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Streszczenie 

 

 Jednym z nieuniknionych, negatywnych efektów ewolucji oprogramowania jest 

erozja projektu. Refaktoryzacja jest technik�, która ma na celu przeciwdziałanie temu zjawisku 

poprzez sukcesywne polepszanie projektu oprogramowania, nie zmieniaj�c jego obserwowalnego 

zachowania. Erozja projektu wyst�puje tak�e w kontek�cie wykonywalnych modeli UML, tzn. 

modeli, które s� wystarczaj�co szczegółowe, by mogły by� kompilowane do wykonywalnych 

aplikacji. 

  

 Celem pracy było zastosowanie refaktoryzacji do obszaru utrzymania 

wykonywalnych modeli UML, w tym: 

1. dokonanie przegl�du literatury dotycz�cej: 

a. refaktoryzacji oprogramowania, 

b. refaktoryzacji modeli UML, 

c. wykonywalnych modeli UML; 

2. utworzenie wst�pnego katalogu transformacji refaktoryzacyjnych 

wykonywalnych modeli UML na podstawie wybranych refaktoryzacji kodu; 

3. sformalizowanie refaktoryzacji z katalogu z wykorzystaniem j�zyka OCL; 

4. zaimplementowanie przykładowej refaktoryzacji w wybranym narz�dziu 

umo�liwiaj�cym tworzenie wykonywalnych modeli UML. 

 

 Wszystkie cele pracy zostały pomy�lnie zrealizowane, a do jej głównych 

rezultatów nale�y zaliczy�: 

1. Przegl�d podej�� do refaktoryzacji modeli UML [rozdz. 3]. 

2. Przegl�d i porównanie podej�� do wykonywalnego UML-a [rozdz. 4 i 5]. 

3. Identyfikacja elementów wyzwalaj�cych (ang. trigger-element) dla wszystkich 

refaktoryzacji kodu z katalogu Fowler-a [rozdz. 2]. 

4. Mapowanie pomi�dzy elementami wyzwalaj�cymi refaktoryzacje kodu a ich 

odpowiednikami w postaci metaklas z metamodelu UML-a 2.0 oraz z modelu 

obiektowego narz�dzia Telelogic/TAU [rozdz. 6]. 

5. Identyfikacja i charakterystyka obszarów refaktoryzacyjnych (ang. refactoring 

area) w wykonywalnych modelach TAU [rozdz. 6]. 

6. Zaproponowanie szablonu specyfikacyjnego dla refaktoryzacji [rozdz. 6]. 

7. Specyfikacja wg szablonu dwunastu przykładowych refaktoryzacji 

wyzwalanych na elementach z obszaru ESPC (Zewn�trzna Struktura Pasywnych 

Klas) oraz ESAC (Zewn�trzna Struktura Aktywnych Klas) [rozdz. 7]. 

8. Implementacja przykładowej transformacji – Usu� Po�rednika (ang. Remove 

Middle Man) – w postaci wtyczki do narz�dzia Telelogic/TAU [rozdz. 8]. 



  

 

Spo�ród tematów potencjalnych dalszych bada� [rozdz. 9] nale�y wymieni� nast�puj�ce: 

1. Identyfikacja oraz specyfikacja refaktoryzacji i sytuacji kwalifikuj�cych 

specyficznych dla wykonywalnych modeli UML. 

2. Projekt i implementacja profesjonalnej, przemysłowej wtyczki refaktoryzacyjnej 

do narz�dzia Telelogic/TAU. 

3. Generowanie implementacji refaktoryzacji z ich formalnych specyfikacji. 

4. Refaktoryzacja wykonywalnych modeli w narz�dziu w pełni zgodnym z UML-

em 2.0. 

5. Specyfikacja refaktoryzacji z u�yciem Semantyki Akcji (ang. Action Semantics) 

6. Systematyczne podej�cie do odkrywania warunków wst�pnych refaktoryzacji. 

7. Eksperyment oceniaj�cy: 

a. Wpływ automatyzacji refaktoryzacji wykonywalnych modeli na 

produktywno�� wytwórców oprogramowania; 

b. Wpływ refaktoryzacji na utrzymywalno�� (ang. maintainability) 

wykonywalnych modeli UML. 

 

 

Słowa kluczowe: utrzymanie oprogramowania, wykonywalny UML, 

refaktoryzacja modeli, transformacja modeli 
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ABSTRACT 
 
 
 

One of the inevitable negative effects of software 
evolution is design erosion. Refactoring is a technique 
that aims at counteracting this phenomenon by 
successively improving the design of software without 
changing its observable behaviour. Design erosion 
occurs also in the context of executable UML models, 
i.e. models that are detailed enough to be automatically 
compiled to executable applications. This thesis 
presents results of a study on applying refactoring to the 
area of maintenance of executable UML models. It 
contains an overview of recent approaches to UML 
model refactoring and to executable modelling, 
followed by identification of refactoring areas in 
models built in Telelogic TAU, a state-of-the art UML 
CASE tool. It proposes a systematic approach to 
specification of both executable UML model 
refactorings as well as associated bad smells in models. 
Additionally, it shows how refactorings can be 
implemented in Telelogic TAU. 

 
Keywords: software maintenance, executable UML, 
model refactoring, model transformation 
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1 INTRODUCTION 
 
This is an introductory chapter of the thesis. It is structured as follows: Section 1.1 

situates refactoring against a background of software maintenance; Section 1.2 
presents both the aim of the thesis as well as objectives and posed research questions. 
Finally, Section 1.3 outlines the remainder of the thesis. 

 

1.1 Background and Motivation 
 
The background of the thesis is software maintenance and a related phenomenon 

of design erosion. 
 

1.1.1 Software Maintenance and Evolution 
 
Software maintenance is one of the key issues in the overall software construction 

and management. Chapin et al. [2001] define software maintenance as “the deliberate 
application of activities and processes (…) to existing software that modify either the 
way the software directs hardware of the system, or the way the system (…) 
contributes to the business of the system’s stakeholders.” In the modern approach, 
software maintenance encompasses activities and processes involving existing 
software not only after its delivery but also during its development. Worth mentioning 
is the fact that nowadays more than 80% of total software life-cycle costs is devoted to 
its maintenance [Pigoski 1997]. 

 
Swanson [1976] distinguishes and describes three kinds of software maintenance: 

1. Corrective maintenance – performed in response to processing, 
performance and implementation failures; 

2. Adaptive maintenance – performed in response to changes in data and 
processing environments; 

3. Perfective maintenance – performed to eliminate processing inefficiencies, 
enhance performance, or improve maintainability. 

 
Chapin et al. [2001] argue that in practice it is often difficult to classify 

unambiguously a software maintainer’s work to one of the Swanson’s categories. 
These difficulties result from the fact that this taxonomy is (1) too coarse-grained and 
(2) based on the intensions. Therefore, proposed is a clarifying redefinition of the types 
of software maintenance and a new semi-hierarchical classification that bases on 
“objective evidence of maintainer’s activities [ibid.].” Their categorisation groups 
twelve types of software maintenance into four clusters, which are gathered in a 
decision tree shown in Figure 1.1. 
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According to Bennett & Rajlich [2000], currently there is no one commonly accepted 

definition of software evolution, and in a wide sense, it is often used as a synonym of 
software maintenance. However, Chapin et al. [2001] distinguish between software 
maintenance and software evolution. In their opinion, the latter one occurs when 
enhancive, corrective, reductive, adaptive or performance maintenance is carried out. In 
other words, software evolution happens when business rules, or software properties that 
are sensible for customer, are changed. 

 

1.1.2 Design Erosion 
 
As indicated by Van Gurp & Bosch [2002], despite many years of research and 

many suggested approaches, it is inevitable that a software system finally erodes under 
the pressure of ever-changing requirements. This negative effect of software evolution 
is known in the literature as software aging [Parnas 1994], and one of its dimensions is 
design erosion. 

 
During evolution, almost each change of requirements imposed on a software 

system enforces the introduction of small adaptations to its design. These adjustments 
are taken in the context of (1) all previous changes, and (2) predictions about possible 
future changes that may need to be made. It is obvious that some of these predictions 
can be wrong. As a consequence, the system may evolve in a direction where it is hard 
to make the necessary adjustments. Two trends that were observed by Van Gurp & 
Bosch [2002] are that (1) fixing design erosion is expensive, and (2) eroded software 
may become an obstacle to further development. 

 
What can be done to stop or at least delay software erosion? As a solution to the 

problem of software aging, Parnas [1994] suggests (1) designing for change, (2) 
paying more attention to documentation and design reviews, and (3) not implementing 
before a proper design is available. Svahnberg [2003] suggests a complementary 
approach, which relies on establishing a software architecture that is flexible (variable) 
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in the right places. To avoid taking bad architectural and design decisions, one can 
furthermore use architectural styles, architectural patterns, and design patterns. 

 
Another approach is to pursue separation of concerns, what causes that effects of 

changes can be isolated. For instance, by separating the concern synchronisation from 
the rest of the system, changes in the synchronisation code will not affect the rest of 
the system. Some examples of approaches towards achievement of separation of 
concerns are Aspect Oriented Programming, Subject Oriented Programming, and 
Multi-Dimensional Separation of Concerns. Van Gurp et al. [2002] propose an 
architecture-level design notation that is aimed at modelling concerns on an 
architecture level while preserving information about the decisions taken during the 
architecture design. 

 

1.1.3 Refactoring 
 
Another approach to software evolution is represented by agile software 

development methodologies such as eXtreme Programming (XP) [Beck 2000]. These 
methodologies advocate that one should develop only for current requirements, as it is 
impossible to predict what may be required of a software system a few years or more 
from now [Beck & Fowler 2001]. In XP, the process of implementation is interleaved 
with the process of refactoring, which main goal is to safely and stepwisely improve 
the design of an existing application without altering its externally observable 
behaviour, what enables controlled transformation between any two designs. 

 
Lehman [1980] argues that proper maintenance work can avoid or at least 

postpone the decay.  In the context of Swanson’s classification [1976], refactoring is 
an activity that supports a subset of perfective maintenance that aims at software 
maintainability improvement. In the context of the categorisation provided by Chapin 
et al. [2001], refactoring is an activity that directly supports the types of maintenance 
present in the software properties cluster. It is particularly suitable for groomative 
maintenance that involves among others “replacing components or algorithms with 
more elegant ones, (…) changing data naming conventions, altering code readability or 
understandability [ibid.].” Refactoring can be also useful in preventive maintenance 
activities, which example is “participation in software reuse [ibid.].” Adaptive 
maintenance encompasses activities like “reallocating functions among components or 
subsystems, (…) and changing design and implementation practices [ibid.]”, what also 
can be achieved by the use of refactoring. The only type of maintenance from software 
properties group that is not directly supported by refactoring is performance, although 
some of refactoring transformations (e.g. Inline Method) can be used in this category 
as well. 

 
Refactoring supports neither the three kinds of software maintenance from support 

interface cluster, nor both types from documentation one, since they all occur when 
source code is not changed. As refactoring preserves system’s externally observable 
behaviour, it is also inadequate in the case of the three types of software maintenance 
from business rules cluster. However, in the work on problems and causes of design 
erosion, Van Gurp & Bosch [2002] identify two extremely different strategies for 
incorporating change requests into a software system, namely minimal effort strategy 
and optimal design strategy. The former approach relies on incorporating changes in 
the next iteration of the development while preserving as much of the old system as 
possible, and in the latter one, all the necessary changes to the software artefacts are 
made in order to get an optimal system for the new set of requirements. Refactoring 
very well fits to the optimal design strategy. Therefore, refactoring software before 
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performing its enhancive maintenance can significantly reduce effort needed to 
enhance the customer-experienced functionality. 

 

1.1.4 UML Model Refactoring 
 
Besides many theoretical advantages of refactoring software in the form of UML 

models over programming language code, which result mainly from the possibility to 
specify systems on a higher level of abstraction and to present them visually, this 
approach has at least one key drawback. Namely, the majority1 of research papers on 
UML model refactoring concern models built with the use of UML 1.4 or one of its 
earlier versions, what implies that no formally defined behaviour of these models can 
be specified. This lack of formal specification of model’s behaviour is contradictory 
with a requirement imposed by a definition of refactoring [Fowler et al. 1999] stating 
that the transformation does not change system's observable behaviour, what – in this 
case – obviously cannot be proven2. Moreover, this approach carries another large 
problem, namely vertical consistency between refactored models and code. 

 
One of the solutions of these issues is to use a UML profile that is extended to 

enable modelling information required for source-consistent and behaviour-preserving 
refactoring. An example of such an extension is GrammyUML provided by Van Gorp 
et al. [2003], which allows modelling certain constructs that may occur in method 
bodies. However, this approach does not solve another problem of prior studies on 
UML model refactoring that concerns passing of the effects of a transformation to the 
underlying source code. Moreover, this approach still does not enable to perform on 
the model level many “fine grained” code refactorings. 

 
An approach free of the issues described in the preceding paragraphs relies on 

using an executable UML, which is considered to be a major innovation in the field of 
software development. It is a graphical specification language, which combines a 
streamlined, computationally complete subset of the UML with executable semantics 
and timing rules. In contrast to traditional specifications, an executable specification 
can be run, tested, debugged and measured for quality attributes. However, the main 
benefit of this approach is the possibility of fully automated translation of executable 
UML models into source code. Executable models confer independence from the 
software platform, which makes them portable across multiple development and 
execution environments. 

 
The phenomenon of design erosion occurs also in the context of executable UML 

models, which are the primary artefacts in e.g. Agile MDA [Mellor et al. 2004] 
software development methodology and thus have to be maintained throughout the 
whole lifetime of modelled applications. 

 

1.2 Research Questions and Objectives 
 
Although the concept of refactoring is being researched more and more 

thoroughly, to the knowledge of the authors there is only one research paper that takes 
the subject of refactoring of executable UML models [Kazato et al. 2004]. The aim of 
this thesis is to fill up this gap by applying refactoring to the area of maintenance of 
executable UML models. 

 

                                                      
1 Generally all except for one – [Kazato et al. 2004]. 
2 Assuming that the system’s behaviour is specified in the underlying code. 



  5 

The thesis addresses following research questions: 
 

1. What is the state-of-the-art in UML model refactoring? 
2. What is an executable UML model and how can it be built and executed? 
3. Which code refactorings are applicable for executable UML models? 
4. How can one specify executable UML model refactorings? 
5. How can one automate the processes of applying executable UML model 

refactorings in a state-of-the-art UML CASE tool? 
 
The objectives of the thesis are as follows: 
 

1. Perform literature search and review on: 
a. software refactoring, 
b. UML model refactoring,  
c. executable modelling with UML. 

2. Create an initial catalogue of executable UML model refactorings 
consisting of their informal specifications. 

3. Formalize the refactorings from the catalogue with the use of Object 
Constraint Language (OCL). 

4. Implement an exemplary refactoring from the catalogue in a state-of-the-
art UML CASE tool. 

 
The type of the thesis is problem solving, which is defined by Dawson [2000] in 

the following way: “(…) this can involve the development of a new technique to solve 
a problem or might involve improving the efficiency of existing approaches. It might 
also involve the application of an existing problem solving technique to a new 
area.” In the context of the thesis, the problem is design erosion, the existing problem 
solving technique is refactoring, and the new area is maintenance of executable UML 
models. 

 

1.3 Outline of Thesis 
 
Although Opdyke [1992] adopted the scientific approach to the idea of refactoring 

over a decade ago, it gained a deserved researchers' attention just in 1999, when 
Fowler published book entitled Refactoring: Improving the Design of Existing Code 
[Fowler et al. 1999]. The concepts of UML model refactoring and Executable UML 
are even more innovative – first papers concerning UML model refactoring appeared 
in 2001 [e.g. Sunyé et al. 2001; France & Bieman 2001] and first books about 
Executable UML in 2002 [Starr 2002a; Mellor & Balcer 2002]. 

 
The novelty of above-mentioned ideas, which lay the basis for the research, 

motivates to provide thorough background information on software refactoring 
(Section 2), UML model refactoring (Section 3), and executable UML (Section 4). The 
remainder of the thesis is structured as follows: Section 5 provides an overview of 
executable UML models that can be built and executed in Telelogic TAU; Section 6 
presents the results of an initial study on refactoring executable UML models; Section 
7 constitutes an initial catalogue of specifications of refactorings of TAU executable 
models; Section 8 shows how refactorings specified in the previous section can be 
implemented in TAU. Finally, Section 9 concludes the thesis and points out possible 
directions of a future work. 
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2 REFACTORING 
 
The main goal of this chapter is to present a literature survey on software 

refactoring. It is structured as follows: Section 2.1 provides an overview of definitions 
of refactoring; Section 2.2 presents classifications of refactoring transformations; 
Section 2.3 outlines the refactoring process; Section 2.4 presents benefits of 
refactoring; Sections 2.5 and 2.6 introduce notions of behaviour preservation and bad 
smells, respectively. Finally, Section 2.7 concludes this chapter with identification of 
among others trigger-elements of refactorings. 

 
It is noteworthy that an extensive literature survey on software refactoring [Mens 

et al. 2002; Mens & Van Deursen 2003; Du Bois et al. 2004; Mens & Tourwé 2004] 
has been performed in the framework of “The Refactoring Project”3 at University of 
Antwerp. 

 

2.1 Introduction 
 
The term refactoring probably originates from Deutch’s quote, who wrote 

“interface design and functional factoring constitute the key intellectual content of 
software [Deutch 1989, cited by Roberts 1999].” Therefore, refactoring can be 
understood as a process of internal redistribution of functionality provided by a 
software system. In the context of object-oriented paradigm, this redistribution 
concerns classes, attributes and operations, which are the carriers of software 
functionality. 

 
The first definition of refactoring was provided by Opdyke in his PhD thesis 

[1992] as “program restructuring transformation that supports the design, evolution 
and reuse of object-oriented application frameworks.” 

 
According to Chikofsky & Cross [1990], restructuring is “the transformation from 

one representation form to another at the same relative abstraction level, while 
preserving the subject system’s external behaviour (functionality and semantics).” 

 
Restructuring and refactoring are very similar terms but according to Fowler 

[2004], they are not the same - refactoring is a “very specific technique to do the more 
general activity of restructuring (…) founded on using small behaviour-preserving 
transformations (themselves called refactorings).” It means that while refactoring, the 
subject system should not be broken for more than a few minutes at a time. 

 
The term restructuring has also a broader meaning, which does not demand the 

preservation of system’s external behaviour. Its definition, provided by Chikofsky & 
Cross [1990], recognizes restructuring process as “the application of similar 
transformations and recasting techniques in reshaping data models, design plans, and 
requirements structures.” This meaning of restructuring is inconsistent with the idea of 
refactoring, because one cannot refactor something that does not have a well-defined 
behaviour. 

 
Roberts in his PhD thesis [1999] changed the definition of refactorings to be 

“program transformations that have particular preconditions that must be satisfied 

                                                      
3 http://win-www.uia.ac.be/u/lore/refactoringProject 
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before the transformation can be legally performed.” This definition encompasses both 
behaviour-preserving and non-behaviour-preserving transformations. Additionally, 
Roberts augmented Opdyke’s definition of refactorings by postconditions, which 
specify how the preconditions, introduced by Opdyke in his thesis [1992], are 
transformed by the refactorings. More formally, “a refactoring is an ordered triple R = 
(pre, T, P) where pre is an assertion that must be true on a program for R to be legal, T 
is the program transformation, and P is a function from assertions to assertions that 
transforms legal assertions whenever T transforms programs [Roberts 1999].” 

 
Fowler in his book [Fowler et al. 1999] provides two definitions of refactoring: 
 
“Refactoring (noun): a change made to the internal structure of software to 
make it easier to understand and cheaper to modify without changing its 
observable behaviour.” 
 
“Refactor (verb): to restructure software by applying a series of refactorings 
without changing its observable behaviour.” 
 
The second definition is tautological, because as well software restructuring as 

refactoring (noun) are, by definition, behaviour preserving. 
 
Fowler’s definition of refactoring emphasizes that the purpose of refactoring is to 

make the software easier to understand (improve its readability) and modify (improve 
its maintainability). That is why e.g. performance optimization, which usually alters 
only the internal structure of software and preserves its behaviour (excluding its timing 
characteristics), cannot be classified as a refactoring. 

 
The second important thing is that refactoring does not change the observable 

behaviour of the software. The intention of refactoring is neither adding new nor 
altering existing functionality. In this aspect, refactoring is very similar to 
restructuring, which “does not normally involve modifications because of new 
requirements. However, it may lead to better observations of the subject system that 
suggest changes that would improve aspects of the system [Chikofsky & Cross 1990].” 

 
According to Wake [2003], refactoring is “the art of safely improving the design 

of existing code. Refactoring provides us with ways to recognize problematic code and 
gives us recipes for improving it.” In Wake’s opinion, refactoring: 

1. does not include just any changes in a system – refactoring itself does not 
add new features; 

2. is not rewriting from scratch – refactoring makes possible to improve 
code; 

3. is not just any restructuring intended to improve code – refactorings are 
small and safe transformations; 

4. changes the balance point between up-front design and emergent design – 
refactoring lowers the cost and risk of the emergent approach; 

5. can be small or large – hopefully large refactorings are rarely needed. 
 

2.2 Classifications of Refactorings 
 
All refactorings mentioned in this section are understood as code refactorings – 

more precisely as class-based object-oriented refactorings, i.e. behaviour-preserving 
transformations of object-oriented source code written in among others Smalltalk, 
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C++, or Java. The other niche kinds of refactorings like e.g. imperative, functional or 
logic ones are not subject of this thesis. 

 
Opdyke [1992] defined in terms of preconditions: 

1. twenty three low-level refactorings concerning creating, deleting, 
changing program entities and moving member variable, 

2. three composite (also low-level) refactorings, namely:  
• abstract access to a member variable, 
• convert a code segment to a function, 
• move a class, 

3. three high-level refactorings concerning: 
• creating an abstract superclass, 
• subclassing and simplifying conditions, 
• creating aggregations and reusable components. 

 
Roberts’s [1999] refactorings, defined in terms of pre- and postconditions, are 

grouped into three categories: class, method and variable refactorings. 
 
The most extensive catalogue of refactorings is provided by Fowler in his book 

[Fowler et al. 1999]. A description of each refactoring contains following sections: a 
name, a short summary, a motivation behind the transformation, a mechanics 
describing how to carry out the refactoring, and examples illustrating its use. All 
seventy-two refactorings collected by Fowler are grouped into seven categories (see 
Table 2.1). The full list of Fowler’s refactorings, containing their problem and solution 
statements from summary sections, can be found in Appendix A. 

 

 � � 
���	�	��� � �	 �����	 ��
 �� ���� �
 ��	 � � ��	 ����� � �	 ������ ���������

�

� � ���� �� � � �� � ��� ��� � ���� ��� � �� ��� �� ��� � �� �

� � 
� � ���� �� 	 �� � � �� � � 	 �� �
 � 
� � �	 �
	 �� � � ���� �� �
  �� 	 �
 � � 	 �� �� � 	 ��! �

� � " ��� ��	 ��# �	 ��$	 �� 	 	 ��% & '	 
 ��� � �	 ��
 � ��� 	 �� 	 
 ���� ���� � 	 �	 ��� �� # ���	 �� � ���& �����	 ���

% �� ���( ��� �) ���� � 
� 	 �� � � ��� �� ��� �� ����	 ���	 ��

��
� ���! ��� �� � �� ���� ����* + � �	 ���� ��� � �	 ����
� ���! ����
  ! �
 � �� ���� ������ � �
 �

� � ��� �� 	 �� � � �� �������
� �	 �� � 
� 	 ����	 ���
 	 ��� ��
 ����	 ��
� �	 ������� � ��� �� ��� �

) 	 ����� �� ��� �,	 �	 ����( ���� �� � � 	 ���� ��� �
� " ��� �
	 �� � � ����� # �� ���� �	 ���
 � ! �� ����� 	 �����
 	 �

$�� �- 	 ��
 �� ���� �� � ��	 �	 + �
� �	 ��� ��� � � ��� �# �	 ������ �� 	 ���	 ��
 �� ���� ���� ��	 ��
 �� ��
�� ��� 
	 �� # �� � �	 �

 
An up-to-date list consisting of all refactorings from Fowler’s book [Fowler et al. 

1999] and several dozen other, including all J2EE refactorings described by Alur et al. 
[2001] is maintained by Fowler and available from Internet [1999]. 

 
Gamma et al. [1995] wrote that design patterns provide targets for refactorings. 

Fowler has later paraphrased this thought in words: “There is a natural relation 
between patterns and refactorings. Patterns are where you want to be; refactorings are 
ways to get there from somewhere else [Fowler et al. 1999].” As indicated by Roberts 
[1999], design patterns create many opportunities for refactoring that can be used to 
both introduce new design patterns into existing programs, and to remove the ones 
which add the flexibility that is not needed. 

 
Five refactorings in Fowler’s catalogue belong to the group of so-called 

refactorings to patterns, namely: 
• Duplicate Observer Data, 
• Replace Type Code with State/Strategy, 
• Introduce Null Object, 
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• Replace Constructor with Factory Method, 
• Form Template Method. 

 
Inspired by the work initiated by Fowler, Kerievsky [2004] described twenty-

seven high-level refactorings composed of low-level ones that provide insights into 
implementing design patterns. 

