic technique and if not stating the reason behind it, also which technique has
performed satisfactorily for all the datasets. These are illustrated through the answers to
the research questions mentioned below.

6.1. Illustration of research questions

RQ 1. Has all the metaheuristics feature selection and machine learning combinations
improved the efficacy of VPMs?

The comparison of various machine learning methods based on the usage of feature
selection methods for each dataset is shown in Tables 6-9. The findings have shown
that the feature selection method has improved the efficacy for both metrics-based and
text-features-based VPMs with maximum performance metrics (AUC, Precision, Recall,
and F-score) values of 0.9833, 0.9962, 0.9974, 0.9962 and 0.9986, 0.9994, 0.9996, 0.9997,
respectively.

Table 6 shows the results for the Drupal dataset.

— It has been observed that for metrics-based VPMs AUC, Precision, Recall, and Fj-score
have improved by 15.9%, 34.92%, 25.58%, and 34.98%, respectively.
— For text-mining-based VPMs AUC, Precision, Recall, and Fj-score have improved by

13.06%, 34.6%, 25.69%, and 31.94%, respectively.

Table 7 shows the results for Moodle dataset.

—  For metrics-based VPMSs, the performance metrics AUC, Precision, Recall, and Fj-score
have improved by 14.37%, 96.56 %, 42.47%, and 93.69%, respectively.
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Table 6. Comparison of various machine learning methods based on the usage of feature selection
methods for the Drupal dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall Fj-score AUC Precision Recall Fi-score

RF (metrics) 0.8122 0.5993 0.6751 0.6341 0.9643 0.991 0.9912  0.9587
RF(text) 0.8681 0.6225 0.7422 0.6771 0.9666 0.9587  0.9289  0.9435
p-value 0.0014 0.0015 0.0051 0.0052 0.2541 - - -

SVM(metrics)  0.8006 0.5332 0.6316 0.5782 0.8928 0.9166  0.9925 0.9001
SVM(text) 0.8745 0.6397  0.6859 0.6619 0.9289  0.9145 0.9286 0.8848
p-value 0.0014 0.0001  0.0026 0.0001  0.0022 - - -

KNN(metrics)  0.7693  0.5327 0.7099 0.6086 0.9658 0.9941  0.9947 0.9753
KNN(text) 0.7732  0.6951 0.7215 0.7080 0.9929 0.9912 0.9899 0.9903

p-value 0.3321 ~ 0.0001  0.0018 0.0001 0.0009 0.0
DT (metrics) 0.6726  0.5196  0.5567 0.5091  0.9652  0.9898  0.9925 0.9582
DT(text) 0.6939 0.5301 0.5741 0.5196 0.9648 0.9333  0.9485 0.9608
p-value 0.0045 0.0042 0.0452 0.0412 - - - 0.0456
AB(metrics) 0.7747  0.5393  0.6661 0.5961 0.9656  0.9337  0.9957 0.9634
AB(text) 0.7915 0.6482 0.7011 0.6736 0.9648 0.9745 0.9486 0.9614
p-value 0.0014  0.0013  0.0036  0.0001 - 0.0035 - -
NB(metrics) 0.7773 0.6475 0.4214 0.4952 0.8939 0.9948 0.8571 0.8888
NB(text) 0.8765 0.7088  0.7286 0.7185 0.9289  0.9231  0.8788  0.8888
p-value 0.0001  0.0036  0.0001 0.0001 0.0013 - 0.0012 -
LR (metrics) 0.6386  0.4941 0.5811 0.5341 0.9286  0.9915 0.9974 0.9194
LR(text) 0.7154  0.5715  0.6215 0.5954 0.9982  0.9911 0.9988 0.9949
p-value 0.0004 0.0001  0.0004 0.0051 0.0042 - 0.3156 ~ 0.0015

MLP(metrics)  0.7094  0.4274  0.5283 0.4725 0.8927 0.9090 0.9286  0.8965
MLP (text) 0.7615 0.5668  0.5507 0.5586 0.9986 0.9901  0.9928 0.9914
p-value 0.0026  0.0001  0.0365 0.0016 0.0001 0.0015 0.0015 0.0001
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Figure 4. AUC Performance results for Drupal (metrics) dataset
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Figure 5. AUC Performance results for Drupal (text) dataset
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Table 7. Comparison of various machine learning methods based on the usage of feature selection
methods for the Moodle dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall Fj-score AUC Precision Recall Fj-score
RF(metrics) 0.7453  0.0207 0.0732 0.0294 0.9573 0.9406  0.9966 0.9581
RF(text) 0.6502  0.0159  0.1903 0.0295 0.9469 0.9364 0.9794 0.9475
p-value — — 0.0001  0.4851 - — - —

SVM(metrics)  0.7833  0.0218  0.4708 0.0417 0.8659  0.8977  0.8459 0.8611
SVM(text) 0.8245 0.0358 0.5891 0.0676 0.8031 0.9941 0.6198 0.7589
p-value 0.0052  0.0152  0.0001  0.0152 - 0.0001 - -

KNN(metrics)  0.6983  0.0229 0.3801 0.0432 0.9616  0.9269 0.9968 0.9605
KNN(text) 0.7035 0.0343 0.4014 0.0632 0.9421 0.9126  0.9829 0.9394

p-value 0.0452  0.0452  0.0452 0.0452 - - - -
DT (metrics) 0.5292 0.0147 0.0784  0.0289 0.9968 0.9962 0.9966 0.9962
DT(text) 0.5708 0.0178 0.2423 0.0331 0.9561 0.9302 0.9623 0.9443

p-value 0.0052 0.0452 0.0001 0.0452 - - - -
AB(metrics) 0.7419  0.0171  0.2553 0.0343 0.9745 0.9823 0.9863 0.9742
AB(text) 0.7689  0.0382 0.3641 0.0692 0.9315 0.8937 0.9897 0.9346

p-value 0.0098 0.0121 0.0001 0.0121 — - 0.2465 -

NB(metrics) 0.8344 0.0342 0.3882 0.0628 0.8031 0.8969 0.7329 0.7882
NB(text) 0.8437 0.0487 0.3961 0.0867 0.8631 0.7849  0.9966  0.8707

p-value 0.0452  0.0016  0.0451 0.0021  0.0052 - 0.0001  0.0001
LR (metrics) 0.6501  0.0209 0.5734 0.0402 0.8756  0.8292  0.9589  0.8837
LR (text) 0.7276  0.0313 0.6166 0.0596 0.9144 0.8601 0.9978 0.9204
p-value 0.0004 0.0452 0.0098 0.0452 0.0041 0.0012 0.0013 0.0056

MLP(metrics)  0.6253  0.0237  0.3269 0.0442 0.9439 0.9218 0.9863 0.9449
MLP (text) 0.7121  0.0323  0.4256 0.0611 0.9144 0.8965 0.9966 0.9186
p-value 0.0001  0.0098  0.0001  0.0098 - - 0.0425 -
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Figure 6. AUC Performance results for Moodle (metrics) dataset
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Figure 7. AUC Performance results for Moodle (text) dataset
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Table 8. Comparison of various machine learning methods based on the usage of feature selection
methods for the PHPMyAdmin dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall Fj-score AUC Precision Recall Fj-score

RF(metrics) 0.7536 0.2377 0.3562 0.2852 0.9661  0.9655  0.9489  0.9658
RF(text) 0.7651 0.3936  0.4253 0.4088 0.9833 0.9677 0.9945 0.9791
p-value 0.0251  0.0001  0.0001 0.0001 0.0026 0.3512  0.0045 0.0026

SVM(metrics)  0.7312  0.1949 0.54 0.2864 0.8306 0.8276  0.8279  0.8277
SVM(text) 0.7917  0.2559  0.5523 0.3497 0.9152  0.9311 0.90 0.9152
p-value 0.0098 0.0001 0.0251 0.0001 0.0001 0.0001 0.0004 0.0001

KNN(metrics)  0.6705  0.1332  0.5208 0.1988 0.9161 0.875 0.9655 0.9181
KNN(text) 0.6735 0.1588 0.5563 0.2971 0.9833 0.9666  0.9778 0.9722

p-value 0.3512  0.0251  0.0452 0.0001 0.0014 0.0001  0.0026 0.0056
DT (metrics) 0.6726 0.5196 0.5567 0.5375 0.9833 0.9777 0.9897 0.9831
DT (text) 0.7416  0.6441  0.6602 0.6521 0.9859  0.9677  0.9789 0.9736
p-value 0.0001  0.0001  0.0001 0.0001 0.3516 - - -
AB(metrics) 0.6092  0.1398 0.3027 0.1913 0.9609 0.9666  0.9782  0.9665
AB(text) 0.6916  0.2854  0.3798 0.3259 0.9879  0.9667  0.9789 0.9727
p-value 0.0098 0.0001 0.0098 0.0001 0.0452 0.5462  0.5462  0.0452
NB(metrics) 0.7009  0.2165 0.3268 0.2605 0.7638 0.8184  0.8666 0.7762
NB(text) 0.7284  0.3514 0.4432 0.3919 0.8474 0.7631  0.8355 0.7976
p-value 0.0125 0.0001  0.0001  0.0001 0.0004 - - 0.0452
LR (metrics) 0.6379  0.1661  0.2535 0.2007 0.8649  0.8846 0.90 0.8709
LR (text) 0.7782  0.2626  0.3101 0.2844 0.9666 0.9917 0.9333 0.9616
p-value 0.0001  0.0002 0.0041 0.0041 0.0001 0.0001 0.0452 0.0004

MLP(metrics)  0.6678  0.1532  0.4383 0.2271 0.9149  0.9285 0.90 0.9122
MLP (text) 0.6878  0.2733  0.5581 0.3669 0.9878 0.9756 0.9721 0.9693
p-value 0.0042  0.0452 0.0001 0.0001 0.0056  0.0056  0.0056 0.0065
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Figure 8. AUC Performance results for PHPMyAdmin (metrics) dataset
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Figure 9. AUC Performance results for PHPMyAdmin (text) dataset
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Table 9. Comparison of various machine learning methods based on the usage of feature selection
methods for the JavaScript dataset

Machine learning Without feature selection With feature selection

techniques AUC Precision Recall Fj-score AUC Precision Recall Fi-score

RF(metrics) 0.9437 0.7261 0.7655 0.7458 0.9705 0.9798 0.9689 0.9701
RF(text) 0.9591 0.8792 0.8272 0.8523 0.9995 0.9994 0.9991 0.9995
p-value 0.0452  0.0001  0.0015 0.0001 0.0452 0.0452 0.0452 0.0452

SVM(metrics)  0.6024  0.5255  0.2404 0.3297 0.8035 0.8721 0.9322 0.7872
SVM(text) 0.7878  0.5335 0.2871 0.3733 0.9788  0.9593  0.9991 0.9793
p-value 0.0001  0.0551  0.0452 0.0245 0.0001 0.0001 0.0245 0.0001

KNN(metrics)  0.8742  0.5054  0.7406 0.5995 0.9322 0.9105 0.9671 0.9345
KNN(text) 0.9248 0.4897 0.8386 0.6201 0.9896  0.9869  0.9944  0.9897

p-value 0.0045 0.0004 0.0056 0.0023 0.0016 0.0056 0.0045
DT (metrics) 0.8611  0.6146 0.7713 0.6868 0.9605 0.9595 0.9633  0.9606
DT (text) 0.9598 0.8894  0.8474 0.8678 0.9994 0.9988  0.9978 0.9972
p-value 0.0001  0.0001  0.0035 0.0001 0.0045 0.0045 0.0045 0.0045
AB(metrics) 0.8777  0.4565 0.7149 0.5572 0.8923  0.9273  0.8561  0.8877
AB(text) 0.9003  0.5664  0.7689  0.6552 0.9995 0.9981  0.9958 0.9964
p-value 0.0452  0.0004 0.0452 0.0001 0.0001 0.0023 0.0001 0.0001
NB(metrics) 0.7772  0.6475 0.4214 0.4952 0.6929 0.6414 0.8749 0.7401
NB(text) 0.9435 0.9526 0.8985 0.9194 0.9998 0.9994  0.9992 0.9996
p-value 0.0001  0.0001  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
LR (metrics) 0.6772  0.2803  0.5371 0.3646 0.7362  0.7307  0.8118 0.7462
LR (text) 0.7231  0.3002 0.5518 0.3888 0.9912  0.9879  0.9884  0.9881
p-value 0.0343 0.0452 0.0452 0.0452 0.0001 0.0001 0.0001 0.0001

MLP (metrics) ~ 0.7913  0.3856  0.7449 0.5051 0.8745 0.8916  0.8758 0.8526
MLP (text) 0.8124  0.4152 0.7664 0.5386 0.9995 0.9995 0.9996 0.9997
p-value 0.0452 0.0452 0.0452 0.0452 0.0001 0.0001 0.0001 0.0001
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Figure 10. AUC Performance results for JavaScript (metrics) dataset
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Figure 11. AUC Performance results for JavaScript(text) dataset
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— For text-mining-based VPMs AUC, Precision, Recall, and Fj-score have improved by
11.75%, 42.47%, 38.21%, and 92.69%, respectively.
Table 8 shows the results for the PHPMyAdmin dataset.

—  For metrics-based VPMs, the performance metrics AUC, Precision, Recall, and Fj-score
have improved by 23.3%, 46.85%, 43.75%, and 66.5%, respectively.

— For text-mining-based VPMs, the performance metrics AUC, Precision, Recall, and
Fy-score have improved by 25.58%, 82.52%, 44.06%, and 79.37%.
Table 9 shows the results for the JavaScript dataset,

—  For metrics-based VPMs, the performance metrics AUC, Precision, Recall, and Fj-score
have improved by 2.7%, 25.89%, 21.06%, and 23.12%, respectively.

— For text-mining-based VPMs, the performance metrics AUC, Precision, Recall, and
Fi-score have improved by 4.04%, 4.68%, 10.11%, and 8.03%, respectively.

Figures 4-11 clearly show that after applying feature selection there is an improvement in

the productivity of VPMs.

RQ 2. Which one statistically performed better, metrics-based or text-mining-based VPMs
in the context of feature selection?

Tables 6-9 describe the statistical difference between metrics-based and text-mining-based
VPMs after applying Wilcoxon signed rank test. For Drupal, without feature selection in all
the cases text-mining-based VPMs have performed statistically better than metrics-based
VPMs. After applying feature selection, in 13 out of 32 cases text-mining performed
statistically better. For Moodle, without feature selection in 29 cases and with feature
selection in 9 out of 32 cases text-mining-based VPMs performed better than metrics-based
VPMs. For PHPMyAdmin, without feature selection, in 31 cases and with feature selection
in 24 out of cases text-mining-based VPMs performed better than metrics-based VPMs.
For JavaScript, without feature selection in 30 cases and with feature selection in all the
cases text-mining-based VPMs performed better than metrics-based VPMs. Therefore, it
is evident that text-mining-based VPMs statistically performed better than metrics-based
VPMs in 60.9% of the cases in the context of feature selection.

RQ 3. Which metaheuristic feature selection algorithm has performed the best?
Different machine learning algorithms have different feature-selection methods that are
performing best for each dataset. The No-Free-Lunch (NFL) theorem states that no
optimization or machine learning algorithm is good enough to solve all issues [59]. As
a result, there is no guarantee that a single metaheuristic will uncover the best set of
characteristics across all problem domains. Given these considerations, there is always the
possibility of generating superior results with novel feature selection metaheuristics. AUC
performance metric is considered for describing the best-performing metaheuristic feature
selection algorithm depicted in Figures 4-11. Figures 4, 6, 8, and 10 show results about
metrics-based and Figures 5, 7, 9, and 11 text-features-based datasets.

For metrics-based VPMs, in the case of Drupal SSA, Moodle SSA, GWO, GA, PH-
PMyAdmin SSA, GWO, JavaScript GA, PSO has performed maximum for all machine
learning algorithms (refer to Table 4). For text-features-based VPMs, in the case of
Drupal GWO, Moodle GWO, PHPMyAdmin GWO, and JavaScript WOA have performed
maximum times (refer to Table 5). Overall, it can be noticed that GWO has performed
satisfactorily for all the datasets.
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6.2. Comparison with benchmark studies

Figures 12 and 13 show the comparison of the proposed work with the existing benchmark
studies for the PHP and JavaScript datasets, respectively. The paper has considered the
Fi-score metric as the comparison criterion since it is preferably used in previous research
studies. Figure 12 shows that Drupal and Moodle have the highest Fj-score for the proposed

work whereas Fi-score for PHPMyAdmin is slightly less than Sahin et al. [25]. Sahin et al.

[25] has not applied any data balancing technique which may produce biased results. Figure
13 shows that the proposed work’s Fj-score has outperformed the benchmark studies.

1.2

1
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0.6
0.4
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0 AmElm I
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M Kaya et al. [8] B Stuckman et al. [20] ® Rhmann et al. [24]
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W Khalid et al. [34] W Current Work

Figure 12. Fj-score performance comparison with existing studies for PHP dataset
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Figure 13. Fj-score performance comparison with existing studies for JavaScript dataset
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6.3. Summary

Our study has unveiled the role of metaheuristic feature selection algorithms on the efficacy
of VPMs. It has considered a wide variety of datasets, features, and machine-learning
techniques and achieved high-performing VPMs with a maximum AUC of 0.9968 for metrics-
-based and 0.9998 for text-mining-based VPMs. Researchers can further use optimized
hyperparameters and consider time and cost complexity issues for VPMs in the future.

7. Threats to validity

The current study covers the following threats to validity:

— Internal Validity: The selection of eight machine learning methods for the current study
is based on previous research studies. Under-sampling techniques are not used due
to loss of information. The paper has restricted its work to SMOTE data balancing
techniques. Hybrid data balancing techniques are left for future scope.

— Construct Validity: This paper uses PHP-based open-source and JavaScript projects.
The current study has included metrics-based datasets and text-mining-based datasets.
The combination of the metrics and text-mining features is left for future scope. In
addition to this, only default hyperparameters were considered and Bag of words was
used for text mining. The authors are aware of the fact that optimized hyperparameters
increase the performance of machine learning models [17] but are unaware about how
would the combination of metaheuristic feature selection and optimized hyperparameters
would perform thereby keeping it as a future aspect to be considered.

— Conclusion Validity: This paper uses AUC, precision, recall, and F}-score for evaluating
the performance of the prediction models. We have not used accuracy as they give
biased results for imbalanced datasets. Also, considering the readability and clarity of
the paper MCC and G-mean metrics are left for future scope.

— External Validity: The paper tries to perform the methodology on the PHP dataset and
validate it be executing experiments on JavaScript. In addition, the granularity levels
are also different, i.e., file for PHP and function for JavaScript. The work is confined to
only two programming languages. In the future, more programming languages can be
used and the results may vary.

8. Conclusions and future scope

The need for efficient VPMs has always been crucial and to achieve that, previous stud-
ies have done immense work, from balancing classes and appropriate hyperparameters
selection to reducing the dimensionality through feature synthesis and feature selection
methods. The present paper has worked on feature selection using nature-inspired and
swarm intelligence-based algorithms. It has performed the empirical analysis on various
combinations of eight machine learning techniques and six metaheuristic feature selection
approaches on PHP and JavaScript datasets. The experiments are evaluated using six
performance metrics, keeping the imbalanced nature of the datasets in mind. It has been
used on metrics-based and text-token-based datasets. Further, the statistical comparison
of metrics-based and text-mining-based VPMs is implemented by Wilcoxon signed rank
test in the context of feature selection. The comparative analysis concludes that:
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Metaheuristics feature selection methods improve the performance of VPMs (metrics
and text-mining) in the range of 2.7%-25.58% in terms of AUC, 4.68%-96.56% in
terms of precision, 10.11%-44.06% in terms of recall, and 8.03%-93.69% in terms of
Fi-score.

The Wilcoxon signed rank test showed that overall 200 p-values are found significant
out of 256 among all performance metrics. Therefore, overall it can be said that
text-features-based VPMs are significantly better than metrics-based VPMs in 78.12%
of the cases. But in the context of feature selection, 78 out of 128 cases performed sig-
nificantly showing that text-features-based VPMs performed better than metrics-based
VPMs for 60.9% of the instances when feature selection is applied.

The highest AUC values were obtained in metrics-based VPMs by KNN-HHO for
Drupal, DT-SSA for Moodle, DT-GWO for PHPMyAdmin, and RF-GA for JavaScript.
For text-mining based VPMs, the highest AUC values were obtained by MLP-GWO in
Drupal, DT-GWO in Moodle, AB-GWO in PHPMyAdmin, and NB-HHO in JavaScript.
The paper compares AUC values to find out the maximum-performing feature selection
techniques for all machine learning algorithms. For metrics-based datasets, Drupal SSA;
Moodle SSA, GWO, GA; PHPMyAdmin GWO; and JavaScript GA have performed the
maximum times for all machine learning algorithms. For text-mining datasets, Drupal
GWO, Moodle GWO, PHPMyAdmin GWO, and JavaScript WOA have performed
maximum times. Overall, GWO has performed the maximum number of times.
Furthermore, the present paper has outperformed the benchmark studies in terms of
Fi-score.

In the Future, more deep learning methods like LSTM, GRU, etc., can be applied.

Moreover, we have involved only default hyperparameters and in the future, analysis can be
done using optimized hyperparameters. More metaheuristic algorithms can be applied and
a combination of both metrics and text tokens can be used. Further, other programming
languages can also be applied.
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Appendix A

Table Al. Static source code metrics

Dataset Metrics Description
nonecholoc Non-HTML lines of code
loc Total lines of code in a PHP file
nmethods No. of functions in a file
ccomdeep, ccom Cyclomatic complexity
nest Maximum depth of nested loops

PHP Dataset hvol . HalsFead’s volume

nlncomingCalls Fan-in
nlncomingCallsUniq Internal functions Called
nOutgoingInternCalls Fan-out

nOutgoingExternFlsCalled
nOutgoingExternFlsCalledUniq

Total external calls
External methods called

nOutgoingExternCalls External calls to methods

CcC Clone Coverage

CCL Clone Classes

CCO Clone Complexity

CI Clone Instances

CLC Clone Line Coverage

LDC Lines of Duplicated Code

McCC, CCYL Cyclomatic Complexity

NL Nesting Level

NLE Nesting Level without else-if

CD, TCD Comment Density

CLOC, TCLOC Comment Lines of Code

DLOC Documentation Lines of Code

LLOC, TLLOC Logical Lines of Code
JavaScript Dataset LOC, TLOC Lines of Code

NOS, TNOS Number of Statements

NUMPAR, PARAMS Number of Parameters

HOR_D No. of Distinct Halstead Operators

HOR_T No. of Total Halstead Operators

HON_D No. of Distinct Halstead Operands

HON_T No. of Total Halstead Operands

HLEN Halstead Length

HVOC Halstead Vocabulary Size

HDIFF Halstead Difficulty

HVOL Halstead Volume

HEFF Halstead Effort

HBUGS Halstead Bugs

HTIME Halstead Time

CYCL DENS Cyclomatic Density
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Table A2. Performance results of metrics-based Drupal dataset

Machine Feature
Learning Selection AUC  Precision Recall F}-score N _Features
Algorithms  Techniques
PSO 0.8214 0.9090 0.7143 0.80 510, 2, 3, 5, 12]
SSA 0.9643  0.991 0.9285 0.9587 51,4, 6, 10, 11]
RF GA 0.8928 0.8666 0.9286 0.8966 3 [3, 5, 6]
GWO 0.9286 0.875 0.9912 0.9295 32,4, 9]
HHO 0.8929 0.8235 0.9911 0.8995 6 [2,3,7,9, 11]
WOA 0.8571 0.7777 0.9910 0.8714 5[4, 6, 8, 10, 11]
PSO 0.8215 0.7647 0.9286 0.8387 22, §]
SSA 0.8928 0.8235 0.9925 0.9001 3[4, 6, 11]
SVM GA 0.8215 0.8462 0.7857 0.8148 5[4,6,7,9,11]
GWO 0.8571 0.9166 0.7857 0.8461 1 [4]
HHO 0.8219 0.7647 0.9285 0.8387 1 [3]
WOA 0.8215 0.80 0.8571 0.8276 2 [6, §]
PSO 0.8254 0.7368 0.9947 0.8465 31, 4, 6]
SSA 0.8576 0.7777 0.9911 0.8715 4 [2, 3, 8, 10]
KNN GA 0.9286 0.875 0.9915 0.9296 3 [2, 7, 10]
GWO 0.8936 0.8666 0.9285 0.8965 2 [1, 10]
HHO 0.9658 0.9941 0.9572  0.9753 4 [1,3,7,9]
WOA 0.8926 0.8235 0.9912 0.8996 911,2,4,5,7,8,9,10, 11]
PSO 0.9286 0.875 0.9925 0.9301 6 [5,6,7, 8,9, 10]
SSA 0.9652 0.9898 0.9286 0.9582 71, 3,4, 5,8, 10, 11]
DT GA 0.8925 0.9231 0.8572 0.8889 411, 3,5, 7]
GWO 0.8965 0.8235 0.9924 0.9001 41,6, 7, 9]
HHO 0.8573 0.9166 0.7857 0.8461 6 [4, 5, 6, 7, 10, 12]
WOA 0.8254 0.80 0.8571 0.8276 5[0, 2, 5, 6, 7]
PSO 0.8589 0.8125 0.9286 0.8666 6 [2, 3, 5, 6, 9, 11]
SSA 0.8962 0.8666 0.9285 0.8965 5 [3, 5, 6, 8, 9]
AB GA 0.9286 0.875 0.9942 0.9307 72,4, 5, 6,8, 10, 12]
GWO 0.9656 0.9333 0.9957 0.9634 51,4, 38,9, 11]
HHO 0.8225 0.80 0.8571 0.8275 21, 5]
WOA 0.8572 0.7777 0.9854 0.8693 6 [3, 5, 8, 9, 10, 11]
PSO 0.8929 0.9948 0.7857 0.8779 3 [1, 10, 11]
SSA 0.8254 0.9090 0.7142 0.7999 21, 5]
NB GA 0.8216 0.8461 0.7857 0.8148 1 [11]
GWO 0.8939 0.9231 0.8571 0.8888 2 [2, 5]
HHO 0.8214 0.9789 0.6428 0.7761 1 [11]
WOA 0.8575 0.9788 0.7142 0.8258 1 [11]
PSO 0.8926 0.8235 0.9974 0.9021 70, 3,5, 6,8, 11, 12]
SSA 0.8936 0.8666 0.9286 0.8965 5 [2, 3,6, 8, 9]
LR GA 0.9286 0.9915 0.8571 0.9194 40, 1, 5, 11]
GWO 0.8956 0.9231 0.8571 0.8888 2 [2, 5]
HHO 0.8965 0.9231 0.7857 0.8752 100, 1, 2,3,4,5,7,9, 10, 12]
WOA 0.8573 0.8125 0.9286 0.8666 3 [1, 5, 11]
PSO 0.76 0.8181 0.6428 0.7199 711, 3,4, 6, 8, 11, 12]
SSA 0.76 0.7059 0.8571 0.7742 53,5, 7,8, 9]
MLP GA 0.8571 0.8125 0.9285 0.8666 6 [2, 3, 4, 5, 8, 9]
GWO 0.8215  0.9090 0.7143 0.7999 4 [2, 5, 8, 9]
HHO 0.7858 0.75 0.8571 0.7998 T7[1,2,3,4,5,11, 12]
WOA 0.8927 0.8666 0.9286 0.8965 80,1, 3,5, 6, 8, 10, 12]
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Table A3. Performance results of metrics-based Moodle dataset

Machine Feature
Learning Selection AUC Precision Recall Fi-score N _Features
Algorithms  Techniques
PSO 0.9452 0.9090 0.7143 0.80 510, 2, 3, 5, 12]
SSA 0.9573 0.9406 0.9761 0.9581 51, 5,6, 9, 11]
RF GA 0.9407 0.9028 0.9863  0.9427 6 [2, 3, 5, 6, 10, 11]
GWO 0.9366 0.8899 0.9966 0.9402 5 [2, 4, 5, 8, 10]
HHO 0.9435  0.9085  0.9863 09458 7[0, 1,3,5,6,8, 11]
WOA 0.9212 0.8639 0.9847 0.9203 810, 1, 2, 4, 5, 8, 10, 12]
PSO 0.8239 0.8593 0.7739 0.8144 7 [1, 2,3, 5,8, 10, 11]
SSA 0.8596  0.8977 0.8116 0.8525 6 [2, 4,8, 10, 11, 12]
SVM GA 0.8496 0.8592 0.8356  0.8472 811, 2,5, 7,8, 10, 11, 12]
GWO 0.8659 0.8844 0.8391 0.8611 7 [1, 3,5, 8,10, 11, 12}
HHO 0.8425 0.8401 0.8459 0.8429 32, 3, §]
WOA 0.8335 0.8679 0.7876  0.8258 810, 2, 3, 6, 8, 9, 11, 12]
PSO 0.9616 0.9269 0.9968 0.9605 7 [1,2, 3, 4,8, 10, 12]
SSA 0.9539 0.9179 0.9965 0.9556 810, 1, 3,5,8,9, 11, 12]
KNN GA 0.9558 0.9235 0.9931 09571 60, 4, 8,9, 11, 12
GWO 0.9572  0.9265 09848 09547 7[0,2,3,7,09, 11, 12]
HHO 0.9588 0.9241 0.9878 0.9549 810, 3,4, 5,7, 8, 10, 11]
WOA 0.9578 0.9238 0.9966  0.9588 70, 3,4, 5,7, 8, 11]
PSO 0.9865 0.9765 0.9965 0.9864 6 [0, 3, 5, 6, 10, 11]
SSA 0.9968 0.9962 0.9963 0.9962 5 [0, 4, 5, 6, 10]
DT GA 0.9949 0.9932 0.9966 0.9948 50, 4, 5,7, 10]
GWO 0.9869 0.9797 0.9932 0.9864 5 [2, 3,6, 8, 11]
HHO 0.9897 0.9831 0.9965 0.9897 71,2, 3,4,5,6, 10]
WOA 0.9885 0.9863 0.9897 0.9881 70, 3, 5, 8,9, 10, 12]
PSO 0.9708 0.9661 0.9762 09711 72,5, 6, 8, 10, 11, 12]
SSA 0.9674 0.9823 0.9521 0.9669 4[5, 8,9, 12]
AB GA 0.9556 0.9291 0.9863 0.9568 5 [1 3,5, 9, 11]
GWO 0.9745  0.9792  0.9692 0.9742 7 [1,2, 4,5, 6, 10, 11]
HHO 0.9578 0.9435 0.9726 09578 130, 1, 2,3,4,5,6,7,8,9, 10, 11, 12]
WOA 0.9591  0.9437 09761 09595 7[1,2,5,6,8,9, 11]
PSO 0.7398 0.8017 0.6369  0.7099 2[5, 12]
SSA 0.7448 0.8235 0.6233 0.7095 4 [1, 4, 5, 12]
NB GA 0.8031 0.8525 0.7329 0.7882 3 [5, 10, 12]
GWO 0.7456 0.7582 0.7089  0.7327 3 [5, 11, 12]
HHO 0.7486 0.8169 0.6404 0.7179 2[5, 12]
WOA 0.7696 0.8969 0.5959  0.7161 1 [5]
PSO 0.8356 0.7734  0.9589 0.8563 911,3,5,6,7,8,9,11, 12]
SSA 0.8589 0.8046 0.9452 0.8691 9 [O 1,3,5,6,7,8,9, 11}
LR GA 0.8169 0.7621 0.9212 0.8341 7 [4,6,7,8,9, 10, 12]
GWO 0.8659 0.8292 09143 0.8697 7 [1,4,5,6,7,9, 10]
HHO 0.8069 0.7687 0.8767 0.8192 9 [1 2, 3, 47 6,7,9, 11, 12]
WOA 0.8756 0.8073 0.976 0.8837 11[0,1,2,3,5,6,7,8,9,11, 12]
PSO 0.7828  0.8113  0.7363  0.7719 7[1, 3,4, 5,8, 9, 10]
SSA 09297 09114  0.9521 09313 10 [1, 2,4, 3, 5, 8, 9, 10, 11, 12]
MLP GA 0.9439 0.9218 0.9692 0.9449 90,2, 3,4, 5,8, 10, 11, 12]
GWO 0.8056  0.8434  0.9589 0.8974 5[3,5,8,09, 11]
HHO 0.9023 0.8983 0.9075 0.9029 810, 3, 5, 8,9, 10, 11, 12]
WOA 0.9356 0.8944 0.9863 0.9381 53,4, 5,8, 9]
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Table A4. Performance results of metrics-based PHPMyAdmin dataset

Machine Feature
Learning Selection AUC  Precision Recall Fj-score N__Features
Algorithms  Techniques
PSO 0.8965 0.8333 0.8856 0.8586 3 [3, 9, 11]
SSA 0.9327 0.9643 0.90 0.9310 61, 3,4,6,8,9]
RF GA 0.8643 0.8621 0.8625  0.8623 4 [3, 7, 10, 11]
GWO 0.8994 0.9615 0.8333 0.8929 3 [2, 10, 12]
HHO 0.9661 0.9655 0.9489 0.9658 5 [1, 5, 8,9, 12]
WOA 0.8304 0.8333 0.8453  0.8392 6 (2,4, 5, 8, 10, 12]
PSO 0.7802 0.8148 0.7333  0.7719 310, 3, 10]
SSA 0.7799 0.7666 0.7931  0.7797 3 [3, 5, 10]
SVM GA 0.8306 0.8276 0.8279 0.8277 41, 2,8, 10]
GWO 0.7629 0.7666 0.7698  0.7688 5 [1, 4, 5, 7, 10]
HHO 0.7965 0.80 0.8154 0.8076 3 [3, 8, 9]
WOA 0.7305 0.7916 0.6333 0.7037 1 [9]
PSO 0.85 0.7631 0.8496  0.8041 6 [2, 3, 4, 5, 8, 12]
SSA 0.8666 0.7838 0.8989 0.8374 63,5,7, 8,11, 12]
KNN GA 0.8655 0.8181 0.9310 0.8709 4 [3, 7, 10, 12}
GWO 0.9161 0.875 0.9655 0.9181 3 [2, 11, 12]
HHO 0.8811 0.8709 0.90 0.8852 4 ]2, 4, 5, 10]
WOA 0.8626 0.8055 0.8655 0.8344 8 [2, 4,5,6,7,9, 10, 12]
PSO 0.9488 0.9643 0.9311  0.9473 41, 3, 5, 10]
SSA 0.9327  0.9032  0.9655 0.9333 8[1,3,5,7 9,10, 11, 12]
DT GA 0.9827  0.9777 0.9655 09715 6 [3, 4, 6, 8, 10, 12]
GWO 0.9833 0.9666 0.9897 0.9831 41, 3,6, 9]
HHO 0.9494  0.9655  0.9333  0.9491 9 [2, 3,4, 5, 6,8, 9, 10, 12]
WOA 0.9488 0.9643 0.9310 0.9474 31, 3, 5]
PSO 0.95 0.9063 0.9782 0.9408 81,2, 5,6, 8,9, 10, 12]
SSA 0.9609 0.9666 0.9665 0.9665 6 [1, 4,5,7,9, 11]
AB GA 0.9494 0.9333 0.9655 0.9492 6 [0, 2, 4, 5,9, 11]
GWO 0.9488 0.9355 0.9666  0.9507 5 [5, 6, 8, 10, 11]
HHO 0.9321 0.9333 0.9215 0.9273 1011, 2,3,4,5,6,7,9, 10, 11, 12]
WOA 0.9327 0.9032 0.9655 0.9333 710, 5,6, 7,9, 10, 11]
PSO 0.7437  0.7027 0.8666 0.7762 6 [0, 1, 5,9, 10, 11]
SSA 0.7638  0.7272  0.8276  0.7742 5 [1, 4, 5, 10, 11]
NB GA 0.7626 0.7666 0.7661  0.7665 6 [0, 1,5, 6,9, 11]
GWO 0.7438 0.8181 0.6208 0.7059 3 [5, 10, 11]
HHO 0.7311 0.8184 0.60 0.6923 5[0, 1, 5, 8, 11]
WOA 0.7454 0.75 0.7241  0.7368 20, §]
PSO 0.8638 0.8437 0.90 0.8709 61,2,3,5,7,9]
SSA 0.8649  0.8387 0.8966  0.8666 7 [0, 2, 3,9, 10, 11, 12]
LR GA 0.8465 0.8846  0.7931 0.8363 7 [2, 4,6, 8,9, 10, 12]
GWO 0.8298 0.8519 0.7933 0.8214 5(1,2,7,8,9]
HHO 0.7971 0.8214 0.7666  0.7931 811, 2,4,5,7,8,9, 12]
WOA 0.7609 0.8261 0.6552  0.7308 6 [1, 2, 4, 6, 9, 10]
PSO 0.7477 0.8261 0.6333 0.7169 610,2,5,7,9, 12]
SSA 0.7465 0.7187 0.7931  0.7541 910, 2, 3, 5, 8, 9, 10, 12]
MLP GA 0.8393 0.88 0.7586 0.8148 6 [2, 4,5, 8, 10, 12]
GWO 0.9149 0.9285 0.8965 0.9122 5 [1 5, 8, 10, 12]
HHO 0.8649 0.8387 0.8966  0.8666 10 [1, 2, 4, 5,7, 8,9, 10, 11, 12]
WOA 0.8293 0.7941 0.90 0.8437 9 [0 2,3,5,7,8,10, 11, 12]
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Table A5: Performance results of metrics-based JavaScript dataset

Machine Feature
learning  selection ~ AUC Precision Recall Fi-score
algorithms techniques

N__Features

PSO 0.9544 0.96 0.9583 0.9592

SSA 0.9653 0.9732  0.9567 0.9649
GA 0.9705 0.9798 0.9605 0.9701

18 [1, 3,5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17,
20, 22, 23, 27, 34]

12 [1,5,6, 7,9, 15, 20, 22, 24, 25, 27, 30]
131, 3,4, 5,6, 11, 13, 15, 16, 19, 23, 28,

