

WYDZIAŁ INFORMATYKI I ZARZ�DZANIA
INSTYTUT INFORMATYKI STOSOWANEJ

Wybrze�e Wyspia�skiego 27, 50-370 Wrocław

Praca Magisterska

Refaktoryzacja Modeli UML

- Wsparcie dla Utrzymania Wykonywalnych Modeli

Łukasz Dobrza�ski

Promotor: Prof. dr hab. in�. Zbigniew Huzar

Recenzent: Dr in�. Bogumiła Hnatkowska

Wrocław 2005

Streszczenie

 Jednym z nieuniknionych, negatywnych efektów ewolucji oprogramowania jest

erozja projektu. Refaktoryzacja jest technik�, która ma na celu przeciwdziałanie temu zjawisku

poprzez sukcesywne polepszanie projektu oprogramowania, nie zmieniaj�c jego obserwowalnego

zachowania. Erozja projektu wyst�puje tak�e w kontek�cie wykonywalnych modeli UML, tzn.

modeli, które s� wystarczaj�co szczegółowe, by mogły by� kompilowane do wykonywalnych

aplikacji.

 Celem pracy było zastosowanie refaktoryzacji do obszaru utrzymania

wykonywalnych modeli UML, w tym:

1. dokonanie przegl�du literatury dotycz�cej:

a. refaktoryzacji oprogramowania,

b. refaktoryzacji modeli UML,

c. wykonywalnych modeli UML;

2. utworzenie wst�pnego katalogu transformacji refaktoryzacyjnych

wykonywalnych modeli UML na podstawie wybranych refaktoryzacji kodu;

3. sformalizowanie refaktoryzacji z katalogu z wykorzystaniem j�zyka OCL;

4. zaimplementowanie przykładowej refaktoryzacji w wybranym narz�dziu

umo�liwiaj�cym tworzenie wykonywalnych modeli UML.

 Wszystkie cele pracy zostały pomy�lnie zrealizowane, a do jej głównych

rezultatów nale�y zaliczy�:

1. Przegl�d podej�� do refaktoryzacji modeli UML [rozdz. 3].

2. Przegl�d i porównanie podej�� do wykonywalnego UML-a [rozdz. 4 i 5].

3. Identyfikacja elementów wyzwalaj�cych (ang. trigger-element) dla wszystkich

refaktoryzacji kodu z katalogu Fowler-a [rozdz. 2].

4. Mapowanie pomi�dzy elementami wyzwalaj�cymi refaktoryzacje kodu a ich

odpowiednikami w postaci metaklas z metamodelu UML-a 2.0 oraz z modelu

obiektowego narz�dzia Telelogic/TAU [rozdz. 6].

5. Identyfikacja i charakterystyka obszarów refaktoryzacyjnych (ang. refactoring

area) w wykonywalnych modelach TAU [rozdz. 6].

6. Zaproponowanie szablonu specyfikacyjnego dla refaktoryzacji [rozdz. 6].

7. Specyfikacja wg szablonu dwunastu przykładowych refaktoryzacji

wyzwalanych na elementach z obszaru ESPC (Zewn�trzna Struktura Pasywnych

Klas) oraz ESAC (Zewn�trzna Struktura Aktywnych Klas) [rozdz. 7].

8. Implementacja przykładowej transformacji – Usu� Po�rednika (ang. Remove

Middle Man) – w postaci wtyczki do narz�dzia Telelogic/TAU [rozdz. 8].

Spo�ród tematów potencjalnych dalszych bada� [rozdz. 9] nale�y wymieni� nast�puj�ce:

1. Identyfikacja oraz specyfikacja refaktoryzacji i sytuacji kwalifikuj�cych

specyficznych dla wykonywalnych modeli UML.

2. Projekt i implementacja profesjonalnej, przemysłowej wtyczki refaktoryzacyjnej

do narz�dzia Telelogic/TAU.

3. Generowanie implementacji refaktoryzacji z ich formalnych specyfikacji.

4. Refaktoryzacja wykonywalnych modeli w narz�dziu w pełni zgodnym z UML-

em 2.0.

5. Specyfikacja refaktoryzacji z u�yciem Semantyki Akcji (ang. Action Semantics)

6. Systematyczne podej�cie do odkrywania warunków wst�pnych refaktoryzacji.

7. Eksperyment oceniaj�cy:

a. Wpływ automatyzacji refaktoryzacji wykonywalnych modeli na

produktywno�� wytwórców oprogramowania;

b. Wpływ refaktoryzacji na utrzymywalno�� (ang. maintainability)

wykonywalnych modeli UML.

Słowa kluczowe: utrzymanie oprogramowania, wykonywalny UML,

refaktoryzacja modeli, transformacja modeli

Master Thesis
Software Engineering
Thesis no: MSE-2005:12
July 2005

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

UML Model Refactoring
- Support for Maintenance of Executable UML Models

Łukasz Dobrza�ski

This thesis is submitted to the School of Engineering at Blekinge Institute of
Technology in partial fulfillment of the requirements for the degree of Master of
Science in Software Engineering. The thesis is equivalent to 20 weeks of full time
studies.