 

2.3 Refactoring Process 
 
The refactoring process (cycle) suggested by Wake [2003] consists of three 

iteratively repeated steps: 
1. Identify parts of software that should be refactored. 
2. Choose appropriate refactoring(s) to the identified places. 
3. Apply the refactoring(s). 

 
Mens & Tourwé [2004] identified three additional distinct activities, so that the 

complete refactoring process consists of following six steps: 
1. Identify parts of software that should be refactored. 
2. Choose appropriate refactoring(s) to the identified places. 
3. Ensure that selected refactoring(s) will be behaviour preserving. 
4. Apply the refactoring(s). 
5. Assess the effect of the refactoring on quality characteristics of the 

software (mainly maintainability) and/or the process (e.g., productivity). 
6. Maintain the consistency between the refactored program code and other 

software artefacts (e.g. requirements specification, analysis models, design 
models, tests). 

 
Kataoka et al. [2002] suggest that to be able to assess whether a particular 

refactoring it economically justified, the validation of refactoring effect (step 5) should 
be carried out before application of refactoring(s) (step 4). The approach to the 
refactoring effect evaluation proposed by Kataoka et al. [ibid.] consists of two major 
steps: (1) selection of appropriate maintainability quantification metrics, e.g. coupling 
metrics, and (2) measurement and comparison of selected metrics before and after 
refactoring. 

 

2.4 Motivation for Refactoring 
 
According to Opdyke [1992], in the context of object-oriented systems, refactoring 

is needed to “refine the design of an already structured program, and make it easier to 
reuse.” He enumerates three cases where refactorings might be applied: 

1. extracting a reusable component; 
2. improving a consistency among components; 
3. supporting the iterative design of an Object-Oriented Application 

Framework. 
 
Fowler lists four purposes that motivate refactoring in the context of XP [Fowler et 

al. 1999]: 
1. improving the design of software – preventing program’s design from 

decay and eliminating duplicate code; 
2. making software easier to understand – well factored code better 

communicates its purpose; 
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3. helping finding bugs – while clarifying the structure of the program it is 
easy to spot the bugs; 

4. helping programming faster – a good design is conducive to rapid 
software development. 

 
Developers from XP circles usually use subjective criteria in assessing the quality 

of software designs, what leads to situations in which a design that is found by some 
developers to be “good”, for others “screams for improvement.” It results from the fact 
that the quality of a software design depends on the quality attributes which one takes 
into consideration during the assessment. For example, a design that is “good” from 
the performance point of view can be found “bad” from the maintainability 
perspective. Reassuming, one can say that the design of software is “good” if it fulfils 
the quality requirements imposed on the system. 

 
As it is possible to measure or estimate for each piece of software its external 

quality attributes, Mens & Tourwé [2004] argue that refactorings can be classified 
according to which of these quality attributes they affect. It allows improving the 
quality of software by applying the relevant refactorings at the right places. Each 
refactoring has its particular effect (e.g. removal of code redundancy or enhancement 
of the reusability), which can be estimated by expressing the refactoring in terms of the 
internal quality attributes it affects (such as size, complexity, coupling, and cohesion). 
According to Mens & Tourwé [2004], some of the techniques that can be used to 
measure or estimate the impact of a refactoring on quality characteristics are software 
metrics, empirical measurements, controlled experiments, and statistical techniques. 

 
According to Bosch [2000], quality requirements can be categorized as either 

development or operational quality requirements. Development quality requirements 
are “qualities of the system that are relevant from a software engineering perspective”, 
e.g. maintainability, reusability, flexibility and demonstrability. Operational quality 
requirements are “qualities of the system in operation”, e.g. performance, reliability, 
robustness and fault-tolerance. The goal of refactoring is to improve mainly 
development quality attributes, however it can positively affect also operational quality 
ones, including – what astonishing – performance [Demeyer 2002]. 

 

2.5 Behaviour Preservation of Refactorings 
 
According to Mens & Tourwé [2004], “the preservation property of a program 

transformation guarantees that (some aspect of) the program behaviour is preserved by 
the transformation.” Ó Cinnéide [2000] distinguishes three possible approaches to 
behaviour-preservation, namely (1) a non-formal approach (e.g. [Fowler et al. 1999]), 
(2) a semi-formal approach (e.g. [Roberts 1999]), and (3) a fully formal approach. 
However, even with the use of the last approach it is impossible to guarantee full 
behaviour preservation in its generality [Mens & Tourwé 2004]. 

 
The idea of behaviour preservation in the context of refactoring was introduced by 

Opdyke [1992] who defined it intuitively in this way: “if the program is called twice 
(before and after a refactoring) with the same set of inputs, the resulting set of output 
values will be the same.” The behaviour preservation of Opdyke’s refactorings [ibid.] 
is argued in terms of the following set of syntactic and semantic program properties: 

1. Unique Superclass, 
2. Distinct Class Names, 
3. Distinct Member Names, 
4. Inherited Member Variables Not Redefined, 
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5. Compatible Signatures in Member Function Redefinition, 
6. Type-Safe Assignments, 
7. Semantically Equivalent References and Operations. 

A compiler can detect violations of the first six properties, but the verification of 
preservation of the semantic equivalence requires much more effort.  

 
Each primitive refactoring specified in Opdyke’s PhD thesis [ibid.] has a set of 

preconditions, which have to be met in order to ensure that behaviour of refactored 
program will not be altered. The behaviour-preservation of high-level refactorings 
results from the fact that they are composed of the proven low-level ones. 

 
Roberts [1999] specified the refactorings’ preconditions in first-order predicate 

logic (FOPL) with the use of the analysis functions that describe relationships between 
methods, classes, and instance variables. These functions are divided into two 
categories, namely (1) primitive, and (2) derived, which can be computed from 
primitive ones. 

  
Mens et al. [2005] maintain that for each refactoring one may list a set of 

behaviour-related and statically verifiable properties that need to be preserved. Three 
examples of these properties are as follows: 

• Access preservation - each method implementation accesses at least the 
same variables after the refactoring as it did before the refactoring; 

• Update preservation - each method implementation performs at least the 
same variable updates after the refactoring as it did before the refactoring; 

• Call preservation - each method implementation still performs at least the 
same method calls after the refactoring as it did before the refactoring. 

As indicated by Van Gorp et al. [2003b], a careful selection of pre- and 
postconditions of a refactoring can guarantee preservation of the above-mentioned 
properties. 

 

2.6 Bad Smells in Code 
 
According to Beck & Fowler, bad smells in code are “certain structures in the code 

that suggest (sometimes they scream for) the possibility of refactoring [Fowler et al. 
1999].” Fowler’s book contains descriptions of twenty-one bad smells in code. For 
each bad smell, a set of refactorings that can remove it is provided. 

 
According to Wake [2003], code smells are “warning signs about potential 

problems in code.” The word “potential” suggests that smells are not synonymous with 
problems, but always worthy of an inspection. Wake [ibid.] proposed a standard 
format for describing smells consisting of: smell’s name, symptoms, causes, possible 
refactorings, payoffs (what will be improved) and contradictions (when not to fix it). 
Moreover, He refined Fowler’s code smells and classified them into two groups, 
namely (1) Smells Within Classes, and (2) Smells Between Classes, with several 
subgroups in each one4.  
�

Another taxonomy of Fowler’s bad smells is provided by Mika Mäntylä [2003; 
2004], who divided them into five following groups: 

1. The Bloaters, 
2. The Object-Orientation Abusers, 
3. The Change Preventers, 

                                                      
4 A complete list of Fowler’s and Wake’s bad smells can be found in Appendix B. 
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4. The Dispensables, 
5. The Couplers. 

 
During the work on refactoring to patterns, Kerievsky [2004] discovered five new 

code smells that suggest the need for pattern-directed refactorings, namely Conditional 
Complexity5, Indecent Exposure, Solution Sprawl, Combinatorial Explosion6 and 
Oddball Solution. 

 
Presence of bad smells in object-oriented software hints at its low maintainability, 

which can be measured with the use of various maintainability quantification metrics. 
Some of these metrics concern such aspects of software maintainability like coupling, 
cohesion, size and complexity, or description [Kataoka et al. 2002]. Therefore, at least 
theoretically, the enhancement of the software maintainability can be identified with 
the reduction of bad smells. However, as stated by Beck & Fowler [Fowler et al. 
1999], “no set of metrics rivals informed human intuition”, what implies that not all 
bad smells can be revealed with the use of metrics. According to Mäntylä [2003], only 
about half of code bad smells can be effectively measured. 

 

2.7 Towards Better Comprehension of Refactorings 
 
Mechanics sections of Fowler’s refactorings are terse and often incomplete. They 

are rather guidelines how to perform manually refactorings in the most common cases 
than ready-to-implement precise algorithms. Some of them contain imprecise 
statements like – in the case of Substitute Algorithm – “get it so that it compiles”. 
Moreover, in many cases their realisation differs depending on the initial state of the 
code before refactoring.  Therefore, an attempt to classify them unambiguously is not a 
trivial task. 

 
In this section, no refactorings from the Big Refactorings category, i.e. Tease 

Apart Inheritance, Convert Procedural Design to Objects, Separate Domain from 
Presentation, and Extract Hierarchy, are taken into consideration due to their 
ambiguity and complexity. 

 

2.7.1 Trigger-Elements 
 
With the aim of better comprehension of refactorings, their trigger-elements are 

determined, i.e. language elements, on which they can be triggered. From the practical 
point of view, a trigger-element of a refactoring is the type of a code element on which 
it can be triggered in an IDE tool. For instance, a trigger-element of Inline Temp, 
Replace Temp with Query, Split Temporary Variable, and Remove Control Flag is 
Temporary Variable. These are the refactorings, which one expects to be able to apply 
after selecting a temporary variable in the body of an operation belonging to a class, 
while browsing a code. 

 
All trigger-elements have contexts. For example, the trigger-element of Extract 

Method is a fragment of code, and the context of this element is a body of a method, 
which in turn belongs to a class.  

 
In many cases, the type of a trigger-element is contained in the name of a 

refactoring (e.g. the trigger-element of Inline Class is a class). However, it is not the 

                                                      
5 An equivalent of Wake’s Complicated Boolean Expression. 
6 Not an equivalent of Wake’s Combinatorial Explosion. 
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rule since the name can be sometimes misleading (e.g. the trigger element of Remove 
Setting Method is a field). In several cases, the name of a refactoring contains the 
name of a role that a trigger-element plays in the transformation and not a trigger-
element itself, like in the case of Hide Delegate, where a delegate is a class.  

 
For each refactoring one can also specify the multiplicity of its trigger-elements. 

This results from the fact that some refactorings require more than one trigger-element, 
like in the case of Replace Subclass with Fields, which trigger-elements are at least 
two classes (multiplicity denoted as [2..*]). The default cardinality of trigger-elements 
is one. 

 
It should be noted that for some refactorings the indication of a trigger-element is 

ambiguous, what is a consequence of vagueness of descriptions of Fowler’s 
refactorings. For example, the trigger-element of Introduce Foreign Method could be 
as well either server- or client class as a fragment of code being an invocation of a 
constructor of a server class in the body of a method of a client class. 

 
Fowler’s refactorings are triggered by following elements: 

• Association (Field) 
• Generalization (Class [2]) 
• Record 
• Class 
• Class::Field 
• Class::Method 
• Class::Method::MethodBody 
• Class::Method::MethodBody::CodeFragment 
• Class::Method::MethodBody::LiteralNumber 
• Class::Method::MethodBody::TemporaryVariable 
• Class::Method::Parameter 

 
It is noteworthy that elements like association and generalization do not exist 

explicitly in Java, which is the language that is used in Fowler’s book to illustrate 
examples of refactorings. Therefore, a field and two classes can replace them 
accordingly. The only non-object-oriented element is a record, which triggers one 
refactoring (Replace Record with Data Class). Additionally, the distinction between 
method and method body is made, where the former one means method declaration (in 
terms of UML – an operation), and the latter one stays for method implementation (in 
terms of UML – a method or operation body). Some examples of refactorings that are 
triggered by a method are Move Method and Add Parameter, whereas e.g. Inline 
Method and Separate Query from Modifier are rather, in opinion of the authors, 
triggered by method body. 

 
Sometimes a trigger-element can be constrained, like e.g. in the case of Introduce 

Explaining Variable, which trigger-element is constrained by expression, what means 
that the fragment of code triggering the refactoring has to be an expression that returns 
one value. 

 
All trigger-elements are classified into two disjoint groups: (1) structural elements 

and (2) behavioural elements. The method body and its internals, i.e. code fragment, 
literal number, and temporary variable, belong to the latter group, and the rest of them 
are structural ones. Refactorings triggered on structural elements are structure-
triggered (S-T), and the ones triggered on behavioural elements – behaviour-triggered 
(B-T). 
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It is noteworthy that there is difference between “triggerness” and “driveness” of 
refactorings, which are triggered on code elements and driven by the presence of bad 
smells. 

 

2.7.2 Behavioural and Structural Modifications 
 
Another feature that can be determined for code refactorings is the type of 

modifications that they introduce. The majority of refactorings change as well 
structure as behaviour of software7. Therefore, especially interesting is determination 
whether particular refactorings involve modifications of only either structural or 
behavioural parts of programs.  

 
This way, singled out are refactorings, which modification scope is restricted to 

the method bodies, in which defined are their trigger-elements. Obviously, the trigger-
elements of these lowest granularity (behavioural) refactorings are behavioural. These 
are: 

• Inline Temp (3), 
• Introduce Explaining Variable (5), 
• Split Temporary Variable (6), 
• Remove Assignments to Parameters (7) – not in all languages, 
• Substitute Algorithm (9), 
• Replace Magic Number with Symbolic Constant (26), 
• Consolidate Duplicate Conditional Fragments (36), 
• Remove Control Flag (37), 
• Replace Nested Conditional with Guard Clauses (38), 
• Introduce Assertion (41) – depending on the way the assertion is realized. 

 
Another group of refactorings form the ones that do not introduce behavioural 

modifications, namely – structural refactorings. However, their unequivocal 
identification is very difficult, because this feature depends on the realization of the 
refactoring. Nevertheless, these seem to be: 

• Hide Method (52), 
• Pull Up Field (57), 
• Pull Up Method (58), 
• Push Down Method (60), 
• Push Down Field (61), 
• Extract Interface (64). 

 
The list of all8 sixty-eight Fowler’s refactorings with their trigger-elements and 

their modification characteristics can be found in Appendix C. 
 

2.7.3 Dependencies between Refactorings 
 
Basing on Fowler’s catalogue, five kinds of dependencies between refactorings 

have been identified (see Table 2.2). For instance, Extract Method is a transformation 
that can be inversed by Inline method, and which may be enabled by Split Temporary 
Variable or Replace Temp with Query in the case when local-scope variables are 
modified by the extracted code. 

 

                                                      
7 More precisely – structure of both structural and behavioural descriptions of the system. 
8 All besides the ones from Big Refactorings category. 
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A table with Fowler’s refactorings and their inter-dependencies can be found in a 

table in Appendix D. It is noteworthy that this table is by no means complete, because 
– except for “Inverses – it encompasses only these relations between refactorings that 
have been identified (in the case of “Includes” and “Is enabled by”) and observed (in 
the case of “Is usually preceded by” and “Is usually followed by”) by Fowler. 
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3 UML MODEL REFACTORING 
 
The main goal of this chapter is to present a literature survey on refactoring of 

UML models. It is structured as follows: Section 3.1 argues that code refactorings can 
be applied to UML models; Section 3.2 situates model refactoring against a 
background of model transformations; Section 3.3 presents advantages of refactoring 
software in the form of UML models over programming language code; Section 3.4 
contains an overview of recent approaches to UML model refactoring; Section 3.5 
describes the problem of vertical software consistency; Section 3.6 concerns source-
consistent UML model refactoring. Finally, Section 3.7 concludes this paper with an 
outline of a study on refactoring executable UML models. 

 

3.1 Introduction 
 
Although Fowler’s book [Fowler et al. 1999] concerns code refactorings, over 

60% of them (44 of 72) are illustrated with the use of UML class diagrams. This 
observation motivates a question whether code refactorings can be applied to UML 
models. Zhang et al. [2004] states that it is obvious that some code refactorings can 
also be used to transform class diagrams. According to Boger et al. [2003], for some 
refactorings, like e.g. Extract Method, it is natural to apply them on the code 
representation level. Other, like Rename Class or Pull Up Method can be applied on 
code as well as on the model level, and refactorings like Replace Inheritance with 
Delegation or Extract Interface are more apparent on the model level. 

 
Table 3.1 presents the amount of Fowler’s refactorings illustrated with UML in 

each category. Boldfaced are the rows that correspond to the categories of refactorings 
that seem to be most naturally applicable at the UML model level. 
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It should be noted that when one writes about refactoring of a particular kind of 

diagrams (e.g. class diagrams), meant is the refactoring of a part of a UML model, 
which is usually shown on diagrams of this type. The taxonomy of different kinds of 
diagrams [OMG 2004] provides only a logical organization for them and it does not 
preclude the mixing of e.g. structural and behavioural elements on one diagram, which 
would show a state machine nested inside an internal structure. This results from the 
fact that the boundaries between different kinds of diagram types are not strictly 
enforced, i.e. there are no metamodels for UML diagrams. 
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Since most approaches to UML model refactoring presented in research papers, 
and consequently in this section, concern design models, we will use terms “model 
refactoring” and “design refactoring” interchangeably. 

 

3.2 Refactoring as Model Transformation 
 
Model transformation can be defined as a mapping of a set of source model(s) 

onto a set of target model(s), following a set of transformation rules [Sendall & 
Kozaczy�ski 2003; Sendall et al. 2004]. 

 
Sendall & Kozaczy�ski [2003] list five kinds of model transformations, which 

automation would greatly improve the productivity of developers and the quality of the 
models: refinement, model reverse engineering, generation of new views, application 
of design patterns and model refactoring. 

 
According to Massoni [2003], model refactoring can be defined as “model 

transformation that improves specific qualities of the model, such as extensibility, 
making the perfective evolution task more manageable.” 

 
France & Bieman [2001] identify two broad classes of model transformations: 

vertical and horizontal. In vertical transformations, source and target models are at 
different levels of abstraction. Two examples of vertical transformations are 
refinement and abstraction. A horizontal transformation results in target model that is 
at the same abstraction level as the source one. Horizontal transformations usually 
occur for two reasons: (1) to improve specific quality attributes and (2) support 
analysis of models. Model refactoring is a horizontal model transformation that occurs 
to improve specific quality attributes of models. 

 
Pollet et al. [2002] distinguish three types of model transformations: 

1. creational – usually model import from an external source (e.g. XMI); 
2. endomorphic – from UML to UML; 
3. exomorphic – from UML to other formats (e.g. XMI or source code). 

Model refactoring belongs to the second group of endomorphic transformations. 
 
According to Porres [2003], there are two main approaches to describe and 

implement model transformations: mapping and update. Mapping transformations 
“translate each element from a source model into zero, one or more elements in a 
target model”, so that the source model is not altered. In contrast, update 
transformations modify, i.e. add, delete and update source model’s elements in place. 
Model refactoring is an example of a behaviour-preserving update transformation of a 
small and chosen by the designer subset of the model. 

 
Zhang et al. [2004] provide yet another definition of model refactoring based on 

the one given by Roberts [1999]: “A Model refactoring is a pair R = (pre; T) where pre 
is the precondition that the model must satisfy, and T is the model transformation.” 

 
Sendall et al. [2004] distinguish two broad categories of model transformations: 

language translation, where a model is translated into another one in a different 
language, and language rephrasing, where a source model is altered or a new, changed 
one is produced. Language translation is further sub-divided into migration – target 
model and source model are at the same level of abstraction, synthesis – target model 
is at a lower level of abstraction, and reverse engineering – target model is at a higher 
level of abstraction. Language rephrasing is sub-divided into normalisation – reduction 



  18 

to a sublanguage, correction of errors, adaptation to new or modified requirements, 
and refactoring – “a model is restructured, improving the design, so that it becomes 
easier to understand and maintain while still preserving its externally observable 
behaviour.” 

 

3.3 Motivation for UML Model Refactoring 
 
Astels [2002], who investigates refactoring in the context of agile modelling, gives 

several reasons motivating refactoring in UML. First, it is easier to comprehend 
software’s structure when looking at an UML class diagram rather than at a source 
code. Furthermore, behavioural aspects of software can be modelled and shown in 
behavioural UML diagrams. For example, instead of having to trace the call sequence 
of a given scenario in a code editor and switch between several files, the complete 
scenario can be expressed in one sequence or collaboration diagram [Boger et al. 
2003]. Such code visualization can help in detecting bad smells and design flaws, and 
in presenting the impact of the refactoring on the software. Moreover, manipulation of 
code on higher level of granularity (i.e. methods, variables and classes) can make 
refactoring more efficient.  

  
According to France & Bieman [2001], applying refactorings on an abstract view 

of the system facilitates meeting design goals and addressing deficiencies uncovered 
by evaluations, i.e. improving specific quality attributes directly on a model. It also 
enables relatively cheap exploring of alternative decision paths in system’s design. 

 
Astels [2002] provides examples of using UML to detect following common bad 

smells: Data Class, Large Class, Lazy Class and Middle Man. He also shows that the 
following exemplary refactorings: Move Method, Move Field, Make Inner Class 
Freestanding, Replace Inheritance With Delegation and Replace Delegation With 
Inheritance, can be performed easier and faster in a UML CASE tool than in an IDE. 

 
Sunyé et al. [2001] mention that the primary advantage of UML over other 

modelling languages, in the context of model refactoring, is the syntax, which is 
precisely defined by a metamodel. Therefore, the metamodel can be used to control the 
impact of a transformation and provide means for ensuring its behaviour-preservation. 

 

3.4 Recent and Current Research 
 
There are several attempts to perform refactoring on models expressed in UML. 

The most representative of them are briefed in this section. The survey was performed 
basing on the descriptions of the attempts contained in research papers. Mainly due to 
the unavailability of described tools, neither a detailed comparison nor a classification 
of these approaches could be prepared. 

 

3.4.1 UMLAUT 
 
Sunyé et al. [2001] attempted to transpose some of Robert’s [1999] refactorings to 

UML models. In the result of their work, they created an initial set of UML class 
diagram refactorings, consisting of: 

1. Addition of features (attributes and methods) and associations to a class; 
2. Removal of features and associations from a class; 
3. Insert Generalizable Element – addition of a class to inheritance hierarchy; 
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4. Remove Generalizable Element – removal of a class from inheritance 
hierarchy; 

5. Move Method (from one class to another); 
6. Generalization of elements owned by classes, such as attributes, methods, 

operations, association ends and statecharts; 
7. Specialization – the exact opposite of Generalization. 

 
For each refactoring, a textual description of preconditions that have to be satisfied 

before performing the transformation is provided. 
 
Besides class refactorings, Sunyé et al. [2001] describe six novel statechart 

refactorings: 
1. State 

a. Fold Incoming/Outgoing Actions; 
b. Unfold Entry/Exit Action; 
c. Group Sates; 

2. Composite State 
a. Fold Outgoing Transitions; 
b. Unfold Outgoing Transitions; 
c. Move State into Composite. 

 
Behaviour-preservation of each statechart refactoring is expressed with the use of 

pre- and postconditions specified in OCL at the metamodel level. For the sake of 
simplicity, no details of how each refactoring accomplishes its intent, is given in the 
research paper. However, the authors suggest the use of their UML general-purpose 
transformation framework called UMLAUT (Unified Modeling Language All 
pUrposes Transformer) [Ho 1999; Ho 2000]. 

 

3.4.2 Refactoring Browser for UML 
 
Boger et al. [2003] focus on such UML model refactorings that apply to structure 

information of software that is not evident while browsing its source code. In their 
research, they restricted themselves to activity diagram and statechart diagam next to 
class diagram refactorings. 

 
Some refactorings of class and all of activity and statechart diagrams described in 

their paper were implemented in a refactoring browser for UML as a part of the 
Gentleware tool Poseidon for UML. Class diagrams refactorings have been 
implemented down to the level of method signatures. Refactorings covering the 
method bodies were omitted due to missing notation for them in UML 1.3, on which 
metamodel is based Poseidon’s repository. 

 
Boger et al. identified and implemented following statechart refactorings: 

1. Merge States; 
2. Decompose Sequential Composite State; 
3. Form Composite State; 
4. Sequentialize Concurrent Composite State, 

as well as two activity diagrams refactorings, namely: Make Actions Concurrent and 
its opposition – Sequentialize Concurrent Actions. 

 
Behaviour-preservation of each refactoring is defined in a form of preconditions 

that are evaluated for currently selected model elements. Each precondition is mapped 
to appropriate messages, which are presented to the user in the case of its violation. 
These messages correspond to conflicts that are grouped into warnings, indicating that 
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the refactoring might cause side effects, while leaving the model in a well-formed 
state, and errors, indicating that the refactoring will break the consistency of the 
model. 

 

3.4.3 SMW Toolkit 
 
Porres describes in his technical report [2003] how a UML model refactoring can 

be implemented as a sequence of transformation rules or guarded actions. Each 
transformation rule consists of five elements: its name, a documentation string, a 
sequence of formal parameters, a guard defining when the rule can be applied, and a 
body, i.e. the implementation of the rule. A rule takes one or more model elements as 
actual parameters and performs a basic transformation action based on these 
parameters. 