RF 30]
GWO  0.9699 0.9703 0.9689 0.9698 10 [1,2, 4, 7, 8, 13, 25, 29, 30, 34]
HHO 09578 0.9673 0.9473 0.9572 23[0,1,2,3,5,6,7, 8,9, 10, 11, 14, 15, 18,
20, 21, 22, 24, 26, 29, 30, 31, 33
WOA 09563 0.9691 0.9426 0.9557 13 [1,2,3,5,7,8,9, 16, 17, 21, 22, 24]
PSO  0.7423 0.7826 0.6707 0.7223 70, 1, 2, 4, 8, 20, 26]
SSA  0.7456 0.8707 0.5766 0.6938 18 [1,4,5, 6,9, 12, 14, 15, 16, 17, 19, 20,
22, 25, 27, 30, 32, 34]
GA  0.8035 0.8554 0.7291 0.7872 13 (2,4, 6, 7, 8, 10, 15, 16, 20, 21, 26, 27,
SVM 39]
GWO  0.7569 0.7845 0.7055 0.7429 12 [2, 7,8, 9, 10, 11, 14, 15, 16, 20, 26, 33]
HHO 05652 0.5374 0.9322 0.6818 4 [7, 14, 18, 20]
WOA  0.7516 0.8721 0.5898 0.7037 120, 2,4, 7,9, 11, 13, 17, 24, 26, 30, 33
PSO 09318 0.9105 0.9577 0.9335 15[1,2, 6,9, 12, 14, 15, 16, 20, 21, 22, 24,
31, 33, 34]
SSA  0.9322 0.9041 0.9671 0.9345 16 [4, 5,7, 11, 12, 13, 14, 15, 19, 20, 21, 23,
24, 25, 26, 31]
GA 09203 0.9011 0.9435 0.9218 15 (2,4, 5, 6, 7, 10, 11, 13, 15, 18, 19, 25,
KNN 27, 31, 34]
GWO 09312 09032 09661 0.9336 13 [1, 7, 11, 14, 15, 17, 20, 24, 25, 27, 31,
33, 34]
HHO  0.9186 0.8952 0.9483 0.9209 16 [1,2, 5,7, 10, 11, 13, 15, 16, 18, 21, 28,
29, 31, 32, 34]
WOA 09295 0.9043 0.9604 0.9316 23[2,4,6,7,8,9,10, 11, 12, 13, 14, 15, 16,
17,18, 21, 22, 23, 25, 27, 30, 31, 32
PSO  0.9605 0.9579 0.9633 0.9606 16 [3, 5,6, 7, 8, 11, 12, 15, 16, 17, 22, 28,
29, 31, 32, 34]
SSA  0.9532  0.9538 0.9529 0.9534 11 [4, 7,9, 10, 11, 14, 15, 20, 22, 23, 33
GA 09592 0.9595 0.9586 0.9591 13 [3,6, 8,9, 13, 14, 16, 18, 20, 23, 25, 27,
DT 32]
GWO  0.9551 0.9523 0.9586 0.9554 11[9, 10, 11, 15, 17, 20, 22, 25, 28, 29, 32]
HHO 09584 0.9479 0.9595 0.9537 1310, 8,9, 11, 13, 16, 17, 18, 19, 22,26, 31,
34]
WOA 09567 0.9525 0.9614 0.9569 11 [6, 7, 13, 14, 15, 19, 21, 23, 24, 25, 30]
PSO  0.8923 0.9273 0.8513 0.8877 200, 2,5, 8,9, 11, 12, 13, 15, 17, 18, 19,
21, 23, 24, 25, 27, 30, 32, 33]
SSA  0.8749 0.9037 0.8392 0.8702 21 [1,3,4,5,6,8, 10, 12, 15, 17, 20, 21, 23,
24, 25, 26, 28, 30, 31, 32, 34]
AB GA 08797 09147 0.8373 0.8743 12[4,7,8,9, 12, 15, 17, 18, 20, 21, 25, 33
GWO  0.8892 0.9183 0.8561 0.8861 8 [8,12, 13, 15, 17, 18, 21, 22]
HHO  0.8858 0.9108 0.8551 0.8821 19[1,3,4,5,6,7,9, 10, 12, 13, 17, 20, 22,
25, 28, 30, 31, 33, 34]
WOA 08721 0.9211 0.8137 0.8641 133, 4, 6, 10, 11, 13, 16, 17, 19, 21, 26, 27,
31]
NB PSO  0.6929 0.6414 0.8749 0.7401 13 [1, 2, 3, 4, 8, 14, 15, 18, 21, 24, 25, 30,

34]
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Table A5 continued

Machine  Feature
learning  selection =~ AUC Precision Recall
algorithms techniques

Fi-score

N _Features

SSA 0.6036  0.5802  0.7488

GA 0.6553  0.6071  0.7796
NB GWO 0.6396  0.5975 0.8561
HHO 0.6271  0.5978  0.7761

0.6538

0.6826
0.7038
0.6754

22 (1,2, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 17,
19, 21, 23, 26, 27, 29, 31, 33, 34]

8 [8, 9, 14, 16, 21, 27, 29, 30]

8 [5, 10, 12, 14, 15, 17, 26, 33]

17 3,4, 5,6,7,8,9, 12, 16, 17, 19, 21, 23,
26, 29, 31, 34]

WOA 05654 0.5363 0.5671 0.5513 6 [2, 10, 17, 25, 31, 33]
PSO  0.7226 0.7095 0.7535 0.7308 13[4, 6,8, 9, 11, 12, 14, 15, 18, 20, 23, 24
25, 30]
SSA  0.6965 0.6618 0.8043 0.7261 15 [5, 7,8, 10, 11, 13, 19, 20, 22, 23, 24, 25
28, 32, 33]
GA  0.7362 0.7307 0.7478 0.7392 15 [8, 12, 13, 18, 19, 20, 21, 22, 23, 25, 27
LR 28, 29, 31, 33
GWO  0.7238 0.6904 0.8118 0.7462 16 [0, 1, 3, 6, 11, 12, 14, 16, 19, 24, 25, 28
29, 30, 31, 33]
HHO  0.6942 0.6648 0.7855 0.7203 24 [1,2,6,7,8,9, 10, 11, 13, 14, 15, 17, 18
19, 20, 22, 23, 24, 25, 26, 29, 31, 32, 33]
WOA  0.7063 0.6931 0.7394 0.7155 27[0, 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13
18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30
PSO  0.6603 0.7143 0.5551 0.6247 22[2,3,4,5,7,8,9, 10, 13, 14, 15, 16, 17
18, 22, 24, 26, 28, 30, 32, 33, 34]
SSA  0.8573 0.8916 0.8127 0.8504 18 1,2, 3,6, 7, 11,12, 13, 15, 16, 22, 23
24, 26, 30, 32, 33, 34]
GA  0.8546 0.8632 0.8429 0.8526 21[0, 1,2, 3,4,5,6,7, 11,13, 15, 16, 17
MLP 19, 20, 21, 23, 24, 27, 33]

GWO 0.8345 0.8099 0.8739

HHO 0.8745 0.8783  0.8692

WOA 0.8467 0.8275 0.8758

0.8407

0.8737

0.8509

16 [2, 3, 4, 8, 9, 16, 18, 21, 22, 23, 26, 27,
30, 32, 33, 34]

19 [0, 2, 45, 6, 8, 9, 10, 11, 12, 13, 14, 16
21, 22, 25, 26, 27, 33]

23100, 1,2,3,4,6,7, 8,9, 13, 14, 15, 16, 19
20, 21, 23, 24, 25, 27, 32, 33, 34]

39
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Table A6. Performance results of text-features-based Drupal dataset

Machine learning  Feature selection AUC  Precision Recall Fi-score N_Features

algorithms sechniques
PSO 0.8929 0.8235 0.8878  0.8544 1740
SSA 0.9289 0.875 0.9156  0.8948 1814
RF GA 0.9658 0.9356 0.9286  0.9321 1614
GWO 0.9666 0.9587 0.9289 0.9435 442
HHO 0.8928 0.8666 0.9286  0.8965 956
WOA 0 0.9289 0.9283 0.9254  0.9268 177
PSO 0.8929 0.9231 0.8571  0.8888 1800
SSA 0.8578 0.8125 0.9286 0.8666 1862
SVM GA 0.9289 0.9145 0.8571 0.8848 1519
GWO 0.8573 0.9166 0.7857  0.8461 513
HHO 0.8571 0.7898 0.7143  0.7501 158
WOA 0.8215 0.8462 0.7857  0.8148 362
PSO 0.8929 0.8666 0.9286  0.8965 1739
SSA 0.9641 0.9333 0.9789  0.9555 1855
KNN GA 0.9642 0.9845 0.9285  0.9556 1576
GWO 0.9929 0.9912 0.9899 0.9903 597
HHO 0.8954 0.8235 0.9087  0.8641 804
WOA 0.9643 0.9356 0.9286  0.9321 122
PSO 0.8216 0.7647 0.9286  0.8387 1808
SSA 0.8928 0.8235 0.8812  0.8513 1876
DT GA 0.9648 0.9333 0.9485 0.9608 1736
GWO 0.9285 0.875 0.9148  0.8945 528
HHO 0.8573 0.7777 0.8821 0.8266 1836
WOA 0.8929 0.9974 0.7857  0.8799 1834
PSO 0.8929 0.8666 0.9113  0.8883 1831
SSA 0.9286 0.875 0.9142  0.8942 1825
AB GA 0.9648 0.9745 0.9486 0.9614 1614
GWO 0.9285 0.875 0.9227  0.8982 1181
HHO 0.9642 0.9333 0.9318  0.9325 1509
WOA 0.8931 0.8235 0.8988  0.8595 1921
PSO 0.9289  0.8847 0.8572  0.8707 1738
SSA 0.8572 0.8452 0.7143  0.7743 1899
NB GA 0.8929 0.8235 0.8788 0.8506 1532
GWO 0.8927 0.8154 0.7857  0.8003 302
HHO 0.8214 0.9090 0.7143  0.7999 1313
WOA 0.8927 0.9231 0.8571 0.8888 1499
PSO 0.9642 0.9333 0.9415  0.9374 1805
SSA 0.9288 0.875 0.9012  0.8879 1870
LR GA 0.9542 0.9233 0.9892  0.9552 1584
GWO 0.9982 0.9911 0.9988 0.9949 365
HHO 0.9641 0.9312 0.9325  0.9318 2007
WOA 0.9682 0.9433 0.9512  0.9472 360
PSO 0.8929 0.8666 0.9286  0.8966 1798
SSA 0.8234 0.7647 0.9287  0.8387 1915
MLP GA 0.9613 0.9224 0.9825  0.9515 1514
GWO 0.9986 0.9901 0.9928 0.9914 642
HHO 0.9642 0.9333 0.9242  0.9246 815

WOA 0.9788 0.9333 0.9415  0.9378 1813
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Table A7. Performance results of text-features-based Moodle dataset

Machine learning

Feature selection

. . AUC Precision  Recall  Fji-score N _ Features
algorithms techniques

PSO 0.9263 0.9029 0.9554 0.9284 7938

SSA 0.9434 0.9164 0.9761 0.9453 8097

RF GA 0.9383 0.9324 0.9452 0.9387 7836
GWO 0.9315 0.8937 0.9794 0.9346 3508

HHO 0.9469 0.9364 0.9589 0.9475 4898

WOA 0.9263 0.9055 0.9521 0.9282 4468

PSO 0.7842 0.9415 0.6062 0.7375 7843

SSA 0.8031 0.9784 0.6198 0.7589 8048

SVM GA 0.7774 0.9133 0.6131 0.7336 8148
GWO 0.7723 0.9035 0.6096 0.7281 7081

HHO 0.7739 0.9348 0.5891 0.7227 8110

WOA 0.7825 0.9941 0.5684 0.7233 5425

PSO 0.9421 0.8997 0.9829 0.9394 8049

SSA 0.9001 0.8498 0.9692 0.9056 8146

KNN GA 0.9221 0.8742 0.9761 0.9223 8165
GWO 0.9224 0.9126 0.9657 0.9384 5653

HHO 0.9386 0.8816 0.9692 0.9233 8273

WOA 0.9365 0.8974 0.9589 0.9272 9683

PSO 0.9232 0.8782 0.9623 0.9183 8032

SSA 0.9359 0.8984 0.9384 0.9179 8182

DT GA 0.9212 0.8907 0.9486 0.9187 7T
GWO 0.9561 0.9302 0.9589 0.9443 4126

HHO 0.9242 0.8846 0.9452 0.9139 7445

WOA 0.9221 0.9085 0.9178 0.9131 13546

PSO 0.8921 0.8225 0.9758 0.9026 8105

SSA 0.9195 0.8769 0.9761 0.9238 8139

AB GA 0.9161 0.8627 0.9897 0.9218 7558
GWO 0.9315 0.8937 0.9795 0.9346 5260

HHO 0.9195 0.8816 0.9692 0.9233 8304

WOA 0.9092 0.8699 0.9623 0.9138 8374

PSO 0.8442 0.7638 0.9966 0.8648 8060

SSA 0.8168 0.7318 0.9818 0.8385 8229

NB GA 0.8631 00.7849  0.9778 0.8707 7596
GWO 0.8356 0.7526 0.9818 0.8521 3992

HHO 0.8185 0.7337 0.9878 0.8419 11754

WOA 0.8322 0.7487 0.9888 0.8521 14599

PSO 0.8938 0.8267 0.9966 0.9037 8056

SSA 0.9024 0.8366 0.9978 0.9111 8259

LR GA 0.9041 0.8391 0.9918 0.9091 7583
GWO 0.8904 0.8202 0.9789 0.8925 3107

HHO 0.9144 0.8601 0.9897 0.9204 7383

WOA 0.8989 0.8319 0.9978 0.9082 7005

PSO 0.9023 0.8366 0.9789 0.9021 7847

SSA 0.8938 0.8965 0.8904 0.8934 8247

MLP GA 0.8767 0.8437 0.9246 0.8822 8111
GWO 0.9144 0.8757 0.9657 0.9186 7920

HHO 0.8972 0.8295 0.9856 0.9008 6583

WOA 0.8904 0.8221 0.9966 0.9009 9036
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Table A8. Performance results of text-features-based PHPMyAdmin dataset

Machine 1 i Feat lecti ..
achine earning cature selection AUC Precision  Recall Fi-score N _ Features

algorithms techniques
PSO 0.9831 0.9677 0.9712 0.9694 2268
SSA 0.9661 0.9375 0.9145 0.9258 2421
RF GA 0.9789 0.9442 0.9645 0.9542 2118
GWO 0.9833 0.9666 0.9918 0.9791 822
HHO 0.9742 0.9555 0.9945 0.9656 1237
WOA 0.8983 0.8965 0.8978 0.8972 1721
PSO 0.8644 0.92 0.7931 0.8518 2388
SSA 0.8475 0.8166 0.7586 0.7865 2519
VM GA 0.8478 0.8565 0.7333 0.7903 2041
GWO 0.9152 0.9311 0.90 0.9152 560
HHO 0.7626 0.90 0.60 0.72 2021
WOA 0.8644 0.8541 0.7333 0.7891 462
PSO 0.9322 0.8824 0.8978 0.8903 2381
SSA 0.9661 0.9375 0.9415 0.9395 2500
KNN GA 0.9833 0.9666 0.9778 0.9722 2390
GWO 0.9662 0.9465 0.9558 0.9511 894
HHO 0.8983 0.8333 0.8812 0.8566 1353
WOA 0.9322 0.8787 0.9015 0.8899 2736
PSO 0.9831 0.9345 0.9289 0.9317 2330
SSA 0.9661 0.9476 0.9554 0.9516 2465
DT GA 0.9492 0.9063 0.9331 0.9196 2349
GWO 0.9859 0.9677 0.9789 0.9736 738
HHO 0.8983 0.8286 0.8844 0.8555 1859
WOA 0.8827 0.8235 0.9655 0.8888 2856
PSO 0.9827 0.9544 0.9614 0.9578 2410
SSA 0.9877 0.9456 0.9541 0.9498 2378
AB GA 0.9661 0.9375 0.9542 0.9457 2197
GWO 0.9879 0.9667 0.9789 0.9727 1540
HHO 0.9152 0.9286 0.8965 0.9123 2195
WOA 0.9616 0.9412 0.9433 0.9422 3200
PSO 0.8305 0.75 0.8245 0.7855 2375
SSA 0.8474 0.7631 0.8355 0.7976 2463
NB GA 0.7966 0.7073 0.7889 0.7458 2080
GWO 0.7627 0.6905 0.7088 0.6995 647
HHO 0.7333 0.6444 0.7225 0.6813 2271
WOA 0.8135 0.7317 0.8145 0.7708 3206
PSO 0.9666 0.9917 0.9333 0.9616 2335
SSA 0.9491 0.9121 0.8965 0.9042 2539
LR GA 0.9322 0.9643 0.90 0.9311 2081
GWO 0.9661 0.9356 0.9123 0.9238 624
HHO 0.9155 0.9311 0.90 0.9153 2678
WOA 0.9492 0.9655 0.9331 0.9492 1143
PSO 0.9316 0.9629 0.8965 0.9286 2360
SSA 0.9655 0.9375 0.9412 0.9393 2478
MLP GA 0.9778 0.9485 0.9389 0.9437 2203
GWO 0.9878 0.9756 0.9614 0.9684 685
HHO 0.9831 0.9666 0.9721 0.9693 2624
WOA 0.9491 0.9333 0.9655 0.9492 2073
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Table A9. Performance results of text-features-based JavaScript dataset

Machine learning

Feature selection

. . AUC Precision  Recall Fi-score N _ Features
algorithms techniques

PSO 0.9985 0.9981 0.9929 0.9985 3172

SSA 0.9972 0.9984 0.9945 0.9972 3282

RF GA 0.9995 0.9878 0.9981 0.9978 3159
GWO 0.9981 0.9991 0.9972 0.9981 2727

HHO 0.9946 0.9978 0.9758 0.9882 5729

WOA 0.9995 0.9994 0.9991 0.9995 6552

PSO 0.9609 0.9321 0.9943 0.9622 3272

SSA 0.9665 0.9404 0.9962 0.9675 3300

SVM GA 0.9665 0.9435 0.9925 0.9674 3267
GWO 0.9586 0.9333 0.9878 0.9597 1462

HHO 0.9788 0.9593 0.9991 0.9793 1625

WOA 0.9519 0.9255 0.9831 0.9534 5687

PSO 0.9741 0.9623 0.9868 0.9744 3221

SSA 0.9675 0.9437 0.9944 0.9684 3216

KNN GA 0.9788 0.9652 0.9934 0.9792 3304
GWO 0.9755 0.9676 0.9839 0.9757 2829

HHO 0.9892 0.9859 0.9925 0.9892 7920

WOA 0.9896 0.9869 0.9928 0.9897 9766

PSO 0.9915 0.9887 0.9789 0.9837 3099

SSA 0.9978 0.9784 0.9578 0.9679 3176

DT GA 0.9847 0.9812 0.9846 0.9828 2901
GWO 0.9914 0.9963 0.9978 0.9972 1204

HHO 0.9745 0.9625 0.9562 0.9593 3168

WOA 0.9994 0.9988 0.9921 0.9954 3433

PSO 0.9947 0.9978 0.9952 0.9964 3043

SSA 0.9985 0.9956 0.9958 0.9916 3250

AB GA 0.9942 0.9924 0.9845 0.9884 3133
GWO 0.9995 0.9981 0.9854 0.9917 7719

HHO 0.9932 0.9954 0.9876 0.9914 8188

WOA 0.9914 0.9911 0.9863 0.9886 8197

PSO 0.9985 0.9991 0.9981 0.9986 3100

SSA 0.9957 0.9953 0.9963 0.9957 3208

NB GA 0.9995 0.9991 0.9990 0.9996 2817
GWO 0.9995 0.9994 0.9992 0.9993 6659

HHO 0.9998 0.9945 0.9946 0.9942 4856

WOA 0.9978 0.9947 0.9952 0.9949 4522

PSO 0.9912 0.9445 0.9685 0.9563 3051

SSA 0.9818 0.9525 0.9669 0.9596 3210

LR GA 0.9771 0.9859 0.9554 0.9704 2770
GWO 0.9912 0.9879 0.9715 0.9795 4643

HHO 0.9698 0.9781 0.9772 0.9776 5757

WOA 0.9745 0.9878 0.9884 0.9881 6319

PSO 0.9976 0.9972 0.9981 0.9974 3019

SSA 0.9991 0.9992 0.9989 0.9989 4195

MLP GA 0.9945 0.9965 0.9978 0.9984 3212
GWO 0.9995 0.9981 0.9925 0.9991 3094

HHO 0.9964 0.9995 0.9987 0.9994 5880

WOA 0.9915 0.9991 0.9996 0.9997 2289
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Background. With the rapid proliferation of question-and-answer web-
sites for software developers like Stack Overflow, there is an increasing need
to discern developers’ emotions from their posts to assess the influence of
these emotions on their productivity such as efficiency in bug fixing.
Aim. We aimed to develop a reliable emotion classification tool capable
of accurately categorizing emotions in Software Engineering (SE) websites
using data augmentation techniques to address the data scarcity problem
because previous research has shown that tools trained on other domains
can perform poorly when applied to SE domain directly.

Method. We utilized four machine learning techniques, namely BERT,
CodeBERT, RFC (Random Forest Classifier), and LSTM. Taking an inno-
vative approach to dataset augmentation, we employed word substitution,
back translation, and easy data augmentation methods. Using these we
developed sixteen unique emotion classification models: EmoClassBERT-
-Original, EmoClassRFC-Original, EmoClassLSTMOriginal, EmoClass-
CodeBERT-Original, EmoClassLSTM-Substitution, EmoClassBERT-Sub-
stitution, EmoClassRFC-Substitution, EmoClassCode BERT-Substitution,
EmoClassBERT-Translation, EmoClassLSTM-Translation, EmoClassRFC
Translation, EmoClassCode BERT- Translation, EmoClassBERT-EDA, Emo
ClassLSTM-EDA, EmoClassCodeBERT-EDA, and EmoClassRFC-EDA.
We compared the performance of this model on a gold standard state-of-
the-art database and techniques (Multi-label SO BERT and EmoTxt).
Results. An initial investigation of models trained on the augmented
datasets demonstrated superior performance to those trained on the origi-
nal dataset. EmoClassLSTM-Substitution, EmoClassBERT-Substitution,
EmoClassCodeBERT-Substitution, and EmoClassRFC-Substitution mod-
els show improvements of 13%, 5%, 5%, and 10% as compared to EmoClass-
LSTM-Original, EmoClassBERT-Original, EmoClassCodeBERT-Original,
and EmoClassRFC-Original, respectively, in average Fi-score. The Emo-
ClassCode BERT-Substitution performed the best and outperformed the
Multi-label SO BERT and Emotxt by 2.37% and 21.17%, respectively, in
average Fi-score. A detailed investigation of the models on 100 runs of
the dataset shows that BERT-based and CodeBERT-based models gave
the best performance. This detailed investigation reveals no significant
differences in the performance of models trained on augmented datasets
and the original dataset on multiple runs of the dataset.

Conclusion. This research not only underlines the strengths and weak-
nesses of each architecture but also highlights the pivotal role of data
augmentation in refining model performance, especially in the software
engineering domain.

© 2025 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
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1. Introduction

Software engineering (SE) is a domain that, while inherently technical, is deeply influenced
by human factors such as emotions, cognitive biases, and decision-making processes. These
human-centric aspects play a crucial role in shaping the dynamics of software development,
from team collaborations to the end product’s quality [1]. The emotional undertones evident
in various communication channels, whether in code comments, pull requests, or interactive
developer forums, can provide insights into the effect of developers [2]. They can highlight
potential misunderstandings, pinpoint areas that spark contention, or even forecast the
emergence of software bugs and vulnerabilities [3, 4]. Such insights, if harnessed correctly,
can be instrumental in anticipating issues and enhancing overall software development
efficiency.

Previous research shows that emotion can greatly impact various software development
activities. For example, positive emotion can improve job satisfaction and productivity [5].
Experiments by Girardi et al. [6] show that positive emotions occur when developers work
on implementing new features. However, their results also show that negative emotions
are triggered in developers when they encounter unexpected code behavior and missing
documentation. It can also be caused by time pressure or being stuck with the task. A study
by Graziotin et al. [7] shows possible consequences of positive and negative emotions. For
example, their study shows that positive emotion leads to several positive consequences
like high code quality, high motivation, higher creativity, etc., whereas negative emotion
causes various negative consequences like low productivity, low participation, and work
withdrawal. A study by Novielli et al. [8], shows that negative emotion can also lead to
difficulty in learning new programming languages. All of the above examples indicate the
importance of correctly recognizing the emotions of software developers.

The above research shows that emotion recognition is important for various software
development tasks. However, it is found to be very challenging because of data scarcity
issues. In the software engineering domain, there is limited availability of the ground truth
or manually annotated data because manual annotation is resource resource-intensive task
[9] [10]. Also, there are researches that show that emotion classification models trained
on a dataset of other domains do not perform well when used in the software engineering
domain [11]. Advancements in natural language processing (NLP) have unveiled powerful
models like BERT, CodeBERT, LSTM networks, and ensemble methods like RFC. These
models have demonstrated state-of-the-art results in various NLP tasks [12, 13], prompting
exploration into their potential for emotion classification within the SE realm [14, 15]. Yet,
one perennial challenge in machine learning (ML) and NLP tasks is the need for extensive
and diverse training datasets [2]. Hence, there is a need to address this data scarcity issue.
In this paper, we focus on improving the performance of emotion classification in the SE
domain using the data augmentation technique.

Data augmentation, a technique of artificially enhancing the dataset size and variability,
has shown promising results in improving model robustness and generalization [16]. Among
various data augmentation techniques, word substitution and back translation have garnered
attention for their ability to retain semantic integrity while introducing syntactic variability
[2, 16, 17]. Additionally, Kufakou et al. [18] show that the easy data augmentation approach
gave the best results in their experiment. This study aims to investigate the efficacy of
data augmentation techniques with machine learning algorithms in the context of emotion
classification in the SE domain. In this research, we utilized four machine learning techniques,
namely Bidirectional Encoder Representations from Transformers (BERT), CodeBERT, Long
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Short-Term Memory (LSTM) neural network, and the Random Forest Classifier (RFC) model.
We used three data argumentation techniques: word substitution, back translation, and Easy
Data Augmentation (EDA). Using these we developed sixteen unique emotion classification
models: EmoClassBERT Original, EmoClassCode BERT-Original, EmoClassRFC-Original,
EmoClassLSTM-Original, EmoClassLSTM-Substitution, EmoClassBERT-Substitution, Emo

ClassCodeBERT-Substitution, EmoClassRFC-Substitution, EmoClassBERT-Translation,

EmoClassCodeBERT-Translation, EmoClassLSTM- Translation, EmoClassRFC-Translation,

EmoClassBERT-EDA, EmoClassCodeBERT-EDA, EmoClassLSTM-EDA, and EmoClass

RFC-EDA. We evaluated the performance of the proposed model(s) on a gold-standard

state-of-the-art database [19]. We compared its performance with state-of-art techniques

Multi-label SO BERT and EmoTxt [14]. Specifically, we answer the following research

questions in this study:

— RQ1: Which classification model performs better between LSTM, BERT,
CodeBERT, and RFC? Experimental results show that the BERT and codeBERT
model outperformed LSTM and RFC in emotion classification.

— RQ2: An initial investigation: Can data augmentation improve the model’s
performance? Experimental results show that models trained on the augmented
datasets demonstrated superior performance to those trained on the original dataset.
EmoClassLSTM-Substitution, EmoClassBERT-Substitution, EmoClassCodeBERT-Sub-
stitution, and EmoClassRFC-Substitution models show improvements of 13%, 5%,
and 10% as compared to EmoClassLSTM-Original, EmoClassBERT-Original, and
EmoClassRFC-Original, respectively, in average Fj-score.

- RQ3: How do EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT, and
EmoClassRFC compare to existing tools? The EmoClassCode BERT-Substitution
performed best and outperformed the Multi-label SO BERT and Emotxt by 2.37% and
21.17%, respectively, in average Fj-score.

— RQ4: How does algorithm randomness affect the performance of the proposed
models? The BERT-based and CodeBERT models perform best for emotion classification.
There is no significant difference in the performance of models trained on augmented
and non-augmented data.

By bridging the advanced NLP techniques with the unique challenges and intricacies of

SE texts, this research hopes to contribute a robust methodology for emotion recognition

in this vital domain.

2. Background

In today’s interconnected world, a vast number of individuals across the globe are uti-
lizing various online platforms like blogs, forums, and social media sites to express their
thoughts and share opinions. In the SE domain, online communities and channels have
become prominent platforms for individuals to express their views and share experiences.
SE communities, which include forums, chat groups, and dedicated platforms like GitHub'
and Stack Overflow?, serve as virtual gathering spaces for developers, programmers, and
information technology project managers. These channels have emerged as valuable hubs
of knowledge, where professionals discuss coding practices and issues [20]. Consequently,

"https://github.com/
https:/ /stackoverflow.com/
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a substantial amount of valuable data is generated within these communities, forming
a rich source of insights into the thoughts, opinions, and challenges software engineers
worldwide face.

Liu [21] describes sentiment analysis, also known as opinion mining, as a discipline
intersecting natural language processing, text mining, and computational linguistics. It
evaluates the emotional tone of texts from diverse sources like social media, e-commerce sites,
and blogs. This analysis aids organizations in discerning public sentiment, understanding
product perceptions, and detecting emerging trends [22]. Emotion classification, also known
as affective computing, is a subfield of sentiment analysis that focuses on identifying,
understanding, and interpreting human emotions [23]. While sentiment analysis classifies
the feelings expressed in a text into three categories: positive, negative, and neutral, emotion
classification goes further to recognize a wide range of human emotions, including Joy,
Anger, Sadness, Surprise, Disgust, and Fear [24].

The SE field is not only technical but also deeply human, involving collaboration,
creativity, and problem-solving [25]. Emotions, like Sadness, Anger, and Joy, play a pivotal
role in influencing productivity, team dynamics, and decision-making in SE [1, 26]. SE
researchers have been employing sentiment analysis techniques as discussed in several
applications [9, 15, 27]. For example, Murgia et al. [28] observed that issue reports carry
emotions. Ortu et al. [3] reported that emotions could influence team communication,
decision-making, and problem-solving strategies, thereby significantly affecting the software
development process. They showed there is a correlation between emotion expressed in issue
comments and bug-fixing productivity. They mined emotions from 560 000 Jira comments,
revealing that expressions of Joy and Lowve correlated with faster issue resolutions, while
Sadness was linked to longer delays. Understanding and addressing these emotions is
essential for fostering a positive and productive work environment. Uddin et al. [29] mined
the Application Programming Interface (API) discussion from StackOverflow and reported
that sentiments can be used to predict pros and cons related to the adoption of APIs.
Several studies use sentiment to detect issues in applications’ reviews [30]. Gu et al. [31]
analyzed sentiment in user reviews. They proposed the SUR-Miner model which helps
classify user reviews into one of the predefined classes like aspect evaluation, bug reports,
feature requests, praise, and others. SUR-Miner’s ability to discern and categorize user
feedback into predefined classes significantly enhances the analysis and interpretation of
user sentiments when evaluating applications. Panichella et al. [32], used sentiment analysis
techniques combined with natural language processing and text analysis to classify user
reviews into the following classes: Information Giving, Information Seeking, Feature Request,
and Problem Discovery. Their approach proves valuable for pinpointing problem areas in
the software and directing efforts towards resolving those identified bugs. Furthermore,
this method helps to quickly spot areas requiring improvement, empowering developers
to swiftly address these issues and deploy new functionalities that align with end users’
preferences and needs. Rahman et al. [33] used opinion mining to recommend insightful
comments from source code on StackOverflow.

Despite the progress made in the field, Imran et al. [2], reported the unsuitability of
state-of-the-art emotion categorization tools on SE data. The research also highlighted how
the tool’s accuracy decreases when trained on one communication channel and assessed on
another. Hence, from this, we can say that emotion classification on SE Q&A websites is
still a developing field of study. This research aims to develop an emotion classification
algorithm capable of effectively identifying the emotions of software developers on SE
communication channels to investigate and implement techniques for improving the accuracy
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and generalization of the prediction model. We use the gold standard (manually) annotated
dataset?® extracted from Stack Overflow extracted by Novielli et al. [19] for this research.
By leveraging NLP, the preprocessing tasks were performed followed by the implementation
of data augmentation techniques. We developed three emotion classification algorithms
using the LSTM, the BERT, and the RFC model. The models were evaluated against the
Multi-label Stack Overflow BERT model and EmoTxt presented in [14].

3. Related work

The recognition of the role of emotion in SE has gained substantial momentum within
the academic and industrial communities in recent years. This section aims to provide an
in-depth review of the literature relating to this topic, surveying the progression and future
trajectories of this field.

3.1. Sentiment analysis in software engineering

In their research, Jongeling et al. [34] conducted an in-depth evaluation of the performance
of two widely used sentiment analysis tools, namely SentiStrength [35] and NLTK [36].
Their analysis initially included four tools but ultimately focused on SentiStrength and
NLTK. They used seven datasets for their investigation, including issue trackers and
questions from Stack Overflow, a popular online platform for the programming community.
Their findings highlighted a significant challenge when applying these sentiment analysis
tools to SE contexts. Both SentiStrength and NLTK were initially developed for non-SE
domains, which have substantial differences in language and sentiment expression compared
to texts in the SE field. Their observations underscore the need for sentiment analysis tools
specifically designed and trained for the unique characteristics of SE texts.

Guzman et al. [27] adopted a lexical-based technique to analyze the sentiments expressed
in 60425 commit comments of 29 OSS projects. SentiStrength was used to convert emotions
expressed in commit comments into quantitative values. SentiStrength allocates specific
scores to tokens listed in a dictionary, which also encompasses common emoticons. Words
expressing negative sentiments are assigned a value ranging between [—5, —1], while those
expressing positive sentiments receive a value between [1, 5]. Words with neutral sentiment
are assigned values of 1 and —1. On the other hand, extreme sentiment expressions, words
with very positive and negative feelings, are given scores of 5 and —5, respectively. A commit
comment is considered to be positive if its overall emotion score falls within the range of
[1,5], negative if the score is in the [—1, —5] range, and neutral if the score lies within the
[—1, 1] range. Furthermore, an analysis was conducted on the correlation between these
quantified emotions and various factors such as the programming language used, the team
distribution, and others. The researchers emphasized looking beyond the average emotion
score of the committed messages. They recommended considering both average positive and
negative scores, and the spread of positive, negative, and neutral documents for a deeper
understanding of the emotional content.

To overcome the limitations associated with SentiStrength, Islam and Zibran [37] imple-
mented SentiStrength-SE, a sentiment analysis tool built upon SentiStrength (lexical-based

3https://github.com/collab-uniba/EmotionDatasetMSR18/blob/master/Emotions_ GoldSandard__and

Annotation.xlsx
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approach) and specifically tailored to the SE domain. This tool integrates an understanding
of the nuances and jargon used in the field, enabling it to interpret sentiment more
accurately than general sentiment analysis tools. SentiStrength-SE proved superior to the
original SentiStrength tool when evaluated using a substantial dataset. This dataset has
5600 issue comments from various SE projects.

The research led by Ahmed et al. [15] resulted in the creation of SentiCR, a specialized
sentiment analysis tool for SE. This development came about due to the inadequacy of the
existing tools they evaluated using their dataset of 2000 code review comments from 20 Open
Source Software projects. SentiCR was developed using the Python programming language,
incorporating the Natural Language Toolkit (NLTK) for language preprocessing tasks. Then,
the scikit-learn library was employed for the supervised learning algorithms. As part of the
data preprocessing tasks, the Term Frequency — Inverse Document Frequency (TF-IDF)
method was used for feature extraction, and then eight supervised learning algorithms were
evaluated. These include Adaptive Boosting, Decision Tree, Gradient Boosting Tree, Naive
Bayes, Random Forest, Multilayer Perceptron, Support Vector Machine with Stochastic
Gradient Descent and Linear Support Vector Machine. The researchers observed that the
Gradient Boosting Tree performed better than other models, with an accuracy of 82%.

Calefato et al. [38] introduced Senti4SD, a sentiment polarity classifier. Over 4000
manually annotated posts from Stack Overflow served as the training and testing basis for
the classifier. Senti4SD’s semantic features are derived from a distributional semantic model
(DSM) that utilizes word embedding. The DSM was established by executing Word2vec
on a corpus of more than 20 million documents sourced from Stack Overflow, thereby
generating word vectors that encapsulate the communication style of developers. Senti4SD,
trained using Support Vector Machines (SVM), overcame the problem of negative bias
prevalent in existing sentiment analysis tools by combining lexicon-based, keyword-based,
and semantic features. Negative bias refers to the phenomenon where texts that are actually
neutral in tone are incorrectly identified as expressing negative emotions. Notably, a 19%
improvement in precision for the negative class and a 25% improvement in recall for the
neutral class were observed when compared with SentiStrength.

In contrast to the aforementioned studies, our research focuses on developing an emotion
recognition model tailored to the software engineering domain, with the unique ability
to classify and differentiate between specific emotions. By doing so, we aim to provide
a nuanced and domain-specific understanding of emotional states within the context of
software development, which can have significant implications for improving the overall SE
processes and work environment.

3.2. Emotion classification in software engineering

Identifying specific emotions, rather than just general sentiment, offers a richer under-
standing of software engineers’ emotional states. This detailed perspective aids in grasping
team dynamics, decision-making, and productivity [39]. For example, spotting frustration
may indicate task challenges, while joy or satisfaction could signify successful teamwork or
development. Responding to this need, Calefato et al. [40] proposed EmoTxt, an open-source
toolkit tailored for emotion detection in text. It was trained on two key datasets: 4800
Stack Overflow posts created for the study, and 4000 Jira comments from Ortu et al. [3].
EmoTxt uses six binary classifiers to detect specific emotions: Joy, Love, Sadness, Anger,
Surprise, and Fear. Utilizing a supervised learning approach with Support Vector Machines
(SVM), it effectively identifies emotional patterns in written content.
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Murgia et al. [20] developed classifiers for each emotion category (Love, Joy, Sadness,
and Neutral), with each classifier calculating the probability of a particular emotion being
present in a comment. They created five versions of each classifier using SVM, Naive Bayes
(NB), Single Layer Perceptron (SLP), K-Nearest Neighbor (KNN), and Random Forest
(RF). Using bootstrap validation on Apache Software Foundation project comments, the
SVM classifiers proved most effective for detecting love, joy, and sadness, warranting further
examination. The SVM models’ performance was later assessed on a separate test set of
comments.