 
Porres presents an execution algorithm for the transformation rules and describes a 

mechanism that ensures that the transformed models are well formed. However, he 
does not discuss the behaviour-preservation property of refactorings. 

 
In the absence of a standardized language for model transformations, Porres 

implements refactorings using SMW – a scripting language based on the Python 
programming language. In many respects, SMW is similar to OCL, but it additionally 
provides a set of operations enabling implementation of model transformations. The 
idea of extending OCL with action features has been already discussed by Pollet et al. 
[2002]. The main advantage of this approach is the possibility of implementing model 
transformations in one language along with defining their pre- and post-conditions. 

 
Models can be accessed from SMW scripts via a metamodel-based interface. Each 

metaclass from the metamodel is represented in SMW as a Python class and each 
element in a model – as an instance of an appropriate class. The classes representing 
the metamodel have the names, attributes and associations as defined in the UML 1.4 
standard [OMG 2002]. 

 
In order to validate the execution algorithms and to evaluate how difficult it is to 

implement new refactorings in practice, Porres constructed – using the SMW toolkit – 
an experimental, metamodel-driven refactoring tool, and integrated it with an existing 
UML editor. 

 

3.4.4 C-SAW and GME 
 
Zhang et al. [2004] describe an approach to model refactoring with the use of the 

Constraint-Specification Aspect Weaver9 (C-SAW) model transformation engine, a 
plug-in component for Generic Modeling Environment (GME). GME is a UML-based 
meta-modelling environment that can be configured and adapted from loaded into it 
meta-level specifications (called the modelling paradigm) that define all the modelling 
elements and valid relationships between them in a particular domain. The UML/OCL 
meta-metamodel of GME is based on its own specification instead of Meta-Object 
Facility (MOF). However, an ongoing project incorporates OMG’s MOF into GME. 

 
A prototype model refactoring browser operating with the underlying C-SAW has 

been developed as a plug-in for GME. It provides automation of generic pre-defined 
refactorings within the GME metamodel domain. Additionally, it enables the 

                                                      
9 http://www.gray-area.org/Research/C-SAW 
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specification of user-defined refactorings of both generic and domain-specific models 
(e.g. Petri Nets, AQML models, or finite state machines). 

 
A list of implemented UML class diagram refactorings contains: 

1. Extract Superclass; 
2. Collapse Hierarchy; 
3. {Add, Extract, Remove, Move, Rename} Class; 
4. {Add, Remove, Rename, Pull Up, Push Down} Attribute. 

These generic, pre-defined refactorings can be used for any GME metamodel. 
Refactoring strategies for user-defined refactorings can be specified and implemented 
using a special underlying language, called Embedded Constraint Language (ECL). 
Users of the refactoring browser are also allowed to customize pre-defined refactorings 
by modifying the corresponding ECL code. Generally, a refactoring is composed of a 
name, several parameters, preconditions and a sequence of strategies. 

 
According to Zhang et al. [2004], ECL is an extension of OCL providing many of 

the common features of OCL, such as arithmetic, logical and collection operators. 
Additionally, it provides special operators supporting model aggregates, connections 
and transformations (e.g. addModel, setAttribute or removeNode) that can access 
model elements stored in GME. 

 

3.4.5 Odyssey-PSW 
 
Correa & Werner [2004] discuss how refactoring techniques can be applied in 

order to improve the understandability and support the evolution of UML/OCL 
models, i.e. models consisting of UML class diagrams and OCL expressions. 

 
Analogously to “code smells”, the term “OCL smell” is introduced and defined as 

“a hint that some part of an OCL specification or even of the underlying class model 
should be refactored.” Correa and Werner identified and described five the most 
common OCL smells: 

1. Magic Literal – “a numeric or string literal that appears on the middle of 
an expression without explanation”; 

2. And Chain – “a single constraint (invariant, precondition or postcondition) 
composed of two or more expressions connected by and operators”; 

3. Long Journey – “an OCL expression that traverses many associations 
between different classes of the model”; 

4. Rules Exposure – “business rules details are specified in the preconditions 
or postconditions of system-level operations”; 

5. Duplicated Code – “the presence of duplicate OCL expressions”. 
 
The research paper contains also descriptions and examples of a number of 

UML/OCL model refactorings which are classified into three categories: 
1. OCL-exclusive refactorings (affect only OCL expressions): 

a. Add Variable From Expression; 
b. Replace Expression By Variable; 
c. Split AND Expression; 

2. UML diagram refactorings (changes in class definitions that may have an 
impact on OCL expressions) - all refactorings discussed by Sunyé et al. 
[2001] plus renaming refactorings; 

3. OCL definition constraint refactorings (changes made to OCL expressions 
that: introduce new elements in the class definitions or are related to OCL 
definition constraints): 

a. Add Operation Definition From Expression; 
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b. Replace Expression By Operation Call Expression. 
Analogously to the research carried out by Sunyé et al. [2001], supported are only 

these UML diagram refactorings that are based on rules that can be verified through 
analysis of structural relationships between model elements. Refactorings that demand 
more complex semantic equivalence analyses (e.g. involving type casting and 
polymorphic operations) have been deferred to a future work. 

 
The OCL refactorings described by Correa & Werner [2004] have been defined 

and automated in a prototype tool Odyssey-PSW (Precise Specification Workbench), 
which is an add-in to existing OO CASE tools able to access a UML model through a 
XMI interface. A refactoring is defined as an update operation having: a name, a 
textual documentation, parameters, pre- and postconditions (defined in OCL) and a 
body that implements the transformation (in OCL-Script). OCL-Script is an imperative 
language, similarly to ECL [Zhang et al. 2004] based on OCL. It allows, among other 
things, actions such as: creation and deletion of instances of a MOF compliant 
metamodel, assignment to attributes and association ends, operation calls, and 
operations that modify the contents of a collection. 

 
Correa & Werner [2004] propose an interesting, so called regression animation 

technique for checking whether or not the semantics of the model is preserved when a 
refactoring is performed manually. To be animated by Odyssey-PSW, all query 
operations in a UML/OCL model must have their bodies defined in OCL and non-
query operations – in OCL-Script. Additionally, the designer must specify a set of test 
cases that define states of the model before and after execution of some of the 
operation defined in the model. The Odyssey-PSW animation module checks whether 
any invariant, pre- or postcondition is violated during an animation scenario. 

 

3.5 Vertical Software Consistency 
 
Usually, software is composed of many different kinds of software artefacts, such 

as requirements documents, analysis models, design models, source code, test suites, 
etc. Therefore, if any of these software artefacts are being refactored, the others have 
to be kept consistent. 

 
In this section we will focus on the vertical, as opposed to horizontal, consistency 

between UML models and code, which maintenance – in the context of software 
consistency and model refactoring – is the most vexed issue.  

 
Massoni [2003], who investigates introduction of refactoring to heavyweight 

software methodologies – in particular to the Rational Unified Process – lists three, 
commonly used in software development, code-model consistency approaches: simple 
forward engineering, successive reverse engineering and round-trip engineering. Next, 
he identifies potential problems that may occur during refactoring source code (Java), 
design models or analysis models and trying to maintain a vertical consistency 
between them with the use of round-trip engineering.  

 
Most of the problems mentioned by Massoni appear when source code is 

regenerated from refactored models, another result from difficulties in dealing with 
different levels of abstraction and implementation specifics. All these issues are caused 
by the fact that although there is a similarity between UML models and object-oriented 
code, there is no fixed correspondence between them [Fowler 2003]. Round-trip-
engineering bases on two kinds of mappings: code to model and model to code, which, 
from the mathematical point of view, are not isomorphic, i.e. there occurs an 
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information loss in the case of both mappings [Rumpe 2002]. The primary intention of 
UML models is not to represent underlying source code but rather to provide means 
for object-oriented analysis and design. That is why concepts like invocations and 
accesses are especially hard to model using UML [Tichelaar et al. 2000; Tichelaar 
2001]. 

 
According to Van Gorp et al. [2003b], although model refactorings are expressed 

at the design level, they must be aware of all the detailed code-level issues. This 
problem was already noticed by Demeyer et al. in a research paper concerning UML 
shortcomings for coping with round-trip engineering [1999], as well as by Sunyé et al. 
[2001] who provide two examples of refactorings (Move Method and Specialization) 
which pre- and postconditions – in the absence of information about method bodies of 
particular operations – cannot be verified at the model level. In the case of Move 
Method, the body of the concerned operation must not refer to attributes and only 
navigate through an association to the target classifier. Therefore, the transformation 
requires information about attributes and methods used inside the body of the method 
being implementation of this operation. A precondition for the Specialization 
refactoring states that the reference context of a pushed down element (attribute or 
operation) must not be its owner class. There is no other way to obtain the reference 
context of an attribute than analyze method bodies of operations from associated 
classes. 

 
Van Gorp et al. [2003b] argue that the UML 1.4 [OMG 2002] metamodel is 

inadequate for maintaining the consistency between design models and corresponding 
program code. The UML 1.4 metamodel considers method bodies as implementation 
specific and therefore, typical UML tools treat them as “protected areas”, which must 
be supplied manually and are not altered during code (re)generation. After refactoring 
a UML model and next regenerating a source code, it is common that inconsistencies 
appear in these “protected areas”. For example, in the case of Pull Up Method 
refactoring, a UML 1.4 metamodel based tool must be able to decide on equality of 
methods, in order to remove from superclasses all copies of a pulled up method. Even 
in the case of the simple Rename Class refactoring, such a tool is not able to update the 
refactored class’s name in type declarations, type casts and exceptions. On the other 
hand, given a precise model of statements in a method body, a UML tool would be 
able to perform even such typical code level refactorings, like Extract Method.  

 

3.6 Source-Consistent UML Model Refactoring 
 
For the needs of this section, let us define a source-consistent UML model 

refactoring as a UML refactoring that maintains consistency between refactored model 
and underlying source code. 

 
In order to prove that the UML 1.4 metamodel is almost sufficient to allow for 

expressing source-consistent model refactorings, Van Gorp et al. [2003b] carried out 
an experiment, which goal was to provide concrete suggestions on realization of an 
ultimate UML refactoring extension. Within the framework of the experiment, they 
constructed GrammyUML metamodel (see Figure 3.1), which bases on the UML 1.4 
metamodel and includes eight additive extensions that allow for, among others, 
modelling statements in method bodies and use of typed local variables in a given 
scope. With the purpose of verifying access-, call- and update-preservation of 
refactorings (see Section 2.5), several stereotypes have been defined and incorporated 
into GrammyUML, along with four new refactoring Well-Formedness Rules. 
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In the next step, Van Gorp et al. [2003b] described in OCL, at the level of 

GrammyUML metamodel, the refactoring contracts, i.e. associated bad smells, pre- 
and postconditions, of two sample refactorings, namely Extract Method and Pull Up 
Method. As already stated in Section 3.5, it would be impossible to express refactoring 
contracts of these refactorings at the level of UML 1.4 metamodel. 

 
Van Gorp et al. [2003a; 2003c] validated their approach by implementing Pull Up 

Method refactoring in an open source UML CASE tool called Fujaba, with the use of 
Story Driven Modeling (SDM), a visual programming language based on UML and 
graph rewriting. The most straightforward solution would be to use instead of Fujaba  
an OCL-enabled tool, however they did not do this due to “the practical unpopularity 
of OCL (both in use by developers as in tool support) [Van Gorp et al. 2003a].”  

 
Fujaba’s metamodel consists of two layers of abstraction: the first one is 

equivalent to the UML 1.4 metamodel and the second one refines the method body as 
a Java abstract syntax tree (AST). However, the second layer, as it does not contain the 
explicit access, update and call information, is not suitable for reasoning about 
refactoring. To solve this problem, it was replaced by GrammyUML extensions. 
Unfortunately, also the SDM turned out to be not expressive enough for refactoring 
purposes. Van Gorp et al. bypassed its shortcomings by implementing SDM-
inexpressible constraints in Java but because it is not an “elegant” solution, they 
proposed additionally to extend SDM with parameterisation of graph expressions and 
story patterns. 

 
In order to ensure appropriate source code regeneration from refactored models, 

Van Gorp et al. suggest introduction of a new component called Code Preserver into 
the Fujaba architecture. They define it as “a development tool component that stores 
all the required source code files from which a model is extracted in such a way that 
the complete system can be regenerated from a transformation of the input model [Van 
Gorp et al. 2003c].” The need for Code Preserver results mainly from the fact that 
GrammyUML metamodel, since it includes only a minimal set of information 
sufficient for reasoning about refactoring, does not contain all syntactically possible 
source code constructs. 

 

3.7 Executable UML Model Refactoring in AGG 
 
According to Massoni [2003], other – alternative to round-trip engineering – 

approaches addressing code-model consistency issue are (1) attaching source code to 
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models, (2) recording refactorings, and (3) executable UML. The second approach can 
be realized by e.g. describing refactorings as coordinated graph transformation 
schemes that are instantiated according to the specific code modification and applied 
to the design models affected by the change [Bottoni et al. 2003]. The last method, i.e. 
executable UML (for details see Section 4) seems most promising since in this 
approach, as the models are automatically translated into executable entities, the 
problem of vertical code-model consistency does not exist. 

 
To our knowledge, so far there is only one research paper that concerns refactoring 

of executable UML models, namely “Formalizing Refactoring by Using Graph 
Transformation”, published by Kazato et al. in 2004. The authors of this article deal 
with refactoring of design models comprising of both structural and behavioural parts. 
The former is expressed by classes and related structural concepts, and the latter is 
specified with the use of operation bodies implemented in action semantics. 

 
Kazato et al. [ibid.] defined a set of twenty-eight basic transformations of design 

models, of which various refactorings can be composed. For example, the Push Down 
Attribute refactoring (derived from Fowler’s Push Down Field) consists of two basic 
transformations, namely push down attribute to the subclass, and remove attribute. As 
in all other studies, refactoring preconditions are specified with the use of OCL. 

 
The approach to implementation of model refactorings proposed by Kazato et al. 

[ibid.] bases on an observation, that each UML model may be represented as an object 
model comprised of instances of metaclasses of the UML metamodel. A part of an 
exemplary model and its so-called repository-view [Bock 2003] are shown in Figure 
3.2. Each such an object model is essentially a typed and attributed directed graph, and 
therefore each basic model transformation can be treated as a graph transformation 
with rules described as a part of the graph grammar. 
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From the implementation-viewpoint, i.e. when considering the repository 

representation of the model, basic transformations can be further decomposed. In our 
previous example, push down attribute to the subclass consists of create attribute and 
create association, executed for each subclass. 

 
Kazato et al. [ibid.] successfully implemented six10 compound refactorings as well 

as their preconditions, in the form of twenty-five OCL queries, in a graph 
transformation system called Attribute Graph Grammar (AGG). 

                                                      
10 Mentioned are only: Self Encapsulate Attribute, Remove Setting Method, and Extract Class. 
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4 EXECUTABLE MODELLING WITH UML 
 
The main goal of this chapter is to present a literature survey on executable 

modelling with UML. It is structured as follows: Section 4.1 situates executable UML 
against a background of the evolution of software engineering; Section 4.2 identifies 
an executable subset of UML 2.0; Section 4.3 provides an overview of several 
exemplary attempts to achieve executable UML. Finally, Section 4.4 concludes this 
chapter with a discussion on advantages and disadvantages of UML as a programming 
language. 

 

4.1 Introduction 
 
Grady Booch, the chief scientists for former Rational Software, said in an 

interview for CHIPS Magazine “the history of software engineering has been one of 
growing levels of abstraction (…) This growth has occurred simply as a meaningful 
engineering response to the growth in complexity in the kinds of software systems we 
as an industry are asked to create [Booch 2002].” The complexity of software systems 
can be measured e.g. using function points (FP) that are a unit measure for software 
that quantifies its functionality provided to the user basing primarily on the logical 
design [LC 2004]. According to Longstreet Consulting Inc., [LC 2004a] the size of 
large projects increased 10 times between years 1970 (1000 FP/project) and 2000 
(10000 FP/project). 

 
The evolution of software engineering, although present in development methods 

and software platforms, is most clearly apparent in the history of programming 
languages. Richard M. Soley wrote in the foreword to a book on MDA [Mellor et al. 
2004] that a “critically important” first step in this evolution was, developed in 1954 
and released in 1957, FORTRAN language (FORmula TRANslation system). 
However, one should bear in mind that this evolution began even earlier [Hightower 
1996]. First programmers had to load programs manually into memory, and after their 
completions unload them, using switches and buttons. The invention of operating 
systems automated this process and the introduction of assembly languages allowed 
developers to program computers without worrying about the correctness of used 
instructions. 

  
The development of FORTRAN not only accelerated the process of programming 

but also, due to the application of compilers, enabled portability of programs that could 
be finally written once and automatically translated for different machines. In this way, 
independence from hardware platforms has been achieved, and “since then, we have 
apparently flown up the abstraction ladder [R.M. Soley in Mellor et al. 2004].” Later 
languages, offering e.g. automatic memory management, let programmers focus more 
and more on application domain instead of on solution domain, what significantly 
increased their productivity. In the same time, the biggest problem became software 
portability across different operating systems. Programming languages operated on 
abstraction level that turned out to be too low to be able to write an application that 
could be directly compiled and run on e.g. Microsoft Windows and UNIX, not 
mentioning MacOS or any of the mobile phone operating systems. This shortcoming 
was the main reason for introduction of software platforms like CORBA, J2SE, J2EE 
or .NET that are independent from underlying operating systems. Additionally, they 
provide mechanisms for, among others, transparent distribution, concurrency and 
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persistency, what again soars programmers productivity, which increased between 
years 1970 and 2000 more than 3 times [LC 2004a]. 

 
Did the evolution reach its end? Boyd [2002] gives a negative answer to this 

question. In his opinion, the next logical, and perhaps inevitable, evolutionary step is 
executable UML [ibid.]. According to Pender, the term executable UML is used to 
describe “the application of a UML profile in the context of a method that aims to 
automatically generate an executable application from an abstract UML model 
[2003]”. Ivar Jacobson states in the foreword to a book on Executable UML11 (xUML) 
that the software community for a long time aimed at creating a modelling language 
that is also an executable one [Mellor & Balcer 2002]. He notices analogy between 
UML and another modelling language, namely Specification and Description 
Language (SDL), which was crated in the International Telecommunication Union 
(ITU). In the early 1980s, SDL has been extended by constructs to formally define 
algorithms and data structures, and thus evolved into a high-level programming 
language. However, neither SDL was the first one, since it was inspired by its (and 
UML’s) forerunner, so called “The Ericsson Language”, created already in 1968. It 
served to model telecommunication components with the use of sequence diagrams, 
collaboration diagrams and state transition diagrams (a combination of statechart and 
activity diagrams), and it enabled generation of almost 90% of the source code. 

 

4.2 Executable Subset of UML 2.0 
 
Before answering a research question, whether UML has potential for being a 

programming language, one has to ensure that it can be executed. The IEEE standard 
610.12-1990 defines computer program as a “combination of computer instructions 
and data definitions that enable computer hardware to perform computational or 
control functions [IEEE 1990].” One can therefore assume that an executable model of 
a system shall consist of a specification of its structure (data definitions) and behaviour 
(computer instructions).  

 
According to Rumpe [2002], already in UML 1.3 there is a large subset of 

modelling constructs, which can be animated and therefore used to specify as well 
executable models as test cases for them. This subset consists of class diagrams, object 
diagrams, statechart diagrams, activity diagrams, sequence diagrams, collaboration 
diagrams and OCL constraints. Sequence or collaboration diagrams are suitable to 
specify test cases, and statechart or activity diagrams are appropriate to describe 
behaviour of a single object. Class and object diagrams along with OCL constraints 
can be used as an input to as well object code as test code generation. 

 

4.2.1 General Information on UML 2.0 
 
UML 2.0 specification consists of four parts, namely: 

• UML 2.0 Superstructure [OMG 2004] – it defines the user level 
constructs; 

• UML 2.0 Infrastructure [OMG 2003] – it defines the foundation language 
constructs for both UML 2.0 superstructure and MOF 2.0; 

• UML 2.0 Diagram Interchange [OMG 2003a] – it defines a 
supplementary package for graph-oriented information, enabling a smooth 
and seamless exchange of models between different software tools. 

                                                      
11 It should be noted the difference and relation between executable UML and Executable UML 
(xUML), namely xUML is one of the approaches to achieve executable UML. 



  28 

• UML 2.0 Object Constraint Language (OCL) [OMG 2003b] – it defines a 
formal language used to specify expressions on UML models; 

Adoption of the UML 2.0 Superstructure is complete, and so-called Available 
Specifications of other three parts of UML 2.0 are supposed to be posted for non-OMG 
members in the middle of 2005. 

 
According to Kobryn [2004], the major improvements in UML 2.0 are: 

1. Support for component-based development via composite structures – both 
Classes and Components can be decomposed and assembled via Parts, 
Ports, and Connectors; 

2. Hierarchical decomposition of structure (Classes and Components) and 
behaviour (e.g. Interactions, State Machines, Activities); 

3. Cross integration of structure and behaviour – the same model element 
can be used in different kinds of diagrams; 

4. Integration of action semantics with behavioural constructs – UML 
actions are defined in as much detail as a programming language’s 
statements; 

5. Layered architecture to facilitate incremental implementation and 
compliance testing – UML concepts are contained in Packages, which are 
in turn partitioned into four horizontal layers of increasing capability 
called compliance levels. 

 

4.2.2 Run-Time Semantics of UML 2.0 
 
Run-time semantics of UML 2.0 [OMG 2004; Selic 2004] are specified as a 

mapping of modelling concepts into corresponding program execution phenomena. 
They are based on two fundamental premises: 

1. All behaviour in a modelled system is caused by actions executed by so-
called active objects; 

2. UML behavioural semantics deal only with event-driven (discrete) 
behaviours. 

 
The causality model of UML 2.0, i.e. a “specification how things happen at run-

time [ibid.]”, can be summarised as follows – objects respond to messages sent by the 
ones that execute communication actions, by executing behaviours attached to these 
messages. An exemplary scenario12 is depicted in a communication diagram in Figure 
4.1. The example shows two independent and possibly concurrent threads of causally 
chained interactions. The first, identified by the thread prefix ‘A’, consists of a 
sequence of events that begin with activeObject1 sending signal s1 to activeObject2. 
In turn, activeObject2 responds by invoking operation op1() on passiveObject1 after 
which it sends signal s2 to activeObject3. The second thread, distinguished by the 
thread prefix ‘B’, starts with activeObject4 invoking operation op2() on 
passiveObject1. The latter responds by executing the method that realizes this 
operation, in which it sends signal s3 to activeObject2. 

 

                                                      
12 This example is taken directly from the Superstructure specification [OMG 2004]. 
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The key semantic areas covered by UML 2.0 and the relation between them are 

presented in Figure 4.2. At the highest level of abstraction, the architecture of UML 
2.0 run-time semantics consists of three composite layers13: (1) Structural Foundations, 
(2) Behavioural Base, and (3) High-Level Formalisms. 
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The first layer reflects the premise stating that in UML there is no disembodied 

behaviour. The second layer provides the base for the semantic description of all the 
higher-level behavioural formalisms. It consists of three separate sub-areas arranged 
into two sub-layers. The bottom sub-layer is composed of the inter-object behaviour 
base, which concerns communication between structural entities, and the intra-object 
behaviour base, which addresses the behaviour occurring within them. The actions 
sub-layer, described in the sequel of this section, defines the semantics of individual 
actions. The topmost layer in the architecture defines the semantics of the following 
high-level behavioural formalisms of UML: activities, state machines, and 
interactions. 

 
A more detailed explanation of the two bottom layers can be found in a paper 

written by Selic [2004]. Obviously, a thorough description of the whole run-time 
semantics of UML is given in the UML 2.0 Superstructure specification [OMG 2004]. 
Therefore, this section contains only a presentation of the core actions sub-layer. 

 
According to Pender [2003], the primary reason for having action semantics is to 

provide a standard for the exchange of action specifications between tools. On the 
contrary, Rumpe [2002] states, that the main reason for extending UML by an action 
language is the shortcoming to generate code from OCL constraints. Nevertheless, 
integration of actions with behavioural constructs is – from the viewpoint of model 
execution and simulation – the most significant improvement in UML 2.0. 

                                                      
13 The items in the upper layers depend on the items in the lower ones. 
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As defined by the UML 2.0 standard, an action is “the fundamental unit of 

behaviour specification [OMG 2004]”, that converts a set of inputs into a set of 
outputs. The actions are organized into four packages, which are shown – together 
with their inter-dependencies – in Figure 4.3. BasicActions package is required at the 
Compliance Level 1, StructuredActions and IntermediateActions – at the Level 2, and 
CompleteActions – at the Level 3. 
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BasicActions contain various actions that invoke behaviour, namely 

SendSignalAction that creates a signal instance from its inputs and transmits it to a 
target object, CallOperationAction that transmits an operation call request to a target 
object, and CallBehaviorAction for direct behaviour invocations.  Additionally, the 
basic package includes OpaqueAction with implementation-specific semantics. 

 
The characteristic feature of intermediate actions is that they either carry out a 

computation or access object memory. IntermediateActions contains two additional 
invocation actions, namely BroadcastSignalAction that transmits a signal instance to 
all the potential target objects in the system, and SendObjectAction for transmission of 
objects. Another set of intermediate actions constitute so-called object actions, i.e. 
CreateObjectAction, DestroyObjectAction, TestIdentityAction to test if two values are 
identical objects, and ReadSelfAction that retrieves its host object. The package 
contains four actions that concern structural features – ReadStructuralFeatureAction, 
AddStructuralFeatureValueAction, RemoveStructuralFeatureValueAction, and 
ClearStructuralFeatureAction that removes all values of a structural feature. Link 
actions constitute another group of intermediate actions – these are ReadLinkAction 
that navigates across associations to retrieve objects on one end, CreateLinkAction, 
DestroyLinkAction that destroys links and link objects, and ClearAssociationAction for 
destroying all links of an association in which a particular object participates. 
Additionally, the intermediate package includes ValueSpecificationAction that returns 
the result of evaluating a value specification. 

 
StructuredActions contains RaiseExceptionAction that causes an exception to 

occur, and variable actions organized similarly to structural feature ones (from 
IntermediateActions) – these are ReadVariableAction, AddVariableValueAction, 
RemoveVariableValueAction, and ClearVariableAction. 

 
One of the groups of actions from CompleteActions deals with accepting events, 

and it constitutes of AcceptEventAction, AcceptCallAction, ReplayAction, and 
UnmarshallAction. The package contains four object actions, namely 
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ReadExtentAction that retrieves the current instances of a classifier, 
ReclassifyObjectAction that changes a classifier of an object, and 
StartClassifierBehaviorAction that provides a way to indicate when the execution of 
the classifier behaviour of a newly created object should begin. Link object actions 
from CompleteActions operate on instances of association classes – these are 
CreateLinkObjectAction, ReadLinkObjectEndAction that retrieves an end object from a 
link object, and ReadLinkObjectEndQualifierAction. 

 
Additionally, the UML standard defines two actions for dealing with time values, 

namely TimeObservationAction that observes the current point in time, and 
DurationObservationAction that observes duration in time. Both these actions come 
from CommonBehaviors::SimpleTime, and they write values of their observations to 
structural features. 

 

4.3 Attempts to Achieve Executable UML 
 
As indicated by Mellor & Balcer [2002], there are many executable subsets of 

UML. The goal of this section is to provide an overview of several exemplary as well 
commercial as research attempts to achieve executable UML. Description of each 
approach focuses particularly on two aspects, namely (1) what means can be used to 
specify a model, and (2) how is the model executed. 

 

4.3.1 Combining UML with Programming Languages 
 
Combining UML models with fragments of code written in one of the 

contemporary programming languages (e.g. C++ or Java) is the most straightforward 
attempt to achieve an executable UML model. This approach merges two distinct 
activities of design and implementation into one, which is usually followed by source 
code generation and testing. 

 
The metamodel of e.g. UML 1.4 [OMG 2002] contains several places in which 

UML can be mixed with programming languages. One of the examples is 
ProgrammingLanguageDataType, which can be used to capture type constructs not 
included as UML classifiers. Another example is ProcedureExpression – according to 
the abstract syntax for the Core package of UML 1.4, the type of body attribute of the 
Method metaclass, i.e. an implementation of method’s body, is a 
ProcedureExpression, which “defines a statement that will result in a change to the 
values of its environment when evaluated [OMG 2002]”. Such statements can be 
therefore written in any of programming languages. 

 

4.3.2 Executable UML (xUML) 
 
Executable UML (xUML) [Starr 2002a; Mellor & Balcer 2002; Mellor et al. 2004] 

is a profile of UML that defines execution semantics for a computationally complete 
subset of this language14. It originates from Shlaer-Mellor community and it can be 
used to build Platform-Independent Models (PIMs) that make no decisions about a 
particular hardware and software environment. According to Ivar Jacobson [Mellor & 
Balcer 2002], xUML is one of the cornerstones on which rests the Model Driven 
Architecture (MDA) initiative. 

                                                      
14 For an open source, and unfortunately incomplete version of the xUML metamodel see [Starr 
2002b]. 



  32 

 
A complete xUML specification of a system consists of a number of autonomous, 

reusable, and replaceable domains, which aggregate sets of entities modelled with the 
use of UML classes, which in turn may have lifecycles (behaviours over time) that are 
abstracted as state machines. The behaviour of the system is driven by objects moving 
from one stage in their lifecycles to another in response to events. Each state machine 
has a set of procedures, one of which is executed when the object changes state, thus 
establishing the new state. Each procedure comprises a set of actions, being primitive 
units of computation, which cause e.g. synchronization or data access to be executed. 
In the matter of actions, xUML relies on the UML 1.4 with Action Semantics [OMG 
2002a] and allows using any surface language that is compliant with this specification.  

 
The classes and their relationships are illustrated on class diagrams, and their state 

machines with procedures embedded in states are shown on statechart diagrams. Other 
kinds of diagrams, i.e. collaboration diagrams and sequence diagrams, can be 
automatically generated from xUML models. What mostly distinguish xUML from the 
ordinary UML are operations, which are derived from actions on state machines. 
Moreover, neither aggregation nor composition relationships are supported. 

 
The next step after creation of complete models of domains is determination of 

how these models are supposed to be linked together, especially which identifiable 
entities in one model correspond to other ones in another models. This activity is 
called bridging domains, and it can be performed in both explicit and implicit style 
[Mellor & Balcer 2002]. The source models can be optionally coloured with 
performance and deployment decisions [Starr 2002a] called in the MDA terminology 
marks [Mellor et al. 2004]. Afterwards, a model compiler weaves together the models 
according to a single set of architectural rules, so called archetypes, i.e. fragments of 
data access and text manipulation logic that state formally how to translate an xUML 
model into text being e.g source code written in Java, C++, VHDL, or COBOL. 
Besides weaving and translating all source models into code, the model compiler must 
also incorporate elements than enable among others storing instances, generating calls 
and signals across task and processor boundaries, and traversing state machines [ibid.]. 
All this elements constitute a xUML execution engine targeted to a selected software 
platform. 

 

4.3.3 UML Virtual Machine 
 
Schattkowsky & Müller [2004; 2004a] present an approach for model-based 

development of embedded systems applying a well-defined UML 2.0 subset with 
precise execution semantics, and support for timeouts as well as exception and 
interrupt modelling. 

 
The structure of systems built in this approach can be specified with the use a 

subset of UML 2.0 Classes package, which encompasses among others classes having 
attributes and operations (called only synchronously), support for single inheritance as 
well as realization of multiple interfaces.  

 
The behaviour of each non-abstract operation is modelled with the use of a state 

machine, and each activity of a state or a transition in these state machines is specified 
via an interaction, illustrated in a sequence diagram. Such a combination of state 
machines and interactions allows overcoming the limitations of state machines when 
expressing complex algorithms and deeply nested control flows [ibid.]. 
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A state machine consists of start and final pseudo states, as well as of simple and 
composite ones, where each latter contains another state machine. Transitions between 
states can be triggered by among others an occurrence of a timeout or hardware 
interruption, a software exception, i.e. division by zero, or an explicit trigger from the 
current state’s implementation. The whole operation completes when the associated 
state machine terminates by reaching a final state. 

 
The surface syntax of the language used to specify single actions is derived from 

C++ and Java. The language allows value assignments based on nested expressions 
and operation invocations using variables in the current scope [ibid.]. As well basic 
math and bit as logic operations are covered, and their semantics is comparable to the 
one of their Java equivalents. 

 
The complete UML specifications are automatically transformed to equivalent 

executable state-oriented models, consisting of binary finite state machines (obtained 
from UML state machines) with byte code (obtained from UML interactions) 
embedded in states. The mapping between input and output model elements is not of 
the one-to-one type – e.g. entry-, exit-, and transition-activities in input state machines 
are transformed to additional states and transitions in output ones. Such a semantics-
preserving simplification reduces the number of elements of which the execution 
environment has to be aware. After the transformation, the output models can be 
executed directly by a dedicated UML Virtual Machine (UVM), implemented in either 
hardware or software. 

 
Riehle et al. [2001] provide the description of both logical and physical 

architecture of another UML Virtual Machine, which is implemented in Java as an 
object-oriented framework that has ability to execute models by interpreting them 
according to UML semantics. Models are built with inter-related classes, and their 
behaviour is specified by state charts reacting to events that they receive. Class 
descriptions are enriched by OCL constraints that represent the inter-object 
dependencies resulting from among others business rules – this way, state transitions 
in one object are translated into events relevant to other objects that are not connected 
with the originating object through a state chart. Unfortunately, since models created 
for this virtual machine are based on UML 1.3, detailed operational behaviour has to 
be implemented manually using native Java, what is doubtlessly the major drawback 
of this immensely interesting approach. 

 

4.3.4 Comparison of the Attempts 
 
The goal on this section is to introduce a coarse categorisation of approaches to 

achieve executable UML, as well as indicate their major strengths and weaknesses.   
 
Basing on several exemplary, as well commercial as research solutions described 

in literature, two main variation points of the approaches have been identified, namely 
system specification and model execution. In the context of system specification, it has 
been discovered that (1) in all the attempts, structural aspects of systems are modelled 
with the use of classes, and (2) different subsets of UML along with either 
programming languages or action semantics are used to model systems’ behaviour. 
From the model execution perspective, all the approaches fall into two broad categories 
of (1) platform-specific code generation, and (2) execution on a virtual machine. 

 
Feng [2003] mentions several disadvantages of combining UML with 

programming languages, namely: 
• No programming language contains all the useful software concepts; 
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• Not all UML concepts are directly supported by contemporary 
programming languages; 

• Using a programming language enforces to focus on implementation 
details too early; 

• Models created in this way are not portable across different modelling 
tools. 

 
There are two kinds of platform-specific code generation, namely naive code 

generation that is usually preceded by specification of system’s behaviour using a 
programming language, and more sophisticated model compilation. In the former 
approach, unchanged language-specific expressions and statements are naively placed 
in the source code generated from UML specification of system’s structure, where in 
the latter one, a model compiler is aware of syntax and semantics of an action 
language used to express system’s behaviour.  

 
The major drawbacks of the naive code generation are [Feng 2003]: 

• Modellers are not able to test the system until the source code is finally 
generated; 

• Modellers must have a comprehensive knowledge of code generation 
rules; 

• Automatic model analysis and verification is difficult, what makes the 
generated software error-prone and hinders debugging; 

• The process of code generation is time-consuming, what significantly 
increases system’s time-to-market. 

 
Model compilation approaches are free from above-mentioned weaknesses, 

because model verificators and simulators usually accompany development 
environments supporting model compilation. However, disregarding the way the 
source code is obtained, the process of its generation is time-consuming, what 
significantly increases system’s time-to-market. Moreover, the time delay caused by 
code generation, its compilation, shutting down the existing system, installing and 
configuring the new one and starting it up, makes simulation of new models with 
immediate user feedback uncomfortable if not impossible. The resulting models easily 
become not optimal [Riehle et al. 2001]. 

 
As indicated by Schattkowsky & Müller [2004], the use of a virtual machine 

eliminates the need to compile models to different platforms – instead, only the virtual 
machine itself needs to be ported to each platform. As a model is supposed to run on 
any VM implementation, improvements to the runtime environment are immediately 
beneficial for existing software, what also significantly reduces cost for application 
development and testing. 

 
Platform-specific code generation, in its two variants, is a much more common and 

mature technique for execution of UML models that the use of a virtual machine. 
Actually, all commercial tools that were investigated by the authors support this 
approach and only few research projects use the latter one. 

 
Furthermore, with respect to behavioural specifications, models can be categorized 

into state-oriented and stateless. In the state-oriented paradigm, a structural entity may 
have a state machine that describes its lifecycle. On the contrary, stateless models are 
very similar to programs written in object-oriented languages. 

 
The attempts to achieve executable UML that are described in Section 4.3 are of 

course not the only ones. Among others, there are several commercial UML 2.0 based 
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tools15, which enable creation and execution of models, like I-Logix Rhapsody16 
[Niemann 2004] or Telelogic TAU17 [Björkander & Kobryn 2003; Kobryn & 
Samuelsson 2003; Leblanc 2004; Telelogic 2004]. A detailed description of TAU 
executable models, which can be treated as a supplement to this chapter, can be found 
in Section 5. 

 

4.4 UML as a Programming Language 
 
Being executable is an essential, but not a sufficient condition that UML has to 

meet in order to replace currently used high-level programming languages. Rumpe, in 
a paper on UML in the context of extreme modelling [2002], poses on UML six 
following requirements: 

1. UML needs to be fully expressive, 
2. UML needs to be more compact notation than an ordinary programming 

language, 
3. UML needs a simple and usable module concept, 
4. UML needs support for testing, 
5. UML needs an adequate tool support. 
6. UML needs an effective translation into efficient code, 

 
In fact, only four first requirements concern UML as a language. The state-of-the-

art UML 2.0 seems to fulfil them, as it (1) includes a wide set of actions that make it 
fully expressive, (2) is more compact than programming languages by disregarding 
implementation (platform) details, (3) has a simple and usable module concept in the 
form of a package, and (4) contains interactions that are particularly suitable for testing 
purposes. The adequate tool support for executable UML and its effective translation 
into efficient code are just the matter of time. 

 

4.4.1 Advantages of Executable UML 
 
Four interrelated categories of advantages of programming directly in the 

modelling language have been identified, namely the ones resulting from: 
• the elimination of the two-language problem; 
• the platform- and target-language-independence; 
• the compact and graphical notation of UML; 
• the early model execution and automatic code generation capabilities. 

 
One of the advantages resulting from the elimination of the two-language problem, 

i.e. modelling in UML, and programming in e.g. C# or Java [Jacobson in Mellor & 
Balcer 2002], is improved communication. Analysts, designers, programmers, and 
testers all use the same language, what “reduces the differences between their roles in 
the development process and helps to remove natural barriers that moving from the 
model domain to the code domain inadvertently introduces [Björkander 2000].” Next 
advantages in this category are reduced number of artefacts, and no need for code-
model synchronization, which both result from the fact that the model and the code 
are essentially the same [ibid.]. 

 
The second category encompasses benefits resulting from the platform- and target-

language-independence of executable UML models. One of these advantages, called 
                                                      
15 A list of several UML 2.0 based tools can be found at http://www.uml.org/#Links-UML2Tools. 
16 http://www.ilogix.com/rhapsody/rhapsody.cfm 
17 http://www.telelogic.com/products/tau/tg2.cfm 
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by us one model – multiple implementations, relies on the fact, that an executable 
model can be interpreted or compiled – without altering it – to code in any desired 
programming language running on any target platform [Björkander 2000, Björkander 
& Kobryn 2003]. Modellers that use executable UML are supposed to focus only on 
what their system should really do. They are allowed to disregard as well certain 
details of the implementation (e.g. how should an association be implemented?) as 
other architectural considerations (e.g. concerning distribution – should we use 
CORBA or COM?) that can be handled later in the development process or left a 
compiler or code generator. This benefit can be called focus on functionality. 

 
As indicated by Soley [Mellor et al. 2004], the compact and graphical notation of 

executable UML, as opposed to textual programming languages, allows the 
construction of computing systems from models that can be understood very quickly 
and deeply. This causes another benefit of using executable UML, namely easier and 
cheaper software maintenance. In addition, the tests can be described in a more 
compact way, what gives rise for specification-based testing [Rumpe 2002], which 
can be even more facilitated by tools that graphically show where a test situation is 
violated [ibid.]. 

 
The fourth category covers advantages resulting from the early model execution 

and automatic code generation, which render possibility of model-level debugging 
[Björkander 2000], short development cycles, and early feedback for developer that 
experiences his model’s actual behaviour [Rumpe 2002]. Furthermore, generating code 
from a model gives a distinctive time and market advantage [ibid.]. 

 

4.4.2 Doubts Concerning Executable UML 
 
As observed by Björkander [2000], accepting that a modelling language can be 

used as a programming one may encounter mental hurdles – a common reaction is 
mistrusting the code that is generated from models. Another doubtful matter is the 
efficiency of the automatically produced code. However, the same issues raised doubts 
in the context of e.g. FORTRAN language, which turned out to produce code that was 
reliable and nearly as efficient as the one written by good programmers. This proves 
that somehow the high level of abstraction offered by a language does not always have 
significant run-time costs [Soley in Mellor et al. 2004]. 

 
According to Fowler [2003], it is worth using the UML as a programming 

language only if it results in a significant productivity gain when compared to current 
object-oriented programming languages. However, even if it is more productive, “it 
still needs to get a critical mass of users for it to make the mainstream [ibid.].” 
Otherwise, executable UML might meet the same fate as Smalltalk programming 
language that, despite being very productive, is currently a niche one. 

 
The main doubt seems to be raised by tools, which currently are not mature 

enough to generate multi-language and multi-platform business applications. Ambler 
[2003] points out that currently (1) it is difficult to integrate a collection of tools to 
support executable UML, and that (2) an opposite approach, in which as well a 
modelling subsystem as code generators are delivered by a single vendor, will likely 
prove too narrow. As maintained by Ambler [2003], “the complexity of software 
development and the pace of technological change will outstrip the ability of tools 
vendors to generate reasonably efficient source code.” During several nearest years, it 
will turn out whether it is true or not. 
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5 TELELOGIC TAU EXECUTABLE UML MODELS 
 
The goal of this chapter is to provide an overview of executable UML models that 

can be built and executed in Telelogic TAU. It is structured as follows: Section 5.1 
presents the main features of the tool; Section 5.2 describes elements that a TAU 
executable model must be composed of; Section 5.3 presents an exemplary model built 
in the tool; Section 5.4 discusses TAU’s compliance with UML 2.0. Finally, Section 
5.5 presents allowed means of communication between classes in TAU models. 

 

5.1 Introduction 
 
Telelogic TAU Generation2 is the state-of-the-art family of advanced systems and 

software development and testing tools. It consists of four products directed towards 
different users, namely: 

• TAU/Architect - for systems architecture and design, 
• TAU/Developer – for model-driven software development, 
• TAU/Tester – for systems and integration testing, 
• TAU/Logiscope – for software quality assurance and metrics. 

 
In the context of model execution, the highest capability offers TAU/Developer – 

a UML 2.0 based tool that enables designing, debugging and delivering advanced 
software components and applications. It enables to: 

• create precise visual definitions of software behaviour with the use of a 
comprehensive action language, 

• optimize, compile (to C, C++ or Java) and execute detailed design 
models, 

• graphically trace a running model using sequence diagrams, 
• examine a model’s behaviour by step-by-step debugging through UML 

state machines, 
• record and rerun model execution steps for future regression testing. 

 
The behaviour of a UML model and its implementation may be verified with the 

use of the Model Verifier. First, the Application Builder generates an executable 
program in the C language from the model linked with a predefined run-time library 
customized for simulation purposes. Next, the program is executed – either 
automatically or manually, i.e. in a step-by-step manner using various commands and 
breakpoints. The execution of the session can be traced graphically in state machine 
and sequence diagrams or textually in the output console window. If the application 
communicates with the environment, this also may be simulated by sending manually 
prepared signals. 

 
For the sake of the thesis, Telelogic TAU has been chosen to be the tool, in which 

selected refactorings are automated. The justification of this choice can be found in 
Section 6.5. 

 

5.2 Basic TAU Executable Models 
 
In order to be executable with the Model Verifier, a UML model must have a 

certain level of completion. It must be composed of: 
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• a package (optional), 
• a class diagram (optional), 
• at least one active class (the so-called top-level active class), 
• at least one state machine with an implementation (optional – in the sense 

that it can be implicit). 
 
An active class, i.e. a class with its own thread of control, must have a port to be 

able to communicate with other active classes and/or its environment with the use of 
signals. A port – a named interaction point of an active class – is defined by the 
signals, usually encapsulated in interfaces, which it can transmit. A model with 
(internal or external) communication has: 

• at least one signal, 
• at least one port, 
• an interface (optional). 

 
The lifecycle of an active class is described with a state machine – named initialize 

or having the same name as its owner. The implementation of the state machine is 
visualized on a statechart diagram (alternatively – in a text diagram). There are two 
different styles of drawing statechart diagrams supported (see Figure 5.1) – the state-
oriented view and the transition-oriented one. The first one gives a good overview of a 
complex state machine but is less practical when focusing on the control flow and 
communication aspects of a specific set of transitions. For this reason, it is also 
possible to describe a state machine in the transition-oriented way, with explicit 
symbols for different actions that can be performed during the transition. 
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Each active class may have its internal run-time structure defined in terms of other 

active classes, referred to as parts. A composite structure diagram may be used to 
visualize this architecture as well as to express the communication within an active 
class by showing connectors between the ports of the parts. A special kind of ports, 
namely behaviour ports, may be used to enable the communication between a part and 
the state machine in an instance of the class that owns the part. 

 
More information on TAU executable models in the form of a list of unsupported 

UML constructs can be found in Appendix E. 
 

5.3 Exemplary Model – Counting Server 
 
The simple exemplary model outlined in this section – Counting Server – is a 

modified and extended version of one of the projects – Echo Server – supplied with 
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TAU. The externally observable functionality of the system can be summarized as 
follows: an actor of the system sends into it two values - an integer number and a time 
interval – and receives an integer value being either the number multiplied or divided 
by two – depending on the value of the number. 

 
Figure 5.2 shows a class diagram illustrating the top-level active class of the 

system – Server and two signals – Count and Reply. Server has a port called EnvPort 
used for communication with its environment. The port realizes the Count signal, i.e. it 
declares that Server can handle receipts of this one. Moreover, it requires Reply signal, 
i.e. it expects that an actor of the system can handle this one. 
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Two latter active classes that fulfil the functionality of the system are Dispatcher 

and RequestHandler. The first one has a port called DPort that realizes Count and 
requires Confirm signals. RequestHandler may communicate via its RHPort, but only 
in one direction. Additionally, there is a composition association between 
RequestHandler and a passive class RequestProcessor, which implies that each newly 
created instance of the former one has an attribute processor containing an instance of 
the latter one. All these three classes as well as an additional signal Confirm are 
depicted in a class diagram shown in Figure 5.3. 
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Server has its internal structure depicted on a composite structure diagram shown 

in Figure 5.4. This is the so-called white-box, as opposed to black-box (see Figure 
5.2), view of the system [Björkander & Kobryn 2003]. It reveals that the active class 
Server has two parts – d and rh typed by Dispatcher and RequestHandler respectively. 
It is noteworthy that the initial number of instances of RequestHandler is zero, what 
indicates that probably they will be created dynamically during execution of the 
system. Additionally, the composite structure diagram illustrates communication paths 
– connectors – between ports of all active classes of the system. Therefore, d may 
receive Count signals from the environment of Server via EnvToD connector. 
Moreover, it can communicate with Server’s state machine by sending Confirm signals 
to an unnamed behaviour port. Finally, RequestHandler may send Reply signals to the 
environment using RHToEnv connector. 
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Behaviour of the Counting Server is specified with the use of simple state 

machines that define lifecycles of the active classes. 
 
Server (see Figure 5.5) remains in Idle state until it receives a parameter less 

Confirm signal that triggers a transition back to the same state. An action that is 
performed on the transition increments by one the value of an integer attribute 
noOfRequests. 

 

 
 

�������.	.	�����	 �
�
 � ��	 �� ��� ��� ���
 �����

 
Dispatcher (see Figure 5.6) responds to Count signal by creating a new instance 

of RequestHandler and sending Confirm signal to Server. The state machine has two 
temporary variables – number and pause – that are used to receive the values carried 
by Count signal and pass them to an instance of RequestHandler. It is noteworthy that 
a constructor of RequestHandler is not an operation but a state machine.  

 
  

IdleIdle

Count(number, pause)Count(number, pause)

Integer number;
Duration pause;
Integer number;
Duration pause;

rh.append(new RequestHandler(number, pause));rh.append(new RequestHandler(number, pause));

Confirm()Conf irm()
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An instance of RequestHandler (see Figure 5.7) starts its lifecycle by creating a 

timer called PauseTimer and setting it to trigger a transition after a period determined 
by the pause parameter. As the transition is triggered, RequestHandler invokes process 
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operation of an associated RequestProcessor class. The operation computes the return 
value according to a simple algorithm, expressed in the U2 Action Language. Finally, 
RequestHandler sends Reply signal with the calculated value to the environment and 
destroys itself by performing a stop action. 
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In order to run the complete model of the system, a build artefact needs to be 

created, compiled, and launched. An exemplary interaction between objects of the 
Counting Server is illustrated in a sequence diagram in Figure 5.8. It shows behaviour 
of the system in response for sending it a signal Count(8, 5.0), where 8 is a number 
that is processed by the server, and 5.0 is the delay after which a RequestHandler starts 
computation of the result. As expected, the value returned by the system is 16. 
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5.4 TAU’s Compliance with UML 2.0 
 
In the article on the future of software modelling, Kobryn [2004] foresees 

production and release of UML 2.0 tools supporting a wide variety of dialects loosely 
based on subsets of the UML 2.0 specification. These are subsets, because UML 2.0 is 
too large to be completely implemented by any vendor in one product release. The 
loose connection between the dialects and the UML 2.0 specification results mainly 
from the lack of a reference implementation and an appropriate test suite that could 
enforce and reliably measure the compliance. 

 
A dialect of UML used in TAU is based on one of the submissions of the UML 2.0 

Superstructure specification. However, in some cases TAU’s UML differs even from 
this working version of the standard. This is mainly due to tool optimizations and 
foundation of some design decisions on yet earlier submissions. TAU also includes 
some extensions to the language, e.g. the possibility to use a textual syntax (the so-
called U2 Textual Syntax) in conjunction with the graphical notation defined for UML. 
This syntax is based on C++ and Java and it additionally covers non-programming 
language concepts like stereotypes and tagged values. 