Recognizing the limitations of traditional ML techniques, researchers began to explore
more advanced methods, particularly Deep Learning (DL) algorithms. DL techniques are
especially suitable for complex tasks such as emotion classification because they can handle
high-dimensional data and capture intricate patterns within the data. Bleyl and Buxton
[14] implemented BERT models for emotion recognition in Stack Overflow comments
drawing on Novielli, et al’s. [19] dataset. Due to the dataset’s imbalance, they augmented
underrepresented emotion classes. They also fine-tuned BERT for the SE context by adding
993 prevalent technical words and emoticons from Stack Overflow to BERT’s tokenizer
vocabulary. Then, leveraging Masked Language Modelling, they trained BERT on a large
dataset of unlabeled Stack Overflow comments and fine-tuned it on the Stack Overflow
annotated dataset. Their multi-label BERT model outperformed other models.

Our research builds upon previous studies by investigating various machine learning
architectures and techniques to improve the overall performance of emotion recognition
models in the context of software engineering. In this paper, we explored data augmentation
methods for enhancing the robustness and generalization capabilities of our emotion
recognition models. In this paper, we explored data augmentation methods for enhancing
the robustness and generalization capabilities of our emotion recognition models. Imran et
al. [2], proposed data augmentation-based techniques for emotion classification on the SE
dataset to address the data scarcity issue. They report an improvement of 9.3% in micro
Fi-score as compared to popular SE tools. However, they explore only 3 types of data
augmentation techniques: Unconstrained, lexicon, and polarity-based. They used a stacked
approach for data augmentation. They used a stacked approach for data augmentation.
In this, we focus on using simple data augmentation techniques like “back translation” to
find out their effectiveness for emotion classification in the software engineering domain.
In addition, Imran et al. [2], use existing emotion classification models like ESEM-E,
EMTk, and SEntiEmoji whereas, in the paper, we checked the efficiency of 3 classifiers
LSTM, Radom Forest, and BERT for emotion classification on the augmented dataset.
The approach used in this paper extends the work done by Imran et al. [2] by adding one
more dimension of using data augmentation for emotion. classification

4. Methodology

Figure 1 provides an overview of the methodology for this study. We used the Stack
Overflow dataset provided by Novielli et al. [19]. This is the gold standard dataset. We use
Python programming language for implementing various machine learning libraries. We
notice that this dataset is highly imbalanced in nature. Hence, we explored the uses of data
augmentation methods for improving the accuracy of emotion detection. We developed
three main emotion classification algorithms using RF, LSTM and BERT models. We
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then compare the performance of these different approaches. Finally, we evaluate how the
implemented emotion classification algorithms compare to existing tools in the SE domain.
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OR i OR OR
Training set | ) !
—> (80%) Word ) Tokenizer | LST™M
substitution /| ; (LSTM™) )1 model
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Figure 1. Overview of the methodology

4.1. Dataset description

The dataset contains 4800 Stack Overflow entries, encompassing questions, answers, and
comments, and is a sample from the unlabeled Stack Overflow dataset of June 2008
to September 2015 [19]. Part of the Stack Exchange network of Q&A websites, Stack
Overflow is a popular Q&A site for software developers. On Stack Overflow, users can
ask questions, answer questions, vote on questions and answers, and earn reputation and
badges. As discussed by Novielli et al. [19], the dataset was annotated by a group of twelve
volunteers. Each entry received annotations from three different individuals, focusing on
the six fundamental emotions (Love, Joy, Surprise, Anger, Sadness, and Fear). Determining
the emotion for an observation relied on a majority consensus approach. If at least two of
the three evaluators identified a specific emotion for an observation, then that emotion
was assigned to the sample. Table 1 shows, an example of the dataset. However, not every
observation-emotion combination was labeled, and some observations were labeled with
more than one emotion. Approximately 56% of the comments are labeled with just one
emotion, 6% are marked with two or more emotions, and the remaining comments are
without emotion labels [14]. For this study, any post not annotated with emotion was
regarded as devoid of emotion and, therefore, classified as neutral posts. This dataset is
organized into individual worksheets for each emotion label: Love, Joy, Surprise, Anger,
Sadness, and Fear [19]. The worksheets were, therefore, merged into a single sheet and
saved as a CSV file.
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Table 1. Examples from Novielli et al. dataset [19]

Text Rater 1 Rater 2 Rater 3  Gold label

SVG transform on text attribute works excellent! This

snippet, for example, will increase your text by 2x at X X LOVE
Y-axis.
Excellent! This is exactly what I needed. Thanks! X X X LOVE

Have added a modern solution as of May 2014 in answers
below.

Have you tried removing “preload” attribute? (Afraid I
can’t be much help otherwise!)

Table 2. Emotion label distribution

Number of observations conveying the emotion
Total

Love Joy Surprise Anger Sadness Fear Neutral

1181 488 43 867 227 103 1918 4735

4.2. Data preprocessing
4.2.1. Text cleaning techniques

After merging the worksheets, some duplicates were identified in the dataset. Duplicate
entries can lead to biased or skewed results because they do not represent unique instances
of the data. The duplicated observations were removed from the experimental dataset. We
removed duplicates from the dataset using a two-step process: 1) automated text matching
and 2) manual verification. We removed a total of 65 duplicate entries (Love: 39, Joy: 3,
Surprise: 2, Anger: 15, Sadness: 3, Fear: 3). We also notice the presence of some irrelevant
attributes in the dataset such as information about the group, set, id, and raters. We
removed all these attributes from the experimental dataset. The label Neutral was assigned
to the entries not annotated in the original dataset. Table 2 shows the number of instances
for each emotion category.

Removal of non-alphabetic characters. Non-alphabetic characters were removed
as part of an essential approach designed to streamline raw textual data. This curtails
the presence of excessive symbols, punctuations, and numbers seen as noise, which can
add meaningless variability. By filtering out such characters, the resultant text not only
becomes more readable but also more concise. This makes it more compatible with the
strict requirements of computational processing and linguistic analysis, leading to a more
efficient and accurate prediction algorithm [41].

Case folding. Furthermore, the entire text corpus was converted to lowercase to ensure
the homogeneity of the dataset. This is because the words “Analysis” and “analysis”, though
semantically identical, would be processed as separate tokens due to their case difference.
Such distinctions introduce redundancies, thereby increasing the dimensionality of the data
without adding meaningful variance [42]. Using consistent casing in the dataset ensures
that the text is standardized. This standardization is vital for constructing consistent and
reproducible models that can generalize effectively to unseen data, thereby enhancing the
reliability of the prediction model.
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Stop words, stemming and lemmatization. While it is usually essential to remove
stop words when handling NLP tasks, in line with previous studies [38], stop words were
not removed, as comments such as “I am happy with this output” and “I am not happy
with this output” express different emotions. Neither Stemming nor lemmatization was
performed since, according to Calefato et al., [38], a varied form might convey useful
information.

4.2.2. Tokenization

Tokenization, in NLP, is breaking down the text into smaller pieces, known as “tokens”.
While these tokens are commonly individual words, they can also be sentences, parts of
words, or even single characters [43]. The type of token selected is usually based on the
particular NLP task. As an example, tokenizing the phrase “I love coding” results in [“I”,
“love”, “coding”]. Tokenization is crucial because, before text data can be analyzed or fed
into machine learning algorithms, it often must be transformed from its raw form into
a structured format [44]. The Keras, BERT, and scikit-learn libraries were utilized to
tokenize the Stack Overflow posts. The tokenization process was handled differently for
the three models in the NLP task. For the LSTM model, the tokenizer module from the
Keras library was used to process the posts, while the BERT tokenizer was used for the
BERT model. The Term Frequency-Inverse Document Frequency (TF-IDF) was used to
extract features for the RFC model. This essential step was carried out to convert the text
into numerical form and to aid in building the vocabulary for the dataset.

4.3. Text exploratory analysis

Text Exploratory Analysis (TEA) aims to meticulously decipher the embedded structure,
recurrent patterns, and potential aberrations within the dataset [45].

4.3.1. Sentiment polarity

Sentiment polarity in text analysis evaluates the overall sentiment or tone of a piece of
writing. It categorizes the sentiment as positive, negative, or neutral, allowing for a quick
assessment of the general mood of the expressed thoughts [46]. For instance, a statement
such as “Ezcellent, I'm glad that worked for you!” would likely be categorized as possessing
a positive polarity, whereas “This is one of the shortcomings of DGV that I absolutely
hate and why I almost always bind to an IEnumerable of an anonymous type.” would
be attributed a negative polarity. A statement such as, “I understand that server-side
validation is an absolute must to prevent malicious users (or simply users who choose to
disable javascript) from bypassing client-side validation” might be considered neutral. We
used TextBlob to obtain a brief overview of the sentiment polarity within the dataset.
TextBlob, a Python library rooted in NLTK and Pattern, offers lexicon-based sentiment
analysis by producing polarity and subjectivity scores. Polarity scores range from —1
(negative) to 1 (positive), with 0 being neutral. Subjectivity scores span from 0 (factual)
to 1 (opinion-based).

Figure 2 showcases the sentiment polarity distribution in the dataset, detailing percent-
ages of positive, negative, and neutral sentiments for an overall mood assessment. However,
sentiment polarity provides a generalized perspective, missing the detailed layers of emotion
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Negative

Positive

Neutral

Figure 2. Sentiment polarity in the dataset

detection. Unlike broad labels of positive, negative, or neutral, emotion detection identifies
specific feelings like Joy, Anger, Love, Fear, Sadness and Surprise.

4.3.2. Distribution of emotion categories

This was performed to understand the distribution, quality, and structure of the emotion-

labeled dataset. Understanding the distribution of emotions in the dataset is crucial since
class imbalance can introduce biases into the ML models [47]. By visualizing the distribution,
one can take necessary measures to augment the data for under-represented categories
or use techniques to address imbalances during model training. The graph presented in
Figure 3 provides a visualization of the distribution of various emotion categories in the
dataset. The bar chart shows the count of instances for each emotion category, while the pie
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Figure 3. Overview of emotion category distribution
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chart illustrates the proportion of each class. A quick analysis of this visualization reveals
a pronounced imbalance among the different types of emotions. The dataset does not
adequately represent certain emotion categories, namely Joy, Sadness, Fear, and Surprise.

4.4. Addressing the data imbalance

In ML, data imbalance pertains to the uneven distribution of classes within a dataset. It is
a prevalent challenge, especially in classification tasks, where certain classes are significantly
underrepresented compared to others. This skewed representation often leads to suboptimal
model performance, as the algorithms tend to exhibit a bias towards the majority class,
consequently neglecting the minority class [47]. To address this imbalance in our dataset,
we considered various strategies and opted for under-sampling the majority class and apply
text augmentation for the minority classes.

4.4.1. Under-sampling the majority class

Under-sampling involves decreasing the number of observations from the predominant
class to achieve a more balanced class representation [48]. Specifically, we randomly
selected 950 samples from the Neutral emotion category. We selected this number through
experimentation. We notice that the algorithm is giving better results when the data points
in the neutral category have a similar number of points as in the other categories. After
the neutral category, the second highest number of data points were present in the “love”
category, i.e., 945. Hence, we selected 950 samples for “neutral” category.

4.4.2. Text augmentation using a contextual word embedding with BERT

Another approach adopted in this study to balance the dataset is data augmentation.
This involves creating new data by slightly altering existing samples, thereby artificially
enlarging the dataset. Especially, text augmentation with word substitution was performed
on the minority classes. Word substitution, an effective technique to augment textual data,
refers to the process of replacing words in a text with other words while aiming to retain the
overall meaning or intent of the original text [20]. Before the text augmentation, the dataset
was split into training, validation, and testing sets in a stratified ratio of 80-10-10 using
the scikit-learn library. Only the training dataset was enhanced through augmentation,
ensuring that the validation and testing sets reflect real-world situations.

Leveraging the ContextualWordEmbsAug class from the nlpaug library, 94% of the
Surprise, 44% of the Sadness and 91% of the Fear emotion category samples were randomly
chosen and augmented using the bert-base-uncased model. To have a relatively balanced
dataset and to avoid introducing noise in the dataset, each sample from the Surprise,
Sadness, and Fear categories were augmented four, one and two times, respectively. This
was performed to introduce variety in the increased dataset while still preserving the
original meaning.

For each sample, randomly selected words were replaced by the nearest words derived
from the embedding space provided by the BERT model. Unlike traditional word em-
beddings, which give every word a fixed vector representation regardless of its context in
a sentence, contextual embeddings adjust word representations based on the surrounding
words in a given sentence, making it suitable for text augmentation [49]. Tables 3, 4, and 5
show the distribution of the categories in the augmented training dataset, test dataset, and
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Table 3. Distribution of the emotion categories in the training set, test set,
and validation set for word substitution

Emotion category

Love Anger Joy Sadness Fear Surprise Neutral

Number of samples (Training set) 945 694 390 262 232 162 760
Number of samples (Test set) 118 87 49 23 10 4 95
Number of samples (Validation set) 118 86 49 22 11 5 95

Table 4. Distribution of the emotion categories in the training set, test set,
and validation set using back translation

Emotion category

Love Anger Joy Sadness Fear Surprise Neutral

Number of samples (Training set) 945 694 390 262 157 66 760
Number of samples (Test set) 118 87 49 23 10 4 95
Number of samples (Validation set) 118 86 49 22 11 5 95

Table 5. Distribution of the emotion categories in the training set, test set,
and validation set using easy data augmentation approach

Emotion category

Love Anger Joy Sadness Fear Surprise Neutral

Number of samples (Training set) 945 694 390 262 232 162 760
Number of samples (Test set) 118 87 49 23 10 4 95
Number of samples (Validation set) 118 86 49 22 11 5 95

validation dataset using word substitution, back translation, and easy data augmentation
technique, respectively. For the Word substitution and EDA methods, the selected samples
in the Surprise, Fear, and Sadness categories were augmented 4, 2, and 1 times, respectively.
However, the actual number of samples in the EDA-augmented training set may be lower
for certain folders. This discrepancy occurred because the code used was unable to process
some rows. For the Back translation approach, the selected samples were augmented only
once to prevent duplicates in the augmented training set.

4.5. Emotion classification algorithms

We employed RF, LSTM, and BERT to develop the emotion classification algorithms. The
section below presents the description and architecture of the three models.

4.5.1. LSTM

We chose LSTM for this emotion classification task because it is particularly adept at
processing sequence data and learning long-term dependencies, which is often inherent
in language-based tasks. Moreover, LSTM excels at detecting complex patterns within
natural language (NL), patterns that other models might not [50], and has proved reliable
for NL understanding tasks like text classification [51, 52| and sentiment analysis [53].
LSTM, a type of Recurrent Neural Network (RNN), was introduced [54] to overcome the
vanishing and exploding gradients problem that RNNs suffer from. LSTM networks have

13
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four main components: the input gate, forget gate, output gate, and memory cell. The
memory cell holds relevant information, with the gates managing data intake, retention,
and output [54]. This architecture enables LSTMs to manage long sequences efficiently,
making them particularly effective for text classification and capturing intricate human
emotions in text [55].

4.5.2. BERT transformer model

Researchers have started exploring the use of transformer models for sentiment analysis
and emotion classification tasks [14, 56]. Thanks to their architecture and pre-training on
extensive corpora, they are adept at detecting subtle nuances in textual data. Developed
by researchers at Google in 2018 [57], BERT represents a significant advancement in the
NLP domain known for its bidirectional understanding of language and has paved the way
for models RoBERTa, FlauBERT. The transformer architecture, presented by Vaswani
et al. [58], utilizes self-attention mechanisms for contextual understanding, processing
words concurrently for efficiency. BERT, building on this, discerns context by masking and
predicting certain input tokens, thereby enhancing linguistic representations. BERT employs
token, segment, and positional embeddings for input representation. It uses WordPiece
tokenization to manage out-of-vocabulary words and maintains input data sequence by
integrating these embeddings [57]. Initially, BERT was offered in two versions:
— BERT-BASE with 12 layers, 768 hidden sizes, 12 attention heads, and 110 million
parameters.
— BERT-LARGE with 24 layers, 1024 hidden sizes, 16 attention heads, and 340 million
parameters.
BERT’s pre-training involved the Masked Language Model (MLM) and Next Sentence
Prediction (NSP) tasks. In MLM, BERT predicts concealed input tokens, while in NSP, it
identifies sentence sequences, aiding question-answering tasks [57].

4.5.3. Random Forest Classifier

Many researchers have used RFC for text classification tasks [59]. Specifically, studies like
the one by [15] have shown that Random Forest is one of the reliable models for detecting
sentiment in posts on Q& A websites for software developers. Furthermore, we selected RFC
because of its capability to train on small datasets, as is the case in this study. Introduced
adequately by Breiman in [60], RFC is an ensemble learning method that creates numerous
decision trees during its training phase and merges their results for more accurate and
reliable predictions [60]. Each tree makes its own classification decision based on the input
data. The final class determination for a given input is achieved by taking a majority vote
from the classifications of all individual trees.

5. Evaluation metrics

After developing a machine learning model, it is essential to use evaluation metrics to
determine its performance on previously unseen test data. We selected popular metrics
used for the classification task.



https://www.e-informatyka.pl/EISEJ/papers/2025/1/4

D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

5.1. Precision, recall, and F'-score

While the balanced accuracy score can provide an overview of the model performance, it
does not show the performance of each class in the dataset. Precision provides insight into
a model’s correct predictions for each class. For class i, precision is:

TP;

PTCC’iS?:Oni = W
% i

where TP; is the number of correctly predicted instances of class i, and FP; is instances
wrongly predicted as class i. Recall evaluates the model’s ability to identify all possible
positive instances within the dataset [61]. It is determined by the following formula, where
FN; denotes instances of class i wrongly predicted as another class.

TP;

Recal ll = m
(2 3

Fi-score provides a harmonic mean of the two metrics, and is computed as follows:

2 x Precision; x Recall;

Fi-score; =
! Precision; + Recall;

6. Results

This section provides an overview of the results from various experiments conducted on
the Stack Overflow dataset. The investigation comprises three primary research queries
addressed in the paragraphs below. We made all the dataset and source code publicly
available for replication: https://drive.google.com/drive/folders/1qXyLx90OhpHVcXLMT
sTYdjhxhV-t6G54;j.

6.1. RQ1: Which classification model performs best among LSTM, BERT,
CodeBERT, and RFC?

Motivation. With the rapid advancements in ML and NLP, many models have been pro-
posed to solve classification problems in text data. Among these, the RFC, Support Vector
Machines (SVM) have been commonly employed. These algorithms have demonstrated
their capacity to yield reliable classification results across diverse contexts. In recent years,
researchers have used more sophisticated tools, such as LSTM [52], BERT [56], CodeBERT
[62], and RFC [59]. In this RQ, we compare the performance of LSTM, BERT, CodeBERT,
and RFC in classifying emotions within the Stack Overflow dataset.

Approach. In this part, we give a detailed description of the parameters used for all the
algorithms.

LSTM. After the preprocessing techniques, the LSTM model was implemented using the
keras and tensorflow libraries. Textual data was tokenized and normalized to sequences
of integers with a uniform length of 195 and the labels were one-hot encoded. The LSTM
model includes an embedding layer converting input to a 128-dimensional vector and
a two-layered LSTM: the first layer with 128 neurons (and 0.2 dropout rate) and the second
with 64 neurons. The dropout parameter helps to prevent overfitting, whereas the 2-layered
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LSTM structure allows the model to capture more complex patterns. The model’s output
layer has 7 units with softmax activation for multi-class classification. It is compiled using
the categorical_crossentropy loss function with the adam optimizer. The model is set to
train for a maximum of 20 epochs using a batch size of 64 and the class_weight parameter
which handles the class imbalance. However, the early stopping criteria could terminate it
prematurely. Regularization techniques like EarlyStopping and ModelCheckpoint were
used to monitor the validation loss and ensure the model stops training if there is no
improvement after 7 epochs. Several optimization strategies were employed to enhance the
model’s performance and prevent overfitting. We explored a variety of hyperparameters
(dropout rate, number of neurons in the layers, number of epochs) to fine-tune the model.
Different hyperparameter combinations were tested to determine which gave the highest
results.

BERT. The emotion classification model, built with BERT, utilized the same augmented
training, validation, and testing datasets as the LSTM neural network. It was developed
using the bert-base-uncased pre-trained model and the datasets, scikit-learn, torch,
and transformers libraries; and trained on a Graphics Processing Unit (GPU). The model
was trained for 4 epochs — to avoid overfitting while still allowing it to detect the emotion
contained in the comment — and enhanced with the Adam with Weight Decay (adamw_torch)
optimizer, which is a renowned gradient descent optimization algorithm for transformers
models. Before the tokenization, the data frames are converted to HuggingFace’s Dataset
format, and subsequently mapped to a DatasetDict (Dataset dictionary) object. Each
text entry is tokenized, padded, and truncated using the AutoTokenizer function of the
bert-base-uncased model. Tokenization is crucial as it converts the input data into a format
the model can understand. Meanwhile, padding and truncating ensure that all input
sequences have the same length, a requirement for batch processing in neural networks.
Training parameters such as the number of epochs (4), learning rate (2 x 107°), batch
size (16), optimizer (adamw_torch), and others are set using the TrainingArguments class.
These parameters play a pivotal role in guiding the model’s learning behavior. The number
of epochs dictates how many times the model reviews the entire dataset, the learning rate
determines the step size when updating weights, and the batch size indicates the number of
data points processed simultaneously. The Trainer class from the Transformers library is
used to train the model on the training dataset while validating it on the validation dataset.
The HuggingFace Trainer class simplifies the process of training machine learning models
by encapsulating the necessary training tasks, making it both efficient and user-friendly.

CodeBERT. It is a bimodal pre-trained model developed using transformer-based neural
architecture. It is designed for NL-PL applications such as natural language code search and
documentation generation. The model is trained using the hybrid objective function. This
uses both bimodal and uni-modal data for model training. The bimodal data provides the
input token and the uni-modal data is used for learning better generators. As recommended
by the authors in [62]*, we used the RobertaTokenizer for tokenizing our input data.
Then, we fine-tuned the microsoft/codebert-base model on our dataset utilizing the
same training parameters as those used for the BERT model we previously developed.
This approach was taken to enable a direct performance comparison between the two
transformer-based models. By keeping the parameters consistent, we ensured that any
differences in performance could be attributed to the models themselves, rather than
variations in the training process.

“https://github.com/microsoft /CodeBERT
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Table 6. Performance of the models

EmoClassLSTM-Original EmoClassBERT-Original EmoClassCodeBERT-Original EmoClassRFC-Original

Emotion Precision Recall Fj-score Precision Recall Fj-score Precision Recall — Fj-score  Precision Recall Fi-score

Love 0.72 0.70 0.71 0.76 0.84 0.80 0.81 0.79 0.80 0.72 0.78 0.75
Joy 0.35 0.39 0.37 0.50 0.45 0.47 0.54 0.65 0.59 0.53 0.35 0.42
Surprise  0.07 0.50 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Anger 0.63 0.22 0.32 0.75 0.75  0.75 0.75 0.68 0.71 0.72 0.72 0.72
Sadness 0.38 0.13 0.19 0.68 0.65 0.67 0.59 0.70 0.64 0.68 0.57 0.62
Fear 0.18 0.20 0.19 0.58 0.70 0.64 0.70 0.70 0.70 0.00 0.00 0.00
Neutral 0.40 0.58 0.47 0.79 0.75  0.77 0.76 0.77 0.76 0.59 0.73 0.65

RFC. The scikit-learn library was used to implement the RFC model using the same
training, validation, and testing sets as the previous models. The training set was uti-
lized for training the model, while the validation set was employed for fine-tuning the
hyperparameters and determining the best combination for the model. Finally, the test-
ing set was used to evaluate the model’s performance. For feature extraction, the code
uses the TF-IDF method to convert the text data into numerical features. While the
Term Frequency computes the frequency of words in a document, the Inverse Document
Frequency calculates the importance of a word. Together, the TF-IDF method captures
words’ significance in the dataset while diminishing the weight of frequently occurring but
potentially uninformative words [63]. Subsequently, the RFC is instantiated and trained on
the TF-IDF processed training data using 300 trees (n_estimators=300). The decision
to utilize 300 trees was made to strike a harmonious balance. With too few trees, the
model might not capture all the nuances in the data. Conversely, an excessive number
could lead to computational inefficiencies without significantly improving performance.
Furthermore, we used the GridSearchCV technique to obtain the optimal set of parameters
for the vectorizer and RFC model. Finally, the performance of the model is evaluated on
the test set.
Using the above parameters we created the following models:
— EmoClassLSTM-Original. an LSTM model trained with the parameters described
above.
— EmoClassBERT-Original. a BERT model trained with the parameters described
above.
— EmoClassCodeBERT-Original. a CodeBERT model trained with the parameters
described above.
— EmoClassRFC-Original. an RFC model trained with the parameters described
above.

Results. To gain a more comprehensive insight into the model’s performance, precision,
recall, and the Fj-score were computed for each emotion category. These metrics offer
a nuanced understanding of how well the model identifies and classifies each emotion.
Table 6 details the results of each model in identifying a specific emotion category. For
example, for emotion category Joy, EmoClassBERT-Original achieved an Fj-score of 59%,
while EmoClassBERT-Original, EmoClassLSTM-Original, and EmoClassRFC-Original
gave an Fi-score of 47%, 37%, and 42%, respectively. Based on the obtained results, BERT
outperformed the other models in detecting most emotion categories, while EmoClassLSTM-
Original and EmoClassCodeERT-Original achieved better performance for Surprise and
Fear, respectively. BERT’s superior performance can be attributed to its bidirectional
architecture, which enables it to grasp both past and future context, and its extensive
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pre-training on vast text corpora allows it to understand language nuances deeply. On
the other hand, while the LSTM produced significant results compared to other emotion
detection tools in the SE domain, as detailed in [2], its unidirectional processing of sequences
and the limited dataset, could be factors contributing to its average inferior performance
compared to BERT and RFC.

7

Given these results, BERT emerges as a more optimal choice for tasks that require
a profound understanding of context, especially in complex datasets like Stack
Overflow comments. Nevertheless, the low score for the Surprise from all the models
could be due to insufficient samples and the complexity in detecting the Surprise
emotion, as noted by [14].

6.2. RQ2: An initial investigation: Can data augmentation
improve the model’s performance?

Motivation. Training machine learning models to decipher the complex world of human
emotions requires vast amounts of data, particularly labelled data that indicates which
emotion is present in a given comment. In the context of Stack Overflow, this becomes
even more intricate given the specific lexicon used. Given these challenges, procuring an
adequately representative dataset for emotion classification on Stack Overflow is not just
resource intensive but also requires extensive domain-specific knowledge to annotate the
data accurately. This complexity, combined with the need for large-scale data to train
robust models, leads to an intriguing proposition: Could data augmentation be utilized to
synthetically expand and diversify the dataset, instead of solely relying on manual data
collection and annotation?

The choice to explore Random Forest Classifier (RFC) and Long Short-Term Memory
(LSTM) models alongside BERT and CodeBERT was driven by a desire to evaluate
various approaches and assess their performance comprehensively. While BERT indeed
demonstrated superior performance, considering alternative models allowed us to provide
a more nuanced understanding of the dataset and its characteristics. The motivation for
incorporating RFC and LSTM models aimed to explore how these models would handle
the enriched dataset. This approach provides a broader perspective on the robustness and
adaptability of different models to variations in data volume and complexity. Hence, we
tested 16 combinations of various classifiers for exhaustive testing.

Table 7. Examples of data augmented using back translation from the dataset

S No. Approach Comment
1. Original million unique visitors per hour? Wow! Is this Experts Exchange or some pr n
site
Translation  millions of unique visitors per hour wow is this exchange of experts or another
site pr n
2 Original wow would have expected a quick answer on this well found my own answer ...

Translation wow would have waited for a quick answer on this property found my own
answer...

Approach. Data augmentation techniques were employed to increase the diversity of
the dataset. Data augmentation is an established strategy in machine learning, which
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Table 8. Examples of data augmented using word substituted from the dataset

S No. Approach Comment

1. Original a unit test should do the same thing every time that it runs otherwise you may
run into a situation where the unit test only fails occasionally...
Substitution a unit test should do the same then every time that it runs otherwise you may
run into another situation where the unit test still fails occasionally...

2. Original I m very sorry about my horrible English only for this example I use radio
button...

Substitution =~ we m very sorry concerning my short english only at this example I use one
button...

can significantly enhance the quality and versatility of datasets without the need for

additional data collection [2]. The dataset was divided into training, validation, and testing

sets using a ratio of 80-10-10. To ensure that the validation and testing sets mirrored
real-world applications, only the training set was augmented. The text augmentation
methods evaluated and implemented for the underrepresented categories include:

— Back Translation. The BackTranslationAug class was employed for the translation.
This technique involves translating a text into a secondary language (in our case, French
was chosen due to its rich linguistic structure) and then reverting it to its original
language, English. This often results in texts that maintain their core sentiment but
are structurally or lexically varied. Table 7 shows some examples of the original and
augmented datasets.

— Word substitution. To introduce lexical diversity, words were replaced with their
closest synonyms in the contextual embedding space. While the overall sentiment
remains intact, this technique ensures that the model is not biased towards specific
wordings. The Contextual WordEmbsAug class was employed with the substitute action
parameter for this augmentation process. Table 8 shows some examples of the original
and augmented datasets.

— Easy data augmentation. Easy data augmentation for a given sentence performs one
of the four operations randomly, i.e., synonym replacement, random insertion, swap,
and random deletion.

Leveraging the nlpaug library, 94% of the Surprise, 44% of the Sadness and 91% of
the Fear emotion category samples were randomly chosen and augmented. For the word
substitution augmentation technique, each sample from the Surprise, Sadness and Fear
categories was augmented four, one, and two times, respectively. This augmentation was
done to prevent the introduction of duplicate entries in the training data and to maintain
a balanced distribution across the various emotion categories. Through trial runs, we

observed that excessively augmenting the dataset did not contribute to increased diversity.

For the back translation approach, samples were translated only once to prevent introducing
duplicates in the augmented data. These strategies were adopted to introduce variety in
the augmented data while still preserving the original meaning.

For every augmentation method employed, the enhanced dataset was merged with the
original training data. Once combined, this consolidated data was then provided to the
machine learning model for training. Three different versions of LSTM, BERT, CodeBERT,
and RFC models were developed utilizing the original and augmented training sets. To
ensure consistency and optimal learning, each LSTM model was trained for a duration
of 20 epochs using a batch size of 64 with regularization techniques. On the other hand,
each BERT model was trained for 4 epochs with a batch size of 16 and a learning rate set
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Table 9. Details of the emotion classification models implemented

Model Augmentation technique Reference
Word Substitution EmoClassLSTM-Substitution (EmoClassLSTM-S )
LSTM Back Translation EmoClassLSTM-Translation (EmoClassLSTM-T )
Easy data augmentation EmoClassLSTM-EDA (EmoClassLSTM-E )
None EmoClassLSTM-Original (EmoClassLSTM-O)
Word Substitution EmoClassBERT-Substitution (EmoClassBERT-S)
BERT Back Translation EmoClassBERT-Translation (EmoClassBERT-T )
Easy data augmentation EmoClassBERT-EDA (EmoClassBERT-E)
None EmoClassBERT-Original (EmoClassBERT-O)
Word Substitution EmoClassCodeBERT-Substitution (EmoClassCodeBERT-S)
CodeBERT Back Translation EmoClassCodeBERT-Translation (EmoClassCodeBERT-T )
Easy data augmentation EmoClassCodeBERT-EDA (EmoClassCodeBERT-E)
None EmoClassCodeBERT-Original (EmoClassCodeBERT-O)
Word Substitution EmoClassRFC-Substitution (EmoClassRFC-S)
RFC Back Translation EmoClassRFC-Translation(EmoClassRFC-T')
Easy data augmentation EmoClassRFC-EDA (EmoClassRFC-E )
None EmoClassRFC-Original (EmoClassRFC-O)

at 2 x 107°, striking a balance between speed and prediction performance, and each RFC
model utilized the same hyperparameters as described earlier. Table 9 provides a summary
of the models implemented.

Results. The performance of emotion detection tools for each specific emotion is outlined
in Table 10 and Table 11. Table 10 shows the performance of all the models with and
without augmentation whereas Table 11 shows the average Fj-score for all the models.
Specifically, for the BERT models, there is not much difference between precision and recall,
suggesting that these models are equally adept at identifying true positive cases (precision)
as they are at capturing the total positive instances (recall). This balance is crucial in
emotion detection, as it means that the model is accurate in its predictions and minimizes
the risk of missing out on instances where a specific emotion is present. For the CodeBERT
model, the models trained on the augmented dataset outperformed the models trained on
the original dataset in most cases. However, the results for the LSTM model emphasize
the importance of having sufficient training data or training it on a more balanced dataset.
In most cases, the RFC models performed better than the LSTM models, indicating that
RFC is more suitable for smaller datasets. The highest F}-scores, highlighted in bold, show
that:

—  EmoClassBERT-Substitution performed best for Love;

—  EmoClassCodeBERT-Original performed best for Joy;

—  EmoClassBERT-Translation and EmoClassCodeBERT-Translation performed best for

Anger,

—  EmoClassBERT-Original performed best for Sadness;

—  EmoClassBERT-Translation, EmoClassRFC-Substitution, and EmoClassRFC-EDA
performed best for Surprise;

—  EmoClassCodeBERT-Translation give the best Fj-score for (Neutral).

From these findings, several implications can be derived. The efficacy of word sub-
stitution in introducing variance through word substitution makes it suitable for a wide
range of emotions. Table 11 shows that substitution-based models outperformed the other
models. EmoClassBERT-substitution gives the highest Fj-score of 63%. The substitution
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method shows a considerable improvement as compared to the original models, for example,
EmoClassLSTM-Substitution, EmoClassBERT-Substitution, EmoClassCodeBERT-Subs-
titution, and EmoClassRFC-Substitution models show improvements of 13%, 5%, 5%, and
10% as compared to EmoClassLSTM-Original, EmoClassBERT-Original, and EmoClass-
RFC-Original, respectively, in average Fi-score. On the other hand, the nuanced linguistic
changes introduced by back translation make it effective for emotions like Surprise and
Anger, as was demonstrated. The reduced Fj-score for the Surprise category might be due
to its smaller sample size. Additionally, the nature of Surprise as an emotion is inherently
ambiguous [9], often intertwining with both positive and negative emotions, further compli-
cating its classification [14]. Nevertheless, EmoClassRFC-Substitution, EmoClassRFC-EDA,
and EmoClassBERT-Translation outperformed other models in detecting the Surprise
category with an Fi-score of 0.33. While data augmentation techniques showed effectiveness
in various emotional categories, they did not consistently outperform the original model.
Interestingly, the model performed best at detecting the emotion Joy when trained on
non-augmented data. However, models trained on the original dataset on average under-
performed compared to models trained on the augmented dataset, except the CodeBERT
models (refer to Table 11). This underscores that augmentation’s effectiveness can vary
depending on the particular emotion under study.