 
The model repository of TAU is based on the so-called Object Model that is 

composed of around 200 metaclasses. Views of the underlying repository are provided 
by metamodels. An example of such a metamodel is the built-in TTDMetamodel 
which includes only the classes that are useful to be stereotyped, and omits almost all 
of the associations and attributes found in the core repository. 

 

5.4.1 TAU Object Model 
 
The metamodel18 of TAU consists of eight inter-dependent packages (see Figure 

5.9): 
1. U2Build – contains one metaclass Artifact for modelling how to build and 

deploy a system; 
2. U2Dynamic – contains entities for modelling dynamic behaviour of a 

system; 
3. U2Entity – contains one metaclass Entity being the top-most superclass of 

all other metaclasses; 
4. U2Persistence – contains entities for modelling how to store a model in a 

persistent way; 
5. U2PredefinedTypes – contains the following primitive types: einteger, 

eboolean, estring, evoid, ereal, and echaracter; 
6. U2Presentation – contains entities for modelling how to visualise a model 

using items like diagrams, symbols, lines, and text labels; 
7. U2Scope – contains entities for modelling different kinds of scopes; 
8. U2Static – contains some core entities for modelling static structural 

aspects of a system. 
 

                                                      
18 Starting from this section, TAU metamodel refers to TAU Object Model. 
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A detailed presentation and a description of the whole TAU Object Model or even 

an overview of the key aspects of the part that can be used to build executable UML 
models goes far beyond the scope of this thesis. However, without the knowledge of 
some of its fragments, it would be very hard, if not impossible, to comprehend in depth 
the details of the refactorings specifications from their catalogue (see Section 7). 
Therefore, a brief presentation of the parts of TAU Object Model that are particularly 
important in the context of these refactorings19 is provided in Section 6.9. Moreover, a 
set of diagrams giving an overview of the whole TAU Object Model [Telelogic 2005] 
can be found on a CD attached to the thesis. 

 

5.5 Communication between Classes 
 
The structural part of a TAU executable model can be described with the use of 

collaborating active and passive classes. This fact is illustrated in Figure 5.10, which 
shows TopLevelClass having several parts – among others ActiveClass1 and 
ActiveClass2 – which may in turn be composed of other parts. All these active classes 
form the architecture of the system. However, in order to fulfil their responsibilities, 
active classes may use passive ones.  
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19 It is noteworthy that this part of TAU Object Model is not necessarily the most important in the 
context of another refactorings, e.g. refactorings specific for executable UML models. 
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Classes may communicate with each other by calling operations and sending 
signals. Table 5.1 contains information on allowed methods of communication 
between two types of classes.  
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From passive to passive 
 
Passive classes may communicate with each other only with the use of operations 

invoked via associations. It is noteworthy that passive classes may not realize any 
interfaces (neither via realization nor via ports). Therefore, situations like the ones in 
Figure 5.11 are illegal. 
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From passive to active 
 
A passive class may not initiate communication with an active one. It results from 

the constraints valid for TAU executable models stating that (1) methods of a passive 
class cannot call methods of an active one, and (2) passive classes cannot send signals. 
As passive classes do not have lifecycles described by state machines, the first rule 
prevents from any operational communication from them to active classes. Moreover, 
the second rule forbids passive classes to send signals to active ones. This constraint is 
not compliant with the basic causality model of UML 2.0 (see Section 4.2.2), which 
enables communication from passive classes to active ones via signals. Nevertheless, 
the only legal way to pass information from a passive class to an active one is the use 
of return parameters of operations. 

 
From active to passive 
 
The only way an active class may initiate communication with a passive one is the 

use of an operation call via an association. Passive classes cannot receive signals, 
mainly because they do not have state machines that would handle them. 
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From active to active 
 
Active classes may communicate with each other with the use of both operations 

and signals. These are handled by their state machines as soon as an adequate state is 
reached, i.e. a state in which the particular operation call or signal receipt may trigger a 
transition to another state. 

 
Judging from the exemplary projects supplied with TAU, the most common way 

of communication between active classes being parts is sending signals via connectors. 
This seems to result from the fact that sending a signal, as opposed to invoking an 
operation, is asynchronous and thus it does not suspend the execution of the state 
machine of the sender. Connectors may be used also as a communication medium for 
operation calls. 

 
A top-level class (or a container) may use its composite associations to invoke 

operations or send signals to its parts. On the contrary, communication in the opposite 
direction, i.e. from a part to its owner is not possible, even if the composition 
association between them is navigable in both directions. Therefore, a container class 
may have behaviour ports that enable communication between its state machine (if it 
exists) and its parts. 

 
Communication with the use of associations between parts – but only calling 

operations – is also technically possible. However, it is not justified, because active 
classes are supposed to be as much independent as possible and communicate via ports 
and connectors. 

 
It is noteworthy that explicit connectors between ports are necessary only when 

there is an ambiguity in how signals can be transmitted in a model. An example of 
implicit communication is shown in Figure 5.12, where Class1 and Class2 are parts of 
the top-level active class called RootClass. Class1 requires interface I1 containing 
operation op2(), and Class2 realizes it. Remarkable is the fact, that part c1 may call 
op2() via port1, and – assuming that the state machine of c2 is in a proper state – op2() 
in c2 is invoked. This is possible, because in this model there is no uncertainty in 
signal communication. 
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6 EXECUTABLE UML MODEL REFACTORING 
 
The main goal of this chapter is to present the results of an initial study on 

refactoring executable UML models. It is structured as follows: Section 6.1 discusses 
the role of behaviour in model refactoring; Section 6.2 emphasises the need for 
refactoring executable UML models; Section 6.3 investigates whether an executable 
subset of UML 2.0 could be used as a basis for a repository of a programming 
language-independent refactoring tool; Section 6.4 illustrates the phenomenon of 
change propagation in UML models; Section 6.5 defines executable UML in the 
context of the thesis; Section 6.6 argues that all Fowler’s code refactorings [Fowler et 
al.1999] can be applied to both UML 2.0 as well as TAU models; Section 6.7 
identifies six refactoring areas in TAU executable models; Section 6.8 shows how 
exemplary refactorings can be applied in the identified areas; Section 6.9 presents 
several fragments of TAU Object Model, which are particularly important in the 
context of refactorings triggered in ESPC area. Finally, Section 6.10 proposes a 
specification template for refactorings of executable UML models. 

 

6.1 Introduction 
 
In order to comprehend the role of behaviour in UML model refactoring, we 

differentiate two disjoint categories of structural UML models and executable UML 
models. The former ones specify only static structure of systems, and the latter ones 
can additionally specify their dynamic behaviour. As “there is no disembodied 
behaviour in UML” [OMG 2004], we assume that each model that has a behavioural 
part has a structural one as well, but the vice-versa does not have to be true.  

 
The majority of previous studies presented in Section 3 focused on refactoring of 

structural models with the use of transformations – let us call them structural 
refactorings – derived from the majority of Fowler’s structure-triggered refactorings. 
As well pre- and postconditions as transformation steps of these refactorings are 
simplified when compared to their code equivalents. This is caused by the lack of 
behavioural specification that normally would be taken into consideration in 
preconditions, and next transformed by a refactoring. 

 
To answer a question whether these transformations are suitable for different kinds 

of UML models, we distinguish three states in which UML models can be during their 
development: 

1. Structure of the system is modelled, but its behaviour is not yet defined. 
2. Structure of the system is modelled, but its behaviour is defined only in 

the underlying code. 
3. Both structure and behaviour of the system is modelled. 

 
The first category encompasses both (a) structural models created in the context of 

simple forward engineering and (b) early executable models. These models can be 
safely refactored with the use of transformations originating from the majority of 
Fowler’s structure-triggered refactorings. However, the question that arises in the 
context of this model category is whether these transformations are still refactorings. 
As argued by Fowler [2004], one cannot refactor anything that does not have a well-
defined behaviour. Otherwise, how can one guarantee the behaviour-preservation of 
these transformations? This argument speaks for calling application of refactoring 
transformations to structural and early executable models – restructurings. On the 
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other hand, can a transformation not preserve properties of something that does not yet 
exist? 

 
The second category covers structural models created with the use of round-trip 

engineering. The models in this state outwardly do not differ from the ones from the 
first group. However, application of above-mentioned simplified refactorings to these 
models and a successive synchronization of the underlying source code with an altered 
model will likely introduce errors. Therefore, suitable versions of refactorings for this 
category of models need to somehow (1) obtain information necessary for their 
preconditions from the corresponding source code, and (2) update not only structural 
but also behavioural parts of this code to reflect changes introduced to the model. The 
refactoring of UML models from this category with the emphasis on the problem of 
vertical software consistency is considered in more detail in Sections 3.5 and 3.6. 

 
The third category encompasses late executable models. By “late” understood is 

the presence of a behavioural part of a model that will eventually allow execution of 
the modelled application by e.g. automated source code generation. Structural 
refactorings applied to a model from this category transform only its structural part, 
what usually causes horizontal inconsistency between its structural and behavioural 
descriptions. Appropriate versions of refactorings for this category of UML models 
should take into account in their preconditions and update both structural and 
behavioural information available in the model. More concretely, it is necessary to 
capture at least the actions that create and delete objects, get and set attribute values, 
and call operations [Kazato et al. 2004]. 

 

6.2 Motivation for Refactoring Executable UML Models 
 
In this section, we present two exemplary common scenarios emphasising the need 

for refactoring of executable UML models. 
 
In the first scenario, an inexperienced modeller builds a too simple class model, 

what in turn enforces construction of too large and too complex state machines 
describing the lifecycles of the initially identified classes. Mellor & Balcer [2002], in 
their book on Executable UML [2002], illustrate this problem of “incomplete factoring 
of classes” on an example20, in which a part of the responsibility of a class Order is 
extracted into a new class ShoppingCart. This transformation, called by the authors 
Refactoring Behaviour, leads to the simplification of as well structure of Order as its 
statechart diagram. In this case, the refactoring is triggered on the class model, and the 
state machines are supposed to be simplified in a behaviour-preserving way, i.e. the 
externally observable behaviour of the system cannot change. An attempt to carry out 
this task in an ad hoc manner, i.e. without the use of behaviour-preserving 
refactorings, would likely lead to a failure. 

 
In the second scenario, an inexperienced modeller fails to construct good state 

machines for previously properly identified classes. Mellor & Balcer [2002] provide 
an example21 of two statechart diagrams representing the lifecycle of a Shipment class.  

 

                                                      
20 Chapter 12.2 “Reworking the Class Diagram”. 
21 Chapter 12.1 “Statechart Diagram Construction Techniques”. 
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The first statechart is built in accordance with “Modelling Intention” technique, in 

which a class relies on itself in fulfilling its lifecycle (see Figure 6.1), and the second 
one is constructed with the use of an opposite approach that leads to a “spider” shape, 
with a central state that waits for requests and a set of “legs” that respond to each of 
them (see Figure 6.2). 
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 From an external viewpoint, both statecharts may describe the same behaviour of 

the Shipment class. However, from the development perspective, the first statechart is 
more readable, comprehensible, and results in a much more maintainable model than 
in the case of the “spider-shaped” one, which obscures key sequencing issues, what 
causes that e.g. it can be tricky to determine the state in which an object really is. If for 
some reason, a modeller ends up with “spider-shaped” statecharts and subsequently 
with an unmanageable model, the only alternative for removing and creating the part 
of the model from scratch is to refactor these state machines, consequently modifying 
also the class model. The use of this technique enables the modeller to obtain, in a safe 
and stepwise manner, a well-formed model from an ill-formed one. 

 
These two scenarios are not the only ones that motivate refactoring of executable 

models. Moreover, even very experienced modellers can benefit from using this 
technique. Mellor & Balcer [2002] emphasise that the process of building Executable 
UML models is incremental and iterative – starting from simple models with limited 
capabilities, additional functionality is added incrementally. As one cannot foresee all 
the emerging requirements, refactoring can be used to make the model more 
maintainable, so that the new functionality can be next incorporated to it faster than to 
a bad-factored one. 
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6.3 Language-Independent Code Refactoring with UML 
 
Starting from Section 6.5, executable UML is treated as a concrete language used 

for development of models that are expressive enough to be compiled to source code 
in any programming language. This fact indicates that the opposite process, i.e. 
regeneration of a model from a code, is also likely to be possible, what gives rise to the 
question whether an executable subset of UML 2.0 could be used as a basis for a 
repository of a programming language-independent22 refactoring tool? Such a tool 
would be very useful for companies that for some reasons hesitate to shift from the 
traditional to the model-driven development, in which it would be redundant, but still 
want to benefit from round-trip engineering. Van Gorp et al. [2003a] describe an 
example of this kind of a tool, which however bases not on UML 2.0 but the on 
GrammyUML metamodel. 

 
To answer the above-posed question one has to first identify the information 

needed to reason about code refactoring, and next determine whether this information 
can be expressed with the use of UML 2.0. Particularly important are constructs that 
may appear in method bodies, because UML actions that may be used to model them 
have been rapidly evolving over successive versions of the UML specification. 

 
According to Van Gorp et al. [2003a; 2003b], a stable basis to reason about 

consistent refactoring is the notion of access-, call-, and update-behaviour augmented 
with the concept of type checking and type casting. It turns out that the UML 2.0 
Actions package contains metaclasses to model all these constructs. 

 
Attributes of classes can be accesses with the use of ReadStructuralFeatureAction, 

and updated by as well ClearStructuralFeatureAction as two subclasses of 
WriteStructuralFeatureAction, namely AddStructuralFeatureValueAction and 
RemoveStructuralFeatureValueAction (see Figure 6.3).  
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CallOperationAction is suitable for modelling operation calls (see Figure 6.4).  
 

                                                      
22 Since UML is object-oriented, concerned here is the family of object-oriented languages. 
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The notion of type checking and type casting is expressible by 

ReadIsClassifiedObjectAction (or ReadExtentAction) and ReclassifyObjectAction 
respectively (see Figure 6.5). 
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As stated by Mens & Tourwé [2004], a tool or a formal model for refactoring, 

besides being sufficiently abstract to be applicable to different programming 
languages, should also provide the necessary hooks to add language-specific 
behaviour. In the case when the set of actions offered by UML 2.0 is not sufficient to 
model them, one can use OpaqueAction introduced to define actions with 
implementation-specific semantics. 

 

6.4 Change Propagation in UML Models 
 
As already stated in Section 3.1, according to UML specification [OMG 2004] 

diagrams are not parts of UML models, but just graphical representations of their parts. 
However, since diagrams are expected to be stored together with models is a 
repository, some state-of-the-art UML CASE tools like Telelogic TAU extend UML 
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metamodel and treat diagrams and their contents as e.g. instances of subclasses of 
PresentationElement23 metaclass, being a subclass of Element – the root UML 
metaclass. Disregarding the way the diagrams are stored by tools, we distinguish two 
kinds of modifications – model modifications, and diagram modifications, where each 
former one may trigger zero to many latter ones. This distinction is based on an 
assumption that diagrams are automatically regenerated from a model repository after 
each change of any model element, so that they always reflect an up-to-date state of a 
part of the model they show. 

 
In some cases, a modification of a model element in one part of the model seems 

to causes several other model modifications in other parts of this model. For example, 
if the name of an attribute attrA is changed to attrB, then this modification is reflected 
in all parts of the model, in which this attribute is referenced, i.e. each occurrence of 
attribute attrA in bodies of all operations24 will be substituted with attrB (see Figure 
6.6).  
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However, these automatic updates of operations’ bodies are ostensible, and the 

only actual model modification that occurred in this example was the change of the 
attribute’s name. The explanation of this phenomenon requires comprehension of the 
UML metamodel, on which – at least conceptually – are based model repositories of 
all UML metamodel-driven tools. 

 
In the example, each instance of ReadStructuralFeatureAction metaclass that 

references attribute attrA has an association, represented by structuralFeature 
attribute, to the same instance of Property (subclass of StrcturalFeature) metaclass 
being attribute attrA. This Property has a metaattribute name (inherited from 
NamedElement), and after the change to the value of this metaattribute, associations 
represented by structuralFeature attributes still point at former attrA, which is now 
called attrB. The corresponding part of the UML 2.0 metamodel is shown in Figure 
6.7. 
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23 PresentationElement is not a UML 2.0 metaclass 
24 Generally – in all Activities 
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In the context of refactoring, Sunyé et al. [2001; 2002] noticed this observable fact  
that some model elements shown in one view, e.g. in class diagrams, may have a direct 
connection to the elements of other views, and therefore some refactorings that apply 
to elements in one view may have an impact on different UML views. This 
phenomenon is often called change propagation. In some cases, a change propagates 
in a way that no additional modifications are needed to restore the consistency and 
correctness of a model. In this simple example, this fact was very helpful, because it 
prevented us from the necessity of manual adjustment of attribute names in operation 
bodies. However, the lack of precise knowledge of UML metamodel could lead to 
misguided conclusions that e.g. in Figure 6.8, after moving attribute attrX from class 
ClassB to ClassC, operation body of operation op1() from ClassA would contain the 
following expression: Integer i = asC.attrX. 
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However, each instance of StructuralFeatureAction metaclass obtains the object, 

whose structural feature is to be read or written, not from the value of the 
qualifiedName metaattribute of this structural feature, but via the object association 
(see Figure 6.7). 

 
As it will be shown in next sections, even simple rename refactorings, i.e. Rename 

Attribute, Rename Operation, and Rename Class, cannot be fully accomplished by 
application of only corresponding rename operations – even they may require 
additional adjustments. 

 

6.5 Executable UML in the Context of the Thesis 
 
Although the UML 2.0 Superstructure specification [OMG 2004] defines the run-

time semantics of the executable subset of UML, an attempt to refactor executable 
models fully compliant with the standard has been abandoned due to the following 
reasons: 

1. The specification has been rapidly evolving25, and its currently available 
version is not yet the final one; 

2. The executable subset: 
a. contains many semantic variation points, 
b. contains overlapping constructs, 
c. is not streamlined strictly enough. 

 
Therefore, it has been decided to focus on refactoring of models that can be built 

and executed in one of the state-of-the-art UML CASE tools that fulfil two following 
criterions: 

                                                      
25 See the list of almost 900 issues submitted to UML 2.0 Superstructure Finalization Task Force at 
http://www.omg.org/issues/uml2-superstructure-ftf.html. 
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1. Models executed by this tool have to be as much compliant as possible 
with the UML 2.0 standard [ibid.]; 

2. The tool has to be either free-of-charge or available at no less than one 
university at which this thesis is written. 

 
The only tool that satisfies both requirements is Telelogic TAU Generation2. For 

that reason, the catalogue of model refactorings in Section 7 concerns executable UML 
models that can be compiled to TAU Model Verifiers, i.e. applications instrumented to 
support simulation, tracing, and detailed debugging at the UML level (refer to Section 
5). This category of models has been chosen, mainly because (1) they are proven to be 
executable, and (2) their behaviour can be visualised and thus easily verified. 

 

6.6 Determination of Candidate Refactorings 
 
The work on composition of the catalogue of executable UML model refactorings 

starts with determination of candidate refactorings, i.e. Fowler’s refactorings, which 
can be basis for model ones. In other words, chosen are going to be only these 
refactorings from Fowler’s catalogue, from which executable UML model refactorings 
can be easily derived. 

 
The four refactorings from Fowler’s Big Refactorings group are not taken into 

consideration, since they seem to be too ambiguous to become simple model 
transformations. Instead, they are rather examples how different refactorings can be 
employed in order to perform a serious architectural transformation of a piece of 
software. Therefore, model transformations derived from Tease Apart Inheritance, 
Extract Hierarchy, and Separate Domain from Presentation26 could be performed with 
the use of a sufficiently expressive set of model refactorings. The refactoring Convert 
Procedural Design to Objects is hardly expressible in UML, because it concerns 
systems created with the use of structural, as opposed to object-oriented, paradigm. 

 
The selection is based on an obvious assumption that only the refactorings that are 

triggered on elements existing in a language may by applied to programs written in 
this language. For example, it is not possible to perform Replace Nested Conditional 
with Guard Clauses in a language that does not support nesting of conditional 
statements. Therefore, a mapping between all twenty-one code trigger-elements and 
their counterparts in TAU (in the form of TAU Object Model metaclasses) has been 
prepared (see Appendix F). Additionally, a similar mapping is provided between these 
metaclasses and their equivalents in the UML 2.0 metamodel [OMG 2004], what is a 
great starting point for a future work on refactoring of executable UML models fully 
compliant with the standard. Moreover, this comparison shows how incompatible with 
the UML 2.0 metamodel is the one implemented in TAU. 

 
In the effect of the work on the mapping, equivalents for all code trigger-elements 

have been identified – both among TAU and among UML 2.0 metaclasses. This 
implies that all Fowler’s code refactorings can be triggered on as well TAU as UML 
2.0 executable models. Assuming that the solution domains of refactorings do not 
require any additional language elements or constructs, all of them may be performed 
on executable UML models. 

 

                                                      
26 Assuming the existence of a GUI modelling library. 
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6.7 Refactoring Areas in TAU Executable Models 
 
As already indicated in Section 2.7.1, each code refactoring may be triggered on 

either a structural (e.g. field) or a behavioural (e.g. temporary variable) element. This 
implies that in programs written in object-oriented programming languages there are 
two refactoring areas, namely (1) structure – inter-related classes and their features, 
and (2) behaviour – bodies of methods.  

 
In the context of UML, a refactoring area may be defined as a certain part of a 

model containing particular trigger-elements. Refactorings applicable for UML 1.x 
models are only the structure-triggered ones, because in these models there is only one 
refactoring area – the structure. On the other hand, in TAU executable models, six 
refactoring areas can be distinguished (see Figure 6.9). 
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6.7.1 External Structure of Active Classes (ESAC) 
 
The area consists mainly of active classes that have attributes, operations, and 

ports that require and realize single signals and/or whole interfaces. Additionally, 
active classes may have (composite/shared) associations to passive classes and 
composite associations to their parts being other active classes. All these elements may 
be show in class diagrams, and some of them (e.g. parts and ports) additionally in 
composite structure diagrams. Candidates for transformations that can be triggered on 
model elements from this area are all of the structure-triggered code refactorings. 
However, in many cases their practical realization may considerably differ from the 
ones provided by Fowler [Fowler et al. 1999]. Moreover, in the area there are 
potentially many other, so far unidentified refactorings triggered on among others 
ports, signals, timers, and interfaces. 

 

6.7.2 Internal Structure of an Active Class (ISAC) 
 
The area consists of active classes that are parts of their container, and which 

communicate with each other by sending signals and invoking operations via ports 
wired by connectors. Some aspects of this area may be illustrated in class diagrams, 
but e.g. connectors – only in composite structure diagrams. As composite structures 
are new to UML 2.0, so far, there exists no literature concerning refactorings 
applicable to this area. Nevertheless, these transformations would deal mainly with 
reorganization of internal structure and communication infrastructure of active classes, 
and thus they have no equivalents among code refactorings. 
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6.7.3 Life Cycle of an Active Class (LCAC) 
 
The area constitutes implementation of a default state machine of an active class, 

represented in a statechart diagram. In this area, there are two kinds of trigger-
elements: (1) states and transitions between them, and (2) (elements of) compound 
actions on transitions. Refactorings triggered on the elements from the first group are 
mainly specific versions of some behaviour-triggered code refactorings. Other, but 
already UML specific, transformations identified and described by Sunyé et al. [2001] 
and Boger et al. [2003] can be applied to the elements from the second group. 

 

6.7.4 Operation Implementation of an Active Class (OIAC) 
 
The area constitutes implementation of an operation belonging to an active class. 

In the context of active classes, this implementation may be either state or stateless. 
However, the former solution introduces only new presentation elements for 
corresponding triggers being the same model elements, namely (elements of) various 
actions, as in the latter case. Refactorings triggered on elements from this area may be 
derived from code behaviour-triggered ones. However, their realizations may differ 
from the ones provided by Fowler [Fowler et al. 1999] due to the possibility of among 
others communication with the use of signals and via connectors. 

 

6.7.5 External Structure of Passive Classes (ESPC) 
 
The area consists of passive classes that may have attributes and operations as well 

as (composite/shared) associations and generalizations to other passive ones. All these 
elements may be show in class diagrams. Candidates for transformations that can be 
triggered on model elements from this area are the same as in the case of ESAC, i.e. all 
of the structure-triggered code refactorings. However, their practical realizations are 
usually simplified with respect to their equivalents from ESAC. 

 

6.7.6 Operation Implementation of a Passive Class (OIPC) 
 
The area constitutes implementation of an operation belonging to a passive class. 

In the context of passive classes, this implementation may be only stateless, i.e. in the 
form of actions written in U2 Action Language contained in a text diagram. As in the 
case of OIAC, the refactorings triggered on elements from this area may be derived 
from code behaviour-triggered ones, but their practical realizations are usually 
simplified with respect to their equivalents from OIAC. 

 

6.8 Application of Exemplary Refactorings 
 
To facilitate the understanding of refactoring areas, we choose four 

transformations27 and show how they can be applied to an exemplary TAU executable 
UML model of a satellite28. The selected transformations are: 

1. Area ISAC – Extract Port29 – triggered on a port of an active class, which 
is used for communication with several different parts. It relies on creating 

                                                      
27 It is worthy noting that refactorings Replace Method with Method Object and Hide Delegate can be 
triggered also on the elements in the OIPC and ESAC areas, respectively. 
28 For the sake of conciseness, only these parts of the model, which are important in the context of 
particular transformations, are presented. 
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a new port and reconnecting some connectors of the old one to the new 
one. 