Table 10. Performance of all variants of LSTM, BERT, CodeBERT and RFC

Emotion Base model Model Precision Recall Fi-score
EmoClassLSTM-S 0.79 0.55 0.65

LSTM EmoClassLSTM-T 0.84 0.39 0.53
EmoClassLSTM-E 0.75 0.70 0.73

EmoClassLSTM-0O 0.72 0.70 0.71

EmoClassBERT-S 0.81 0.81 0.81

BERT EmoClassBERT-T 0.82 0.77 0.79
EmoClassBERT-E 0.81 0.85 0.83

EmoClassBERT-O 0.76 0.84 0.80

Love EmoClassCodeBERT-S 0.79 0.85 0.82
EmoClassCodeBERT-T 0.79 0.78 0.79

CodeBERT | (ClassCodeBERT-E 0.82 0.79 0.80
EmoClassCodeBERT-0O 0.81 0.79 0.80

EmoClassRFC-S 0.75 0.80 0.77

RFC EmoClassRFC-T 0.72 0.79 0.75
EmoClassRFC-E 0.74 0.80 0.77

EmoClassRFC-O 0.72 0.78 0.75

EmoClassLSTM-S 0.30 0.55 0.39

LSTM EmoClassLSTM-T 0.24 0.39 0.31
EmoClassLSTM-E 0.42 0.41 0.41

EmoClassLSTM-0O 0.35 0.39 0.37

EmoClassBERT-S 0.50 0.49 0.49

EmoClassBERT-T 0.43 0.53 0.47

Joy BERT EmoClassBERT-E 0.52 0.49 0.51
EmoClassBERT-O 0.50 0.45 0.47
EmoClassCodeBERT-S 0.57 0.49 0.53
EmoClassCodeBERT-T 0.49 0.55 0.52

CodeBERT  p  \ClassCodeBERT-E 0.49 0.59 0.54
EmoClassCodeBERT-0O 0.54 0.65 0.59
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Table 10 continued

Emotion Base model Model Precision Recall Fi-score

EmoClassRFC-S 0.53 0.33 0.41

EmoClassRFC-T 0.55 0.37 0.44

Joy  RFC EmoClassRFC-E 0.51 039 0.44
EmoClassRFC-O 0.53 0.35 0.42

EmoClassLSTM-S 0.20 0.25 0.22

LSTM EmoClassLSTM-T 0.20 0.43 0.22
EmoClassLSTM-E 0.00 0.00 0.00

EmoClassLSTM-O 0.07 0.50 0.12

EmoClassBERT-S 0.33 0.25 0.29

BERT EmoClassBERT-T 0.50 0.25 0.33
EmoClasBERT-E 0.00 0.00 0.00

EmoClassBERT-O 0.00 0.00 0.00

Surprise EmoClassCodeBERT-S ~ 0.33 025  0.29
EmoClassCodeBERT-T 0.00 0.00 0.00

CodeBERT  ClassCodeBERT-E 0.00 0.00 0.00
EmoClassCodeBERT-O 0.00 0.00 0.00

EmoClassRFC-S 0.50 0.25 0.33

RFC EmoClassRFC-T 0.00 0.00 0.00
EmoClassRFC-E 0.50 0.25 0.33

EmoClassRFC-O 0.00 0.00 0.00

EmoClassLSTM-S 0.57 0.63 0.60

LSTM EmoClassLSTM-T 0.69 0.51 0.58
EmoClassLSTM-E 0.66 0.54 0.59

EmoClassLSTM-0O 0.63 0.22 0.32

EmoClassBERT-S 0.73 0.76 0.75

BERT EmoClassBERT-T 0.74 0.78 0.76
EmoClassBERT-E 0.73 0.74 0.73

EmoClassBERT-O 0.75 0.75 0.75

Anger

EmoClassCodeBERT-S 0.71 0.74 0.72
EmoClassCodeBERT-T 0.76 0.76 0.76

CodeBERT | \ClassCodeBERT-E 0.74 0.75 0.74
EmoClassCodeBERT-0O 0.75 0.68 0.71

EmoClassRFC-S 0.72 0.71 0.72

RFC EmoClassRFC-T 0.76 0.74 0.75
EmoClassRFC-E 0.73 0.72 0.73

EmoClassRFC-O 0.72 0.72 0.72

EmoClassLSTM-S 0.52 0.52 0.52

LSTM EmoClassLSTM-T 0.27 0.43 0.33
EmoClassLSTM-E 0.57 0.0.57 0.57

EmoClassLSTM-O 0.38 0.13 0.19

EmoClassBERT-S 0.72 0.57 0.63

EmoClassBERT-T 0.67 0.52 0.59

Sadness  BERT EmoClassBERT-E 0.64 0.61 0.62
EmoClassBERT-O 0.68 0.65 0.67
EmoClassCodeBERT-S 0.68 0.65 0.67
EmoClassCodeBERT-T 0.67 0.61 0.64

CodeBERT  ClassCodeBERT-E 0.67 0.61 0.64
EmoClassCodeBERT-0O 0.59 0.70 0.64
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Table 10 continued

Emotion Base model Model Precision Recall Fi-score
EmoClassRFC-S 0.67 0.52 0.59

EmoClassRFC-T 0.65 0.57 0.60

Sadness  RFC EmoClassRFC-E 0.71 0.65 0.68
EmoClassRFC-O 0.68 0.57 0.62

EmoClassLSTM-S 0.50 0.40 0.44

LSTM EmoClassLSTM-T 0.40 0.20 0.27
EmoClassLSTM-E 0.17 0.30 0.21

EmoClassLSTM-O 0.18 0.20 0.19

EmoClassBERT-S 0.70 0.70 0.70

BERT EmoClassBERT-T 0.54 0.70 0.61
EmoClassBERT-E 0.67 0.80 0.73

EmoClassBERT-O 0.58 0.70 0.64

Fear EmoClassCodeBERT-S 0.73 0.80 0.76
EmoClassCodeBERT-T 0.53 0.80 0.64

CodeBERT | (ClassCodeBERT-E 0.64 0.70 0.67
EmoClassCodeBERT-O 0.70 0.70 0.70

EmoClassRFC-S 0.33 0.40 0.36

RFC EmoClassRFC-T 0.10 0.10 0.10
EmoClassRFC-E 0.00 0.00 0.00

EmoClassRFC-O 0.00 0.00 0.00

EmoClassLSTM-S 0.67 0.57 0.61

LSTM EmoClassLSTM-T 0.50 0.69 0.58
EmoClassLSTM-E 0.58 0.67 0.62

EmoClassLSTM-0O 0.40 0.58 0.47

EmoClassBERT-S 0.72 0.75 0.74

BERT EmoClassBERT-T 0.80 0.75 0.77
EmoClassBERT-E 0.74 0.72 0.73

EmoClassBERT-O 0.79 0.75 0.77

Neutral EmoClassCodeBERT-S ~ 0.78 0.75  0.76
EmoClassCodeBERT-T 0.80 0.76 0.78

CodeBERT | (ClassCodeBERT-E 0.78 0.73 0.75
EmoClassCodeBERT-0O 0.76 0.77 0.76

EmoClassRFC-S 0.62 0.74 0.68

REC EmoClassRFC-T 0.60 0.68 0.64
EmoClassRFC-E 0.62 0.73 0.67

EmoClassRFC-O 0.59 0.73 0.65

In summary, a nuanced understanding of the role of data augmentation in emotion
classification was provided by this study. Significant enhancements in model perfor-
mance can be achieved through tailored data augmentation. However, the importance
of a judicious evaluation based on the emotion in focus and the augmentation tech-
nique being employed was emphasized. On average, the substitution method gives
the highest Fj-score. While word substitution performed best on average, none of
the augmentation methods was identified as a one-size-fits-all solution.
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Table 11. Average performance of EmoClass classifiers

Avg improvement (in %)
Model name Avg. Fi-score as compared
to the original models

EmoClassLSTM-Original 0.36 —
EmoClassLSTM-Translation 0.39 3%
EmoClassLSTM-Substitution 0.49 13 %
EmoClassLSTM-EDA 0.44 8%
EmoClassBERT-Original 0.58 -
EmoClassBERT-Translation 0.62 4%
EmoClassBERT-Substitution 0.63 5%
EmoClassBERT-EDA 0.59 1%
EmoClassCodeBERT-Original 0.6 -
EmoClassCodeBERT-Translation 0.59 1%
EmoClassCodeBERT-Substitution 0.65 5%
EmoClassCodeBERT-EDA 0.59 —-1%
EmoClassRFC-Original 0.45 -
EmoClassRFC-Translation 0.47 2%
EmoClassRFC-Substitution 0.55 10%
EmoClassRFC-EDA 0.51 6%

6.3. RQ3: How do EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT,
and EmoClassRFC compare to existing tools?

Motivation. Researchers have harnessed ML algorithms for sentiment analysis or emotion
classification tasks. Techniques such as SVM (as discussed by Calefato et al. [40] ) and
RFC (highlighted by Murgia et al. [20] have been widely employed. The prevalent strategy
involves developing One-vs-All emotion classifiers. This approach involves developing
distinct binary classifiers, each dedicated to one of the six basic emotions. However, the
efficacy of this approach has been challenged. Bleyl and Buxton, in their [14] study,
underscored the superior effectiveness of multi-label classification tools when juxtaposed
against the One-vs-All methodology. Their findings suggest that the multi-label tool
provides a better performance. The current research endeavors to delve deeper into this
domain by examining the proficiency of the three tools: EmoClassLSTM, EmoClassBERT,
and EmoClassRFC. The objective is to critically assess their performance against existing
emotion classification tools developed for the SE domain.

Approach. In our endeavor to benchmark the performance of our models against existing
tools, a pivotal step was the selection of a consistent dataset for a fair evaluation. Conse-
quently, the dataset employed in the studies of Bleyl and Buxton [14] and Calefato et al.
[40] was selected. We compare our results with the Multi-label BERT model and EmoTxt
detailed in [14]. EmoTxt is an emotion classification tool implemented in a supervised
learning method using the Support Vector Machines One-vs-All approach, where a binary
classifier was developed for each emotion category. Multi-label SO BERT is a fine-tuned
version of the BERT model, created by incorporating technical texts into its tokenizer
and utilizing augmented data during the model training process. We compare the state-
of-the-art methods with our EmoClassLSTM-Substitution, EmoClassBERT-Substitution,
EmoClassCodeBERT-Substitution, and EmoClassRFC-Substitution models (as they gave
the best results, refer to RQ2 in Section 6.2 for more details).
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Table 12. EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT and EmoClassRFC
vs. existing tools built on the same dataset

EmoClassLSTM EmoClassBERT EmoClassCodeBERT EmoClassRFC Multi-label SO

Emotion -Substitution F} -Substitution F} -Substitution F} -Substitution F} BERT Fi EmoTxt Fy
Love 68% 81% 82% 7% 84% 69%
Joy 31% 49% 53% 41% 56% 38%

Surprise 15% 29% 29% 33% 26% 23%

Anger 59% 75% 2% 72% 80% 68%

Sadness 43% 63% 67% 59% 60% 52%
Fear 12% 70% 76% 36% 59% 6%

Average 38.00% 61.17% 63.17% 53.00% 60.80% 42.00%

Results. Table 12 presents the performance of EmoClassLSTM-Substitution, EmoClass-
BERT-Substitution, EmoClassCodeBERT-Substitution, and EmoClassRFC-Substitution
against that of the multi-label BERT model and EmoTxt reported in [14]. In Table 12,
the best-performing model for each specific emotion is shown in bold. Among the models
compared, Multi-label SO BERT demonstrates notable proficiency, especially in identifying
the emotions of Love, Joy, and Anger. On the other hand, EmoClassCodeBERT-Substitution
stands out when it comes to categorizing the emotions of Sadness and Fear, while
EmoClassRFC-Substitution outperformed other models in detecting Surprise emotions
in the text. On average EmoClassCdeoBERT-Substitution performed the best and gave
the highest Fj-score of 63.17%. This model outperformed the Multi-label SO BERT and
Emotxt by 2.37% and 21.17%, respectively.

7

This distinction in performance across different emotions emphasizes the impor-
tance of selecting the right model based on the specific needs of an emotion analy-
sis task. The lower Fj-score of the Surprise emotion could be attributed to its
low sample size and the difficulty in detecting it as reported in [14]. Overall,
EmoClassCodeBERT-Substitution emerged as the top-performing emotion clas-
sification tool built with the dataset with an average of 63.17%.

6.4. RQ 4: How does algorithm randomness affect the performance
of the proposed models?

Motivation. Performance evaluation of a model on only one dataset does not provide
a clear indication of whether the results obtained are statistically significant or not. Hence,
to address this issue, in this RQ, we performed an in-depth evaluation of the various models
proposed in this paper.

Approach. We run the various data augmentation techniques for 100 iterations and
generate 100 training, testing, and validation datasets [64]. We evaluated each model on
these 100 datasets and reported the median values of the performance metric (i.e., Fj-score).
We computed the Wilcoxon signed-rank test to compare the performances of different
models. Additionally, we computed Cliff’s delta [65] to quantify the difference between the
two distributions.
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Table 13. Median Fi-score

Emotion Base model Model Median Fi-score

EmoClassLSTM-S 0.70
EmoClassLSTM-T 0.70
LSTM EmoClassLSTM-E 0.69
EmoClassLSTM-O 0.69
EmoClassBERT-S 0.95
EmoClassBERT-T 0.95
BERT EmoClassBERT-E 0.95
EmoClassBERT-O 0.95
Love EmoClassCodeBERT-S 0.94
EmoClassCodeBERT-T 0.94
CodeBERT EmoClassCodeBERT-E 0.95
EmoClassCodeBERT-0O 0.95
EmoClassRFC-S 0.76
EmoClassRFC-T 0.76
RFC EmoClassRFC-E 0.76
EmoClassRFC-O 0.76
EmoClassLSTM-S 0.35
EmoClassLSTM-T 0.35
LSTM EmoClassLSTM-E 0.36
EmoClassLSTM-O 0.35
EmoClassBERT-S 0.87
EmoClassBERT-T 0.88
BERT EmoClassBERT-E 0.89
EmoClassBERT-O 0.88
Joy EmoClassCodeBERT-S 0.86
EmoClassCodeBERT-T 0.87
CodeBERT EmoClassCodeBERT-E 0.89
EmoClassCodeBERT-O 0.88
EmoClassRFC-S 0.34
EmoClassRFC-T 0.35
RFC EmoClassRFC-E 0.35
EmoClassRFC-O 0.34
EmoClassLSTM-S 0.13
EmoClassLSTM-T 0.16
LSTM EmoClassLSTM-E 0.10
EmoClassLSTM-O 0.12
EmoClassBERT-S 0.73
EmoClassBERT-T 0.75
BERT EmoClassBERT-E 0.75
EmoClassBERT-O 0.75
Surprise EmoClassCodeBERT-S 0.73
EmoClassCodeBERT-T 0.73
CodeBERT  p | \ClassCodeBERT-E 0.75
EmoClassCodeBERT-0O 0.75
EmoClassRFC-S 0.00
EmoClassRFC-T 0.00

RFC EmoClassRFC-E 0.00
EmoClassRFC-O 0.00
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Table 13 continued

Emotion Base model Model Median Fi-score

EmoClassLSTM-S 0.56
EmoClassLSTM-T 0.56
LSTM EmoClassLSTM-E 0.56
EmoClassLSTM-O 0.57
EmoClassBERT-S 0.97
EmoClassBERT-T 0.97
BERT EmoClassBERT-E 0.97
EmoClassBERT-O 0.97
Anger EmoClassCodeBERT-S 0.97
EmoClassCodeBERT-T 0.97
CodeBERT  p | \ClassCodeBERT-E 0.97
EmoClassCodeBERT-0O 0.97
EmoClassRFC-S 0.72
EmoClassRFC-T 0.71
RFC EmoClassRFC-E 0.71
EmoClassRFC-O 0.72
EmoClassLSTM-S 0.29
EmoClassLSTM-T 0.29
LSTM EmoClassLSTM-E 0.28
EmoClassLSTM-O 0.30
EmoClassBERT-S 0.88
EmoClassBERT-T 0.89
BERT EmoClassBERT-E 0.90
EmoClassBERT-O 0.89
Sadness EmoClassCodeBERT-S 0.87
EmoClassCodeBERT-T 0.88
CodeBERT  p | \ClassCodeBERT-E 0.89
EmoClassCodeBERT-O 0.90
EmoClassRFC-S 0.42
EmoClassRFC-T 0.43
REFC EmoClassRFC-E 0.45
EmoClassRFC-O 0.46
EmoClassLSTM-S 0.14
EmoClassLSTM-T 0.17
L5TM EmoClassLSTM-E 0.15
EmoClassLSTM-0O 0.16
EmoClassBERT-S 0.89
EmoClassBERT-T 0.90
BERT EmoClassBERT-E 0.90
EmoClassBERT-O 0.90
Fear EmoClassCodeBERT-S 0.88
EmoClassCodeBERT-T 0.90
CodeBERT | ClassCodeBERT-E 0.90
EmoClassCodeBERT-0O 0.90
EmoClassRFC-S 0.25
EmoClassRFC-E 0.14

RFC EmoClassRFC-T 0.23
EmoClassRFC-O 0.14
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Table 13 continued

Emotion Base model Model Median Fi-score
EmoClassLSTM-S 0.53
EmoClassLSTM-T 0.53
LSTM EmoClassLSTM-E 0.53
EmoClassLSTM-O 0.55
EmoClassBERT-S 1.00
EmoClassBERT-T 1.00
BERT EmoClassBERT-E 1.00
EmoClassBERT-O 1.00
Neutral EmoClassCodeBERT-S 1.00
EmoClassCodeBERT-T 1.00
CodeBERT  p | \ClassCodeBERT-E 1.00
EmoClassCodeBERT-0O 1.00
EmoClassRFC-S 0.64
EmoClassRFC-T 0.65
RFC EmoClassRFC-E 0.66
EmoClassRFC-O 0.67

Table 14. Results of Wilcoxon Rank Test and Cliff’s Delta: Value: V, Practical Difference: PD,
value marked as bold* for Wilcoxon Rank test p-value indicate that p-value > 0.5.

Wilcoxon result Cliff’s Delta

Comparison between

Statistic p-value Value PD
EmoClassBERT-S EmoClassBERT-T 16051.5 1.18212 x 1072—0.06769 negligible
EmoClassBERT-S EmoClassBERT-E 12605.0 4.27656 x 1073—0.09323 negligible
EmoClassBERT-S EmoClassBERT-O 32752.0 1.21951 x 10712-0.06890 negligible
EmoClassBERT-S EmoClassLSTM-S 32752.0 1.21951 x 107*2-0.06890 negligible
EmoClassBERT-S EmoClassLSTM-T 0.0 4.17153 x 10716 0.96236  large
EmoClassBERT-S EmoClassLSTM-E 0.0 4.17161 x 107116 0.96305  large
EmoClassBERT-S EmoClassLSTM-O 3.0 2.90243 x 107116 0.96131  large
EmoClassBERT-S EmoClassRFC-S 339.0 1.15648 x 10715 0.92741  large
EmoClassBERT-S EmoClassRFC-T 300.0 9.29481 x 10716 0.92580  large
EmoClassBERT-S EmoClassRFC-E 376.0 1.37104 x 1075 0.92513  large
EmoClassBERT-S EmoClassRFC-O 349.0 1.09128 x 107''5 0.92444  large
EmoClassBERT-S EmoClassCodeBERT-S 21084.5 1.87545 x 107'® 0.07175 negligible
EmoClassBERT-S EmoClassCodeBERT-T 28534.5 1.38822 x 1072  0.01398 negligible
EmoClassBERT-S EmoClassCodeBERT-E  14393.0 6.22144 x 10727—0.06830 negligible
EmoClassBERT-S EmoClassCodeBERT-O 11412.0 2.17045 x 10735—0.08747 negligible
EmoClassBERT-T EmoClassBERT-E 21473.0 9.12036 x 107° —0.02774 negligible
EmoClassBERT-T EmoClassBERT-O 38388.0 5.11859 x 107! *-0.00416 negligible
EmoClassBERT-T EmoClassLSTM-S 0.0 4.17150 x 107116 0.97394  large
EmoClassBERT-T EmoClassLSTM-T 3.0 2.90203 x 107116 0.97416  large
EmoClassBERT-T EmoClassLSTM-E 1.0 2.87717 x 107'1€ 0.97453  large
EmoClassBERT-T EmoClassLSTM-O 0.0 2.86518 x 107116 0.97328  large
EmoClassBERT-T EmoClassRFC-S 6.0 2.76076 x 107116 0.94493  large
EmoClassBERT-T EmoClassRFC-T 10.0 2.64816 x 107''¢ 0.94356  large
EmoClassBERT-T EmoClassRFC-E 7.0 2.79445 x 10711€ 0.94290  large
EmoClassBERT-T EmoClassRFC-O 6.0 2.46871 x 107116 0.94235  large

EmoClassBERT-T
EmoClassBERT-T
EmoClassBERT-T
EmoClassBERT-T
EmoClassBERT-E

EmoClassCodeBERT-S 124025 5.43028 x 107%¢ 0.13961 negligible
EmoClassCodeBERT-T 10832.5 1.23414 x 1073% 0.08178 negligible
EmoClassCodeBERT-E  27205.5 6.64069 x 10* %-0.00096 negligible
EmoClassCodeBERT-O  22043.0 3.59604 x 107° —0.02094 negligible
EmoClassBERT-O 24588.0 2.74271 x 1072 0.02283 negligible



https://www.e-informatyka.pl/EISEJ/papers/2025/1/4

D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 14 continued
Cliff’s Delta

. Wilcoxon result
Comparison between ricoxon rest

Statistic p-value Value PD
EmoClassBERT-E EmoClassLSTM-S 0.0 4.17134 x 107116 0.97392  large
EmoClassBERT-E EmoClassLSTM-T 0.0 4.17135 x 107116 0.97416  large
EmoClassBERT-E EmoClassLSTM-E 0.0 2.86496 x 107116 0.97437  large
EmoClassBERT-E EmoClassLSTM-O 0.0 2.86523 x 107116 0.97334  large
EmoClassBERT-E EmoClassRFC-S 3.0 2.71017 x 1071 0.94491  large
EmoClassBERT-E EmoClassRFC-T 5.0 2.56950 x 107116 0.94353  large
EmoClassBERT-E EmoClassRFC-E 4.0 2.75170 x 10716 0.94254  large
EmoClassBERT-E EmoClassRFC-O 4.0 2.43425 x 107119 0.94192  large
EmoClassBERT-E EmoClassCodeBERT-S  11183.5 1.40559 x 107°° 0.16362  small
EmoClassBERT-E EmoClassCodeBERT-T 13700.0 8.50572 x 1073% 0.10781 negligible
EmoClassBERT-E EmoClassCodeBERT-E  19343.0 1.79090 x 10~* 0.02713 negligible
EmoClassBERT-E EmoClassCodeBERT-O  26083.0 7.38967 x 10~ * 0.00699 negligible
EmoClassBERT-0O EmoClassLSTM-S 204.0 1.00153 x 10715 0.96252  large
EmoClassBERT-O EmoClassLSTM-T 19.0 3.10836 x 10716 0.96268  large
EmoClassBERT-O EmoClassLSTM-E 6.0 2.93978 x 10716 0.96326  large
EmoClassBERT-0O EmoClassLSTM-O 363.5 1.35996 x 10715 0.96135  large
EmoClassBERT-O EmoClassRFC-S 775.0 7.46804 x 1075 0.93024  large
EmoClassBERT-O EmoClassRFC-T 776.0  7.16232 x 107115 0.92869  large
EmoClassBERT-0O EmoClassRFC-E 743.0 6.56139 x 10715 0.92785  large
EmoClassBERT-O EmoClassRFC-O 774.0 6.77701 x 1075 0.92725  large
EmoClassBERT-O EmoClassCodeBERT-S  28564.5 1.34261 x 1072¢ 0.13898 negligible
EmoClassBERT-O EmoClassCodeBERT-T 30526.5 1.31764 x 107*® 0.08349 negligible
EmoClassBERT-O EmoClassCodeBERT-E  36832.5 6.83737 x 10 * 0.00298 negligible
EmoClassBERT-O EmoClassCodeBERT-O  21531.0 1.15393 x 1073 —0.01634 negligible
EmoClassLSTM-S EmoClassLSTM-T 108055.5 1.88391 x 107! —0.02240 negligible
EmoClassLSTM-S EmoClassLSTM-E 109302.0 2.06887 x 107+ 0.02461 negligible
EmoClassLSTM-S EmoClassLSTM-O 106642.0 1.11156 x 107! —0.01544 negligible
EmoClassLSTM-S EmoClassRFC-S 76989.5 2.08736 x 10717—0.21437 small
EmoClassLSTM-S EmoClassRFC-T 83650.5 4.43458 x 107'3—0.19516  small
EmoClassLSTM-S EmoClassRFC-E 83893.5 6.19643 x 107'3-0.20649  small
EmoClassLSTM-S EmoClassRFC-O 91179.5 7.52484 x 10™° —0.17538 small
EmoClassLSTM-S EmoClassCodeBERT-S 215.0 7.20206 x 107''€-0.94840  large
EmoClassLSTM-S EmoClassCodeBERT-T 119.0 4.77297 x 1071150.95625  large
EmoClassLSTM-S EmoClassCodeBERT-E 0.0 4.17157 x 10711%0.97449  large
EmoClassL.STM-S EmoClassCodeBERT-O 0.0 4.17135 x 107*%0.97679  large
EmoClassLSTM-T EmoClassLSTM-E 99377.0 2.07059 x 1073 0.04728 negligible
EmoClassLSTM-T EmoClassLSTM-O 116046.5 9.90057 x 10~ * 0.00678 negligible
EmoClassLSTM-T EmoClassRFC-S 80052.0 3.63798 x 10~ —0.19956 small
EmoClassLSTM-T EmoClassRFC-T 86731.0 2.65058 x 107'1—0.18003  small
EmoClassLSTM-T EmoClassRFC-E 86810.5 2.93300 x 107'*—0.19122  small
EmoClassLSTM-T EmoClassRFC-O 94476.0 1.37314 x 1077 —0.16183 small
EmoClassLSTM-T EmoClassCodeBERT-S 40.0 4.95359 x 10711—0.94836  large
EmoClassLSTM-T EmoClassCodeBERT-T 0.0 4.17170 x 10711%0.95633  large
EmoClassLSTM-T EmoClassCodeBERT-E 0.0 2.86477 x 107119.0.97482  large
EmoClassLSTM-T EmoClassCodeBERT-O 0.0 2.86491 x 1071150.97707  large
EmoClassLSTM-E EmoClassLSTM-O 104530.0 2.05498 x 1072 —0.04039 negligible
EmoClassLSTM-E EmoClassRFC-S 75175.0 2.43168 x 107'¥-0.23016  small
EmoClassLSTM-E EmoClassRFC-T 81695.5 4.08018 x 1071—0.20997  small
EmoClassLSTM-E EmoClassRFC-E 81649.5 2.61120 x 107'%—0.22027  small
EmoClassLSTM-E EmoClassRFC-O 89755.5 1.48505 x 1072 —0.18798 small
EmoClassLSTM-E EmoClassCodeBERT-S 157.0 8.18665 x 107115-0.94948  large
EmoClassLSTM-E EmoClassCodeBERT-T 0.0 4.17173 x 10711%0.95734  large
EmoClassLSTM-E EmoClassCodeBERT-E 0.0 2.86496 x 1071¢-0.97492 large
EmoClassLSTM-E EmoClassCodeBERT-O 0.0 2.86489 x 1071150.97727  large
EmoClassLSTM-O EmoClassRFC-S 78856.0 2.67139 x 1071—0.20616  small
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Table 14 continued
Cliff’s Delta

. Wilcoxon result
Comparison between Hicoxot resu

Statistic p-value Value PD
EmoClassLSTM-O EmoClassRFC-T 85162.0 2.39909 x 107'2—0.18758  small
EmoClassLSTM-O EmoClassRFC-E 85894.0 6.31752 x 107*2—0.19880  small
EmoClassLSTM-0O EmoClassRFC-O 03549.5 5.27101 x 10~% —0.16845 small
EmoClassLSTM-O EmoClassCodeBERT-S 14.0 3.04265 x 10719094738  large
EmoClassLSTM-O EmoClassCodeBERT-T 5.0 2.92716 x 107 1190.95528  large
EmoClassLSTM-O EmoClassCodeBERT-E 0.0 2.86508 x 10711%-0.97385  large
EmoClassLSTM-O EmoClassCodeBERT-O 0.0 2.86511 x 10711%0.97637  large
EmoClassRFC-S EmoClassRFC-T 86325.0 9.50083 x 107 * 0.01028 negligible
EmoClassRFC-S EmoClassRFC-E 88114.5 3.04052 x 10~* 0.00134 negligible
EmoClassRFC-S EmoClassRFC-O 84969.5 5.94841 x 107 * 0.01800 negligible
EmoClassRFC-S EmoClassCodeBERT-S  1204.0 4.72830 x 10~''40.90868  large
EmoClassRFC-S EmoClassCodeBERT-T 379.0 1.38250 x 107115092185  large
EmoClassRFC-S EmoClassCodeBERT-E 0.0 2.67542 x 1071150.94549  large
EmoClassRFC-S EmoClassCodeBERT-O 0.0 2.67547 x 107119094745  large
EmoClassRFC-T EmoClassRFC-E 80746.0 3.49193 x 107" —0.00890 negligible
EmoClassRFC-T EmoClassRFC-O T7657.0 8.74585 x 107 * 0.00859 negligible
EmoClassRFC-T EmoClassCodeBERT-S  1099.0 2.92091 x 10~"'40.90710  large
EmoClassRFC-T EmoClassCodeBERT-T 346.0 1.14477 x 10715-0.92034  large
EmoClassRFC-T EmoClassCodeBERT-E 0.0 2.51494 x 107 '1%0.94391 large
EmoClassRFC-T EmoClassCodeBERT-O 0.0 2.51493 x 107 1190.94602  large
EmoClassRFC-E EmoClassRFC-O 59421.0 3.21570 x 1071 0.01738 negligible
EmoClassRFC-E EmoClassCodeBERT-S  1226.0 5.21858 x 107'£0.90604  large
EmoClassRFC-E EmoClassCodeBERT-T 425.0 1.70137 x 1071*%0.91955  large
EmoClassRFC-E EmoClassCodeBERT-E 0.0 2.70487 x 10~11%0.94291 large
EmoClassRFC-E EmoClassCodeBERT-O 0.0 2.70488 x 10711%0.94533  large
EmoClassRFC-O EmoClassCodeBERT-S  1172.0 3.83828 x 107''40.90525  large
EmoClassRFC-O EmoClassCodeBERT-T 417.0 1.48150 x 10712-0.91886 large
EmoClassRFC-O EmoClassCodeBERT-E 0.0 2.37949 x 107119094224  large
EmoClassRFC-O EmoClassCodeBERT-O 0.0 2.37952 x 107119094465  large
EmoClassCodeBERT-S EmoClassCodeBERT-T 29327.0 4.90961 x 1072 —0.05782 negligible
EmoClassCodeBERT-S EmoClassCodeBERT-E  10957.0 3.83547 x 10~ *¥—0.14031 negligible
EmoClassCodeBERT-S EmoClassCodeBERT-O 8776.5 4.37258 x 107°7—0.15875 small
EmoClassCodeBERT-T EmoClassCodeBERT-E  13447.0 3.84252 x 10721—0.08313 negligible
EmoClassCodeBERT-T EmoClassCodeBERT-O 10694.0 9.68241 x 10~*2—0.10171 negligible
EmoClassCodeBERT-E EmoClassCodeBERT-O  17422.5 1.90539 x 107% —0.02017 negligible

Results. Table 13 shows that the BERT-based and CodeBERT-based models performed for
all emotion categories. We also notice that there is not much difference in the performance
of models on augmented datasets and non-augmented datasets. These results show an
interesting insight that data augmentation techniques need to be adapted using SE-specific
vocabulary. In the future, we work on improving these data augmentation techniques using
SE-specific data. Table 14 shows the results of Wilcoxon signed-rank and Cliff’s delta.
These results indicate that in most of the cases, the p-value obtained is lower than 0.05
and hence, the null hypothesis is rejected, which shows that the model performance is
significantly different.

The BERT-based and CodeBERT-baed models perform best for emotion classifi-
cation. There is no significant difference in the performance of models trained on
augmented data and non-augmented data.
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7. Threats to validity

This section delves into possible factors that could impact the credibility of this research.
These factors are categorized into internal, external, and construct validity [66].

7.1. Internal validity

Internal validity relates to the potential design elements of a study that could affect its
outcomes. One of those is overfitting, which emerges when a model, in its attempt to
minimize loss, starts to memorize the training data rather than understand the underlying
patterns [67] leading it to excel on the training dataset but underperform on unseen data.
To prevent overfitting, the training process of all three models was monitored closely. Early
stopping techniques and dropout were adopted for the LSTM model. Experiments were
conducted with the BERT model to identify the most appropriate BERT pre-trained model
and set of hyperparameters for our task. For the RFC model, the GridSearchCV function
was used to obtain the best combination of parameters.

Data augmentation techniques, like word substitution and back translation, were em-
ployed to enrich our limited dataset. However, they pose challenges. Word substitution can
change emotional nuances, and back translation might alter original sentiments, potentially
misleading the model during training. To address these, we employed contextual word sub-
stitution and reviewed a subset of the augmented data for accuracy. For the back translation
approach, the samples were increased once to avoid introducing duplicates. Furthermore,
only a portion of the minority classes was increased using the augmentation methods.
Additionally, labeling Stack Overflow posts can introduce interpretation variances. We
countered this by using the gold label, determined by a majority vote system as noted by [19].

7.2. External validity

This section outlines potential limitations that might affect the broader applicability of the
results from this study. This research utilized an annotated dataset extracted from Stack
Overflow, a prominent Q&A platform for software developers. Although Stack Overflow is
a major hub for developer discussions, it is worth noting that there are other platforms, such
as GitHub, where developers also engage in conversations. Since the models implemented
in this study were trained on a dataset extracted from Stack Overflow, the results might
differ if evaluated on the dataset from another platform. Furthermore, factors such as
differences in the domain, annotator biases, and varying annotation guidelines can impact
performance as observed by [68]. Nonetheless, for a more comprehensive generalization,
future research could incorporate posts and comments from other Q&A platforms.

7.3. Construct validity

Construct validity examines how well theoretical concepts are translated into actual
observations. It evaluates whether the methods used in research truly capture the abstract
ideas they intend to measure. Concerns about construct validity arise from the appropriate-
ness of our evaluation metrics, and the reliability of the manually annotated dataset used.
Evaluation metrics, including precision, recall, and the F}-score, are the benchmarks against
which the efficacy of sentiment analysis or emotion classification solutions are gauged, as
supported by [2, 14, 40, 56]. These metrics serve as the foundation for understanding our
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solutions’ true performance and reliability. However, a significant aspect to consider is the
source of our data. By using publicly available datasets utilized in prior works, we are not
just leveraging the data but also inheriting any potential inaccuracies or biases inherent
in the dataset. As a result, it is essential to recognize this inherited vulnerability when
interpreting our findings and drawing conclusions.

8. Conclusion and future work

Detecting software engineers’ emotions has become increasingly important in understanding
team dynamics, improving collaboration, and enhancing overall productivity in software
development projects. In this study, we implemented four different ML architectures
— BERT, CodeBERT, RFC, and LSTM - for the emotion classification task. To improve
the performance and robustness of the models, three techniques, word substitution, back
translation, and Easy Data Augmentation, were used to augment the training data. Four
variations of each architecture were implemented: one using data augmented through word
substitution, the second using back-translated data, the third using easy data augmentation,
and the fourth using the original data.

EmoClassBERT-substitution gives the highest Fi-score of 63%. The substitution method
shows a considerable improvement as compared to the original models, for example,
EmoClassLSTM-Substitution, EmoClassBERT-Substitution, EmoClassCodeBERT-Substi-
tution, and EmoClassRFC-Substitution models show improvements of 13%, 5%, 5%, and
10% as compared to EmoClassLSTM-Original. Overall, the BERT-based and CodeBERT-
based models perform best for emotion classification. The results reveal no significant
difference in the performance of models trained on augmented data and non-augmented data.

This underscores the ability of transformer-based models to capture semantic and
contextual relationships, making them particularly suited for tasks involving complex
textual data such as emotion classification. In comparison, the LSTM models demonstrated
inferior performance, likely due to limited data as they need abundant data for training.
Despite being the simplest of the three models, the RFC provided better results than
the LSTM model, highlighting the potential for traditional ML techniques in emotion
classification tasks when combined with robust feature extraction and data augmentation.
In summary, BERT mostly outperformed both RFC and LSTM in terms of the Fj-score.
Furthermore, the augmentation techniques played a pivotal role in refining our models.
Specifically, word substitution showcased a more pronounced improvement in the model’s
performance than back translation. Moreover, EmoClassBERT-Substitution demonstrated
a reliable performance when compared to existing tools.

From the findings obtained, several interesting future directions are possible. For
example, In the future, we plan to explore additional data augmentation techniques, such
as Generative Adversarial Networks (GANs), and combine the strengths of various models
to form an ensemble model. We plan to do an exhaustive comparison of various data
augmentation techniques for emotion classification on the SE dataset as well as using
a stack of data augmentation as proposed by [2]. We also plan to use LLM like RoBERT,
and ALBERT to analyze their performance for emotion classification in the software
engineering domain. Furthermore, deeper hyperparameter tuning could be performed. The
dataset could also be expanded to encompass various sources, such as combining data
from Stack Overflow and GitHub. Additionally, we will work on improving these data
augmentation techniques using SE-specific data.
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Article info Abstract
Keywords: Context: Action research is popular in software engineering due to
action research its industrial nature and promises of effective technology transfers.
guidelines Yet, the methodology is still gaining popularity, and guidelines for
empirical methods conducting quality action research studies are needed.

Objective: This paper aims to collect, summarize, and discuss
Submitted: 25 Jun. 2024 guidelines for conducting action research in academia-industry col-
Revised: 2 Jan. 2025 laborations. The guidelines are designed for researchers and practi-
Accepted: 2 Jan. 2025 tioners alike.
Available online: 8 Jan. 2025 Method: I use existing guidelines for empirical studies and my own

experiences to define guidelines for researchers and host organizations
for conducting action research.

Results: I identified 22 guidelines for conducting action research
studies. They provide actionable recommendations on identifying
the relevant context, planning and executing interventions (actions),
reporting them, and reasoning around the ethics of action research.
Conclusions: The paper concludes that the best way of engaging
with action research is when we can be embedded in the host orga-
nization and when the collaboration leads to tangible change in the
host organization and the generation of new scientific results.

1. Introduction

After the software engineering research crisis of the 1990s, empirical software engineering
gained popularity [1] as one of the remedies to the challenges with the adoption of research
in industry. Experimentation was the first to receive a proper treatment with the seminal
book by Wohlin et al. [2] with case studies following after [3] and design science research
gaining popularity afterward [4]. Now, almost 30 years after the paper by Glass [1] that
coined the term software research crisis, the research landscape is much more diverse. The
major conferences and journals are significantly more mature in assessing publications,
and the need for explicit research methodology for every study is obvious. In 2020, the
ACM published guidelines for reviewers of empirical work in software engineering [5], which
contained 17 distinct research methodologies. These are just a selection of evidence that
indicates that software engineering has matured as a field, although the evolution and
development never stops.

Action research gained popularity in the 2000s [6,7] when its abilities to strengthen
industrial collaborations became evident for academics and practitioners alike. Although it
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was initially taken from the field of information systems [8], the emphasis on collaborative
research and development appealed to software engineering researchers. The action research
addresses the challenges and dilemmas many software engineering researchers face — how
to introduce and simultaneously study new technology.

Case studies in software engineering are often meant to be observatory or participant
— observatory and, therefore, prescribe objectivity in investigations of the studied phenomena.
Researchers must be more observers or participants but not executors of actions and
interventions at the company. The primary focus in such studies is to understand phenomena,
in their natural context, but sometimes changes are needed in addition to the observations.
Therefore, the guidelines designed for case studies do not always apply to action research.

Experiments are driven by hypotheses and, therefore, prescribe controllability, which
favors isolated, small (even toy) problems as the core of experimentation. Design science
research focuses on the artifacts rather than improving the practice of the collaborating
company. But when a researcher is embedded in a host company, introduces a new
technology, and wants to critically and systematically evaluate it, action research is the
only methodology that provides the necessary toolkit for this researcher and the required
discourse of analysis of the obtained results.

In this paper, I dive into the question of What are the necessary guidelines for planning,
conducting, and reporting action research studies in software engineering?

Action research is a well-known research methodology in information systems, pedagogy,
and nursing. Therefore, to define the guidelines, I started by reviewing the existing guidelines
of Davidson [9], Baskerville [8], and Bleijenbergh [10]. These three were selected as they
are used as methodological sources of guidelines by being cited and because they include
guidelines and recommendations explicitly. The existing guidelines were refined, adopted,
and rewritten to fit the context of software engineering, where software development is
the focus. Both practitioners and researchers are from within software engineering. They
were also aligned with the preliminary recommendations in my previous work on action
research’s theory and applications [11].

The remainder of the paper is structured as follows. Section 2 presents an overview of
a selection of existing studies in action research and existing guidelines for other research
methodologies in software engineering (e.g., case studies). Section 3 describes what action
research in academia-industry collaboration context is and which elements are essential for
a successful collaboration. Section 4 presents the guidelines, and Section 5 concludes the

paper.

2. Related work

Before I discuss action research principles and how they shape this research methodology,
I overview the state-of-the-art in action research and guidelines for empirical studies. These
provide a fundamental overview of what is recommended for researchers and practitioners
today in software engineering.

2.1. Studies in action research

Although action research is not a new methodology, it entered software engineering in
the 1990s. Dos Santos and Travassos [6] and their subsequent work on using action
research in software engineering [7] have found that this research methodology has the
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potential to address the challenges of technology transfer. They identified action research as
a methodology that can benefit both industry and academia but did not identify concrete
guidelines on how to make such a collaboration successful. The existing guidelines for such
collaborations often focus on organizational support and management engagement [12,13].

My book on action research theory and practice in software engineering [11] followed
the same principles and focused on the action research methodology to increase the impact
of industry-academia collaborations. The action research methodology presented in that
book focuses on a five-step cyclic model, which is similar to the view of action research
of Baskerville et al. [8]. This paper follows the same model, although the guidelines are
applicable for the action research models with an arbitrary number of phases.

Wieringa [4] presented Design Science Research as a research methodology for software
engineering. Even there, he mentioned using the so-called “Technical Action Research,”
which is a kind of action research that primarily focuses on developing artifacts (e.g.,
programs and tools). The technical action research emphasizes the importance of the
collaborative development of artifacts and the need to be applied directly in software
development organizations.

Dittrich et al. [14] presented experiences from another type of action research project
focused on method development, not technology development. Their experiences show how
good the adoption of research results is when conducting action research. The work by
Dittrich et al. has been used to guide research on the co-development of new methods in
software engineering.

Petersen et al. [15] presented another set of experiences from two action research studies.
They identified several positive aspects of action research studies. For example, the deeper
impact of the contributions and the more manageable the transfer of the results to industrial
practices. However, they also acknowledged such validity threats as context-dependency of
the results.

2.2. Existing action research guidelines

Almost any publication that introduces action research as a methodology, whether within
software engineering or other fields, includes a reference to the methodology. However, such
references do not refer to publications that contain explicit guidelines, are applicable to
software engineering, or are directly actionable. The guidelines presented in this paper are
based on three other guidelines outlined below, which contain such explicit guidelines.
The most extensive guidelines available are included in the work of Davidson et
al. [9]. These guidelines are developed for information systems, where the focus is put on
organizational development with the help of an information system. In their work, the
authors introduced the concept of Canonical Action Research and described five principles,
each broken down into several checks:
1. The principle of researcher-client agreement
a. Did both the researcher and the client agree that CAR was the appropriate approach
for the organizational situation?
b. Was the focus of the research project specified clearly and explicitly?
c¢. Did the client make an explicit commitment to the project?
d. Were the roles and responsibilities of the researcher and client organization members
specified explicitly?
e. Were project objectives and evaluation measures specified explicitly?
f. Were the data collection and analysis methods specified explicitly?
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2. The principle of cyclical process model (CPM)

-0 o TP

g.

Did the project follow the CPM or justify any deviation from it?

Did the researcher conduct an independent diagnosis of the organizational situation?
Were the planned actions based explicitly on the results of the diagnosis?

Were the planned actions implemented and evaluated?

Did the researcher reflect on the outcomes of the intervention?

Was this reflection followed by an explicit decision on whether or not to proceed
through an additional process cycle?

Were both the exit of the researcher and the conclusion of the project due to either
the project objectives being met or some other clearly articulated justification?

3. The principle of theory

a.

b.

Were the project activities guided by a theory or set of theories?

Was the domain of investigation, and the specific problem setting, relevant and
significant to the interests of the researcher’s community of peers as well as the
client?

Was a theoretically based model used to derive the causes of the observed problem?

. Did the planned intervention follow from this theoretically-based model?

Was the guiding theory, or any other theory, used to evaluate the outcomes of the
intervention?

4. The principle of change through action

a.

o 0T

f.

Were both the researcher and client motivated to improve the situation?

Were the problem and its hypothesized cause(s) specified as a result of the diagnosis?
Were the planned actions designed to address the hypothesized cause(s)?

Did the client approve the planned actions before they were implemented?

Was the organization situation assessed comprehensively both before and after the
intervention?

Were the timing and nature of the actions taken clearly and completely documented?

5. The principle of learning through reflection

a.

g.

Did the researcher provide progress reports to the client and organizational members?

b. Did both the researcher and the client reflect upon the outcomes of the project?
c.
d

Were the research activities and outcomes reported clearly and completely?

. Were the results considered in terms of implications for further action in this

situation?

Were the results considered in terms of implications for action to be taken in related
research domains?

Were the results considered in terms of implications for the research community
(general knowledge, informing/re-informing theory)?

Were the results considered in terms of the general applicability of CAR?

These guidelines are from the field where software is seen as a tool for organizations.
This distinction implies that studies within IS do not study how software is developed
but how it impacts organizations. These guidelines also do not consider the necessity for
researchers to be embedded in the organizations but often imply that the researchers are
external and introduce a change in the organization. This is not how action research is
done in software engineering — research must be embedded in the organization, as without
it, the change is often abandoned. On the other hand, the change that is adopted leads to
technology transfer and wider technology adoption. It also leads to more relevant research
in academia, which is often overlooked by the Canonical Action Research and Technical
Action Research.
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Another explicit set of guidelines is available in the work of Baskerville [8]. These
guidelines are conceptually closer to software engineering, but chronologically before
Davidson et al’s guidelines described above. The seven guidelines of Baskerville related to
action research projects as a whole:

Consider the paradigm shift.

Establish a formal research agreement.

Provide a theoretical problem statement.

Plan data collection methods.

Maintain collaboration and subject learning.

Promote iterations.

Generalize accordingly.

Baskerville’s guidelines are at a high abstraction level, which makes them prone to

interpretation errors. For example, the third guideline — providing a theoretical problem

statement — can be mistaken by conducting a diagnosis phase and identifying a gap in
research and theory. Therefore, it must be clarified that action researchers must use theory
when designing the entire study, as Davidson prescribes — being guided by a theory.

The third set of guidelines comes from action research applications in human resource
management by Bleijenbergh [10]. These guidelines are peripheral to software engineering,
but still contain good advice, e.g., the first one.

1. Make sure to involve all relevant organizational stakeholders in the research process.

2. Propose a research strategy that involves empirical observation of real-life settings to
get a systemic perspective on the organizational problem.

3. Propose a research strategy that involves participatory research methods, such as
workshops, focus groups, participatory modeling, and other decision support systems
in developing a plan for action in close collaboration between researchers and (HRM)
practitioners.

4. Communicate the need for a relatively large time investment of employees and (HRM)
practitioners in the research process.

5. Communicate the need to perform action research over a relatively long period since
potentially several cycles of stages are needed to understand the organizational problem
and solve it.

N N

6. Make a habit of continuously reflecting on decisions during the research process by
making observational, methodological, and theoretical memos.

7. To potentially get high-impact publications out of your action research, consider com-
bining observation of real-life settings with a field experiment.

8. In reporting, create a clear structure of the various stages and cycles of the action
research process.

9. To publish action research, authors should put considerable effort into not only describing
the rigor of the data collection and analysis, , but also make the contribution to scholarly
knowledge explicit.

The above guidelines focus on projects where organizational change focuses on the
human side of processes and methods. They are also the set of guidelines that have been
cited the least. Similarly to Baskerville’s guidelines, they are very abstract and need
contextualization.

The fourth set of guidelines comes from Staron [11], in form of a checklist for making the
results valid for more than one project. Staron [11] provided a rudimentary set of guidelines
for conducting action research studies, focused on both researchers and practitioners, mostly
in the context of method and tool development. These guidelines/checks are as follows:
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Why do we need to have this research project?

What is the perception of the company about the research project?

In general terms, what need is the research project addressing?

Is the scope of the project’s cycle well defined?

Is the scope of the research project well delimited?

Is the cycle well delimited in time?

What is/are the deliverable(s) of the research project?

Is there a stakeholder appointed? Does the stakeholder have the mandate to drive and

implement the results of the research project?

9. Have security issues been addressed prior to the start of the research project?

10. Are employees identified that are going to support the research project?

11. If additional colleagues are participating, how are they going to be kept informed of the
progress and results of the research project?

12. Are there regular meetings taking place between the stakeholder and the researcher?

13. During these regular meetings, is the time plan discussed/followed up on?

14. During these regular meetings, is the scope/deliveries/security discussed/followed up
on?

15. Is data collected and stored orderly?

16. Does the storage of the data guarantee easy access and, at the same time, fulfillment of
security rules?

17. First, the data is refined, analyses are performed, results are presented, and preliminary
conclusions are drawn. So, how are the preliminary analyses and results handled?

18. During the second phase, results are put together to support findings and conclusions.
So, are results from the evaluation rigorous enough to support the outcome of the
research project?

19. How do you specify the results and knowledge to maximize the impact?

20. How should the company be informed about the outcome and findings of the research
project?

21. How can the company learn, implement, and utilize the knowledge gained from research
projects performed?

The above four guidelines cover different aspects of action research, as they are devel-
oped for different purposes. The subsequent sections describe action research in software
engineering and its specifics. However, before I start with the guidelines, I need to explore
what action research in software engineering is.

O NSOt W

3. Context of action research

Action research is a collaborative research methodology [11], where researchers and prac-
titioners work together in an action research team. On the left-hand side (Fig. 1a), the
collaboration in ex vivo means that the researchers are outside of the studied context, mostly
by design. Case studies are this research method, and as the researcher’s objectivity in
understanding the studied phenomena, the unit of analysis is prioritized. On the right-hand
side (Fig. 1b), the collaboration is done in vivo, meaning that the researchers are embedded
in the context that they study. This means that the researchers report to the same
organization as the practitioners. Action research and design science research are examples
of the latter.
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Figure 1. Two ways of conducting empirical studies with industry in software engineering

In action research, the fact that the researchers are embedded in the organization means
that they are either directly employed at the company or that they have the same access to
the company as the employees — for example, they are employed at a research organization
(a university), but they have access rights, cards, computers from the company and they
are part of a team at the company. In Figure 2, the action research is placed in the context
of the inputs — theories and practices, as well as the outputs — new methods, processes,
and new knowledge.
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business and product ﬁ | Diagnosing é organization, ways-of-
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f e Action
| learning | | planning |
" Action
Methods, tools and { Evaluation | i
. —_— taking Knowledge, learning,
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Figure 2. Action research cycles embedded in their context — industry and academia

The in vivo embedding of the research is extremely important as it is the only way to
perform interventions (actions) that are the central part of the action research [8]. The
fact that the researchers are part of the intervention allows them to understand all aspects
of the change they are part of. In other words, they get a first-hand experience of the
intervention, not a second-hand perception of it (usually obtained through interviews and
observations).

Consequently, this embedding of researchers and practitioners in the host organization
(forming an action team, see [11]), the cyclical nature of action research, and explicit focus
on interventions and changes to the organization call for different guidelines than the ones
for case studies, surveys, or experiments.

On the left-hand side of Figure 2, both the organization and the researchers must
come with explicit inputs — the researchers bring in theories, and the organizations (and
practitioners) bring concrete challenges to address. Both parties must explicitly describe
these inputs, explain them to one another, and agree on them. It is often an iterative
process, and theories or challenges can be adjusted during the action research cycles.
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However, achieving actionable and scientifically valid results is almost impossible without
this understanding. Both Davidson [9] and Baskerville et al. [8] call for theories, but the
software engineering context also calls for explicit specification of the initial needs of
organization, business, and product improvements from the host organization.

The upfront design and the reliance on theories improve the construct validity of the
action research studies. The action team is more confident that the results obtained are
based on the correct observations and interventions, not due to chance or confounding
factors.

3.1. What constitutes action research

Action research studies build upon three pillars, as shown in Figure 3. We need all of them
to make the action research studies work.

Action research study

Action
team

Scientific theories

Figure 3. Pillars of action research — host organization, intervention, and the action team

The most important element of any action research study is the action/intervention.
The action, a synonym for the intervention, is when we change the practice in the host
organization. We do that to observe its results and rigorously create new knowledge and
insights from that action. The interventions often include improvements to the operations,
such as introducing new tools or changing the ways of working in the organization. An
example of such an intervention can be changing how the company writes its commit
messages by adding the ID of the user story that is implemented; the effect of this action
would be to find how many commits are done per user story to understand how to accelerate
software development.

The host organization, which directly benefits from the action research project, holds
significant responsibilities for implementing the intervention. It must accommodate the
action team by granting access to external researchers and ensuring that internal team
members have the necessary time and resources to conduct the study. The organization
should also allow the action team to obtain time from the reference team and the man-
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agement team because they need to help shape and guide high-level goals for the action
research project.

We should remember that different organizations and management/governance struc-
tures exist. In hierarchical organizations, we must always ensure that the management is
informed and involved in the study. They make the decisions, and their permissions are
crucial in such organizations. We should engage with our research partners to find the
appropriate management level. In more agile, self-organized, or empowered organizations,
we must ensure that we have sufficient engagement from the teams and individuals, as they
are the ones who are in control of their time and, to some extent, work assignments. In
such organizations, we should engage with management after we have engaged the teams.

Finally, the action team must be assembled with researchers and practitioners with the
necessary competence. First, at least some research team members should have a research
degree because they need skills in planning and conducting quality research studies. The
researchers should also be able to identify the novelty of the studied topic — not all topics
are equally important for the research community. Researchers need to consider the research
value of any action research project. If the topic is not new, the study should consider that
by planning for a replication (often with modification) or by expanding on the existing
research results by modifying the context to increase the value for the company (do not
re-do the work of others) and for the research community (create new findings). Second, at
least some action team members should be practitioners from the host company. They have
domain competence, which is required for accurate planning, executing, and interpreting
the action research project results. Per definition, the ways of working at the company and
the company’s ability to use the results are in the hands of the host organization and, by
extension, by the practitioners of that organization.

3.2. Situations where action research is not appropriate

One of the main challenges when conducting action research studies is understanding when
it is inappropriate and when to pivot and change the research methodology. When engaging
in action research, there are a few cues. First, if we do not have access to the company and
no company representative is part of the research team, we must choose another research
methodology. The lack of access means we cannot conduct necessary interventions for
action research.

In the context of industry-academia collaborative action research, we should not engage
in action research if we cannot guarantee transparency and the ability to share results (to
a degree, we cannot demand that from our industrial partners). Instead, we should focus
on conducting offline studies to recreate the company’s context, allowing us to conduct
experiments.

When researchers cannot commit to the project for the long term, we should also choose
another methodology. Irregular meetings, short presentations, and a lack of systematic
collaboration lead to poor or no results. We should also not engage when we cannot
contribute to the practice and we are after publications, not impacting the industry. The
lack of direct industrial impact (more than just publications) indicates that we are not
engaging in action research.
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4. Guidelines

The guidelines presented in this section have been designed based on guidelines for collabo-
ration with companies from my own research [11,16], as well as the guidelines from others
[3,8-10]. These guidelines relate to both the Canonical Action Research [9] and Technical
Action Research [4].

4.1. Project set-up

I can now introduce the first guideline, which is based on two existing recommendations
from Davidson [9] and one from Baskerville et al. [8]. It is about the starting of the action
research project.

Guideline 1: Engage in action research only when it can be embedded in the host
organization.

Collaboration with an industrial partner or being a part of a software development or-
ganization is necessary for an action research project, but it is not a sufficient condition.
First, both parties must agree that action research is appropriate and allowed in the
organization [9]. We need to be able to apply research results to the organization directly.
We must be able to make interventions in the organization and observe their effects.

From the organization’s perspective, the researchers must be embedded in it because
they must understand the details of the company’s operations. To understand it, they must
have access to the documents, processes, and products in the same way as the company’s
employees. This means there is a paradigm shift in the organization — research is done in
parallel to the normal operations [8]. If we cannot embed actions/interventions in the host
organization, I recommend choosing other types of research methodologies, in particular,
design science research or a case study. We should choose the case study based on whether
the goal is to observe the organization and keep the distance from its operations and
whether our goal is to understand these operations without influencing them. We should
choose design science research when our goal is to create and develop a new artifact and
to study its use in an industrial context. In that case, we can and should influence the
company’s operations, but we should focus on the qualities of this artifact.

From the researcher’s perspective, the actions should be guided by theories in software
engineering. We must be able to find existing ones or formulate new ones; otherwise,
scientific investigation will not be guided by theories. As software engineering theories are
formulated as strictly as in other fields, e.g., mathematics or physics, we can substitute
them with existing empirical results. We can use existing empirical evidence to guide us
when planning actions. We can also use existing research results when we explicitly want
to validate them in our action research project. The next guideline makes it explicit:

Guideline 2: The objectives of the research project must be specified upfront.

When conducting action research projects, we must be clear about the project’s aims,
goals, and objectives. The researchers should specify their research results, publications, and
engagement expectations. The practitioners should be transparent about their expectations
regarding resources, the ability to conduct interventions, and collaboration with academic
partners. When discussing these expectations, one or both parties may realize that action
research is not the best methodology to study the phenomena in question or deliver the
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desired results. Therefore, we need to be aware that there is always the possibility to pivot,
hence the next guideline.

Guideline 3: Be ready to pivot on your research methodology if the situation is not
optimal for action research.

Every action research cycle has the perfect activity where we decide upon the con-
tinuation of the project — the learning phase. Davidson [9] explicitly calls for evaluating
whether it is appropriate to continue. However, discontinuing action research can mean
pivoting on the research methodology. We should be prepared for it because a non-optimal
environment for action research can lead to failed projects and a lack of tangible results.
In most cases, to get more familiar with the organization, it is better to start with a case
study and follow the guidelines by Runeson et al. [3] or follow the guidelines by Wohlin et
al. [17] to find even a better fit.

4.2. Host environment

The host environment must be organized to ensure both parties a positive action research
experience. The academic side should be able to test theories and ideas. In contrast,
the industrial side should perceive value in increased knowledge, enhanced competence,
improved products, new features, or operational improvements. This balance is essential
for successful collaboration.

Action research projects must be embedded within the host organization. Company-
employee researchers often conduct these projects internally, frequently leading to applied
results. External members of the action team must ensure they are treated equally. This
consideration leads to the following recommendation.

Guideline 4: Action team should comprise both practitioners and researchers alike.

Just as the input values are both theories and the organization’s challenges, the action
team must reflect that. However, it is strongly advised to use the host organization’s
computers and infrastructure to ensure information security. This ensures that any infor-
mation intended for publication is thoroughly scrutinized before being taken outside the
organization. Therefore, here is my next guideline:

Guideline 5: Understand the host organization and secure appropriate engagement in the
correct order: approach management first in hierarchical organizations, and start with
the team in empowered organizations.

All previous recommendations have similar guidelines, although they are presented
more fragmentedly. They either call for the involvement of all relevant parties (Bleijenbergh
[10]), explicit commitment (Davidson [9]), and formal research agreement (Baskerville et
al. [8]). Modern software development organizations are not as hierarchical as they used
to be (or as non-software organizations are). Therefore, the action research collaboration
agreement stretches over several levels of these organizations.

Therefore, the following guideline, which is for researchers from an external organization,
is equally important.

Guideline 6: The researchers must respect the rules, principles, and obligations of the
host organization as if they were employed there.

11
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This guideline means that researchers must read, understand, and adhere to the host
organization’s rules, principles, and obligations as if they were employees. These obligations
include maintaining confidentiality, upholding the organization’s standards and practices
throughout the research project, and being transparent and loyal to the organization.

Although it may be considered challenging for academic freedom to pursue any research
problem or publish the results based on the findings, it is not. Software development
companies’ intellectual property is often soft and needs protection. Revealing parts of the
source code, tests, or requirements (to name a few examples) can lead to leaking intellectual
property to competitors. Therefore, researchers must be able to generalize their results to
such a level that does not harm the company and is transferable to other contexts.

4.3. Interventions

One of my long-term collaborators once aptly summarized the essence of interventions in
action research by saying, “Somebody has to do something.” This captures the fundamental
principle that action research must involve meaningful, tangible actions within the host
company. To make these tangible observations and improvements, we must plan the actions
and plan how to observe their results. Therefore, we need to follow the next guideline.

Guideline 7: Every intervention should be planned, lead to observable effects, and properly
evaluated.

The observable effects must be both quantitative and qualitative because, without
any observable effect, it’s impossible to understand what the action/intervention changed.
Quantitative effects can be collected by measuring products, processes, or designs, while
qualitative effects can be observed through interviews, workshops, and post-mortem analyses.
The quantitative aspect allows measuring the intervention’s effects, while the qualitative
component captures the broader context.

Consequently, we must prepare (plan) for the intervention together in the action
team. We must measure the baselines and conduct qualitative data collection before the
intervention. After the intervention, we must evaluate the effect and collect the exact
measurements and qualitative data to understand the scope, size, and magnitude of the
impact. Davidson [9] has a similar recommendation but without the emphasis on the
observability and measurability of the effect, which I find very important.

Implementing concrete changes is the starting point and a prerequisite for its success.
The boldface accent indicates that the emphasis is on the implementation.

Guideline 8: Interventions in each cycle should be atomic.

Long interventions are prone to interruptions; the longer the intervention, the higher
the risk that other priorities will take precedence over the research study. Common
disruptors, such as implementing new features or investigating new defects, can cause
the host organization to shift focus. These disruptions are confounding factors, making
it difficult to determine whether the observed results are due to the intervention or these
other changes. Davidson [9] recommends specifying the focus up-front, but we can go even
further and ensure that the focus is as atomic as possible.

If the intervention’s nature requires longevity, the action team should include measures
to capture the effects of potential confounding factors. The action team must also be
prepared to adjust the data collection methods amidst changes to the context.
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The host organization must be prepared for this, which means allocating additional
resources, adjusting the project schedule, and accounting for the risk of failure in the
current plan, such as in the ongoing sprint. Conducting a mock-up study or creating a pilot
product to demonstrate a tool outside of current practices is not action research, as it
does not introduce observable changes; it is merely an offline study. The next guideline is
therefore:

Guideline 9: Practitioners in the action team must be able to conduct the intervention.

Practitioners should intervene within the scope of their work rather than attempting
to change or advocate for the practices of other teams or organizations. The intervention
should focus on their methods, tools, and infrastructure, ensuring that the context of the
intervention is specific to their environment and not external to it. If other teams are affected,
they should be included in the action team. Davidson [9] recommends that researchers
and practitioners are motivated, but only motivation is insufficient; they must be able to
conduct it, given their daily work, the scope of their industrial project, or competence.
When it is impossible to perform an intervention, we can pivot to design science research
and focus on the artifact instead, as we did in one of our research studies [18].

4.4. Planning, conducting and analyzing

Since the host organization engages in various activities, including organizational changes,
it is essential to distinguish between interventions and routine operations.

Guideline 10: The scope of the intervention must be specified up-front based on theories.

Although interventions are atomic, their scope must be thoroughly planned and based
on existing theories. Otherwise, we cannot contribute to the existing body of scientific
knowledge. We must set the stop criteria and ensure we reach them. The same is true for
the deliverables — they also need to be defined up-front, and their quality goals must be
specified beforehand. We need to know when the intervention was successful and when it
was not. Davidson and Baskerville et al. recommend having a solid theoretical backing of
actions, but in software engineering, we can also identify new theories based on empirical
observations. If so, our initial theory must be formulated upfront, validated, refined, and
changed during the action research study.

Changes in ways of working that lack such planning cannot be considered interventions
in action research. Properly distinguishing these activities ensures the validity and reliability

of the research outcomes — if we do not have a baseline, we do not know if we improved.

Additionally, this approach helps maintain clarity and focus on the research objectives,
preventing confounding planned interventions with everyday business activities, hence our
next guideline:

Guideline 11: Every intervention must be compared to a baseline, so ensure that there is
one.

Inspired by the recommendation to plan data collection methods by Baskerville et

al. [8], we can go one step further. We must establish a proper baseline for comparison.

For instance, when introducing a new method, ensure that data from the old method is

available for comparison. This may require collecting data before initiating the intervention.

We should focus on quantitative and qualitative data in this data collection. The first
provides us with facts, whereas the second allows us to get a deeper understanding of the
reasons behind the phenomena observed in the quantitative data.

13
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If pre-intervention data collection is necessary, we should be prepared to mitigate the
Hawthorne effect [19]. We collect the data based on the theoretical models we bring to the
project (see Guideline 2). For example, when we want to validate the effect of introducing
modern code reviews, we should measure the performance of code reviews before this
introduction in terms of speed, duration, and number of reviews. We also need to be
prepared to adjust if the data that is needed cannot be collected:

Guideline 12: Explicitly plan for the intervention and data collection based on the
theoretical model.

Since organizations are constantly changing, ensure that when the intervention is done,
there are no confounders like reorganizations, new team onboarding, product changes, or
other events that could affect the result. If they are, be prepared to document these events
and study their effects or pivot (if the situation for action research is no longer optimal).

Our data collection methods must originate from the theories we apply in the action
research. We must follow a theoretical model, as Davidson [9] points out. Measurements
and data collection are essential parts of such a model.

Nevertheless, we must use the knowledge we gain in the diagnosing phase and pre-defined
theories.

Guideline 13: Design and plan interventions based on causes identified in the diagnosing
phase.

We can do it in two ways: either select the theory that aligns with the needs identified
in the diagnosing phase or complement the existing theory with concepts and relations
identified in the diagnosing phase. Davidson [9] recommends basing actions on the diagnosis,
but we should try to reconcile both theories and empirical findings in the diagnosing phase.

Unlike other research methodologies, adjusting the study’s setup during each cycle
allows for significant flexibility. The action team can introduce new theories (e.g., from
processes to products), change the scope of the cycle (e.g., from methods to tools), adjust
the team (e.g., introduce new roles), or re-design the intervention so that it fits both the
organization and the theory.

Sometimes, it is difficult to conduct action research studies for practical reasons. We
may introduce harm to the organization by revealing some information or making a change
that will cause problems for the company’s operations. Therefore, I recommend also the
following:

Guideline 14: Be ready to stop the intervention if it causes harm to the organization

Since the outcome of research activities is always unknown, we take the risk that the
activity does not go according to plan. Therefore, we must, at all costs, prevent damage or
harm to the organization, its employees, and its business. Otherwise, we do not follow the
Nuremberg convention that all scientists should comply with — “Do no harm.” This also
means that we must have a contingency plan in place.

The contingency plan means we must continuously keep track of our collected data and
how to address the research questions using it. We can also prepare alternative research
questions to address using the data we have to maximize the chance of reporting results.
We should remember that even negative or inconclusive results are of certain value to the
research community. Additionally, publishing negative experiences, if they are generalizable,
helps inform others of the risks encountered, contributing to a broader understanding
and awareness within the field. This approach enhances the learning process and builds



https://www.e-informatyka.pl/EISEJ/papers/2025/1/5

Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250105

a repository of knowledge that can guide future interventions. Furthermore, documenting
these experiences fosters a culture of transparency and continuous improvement within the
organization.

When we engage in action research, it is easy to forget that sometimes we must change
the topic or even stop the study. Therefore, my next guideline comes directly from my experi-
ences in measurement system development, which was conducted as an action research study.

Guideline 15: The management and the action team should continuously assess the need
for further studies.

We must remember that action research is a collaborative endeavor, requiring continuous
involvement from the host organization’s management to define and potentially finalize
the studies. Depending on the specific context and goals of the research, the process might
conclude after two or three cycles or extend to ten or more cycles.

Long-lived action research projects can address multiple challenges and test several
theories. A good action research team does not happen often, but when it does, it usu-
ally lasts for many iterations. However, there is a danger with long-lived, static action
research teams; they can get stuck in solving no longer important problems. Conducting
a post-mortem workshop after the intervention is always a good idea to understand what
to do next and how. If the change is not possible or needed by the host organization, the
action team can find other problems to address, change the team’s setup, or even change
organizations [11].

4.5. Reporting

We often think that research must be conducted from start to finish to generate knowledge.
In action research studies, however, even intermediate results are important. Since action
research is done in cycles, we should be able to present the results from each cycle
independently from each other as well as in the context of each other. Hence, the next
guideline:

Guideline 16: Package intermediate results in a reusable way.

We must ensure that our results, tools, and methods are reusable, making them
accessible to the reference team, other teams within the host organization, or even other
organizations (see Davidson’s fifth recommendation [9] about the impact of the action
research projects). Researchers must remember that the value for the company is not
found in a published paper, confusion matrix, or statistics alone. The real value for the
host organization lies in tangible and actionable improvements, new products, features,
increased operational efficiency, or better architectures. This focus on practical outcomes
ensures that the research has a meaningful and lasting impact on the organization’s success.
It is often these kinds of tangible results that the research community values the most.

For the organization, the results of the action research cycles must be documented and
disseminated even more frequently. Immediate publication on internal forums, web pages,
podcasts, and webinars helps to spread good practices. Therefore, the action team should
follow the next guideline to make communication efficient.

Guideline 17: The results should be continuously documented for academia and industry.

This internal documentation should include hands-on guides on how to apply the
new knowledge, contact points for internal expertise, and locations of stored information
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from the action research. Action research projects often develop tools and instruments
specifically configured for the host organization’s infrastructure, which must be readily
accessible internally. This approach ensures that the practical benefits of the research are
fully realized and integrated within the organization. Davidson [9] recommends timely
documentation of the research results, although it does not distinguish between the
industrial and scientific audience.

When conducting action research, it’s crucial to communicate the actions and results
to management and the reference group. They must know if the actions provide value,
and we need to know if the actions are going according to the plan. We must remember
that our work should be about generating new knowledge, not conducting activities—the
activities are a means to achieve the results.

Defining the context of the research is almost as important as the results. In action
research, describing the organization by its name is tempting, but most often, it should
be complemented with more details. Describing the organization’s characteristics is more
important, e.g., [20]. If the action team has to choose whether to reveal the organization’s
name or its characteristics, the characteristics provide more value to other researchers.

Guideline 18: Characterize the context of the study, including undertaken actions/inter-
ventions.

We should include as much relevant information about the context as possible when
generalizing empirical and action research studies. In particular, such information as:
— Type of the organization and its process — e.g., web development organization working
according to agile principles.
— Size and other characteristics of the product/service — e.g., 1,000,000 LOC written in
C#.
— Context of the project — e.g., part of an internal reorganization or a larger research
project.
— Host organization — e.g., the software development team of 20 persons.
This way of conveying characteristics helps others identify whether their context is
similar or different from the reported study.

4.6. Ethical considerations for action research studies

Our ethical stance should be to “do no harm” when researching. In action research, this
includes two aspects: direct harm to people (and, by extension, the organization) and
indirect harm through new insights (and, by extension, products). This is included in
Guideline 14: Be ready to stop the intervention if it causes harm to the organization.

We have access to the data of the host organization, which means that we can also access
information that was not meant for the purpose of this study or even information that was
part of the study but is not meant to be spread. This can include private conversations,
e-mails, or commit messages containing sensitive information. Revealing such sensitive
information can harm individuals, as they can lose their roles or even jobs. This can also be
detrimental to the organization’s business as the customers may lose trust in the company’s
products and services. Therefore, we should always consult the company’s management
and legal department before spreading information that could be sensitive — both internally
and externally.

At the same time, we must recognize that our products and knowledge can potentially
harm organizations and individuals. Our aim should always be to foster improvement rather
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than cause problems. When our findings pertain to individual improvements, we should
direct our results to those individuals, inviting them to knowledge-sharing sessions and
seminars. When presenting such results in a larger forum, it is essential to anonymize the
data by removing names and identifying details of individuals or teams. We can emphasize
best practices and effective working methods, but we must avoid singling out specific
individuals or organizations.

Guideline 19: Reflect on the results objectively and avoid overinterpretation.

One of the main problems that I observed in action research collaborations is the
tendency to overinterpret the results. Both researchers and practitioners tend to generalize
the results too quickly. The fact that an improvement worked for one organization does
not guarantee it will work for another. Overinterpreting the results is ethically problematic
because we are in danger of speculation — we do not know if the same methods would work
elsewhere. Both Davidson [9] and Baskerville et al. [8] warn about this too.

When reflecting on the results, it is better to follow the next guideline:

Guideline 20: Interpret the results based on theory

The theoretical foundation of action research cycles helps us ensure objective results.
When we specify the theory upfront, we use it to interpret the results, which helps avoid
overinterpretation, speculation, or even the Hawthorne effect.

5. Conclusions

Action research has been identified as one of the upcoming research methods in the last two
decades. An increasing number of software engineering papers have been published in which
this research methodology has been used, which indicates that there is a growing interest
in it. The rise of industrial software engineering research, pioneered by large software
development companies, nourishes this methodology.

This paper identified 20 guidelines for conducting action research studies in the context
of academia-industry collaboration. Although these guidelines are probably relevant to
industrial action research (in vivo action research), they have not yet been validated in
that context. The guidelines should be seen as the basics and either a reference for action
research or a starting point for designing such studies. They can be complemented by
studying existing articles about action research, e.g., Kantola et al. [21] or Natarajan et
al. [22] and Kemell et al. [23].

The guidelines presented in this paper are specifically targeted towards software engi-
neering, i.e., the discipline of development of software and the development of the processes
for developing software. What makes software engineering specific in this context is the fact
that software development is the main context, not the use of IT technology or software
in other domains, which is often the case of studies in information systems; it is the
information systems research where action research historically has been very popular.

However, despite the growing popularity of action research, it is not for every type of
research. We still need to use experimentation, case studies, and surveys to understand
the fundamental phenomena of software engineering, to study industrial cases in software
engineering, or to understand the spread of phenomena in the entire community. It’s
important to use the best methods and tools suited for the task and not revive to a specific
one all the time. Action research works best when it is done in collaboration between
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academia and industry and when the entire action team can be embedded in the host
organization.
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Context: In software engineering, the presence of code smells is
closely associated with increased maintenance costs and complexities,
making their detection and remediation an important concern.
Objective: Despite numerous deep learning approaches for code
smell detection, many still heavily rely on feature engineering pro-
cesses (metrics) and exhibit limited performance. To address these
shortcomings, this paper introduces CSDXR, a novel approach for en-
hancing code smell detection based on Random Convolutional Kernel
Transform — a state-of-the-art technique for time series classification.
The proposed approach does not rely on a manual feature engineer-
ing process and follows a three-step process: first, it converts code
snippets into numerical sequences through tokenization; second, it
applies Random Convolutional Kernel Transform to generate pooled
models from these sequences; and third, it constructs a classifier
from the pooled models to identify code smells.

Method: The proposed approach was evaluated on four real-world
datasets and compared against four state-of-the-art methods —
DeepSmells, AE-Dense, AE-CNN, and AE-LSTM - in detecting
Complex Method, Multifaceted Abstraction, Feature Envy, and
Complex Conditional smells.

Results: Empirical results demonstrate that CSDXR outperformed
the four state-of-the-art methods — DeepSmells, AE-Dense, AE-CNN;,
and AE-LSTM - in detecting Complex Method and Multifaceted
Abstraction smells. Specifically, the enhancement rates in terms
of Fj-score were 1.99% and 6.09% for Complex Method and Mul-
tifaceted Abstraction smells, respectively. In terms of MCC, the
improvement rates were 0.82% and 35.64% for these two smells,
respectively. The results also show that while DeepSmells achieves
superior overall performance on Feature Envy and Complex Condi-
tional smells, CSDXR surpasses AE-Dense, AE-CNN, and AE-LSTM
in detecting these two types of smells.

Conclusions: The paper concludes that the proposed approach,
CSDXR, demonstrates significant potential for effectively detecting
various types of code smells.

© 2025 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY-SA 4.0 license international.
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1. Introduction

Software plays an increasingly pivotal role in many aspects of modern life. As these systems
become more complex and reliance on them continues to grow, maintaining them becomes
ever more critical. To maintain their expected value, software systems require regular upkeep.
In a highly competitive environment, developers often employ design and implementation
strategies aimed at speeding up time-to-market. However, such practices can exacerbate
technical debt [1], which refers to the long-term costs associated with suboptimal design
and implementation decisions. While these decisions may offer immediate benefits, such as
faster product releases or enhanced client satisfaction, they often undermine the software’s
quality and lead to costly future maintenance.

Code smells are indicators of poor code design that contribute to technical debt. They
manifest in various parts of the code, such as classes or method statements, and arise
from inadequate design or implementation choices. These decisions can be intentional,
where developers are aware of the trade-offs, or unintentional [2,3]. Extensive research has
highlighted the detrimental impact of code smells on software quality, identifying them
as a significant manifestation of technical debt [2] and emphasizing the need for effective
detection, filtration and prioritization approaches [4,5].

Manual detection of code smells is challenging [6], prompting the development of
various automatic detection techniques. These methods are generally categorized into deep
learning, machine learning, heuristics, and metrics-based approaches [4,7,8]. Metric-based
and heuristic-based approaches are popular but often rely on costly manual processes
involving designed heuristics and selected features.

These processes require significant manual intervention, including configuring and cus-
tomizing analysis tools to suit specific needs, determining which code aspects to measure,
selecting the appropriate metrics, setting thresholds, and fine-tuning these thresholds for
specific contexts and projects. Additionally, interpreting the results of these metrics to clas-
sify a piece of code as a “smell” requires domain expertise, making the task labor-intensive.

Consequently, these manual interventions make the processes time-consuming and costly,
highlighting the inherent limitations of such approaches.

Machine learning methods, on the other hand, depend on external tools to compute
features (e.g., metrics) from the source code, making their effectiveness contingent upon
these tools and the expert-defined features. However, different tools can yield varying
results for the same metric, even when the metric is conceptually the same (e.g., lines
of code or cyclomatic complexity). These discrepancies arise from variations in how each
tool defines, computes, or interprets the metric. Since tools may apply slightly different
algorithms, rules, or default settings, the values they produce can differ.

For example, tools calculating cyclomatic complexity may handle control flow constructs,
such as loops or exception handling, differently, leading to variations in the final complexity
score. Similarly, tools measuring lines of code (LOC) might differ in their definitions of
what constitutes a line.

Additionally, variations in results can stem from the parsers or lexers used. Each parser
may interpret code differently based on how it handles syntax, grammar, or language-specific
rules, which in turn affects the features extracted for metric computation.

In the absence of a standardized tool, these differences in the tools used can significantly
impact the results, and consequently, the performance of code smell detectors.

Despite the variety of existing techniques, many remain underdeveloped and ineffective
[3,4,7,9]. Thus, there is a pressing need for advanced techniques to enhance code smell
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detection models. Recent studies have explored deep learning models that minimize manual
feature engineering by automatically learning features from source code [7,9]. However,
these models face limitations, including specificity to particular code smells and overall
limited performance [7,9,10]. Xu and Zhang [10] argue that these limitations stem from
token-based representations of code, which lose rich semantic and structural information.
Nevertheless, we believe that deep learning models can still effectively extract meaningful
representations from raw token sequences for code smell detection, as demonstrated by
Ho et al. [9]. We propose that advanced time series classification (TSC) techniques could
address these shortcomings.