2. Area LCAC – Group States – triggered on a simple state in a default state 
machine of an active class. It relies on transforming the state into a 
composite one, and thus reduces the number of redundant transitions. 

3. Area OIAC – Replace Method with Method Object – triggered on an 
implementation of an operation of an active class, which is too long and 
cannot be decomposed with the use of other refactorings. It relies on 
turning the operation into a class. 

4. Area ESPC – Hide Delegate – triggered on a passive class. It relies on 
encapsulating it from other ones, and thus reduces the coupling between 
classes in the model. 

 

6.8.1 Area ISAC – Extract Port 
 
The top-level active class of the model is Satellite, which has several parts typed 

by EarthCommunicator, Navigator, and InstrumentsController. As can be observed in 
Figure 6.10, pOutput port of earthCommunicator serves for communication with two 
different parts with the use of two semantically unrelated signals – plan, containing the 
most recent plan of the mission, and command, carrying new instructions for scientific 
and navigational instruments. A refactoring that should be triggered on pOutput is 
Extract Port. 
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As the result of the refactoring, a new port pCommand is added to 

EarthCommunicator, and the connector that transmits command is reconnected to it. 
Next, on a class diagram showing EarthCommunicator, command is moved from to 
the list of signals required by pOutput to the one belonging to pCommand. Assuming 
that in all output actions – be it in a default state machine of EarthCommunicator or in 
bodies of its operations – signals are sent without via keyword, the refactoring finishes, 
otherwise each expression “[output] command(instr) via pOutput” has to be changed 
to “[output] command(instr) via pCommand”. Subsequently, one can apply Rename 
Port refactoring to pOutput in order to give it a more meaningful name, e.g. pPlan (see 
Figure 6.11). Finally, one can consider merging pPosInfo and pPlan in both 
EarthCommunicator and Navigator with the use of Merge Ports refactoring. 

 

                                                                                                                                                      
29 This refactoring has not been previously mentioned in the literature. 
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6.8.2 Area LCAC – Group States 
 
The lifecycle of InstrumentsController is defined by a state machine shown in 

Figure 6.12. Just after creation, an instance of the class finds itself in Idle state, in 
which it awaits for command signal sent by earthCommunicator. The signal triggers a 
transition to Decoding state. Next, after going through Calculating and Encoding 
states, the state machine reaches Adjusting state, in which it adjusts every 10 ms the 
instruments, as long as new instructions appear. 
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It can be noted that from each state there is a transition to Idle state triggered by 

error signal. These redundant transitions can be eliminated by the application of a 
refactoring known as Group States [Sunyé et al. 2001]. During the refactoring, first a 
new state Working is created. Next, three transitions triggered by error from 
Calculating, Encoding, and Adjusting are deleted, and the one from Decoding is 
reconnected to the new state, as well as a transition triggered by command from Idle. 
Subsequently, a new state machine is created in Working, what makes this state 
composite. Finally, Decoding, Calculating, Encoding, and Adjusting are moved 
together with their transitions to the new state. The transformation is completed by 
addition of a start symbol. Its effects can be seen in Figure 6.13. 
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6.8.3 Area OIAC – Replace Method with Method Object 
 
Navigator component of Satellite is a compound object, which has as one of its 

parts an instance of an active class CollisionDetector. The class has among others an 
operation avoid, that takes as a parameter an instance of Collision class obtained from 
invocation of detect operation. The responsibility of avoid is to (1) determine how to 
avoid the collision and (2) return the result of computation in the form of an instance 
of AvoidancePlan class. The problem with avoid is that its operation body is too long, 
what is an unequivocal symptom of Long Method bad smell [Fowler et al. 1999]. 
However, the operation uses its local variables dimX, dimY, and dimZ in such a way 
that even after application of Replace Temp with Query, its decomposition with the 
use of Extract Method is impossible. Therefore, instead of Extract Method, Replace 
Method with Method Object is triggered on avoid. The described part of the model 
before the transformation is shown in Figure 6.14. 
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In the first step, a new passive class is created and named by the operation. Next, 

an attribute for each temporary variable (dimX, dimY, and dimZ) and the parameter 
(collision) of avoid is created in the new class. Then, Avoid is given a constructor that 
initializes collision attribute. Subsequently, in the new class a new operation compute 
is created with the body copied from avoid. Next, all temporary variables are removed 
from the body of compute, and the body of avoid is replaced with one that creates an 
instance of Avoid and calls compute. The effect of the transformation is shown in 
Figure 6.15. Because all the previous local variables of avoid are now attributes, one 
can easily decompose the operation with the use of Extract Method. 
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It is worth to observe that the model after Replace Method with Method Object 

will not work properly if avoid invokes any operation of CollisionDetector or any 
operation of any other class accessible from it. In such a situation, Fowler [Fowler et 
al. 1999] advises to give the new class an attribute for the object that hosts the original 
operation (the source object), initialize it in the constructor, and use it for any 
invocations of operations on the original class. However, in this case it cannot be done, 
because CollisionDetector is an active class, and passive classes are not allowed to 
invoke any operations of active ones. Moreover, avoid can include neither output 
actions responsible for sending signals nor actions concerning timers, i.e. timer set or 
timer reset actions, because these are also not permitted in operation bodies of passive 
classes. 

 

6.8.4 Areas ESAC & ESPC – Hide Delegate 
 
The refactoring discussed here relates to the Fowler’s statement saying that “one 

of the keys, if not the key, to objects is encapsulation [Fowler et al. 1999].” In general, 
the less each class in a model needs to know about other classes, the less possible is 
that a change in one place causes the necessity to adjust other parts of the model, what 
makes the model maintenance easier and cheaper. For instance (see Figure 6.16), let 
us consider a situation in which a client class (PlanSupplier) invokes an operation 
(getDestination) defined on one of the attributes (plans accessible via getDestination) 
of a server class (PlanStorage). 
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As the client has to know about the delegate class (Plan), each change of the 

delegate may propagate to the client. This redundant dependency can be removed by 
placing a simple delegating operation on the server, which hides the delegate. A 
refactoring that performs this task is known as Hide Delegate. First, getCurrentPlan is 
renamed with the use of Rename Operation to getCurrentDestination. Then, assuming 
that the most recent plan is always the first one in the plan collection, the body of the 
operation is changed from “return plan[0]” to “return plan[0].getDestination()”. 
Finally, each statement in the form of “Destination d = 
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planStorage.getCurrentDestination().getDestination()”30 is replaced by “Destination d 
= planStorage.getCurrentDestination()”. These statements may occur in bodies of all 
operations of both passive and active clients of PlanStorage, as well as on transitions 
in state machines of active ones. After the refactoring, changes become limited to the 
server and do not propagate to the client (see Figure 6.17). 
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6.9 Metamodel of ESPC Area 
 
The initial catalogue of TAU refactorings in Section 7 contains specifications of 

transformations triggered mainly on elements from the ESPC (External Structure of 
Passive Classes) area, namely: 

• Class 
• Class::Attribute 
• Class::Operation 
• Class::Operation::Parameter 

 
Comprehension of formal specifications of these refactorings requires detailed 

knowledge of the part of TAU metamodel that enables modelling of external structures 
of passive classes, and how constructs from this part are related to, i.e. use or are used 
by, elements from other views. Therefore, this Section presents shortly several 
fragments of TAU Object Model, which are particularly important in the context of 
refactorings triggered in ESPC area, organized around attributes and operations of 
passive classes. 

 

6.9.1 Attribute of a Passive Class 
 
An attribute of a class, modelled with the use of Attribute metaclass31, is owned by 

a class via ownedMember association, and all attributes of a class can be determined 
using attribute association. The type of an attribute can be determined via type 
association inherited by Attribute from Typed metaclass, and a class in which it is 
defined – among others with the use of namespace association inherited by Class (an 
indirect superclass of StructuredClassifier) from Namespace, or source association 
inherited from Signature being also a superclass of Class (see Figure 6.18). 

 

                                                      
30 It is noteworthy that the presence of getCurrentDestination in this statement is caused by 
application of Rename Operation. 
31 For the taxonomy of Attribute metaclass refer to Appendix G. 
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In the context of TAU executable UML, an association is a relationship between 

two signatures, indicating that instances of these signatures will be directly or 
indirectly connected to each other. An association has two association ends, 
represented as attributes accessible via associationEnd (see Figure 6.19). 
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6.9.1.1 Attribute reference and access 
 
The only way to reference/access an attribute of a class from a foreign one is to 

use an instance of FieldExpr, being one of direct subclasses of Expression, which can 
be owned by ExpressionAction via expression association (see Figure 6.20). 
FieldExpr points referenced/accessed attribute using field association. Additionally, it 
owns an Expression, being for example an identifier (Ident inherits from Expression) 
pointing another, certainly local, attribute via definition association. 
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Locally, i.e. in the scope of a class owning it, an attribute can be read/wrote as a 

definition of an Ident, or alternatively as a field in a FieldExpr, but it the latter case, 
only if it is typed by a class in which it is defined. 

 
Instances of CompoundAction from Figure 6.20, containing – probably nested – 

field expressions and identifiers pointing attributes of passive classes, can potentially 
model following elements: 

• implementations of operations: 
o in passive classes, 
o in active classes, 

• implementations of “initialize” state machines of active classes in: 
o actions performed on triggered transitions, 
o conditions evaluated in guards of guarded transitions. 

 

6.9.2 Operation of a Passive Class 
 
Operation32, next to Signal and Timer, is one of so-called event classes. All 

operations of a class can be obtained via behavioralFeature association (see Figure 
6.21). Some of these operations may be constructors (constructor association) or 
destructors (destructor association). UML standard defines a constructor as “any 
operation having a single return result parameter of the type of the owning class [OMG 
2004].” On the contrary, constructors in TAU are operations having the same names as 
classes to which they belong, and that do not have any explicit result parameters. A 
Class may have one default constructor accessible via parameterlessConstructor 
association. 

 

                                                      
32 For the taxonomy of Operation metaclass refer to Appendix G. 
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All parameters of an operation can be obtained via parameter association, and the 

return one – using return association. In operation bodies, they can be 
referenced/accessed via definitions indicated by instances of Ident metaclass. 

 

6.9.2.1 Operation invocation 
 
An invocation of an operation of a passive class that is not a constructor can be 

modelled with the use of CallExpr that has two important attributes – called pointing 
the called operation, and to optionally indicating the Ident of an attribute on which the 
operation is invoked (see Figure 6.22). As CallExpr inherits from 
ActualArgumentContainer, it enables invocation of operations with actual arguments 
accessible via argument association. 

 

 
 

�������(	��	��� ��& ' � ��E������� 
	 ���� ��1/2 �% & '	 
 ��� � � 	 ��

 
A CallExpr can be contained directly in an ExpressionAction or indirectly in 

another expression or action in a CompoundAction representing either a body of an 
operation in a passive or an active class or actions on a triggered transition in a state 
machine of an active one. It is noteworthy that in the latter case the transition can 
connect two states in a state machine nested in another state. 
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6.10 Specification of TAU Executable UML Refactorings 
 
As indicated by Staro� & Ku�niarz [2004], there are many different ways of 

defining UML model transformations, but in a practical approach, a specification of 
such a transformation consists of two parts – an informal one and a formal one. In the 
former, basic ideas behind a transformation are expressed, usually in the natural 
language, and the latter formalizes (usually in OCL) both conditions for the allowable 
usage of the transformation (preconditions) and its obligations (postconditions). The 
informal part makes the transformation more comprehendible, and the formal one 
facilitates its implementation. Moreover, as stated by Kazato et al. [2004], 
formalization of refactoring transformations is a necessary step on the way to their 
automation. 

 
Each refactoring in this thesis is specified according to the following template: 
 

1. Informal specification: 
a. Name the name of a model refactoring 
b. Origin 

(optional) 
the name of a code refactoring from which it is 
derived, and a reference to its description – only if it 
is derived from a code refactoring 

c. Areas the refactoring area(s) of the transformation 
d. Trigger-element the trigger-element of the transformation 
e. Definitions a list of definitions used in the informal 

specification – each definition has a name and an 
explanation of its meaning; the symbol [T] after the 
name indicates that the definition is a trigger-
element; in specifications, definitions are referred to 
via their names in curly brackets 

f. Aim the goal of the transformation (one sentence) 
g. Reasons probable reason(s) for performing the refactoring 
h. Description 

(optional) 
a short explanation of the refactoring – only if its 
intent is not obvious 

i. Bad smell 
(optional) 

a description of a bad smell tightly coupled with the 
refactoring, i.e. the one that can be usually removed 
with the use of the transformation 

j. Preconditions a list of requirements that have to be fulfilled by a 
model in order to enable an execution of the 
transformation, as well as their explanation and 
justification 

k. Postconditions a list of properties that have to be satisfied by the 
model in order to approve the refactoring – these 
conditions are based on the frame assumption, i.e. 
all modifications are limited to the ones mentioned 
in postconditions 

l. Mechanics a mechanics of the transformation – identification of  
basic operations and/or other refactorings and the 
order in which they should be applied to cause 
fulfilment of the postconditions 

m. Algorithm an algorithm of the transformation outlined in 
section 1.l, expressed with the use of basic 
operations and/or other refactorings 
 

2. Formal specification: 
a. Signature the transformation heading in the OCL-like format 
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b. Bad smell The bad smell from section 1.i 
c. Preconditions the preconditions from section 1.j expressed in OCL 
d. Postconditions the postconditions from section 1.k expressed in 

OCL 
 

 
The format of the transformation signature (2.a) is following: 
 

context ModelElement::RefactoringName(ArgumentsList), 

 
where ModelElement is a metaclass of TAU Object Model being the type of the 
context element, RefactoringName is the unique name of a refactoring (written without 
spaces), and ArgumentsList is a list of any number of transformation formal 
parameters, which define existing model elements or some properties – usually names 
– of model elements that will be created and added to the model during the 
transformation. Each argument is specified in the following way: 

 
ArgumentName : ArgumentType, 

 
where ArgumentName is a symbolic name of the parameter that can be later used in 
pre- and postconditions, and ArgumentType is a TAU Object Model metaclass being 
the type of this parameter. Arguments are separated from each other with comas. 

 

6.10.1 Basic Operations 
 
As already observed by Kazato et al. [2004], each refactoring can be expresses as 

a sequence of basic operations that introduce (1) modifications that are essential for a 
given refactoring, and (2) changes that ensure that an output model will be consistent 
and correct. 

 
In this thesis, two kinds of basic operations are distinguished, namely (1) 

structural basic operations that modify structural model elements, and (2) behavioural 
basic operations that modify behavioural model elements. If a basic operation seems 
to be both structural and behavioural, then is should be split into two parts – one 
structural and one behavioural. 

 
Some basic operations have the same names and parameters as refactorings. To 

distinguish between them, the names of the latter ones are capitalized (e.g. 
renameClass and RenameClass). The main difference between basic operations and 
refactorings is that the latter ones are behaviour preserving. In practice, it means that 
e.g. renameAttribute (basic operation), as opposed to RenameAttribute (refactoring), 
can give an attribute defined in a class ClA a name that is already used by another one 
in ClA. If needed, a refactoring can be a part of the algorithm of another refactoring, 
what reflects the presence of “includes” relationship between these transformations. 

 
In the frames of the work on an initial catalogue of TAU executable UML model 

refactorings (see Section 7), following (in alphabetical order) basic operations33 have 
been identified: 

 
context Class::renameClass(newName: String) 
post: name = newName 
 
context Operation::renameOperation(newName: String) 
post: name = newName 

                                                      
33 Their specifications are provided in OCL [Warmer & Kleppe 1999]. 
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context Class::addGetter(a: Attribute) 
post: behavioralFeature->exists(o: Operation | o.isGetter(a)) 
/* query isGetter is defined in Section 7.1.3 */ 
 
context CallExpr::replaceInvocation(accessor: Operation, o: Operation) 
post: called = o and to.notEmpty() and to.oclIsTypeOf(CallExpr) and to.called = 
accessor and to.to = to@pre) 
 
context Operation::removeOperation() 
post: not self@pre.namespace.behavioralFeature->exists(o: Operation | o = 
self@pre) 
 
context Attribute::renameAttribute(newName: String) 
post: name = newName 
 
context Attribute::moveAttribute(from: Class, to: Class) 
post: not from.attribute->exists(a: Attribute | a = self) and to.attribute-
>exists(a: Attribute | a = self) 
 
context Attribute::removeAttribute() 
post: not self@pre.namespace.attribute->exists(o: Attribute | o = self@pre) 
 
context Class::addAttribute(a: Attribute) 
post: attribute->exists(attr: Attribute | attr.name = a.name and attr.type = 
a.type and attr.visibility = a.visibility) 
 
context Operation::changeVisibility(vk: VisibilityKind) 
post: visibility = vk 
 
context Operation::appendParameter(n: String, t: Type) 
post: parameter->exists(p: Parameter | p.name = n and p.type = t) 
 
context CallExpr::addDefaultValueForParameter(n: String) 
post: let pos = called.parameter->iterate(p: Parameter; position: Integer = 0 | 
if p.name<>n then position+1 else position endif) in 
let arg = argument->at(pos) in 
arg.oclIsTypeOf(Ident) and arg.definition.oclIsTypeOf(Literal) and 
arg.definition.name = ‘NULL’ 
 
context Parameter::removeParameter() 
post: not self@pre.namespace.parameter->exists(p: Parameter | p = self@pre) 
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7 INITIAL CATALOGUE OF TAU EXECUTABLE 
UML MODEL REFACTORINGS 
 
The catalogue contains twelve specifications of exemplary TAU executable UML 

model refactorings triggered on the following elements from ESPC and ESAC areas: 
• Class 
• Class::Attribute 
• Class::Operation 
• Class::Operation::Parameter 

 
The majority of presented transformations are derived from Fowler’s catalogue 

[Fowler et al. 1999]. All refactorings are specified in accordance with the template 
introduced in Section 6.10. They are assumed to work properly only on a model that 
can be compiled without any errors and warnings to the Model Verifier. 

 
By an inheritance hierarchy of class ClA understood are all – both direct as well 

as indirect – subclasses and superclasses of ClA. A term sibling should be understood 
in the following way: 

• A sibling operation of operation opA – an operation having the same 
name and the same non-return parameters as opA; 

• A sibling attribute of attribute atA – an attribute having the same name 
and the same type as atA. 

 
Formal specifications of transformations are written in OCL [Warmer & Kleppe 

1999]. Queries that are used in more than one specification are listed (in alphabetical 
order) and defined in Section 7.5.  

 
In the opinion of the authors, the catalogue will be useful for both model designers 

and maintainers as well as for vendors of UML CASE tools. 
 

7.1 Trigger-element – Class 
 
This section contains specifications of following refactorings: 

1. Rename Class (Passive) 
2. Rename Class (Active) 
3. Remove Middle Man 

 

7.1.1 Rename Class (Passive) 
 

Informal specification 
 
Areas: ESPC 
Trigger-element: PassiveClass 
 
Definitions: 

1. class [T] – a class that is to be renamed 
2. newName – a new name of {class} 
3. constructor – a constructor of {class} 
4. destructor – a destructor of {class} 
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Aim: Change the name of {class} to {newName}. 
 
Reasons: The current name of {class} does not reflect its purpose. 
 
Preconditions: 

1. {class} is passive. 
2. {newName} adheres to TAU naming rules. 
3. There is no classifier with the name {newName} in the namespace in 

which {class} is defined. 
 
The precondition results from the UML constraint stating that all the members of a 

namespace are distinguishable within it. The default rule is that two elements are 
distinguishable if they have unrelated types, or related types but different names 
[OMG 2004]. Both the constraint and the rule are valid in TAU34. 

 
4. In {class} there is no operation with the name {newName} and the same 

parameters as any {constructor}. 
 
The precondition results from the same constraint and the same rule as the first 

one. In this case, the transformation has to assure that new signatures35 of any 
{constructors} named after {class} will not conflict with signatures of operations that 
are already defined in it. 

 
5. There is no class with the name {newName} in any class defined in the 

same namespace as {class}. 
 
This precondition is necessary due to the TAU binding mechanism that may cause 

a situation like the one shown in Figure 7.1, where after renaming Class1 to Class3, 
Class1 in create expression in Class2.op1() is rebound to Class3 nested in Class2. 
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Postconditions: 

1. The name of {class} is {newName}. 
2. All references to {class} are via {newName}. 
3. Names of all {constructors} are {newName}. 
4. All invocations of all {constructors} are via {newName}. 
5. Names of all {destructors} are {~newName}. 
6. All invocations of all {destructors} are via {~newName}. 

                                                      
34 Additionally, in TAU each model element is distinguishable by a Globally Unique Identifier 
(GUID) that remains unchanged for its entire lifetime. 
35 Operations are distinguished by their signatures, i.e. their names and non-return parameters. 
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Mechanics 
 
The first step in the mechanics of Rename Class is a single invocation of 

renameClass – this causes fulfilment of the first two preconditions. Additionally, this 
operation causes automatic adjustment of invocations of all {constructors} (the fourth 
precondition). However, this modification is not accompanied by rename of definitions 
of {constructors}, what is highly undesired. It is difficult to explain this phenomenon 
by investigating TAU Object Model, because it turns out that a create expression 
references a constructor, and not a class, which instance is intended to be created. 
Nevertheless, it can lead to a situation like the one depicted in Figure 7.2, where all 
invocations of an overloaded default constructor ClassA(), that e.g. initializes an 
attribute i, are replaced by invocations of an implicit one (e.g. in the state machine of 
ClassB). This results in the change in behaviour that is not detected by the component 
responsible for model checking - the attribute i is not initialized during creation of an 
instance of ClassC. 
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Therefore, the second step of the transformation is to invoke renameOperation for 

all {constructors}. Moreover, since in the effect of renameClass names of 
{destructors} are updated neither in their definitions nor in their explicit invocations, 
renameOperation should be invoked also for all {destructors}. 

 
Algorithm: 

1. {class}.renameClass({newName}) 
2. for each {constructor} – {constructor}.renameOperation({newName}) 
3. for each {destructor} – {destructor}.renameOperation(~{newName}) 

 
Formal specification 

 
context Class::RenameClass(newName: String) 
 
pre : not isActive --1 
and newName.isValidName() --2 
and not namespace.ownedMember->exists(c: Classifier | c.name = newName) --3 
and not behavioralFeature->exists(o: Operation | o.name = newName and 
o.hasTheSameParameters(constructor)) --4 
and not namespace.ownedMember->exists(c: Class | c.ownedMember->exists(cl: 
Class | cl.name = newName)) --5 
 
post: name = newName --1&2 
and behavioralFeature->forAll(o: Operation | constructor@pre->includes(o) 
implies o.name = newName) --3&4 
and behavioralFeature->forAll(o: Operation | destructor@pre->includes(o) 
implies o.name = ‘~’+newName) --5&6 
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7.1.2 Rename Class (Active) 
 

Informal specification 
 
Areas: ESAC 
Trigger-element: ActiveClass 
Definitions – unchanged 
Aim – unchanged 
Reasons – unchanged 
 
Preconditions: 

1. {class} is active. 
2. Unchanged 
3. Unchanged 
4. There is no event class with the name {newName} and the same 

parameters as any constructor named after {class} in the namespace 
determined by {class}. 

5. Unchanged 
 
Postconditions: 

1. Unchanged 
2. Unchanged 
3. Names of all constructors, besides a state machine named initialize (if 

such exists), of {class} are {newName}. 
4. Unchanged 
5. Invalid 
6. Invalid 

 
Mechanics 
 
Renamed are all constructors of {class} except for a state machine named initialize 

(if such exists). As active classes do not support destructors, they are not renamed by 
the refactoring. 

 
Algorithm: 

1. Unchanged 
2. for each constructor (besides initialize state machine) of {class} – 

{constructor}.renameOperation({newName}) 
3. Invalid 

 
Formal specification 

 
context Class::RenameClass(newName: String) 
 
pre : isActive --1 
and (…) --2&3 unchanged 
and not behavioralFeature->exists(ec: EventClass | ec.name = newName and 
ec.hasTheSameParameters(constructor)) --4 
and (…)--5 unchanged 
 
post: (…) --1&2 unchanged 
and behavioralFeature->forAll(o: Operation | (o.oclIsTypeOf(StateMachine) and 
o@pre.name <> ‘initialize’) and constructor@pre->includes(o) implies o.name = 
newName) --3&4; 5&6 invalid 
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7.1.3 Remove Middle Man 
 

Informal specification 
 
Origin: Remove Middle Man [Fowler et al. 1999] 
Areas: ESPC/ESAC 
Trigger-element: PassiveClass/ActiveClass 
 
Definitions: 

1. middleMan [T] – a class being a “middle man” 
2. delegate – a class being a “delegate” 
3. delegateAttribute – an attribute of {middleMan} typed by {delegate} 
4. delegatingOperation – an operation in {middleMan} which only invokes 

{delegatedOperation} via {delegateAttribute} 
5. delegatedOperation – an operation in {delegate} which is invoked by 

{delegatingOperation} 
6. getter – accessor for {delegateAttribute} 
 

Aim: Stop {middleMan} from being a mediator for {delegate} 
 
Reasons: {middleMan} is doing too much simple delegation 
 
Description 
 
As stated by Fowler, “one of the keys, if not the key, to objects is encapsulation 

[Fowler et al. 1999].” In general, the less each class in a model needs to know about 
other classes, the less possible is that a change in one place causes the necessity to 
adjust other parts of the model, what makes the model maintenance easier and cheaper. 
For instance, let us consider a situation in which a client class invokes an operation 
defined on one of the attributes of a server class. As the client has to know about the 
delegate class, each change of the delegate may propagate to the client. This redundant 
dependency can be removed by placing a simple delegating operation on the server, 
which hides the delegate. Now, changes become limited to the server and do not 
propagate to the client. However, as observed by Fowler [ibid.], the price for this 
encapsulation is that every time the client wants to use a new feature of the delegate, 
another delegating method has to be added to the server what can become awkward. Is 
such a situation, it may be convenient to apply on the server Remove Middle Man 
refactoring. 