The TSC field has seen significant advancements, with numerous techniques for time
series representation and classification achieving success in various domains, including
finance, Internet of Things, cloud computing, energy, transportation, code clone detection
and social networks [11-16]. We propose that source code can be converted to an ordered
sequence of tokens and treated as a time series. By leveraging TSC algorithms, we aim to
improve code smell detection, inspired by their success in code clone detection [16].

Our thesis is that in kernel-based approaches such as XRocket (e.g., MiniRocket and
Rocket), kernels serve as tools for detecting specific patterns by convolving them over the
time series. The result of convolving each kernel is an activation map that indicates the
location and strength of this pattern. A pooling operator then is used to summarize this
activation map into a single feature (i.e., a single number). With n kernels and m pooling
operators, a time series representation consisting of n x m features is created. The resulting
representations is then used to train a classifier to classify new instances. Consequently, for
a code smell characterized by identifiable patterns, it becomes feasible to detect such smells
using carefully designed kernels, appropriate pooling operators, and a suitable classifier.
This detection process works on time series data derived from source code to be checked
for “smelliness.”

Drawing inspiration from the success of TSC methods and guided by our thesis,
we introduce CSDXR, a novel approach for code smell detection based on MINImally
RandOm Convolutional KErnel Transform (MiniRocket) and RandOm Convolutional
KErnel Transform (Rocket). Our approach hypothesizes that using MiniRocket or Rocket
to pool representations of code snippets will outperform previous methods. CSDXR converts
source code snippets into time series, then uses MiniRocket (CSDMR) or Rocket (CSDR)
to pool representations. A classifier is then trained on these representations, labeled as
either smelly or non-smelly, and used to predict the presence of code smells in new source
code. The proposed CSDXR method does not rely on a manual feature engineering process.
Main Contributions:

— Introduction of a novel method does not rely on feature engineering process for code
smells detection.

— Introduction of a novel method based on MiniRocket and Rocket for modelling source
code.

— Evaluation of the method’s effectiveness in detecting four specific code smells: Complex

Method, Complex Conditional, Feature Envy, and Multifaceted Abstraction.

The rest of this paper is organized as follows: Section 2 provides background on code
smells, Rocket, and MiniRocket. Section 3 reviews the state-of-the-art code smell detection
approaches. Section 4 details our proposed approach. Section 5 presents our empirical
study, Section 6 presents and discuss the results of the empirical study. Section 7 addresses
threats to validity, and Section 8 concludes the paper and outlines directions for future
work.
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2. Background

This section provides the background information necessary for understanding the approach.

2.1. Code smell

The term code smell as first introduced by Kent Beck in the 1990s [17]. Code smells
are indicators of poor code quality in various code elements such as classes, methods, or
statements, and they often lead to increased technical debt. These smells typically signal
violations of design principles and best practices, arising from suboptimal design and
implementation decisions.

The concept of code smells gained wider recognition through Martin Fowler’s book,
which detailed 22 types of code smells and their corresponding refactoring solutions [17].
Examples of common code smells include Feature Envy, God Class, Duplicated Code, Long
Method, Long Switch, and Long Parameter List. For more comprehensive information
about code smells, refer to [17,18].

In this paper, we evaluate the proposed approach on four specific code smells [18]:

— Complex Method (CM): A method characterized by high cyclomatic complexity.

— Complex Conditional (CC): A conditional statement with a complex condition
expression (e.g., an intricate if statement).

— Feature Envy (FE): A method that is more interested in the details of a different
class than the class it is in.

— Multifaceted Abstraction (MA): A class that has multiple, unrelated responsibili-
ties.

Complex Method and Complex Conditional are implementation-level smells, while
Feature Envy and Multifaceted Abstraction are design-level smells.

2.2. Rocket and MiniRocket

Time series data consists of ordered sequences, such as temporal data, where each data
point is associated with a specific time. Time Series Classification (T'SC) involves predicting
the class of a time series based on previously classified series. According to Bagnall et
al. [11], the order of attributes in time series data differentiates TSC from traditional
classification problems, necessitating that the representation process creates discriminative
and meaningful features by accounting for this temporal structure.

Two state-of-the-art techniques for time series classification are the RandOm Convolu-
tional KErnel Transform (ROCKET) [19] and its variant, MINImally RandOm Convolu-
tional KErnel Transform (MiniROCKET') [20]. Both methods are inspired by convolutional
neural networks (CNNs) but differ in their approach to kernel generation and application.

The MiniRocket and Rocket methods compute a representation of a time series by first
convolving it with a set of k kernels. In the case of Rocket, these kernels are randomly
generated, whereas in MiniRocket, they are designed based on predefined rules.

Second, the activation map, which results from the convolution of each kernel with the
time series, is summarized using pooling operators. Rocket utilizes two pooling operators,
Proportion of Positive Values (PPV) and Max, to generate two features per kernel, resulting
in a feature vector with 2k features. In contrast, MiniRocket uses only the PPV operator,
producing a representation with k features.
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ROCKET uses a large set of randomly generated convolutional kernels, typically 10,000
by default. These kernels vary in length and dilation, and are employed to transform the
input time series into a feature vector.

The kernel initialization in ROCKET follows a random process with the following
parameters:

1. Kernel Length (1): Randomly selected from {7,9,11}.

2. Kernel Weights (w): Randomly initialized from a normal distribution.

3. Bias Term (b): Added to the result of the convolution operation.

4. Dilation (d): Determines the spread of the kernel weights over the input time series.
Dilation allows similar kernels with different dilation values to detect patterns at various
frequencies and scales. For example, a kernel [2 —1 1] with d = 1 becomes [20—101],
and with d = 3, it becomes [2000—-10001].

5. Padding (p): Adds zeros to the start and end of the input series to ensure the activation
map and the input series are of the same length.

The result of applying a kernel w with dilation d to a time series T" at offset 4 is defined as:

-1
Tiany * 0 =2 T (|2 x4 (ixa) X 3 (1)
=0

MiniROCKET is a variant of ROCKET that retains the core principles but is designed
to be more computationally efficient. It uses a smaller number of kernels, reducing the
computational burden while maintaining performance [20].

MiniROCKET utilizes a set of predefined kernels with a fixed length of 9 and two
possible weight values {—1, 2}, applying 84 fixed convolutions. Unlike ROCKET, which
computes two features per kernel, MiniROCKET computes only one feature per kernel.
These design choices make MiniROCKET significantly faster — up to 75 times — compared
to ROCKET, while maintaining performance comparable to other models.

3. State of the art

Many approaches have been proposed to detect smells in software systems, classified
into deep learning [3,21], machine learning [8], heuristics, and metrics-based methods
[4,7-10,22].

3.1. Metrics-Based Smell Detection Methods [21,23]

Metrics-based approaches, in particular, are widely used for code smell detection. Software
metrics are a common method for assessing software quality, evaluating factors and
attributes such as cohesion and coupling within a system [24]. A clean codebase typically
exhibits metric values within ranges defined by experts [Livre Software Quality], reflecting
adherence to software design principles and best practices.

Code fragments are considered smelly if they violate these principles. Such violations
can be identified by measuring the design attributes of the code fragment and comparing
them to values from clean (non-smelly) code. For example, the Feature Envy smell is an
indicator of poor cohesion and coupling [17]. Metrics-based approaches detect smells by
applying formulas that use filters and thresholds on a set of metrics computed from the
source code [25]. For instance, a God Class smell can be detected using metrics such as
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ATFD (Access to Foreign Data), WMC (Weighted Methods per Class), and TCC (Tight
Class Cohesion) [26].

An example of such formulas is defined by Marinescu [27] for detecting ten different
code smells. Macia et al. [28] proposed thresholds and formulas that combine eight metrics
for detecting aspect-oriented smells. Fard and Mesbah [29] introduced a method called
JSNOSE to detect JavaScript code smells, which is metrics-based and combines static
and dynamic analysis. Chen et al. [30] defined ten code smells specific to the Python
language and proposed a metrics-based method to detect them. Their study utilized
and compared thresholds specified by three filtering strategies: the Experience-Based
Strategy, the Statistics-Based Strategy, and the Tuning Machine Strategy. This research
was conducted on a dataset of 106 Python projects.

3.2. Rules/heuristic-based smell detection methods

In this category, the method’s input is a source code model and, optionally, a set of software
metrics. Detection is performed using a set of predefined rules or heuristics. These methods
rely on specified rules or heuristics and leverage source code models, and optionally metrics,
for detecting code smells and, principally, design smells [18,31]. Rule-based approaches
depend on manually specified rules [32]. For instance, DECOR [27] relies on expert-designed
rules, which must be expressed in a domain-specific language. However, this design process
is costly. The DECOR approach was validated on the software XERCES v2.7.0.

3.3. Machine learning-based smell detection

In this category, classifiers such as Support Vector Machines (SVM) or Naive Bayes (NB)
are trained on datasets specific to a particular smell. The dataset typically consists of
computed models (representations) of code fragments. Once trained, these models are
used to predict the class of new code fragments (i.e., whether they are smelly or not).
Metrics-based representations are commonly employed in these methods [4,7,10].

Maiga et al. [33] proposed an approach called SVMDetect to detect anti-patterns in
software systems. This approach leverages SVM, a well-known machine learning algorithm.
An empirical study conducted on three systems and four anti-patterns demonstrated that
SVMDetect is more accurate than DETEX.

Khombh et al. [34] introduced a process to transform detection rules into a probabilistic
model, with a demonstration conducted on the Blob anti-pattern.

Kreimer [35] proposed a method based on decision trees to detect design flaws (code
smells) in object-oriented software.

3.4. Deep learning-based smell detection

Sharma et al. [7] proposed an approach for code smell detection based on a deep learning
model that combines Convolutional Neural Networks (CNN), Recurrent Neural Networks
(RNN), and autoencoder models. The authors built a dataset from 922 C# and 922 Java
repositories downloaded from GitHub. The proposed approach aims to leverage the power
of these models without relying on the feature engineering process commonly used by
most code smell detection methods (e.g., metrics). The authors also investigated the
potential of transfer learning in code smell detection by training the model on C# projects
and evaluating the results on Java projects. The empirical study conducted to detect
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Feature Envy, Complex Method, Complex Conditional, and Multifaceted Abstraction
smells indicated that the results are smell-specific. This means there is no simple, universal
solution for detecting all types of smells. The results also indicated that deep learning
models without a feature engineering process still require improvement in performance.

Ho et al. [9] proposed an approach called DeepSmells to address the limitations of the
method proposed by Sharma et al. [7]. DeepSmells incorporates both structural and semantic
features from software units and mitigates the effects of imbalanced data distribution.
To achieve this, the method combines Convolutional Neural Networks (CNN) with Long
Short-Term Memory networks (LSTM) to learn hierarchical representations of source code,
preserve semantic information, and improve the quality of context encoding. The output
of this stage is fed into a deep neural network classifier with a weighted loss function to
counteract the effects of skewed data distribution. Empirical studies demonstrated that
this approach outperforms state-of-the-art tools.

Skipina et al. [36] evaluated and compared machine learning models using code rep-
resentations based on metrics versus representations based on neural code embeddings
(CodeTb and CuBERT) for detecting Data Class and Feature Envy smells. The evaluation
was conducted on the MLCQ dataset, and the results showed no significant differences in
performance between the two approaches. However, code embeddings were found to be
more scalable and have the potential to adapt to new programming languages.

Hadj-Kacem and Bouassida [37] proposed a combined method using deep autoencoders
and Artificial Neural Networks (ANN) for detecting God Class, Data Class, Feature Envy,
and Long Method smells. In this method, the autoencoder reduces data dimensionality,
and the ANN is used as the classifier. The empirical study indicated that this method is
effective, achieving an F-measure of 98.93% for the God Class code smell.

Liu et al. [38] proposed a deep learning-based method for detecting the Feature Envy code
smell. The model employed is a Convolutional Neural Network (CNN), where the input is
a combination of text and numerical data. The text, consisting of a sequence of the method’s
name, the class name, and the target class name, is embedded to produce a numerical
representation. The evaluation, conducted on seven well-known open-source projects, showed
that the method outperforms state-of-the-art tools, achieving an F-measure of 34.32%.

Bo Liu et al. [39] proposed an approach called feTruth aimed at improving deep
learning models dedicated to detecting the Feature Envy code smell. This objective is
achieved by filtering out false positives produced by state-of-the-art tools using a set of
heuristics and a decision tree classifier.

Das et al. [40] proposed a deep learning method based on Convolutional Neural Networks
(CNN) to detect Brain Class and Brain Method code smells.

Yu et al. [41] proposed a method based on Graph Neural Networks (GNN) for Feature
Envy detection. The method leverages code metrics and calling relationships to address the
challenge posed by calling relationships between methods, which can hinder the detection
process. The evaluation on five open-source projects showed that the performance, in terms
of Fi-score, was 37.98% higher than state-of-the-art tools.

Hanyu et al. [42] introduced a deep learning approach based on a Graph Convolutional
Network (GCN) for Long Method detection. This model builds a graph neural network by
inputting two types of information: nodes and edges. The nodes represent methods and
statements, while the edges represent include, control flow, control dependency, and data
dependency relationships. The evaluation was based on five groups of datasets.

Zhang et al. [43] proposed a method called DeleSmell that combines deep learning
and Latent Semantic Analysis (LSA) to detect Brain Class and Brain Method code
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smells. The deep learning model consists of two branches: a Convolutional Neural Network
(CNN) branch and a Gated Recurrent Unit (GRU)-attention branch. A Support Vector
Machine (SVM) classifier is used at the final stage. The approach aims to address the
issues of incomplete feature representation and unbalanced distribution between positive
and negative samples. The evaluation was conducted on a dataset built from 24 real-world
projects, with the dataset balanced using a refactoring tool developed for this purpose.
The results indicated an improvement of 4.41% in Fj-score compared to state-of-the-art
methods.

Xu and Zhang [10] proposed a method for detecting Feature Envy, Insufficient Modu-
larization, Empty Catch Block, and Deficient Encapsulation code smells. The method is
based on a deep learning model and Abstract Syntax Trees (ASTs) and does not rely on
a feature engineering process. The objective was to overcome the limitations of token-based
approaches by leveraging the semantic and structural information of the source code. The
experimental results indicate its superiority compared to state-of-the-art approaches for
detecting code smells.

Zhang and Dong [44] proposed the MARS approach for detecting Brain Class and
Brain Method smells. The approach aims to solve the gradient degradation problem using
an improved residual network. It employs a metric-attention mechanism to increase the
weight value of important code metrics. The approach was evaluated on the BrainCode
dataset, which was built from 20 real-world applications. The experimental results show
that the average accuracy of MARS is 2.01% higher than state-of-the-art tools.

Li and Zhang [45] proposed a method to optimize code smell detection through a hybrid
model with multi-level code representation. In this approach, the result is a function of two
predictions at the syntactic, semantic, and token levels. The prediction at the syntactic
and semantic levels is computed using a Graph Convolution Network (GCN) that takes
as input the AST with control and data flow edges of the source code. The token-level
prediction is calculated using a bidirectional Long Short-Term Memory (LSTM) network
with an attention mechanism. Experimental results demonstrate that the method performs
better in both single code smell detection and multi-label code smell detection cases.

Liu et al. [46] proposed a method based on Convolutional Neural Networks (CNN) and
a text embedding technique (i.e., Word2Vec). The CNN model is fed a representation of
a code fragment computed using the Word2Vec approach.

For further details, see [21,23].

4. The proposed approach

In this section, we present an overview of our proposed method, CSDXR, for code smell
detection based on the random convolutional transform method. As illustrated in Figure 1,
CSDXR combines MiniRocket (CSDMR) or Rocket (CSDR) with advanced classifiers.
The proposed method consists of three basic steps. First, the method converts a code
snippet into a time series using a tokenization technique. In the second step, MiniRocket
(or Rocket) is employed to generate a model of the obtained sequence. Finally, in the third
step, CSDXR, uses the pooled models to build a classifier for detecting code smells.
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Figure 1. The proposed approach

4.1. Tokenization

The objective of this step is to convert a code snippet into a sequence of numbers that can
be treated as a time series. The CSDXR, method builds upon the tokenization algorithm
provided by Sharma et al. [7]. Sharma et al. [7] released the full pipeline of their deep
learning approach and encouraged researchers to extend it, aiming to fully explore the
potential of code smell detection methods that do not rely on feature engineering.

The tokenization process works as follows: the code snippet is first decomposed into
a sequence of tokens using a lexical analyzer. Each unique token is then assigned a specific
number. For example, the token “{” might be assigned the number 123, the token “(” might
be assigned the number 40, and so forth. An example of the result of the tokenization of
a code snippet is illustrated in Figure 2.

The output of this step is a sequence of numbers (i.e., a time series).

public void InternalCallback(object state)

123 —{ 40— 2003

2002 — Callback(State);. -

474 —try 2005 2006 2007 2008
123—{ 46 | (40 /144 7 46 41
9004 — timer.Change(Period, TimeSpan:Zero);,
125 — -} 40— 2009 ~59

399 ———catch (ObjectDisposedException)« - 41
123 — {}—125
125

Figure 2. An example of the result of the tokenization of a code snippet [7]
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4.2. Time series modelling

The objective of this phase is to create a representation of the code snippet from the
time series produced in the previous step. This is achieved by employing the MiniRocket
algorithm or a similar algorithm (e.g., Rocket).

The modelling process works as follows:

1. The steps involved in this process are collectively referred to as the representation
phase. In this phase, first, a fixed set of k£ kernels is produced. Next, each kernel is
convolved over the time series. The result of convolving each kernel is an activation
map that indicates the location and strength of the pattern. Subsequently, pooling
operators are used to summarize this activation map into a set of features. With n
kernels and m pooling operators, a time series representation consisting of n x m
features is created. For example, in the case of ROCKET, two pooling operators are
used: PPV and MAX. The kernels are randomly generated from the set { 7, 9, 11 },
and their weights are randomly sampled from a normal distribution. In contrast, for
MiniROCKET, this process is quasi-deterministic, and only one pooling operator is
used (PPV). The kernels have a size of 9, and their weights are randomly selected
from the set {-1,2}. For example, the application of the kernel w = [—1,0, 1] to the
sequence [0,1,3,2,9,1,1,15,4, 9] is illustrated in Figure 3. This Figure shows that the
obtained activation map by convolving the kernel w = [—1,0, 1] over this time series is
[3,1,6,—1,—8, 14,3, —6]. The feature obtained using the PPV operator is 5/8, and for
the MAX pooling operator, it is 14. Finally, all the features obtained by convolving the
k kernels are concatenated to form the time series model.

Time series 0 1 3 2 9 1 1 15 4 9

Kernelw EENCENFEE A SR

y

Activation 3 1 6 -1 -8 14 3 -6
map

Max Pooling:14
Ppv Pooling: 5/8

Figure 3. An example of sequence transformation

4.3. Classifier learning

In this step, the feature vectors representing smelly and non-smelly code snippets are used
to train a classifier to differentiate between smelly and non-smelly code fragments. Various
classifiers have been proposed for this purpose, and this step can be fulfilled using any of
these classifiers.

In this paper, we employ the following classifiers: Naive Bayes, Decision Tree, Logistic
Regression, Random Forest, and XGBoost. The trained classifier model is then used to
determine whether a new code snippet is smelly or not.
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5. Empirical study

This section presents an empirical study on the use of CSDXR, for code smell detection.
The aim of this experiment is to evaluate the performance of CSDXR in detecting code
smells. Specifically, the study addresses the following research objectives and questions:

5.1. Research objectives

The goal of this research is twofold:

1. To explore the feasibility of applying state-of-the-art time series representation methods
in the context of code smell detection.

2. To investigate the effectiveness of these representations when used with advanced
classifiers.

Based on these goals, the study aims to answer the following research questions:

RQ1: How do variations in the configuration of CSDXR, specifically using
MiniRocket and Rocket transformations combined with advanced and standard
classifiers, affect the prediction performance in detecting code smells?

We use MiniRocket, Rocket, standard and advanced classifier models in this exploration.
MiniRocket and Rocket are fed with time series representing source code snippets. The
output is then used with standard and advanced classifiers such as Naive Bayes, Logistic
Regression and XGboost.

Hypothesis 1: 1t is feasible to detect code smells using classifiers trained on represen-
tations pooled by well-configured MiniRocket or its variants from time series representing
source codes. The rationale behind this hypothesis is that prior research in time series
classification suggests that MiniRocket and Rocket transformations yield distinct feature
representations, while classifier choices further modulate performance. Exploring these
combinations helps identify optimal configurations for detecting code smells.

RQ2: How does the CSDXR method compare to state-of-the-art baseline
tools (DeepSmells, AE-Dense, AE-CNN, and AE-LSTM) in terms of classifica-
tion metrics such as Precision, Recall, F;-score, and MCC? Are the performance
differences in term of F; and MCC statistically significant?

We evaluate how well the CSDXR method performs in comparison to four baseline
models presented in Section 4.3.

Hypothesis 2: The CSDXR method can improve the performance of code smell
detection. This hypothesis is justified by our thesis that a source code snippet can be
viewed as a time series and that Rocket and its variants, including MiniRocket, have proven
to be powerful techniques for time series classification. By leveraging these methods, we
aim to enhance the effectiveness of detecting code smells.

RQ3: How do the performance (in terms of Precision, Recall, F;-score, and
MCC) and computational cost (transformation time) of CSDXR models with
MiniRocket compare to those with Rocket? Are the performance differences in
terms of Fy, MCC and transformation time statistically significant?

In this exploration, we replace the MiniRocket-based transformation (CSDXR, cor-
responding to CSDMR) with the Rocket-based transformation (CSDR). The rationale
for this change is supported by existing literature that shows comparable performance of
these two transformations in other domains. Since computational cost is a critical factor
when selecting the appropriate transformation method in practical applications [19,20],
this question investigates the efficiency of the two designs of the CSDXR method: the
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MiniRocket-based CSDMR and the Rocket-based CSDR, with both variants being derived
by varying the classifiers used.

Hypothesis 3: We hypothesize that the performance of CSDMR variants (based on
MiniRocket) is comparable to CSDR variants (based on Rocket) in the context of code
smell detection, with CSDMR variants being faster than CSDR variants. Both variants
differ in their classifier selection, which influences their performance and computational
efficiency.

This hypothesis is supported by literature showing that MiniRocket and Rocket have
comparable performance in other domains and that MiniRocket is faster than Rocket.

To answer RQ1, RQ2, and RQ3, the CSDXR method was trained on a training set
and subsequently evaluated on a test dataset. This evaluation used a dataset curated by
Sharma et al. [7]. Details of the dataset are provided in the following section.

5.2. Datasets

We conduct our experiments on datasets containing four types of code smells': Complex
Method (CM), Complex Conditional (CC), Feature Envy (FE), and Multifaceted Abstrac-
tion (MF). Notably, the last two smells, Feature Envy and Multifaceted Abstraction, are
particularly challenging to detect [7]. These datasets were curated by Sharma et al. [7] and
have been utilized in other studies [10].

The datasets are composed of a total of 416,445 instances, with the following breakdown:
1. Number of Smelly Instances: 20,753
2. Number of Non-Smelly Instances: 395,692
These datasets are imbalanced, with an average imbalance rate of 4.21%, meaning that
on average, positive instances make up around 4.21% of the total instances for each smell.
Table 1 presents the Statistics of the Datasets.

Table 1. Statistics of the datasets

Smell Alias  # Positive  # Negative
Complex Method CM 12,489 144,460
Complex Conditional CcC 6,186 149,767
Feature Envy FE 1,788 51,260
Multifaceted Abstraction MA 290 50,205

5.3. Hardware specification

All experiments are conducted on Google Colab Pro, which provides the necessary computa-
tional resources for running the time series transformation and classifier training processes
efficiently.

5.4. Evaluation plan

The performance of CSDXR is compared with four baseline models. The baseline models
include three variants of an auto-encoder model for code smell detection, introduced by
Sharma et al. [7]:

! https://github.com/tushartushar/DeepLearningSmells
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1. AE-Dense: An auto-encoder model using dense layers for both the encoder and decoder.

2. AE-CNN: An auto-encoder model employing Convolutional Neural Networks (CNNs)
for the encoder and decoder.

3. AE-LSTM: An auto-encoder model utilizing Long Short-Term Memory (LSTM)
networks.

The fourth baseline model is DeepSmells, introduced by Ho et al. [9].

The evaluation process involves comparing the performance metrics of CSDXR with
those reported for the baseline models in the study by Ho et al. [9]. This comparison is
carried out across four datasets that include Complex Method (CM), Complex Conditional
(CC), Feature Envy (FE), and Multifaceted Abstraction (MF).

Each dataset is shuffled and then is split into training and testing subsets with a 70%/30%
ratio. The training set is used to train the models, while the testing set is used to evaluate
their performance.

The experiments utilize the Sktime library, a Python framework for time series analysis,
to implement the time series transformation process required for model training and
evaluation.

5.5. Performance

Given the heavy imbalance in code smells datasets [47], using accuracy alone to evaluate
classifier performance can lead to misleading results [48]. Therefore, this study uses
Precision, Recall, F-measure (F), and Matthews Correlation Coefficient (MCC') to assess
the performance of the CSDXR method. These metrics are commonly used in code
smell detection studies [7,9,10,22,47] and provide a more reliable evaluation of classifier
performance in imbalanced datasets.

— Precision measures the proportion of true positive predictions among all positive
predictions made by the classifier. It indicates how many of the detected positives are
actually true positives.

— Recall measures the proportion of true positives that were correctly identified by
the classifier out of all actual positives. It reflects the classifier’s ability to identify all
relevant instances.

—  F-measure (F}-score) is the harmonic mean of precision and recall. It provides a single
metric that balances the trade-off between Precision and Recall, making it useful when
there is an uneven class distribution.

— Matthews Correlation Coefficient (MCC) is a more robust metric compared to
accuracy and F-measure. It provides a balanced measure that takes into account all
four categories of the confusion matrix: True Positives (TP), False Negatives (FN),
False Positives (FP), and True Negatives (TN). The MCC is particularly useful for
evaluating performance on imbalanced datasets. It ranges from —1 to 41, where +1
indicates a perfect prediction, —1 indicates total disagreement, and 0 indicates no better
than random prediction.

The confusion matrix is used to calculate these metrics and is summarized as follows:

— True Positives (TP): Instances that are actually positive and correctly classified as
positive.

— False Negatives (FN): Instances that are actually positive but incorrectly classified
as negative.

— False Positives (FP): Instances that are actually negative but incorrectly classified as
positive.

13
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— True Negatives (TN): Instances that are actually negative and correctly classified as
negative.
These metrics are calculated using the following formulas:

recision __ I (2)
b ~ TP + FP
TP
T@C(]/” —m (3)

F) (F-measure): F} is the harmonic mean of precision and recall

2 - recall - precision

recall + precision

VOO — TP.-TN — FP-FN .
~ /(TP +FP)-(TP+ FN)- (TN + FP) - (TN - FN) (5)

Table 2. Confusion matrix

Positive (predicted) Negative (predicted)

True (Actual) TP FN
False (Actual) FP TN

6. Results and discussion

This section presents and discusses the experimental results for the CSDXR method in the
context of code smell detection.

6.1. Results for RQ1

RQ1: How do different CSDXR configurations affect the prediction perfor-
mance?

Approach The CSDXR method leverages either MiniRocket or a similar method such as

Rocket for pooling a time series model. These methods consist of two main components:

1. Pooling a Model: This involves transforming the time series into a feature vector
using MiniRocket or Rocket.

2. Classification: This involves using a classifier to predict the class of the time series
based on the pooled feature vector.

While the literature typically employs MiniRocket and Rocket with linear classifiers,
these methods can theoretically be used with any classifier [19]. Therefore, the CSDXR
method’s performance depends on various hyperparameters related to both the pooling
method and the classifier.

Hyperparameter Tuning Identifying the optimal parameters for the CSDXR, approach
is a challenging task, as it involves searching across a vast space of possible parameter
combinations. This problem, commonly referred to in the literature as hyperparameter
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tuning, has been extensively studied, with proposed solutions ranging from basic methods,
such as grid search, to more advanced metaheuristic-based approaches [49,50]. In the case
of CSDMR, the MiniRocket hyperparameters, such as the number of kernels and dilation,
were systematically varied during the training process using a simple grid search approach.
The process began by setting dilation to the widely used value of 32, as reported in the
literature, and varying the number of kernels across the values {84, 168, 252, 1000, 10000,
10120}. Once the optimal number of kernels was identified, the dilation size was varied
across {1, 22, 32, 44} to further refine the hyperparameters for best performance.

In the case of CSDR only the number of kernels was varied, as dilation is randomly set
within the Rocket algorithm. The best hyperparameters found during training were then
applied in the testing phase to ensure consistency and fairness in evaluation. Classifier
hyperparameters were set to their default values as provided by the software packages used.

Design Alternatives To evaluate how different configurations affect the performance of

CSDXR, the following design alternatives were studied:

1. CSDXR with Logistic Regression (CCDMR_LR) [51]: A linear classifier that
models the relationship between features and the target class.

2. CSDXR with XGBoost (CCDMR,_ XGB) [52]: An ensemble method that combines
multiple decision trees to improve predictive performance.

3. CSDXR with Random Forest (CCDMR_RF) [53]: An ensemble method that
aggregates multiple decision trees to enhance robustness and accuracy.

4. CSDXR with Naive Bayes (CCDMR__NB) [54]: A probabilistic classifier based on
Bayes’ theorem, assuming feature independence. It is important to note that time series
data inherently contains correlations between consecutive data points, which violate
the assumption of feature independence in models like Naive Bayes. Despite this, the
Naive Bayes model was selected for its simplicity and efficiency.

5. CSDXR with Decision Tree (CCDMR_DT) [55]: A model that splits data based
on feature values to make predictions.

The goal was to assess how each classifier, in combination with MiniRocket or Rocket,
impacts the overall effectiveness of CSDXR in detecting code smells. The experiments
aimed to determine the optimal configuration and hyperparameters for achieving the best
performance. The performance of the CSDR design alternatives is detailed in Section 6.3.

Results

1. Effect of the number of kernels on the effectiveness of different design alternatives of
the CSDXR model
Regarding the effect of the number of kernels, Figure 4 shows the Fj-scores of different
CSDXR design alternatives as the number of kernels vary, while Figure 5 illustrates the
corresponding Matthews Correlation Coefficient (MCC') scores.
The analysis of these figures reveals that the CSDXR variants achieved their highest
performance with 10120 kernels. Specifically, CSDMR,_ XGB exhibited the highest
Fi-score and MCC measures across the CC, CM, and MF datasets. This variant
outperformed others with a significant margin, demonstrating its strong capability in
detecting code smells effectively.
In comparison, CSDMR, DT also showed robust performance, particularly on the CC,
FE, and MF datasets, although it did not surpass CSDMR,_XGB in overall metrics.
The summary of average performance metrics across the different design alternatives is
provided in Table 3. According to this table, CSDMR,_XGB leads with an Fj-score of
0.41, followed by CSDMR_ DT with 0.35. CSDMR_ RF, CSDMR_ NB, and CSDMR_ -
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Figure 4. The Fi-score for each CSDMR variant across different smell types
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Table 3. Average F; and MCC scores for each CSDMR variant
across different smell types

Design variant ~ Smell  Fj-score MCC

CcC 0.38 0.39

CM 0.68 0.65

CSDMR_LR FE 0.04 0.07
MF 0.04 0.15

average 0.29 0.32
cC 0.50 0.49

CM 0.77 0.74

CSDMR_XGB FE 0.21 0.26
MF 0.16 0.27

Average 0.41 0.44
CcC 0.29 0.34

CM 0.73 0.70

CSDMR_RF FE 0.14 0.23
MF 0.11 0.22

Average 0.32 0.37
cC 0.35 0.28

CM 0.60 0.55

CSDMR_NB FE 0.22 0.19
MF 0.07 0.11

Average 0.31 0.28
cC 0.38 0.32

CM 0.62 0.57

CSDMR._DT FE 0.24 0.22
MF 0.14 0.14

average 0.35 0.31

LR showed lower scores of 0.32, 0.31, and 0.29, respectively. For MCC, CSDMR_ XGB
achieved a score of 0.44, with CSDMR,__RF next at 0.37. CSDMR,__LR scored 0.32,
CSDMR,_ DT 0.31, and CSDMR,__NB 0.28.

The consistent trend across both Fj-score and MCC metrics indicates that the number
of kernels plays a crucial role in the performance of CSDXR. The optimal kernel number
of 10120 maximizes the feature representation capability of MiniRocket, thus enhancing
the effectiveness of the classifiers. CSDMR,_ XGB’s superior performance highlights its
potential for robust code smell detection, while CSDMR,_ DT also proves to be a strong
contender, particularly in certain datasets.

Overall, the results suggest that the choice of kernel number and the specific design
variant significantly impact the performance of the CSDXR method. The figures and
table provide a clear visualization of these effects, supporting the effectiveness of the
CSDMR,_ XGB design in particular.

The effect of dilation

In this analysis, we examine how different dilation sizes impact the performance of the
CSDXR model. The experiment explored four scenarios with dilation sizes set to 1, 22,
32, and 44, while maintaining the number of kernels at 10120, which was previously
identified as optimal.

Figure 6 displays the performance of each CSDMR variant across the four datasets,
demonstrating sensitivity to the dilation size. Figure 7 further illustrates the specific
F; and MCC scores obtained for various dilation sizes.
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Table 4. Best performance of each CSDMR variant across different smell types by dilation size

Smell  Design variant  Dilation Precision Recall Fj-score MCC

CSDMR_ LR 32 0.67 0.26 0.38 0.39
CSDMR__XGB 32 0.70 0.39 0.50 0.49

cC CSDMR_RF 32 0.74 0.18 0.29 0.34
CSDMR_NB 32 0.30 0.41 0.35 0.28
CSDMR_DT 44 0.38 0.42 0.40 0.34
CSDMR_ LR 32 0.32 0.02 0.04 0.07
CSDMR_XGB 32 0.81 0.73 0.77 0.74

CM CSDMR_RF 32 0.80 0.68 0.73 0.70
CSDMR_NB 1 0.59 0.65 0.61 0.56
CSDMR_DT 22 0.64 0.65 0.64 0.59
CSDMR_ LR 1 0.40 0.06 0.10 0.14
CSDMR_XGB 1 0.61 0.14 0.22 0.28

FE CSDMR_RF 1 0.73 0.09 0.15 0.24
CSDMR_NB 22 0.17 0.40 0.24 0.22
CSDMR_DT 32 0.23 0.26 0.24 0.22
CSDMR_ LR 22 1.00 0.05 0.09 0.21
CSDMR_ XGB 1 0.76 0.18 0.30 0.37

MF CSDMR_RF 1 0.86 0.07 0.13 0.24
CSDMR_NB 1 0.04 0.43 0.07 0.11
CSDMR_DT 44 0.08 0.10 0.20 0.20

The results reveal that CSDMR,_ XGB consistently achieved the highest £} and MCC
scores on the CC and CM datasets across all dilation sizes. For the MF dataset,
CSDMR_ XGB attained the best Fj-scores for dilation sizes of 1, 32, and 44. On the
FE dataset, CSDMR,_ XGB excelled in MCC score with a dilation size of 1. However,
for the FE dataset’s Fj-score, CSDMR__ DT and CSDMR_ NB were the top performers
for dilation sizes of 1 and 32, respectively.

To better understand the optimal dilation size for each variant, Table 4 presents the
dilation sizes that achieved the highest F} and MCC scores for each CSDMR variant.
The table indicates that CSDMR,__XGB outperforms other variants in terms of Fj-score
on most datasets, except for FE, where its Fj-score of 0.22 is lower compared to the
0.24 achieved by CSDMR_ DT and CSDMR,_ NB. Nonetheless, the MCC scores for
CSDMR_ XGB were superior across all datasets, with values of 0.49 for CC, 0.74 for
CM, 0.28 for FE, and 0.37 for MF, reflecting a more comprehensive and reliable measure
of performance.

The best dilation sizes for each smell type were found to be 32 for CC, 32 for CM, 1
for FE, and 1 for MF. The Fj-scores ranged from 0.22 to 0.77, and the MCC values
ranged from 0.28 to 0.74.

Overall, the dilation size significantly affects the performance of the CSDXR model,
with the optimal size varying depending on the dataset and the specific variant used.
The findings suggest that fine-tuning dilation sizes is crucial for achieving the best
performance in code smell detection.

Moreover, this table shows that, firstly, for CSDMR_ DT, the best performance was
observed with dilation sizes of 44, 22, 32, and 44 for CC, CM, FE, and MF smells,
respectively. Consequently, the Fj-scores for these settings ranged from 0.20 to 0.64,
and the MCC values ranged from 0.20 to 0.59.
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In contrast, CSDMR__RF achieved its best performance with dilation sizes of 32, 32,

1, and 1 for CC, CM, FE, and MF smells. Therefore, the F}-scores ranged from 0.13 to

0.75, and the MCC values varied between 0.24 and 0.70.

Furthermore, CSDMR,__NB showed optimal performance with dilation sizes of 32, 1,

22, and 1 for CC, CM, FE, and MF smells. In this case, the Fj-scores ranged from 0.07

to 0.61, with MCC values between 0.11 and 0.56.

On the other hand, CSDMR,__LR performed best with dilation sizes of 32, 32, 1, and

22 for CC, CM, FE, and MF smells. The Fi-scores for these sizes ranged from 0.04 to

0.38, and the MCC values ranged from 0.07 to 0.39.

Regarding precision, CSDMR,__RF achieved the highest scores for CC, CSDMR__-

XGB for CM, CSDMR__RF for FE, and CSDMR__ LR for MF, with precision

values of 0.74, 0.81, 0.73, and 1.00, respectively.

In terms of recall, CSDMR_ DT led for CC, CSDMR_ XGB for CM, CSDMR__-
DT for FE, and CSDMR_ NB for MF, with recall values of 0.42, 0.73, 0.26, and 0.43,
respectively.

In summary, the results underscore that dilation size significantly impacts model
performance. Different variants exhibit varying sensitivities to dilation size, thus highlighting
the need for careful tuning to optimize performance for specific code smells and variant
configurations.

RQ1. Hypothesis 1: It is feasible to detect code smells using classifiers trained on
representations pooled by well-configured MiniRocket or its variants from time series
representing source codes.