 
A part of an exemplary model illustrating Remove Middle Man is shown in 

Figure 7.3. Before the transformation, MiddleMan gives Client the use of two simple 
delegating operations – delegatingOp1() and delegatingOp2() – that do nothing else 
besides invoking appropriate operations on Delegate – delegatedOp1() and 
delegatedOp2() respectively. The refactoring removes both delegating operations, 
introduces getDelegate() accessor for delegate attribute in MiddleMan, and replaces all 
invocations of deleted delegating operations by calls of corresponding delegated ones 
via the accessor. The main benefits of the application of the transformation are (1) 
reduced number of operations in MiddleMan, and (2) improved communication. 
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This version of Remove Middle Man works for a pair of classes A and B, where A 

is a middle man of a delegate B. However, even after performing the refactoring for a 
middle man A and its delegate B, A can still be a middle man for other delegates. If 
needed, the transformation can be repeated for any pair consisting of A and a delegate 
class until A stops being a middle man at all. 

 
Bad smell 
 
A bad smell directly associated with the refactoring is called Middle Man. Wake 

[2003] defines its symptom in the following way: “most methods of a class call the 
same or a similar method on another object.” Usually, it may occur in a model from 
applying Hide Delegate to address another bad smell called Message Chains that 
trades off against Middle Man. One should be careful in removing middle men, 
because they may be intentionally created by some design patterns (e.g., Proxy or 
Decorator). Moreover, as middle men provide a sort of façade, removing them can 
expose clients to more information than they should know [ibid.]. 

 
In the context of this bad smell, a middle man for a delegate can be defined as a 

class that has at least two simple delegating operations for any delegated operations of 
this delegate. A simple delegating operation is characterised by its body that has only 
one statement in the form of either 

�
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where delegate is an attribute typed by potential delegate class, and delegatedOp() is 
one of its operations. Obviously, in the latter case, the return parameter of a delegating 
operation has the same type as delegatedOp(). The repository view [Bock 2003] of the 
operation body of the delegating operation delegatingOp1() owned by the class 
MiddleMan, which is introduced in the example illustrated in Figure 7.3, is shown in 
Figure 7.4. 
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The body consists of one CompoundAction that in turn contains an 

ExpressionAction having a CallExpression, which owns an Ident, typed by Delegate 
class, pointing the delegate attribute of MiddleMan class. Additionally, the 
CallExpression indicates invoked delegatedOp1() that belongs to Delegate. The 
repository view of the value-returning version of a delegating operation differs from 
the non-returning one in the following way – the ExpressionAction is replaced by a 
ReturnAction, and the CallExpresion has an additional attribute type indicating the 
type of the return parameter (see Figure 7.5). 
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An extracted fragment of TAU Object Model that corresponds to the examples of 

the bodies of delegating operations is presented in Figure 7.6. 
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To be able to automatically detect all potential middle men in a model, one has to 

define and implement a query checking whether a given class has at least two simple 
delegating operations for a particular attribute. Next, this query can be run for each 
pair consisting of a class (possible middle man) and its attribute typed by another class 
(possible delegate). 

 
A simple delegating operation for an attribute A fulfils following conditions: 

1. The non-value returning version: 
a. It has a body with a CompoundAction; 
b. The CompoundAction owned by the body contains one 

ExpressionAction; 
c. The ExpressionAction owns a CallExpr; 
d. The to attribute of the CallExpr points an Ident; 
e. The definition attribute of the Ident points A; 
f. The called attribute of the CallExpr indicates an Operation that is 

a behavioural feature of a Class typed by the Ident. 
2. The value returning version: 

a. Unchanged; 
b. The CompoundAction owned by the body contains one 

ReturnAction; 
c. The ReturnAction owns a CallExpr; 
d. Unchanged; 
e. Unchanged; 
f. Unchanged; 
g. The type attribute of CallExpr points the same Type as the type 

attribute of the return parameter of the Operation. 
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The first version of the operation could have an additional condition stating that it 
has no parameters, and the second one – that it has one return parameter of the same 
type as the Operation (i.e. the delegated operation). However, it is not necessary, 
because the latter conditions enforce their fulfilment. 

 
Preconditions: 

1. {delegateAttribute} is an attribute of {middleMan}. 
2. {delegateAttribute} is typed by a class. 
3. {middleMan} has at least one {delegatingOperation} for 

{delegateAttribute} 
 
Postconditions: 

1. There is {getter} in {middleMan}. 
2. Each invocation of each {delegatingOperation} is replaced by invocation 

of corresponding {delegatedOperation} via {getter}. 
3. There is no {delegatingOperation} in {middleMan}. 

 
Mechanics 
 
The first step in the mechanics of Remove Middle Man is creation of an accessor 

for {delegateAttribute} – of course, only if it does not yet exist. Next, each invocation 
of each {delegatingOperation} is replaced by invocation of a corresponding 
{delegatedOperation} via just created {getter} (see Figure 7.7). Finally, each 
{delegatingOperation} should be removed from {middleMan}. 
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Algorithm: 

1. {getter} = {middleMan}.addGetter({delegateAttribute}) 
2. for each invocation of each {delegatingOperation} – 

{invocationOfDelegatingOperation}.replaceInvocation({getter},{delegate
dOperation}) 

3. for each {delegatingOperation} – 
{delegatingOperation}.removeOperation() 

 
Formal specification 

 
context Class::RemoveMiddleMan(delegate: Attribute) 
 
smell: isMiddleMan(delegate) 
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context Class::isMiddleMan(A: Attribute): Boolean 
body: self.simpleDelegatingOperations(A)->size() >= 2 
 
context Class::simpleDelegatingOperations(A: Attribute): Set(Operation) 
body: behavioralFeature->select(o: Operation | 
o.isSimpleDelegatingOperation(A)) 
 
context Operation::isSimpleDelegatingOperation(A: Attribute): Boolean 
body: isNonValueReturningSDO(A) or isValueReturningSDO(A) 
 
context Operation::isNonValueReturningSDO(A: Attribute): Boolean 
body: 
let ac = inlineMethod.action.action in 
let ex = ac.expression in 
inlineMethod->notEmpty() and inlineMethod.action->notEmpty() --a 
and (ac->size() = 1 and ac->first().oclIsTypeOf(ExpressionAction)) --b 
and ex.oclIsTypeOf(CallExpr) --c 
and (ex.to->notEmpty() and ex.to.oclIsTypeOf(Ident)) --d 
and ex.to.definition = A --e 
and ex.called.oclIsTypeOf(Operation) --f 
and ex.to.type.behavioralFeature->includes(ex.called) --g 
 
context Operation::isValueReturningSDO(A: Attribute): Boolean 
body: 
let ac = inlineMethod.action.action in 
let ex = ac.expression in 
(…) --a: as in isNonValueReturningSDO 
and (ac->size() = 1 and ac->first().oclIsTypeOf(ReturnAction)) --b 
and (…) --from c to g: as in isNonValueReturningSDO 
and ex.type->first() = ex.called.return.type.first() --h 
 
 
pre : attribute->includes(delegate) --1 
and delegate.type.oclIsTypeOf(Class) --2 
and self.simpleDelegatingOperations(delegate)->size() >= 1 --3 
 
post: behavioralFeature->exists(o: Operation | o.isGetter(delegate)) --1 
and session.getAllCallExpr()->forAll(e: CallExpr | 
e.called@pre.isSimpleDelegatingOperation(delegate) implies e.called = 
e.called@pre.inlineMethod.action.action.expression.called and let e2 = 
e.called.to in (e2->notEmpty() and e2.oclIsTypeOf(CallExpr) and 
e2.called.isGetter(delegate) and e2.to = e.to@pre)) --2 
and not behaviouralFeature->exists(o: Operation | 
o.isSimpleDelegatingOperation(A)) --3 
 
context Operation::isGetter(A: Attribute): Boolean 
body: 
let ac = inlineMethod.action.action in 
let ex = ac.expression in 
visibility = #VkPublic and name = ‘get’.concat(A.name)  
and parameter->size() = 1 and (return->notEmpty() and return.type = A.type)  
and inlineMethod->notEmpty()  
and (ac->size() = 1 and ac->first().oclIsTypeOf(ReturnAction))  
and (ex->first().oclIsTypeOf(Ident) and ex.definition = A) 

 

7.2 Trigger-element – Attribute of Class 
 
This section contains specifications of following refactorings: 

1. Rename Attribute (Passive) 
2. Rename Attribute (Active) 
3. Pull Up Attribute (Passive) 
4. Push Down Attribute (Active) 

 

7.2.1 Rename Attribute (Passive) 
 

Informal specification 
 
Areas: ESPC 
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Trigger-element: PassiveClass::Attribute 
 
Definitions: 

1. attribute [T] – an attribute that is to be renamed 
2. class – a class in which {attribute} is defined 
3. newName – a new name of {attribute} 
 

Aim: Change the name of {attribute} defined in {class} to {newName}. 
 
Reasons: The current name of {attribute} does not reflect its purpose. 
 
Preconditions: 

1. {class} is passive. 
2. {newName} adheres to TAU naming rules. 
3. There is no attribute with the name {newName} in the inheritance 

hierarchy of {class}. 
 
Rename Attribute changes names of all attributes having the same name as 

{attribute} in the whole inheritance hierarchy of {class}. This precondition assures that 
there will be no name conflicts between renamed attributes and already existing ones. 

 
4. There is no operation with a parameter or a local variable with the name 

{newName} in the inheritance hierarchy of {class}. 
 
Operations can read and write attributes of classes to which they belong. 

Therefore, after renaming an attribute to a name of a parameter or a local variable of 
an operation, each reference to the attribute in the body of the operation is immediately 
rebound to the parameter/variable. The Model Checker detects this situation only if 
types of the attribute and the parameter/variable are incompatible. 

 
Postconditions: 

1. The name of {attribute} is {newName}. 
2. All references to {attribute} are via {newName}. 
3. Names of all attributes with the same name as {attribute} defined in the 

inheritance hierarchy of {class} are {newName}. 
4. All references to all attributes with the same name as {attribute} defined in 

the inheritance hierarchy of {class} are via {newName}. 
 
Mechanics 
 
The first step in the mechanics of Rename Attribute is a single invocation of 

renameAttribute – this causes fulfilment of the first two preconditions. If {class} has 
neither super- nor subclasses with sibling attributes of {attribute}, then the refactoring 
finishes. Otherwise, it is necessary to rename also these sibling attributes, what 
satisfies the latter two preconditions. This transformation step bases on the assumption 
that attributes in an inheritance hierarchy having the same names are semantically 
related, and thus they should evolve together. Moreover, omission of this step could 
lead to a situation like the one shown in Figure 7.836, where after renaming a1 to a2 in 
ClassB, reference to a1 in ClassC causes access of a1 from ClassA, instead of a1 from 
ClassB, as it was before refactoring37. 

 

                                                      
36 It is noteworthy that the binding mechanism of TAU prevents from this threat. 
37 Assuming that a1 in ClassB does not have private visibility. 
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Algorithm: 

1. {attribute}.renameAttribute({newName}) 
2. for each sibling attribute of {attribute} – 

{sibling_attribute}.renameAttribute({newName}) 
 

Formal specification 
 

context Attribute::RenameAttribute(newName: String) 
 
pre : not isActive --1 
and newName.isValidName() --2 
and let allClasses = namespace.getAllClassesFromInheritanceHierarchy() in 
not allClasses.attribute->exists(a: Attribute | a.name = newName) --3 
and not allClasses.behavioralFeature->exists(o: Operation | 
o.hasParameterNamed(newName) or o.hasLocalVariableNamed(newName)) --4 
 
post: name = newName --1&2 
and namespace.getAllClassesFromInheritanceHierarchy().attribute->forAll(a: 
Attribute | a.name@pre = self.name@pre implies a.name = newName) --3&4 
 
context Operation::hasParameterNamed(n: String): Boolean 
body: parameter->exists(p: Parameter | p.name = n) 

 

7.2.2 Rename Attribute (Active) 
 

Informal specification 
 
Areas: ESAC 
Trigger-element: ActiveClass::Attribute 
Definitions – unchanged 
Aim – unchanged 
Reasons – unchanged 
 
Preconditions: 

1. {class} is active. 
2. Unchanged 
3. Unchanged 
4. Unchanged 
5. {attribute} is not declared in any interface realized by any class in the 

inheritance hierarchy of {class}. 
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The precondition prevents from renaming attributes that implement the 
corresponding ones declared in realized interfaces. It reduces the scope of change of 
the refactoring. Otherwise, it would be also necessary to rename the attributes in these 
interfaces, what would cause the need for renaming attributes in all inheritance 
hierarchies of classes that realize these interfaces. An example of such a chain of 
changes is shown in Figure 7.9, where renaming a1 to a3 in Class1 enforces renaming 
a1 in Class2, Interface1, Class3, and Class4. In the opinion of the authors of the 
catalogue, this is another refactoring (called e.g. Rename Interface Attribute) that is 
triggered on an attribute contained in an interface, and not in a class. 
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Postconditions – unchanged 
Mechanics – unchanged 
Algorithm – unchanged 
 

Formal specification 
 

context Attribute::RenameAttribute(newName: String) 
 
pre : isActive --1 
and (…) --2&3&4 unchanged 
and not 
namespace.getAllClassesFromInheritanceHierarchy().port.realized.attribute-
>exists(a: Attribute | a.name = newName) --5 
 
post: (…) --1&2&3&4 unchanged 

 

7.2.3 Pull Up Attribute (Passive) 
 

Informal specification 
 
Origin: Pull Up Field [Fowler et al. 1999] 
Areas: ESPC 
Trigger-element: PassiveClass::Attribute 
 
Definitions: 

1. attribute [T] – an attribute that is to be pulled up 
2. class – a class in which {attribute} is defined 
3. superclass – a superclass of {class} 
4. subclasses – all direct subclasses of {superclass} except for {class} 

 
Aim: Move {attribute} and its siblings from all {subclasses} to {superclass} 
 
Reasons: {attribute} has siblings in all {subclasses} 
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Preconditions: 

1. {class} is passive. 
2. {class} has a superclass. 
3. In all {subclasses} defined is a sibling of {attribute}. 
4. There is no attribute with the name of {attribute} in {superclass}. 

 
Postconditions: 

1. {attribute} is defined in {superclass}. 
2. Siblings of {attribute} are not defined in {subclasses}. 

 
Mechanics 
 
First, {attribute} is moved from {class} to {superclass}. Next, all siblings of 

{attribute} are removed from {subclasses}. 
 
Algorithm: 

1. {attribute}.moveAttribute({class},{superclass}) 
2. for each sibling of {attribute} – {sibling_attribute}.removeAttribute() 

 
Formal specification 

 
context Attribute::PullUpAttribute() 
 
pre : not namespace.isActive --1 
and namespace.supertype->notEmpty() --2 
and namespace.subtypes->forAll(c: Class | c.attribute->exists(a: Attribute | 
a.name = self.name and a.type = self.type)) --3 
and not namespace.supertype.attribute->exists(a: Attribute | a.name = 
self.name) --4 
 
post: namespace=namespace@pre.supertype --1 
and namespace.subclasses->forAll(c: Class | not c.exists(a: Attribute | a.name 
= self.name and a.type = self.type)) --2 

 

7.2.4 Push Down Attribute (Passive) 
 

Informal specification 
 
Origin: Push Down Field [Fowler et al. 1999] 
Areas: ESPC 
Trigger-element: PassiveClass::Attribute 
 
Definitions: 

1. attribute [T] – an attribute that is to be pushed down 
2. class – a class in which {attribute} is defined 
3. subclasses – all direct subclasses of {class} 
 

Aim: Move {attribute} to only these {subclasses} that use it 
 
Reasons: {attribute} is used only by some {subclasses} 
 
Preconditions: 

1. {class} is passive. 
2. {attribute} is neither read nor written in/through {class}. 
3. No {subclass} contains an attribute with the same name as {attribute}. 
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Postconditions: 
1. {attribute} is not defined in {class}. 
2. Siblings of {attribute} are defined in {subclasses} that use it. 

 
Mechanics 
 
First, a copy of {attribute} is added to each {subclass} that needs it. Next, 

{attribute} is removed from {class}. 
 
Algorithm: 

1. for each {subclass} that needs {attribute} – 
{subclass}.addAttribute({attribute}) 

2. {attribute}.removeAttribute() 
 

Formal specification 
 

context Attribute::PushDownAttribute() 
 
pre : not isActive --1 
and session.getAllFieldExpr()->forAll(fe: FieldExpr | fe.field = self implies 
fe.expression.type <> self.namespace) and namespace.behavioralFeature-
>forAll(o: Operation | not o.inlineMethod.getAllIdent()->exists(i: Ident | 
i.definition = self)) --2 
and namespace.namespace.allSubclasses->forAll(c: Class | not c.attribute-
>exists(a: Attribute | a.name = self.name)) --3 
 
post: not namespace@pre.attribute->exists(a: Attribute | a = self@pre) --1 
and namespace@pre.subclasses->select(c: Class | 
self.session@pre.getAllFieldExpr()->exists(fe: FieldExpr | fe.field = self and 
fe.expression.definition.type = c) or c.behavioralFeature->exists(o: Operation 
| o.inlineMethod.getAllIdent()->exists(i: Ident | i.definition = self)))-
>forAll(c: Class | c.attribute->exists(a: Attribute | a.name = self.name and 
a.type = self.type)) --2 
 
context Session::getAllFieldExpr(): Set(FieldExpr) 
/* the query returns a set containing all instances of FieldExpr in the model 
*/ 

 

7.3 Trigger-element – Operation of Class 
 
This section contains specifications of following refactorings: 

1. Rename Operation (Passive) 
2. Rename Operation (Active) 
3. Hide Operation (Passive) 
4. Add Parameter to Operation (Passive) 

 

7.3.1 Rename Operation (Passive) 
 

Informal specification 
 
Origin: Rename Method [Fowler et al. 1999] 
Areas: ESPC 
Trigger-element: PassiveClass::Operation 
 
Definitions: 

1. operation [T] – an operation that is to be renamed 
2. class – a class in which {operation} is defined 
3. newName – a new name of {operation} 
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Aim: Change the name of {operation} defined in {class} to {newName}. 
 
Reasons: The current name of {operation} does not reflect its purpose. 
 
Preconditions: 

1. {class} is passive. 
2. {newName} adheres to TAU naming rules. 
3. There is no operation with the name {newName} and the same non-return 

parameters as {operation} in the inheritance hierarchy of {class}. 
 
Rename Operation changes names of all operations having the same names and the 

same parameters as {operation} in the whole inheritance hierarchy of {class}. This 
precondition assures that there will be no conflicts between signatures of renamed 
operations and other ones. 

 
4. {operation} is neither a constructor nor a destructor. 

 
Names of both constructors and destructors are strictly determined by names of 

classes in which they are defined. Therefore, they cannot be renamed separately from 
their containers. 

 
Postconditions: 

1. The name of {operation} is {newName}. 
2. All references to {operation} are via {newName}. 
3. Names of all operations with the same signature as {operation} defined in 

the inheritance hierarchy of {class} are {newName}. 
4. All references to all operations with the same signature as {operation} 

defined in the inheritance hierarchy of {class} are via {newName}. 
 
Mechanics 
 
The first step in the mechanics of Rename Operation is a single invocation of 

renameOperation – this causes fulfilment of the first two preconditions. If {class} has 
neither super- nor subclasses with sibling operations of {operation}, then the 
refactoring finishes. Otherwise, it is necessary to rename also these sibling operations, 
what satisfies the latter two preconditions. This transformation step bases on the 
assumption that operations in an inheritance hierarchy that have the same signatures 
are semantically related, and thus they should evolve together. Moreover, omission of 
this step could lead to a situation like the one shown in Figure 7.1038, where after 
renaming op1() to op2() in ClassB, invocation of op1() in ClassC causes call of op1() 
from ClassA, instead of op1() from ClassB, as it was before refactoring39. 

 

                                                      
38 It is noteworthy that the binding mechanism of TAU prevents from this threat. 
39 Assuming that op1() in ClassB does not have private visibility. 
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Algorithm: 

1. {operation}.renameOperation({newName}) 
2. for each sibling operation of {operation} – 

{sibling_operation}.renameOperation({newName}) 
 

Formal specification 
 

context Operation::RenameOperation(newName: String) 
 
pre : not isActive --1 
and newName.isValidName() --2 
and not namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(o: Operation | o.name = newName and o.hasTheSameParameters(self)) --3 
and operationKind <> #OkConstructor and operationKind <> #OkDestructor --4 
 
post: name = newName --1&2 
and namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>forAll(o: Operation | o.name@pre = self.name@pre and 
o.hasTheSameParameters(self) implies o.name = newName) --3&4 

 

7.3.2 Rename Operation (Active) 
 

Informal specification 
 
Areas: ESAC 
Trigger-element: ActiveClass::Operation 
Definitions – unchanged 
Aim – unchanged 
Reasons – unchanged 
 
Preconditions: 

1. {class} is active. 
2. {newName} adheres to TAU naming rules. 
3. There is no event class with the name {newName} and the same non-

return parameters as {operation} in the inheritance hierarchy of {class}. 
4. {operation} is not a constructor. 
5. {operation} is not declared in any interface realized by any class in the 

inheritance hierarchy of {class}. 
 
The precondition prevents from renaming operations that implement the 

corresponding ones declared in realized interfaces. It reduces the scope of change of 
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the refactoring. Otherwise, it would be also necessary to rename the operations in these 
interfaces, what would cause the need for renaming operations in all inheritance 
hierarchies of classes that realize these interfaces. An example of such a chain of 
changes is shown in Figure 7.11, where renaming op1() to op3() in Class1 enforces 
renaming op1() in Class2, Interface1, Class3, and Class4. In the opinion of the authors 
of the catalogue, this is another refactoring (called e.g. Rename Interface Operation) 
that is triggered on an operation contained in an interface, and not in a class. 
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Postconditions – unchanged 
Mechanics – unchanged 
Algorithm – unchanged 
 

Formal specification 
 

context Operation::RenameOperation(newName: String) 
 
pre : isActive --1 
and (…) –--2 unchanged 
and not namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(ec: EventClass | ec.name = newName and ec.hasTheSameParameters(self)) -
-3 
and operationKind <> #OkConstructor --4 
and not 
namespace.getAllClassesFromInheritanceHierarchy().port.realized.behavioralFeatu
re->exists(o: Operation | o.name = newName and o.hasTheSameParameters(self)) --
5 
 
post: (…) --1&2&3&4 unchanged 

 

7.3.3 Hide Operation (Passive) 
 

Informal specification 
 
Origin: Hide Method [Fowler et al. 1999] 
Areas: ESPC 
Trigger-element: PassiveClass::Operation 
 
Definitions: 

1. operation [T] – an operation that is to be hidden 
2. class – a class in which {operation} is defined 
3. subclasses – all subclasses of {class} 
 

Aim: Hide {operation} defined in {class} from all classes except for {subclasses} 
 
Reasons: Only {class} and {subclasses} should be allowed to invoke {operation} 
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Description 
 
The refactoring hides not only {operation} but also all its siblings in {subclasses}. 
 
Preconditions: 

1. {class} is passive. 
2. {operation} is invoked only by {class} or {subclasses}. 
3. Siblings of {operation} in {subclasses} are invoked only by their owners 

or owners’ subclasses. 
 
Postconditions: 

1. If {class} has no subclasses or visibility of {operation} was private, then 
its visibility is private, else it is protected. 

2. Private siblings of {operation} in {subclasses} remain private – the rest of 
them have protected visibility. 

 
Mechanics 
 
As the realization of the transformation relies on changing visibility of operations, 

it uses only one basic operation – changeVisibility – applied to {operation} and all its 
siblings in {subclasses}. First, the refactoring changes the visibility of {operation} – 
only if it is not private – to protected or private, depending whether it has subclasses. 
Finally, non-private siblings of {class} in {subclasses} become protected. 