4 )
It is evident from the study that the CSDMR variants can achieve Fy and MCC
scores of 0.74 or higher on certain datasets, demonstrating the feasibility of detecting
code smells using classifiers trained on well-configured MiniRocket representations
of time series from source code. However, the performance of these classifiers is
not uniform across all datasets; for some datasets, the Fj-score may be as low as
0.3. This variability highlights the sensitivity of performance to the specific type of
code smell being detected, the characteristics of the dataset, and the configuration
of hyperparameters. These findings emphasize the importance of careful dataset

selection and hyperparameter tuning in achieving optimal results.
\ J

6.2. Results of RQ2

RQ2: How efficient is the CSDXR method?

Approach The performance of CSDMR (Code Smell Detection using MiniRocket) is
compared with four baseline models. The baseline models include three variants of an
auto-encoder model for code smell detection, introduced by Sharma et al. [7]:
— AE-Dense: An auto-encoder model using dense layers for both the encoder and decoder.
— AE-CNN: An auto-encoder model employing Convolutional Neural Networks (CNNs)
for the encoder and decoder.
— AE-LSTM: An auto-encoder model utilizing Long Short-Term Memory (LSTM)
networks.
The fourth baseline model is DeepSmells, introduced by Ho et al. [9].
Results Regarding the performance of the baseline models, Table 5 presents the results
for each type of smell. The data indicate that the CSDMR_ XGB model surpasses the
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Table 5. Performance of baseline models across different smell types

Smell Model Metric
P R Fi MCC
AE-Dense 0.483 0.630  0.547  0.508
AE-CNN 0.472 0.582 0.521 0.478
AE-LSTM 0.468 0.615 0.532 0.491
DeepSmells 0.731 0.779 0.754  0.734

CM  CSDMR_LR 0.323  0.019 0.035 0.071
CSDMR_XGB 0.811 0.731 0.769 0.740
CSDMR_RF 0.802 0.676 0.734  0.703
CSDMR_NB 0.585 0.648 0.615  0.559
CSDMR_DT 0.643 0.645 0.644 0.594

AE-Dense 0.170  0.387  0.237  0.211
AE-CNN 0.194 0.276  0.228  0.193
AE-LSTM 0.180  0.329 0.232  0.201
DeepSmells 0.575 0.604 0.589 0.568

CcC CSDMR_ LR 0.667 0.262 0.376  0.387
CSDMR_XGB 0.697  0.387  0.497  0.487
CSDMR_RF 0.737 0.177  0.286  0.337
CSDMR_NB 0.298 0.410 0.345 0.277
CSDMR_DT 0.382  0.420 0.400  0.340

AE-Dense 0.170 0.387 0.237  0.211
AE-CNN 0.157 0.493 0.238 0.235
AE-LSTM 0.197  0.254 0.222 0.197
DeepSmells 0.341  0.258 0.294 0.269

FE CSDMR_ LR 0.395 0.060 0.104 0.143
CSDMR_XGB 0.613 0.136 0.223 0.279
CSDMR_RF 0.730 0.086 0.154  0.243
CSDMR_NB 0.168  0.405 0.237  0.221
CSDMR_DT 0.230 0.261 0.245 0.217

AE-Dense 0.031 0.747 0.060 0.135
AE-CNN 0.031  0.678  0.060 0.127
AE-LSTM 0.033 0.402 0.061  0.099
DeepSmells 0.287 0.272  0.279  0.275

MA CSDMR_LR 1.000 0.046 0.088 0.214
CSDMR_XGB 0.762 0.184 0.296 0.373
CSDMR_RF 0.857  0.069  0.128  0.242
CSDMR_NB 0.036 0.425 0.067 0.109
CSDMR_DT 0.076  0.103  0.199  0.197

other models in terms of both F} and MCC evaluation metrics for the CM and MF
smells, achieving Fj-scores of 0.769 and 0.296, and MCC scores of 0.740 and 0.373,
respectively. Specifically, the enhancement rates in terms of Fj-score were 1.99% and 6.09%
for Complex Method and Multifaceted Abstraction smells, respectively. In terms of MCC,
the improvement rates were 0.82% and 35.64% for these two smells, respectively. The
CSDMR,_ XGB model outperformed all baseline models in term of MCC on Feature Envy
dataset. The obtained score was 0.279.

Additionally, the CSDMR,_XGB model excels in Precision for the CM and CC smells,
with Precision values of 0.811 and 0.697, respectively. The CSDMR,__ LR model achieves
a Precision score of 1.00 for the MF smell and also exhibits superior Precision on the CC
smell with a value of 0.737 compared to all other models.

In terms of Recall, the AE-CNN model stands out, achieving the highest Recall scores
for the FE and MF smells, with values of 0.493 and 0.747, respectively.
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Table 5 also shows that DeepSmells outperforms all other models in terms of F; and
MCC scores for the CC and FE smells. Although DeepSmells excels on these datasets,
the CSDMR,_ XGBoost model surpasses AE-Dense, AE-CNN, and AE-LSTM on the
CC dataset, achieving the best performance compared to AE-LSTM across all datasets.
For the FE smell, CSDMR,__DT outperforms AE-Dense, AE-CNN, and AE-LSTM. The
performance of CSDMR,__NB is comparable to that of AE-Dense.

Table 6. Mean Fj-scores and MCC' values of CSDMR and baseline models

Model Mean F; Mean MCC
CSDMR_ LR 0.15 0.20
CSDMR_ XGB 0.45 0.47
CSDMR_RF 0.33 0.38
CSDMR_NB 0.32 0.29
CSDMR_DT 0.37 0.34
AE-Dense 0.27 0.27
AE-CNN 0.26 0.26
AE-LSTM 0.26 0.25
DeepSmells 0.48 0.46

In terms of mean F; and mean MCC scores, the results in Table 6 demonstrate that
the CSDMR,_XGB model outperforms AE-Dense, AE-CNN, and AE-LSTM and achieves
performance comparable to DeepSmells. In terms of mean F; and mean MCC' scores, the
results in Table 6 demonstrate that the CSDMR,_ XGB model outperforms AE-Dense,
AE-CNN, and AE-LSTM and achieves performance comparable to DeepSmells. To validate
this hypothesis and after confirming the normality of the data, we conducted a Student’s
t-test (t-test) [56] to detect whether performance differences between CSDMR variants
and baseline models are statistically significant. The test used significance rate a equals
to 0.05. In hypothesis testing, o denotes the probability of making a Type I error (falsely
rejecting the null hypothesis, Hp). An a set to 0.05 means there is only a 5% probability
of concluding that an effect exists when it does not. A Result is considered statistically
significant when the obtained p-value from the Student’s t-test is less than the alpha
(p < a).However, statistical significance alone is insufficient because p-values do not show
the magnitude of the observed effect. Therefore, In addition to significance, we also assessed
practical significance by reporting and interpreting effect sizes, which quantify performance
differences between models. The magnitude of the difference is quantified using Hedges’ g
[57] with a 95% confidence interval (CI) and in terms of both the obtained F} and MCC
scores. Hedges’ g was chosen over Cohen’s d due to our small sample size. The performance
difference is quantified in terms of both the obtained F; and MCC' scores. The effect sizes
were interpreted using Cohen’s d guidelines [58]:

— Negligible effect: < 0.2
—  Small effect = 0.2

—  Medium effect = 0.5

— Large effect = 0.8

Table 7 Shows p-values for F; and MCC scores when comparing CSDMR, variants with
baseline models, along with effect sizes for significant results (p-value < 0.05)and power
values for non-significant results. Meanwhile, Table 6 shows Mean Fi-scores and MCC
values of CSDMR. and baseline models. These tables show that, in term of MCC"

1. CSDMR_ XGB significantly outperformed AE_Dense, AE__CNN, and AE_ LSTM with

a large effect size.
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Table 7. Comparison of models with statistical tests: p-value of the statistical test along with effect
size (Hedges’ g) in case of a significant test, and power values in case of non-significant test.
S? indicates whether the result is significant (Yes) or not (No).

Negative effect size indicates a performance superiority for the baseline model

MCccC F1

Model 1 Model 2 p-value Ef.fect Power  S?7 p-value E:ifze;:t Power  S?7
CSDMR. LR AE-Dense 0.67 0.08 No 0.46 0.13 No
CSDMR_LR AE-CNN 0.71 0.07 No 0.48 0.12 No
CSDMR_LR AE-LSTM 0.77 0.06 No 0.48 0.12 No
CSDMR._ LR DeepSmells 0.16 0.37 No 0.09 0.51 No
CSDMR_XGB AE-Dense 0.02 0.97 Yes 0.07 0.16 No
CSDMR_XGB AE-CNN 0.03 1.04 Yes 0.07 0.17 No
CSDMR_XGB AE-LSTM 0.02 1.05 Yes 0.06 0.17 No
CSDMR_XGB  DeepSmells 0.84 0.05 No 0.33 0.05 No
CSDMR_RF AE-Dense 0.04 0.52 Yes 0.39 0.06 No
CSDMR_RF AE-CNN 0.07 0.12 No 0.37 0.06 No
CSDMR._RF AE-LSTM 0.03 0.60 Yes 0.33 0.06 No
CSDMR_RF DeepSmells 0.21 0.07 No 0.08 0.11 No
CSDMR_NB AE-Dense 0.31 0.05 No 0.17 0.06 No
CSDMR_NB AE-CNN 0.33 0.06 No 0.17 0.06 No
CSDMR_NB AE-LSTM 0.07 0.06 No 0.13 0.06 No
CSDMR._ NB DeepSmells 0.04 —0.70 Yes 0.03 —0.61 Yes
CSDMR_DT AE-Dense 0.07 0.08 No 0.06 0.09 No
CSDMR_DT AE-CNN 0.12 0.09 No 0.05 0.10 No
CSDMR_DT AE-LSTM 0.04 0.44 Yes 0.04 0.48 Yes
CSDMR_DT DeepSmells 0.05 0.11 No 0.04 -0.43 Yes

2. CSDMR,_ RF significantly outperformed AE_Dense and AE_LSTM with a medium
effect size.
3. DeepSmells significantly outperformed CSDMR_ NB with a medium effect size.
4. CSDMR_ DT significantly outperformed AE_LSTM with a small effect size.
These tables show also that in term of Fy:
1. DeepSmells significantly outperformed CSDMR, NB with a medium effect size.
. AE_LSTM significantly outperformed CSDMR,_ NB with a small effect size.
3. DeepSmells significantly outperformed CSDMR_ DT with a small effect size.
Additionally, a post-hoc power analysis (i.e., retrospective power analysis) is conducted
for cases where statistically nonsignificant results were obtained to assess the reliability of
these findings. It is important to mention that while researchers agree on the importance of
prospective power analysis to determine an adequate sample size for a planned research study
[59,60], they disagree about the value of a post hoc power analysis. Some researchers still
recommend that power analysis can be done retrospectively, especially when a statistically
nonsignificant result is obtained [59,60]. In this case, a post hoc power analysis is conducted
to determine if the lack of significance is due to low statistical power or to a truly small
effect. Power analysis is based on four related parameters (the sample size, the effect size,
the significance level (a, often set to 0.05), and the statistical power. A power analysis is
generally conducted to estimate one of these four parameters given the remaining three
values. The statistical power of a test is the probability of rejecting Hy when it is really
false (i.e., the capacity to detect an effect if it is really there). This power is tied by an
inverse relation with g (i.e., the probability of making a Type II error) and is equal to
1 — 5. A low power value indicates that there is a high risk of Type II errors, while a high
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value indicates a low risk of Type II errors. The literature shows that 0.20 is the acceptable
level of 5, so the desired power is 0.80. In our study, the estimated post hoc power was
found to be low and range between 0.5 and 0.05 in each nonsignificant case, which leads
to the conclusion that the non-significance is due to low power and suggests that more
powerful research should be conducted.

RQ2. Hypothesis 2: The CSDXR method can improve the performance of code
smell detection.
( )
Overall, the results indicate that the CSDMR_ XGB model achieves superior F; and
MCC scores compared to the baseline models on two types of smells. Specifically,
the enhancement rates in terms of Fj-score were 1.99% and 6.09% for Complex
Method and Multifaceted Abstraction smells, respectively. In terms of MCC, the
improvement rates were 0.82% and 35.64% for these two smells, respectively. Ad-
ditionally, it demonstrates enhanced Precision for one specific type of smell. The
CSDMR_ LR model also excels in Precision for two types of smells. For each type
of smell, at least one CSDMR variant surpasses the performance of the AE-Dense,
AE-CNN, and AE-LSTM models.
In general, The Student’s test indicate that CSDMR outperformed AE-Dense,
AE-CNN, and AE-LSTM models while achieving performance comparable to
DeepSmells.
Moreover, the use of a simple grid search strategy for hyperparameter tuning provides
an initial baseline for the performance of the CSDXR approach. Therefore, we accept
the hypothesis that CSDXR models can improve the performance of code smell
detection. However, this strategy may not fully leverage the model’s potential.
Incorporating more advanced hyperparameter tuning methods, such as evolutionary
algorithms, could lead to improved performance. Future work will be dedicated
to the exploration of these advanced strategies to reveal the potential of CSDXR.
Finally, it is also important to note that the statistical power of the analysis suggests

that future studies need to be carried out to validate the reliability of nonsignificant.
\ J

6.3. Results of RQ3

RQ3: How does the CSDMR’s performance and computational cost compare
to that of CSDR?

Approach The CSDXR method, which consists of transformation and classification
components, is compared with the CSDR method. For this comparison, we implemented
the transformation component using the Rocket technique (CSDR) and assessed the
performance of CSDR variants against CSDMR variants in terms of Fj-score and MCC.
Additionally, we compared the transformation times logged for both CSDMR and CSDR
methods to convert the training dataset.

Results Table 10 presents the performance metrics for each design variant of CSDR
and CSDMR, with configurations that produce feature vectors of size S for each type
of smell(O.size). The table includes performance results in terms of Fj-score, MCC, and
transformation time (Trans. Times) in seconds. It also highlights the differences in F} and
MCC scores between each CSDR variant and its corresponding CSDMR variant. The final
column shows the Transformation Time Ratio (TTR) CSDMR relative to CSDR for each
smell.
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The results indicate that the performance of CSDMR and CSDR variants is comparable,
with differences in F; and MCC scores ranging from 0 to 0.16. In all cases, there were no
significant performance differences between CSDR and CSDMR. There were no performance
differences between CSDR, and CSDMR in seven cases. CSDMR performed worse than
CSDR in 17 cases, while it outperformed CSDR in 16 cases. Regarding transformation
times, CSDMR is significantly faster than CSDR. Specifically, CSDMR demonstrated
a speed rate approximately 16 times faster on the CC dataset with an output vector size
of 84. The speed rate varied between 2 and 16 across different datasets, with an average
speed rate of 12.7.

A statistical test was conducted to examine whether there are significant differences
between the CSDMR and CSDR results, specifically in terms of F}-scores, MCC scores,
and transformation times.

The Kolmogorov-Smirnov test [61] was chosen for this analysis due to the non-normal
distribution of the data. A p-value less than 0.05 indicates the presence of significant
differences between the CSDMR and CSDR approaches. Table 8 presents the p-values for
CSDMR and CSDR in terms of Fy and MCC scores, while Table 10 presents the mean
execution times for CSDMR and CSDR, along with the p-values for transformation times.

Table 9 shows that all the obtained p-values for F; and MCC scores are greater than
0.05, indicating that there are no significant differences between CSDMR and CSDR in
these metrics. However, the p-value for transformation time is less than 0.05 (see Table 10),
suggesting a significant difference between CSDMR and CSDR in terms of transformation
time. Based on the mean execution times of CSDMR and CSDR and the p-value presented
in this table, we can conclude that CSDMR is faster than CSDR in terms of transformation
time.

This analysis shows that while the performance of CSDMR and CSDR is generally
similar, CSDMR offers a considerable advantage in terms of transformation time, making
it a more efficient choice for code smell detection.

RQ3. Hypothesis 3: CSDMR variants’ performance is comparable to CSDR variants
in the context of code smell detection, while CSDMR variants are faster than CSDR
variants.

Therefore, we conclude that the performance of CSDMR variants is comparable to
that of CSDR variants. Additionally, CSDMR variants are significantly faster than
CSDR variants.

6.4. Discussion

This study demonstrated that the proposed method, CSDXR, have the potential to detect
smells without the use an extensive feature engineering process. The study revealed also
that MiniRocket combined with the XGBoost classifier outperforms other variants in terms
of detection performance.

However, the obtained results demonstrate that the performance of the CSDXR method
is highly sensitive to the type of code smell. While slight improvements were observed
for two code smells (CM and MA smells), the results indicate that there is still room for
significant enhancement, as the highest F} and MCC scores achieved were 0.769 and 0.740
respectively.
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Table 8. Performance metrics for each design variant of CSDR and CSDMR

CSDR CSDMR
Smell O. size Model variant P MCC r1?1"ans. F MoC Trans. Fy diff. MCC diff. TTR
Time(s) Time (s)
82 CSDXR_LR 0.00 0.00 27.82 0.13 0.16 1.74 -0.13 -0.16 16.01
82 CSDXR_XGB 0.30 0.29 0.20 0.22 0.10 0.07
CcC 82 CSDXR_RF 0.21 0.27 0.19 0.24 0.02 0.03
82 CSDXR_NB 0.34 0.28 0.33 0.27 0.01 0.02
82 CSDXR_DT 0.31 0.25 0.27 0.19 0.05 0.05
82 CSDXR_LR 0.60 0.55 27.78 0.49 0.48 2.31 0.11 0.07 12.03
82 CSDXR_XGB 0.69 0.65 0.67 0.63 0.02 0.01
CM 82 CSDXR_RF 0.69 0.65 0.67 0.64 0.02 0.01
82 CSDXR_NB 0.60 0.54 0.59 0.53 0.01 0.01
82 CSDXR_DT 0.57 0.51 0.55 0.49 0.02 0.02
82 CSDXR_LR 0.00 0.00 198.58 0.04 0.06 14.71 -0.04 -0.06 13.50
82 CSDXR_XGB 0.08 0.14 0.09 0.16 0.00 -0.02
FE 82 CSDXR_RF 0.07 0.16 0.12 0.24 -0.05 -0.07
82 CSDXR_NB 0.21 0.22 0.20 0.18 0.01 0.04
82 CSDXR_DT 0.14 0.11 0.16 0.12 -0.01 -0.01
82 CSDXR_LR  0.00 0.00 218.23 0.00 0.00 16.27 0.00 0.00 13.42
82 CSDXR_XGB 0.02 0.06 0.04 0.09 -0.02 -0.03
MF 82 CSDXR_RF 0.02 0.11 0.07 0.14 -0.04 -0.04
82 CSDXR_NB 0.05 0.14 0.06 0.09 0.00 0.05
82 CSDXR_DT 0.15 0.14 0.09 0.08 0.06 0.06
1000 CSDXR_LR 0.10 0.13 261.60 0.26 0.30 17.07 -0.16 -0.17 15.32
1000 CSDXR_XGB 0.42 0.40 0.43 0.43 -0.02 -0.03
CcC 1000 CSDXR_RF 0.29 0.34 0.25 0.31 0.04 0.02
1000 CSDXR_NB 0.34 0.27 0.34 0.27 0.00 0.00
1000 CSDXR_DT 0.36 0.30 0.39 0.33 -0.03 -0.03
1000 CSDXR_LR 0.64 0.60 286.03 0.62 0.60 20.68 0.01 0.00 13.83
1000 CSDXR_XGB 0.72 0.69 0.73 0.69 0.00 0.00
CM 1000 CSDXR_RF 0.72 0.68 0.70 0.66 0.02 0.02
1000 CSDXR_NB 0.59 0.53 0.58 0.52 0.00 0.01
1000 CSDXR_DT 0.60 0.55 0.62 0.56 -0.01 -0.02
1000 CSDXR LR 0.09 0.20 1937.35 0.02 0.04 790.66 0.07 0.15 2.45
1000 CSDXR_XGB 0.16 0.22 0.17 0.23 -0.01 -0.01
FE 1000 CSDXR_RF 0.13 0.23 0.09 0.19 0.03 0.04
1000 CSDXR_NB 0.19 0.21 0.21 0.19 -0.02 0.02
1000 CSDXR_DT 0.17 0.14 0.20 0.18 -0.03 -0.03
1000 CSDXR_LR 0.15 0.19 2103.54 0.00 0.00 169.46 0.15 0.19 12.41
1000 CSDXR_XGB 0.04 0.09 0.09 0.17 -0.04 -0.08
MF 1000 CSDXR_RF 0.02 0.06 0.04 0.11 -0.02 -0.05
1000 CSDXR_NB 0.05 0.13 0.05 0.09 0.00 0.04
1000 CSDXR_DT 0.08 0.07 0.15 0.14 -0.07 -0.07

Table 9. p-values for F; and MCC scores comparing CSDMR and CSDR

CSDR
Smell CC CM FE MF
CSDMR F 0.87 0.87 0.87 0.87
MCcC 05 087 099 0.99
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Table 10. Mean execution time and p-values for transformation times
comparing CSDMR and CSDR

Approach  Mean execution time (s)

CSDMR 129.11
CSDR 632.62
p-value 0.019

While, the CSDXR, low performance obtained can be attributed to the imbalanced
nature of the dataset used, which makes the detection process more challenging. In general,
better performance could likely be achieved with more balanced datasets.

Additionally, three other primary reasons can explain these performance differences:
1. Nature of the Code Smell: The inherent characteristics of different code smells play

a significant role. Some code smells exhibit identifiable patterns in their structure, while

others do not, making them harder to detect.

2. Nature of the CSDXR Approach: The performance is influenced by the ability of
the kernels and/or pooling operators used in the Rocket and the MiniRocket method
to detect and summarize patterns present in the source code. This highlights the
importance of kernel design in identifying meaningful patterns.

3. Source Code Transformation: The transformation approach used to convert source
code into time series data may fail to adequately reveal the patterns present in the
source code. This can impact the ability of the method to effectively detect certain
code smells.

For instance, the superior results on the CM and MA datasets may be attributed
to the presence of well-defined patterns in the smelly source code for these datasets. In
contrast, the other datasets may lack such patterns, resulting in lower performance, or
the patterns that identify the smell may be present, but the approach lacks the capability
to detect them. Thus, our conjecture is that the variation in CSDXR performance across
different types of smells can be explained by the fact that the CSDXR approach is
fundamentally a token-based method. Code smells can be detected by leveraging various
types of information present in a code fragment—such as lexical, structural, semantic, or
contextual information. While some smells can be identified using just one of these types,
others require a combination, making the detection process more complex. An effective
detection method should ideally incorporate all of them. In our case, the CSDXR method
relies primarily on lexical features and only a limited amount of structural information (i.e.,
tokens and their order of appearance), which may limit its effectiveness for certain smells.
For example, detecting the Feature Envy smell also requires semantic information—like
the meaning of identifiers, data and control dependencies, comments, and so on.

To clearly identify the reasons behind these results, it is crucial to design new experi-
ments. These should investigate the potential of novel kernel designs, improved pooling
operators, and alternative source code transformation approaches to better capture the
underlying patterns in source code.

Additionally, while this study primarily focused on evaluating efficiency in terms of
transformation time, we recognize that cost associated with memory usage is another critical
parameter that significantly influences scalability and practical applicability. Addressing
cost related to memory usage will be essential for enhancing the approach’s performance
in real-world scenarios.
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7. Threats to validity

7.1. Internal validity

The internal validity of the study may be affected by several factors. First, the use of
the Sktime library for implementing the time series transformation module and setting
classifier hyperparameters to package default values may introduce biases or limit the
method’s performance. Second, while the number of kernels and dilation parameters were
varied until satisfactory results were achieved, this approach may not fully capture the
robustness of the findings. Additionally, the absence of cross-validation could impact the
reliability of the reported results. To address these limitations, future work should include
a more comprehensive experimental design involving extensive hyperparameter tuning and
the use of cross-validation to ensure a clearer understanding of the method’s capabilities
and more reliable conclusions.

7.2. External validity

External validity concerns the generalizability of the study’s findings. This study evaluated
the CSDXR approach on only four types of code smells, each with distinct patterns.
However, code smells vary in their properties, and the CSDXR approach shows promise
in detecting smells that exhibit clear patterns. It may not, however, be as effective for
detecting smells with subtler or less distinct patterns. To enhance the generalizability of
the results, it would be beneficial to test the CSDXR approach on a broader range of code
smells, including those with less obvious patterns. This would help determine whether the
approach can be applied effectively in different contexts and scenarios, ultimately assessing
its broader applicability in code smell detection.

8. Conclusion

This paper introduces a novel approach for code smell detection using advanced time series
classification techniques such as Rocket and MiniRocket. The proposed CSDXR, method
involves converting a code source snippet into a sequence of numbers through tokenization,
generating a vectorial representation using a random convolutional transform method, and
then training a classifier on these vector representations, labeled as smelly or non-smelly.
This classifier is subsequently used to determine if new code snippets are smelly based on
their representations.

The empirical study, conducted on a well-known dataset to detect four code smells,
shows that the CSDXR, approach outperforms four state-of-the-art methods, particularly
in detecting Complex Method and Multi-Faceted Smells. Although the DeepSmells method
performs better than CSDXR, the CSDXR approach surpasses the performance of AE-Dense,
AE-CNN, and AE-LSTM models.

Future work will focus on exploring advanced time series representations to further
improve code smell detection capabilities.
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Background: Poor communication of requirements between clients
and suppliers contributes to project overruns,in both software and
infrastructure projects. Existing literature offers limited insights into
the communication challenges at this interface.

Aim: Our research aim to explore the processes and associated
challenges with requirements activities that include client-supplier
interaction and communication.

Method: we study requirements validation, communication, and
digital asset verification processes through two case studies in the
road and railway sectors, involving interviews with ten experts across
three companies.

Results: We identify 13 challenges, along with their causes and
consequences, and suggest solution areas from existing literature.
Conclusion: Interestingly, the challenges in infrastructure projects
mirror those found in software engineering, highlighting a need for
further research to validate potential solutions.

1. Introduction

Developing software products and releasing them to the market is a complex process
that requires efficient communication [1]. Inefficient communication manifests itself as
communication gaps that lead to quality issues, wasted efforts, delays, and ultimately to
failure to meet the customers’ expectations [2]. Moreover, the inefficient use of requirements
artifacts, i.e., information is not tailored to the needs of the involved stakeholders, may
impede requirements communication in software projects [3]. What is common for large
software and infrastructure projects is their complexity that often implies the use of
suppliers [4] to deliver significant parts of the solution, e.g., automotive industry often uses
suppliers to develop software for cars.

The friction-free economic principles of the software industry help involve suppliers
from geographically distant locations, primarily for cost reduction and the availability
of competence. One of the main challenges in involving suppliers is establishing good
communication principles, especially agreed quality levels, and also communicating potential
difficulties and issues early [5]. In particular, the verification of supplier deliverables against
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client requirements poses challenges [6]. A large contributor to this challenge is the inherent
uncertainty in requirements, which increases the negative influence of coordination efforts
on trust for new product development projects [7]. In project management theory, it has
been suggested that both goal and resource interdependence between clients and suppliers
have a positive influence on coordination and cooperation in new software development
programs [8].

Infrastructure projects often last decades in planning and execution [9], and involve
a large number of specialized project teams (e.g., owners, contractors, consultants, designers)
with specific core competencies. These projects are also featured with uncertainty, frag-
mentation [10], and high complexity and inter-organizational task interdependence, which
makes communication ever more important [11]. Because contracts of construction projects
are inherently incomplete [12], understanding which challenges arise in client-supplier
communication in design-build projects becomes critical.

In practice, the ability to communicate clients’ needs and requirements to suppliers is
a key success criterion in infrastructure projects [13-15]. Effective communication facilitates
stakeholder engagement during the change management process [9] and clarifies realistic
stakeholder expectations, while insufficient communication drives uncontrolled change and
can contribute to project delays [16].

Several studies have explored the challenges associated with general communication
in large construction projects [17], requirements allocation [18], verification and valida-
tion [19], system integration [20], the relationship between the communication-conflict
interaction and project success [10], trust between firms and suppliers [21], encoding
and decoding communication competencies in project management [22], or inter-cultural
communication [23].

However, little research effort has been dedicated to exploring the processes and associ-
ated challenges with requirements activities that include client-supplier interaction and
communication in infrastructure projects. Requirements communication is the process of
communicating — both verbally and through documents — requirements and project-related
documents between the client and the supplier. Requirements validation is the process of
ensuring that the requirements reflect the client’s needs before designing or investing in
building the system. Digital assets verification ensures that the delivered assets (e.g., 3D
drawings) correspond to the requirements specifications. Figure 1 illustrates the verifica-
tion and validation processes. It is important to note that in the verification processes
(requirements verification and system verification), the client is not directly involved. As
for the validation processes, the client input is important to ensure delivery of what the

Requirements System (Digital Assets)

Verification Requi t Verification System
(Quality) equirements (Digital Assets)

A

Requirements
Validation

System
& Validation

Client (Customer)

Figure 1. Verification and validation processes
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client wants. In infrastructure projects, tender documents, written by the client, are the
basis from which suppliers derive requirements specifications that need to be validated.

This study is part of a research project that aims to investigate methods that can
improve functional requirements traceability at different stages in construction projects.
Functional requirements should be linked to a digital twin [24], a collection of digital assets
that represent the facility and are linked to the physical facility. Digital assets are defined
as any digital file (textual, images, audio, or video) stored on any electronic device (e.g.,
computer, mobile phone, or cloud) with the right to own the file [25]. In infrastructure
projects, Computer-Aided Design models (CAD), Building Information Models (BIM),
and System Information Models (SIM) [26] are typical digital assets. Traceability between
functional requirements and digital assets would allow for efficient and effective digital
assets verification before construction has started, enable monitoring during construction,
as well as make it possible to follow-up on the original requirements during the decades of
operation and maintenance.

This study explores the nature of client-supplier requirements communication in large
infrastructure design-build projects, where the supplier is responsible for the design,
construction, and requirements validation and digital assets verification processes. Such
a description can help to understand the challenges that practitioners encounter and either
point to solutions that exist in the literature or describe a research gap.

We frame our research using the design science process [27,28], which aims to extend
knowledge by identifying and addressing specific problems in practice. We conducted two
case studies where we explored the client-supplier interface. In the two projects, Anonymous
acted as client and two other companies acted as contractor and sub-contractor. The
semi-structured interviews were designed to understand how requirements communication,
requirements validation, and the verification of deliverables are conducted. We transcribed
the audio recordings and coded the data to answer the research questions.

We present an overview of the client-supplier interface and develop process diagrams
for each investigated case. Furthermore, we identify and describe the challenges faced by
the managers and engineers working in these processes. Finally, we map these challenges
to potential solutions from the system and software engineering domain. Identify conflicts
early, requirements abstraction, requirements are impossible to build and granularity of
traces, are challenges that are also faced in software engineering domain and are important
to address.

The remainder of this paper is structured as follows. We present in Section 2 literature
that is related to our work. In Section 3, we present our research methodology and study
design. We present our research results in Section 4 and discuss them in Section 5. In
Section 6, we draw a conclusion from this study. And finally we list future work directions
in Section 7.

2. Related work

The focus of our investigation is the processes related to requirements engineering on the
interface between clients and suppliers in the context of construction projects. In this
section, we discuss, therefore, related work from systems engineering and communication
in large construction project research areas.
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2.1. Communication in software engineering

Communication in software engineering is essential in any project as it affects its outcome.
Many researchers have investigated the associated challenges with communication in
industry [3,29,30]. Bjarnason et al. [29] investigated geographical, cognitive, and psycho-
logical distances in communication between teams and identified ten factors that affect
communication. Liskin [3] investigated how artifacts support or impede requirements
communication. They identified five challenges related to link requirements. Liebel et
al. [30] studied communication problems in automotive requirements engineering, conclud-
ing that it is important to establish communication channels outside the fixed organization
structure. Other researchers [31-33] proposed solutions to tackle these challenges. Igbal et
al. [31] developed a framework to address communication issues during the requirements
engineering process for software development outsourcing. Fricker et al. [32] suggested
handshaking with implementation proposals that could be used to improve the commu-
nication between the client and the supplier. Pernstal et al. [33] developed the BRASS
framework to support coordination and communication of inter-departmental requirements
in the large-scale development of software-intensive systems. However, the framework does
not focus on requirements validation but rather on supporting the selection of the most
suitable implementation plan. Although these studies investigate (requirements) communi-
cation challenges and propose solutions to them, they mainly focus on inter-organization
communication, in contrast to our study, where we focus on requirements communication
in the client-supplier interface.

2.2. System engineering

RE and verification are of high interest to the system engineering community, which can
be seen by the several conducted studies covering different system engineering processes
and their challenges [18, 20, 34-36].

Madni et al. [20] explored the challenges in system integration in the defense and
aerospace domain. They propose an ontology-based system integration approach to facili-
tate communication between the different stakeholders. Makkinga et al. [19] conducted
semi-structured interviews in three mid-sized projects in the Netherlands. Their focus
was on the verification and validation problems in construction projects and possible
solutions to these problems. They advise more research work in the validation process.
Vermillion et al. [18] compare the requirements allocation and objective allocation in
projects with outsourced design. They propose an approach for requirements allocation for
the design process. Moreover, they see an asymmetry in knowledge between the clients
who outsource the design and agents designing the system, which needs to be addressed to
reduce negotiation iterations.

System engineering processes and practices in the construction domain have also
been of interest to researchers [35,36]. Lynghaug et al. [35] explored the state of system
engineering practices in the Norwegian construction domain. They conclude by providing
recommendations on implementing and improving system engineering practices in the
construction domain. One of the most critical system engineering processes is requirements
analysis. Raatikainen et al. [37] highlighted the challenge of efficient communication
and management of requirements in the nuclear energy domain. De Graaf et al. [36]
investigated the state of practice of six cases of sub-contracted design work in civil
engineering projects. They identified three factors that affect the sub-contracted work,
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mainly: Building Information Model (BIM) interoperability, time pressure, and employee
availability.

2.3. Communication in large construction projects

In large construction projects, communication is essential to the success of the project,
and conflicts could lead to communication breakdowns and project failure as illustrated
in multiple studies [9,10,17,38]. Wu et al. [10] investigated the relationship between the
communication-conflict interaction and project success. Malik and Taqi [17] explored the
relationship between communication and the success of construction projects. They found
that process conflict and relationship conflict have a negative impact on communication and
project success. Saxena and McDonagh [38] have investigated communication breakdowns
and concluded that change management requires a multilevel communication approach.
Furthermore, communication could be an enabler to other activities in the project. Butt et
al. [9] have looked into how effective communication facilitates stakeholder engagement
during the change management process and changing project culture. Communication
is a powerful tool in ensuring participation in change management processes. Lack of
communication leads to teams focusing on task performance and efficiency rather than
empowerment and involvement.

Communication is even more essential in global projects, where cultural changes added
more complexity, as it continues to shows [22,23,39-41]. Loosemore and Muslmani [23]
investigated intercultural communication challenges in Persian Gulf projects, highlighting
the need for a better understanding of cultural diversity. Similar recommendations were
reported by Ochieng and Price, who studied the cultural variation of project managers in
Kenya and the UK in communicating effectively on multicultural projects [39]. Henderson
et al. [41] looked into the impact of communication norms on global project teams and
individuals’ project satisfaction and performance. In another study [22], the researchers
also looked into encoding and decoding communication competencies in project manage-
ment. Daim et al. [40] have also looked into communication breakdowns among global
virtual teams, and these breakdowns tend to threaten project delivery. The authors found
five factors impacting communication breakdowns: trust, interpersonal relations, cultural
differences, leadership and technology.

These studies show the importance and consequences of communication in construction
projects. However, they are mainly focused on people’s communications rather than artifacts
of communication, which we focus on in our study.

2.4. Research gap

Requirements validation, communication and digital assets verification are important
in avoiding project failures [15,42]. While researchers from the software engineering
domain have investigated the area [43,44], it remains greatly unexplored or neglected
in the system engineering domain. Hence, due to the lack of studies that investigate
requirements validation, requirements communication and digital assets verification in the
system engineering domain, we are conducting this study to fill this gap.
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3. Methodology

Due to the aim of the research project as a whole, which is to identify and address problems
related to the requirements communication process and the traceability of functional
requirements to the digital twin, we frame our research as design science problem [27,28].
Hevner [45] has depicted design science as a process intertwining relevance, rigor, and design
cycles. In the study reported in this paper, we investigate the challenges of client-supplier
communication in system engineering projects; in other words, we identify the relevance
of the problem in the infrastructure domain. Thereafter, we plan to design a solution
for one of the problems we identify in this study, apply it to the problem, and further
improve it (design). Finally, we plan to verify that the solution fits the problem through
implementation to other problem instances from the software engineering domain (rigor).
In this study, we focus only on determining the relevance of the problem.

We designed the study according to the case study guidelines by Runeson et al. [46],
who advocate for defining a detailed case study protocol that reflects the changes made
during the iterative process of data collection and analysis. The research questions with
the motivation and alignment to our objective are listed in Table 1.

Table 1. Research questions

Id Research question Motivation

RQ1 What are the practices and challenges One of the main documents that are communicated
in system requirements validation? between the client and the supplier in design-build
contracts are system requirements. Hence it is impor-
tant to have those requirements validated. We explore
the system requirements validation process and the

challenges associated with it.
RQ2 What are the practices and challenges Explore the requirements communication process be-
in system requirements communica- tween the client and the supplier, and what different
tion between the client and the sup- formats the requirements take before they are trans-

plier? lated into a design. Moreover, we want to explore
the difficulties in the process and opportunities for
improvements.
RQ3 What are the practices and challenges Explore any quality checks done by the client or the
in digital assets verification? supplier on the design documents and any challenges

associated with the process.

3.1. Case description

The two cases were selected from Anonymous’ projects based on availability and access to
information. Both projects distinguish between project-specific requirements and regulatory
requirements. Project-specific requirements describe needs that pertain to the particular
facility, originating from diverse stakeholders such as the government, communes, and land
owners. Regulatory requirements define needs that are relevant to all applicable facilities.
While the client specifies the project-specific requirements, it is the responsibility of the
supplier to identify and comply with the relevant regulatory requirements for the designed
facility.

Case One is a road project that includes the design and building of roads and bridges
for cars, pedestrians, and cyclists. At the time of the study (April-June 2020), the project
was in construction (3 years duration). Case One, with a budget of 35M USD, is part of
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a larger road project with an estimated duration of 30 years (15 planning, 15 construction)
and a budget of 4B USD. Case Two has specified approximately 700 project-specific
requirements and is associated with 12000 regulatory requirements.