 
Algorithm: 

1. if visibility of operation is not private then – ( if {operation} has no 
subclasses then {operation}.changeVisibility(private) else 
{operation}.changeVisibility(protected) ) 

2. for each sibling operation of {operation} in {subclasses} – if visibility of 
{sibling_operation} is not private then 
{sibling_operation}.changeVisibility(protected) 

 
Formal specification 

 
context Operation::HideOperation() 
 
pre : not isActive --1 
and session.getAllCallExpr()->forAll(ce: CallExpr | Set{self}-
>union(self.getSiblingOperationsSub())->exists(ce.called) implies ce.to-
>isEmpty) --2&3 
 
post: if namespace.allSubclasses->isEmpty or visibility@pre = #VkPrivate then 
visibility = #VkPrivate else visibility = #VkProtected endif --1 and 
self.getSiblingOperationsSub()->forAll(o: Operation | o.visibility@pre <> 
#VkPrivate implies o.visibility = #VkProtected) --2 

 

7.3.4 Add Parameter to Operation (Passive) 
 

Informal specification 
 
Origin: Add Parameter [Fowler et al. 1999] 
Areas: ESPC 
Trigger-element: PassiveClass::Operation 
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Definitions: 
1. parameter – a parameter that is to be added 
2. name – the name of {parameter} 
3. type – the type of {parameter} 
4. operation [T] – an operation to which {parameter} is added 
5. class – a class in which {operation} is defined 
 

Aim: Add {parameter} to {operation} 
 
Reasons: {operation} needs more information from its callers 
 
Description 
 
{parameter} is added to {operation} and to all its siblings in the inheritance 

hierarchy of {class}. 
 
Preconditions: 

1. {class} is passive. 
2. {name} adheres to TAU naming rules. 
3. {operation} does not have a parameter called {name}. 
4. There is no local variable called {name} in the bodies of {operation} and 

its siblings in the inheritance hierarchy of {class}. 
5. There is no attribute called {name} in the inheritance hierarchy of {class}. 
6. No operation with the signature implied by adding {parameter} to 

{operation} exists in the inheritance hierarchy of {class}. 
 
Postconditions: 

1. {parameter} exists – at the last position – in the signatures of {operation} 
and its siblings. 

2. {operation} and its siblings are invoked with {parameter} having a default 
value. 

 
Mechanics 
 
After creation of {parameter}, it is added to {operation} and to all its siblings in 

the inheritance hierarchy of {class}. Next, in each invocation of {operation} and all its 
siblings, a new actual argument with a default value (NULL) is appended. 

 
Algorithm: 

1. {operation}.appendParameter({name},{type}) 
2. for each sibling operation of {operation} – 

{sibling_operation}.appendParameter({name},{type}) 
3. for each invocation of {operation} and its siblings – 

{operation_invocation}.addDefaultValueForParameter({name}) 
 

Formal specification 
 

context Operation::AddParameter(p: Parameter) 
 
pre : not namespace.isActive --1 
and p.name.isValidName() --2 
and not parameter->exists(pa: Parameter | pa.name = p.name) --3 
and not Set{self}->union(self.getSiblingOperationsSub())-
>union(self.getSiblingOperationsSup())->exists(o: Operation | 
o.hasLocalVariableNamed(p.name)) --4 
and not namespace.getAllClassesFromInheritanceHierarchy().attribute->exists(pa: 
Parameter | pa.name = p.name) --5 
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and not namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(o: Operation | o.name = self.name and 
o.hasTheSameParameterList(self.parameter->append(p))) --6 
 
post: let allOp = Set{self}->union(self.getSiblingOperationsSub())-
>union(self.getSiblingOperationsSup()) in 
allOp->forAll(o: Operation | let lp = o.parameter->last() in lp.name = p.name 
and lp.type = p.type) --1 
and session.getAllCallExpr()->forAll(ce: CallExpr | allOp->exists(o: Operation 
| o = ce.called) implies (let arg = ce.argument->last() in 
arg.oclIsTypeOf(Ident) and arg.definition.oclIsTypeOf(Literal) and 
arg.definition.name = ‘NULL’)) --2 

 

7.4 Trigger-element – Parameter of Operation 
 
This section contains specifications of following refactorings: 

1. Remove Parameter from Operation (Passive) 
 

7.4.1 Remove Parameter from Operation (Passive) 
 

Informal specification 
 
Origin: Remove Parameter [Fowler et al. 1999] 
Areas: ESPC 
Trigger-element: PassiveClass::Operation::Parameter 
 
Definitions: 

1. parameter [T] – a parameter that is to be removed 
2. operation – an operation in which {parameter} is defined 
3. class - a class in which {operation} is defined 
 

Aim: Remove {parameter} from {operation} 
 
Reasons: {parameter} is no longer needed by the implementation of {operation} 
 
Description 
 
{parameter} is removed from {operation} and from all its siblings in the 

inheritance hierarchy of {class}. 
 
Preconditions: 

1. {class} is passive. 
2. {parameter} is not used in the bodies of {operation} and its siblings from 

the inheritance hierarchy of {class}. 
3. No operation with the signature implied by removing {parameter} from 

{operation} exists in the inheritance hierarchy of {class}. 
 
Postconditions: 

1. {parameter} does not exist in signatures of {operation} and its siblings. 
2. {operation} and its siblings are invoked without {parameter}. 

 
Mechanics 
 
First, {parameter} is removed from {operation}, and next, its sibling parameters 

are deleted from all siblings of {operation}. 
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Algorithm: 
1. {parameter}.removeParameter() 
2. for each sibling parameter of {parameter} – 

{sibling_parameter}.removeParameter() 
 

Formal specification 
 

context Parameter::RemoveParameter() 
 
pre : not eventClass.isActive --1 
and Set{self.eventClass}->union(self.eventClass.getSiblingOperationsSub())-
>union(self.eventClass.getSiblingOperationsSup())->forAll(o: Operation | not 
o.isParameterUsed(self.name)) --2 
and not 
eventClass.namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(o: Operation | o.name = self.eventClass.name and let pList = 
self.eventClass.parameter in o.hasTheSameParameterList(pList->excluding(pList-
>last()))) --3 
 
post: let allOp = Set{self.eventClass}-
>union(self.eventClass.getSiblingOperationsSub())-
>union(self.eventClass.getSiblingOperationsSup()) in  
not allOp->exists(o: Operation | o.parameter->exists(p: Parameter | p.name = 
self.name and p.type = self.type)) --1 
and session.getAllCallExpr()->forAll(ce: CallExpr | allOp->exists(ce.called) 
implies ce.argument->asSequence() = ce.argument@pre->asSequence()-
>excluding(ce.argument@pre->asSequence()->last())) --2 
 
context Operation::isParameterUsed(pName: String): Boolean 
body: inlineMethod.getAllIdent()->exists(i: Ident | 
i.definition.oclIsTypeOf(Parameter) and i.definition.name = pName) 

 

7.5 Common OCL Queries 
 

context String::consistsOfAllowedCharacters(): Boolean 
/* the query returns true if the context element consists of characters allowed 
in names of model elements (refer to [Telelogic 2004] – Names) */ 
 
context Session::getAllCallExpr(): Set(CallExpr) 
/* the query returns a set containing all instances of CallExpr in the model */ 
 
context Class::getAllClassesFromInheritanceHierarchy(): Set(Class) 
body: self->union(self.allSupertypes)->union(self.allSubtypes) 
 
context OperationBody::getAllIdent(): Set(Ident) 
/* the query returns all instances of Ident used in all expressions in the 
context operation body */ 
 
context CompoundAction::getAllSimpleActions(): Set(Action) 
body: self->iterate(a: Action; resultActions: Set(Action) = {} |  
if a.oclIsTypeOf(CompoundAction) then  
resultActions->union(a.getAllSimpleActions())  
else resultActions->union(a) endif) 
 
context Operation::getSiblingOperationsSub(): Set(Operation) 
body: namespace.allSubclasses.behavioralFeature->select(o: Operation | o.name = 
self.name and o.hasTheSameParameters(self)) 
 
context Operation::getSiblingOperationsSup(): Set(Operation) 
body: namespace.allSuperclasses.behavioralFeature->select(o: Operation | o.name 
= self.name and o.hasTheSameParameters(self)) 
 
context Operation::hasLocalVariableNamed(n: String): Boolean 
body: inlineMethod->notEmpyt and inlineMethod.action.getAllSimpleActions()-
>exists(a: DefAction | a.definition.name = n) 
 
context Operation::hasTheSameParameterList(p: Sequence(Parameter)): Boolean 
body: parameter->reject(direction = #DkReturn)->collect(type) = p-
>reject(direction = #DkReturn)->collect(type) 
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context Operation::hasTheSameParameters(ops: Set(Operation)): Boolean 
body: ops->exists(o: Operation | o.hasTheSameParameterList(self.parameter)) 
 
context String::isValidName(): Boolean 
body: not isReservedWord() and consistsOfAllowedCharacters() 
 
context String::isReservedWord(): Boolean 
/* the query returns true if the context element is one of the reserved words 
(refer to [Telelogic 2004] – Names) */ 
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8 IMPLEMENTATION OF REFACTORINGS IN TAU 
 
The goal of this chapter is to show how refactorings specified in the previous 

Section can be implemented in TAU. It is structured as follows: Section 8.1 provides 
basic information on model access in TAU; Section 8.2 describes implementation of 
an exemplary refactoring – Remove Middle Man – that has been performed within the 
frames of the thesis. The full source code of the application can be found on the 
attached CD. Finally, Section 8.3 explains how refactorings that are not driven by bad 
smells can be triggered on presentation elements. 

 

8.1 Model Access in TAU 
 
A TAU model can be accessed either using TCL Script or via a COM API from an 

application written in any COM-enabled programming language. The latter solution 
offers higher execution performance, but on the other hand, it requires more 
development effort. The COM API is primarily intended to be used by applications 
running in their own memory space, referred to as non-interactive clients. They work 
on their own private copy of a model, and the information exchange with other 
applications is therefore typically at file level. However, the COM API can also be 
used by interactive clients that access the model loaded by TAU. 

 
A non-interactive client accesses the COM API by creating an instance of the only 

one exposed COM class TTD_ModelAccess, which implements ITtdModelAccess 
interface. An interactive client must implement ITtdInteractiveClient interface. This 
interface contains a method OnExecute which is called by TAU when the interactive 
client it to execute. The first argument of OnExecute method is a pointer to an 
ITtdInteractiveServer interface, which represents the application which acts as the 
server for the interactive client. The second argument of OnExecute method is an 
ITtdEntities collection of entities. 

 
Unfortunately, it is currently not possible to develop the entire add-in using only a 

COM client – TAU requires at least a minimal TCL script to execute. In order to 
transfer execution to the COM client, this script can use a TCL API command 
ExecuteCOMClient (see UMLref.tcl on attached CD). 

 

8.2 Implementation of Remove Middle Man 
 
Taking into account probable performance and usability requirements imposed on 

a refactoring add-in, the access via the COM API has been chosen – the exemplary 
refactoring is implemented as an interactive client – called UMLref – written in 
Borland Delphi’s Object Pascal.  

 
The structure of UMLref can be overviewed in Figure 8.1. The implementation 

consists of seven packages representing Delphi units. Each package contains one class 
named after its container. TMiddleMan is responsible for detecting middle men in 
models, TMiddleManUI is a user interface class enabling selection of a middle man 
and triggering the transformation, and TRemoveMiddleMan implements the 
refactoring. TClassMV and TInvocationReplacerMV are two classes which presence is 
enforced by the use of the COM API. The former has the ability to traverse a model 
and to find all potential middle men, and the latter searches for all invocations of 
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delegating operations. They both realize ITtdMetaVisitCallback interface, containing 
OnVisitedEntity method called for each entity that is visited during the model 
traversal. Two last classes, namely TChecker and TTransformer, contain operations 
used mainly in checking pre- and postconditions, and transforming models, 
respectively. These two classes are the only ones that are intended to be reused in 
implementations of other refactorings. 

 

 
 

�������&	�	�5 �
  �� 	 ����# 
 �# �	 �� ���� 	 ��
� �	 
	 ������ ��� ��- 	 
� " 	 �� �� � �	 �� ���

 
Each bad smell driven refactoring is performed in two phases – in the case of 

Remove Middle Man, in the former, a model is traversed in the search for classes that 
are suspected to be middle men, and in the latter, a user triggers the transformation on 
a chosen pair consisting of a class and one of its delegate attributes. An interaction 
illustrating the first phase is shown in Figure 8.2. In the source code, findMiddleMen 
operation is realized by OnVisitedEntity operation. 
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An overall refactoring algorithm for the second phase can be defined as follows: 
 

 if preconditionsFulfilled() then 
   begin 
       transform(); 
        if not postconditionsFulfilled() then 
             rollback(); 
     end; 

 
Its realization can be overviewed in a sequence diagram in Figure 8.3. 
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Although the current version (2.4) of TAU does not provide support for OCL on 

the metamodel level, transition from the formal specification of both queries detecting 
bad smells as well as pre- and postconditions to their implementation is quite 
straightforward. It results from the fact that interfaces exposed by TAU COM API, 
realized by classes representing metaclasses in the implementation of TAU Object 
Model, enable – just like OCL – a metamodel-based navigation through models40. 
Therefore, for instance two first preconditions and the first and the third postcondition 
of Remove Middle Man boil down to the following statements: 

 
 Pre  1) result:=dAttr.GetOwner()=mMan 
 Pre  2) result:=dAttr.GetEntity('type',1).GetMetaClassName='Class' 
 Post 1) result:=checker.hasGetter(mMan,dAttr) 
 Post 3) result:=not checker.hasDelegatingOps(mMan,dAttr) 

 
In the case of the transforming part, it is noteworthy that the three basic operations 

identified in the mechanics section of the informal specification of Remove Middle 
Man, i.e. addGetter, replaceInvocation, and removeOperation, have their 
correspondents in the implementation (see Figure 8.3). For instance, 
replaceInvocations procedure calls replaceInvocation for each instance of CallExpr 
that calls a delegating operation of a suspected class. The implementation of 
replaceInvocation (see below) transforms the model in accordance with Figure 7.7. 

 
 1  procedure TInvocationReplacerMV.replaceInvocation 
 2            (callExpr, accessor, op: ITtdEntity); 
 3  (…) 
 4    toPre:=callExpr.GetEntity('to',1); 
 5    model:=callExpr; 
 6    while not model.IsKindOf('Session') do 
 7      model:=model.GetOwner; 
 8    newCallExpr:=(model as ITtdModel).New('CallExpr'); 
 9    newCallExpr.SetEntity('called',accessor,1); 
 10   newCallExpr.SetEntity('to',toPre,1); 
 11   callExpr.SetEntity('called',op,1); 
 12   callExpr.SetEntity('to',newCallExpr,1); 

 
First (4), an identifier, pointing an element on which a delegating operation is 

invoked, is stored in a temporary variable toPre. Next (5-7), the instance of Session 
                                                      
40 This way, changes to TAU Object Model do not propagate to the COM API, but on the other hand, 
this solution requires thorough knowledge and comprehension of TAU’s metamodel. 
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metaclass is found, to be able to create (8) a new instance of CallExpr41. Subsequently, 
the most important attributes (called and to) of the created call expression are set to 
point adequate elements (9-10). Finally, the initial invocation is adjusted to call an 
appropriate delegated operation via the new call expression (11-12). 

 

8.3 Triggering Refactorings 
 
In the case of refactorings that are not driven by bad smells, there is a need to 

enable triggering them on both model elements in the model view as well as on their 
representations in diagrams. In the latter case, a corresponding model element has to 
be determined and passed to the transformation. Figure 8.4 shows relation between 
ClassSymbol, GeneralizationLine, and AssociationLine presentation metaclasses and 
their model counterparts pointed by modelElement attribute and represented by 
corresponding (indirect) subclasses of ModelElement – Class, Generalization, and 
Association. 
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It is noteworthy that modelElement of AssociationLine is always not Association 

but Attribute. Additionally, in the case of GeneralizationLine and AssociationLine, two 
attributes – dst and src – point ClassSymbols of related classes. The source for 
Generalization is a superclass and its destination – a subclass. 

 
Having established relation between presentation and model elements, one can 

trigger refactorings from TCL scripts in the following way: 
 

 set sel [std::GetSelection] 
 if { [u2::GetMetaClassName $sel] == "ClassSymbol" } { 
  set sel [u2::GetEntity $sel "ModelElement"] 
 } 
 std::ExecuteCOMClient "UMLref.RenameClass" $sel 

 
where GetSelection returns selected in TAU model/presentation element, and 
ExecuteCOMClient invokes an interactive COM client that performs – in this case – 
Rename Class refactoring. 

                                                      
41 In this particular case, the use of Create method defined in ITtdEntity interface, instead of New, 
fails – this is probably due to a bug in the COM API. 
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9 CONCLUSIONS & FUTURE WORK 
 
This is the last chapter of the thesis. It concludes it (Section 9.1) and points out 

possible directions of a future work (Section 9.2). 
 

9.1 Conclusions 
 
All objectives of the thesis have been successfully accomplished. Literature survey 

on software refactoring (Section 2), UML model refactoring (Section 3), and 
executable modelling with UML (Section 4) has been performed. An initial catalogue 
of executable UML model refactorings has been created (Section 7), and the 
transformations have been formalized with the use of OCL. Finally, an exemplary 
refactoring from the catalogue has been implemented in TAU (Section 8). 

 
The majority of previous studies on UML model refactoring presented in Section 3 

concern refactoring of non-executable UML models, in which operation bodies are 
treated as protected areas. The main difference between transformations used in these 
approaches and refactorings of executable models relies on the fact that the latter ones 
have to take into account and to update not only structural but also behavioural aspects 
of transformed models. The key challenges in the area of refactoring of executable 
models that base on UML 2.0 result mainly from the necessity to consider following 
new features of the language: (1) cross integration of structure and behaviour, (2) 
support for component-based development via composite structures, and (3) 
integration of action semantics with behavioural constructs.  

 
With the intention of enabling a systematic approach to the mentioned issues, in 

this thesis a notion of refactoring trigger-element has been introduced. Next, trigger-
elements of all Fowler’s code refactorings [Fowler et al. 1999] have been determined. 
Subsequently, a mapping between all these trigger-elements and their equivalents in 
the UML 2.0 metamodel and TAU Object Model have been established, indicating that 
all code refactorings can be applied to executable UML models. The thesis elaborates 
categorization of model refactorings in the form of refactoring areas based on the 
notion of trigger-elements. Exemplary transformations from each area are presented, 
and the overall ideas are illustrated on a study executable UML model built in TAU. 
The identified refactoring areas are specific for TAU executable models, but one may 
expect that similar ones could be distinguished in e.g. I-Logix Rhapsody models. 
Basing on the initial research, a systematic approach to specification of both 
executable UML model refactorings as well as associated bad smells has been 
elaborated. Using a proposed specification template, twelve refactorings have been 
specified, and one of them – Remove Middle Man – implemented in TAU. It is worthy 
noting that both specifications as well as implementations of the transformations are 
specific for Telelogic TAU, i.e. they are not straightforwardly portable to other UML 
CASE tools. This results mainly from the fact that TAU Object Model substantially 
differs from UML 2.0 metamodel. 

 
The issue of refactoring executable UML models, introduced by Sunyé et al. 

[2002], is addressed by Kazato et al. [2004] (see Section 3.7) in a paper, which seems 
to be the only one on the topic published so far. Although their approach has a 
significant research value, its practical application seems rather inconvenient. First, it 
is not dedicated to UML CASE tools, but to graph transformation systems. This 
implies that each attempt to refactor a design model requires exporting, transforming, 
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and importing it back again42. In the current prototype tool, each refactoring is 
performed in accordance with the following scenario: 

1. Edit the model in the transformation system; 
2. Create refactoring node and set its “name” attribute to the name of the 

desired refactoring; 
3. Connect the node to the model element relevant to the transformation by 

using “target” edge; 
4. Launch the transformation. 

Second, the design models refactored by Kazato et al. are based on an already 
depreciated UML 1.5 instead of being compliant with the completely rebuilt state-of-
the-art UML 2.0. Moreover, refactored are only stateless models, which have more in 
common with programs written in modern object-oriented programming languages 
than with state-oriented executable models. 

 
In comparison with the work performed by Kazato et al., this thesis focuses on 

refactoring more complex, state-based TAU executable models. What is also important 
from the point of view of the practitioner building UML models with a professional 
tool such as TAU, the refactoring transformations and detection of related bad smells 
are programmed in the tool using its metamodel-based COM API instead of 
implementation of the transformations in a foreign environment such as a graph-
rewriting tool. 

 
The key problems encountered during the work are connected mainly with TAU 

Object Model, which is quite complex (ca. 200 metaclasses), not compliant with the 
UML 2.0 metamodel, and supplied only in the form of a model that can be opened and 
browsed in TAU [Telelogic 2005]. Moreover, the part that can be used while building 
executable UML models is not strictly defined.  

 

9.2 Future Work 
 
Several topics can be pointed out as a possible future work based on the approach 

presented in this thesis. These are as follows: 
 

1. Identification and definition of refactorings and associated bad smells 
specific for executable UML models. By specific understood are the 
ones that cannot be applied/do not occur in programming language code. 
These are mainly refactorings triggered on elements in ISAC and LCAC 
areas. Two examples of them, namely Extract Port and Group States, are 
given in Section 6.8.1 and 6.8.2, respectively. 

 
2. Development of a professional industrial refactoring add-in to TAU. 

This add-in would (1) support users in detecting bad smells and (2) 
suggest appropriate refactorings to remove them. Moreover, it would 
enable to trigger user-defined transformations. 

 
3. Automation of generating implementations of refactorings from their 

formal specifications. This topic bases on an observation that 
implementation of both queries as well as pre- and postconditions in TAU 
COM API, from OCL specifications, is straightforward. 

 

                                                      
42 Assuming that the graph transformation system is not a part of the UML CASE tool. 
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4. Refactoring of executable models in a tool fully compliant with UML 
2.0. Refactorings specified for such a tool would be portable across all 
tools compliant with UML 2.0 – as soon as they appear on the market. 

 
5. Specification of refactorings with the use of action semantics. This 

topic bases on an observation that action semantics can be used also to 
transform UML models [Sunyé et al. 2002; Varro & Pataricza 2003]. 

 
6. Discovering refactoring preconditions in a systematic manner. The 

most problematic step during specifying a refactoring seems to be 
determination of its preconditions. This results from the fact that is very 
difficult to foresee all situations is which the refactoring will not be 
behaviour preserving. 

 
7. An experiment with human subjects, evaluating: 

a. influence of automation of executable UML model refactoring on 
productivity of software developers, 

b. the effect of the refactoring on maintainability of  executable 
UML models. 

 
8. Construction of a catalogue of executable UML model refactorings. 

The refactorings should be specified according to the template enhanced 
by among others sections concerning (1) classification of refactorings, (2) 
related refactorings, and (3) consequences of refactorings. 
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APPENDIX A – FOWLER’S CODE REFACTORINGS  
 
Columns: 

• Group – name of a group to which refactorings belong 
• No. – number of a refactoring 
• Refactoring – name of a refactoring 
• Summary – a problem and a solution statement [Fowler et al. 1999] 
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APPENDIX B – BAD SMELLS IN CODE 
 
Columns: 

• Wake’s Group – name of a group to which bad smells belong, according to Wake’s 
taxonomy [Wake 2003] 

• Wake’s Subgroup – name of a subgroup to which bad smells belong, according to 
Wake’s taxonomy [ibid.] 

• Wake’s Bad Smell – name of a bad smell, according to Wake’s taxonomy [ibid.] 
• Fowler’s Bad Smell – name of a corresponding bad smell from Fowler’s taxonomy 

[Fowler et al. 1999] 
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APPENDIX C – TRIGGER-ELEMENTS OF CODE 
REFACTORINGS 
 
Columns: 

• No. – number of a refactoring according to the numbering introduced in Appendix A 
• Refactoring – name of a refactoring 
• Trigger-element(s) – name of a trigger-element of a refactoring, its optional 

multiplicity (in square brackets) and constraint (in curly brackets) 
• Role of trigger-element(s) – explanation of the role of a trigger-element in a 

refactoring 
• Trigg. – “triggerness” of a refactoring – S-T (structure-triggered), B-T (behaviour-

triggered) 
• Modifies structure – YES if a transformation modifies a part of a model that 

specifies structure of a system, otherwise NO  
• Modifies behaviour – YES if a transformation modifies a part of a model that 

specifies behaviour of a system, otherwise NO 
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APPENDIX D – DEPENDENCIES BETWEEN CODE 
REFACTORINGS 
 
Columns: 

• No. – number of a refactoring according to the numbering introduced in Appendix A 
• Refactoring – name of a refactoring 
• Inverses – name of an inverse refactoring 
• Includes – names of transformations that the mechanics of the refactoring includes 

or may include 
• Is enabled by – preconditions of the refactoring and names of transformations by 

which it may be enabled, if these preconditions are not fulfilled 
• Is usually preceded by – refactorings that usually precede the one 
• Is usually followed by – refactorings that usually follow the one 

 
The content of the four last columns is based on descriptions of Fowler’s refactorings 
[Fowler et al. 1999]. 
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APPENDIX E – RESTRICTIONS IN TAU/DEVELOPER 2.4 
An excerpt from [Telelogic 2004] 
 
Model Verifier does not support the following UML constructs and use of UML. 
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APPENDIX F – UML 2.0 & TAU TRIGGER-ELEMENTS 
 
Columns: 

• Trigger-element(s) – name of a trigger-element of a code refactoring 
• Constraints on trigger-element(s) – constraints that refine the trigger-element(s) 
• TAU metaclass(es) – corresponding metaclass(es) of TAU Object Model 
• UML 2.0 metaclass(es) - corresponding metaclass(es) of the UML 2.0 metamodel 
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APPENDIX G – TAXONOMY OF ATTRIBUTE AND 
OPERATION IN TAU 

 

 
 

 
 