Case Two is a railway project with the design and build of a high-speed train connection,
including rail, bridges, and tunnels. The project was in its early stages (requirements
specification and initial design) at the time of the study. The estimated project duration for
Case Two is 34 years (9 pre-study, 10 planning, 15 construction) and a budget of 8.8B USD.
Case Two has specified approximately 1000 project-specific requirements and is associated
with approximately 15000 regulatory requirements!.

3.2. Data collection

We conducted semi-structured interviews with the participants from all three companies
listed in Table 2. Semi-structured interviews are fit for a study where a clear hypothesis
does not exist and the research questions are of explorative nature [46]. In our case, we
explored the system engineering processes that involve client-supplier communication, but
we don’t know to what extent these processes were implemented.

Table 2. Companies overview

Company Industry Role Case Company size
A Construction Contractor Case One 45000
B Design Sub-Contractor Case One 6000
C Transportation and Infrastructure Client Case One, Case Two 9400

The unit of measure for company size is the average number of employees.

We formulated the interview questions in three main themes, according to our stated
research questions: requirements validation, requirements communication, and digital assets
verification. Then we adapted the interview questions to each interviewee role. For example,
when we interviewed a requirements engineer, we focused our questions on requirements
validation and requirements verification. During each interview, we asked (on average)
14 pre-defined questions about the topics, excluding follow-up questions. We present here
a few examples of the questions that we asked during the interviews: on the topic of
requirements communication we asked questions such as “Q: How do you receive the
requirements specified by the client?” and “Q: Do you experience any challenges in
requirements’ communication?”, on the topic of requirements wvalidation we asked “Q:
Explain the requirements validation process?”, and in the area of digital assets verification
we asked “Q: What is the next step after the digital assets are produced?”, and “Q: How
do you ensure that the produced digital assets satisfy the requirements”.

We interviewed ten people from three companies. Table 3 shows their roles, companies,
and industry experience. The interviewees had between 7 and 24 years of experience and
worked in roles related to requirements engineering, design, and project management.
Convenience sampling was used when choosing the participants for the interviews. We
asked our company contacts for people who work with requirements and system design,
then they suggested people based on their availability. In Case 2, we only interviewed

n both projects, the number of project-specific requirements varied over time. Furthermore, the number
of associated regulatory requirements is an estimate by a requirements engineering lead at Anonymous.
Determining the exact numbers would require that every contractor keeps track of the regulations they
need to comply to, which is, as we shall see, not the case.
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people from the client side as we didn’t have access to suppliers. In this paper, we use the
acronym XY to reference interviewees, where X is a letter referencing the company [A,B,C]
and Y is a number referencing an interviewee in that company.

Table 3. Interviewees roles

Id Role Company Experience
Al Design Manager A 20+ years
A2 Tender Manager A 10 years
A3 BIM Manager A 7 years
A4 Design Manager A 10 years
B1 Discipline Leader B 15 years
B2 Head of Design B 25 years
Cl1 BIM Specialist C 9 years
C2 Requirements Specialist C 11 years
C3 Requirements Engineer C 8 years
C4  Head of Tech and Environment C 24 years

The experience presented in this table is the overall industry experience.

Two to three researchers attended the interviews (observer triangulation). The first
author led the interview by asking questions, and the other two authors observed and
asked follow-up questions if necessary. We conducted each interview as follows:

1. A week before the interview, we sent the informed consent letter to the participants
and asked them to return a signed copy within two weeks after the interview.

2. Before the interview started, we briefly described the purpose of our study, and the
expected outcome and explained how we are going to conduct the interview.

3. We started recording the interview and asked the questions.

After we finished conducting the interviews, the first author transcribed them. The third
author listened to the interviews’ recordings to verify the transcript. We sent each transcript
out to the interviewees for comments. We received corrections from one participant,
clarifying statements that were incomplete due to recording issues caused by the recording
equipment.

3.3. Data analysis

We coded the interview transcripts with an initial set of codes that the first and third author
created in alignment with the research questions. The first author quoted and labeled parts
of the transcript using these codes. Feedback sessions were conducted between the first and
third author to refine the codes. Several coding iterations were done until we had enough data
to answer the research questions. A final verification of the quoted text was done by the third
author. The codes were created on different levels of abstraction, as seen in Figure 2. Initially,
we started with 14 abstract codes: artifacts, roles, tolls, processes, important statements
and challenges, digital assets implementation, digital assets verification, requirements
elicitation, requirements specifications, requirements communication, requirements change,
and requirements validation. We derived compound codes by combining two or more abstract
codes (e.g., requirements validation-process). Then, we added additional codes as needed.
This helped us to use relevant codes when answering the research questions, as exemplified
next.

Coding example When coding the answers to the interview questions related to the
requirements validation process, we started with the codes: 1) requirements validation
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Figure 2. Coding levels

process to quote the activities associated with the requirements validation process and
2) requirements validation challenge, to quote the challenges of that process. These codes
were part of the group requirements validation. Then we added more codes based on the
content, e.g., requirements documentation and cost estimation to quote the artifacts used
in the validation process. After that, we created codes on a higher abstraction level, e.g.,
tools, artifacts, and processes.

Using this way of coding resulted in codes on different abstraction levels. This helped
retrieve all information in a whole area, e.g., the requirements validation process, and in
detail in that process, e.g., actors in the requirements validation process.

4. Results

We present the results in three sections following the themes of the interview questions:
requirements validation, requirements communication, and digital assets verification. In
each section, we describe the process and the challenges faced in that process. A challenge
is presented as the description, causes, and consequences of that challenge. Some challenges
have no causes or/and consequences since we could not identify them from the interviews. We
illustrate the results in figures that show the process flow, artifacts, and actors. Each figure
is divided into columns representing the parties involved in the project: client, contractor,
or subcontractor. In some figures, there is a question mark which is a placeholder for
information that was not clear from the interviews.

4.1. Requirements validation

Figure 3 depicts the requirements validation process in Case One. At the contractor, the
tender manager and their team conduct a review process. The inputs to the process are
the technical description and the general regulations (local to the country) that apply to
the project. The output of the process is a cost estimate spreadsheet, which estimates the
project cost and is used when preparing the contract for the project. Another requirements
review process is conducted at the subcontractor by the discipline leaders and designers.
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Figure 4. Requirements validation — Case two

They take as input the technical description from the contractor and the general regulations.
The output of this process is the design guidelines document that helps designing the
models for the project.

Figure 4 shows the requirements validation process in Case Two. The client conducts
a partial check on the requirements. The inputs to this check are the railway regulations
and technical system standards and the outputs are the validated requirements. We do not
have information about the requirements validation process on the contractor side, because
the people we interviewed in Case Two are from the client-side.

We have identified the following two challenges that are faced by the roles involved in
the requirements validation process.

4.1.1. Challenge 1: Prioritizing the requirements validation process

Prioritizing the requirements validation process is a challenge faced by the contractor
in Case One and the client in Case Two. The time to validate the requirements by the
contractor is seen to be short in Case One, as reported by the tender manager (A2). When
the tender project is announced, the contractor has to respond with the cost estimate
in a matter of weeks. This makes the validation of the requirements challenging for the
contractor who has to do it in a short time. “The client spends four years coming up
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with the design (presented by the requirements), and we have to price it in four or eight
weeks, coupled with a tender model that is purely price-driven. It is a very unhealthy
situation” (A2). The requirements validation process requires experience and knowledge in
the discipline, which makes the prioritization of this process and finding the right people
to perform it difficult for the client. “When you talk about validating requirements, it is
not our top priority” (C2).

Ambiguous and conflicting requirements is a cause of this challenge in Case One. The
requirements validation process could take more than a couple of months when the supplier
finds requirements that need clarification or revision by the client. In Case Two, lack of
resources is seen as a cause of this challenge. As C2 said, “there are not enough railway
specialists in the company.” The people involved in Case Two are involved in other projects
and have other responsibilities at the client, making it difficult to find the right people to
validate the requirements.

The requirements validation process is overlooked is seen by the client as a consequence
of not prioritizing the said process. Since it is not always feasible to allocate resources
for the validation process, it gets less priority over other activities, leading to the process
being skipped in many cases. Furthermore, the contractor sees added responsibility as
a consequence. Since the contractor submits the bid to the project based on the requirements,
they take the responsibility if they have not validated the requirements properly: “Do not
put all the risk on us if we can’t find the problem in such a short time” (A2).

4.1.2. Challenge 2: Identify conflicts early

It could be difficult to identify conflicts in the requirements early as seen in Case Two by
the requirements engineer (C3) and head of environment (C4). Although a partial check
on the requirements is conducted at the client side, some conflicts may go undetected until
later at the design stage. For example, when verifying tunnel-related requirements, one
(requirements engineers or designers) may not be able to identify water pipes intersection
with an obstacle due to the land geometry. “It is hard to see that before when you haven’t
drawn the lines for the pipes or the tunnel” (C3).

The main cause of this challenge is not clear. When we asked C3 whether the lack of
information or having too much information is the cause of difficulties identifying those
conflicts, they answered “it depends” (C3).

Client (C) Contractor (A) Subcontractor (B)
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Tender Documents
Technical - Project Leaders - Discipline Leaders
Description - Tender Manager - Designers
Rules & Rules &
Regulations Regulations

Figure 5. Requirements communication — Case one
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4.2. Requirements communication

Figure 5 shows the requirements communication process in Case One. The project’s
technical requirements, called technical description document, are a part of the tender
documents. The project leaders and tender manager on the contractor side get the technical
description from the client, and then they communicate these documents to the discipline
leaders and designers on the subcontractor side. Additional requirements from the rules
and regulations apply to the project in Case One. The contractor and subcontractor are
responsible for finding those additional requirements that apply to the project.

Client (C) Contractor
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Standards Regulations .
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Figure 6. Requirements communication — Case two

Figure 6 shows the requirements communication process in Case Two. In this case,
there are three main types of requirements sources: 1) documents, e.g., technical system
standards, or railway regulations; 2) internal or external departments, e.g., local government
or maintenance department; and 3) people who reside or work in the project area and
who could be affected by the project outcome, e.g., property owners. The client compiles
the requirements from all the mentioned sources into project-specific requirements for the
railway. Those requirements are stored in a software called LIME, which is used to negotiate
requirements between the client and the contractor. The documents stored in LIME are
living documents, where both the client and supplier communicate the requirements and
their feedback through an iterative process. After the client and the contractor have agreed
on the requirements, those requirements are stored in DOORS?.

The interviewees reported five challenges in relation to requirements communication.

4.2.1. Challenge 3: Misinterpretation of requirements

All parties working on the project have access to the same requirements documents, however,
each party has their interpretation that could differ from the other parties’ interpretation.
This was reported in both cases by the design manager (A1), tender manager (A2), and
discipline leader (B1). Moreover, the requirements can be unclear or difficult to understand.
As one interviewee on the subcontractor side mentioned, “we have had a whole lot of
discussions regarding these requirements in the technical description, and it is constantly
not crystal clear, so it is very much up to interpretation” (B1). Also, the client thinks that

2 .
Requirements management software.



https://www.e-informatyka.pl/EISEJ/papers/2025/1/7

Abdeen et al. e-Informatica Software Engineering Journal, 19 (2025), 250107

they could improve their writing; as C4 said, “we often think that we are quite clear in our
communication, but often it’s not the case” (C4).

Lack of knowledge in local projects and requirements are open for interpretation are
of the causes of this challenge, as seen by the interviewees. Some people working on the
project may lack experience in projects from the this specific country, which could lead
to a different interpretation of the requirements. “If you have any country A engineer
and you want to make a bridge design, his background is slightly or completely different
from the country B engineer” (A2). The subcontractor sees it as one of the causes of
misinterpretation of requirements as put by one interviewee “There is never really a correct
answer. There is not just one solution that you can do” (B1).

The misinterpretation of requirements may lead to rework and extra costs. If the
subcontractor’s interpretation is different from the client’s interpretation, then additional
work should be done by the subcontractor. As Bl said, “if our interpretation of the
requirements is not that what the client wants us to do, then there is some additional
work for us” (B1). In special cases, the misinterpretation of requirements could lead to
extra costs paid by the contractor, as confirmed by Al, “I was not informed at all what
a requirement (temporary use of land for the project) means”.

4.2.2. Challenge 4: Long time to communicate requirements (changes and questions)

The requirements communication process between the different parties (client-supplier)

takes a long time. This process includes requirements change requests and any requirements-related

questions raised by the contractor or subcontractor. This challenge was seen in Case One
and Case Two by the discipline leader (B1l) and the head of environment (C4). All
requirements-related communications between the client and subcontractor go through the
contractor, which takes a long time: “it could take quite a bit of time” (B1). The client
also sees that the change process takes a long time from the contractor side as well. C4
gave an example of a case, “one occasion we did a very big change of the requisition of the
whole project... but then it took like a year for the consultants to respond and tell us how
the changes would be interpreted and implemented” (C4).

The interviewees did not explicitly identify the causes or consequences of this challenge.

4.2.3. Challenge 5: Finding the correct information

The documents communicated by the client do not include all the requirements that apply
to the project, and it is challenging to find all requirements that apply by the contractor
and subcontractor. This challenge was reported in Case One by the design manager (A4)
and head of design (B2). As seen in Figure 5 and Figure 6, there are additional requirements
documents that the client does not communicate as part of the tender documents. Those
documents are local rules and regulations. The client only refers to those documents, and
the contractor and subcontractor need to find those documents. “The tricky task to make
sure you have all requirements that have to be followed” (A4).

A cause of this challenge is Lack of knowledge in local projects, similar to that of
miss-interpretation of requirements challenge explained in Section 4.2.1. Some people with
different background could lack experience in projects in a specific country. In this case,
people with experience in local projects are consulted to find the right information.

13
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4.2.4. Challenge 6: Requirements elicitation and validation with non-technical stakeholders

The requirements elicitation and validation process is a challenging task since many
stakeholders are involved. This challenge was reported in Case Two by a requirements
engineer (C3). The client elicits requirements from many sources and stakeholders, as seen
in Figure 6. Therefore, the way the client communicates the requirements needs to be
adapted to the audience. “We can have a super model to communicate with the supplier,
but we can’t use that one when we meet the restaurant owner in the city” (C3).

The cause of seeing the requirements elicitation and validation process as a challenging
task is because there are different parties and many stakeholders with different backgrounds
involved in the process.

This challenge adds additional work to the client, as the client needs to adapt the
requirements to the audience. For example, sketches and drawings need to be done so the
client can communicate the requirements with the property owners.

4.2.5. Challenge 7: Requirements abstraction

The requirements communicated by the client would likely have variations in abstraction
levels. The challenging part is to find the right level of granularity for these requirements.
This is reported in Case Two by the head of environment (C4). A too specific requirement
could constrain the supplier in developing the solution, “sometimes we were getting the
wrong answer when we are too specific in demands” (C4), and a too abstract requirement
is open for miss interpretation “often we have to explain more to make the requirements
more specific” (C4).

We did not identify clear causes or consequences for this challenge from the interviews.
The interviewee did not have a concrete answer about what could be causing such a challenge
and what could be the consequences.
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Figure 7. Digital assets verification — Case one



https://www.e-informatyka.pl/EISEJ/papers/2025/1/7

Abdeen et al. e-Informatica Software Engineering Journal, 19 (2025), 250107

4.3. Digital assets verification

Figure 7 shows the digital assets verification process in Case One. There are two verification
processes present in the figure. The technical check is the process of verifying the produced
digital assets’ conformity with the specified technical requirements. The consistency check
is the process of verifying the conformity of digital assets with the BIM requirements. BIM
requirements specifies how the design models should be delivered (e.g., the file’s extension
to be used for delivering a model, or the units of measure used).

As the subcontractor designers produce the model, a review process is conducted
by those designers and the head of design. The process takes as input 1) the produced
model, which could be 2D drawings/3D models/BIM, 2) a checklist that is prepared by the
designers based on the technical requirements before the implementation, 3) the technical
requirements of the project. The output model of this process, along with BIM requirements,
goes into a clash detection tool, which checks whether the models have any conflict in
design objects. After that, a manual review process is made by the BIM manager.

At the contractor, a similar verification process on the model is followed. First, a tech-
nical check is done with the design manual, which is produced at the beginning of the
project. This check is done by a checking engineer and is mainly based on experience
with verification of similar models. The model is sent to the BIM expert who conducts
pre-configurated semi-automated checks on the attributes of the BIM objects based on the
client’s BIM requirements, using internal tools with customizable configuration possibilities.
The technical and consistency check is an iterative process.

Then the model is sent to the client for approval. At the client, there are technical
specialists who do their own technical checks while taking technical requirements as input.
After that, a series of consistency checks are conducted: clash detection, BIM requirements
check, and partial check by BIM specialists. When the model passes all those checks, it is
stored in the appropriate database.

Client (C) Contractor

Al chio [ chit | chiz [ chis | |
I

Technical: “ “

Check Specialist ?
I
: < — "
| —_— <}
i hd & N
] Manual ? Model
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Figure 8. Digital assets verification — Case two

Figure 8 presents the digital assets verification process in Case Two. When the models
are delivered to the client for approval, the specialist in the domain conducts a manual
review process to verify those models. We also know that there is some kind of check being
done by the contractor.

We have identified six challenges related to the process of digital assets verification.
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4.3.1. Challenge 8: Requirements are impossible to build

In some cases, during the verification of digital assets, engineers detect requirements that are
impossible to build. This challenge was reported in Case One by the discipline leader (B1).
The contractor and subcontractor are limited by what they can change in the requirements.
Then during the verification of digital assets, some requirements appear to be impossible
to build. “The solution that company C stated simply can’t be done” (B1). Although the
client may be validating the requirements, it is still the contractor’s and subcontractor’s
responsibility to make sure those requirements are sound and possible to build.

The client specifies solutions rather than requirements were the cause of this challenge.
The requirements provided by the client do not have much room for the contractor or
subcontractor to come up with a solution. Rather the requirements specify an actual
solution that the contractor and subcontractor need to follow. Therefore, if those require-
ments/solutions have conflicts, they will likely show during the verification process of the
digital assets (since they might be overlooked in the requirements validation process, as
discussed in Section 4.1.1.

The consequence of this challenge is extra effort spent on rework to be done by the
subcontractor. During the verification process, if some requirements were detected to be
impossible to build, then the subcontractor needs to come up with a new solution, verify
it, and request a change for requirements.

4.3.2. Challenge 9: Difficulty understanding BIM requirements

Some consultants working on the project are not fluent or familiar with the language
in which the requirements documents are written, as reported in Case One by the BIM
manager (A3). It is difficult for those consultants to understand the BIM requirements.
Although the consultants translate those documents into their language, they are not
confident that the translation is accurate.

Consultants are unfamiliar with the documents’ language was identified as the cause of
this issue. “The language is always a problem when you are an international consultant” (A3).

Long time spent at the beginning is the consequence of this challenge. At the beginning
of the project, it took a while for both the client and the contractor to coordinate and make
sure that they were on the same page; as mentioned by A3 “It took some time coordinating
with the client to understand the requirements” (A3).

This challenge is not specified to BIM requirements only. The project has many people
(requirements engineers and designers) with different language proficiency, whom may find
it difficult to interpret the requirements if the translation is inaccurate.

4.3.3. Challenge 10: Requirements management tool related

In Case Two, one of the identified challenges is related to using the requirements management
tool DOORS. This challenge was reported by the requirements specialist (C2). People
would prefer to use conventional tools like spreadsheets over a specialized new system
like DOORS; as mentioned by C2, “specialists don’t really like new systems” (C2). It is
challenging to get people working on the tool. Another part of this challenge is related to
reaching models from within DOORS. “When specialists review stuff, they need to go to
the specific document in the specific models to look, and they can’t just click on the link,
which is annoying” (C2). The delivered models are verified in a different system, and it
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could be difficult to find the model and the related requirements during the review process
by the client’s engineers.

The causes we identified for this challenge are use of yet another new tool and the
limitation of the tool DOORS. The requirements management tool DOORS is new for many
specialists working on the project, and they are not familiar with it; also, some specialists
already maintain different systems. “It is a lot for people that already maintain like fifteen
different systems so that was an issue to make them like DOORS” (C2). Also, DOORS has its
limitations, e.g., “you can’t do hyperlinks in the attribute in DOORS” (C2). Currently, using

the tool to link the requirements to a specific attribute or part of the model is not possible.

This challenge leads to unnecessary work for the requirements specialist and extra effort
by the people verifying the models. Since DOORS is a new system for people to use, the
requirements specialist does spend time preparing views and arranging requirements to
make it easy for people involved in the review process. “I have to be involved quite a bit
just for them to know where to look” (C2). Additionally, since the tool has a limitation in
linking requirements to the detailed model implementations, model verification requires
extra effort. As explained by C2 “they need to be ready to open several different models
which take time to load” (C2).

It is important to note here that this challenge does not point out the deficiencies of
a specific tool, but rather the lack of integration of the many tools an engineer needs to
use to perform their work.

4.3.4. Challenge 11: Granularity of traces

The traces created between the requirements and the models are of high abstraction.

This was reported in Case Two by the requirements specialist (C2). There is information
used in DOORS to trace requirements to the created models. However, this traceability

information is not detailed enough, which makes it difficult to do the verification process.

It is challenging to create those kinds of traces as it is seen to be an expensive practice.
Requirements are not linked to objects is seen to be as the cause of this challenge, “even

though they give you a specific place to look there will be lots of places to look at” (C2).

The current traces are created between requirements and models rather than requirements
and the objects.

One consequence of this challenge is that an extra effort is required to verify the model
as C2 explained “it just takes some time and effort” (C2). Since the requirements are linked
to models rather than objects within the model, it takes extra effort and time from the
specialist to verify the model.

4.3.5. Challenge 12: Lack of Experience Using Tools

There is a lack of experience in using the modeling tools by the people verifying the design
models. This challenge was reported in Case Two by the requirements specialist (C2). The
manual model review process, at the client in Case Two, depends mainly on the experience
of the specialists. Although, DOORS contains traces between requirements and models,

the specialists verifying the model must know where in the model the requirements apply.

The specialists lack experience verifying those models, as (C2) put it “We are not very
experienced using the model, so that’s a challenge for all specialists” (C2).

The use of different models in the project is the cause of this challenge. There are too
many model types used in the project; these models require different tools for viewing. It
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is difficult for specialists to cope with all these tools. C2 said, “we can not choose exactly
what they are going to use; unfortunately, some consultants use different BIM modeling
programs” (C2).

Difficulty navigating the models is a consequence of lacking the experience in verifying
the models. Since the digital assets verification process at the client in Case Two is an
experience-based process, it gets difficult to navigate the models to verify them. The
specialist needs to figure out where in the model the specific requirements apply.

4.3.6. Challenge 13: Verifying all requirements

The client finds it challenging to verify all the requirements in the delivered model. This
was reported in Case Two by the requirements specialist (C2). There are many generic and
project-specific requirements that apply to the models; it becomes troublesome to verify
whether the models conform to all requirements.

The absence of risk analysis for the requirements makes the verification of all require-
ments difficult. There exists no risk analysis nor classification of requirements based on
severity or importance. Therefore, the client has no basis on which to base the prioritization
for verification and resource allocation.

As a consequence, there is an Uncertainty in the verification process at the client side.
Currently, it is not determined if a complete model verification, for all requirements that
apply, is necessary or not. “There is a debate at the client whether or not we are supposed
to do a complete verification or just sample verification and see” (C2).

5. Discussion

In this section, we discuss the implications of our study results for research and practitioners.
We start by discussing the client-supplier communication cycle. Then we look at the
challenges and identify potential solution areas from the literature. Finally, we discuss the
role of the requirements documents in client-supplier communication.

5.1. Client-supplier communication

There are differences between the two cases in the way the requirements are communicated.
In Case One, the client documented and released the requirements to the suppliers once, at
the beginning of the project (Figure 5), while in Case Two, the requirements specification
is a more mature process, as it adopts an iterative approach where the client and the
contractor (i.e, supplier) negotiate the requirements before they are stored in a requirements
management tool (Figure 6). Early requirements negotiation supports more correct and
feasible requirements specification [47], and is part of the recipe of the system engineering
best practices [48]. The requirements process in Case Two follows best practices and is,
therefore, superior to the process in Case One.

The development of the requirements specifications in an infrastructure project is
shared between the client and supplier, as the latter is expected to do their own analysis
of the requirements, elicit the missing ones, and ensure that they align with the client’s
expectations. This is in contrast to software engineering projects where the client is normally
responsible for sharing a set of requirements that aligns with their needs. However, in the
public domain, the development of the requirements specifications in software projects
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could be similar to infrastructure projects. In a case study conducted by Brataas et al.,
[49] to investigate an innovation partnership project in the Norwegian medical sector, the
development of the requirements was a joint effort between the client procurement team
and multiple suppliers, which allowed the procurement team to focus on innovation. Moe
et al. [50] made a similar observation in their study on information systems requirements
in public sector projects: the dialogue between the client and supplier complements the
project’s requirements specification.

In Case One, every party involved in the project does their verification for the delivered
digital assets. The technical check, as we see in Figures 7 and 8, is a sample check done
manually. There are two drawbacks of this check: 1) it is time consuming, and 2) it does
not verify all parts of the delivered digital assets. The supplier takes responsibility for the
issues that show later in the project due to unverified requirements. A similar observation
was made by Makkinga et al. [19], where a supplier carried the responsibility of the
verification when the contractor did not have enough resources to conduct a complete
verification. Consistency checks, which verify whether the design conforms to the general
design requirements such as correct use of units of measurement or file formats, are done
(semi-)automatically, as shown in Figure 7. We believe that developing a common checklist

would have been beneficial in the early identification of potential issues to requirements.

Moreover, we speculate that communication between two parties with various levels of
domain knowledge could be facilitated by communication brokers [51].

The life cycle model used in both cases is sequential. A sequential model is defined
by INCOSE [52] as a systematic approach for the system development process where the
system goes through a sequence of steps from goals definition to a complete system. This
sequential model is beneficial to use in our cases which are large projects with different
parties involved. However, this model also requires verified traceable requirements [52],
which is challenging to achieve. As we saw in Section 4, the requirements validation may
be overlooked (ch3), and the traceability information is not adequate (ch11), which makes
checking all the requirements difficult (ch13).

5.2. Challenges and potential solutions

The mapping of challenges to solutions was done based on the following: (1) Analysis and
synthesis of the results, as some possible solutions were identified during the interview
process, e.g., feedback during RE process, policy change and tender process. (2) The
authors’ experience in requirements engineering research

Figure 93 depicts the identified challenges, their causes, and their consequences and shows
the relations between them based on the analysis of the study results and complemented
with references from the literature based on the author’s experience in requirements
engineering research. In addition, we propose solutions areas to tackle these challenges. In
the problem analysis, arrows represent a contributes to relation between the connected
elements. The arrows from the solution area to the problem area indicate whether a solution
potentially addresses the connected cause and consequently the connected challenge(s). We
differentiate between whether the relation originates from:
— our results (solid arrow)
— an observation made in another study (dashed arrow with reference)
— both from our results and from literature (solid arrow with reference)

3We will make the citations in the figure consistent with the citation in the paper before publishing.
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The solution areas proposed in this section are not exhaustive for all possible solutions
for the challenges and their causes. Rather, they are potential solutions where their
effectiveness in addressing the challenges has been reported in literature but still needs to
be verified in the particular context we have studied. Furthermore, we elaborate on where
a solution could be implemented, at the client or the supplier side, by indicating the main
responsible party. We present the solution areas in more detail next.

Auxiliary artifacts in tracing When tracing requirements to downstream artifacts in
software (e.g., test cases) and system (e.g., design models) projects, an auxiliary artifact
could be used to address the different abstraction levels of the traced artifacts. Thus, the
auxiliary artifact should be traceable to artifacts with different abstraction levels. It can be
an artifact that is produced during the project execution, e.g., a lower level requirement [57],
or an external artifact that is not part of the software or system, e.g., a domain ontology



https://www.e-informatyka.pl/EISEJ/papers/2025/1/7

Abdeen et al. e-Informatica Software Engineering Journal, 19 (2025), 250107

containing domain concepts and has a hierarchical structure [58]. Using an auxiliary artifact
solves the abstraction level mismatch between requirements and the downstream artifacts
(e.g., test cases or design models), and consequently could address the granularity of traces
challenge (ch11). Fine-grained trace links make it possible to trace requirements to their
implementation; thus, verifying all requirements (ch13) in the design model can be more
feasible. This solution should be implemented by the client (for the requirements) and by
the supplier (for the delivered artifact).

Requirements risk analysis A risk analysis could be conducted on all requirements to
assess the severity and consequences of failing to fulfill a requirement. A requirements-risk
analysis is usually conducted in a similar way as those done for a project plan. In the
requirements-risk analysis, three main concepts are identified: problematic requirements,
the possible failures, and activities that could prevent or mitigate these risks [59]. The
risk analysis results help engineers in decision-making by reducing uncertainty [60]. Such
decisions are where resources should be spent [59] or which requirements should be
prioritized for verification [61]. The client should be responsible for introducing requirements
risk analysis as part of the RE process to ensure that the project adheres to the requirements
that threaten the project success.

Project glossaries Project glossaries consist of a set of terms and their descriptions in
a specific domain or a project. Project glossaries are used to mitigate misinterpretations
of terms (ch3) by project members with different backgrounds [62]. Implementing project
glossaries can address differences in experience of design teams align terminology between
parties with different backgrounds involved during requirements elicitation (ch6).

Project glossaries address these issues by providing an explicit description of terms that
can be misunderstood. Delisle and Olson investigate whether project-based terminology
and definitions are actually as widely accepted as believed and conclude that more effort
should be dedicated towards coordination of glossaries and dissemination of information
about project management terms and definitions [63]. We speculate that a broader adoption
of glossaries can be supported by automated construction of project glossaries [64,65]. In
our case, the client specifies the project requirements, so it is his responsibility to develop
and maintain the project glossary.

Knowledge organization Knowledge organization is the process of indexing, classifying,
and archiving documents and books to ease access to them [66]. McClory et al. stressed the
importance of knowledge management and organisational learning and suggested triple-loop
learning as an organisational structure [67].

Infrastructure projects contain many documents (e.g., rules and regulations) that need

to be structured and organized to be useful for requirements extraction and analysis.

Garshol [68] identified different types of knowledge organization systems, e.g., controlled
vocabularies and taxonomies. The use of an appropriate knowledge organization system
to structure domain knowledge [69] could allow engineers to find information about local
projects more efficiently and effectively (ch5). This solution could be introduced either by
the client or the supplier. The client owns the rules and regulations, and organizing them
through automated classification makes access to information more efficient. The supplier
could be obligated to adhere to international standards which apply to multiple projects.

Requirements abstraction methods First, one of the causes of the major challenges
in requirements engineering is the existence of too abstract requirements, which could
result in miss interpretation (ch3) [70]. Thus, a requirement should not be too abstract or
unambiguous [71]. Second, according to SWEBOK, a requirement is defined as “a property
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that must be exhibited by something in order to solve some problem in the real world” and
a good SRS should be an agreement between the client and supplier about “what the software
product is to do”, not how to do it [71]. Thus, a requirement should not restrict possible
solutions or be impossible to be realized (ch8). We argue that requirement abstraction
methods should be applied to ensure requirements are written on an appropriate abstraction
level. Gorschek and Wohlin [72] have developed the Requirements Abstraction Model
(RAM), a method to systematically specify requirements on multiple levels of abstraction
(from product to component level). RAM has been shown to improve the requirements
engineering process and the quality of the requirements specified in practice [73]. Liebel et
al. suggested coordinating requirements on various abstraction to avoid communication
and coordination breakpoints [30]. Requirements engineers on the client side should adopt
one of these solutions as part of the RE process.

NLP4RE Natural language processing (NLP) is the use of (semi-)automated techniques to
analyze and model human language [74], mainly through employing machine learning. This
is particularly beneficial as the majority of requirements in software and system projects
are specified in natural language [75,76]. NLP approaches have shown their potential to
support the requirements validation process as presented by Zhao et al. [77] in their review
of the literature on NLP for requirements engineering (NLP4RE). The use of NLP4RE
reduces the number of resources required for the requirements validation [77,78], e.g.,
by performing automated model checking. Moreover, NLP4RE supports requirements
engineers in identifying conflicts and ambiguities (ch2), which requires expertise [79]. Both
the client and supplier could benefit from adopting this solution in the RE process.

Feedback during RE process One of the good practices in system engineering [48]
and software engineering [80] during the requirements engineering process is adopting an
iterative approach, where the client and supplier agree on the requirements to be developed
incrementally. This approach increases the understanding of requirements and helps with
their prioritization [81]. In Case Two, an iterative approach for RE is adopted where the
client and the contractor (i.e., supplier) negotiate the requirements before they are stored
in a requirements management tool (Figure 6). However, in Case One, the requirements
were specified and communicated up-front, and changes were difficult to introduce due to
contractual obligations. Adopting an iterative approach when specifying the requirements
where the feedback of the supplier is considered reduces ambiguity and conflict in the
specified requirements. Both the client and the supplier are responsible for implementing
this solution.

Outside the scope of RE Other challenges (4,9,10,12) and solutions areas are outside
the scope of RE but in the area of project management. A change in companies’ policy
(client), an improved tender process (client), and using better tools are required in order
to tackle these challenges.

5.3. Impact on academia and industry

This study illustrates the persistence of challenges related to requirements. Since existing
solutions may not be effective, a root-cause analysis should be conducted to identify
the causes behind these challenges and find solutions to address them. Furthermore, the
requirements process and identified challenges in infrastructure projects are similar to those
in the software engineering domain. Thus, although they are two distinct domains, they
share many similarities when it comes to requirement engineering. The software and system
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engineering domain researchers should learn from each other’s experiences in investigating
requirements engineering processes and addressing challenges related to them.

When researchers and practitioners are looking for a solution to specific challenges in
one domain, they should explore existing solutions in the other. The challenges that we
identified in this study and their mapping to potential solutions, as we presented in this
section, illustrate the similarity between the system and software engineering domain. Both
domains use natural language to specify requirements, and both have digital assets that
need to be verified against the specified requirements. In the software domain, engineers
produce digital artifacts such as design documents and source code, while in the system
domain, engineers produce design models (digital twins of the system) before building
the physical build. Moreover, adopting requirements communication techniques is highly
important for the system domain in general and the infrastructure domain in particular,
due to the sub-contracted work being the norm, which adds more complexity to the
requirements communication process.

5.4. Threats to validity

We use the framework by Runesson et al. [46] to discuss the validity threats of our study.

The framework lists four categories of case study validity: construct, internal, external, and
reliability. We analyzed the validity threats of our study from the beginning of our study,
and we continued to revise these threats to minimize them.

Construct validity We mitigated threats to design and execution by involving more than
one researcher in designing and conducting the study. The involved researchers reviewed the
research questions and the case study protocol. Feedback sessions were conducted to discuss
the protocol and make improvements. For example, the first author wrote a set of interview
questions per studied process. During a feedback session, the third author suggested that
the questions should be adapted to each interviewee’s role. On that premise, the interview
questions were adapted to each role by the first author, and the other researchers reviewed
them. The improvement of the interview questions for each interview was done by the
researchers before the start of said interview.

Internal validity Although the involved researchers revised and improved the case study
protocol, there might be a bias or errors in the collected data. To reduce the risk of bias

in data collection, between two and three researchers were present during each interview.

One researcher led the interview, and the other researchers observed the interview and
asked follow-up questions if necessary. In addition, after an interview was completed, we
transcribed the interview, a second researcher verified the transcript and finally sent it out
to the interviewee for comments.

Another internal threat to validity is the risk of bias when coding the transcripts as
part of the data analysis phase. We mitigate this threat by assigning the coding task to
one researcher and the verification of those codes to another. Eventual disagreements were
resolved in meetings.

External validity It could be argued that generalization would be difficult with two case
studies and that more case studies may be required to increase the validity of the study
and achieve generalization. However, generalization can be achieved by individual cases. It
is a matter of the selected cases. As argued by Flyvbjerg, one of the five misunderstandings
of a case study is the inability to generalize from a single case [82]. We focus on analytical
generalization rather than statistical generalization by providing detailed case descriptions
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and discussing the implications of our findings. Moreover, we believe that our cases are
a good representation of the population (infrastructure projects). They are two large
infrastructure projects, with large-sized (450004 employees) companies involved. Case
One is in its final stages, while Case Two is in its early stages.

Reliability To ensure that our study is repeatable, we present in Section 3 the protocol
of our study. We explain the setup of our studied cases, list the cluster of the interview
questions, present the steps in which we conducted the interviews, and the coding mechanism
of the interview data.

6. Conclusion

We have conducted two case studies in three companies to explore the requirements valida-
tion, requirements communication, digital assets verification processes, and the challenges
associated with these processes between the client and the supplier in infrastructure projects.
We identified 13 challenges and proposed potential solutions from the literature to address
these challenges. Many of the challenges faced, during the forward communication (tender
documents) and backward communication (project deliverables), between the client and
supplier can be addressed in the area of requirements engineering. Furthermore, the solution
for similar challenges in the software domain can potentially address the challenges observed
in the system domain.

The system requirements play a main role in the communication between the client
and supplier in infrastructure projects, and their quality likely affects subsequent processes,
e.g., verification and acceptance. The verification process is a difficult task in projects on
this large scale, with thousands of requirements and models to validate. One particular
difficulty is keeping track of the requirements during the verification process.

7. Future work

We have identified several future work directions based on the finding from this paper, that

we outline below:

— Exploring methods to introduce early requirements risk analysis and how to estimate
potential risks on early and often incomplete requirements and how to enable risk-based
requirements reasoning [59].

— Exploring auxiliary artifacts and their usage scenario in requirements traceability. This
involves exploring the relationship between the structural characteristics of auxiliary
artifacts (e.g., a taxonomy) and the performance of machine learning models for
requirements traceability.

— Investigating what types of knowledge organization systems are the most suitable
for large-scale infrastructure projects — we believe that project glossaries should be
considered as an efficient way of organizing knowledge and building common vocabulary
between the parties. We also plan to explore the suitability of topic maps knowledge
organizational structure for infrastructure projects [68].

— Investigating the suitability of requirements abstraction models from the software
domain (e.g., RAM [73]) for the infrastructure projects.

— Exploring the use of NLP4RE techniques to detect conflicts and ambiguity in functional
requirements from the infrastructure domain.
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