Contact Information

Author:
Łukasz Dobrza�ski
E-mail: lukasdob@poczta.onet.pl

External advisor:
Prof. Zbigniew Huzar
Institute of Applied Informatics
Faculty of Computer Science and Management
Wrocław University of Technology

University advisor:
Dr Ludwik Ku�niarz
Department of Systems and Software Engineering

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Internet : www.bth.se/tek
Phone : +46 457 38 50 00
Fax : + 46 457 271 25

ABSTRACT

One of the inevitable negative effects of software
evolution is design erosion. Refactoring is a technique
that aims at counteracting this phenomenon by
successively improving the design of software without
changing its observable behaviour. Design erosion
occurs also in the context of executable UML models,
i.e. models that are detailed enough to be automatically
compiled to executable applications. This thesis
presents results of a study on applying refactoring to the
area of maintenance of executable UML models. It
contains an overview of recent approaches to UML
model refactoring and to executable modelling,
followed by identification of refactoring areas in
models built in Telelogic TAU, a state-of-the art UML
CASE tool. It proposes a systematic approach to
specification of both executable UML model
refactorings as well as associated bad smells in models.
Additionally, it shows how refactorings can be
implemented in Telelogic TAU.

Keywords: software maintenance, executable UML,
model refactoring, model transformation

CONTENTS

1 INTRODUCTION ... 1
1.1 BACKGROUND AND MOTIVATION .. 1

1.1.1 Software Maintenance and Evolution... 1
1.1.2 Design Erosion ... 2
1.1.3 Refactoring ... 3
1.1.4 UML Model Refactoring... 4

1.2 RESEARCH QUESTIONS AND OBJECTIVES... 4
1.3 OUTLINE OF THESIS ... 5

2 REFACTORING ... 6
2.1 INTRODUCTION .. 6
2.2 CLASSIFICATIONS OF REFACTORINGS .. 7
2.3 REFACTORING PROCESS... 9
2.4 MOTIVATION FOR REFACTORING ... 9
2.5 BEHAVIOUR PRESERVATION OF REFACTORINGS .. 10
2.6 BAD SMELLS IN CODE.. 11
2.7 TOWARDS BETTER COMPREHENSION OF REFACTORINGS... 12

2.7.1 Trigger-Elements .. 12
2.7.2 Behavioural and Structural Modifications ... 14
2.7.3 Dependencies between Refactorings... 14

3 UML MODEL REFACTORING ... 16
3.1 INTRODUCTION .. 16
3.2 REFACTORING AS MODEL TRANSFORMATION.. 17
3.3 MOTIVATION FOR UML MODEL REFACTORING... 18
3.4 RECENT AND CURRENT RESEARCH .. 18

3.4.1 UMLAUT .. 18
3.4.2 Refactoring Browser for UML.. 19
3.4.3 SMW Toolkit ... 20
3.4.4 C-SAW and GME.. 20
3.4.5 Odyssey-PSW.. 21

3.5 VERTICAL SOFTWARE CONSISTENCY... 22
3.6 SOURCE-CONSISTENT UML MODEL REFACTORING .. 23
3.7 EXECUTABLE UML MODEL REFACTORING IN AGG.. 24

4 EXECUTABLE MODELLING WITH UML ... 26
4.1 INTRODUCTION .. 26
4.2 EXECUTABLE SUBSET OF UML 2.0.. 27

4.2.1 General Information on UML 2.0... 27
4.2.2 Run-Time Semantics of UML 2.0 .. 28

4.3 ATTEMPTS TO ACHIEVE EXECUTABLE UML ... 31
4.3.1 Combining UML with Programming Languages.. 31
4.3.2 Executable UML (xUML) ... 31
4.3.3 UML Virtual Machine... 32
4.3.4 Comparison of the Attempts.. 33

4.4 UML AS A PROGRAMMING LANGUAGE ... 35
4.4.1 Advantages of Executable UML.. 35
4.4.2 Doubts Concerning Executable UML... 36

5 TELELOGIC TAU EXECUTABLE UML MODELS ... 37
5.1 INTRODUCTION .. 37
5.2 BASIC TAU EXECUTABLE MODELS ... 37
5.3 EXEMPLARY MODEL – COUNTING SERVER.. 38
5.4 TAU’S COMPLIANCE WITH UML 2.0... 42

5.4.1 TAU Object Model .. 42
5.5 COMMUNICATION BETWEEN CLASSES ... 43

6 EXECUTABLE UML MODEL REFACTORING... 46
6.1 INTRODUCTION .. 46
6.2 MOTIVATION FOR REFACTORING EXECUTABLE UML MODELS... 47
6.3 LANGUAGE-INDEPENDENT CODE REFACTORING WITH UML... 49
6.4 CHANGE PROPAGATION IN UML MODELS... 50
6.5 EXECUTABLE UML IN THE CONTEXT OF THE THESIS .. 52
6.6 DETERMINATION OF CANDIDATE REFACTORINGS.. 53
6.7 REFACTORING AREAS IN TAU EXECUTABLE MODELS .. 54

6.7.1 External Structure of Active Classes (ESAC) ... 54
6.7.2 Internal Structure of an Active Class (ISAC).. 54
6.7.3 Life Cycle of an Active Class (LCAC)... 55
6.7.4 Operation Implementation of an Active Class (OIAC) ... 55
6.7.5 External Structure of Passive Classes (ESPC) ... 55
6.7.6 Operation Implementation of a Passive Class (OIPC) ... 55

6.8 APPLICATION OF EXEMPLARY REFACTORINGS .. 55
6.8.1 Area ISAC – Extract Port ... 56
6.8.2 Area LCAC – Group States... 57
6.8.3 Area OIAC – Replace Method with Method Object.. 58
6.8.4 Areas ESAC & ESPC – Hide Delegate... 59

6.9 METAMODEL OF ESPC AREA .. 60
6.9.1 Attribute of a Passive Class .. 60

6.9.1.1 Attribute reference and access..61
6.9.2 Operation of a Passive Class.. 62

6.9.2.1 Operation invocation..63
6.10 SPECIFICATION OF TAU EXECUTABLE UML REFACTORINGS.. 64

6.10.1 Basic Operations .. 65
7 INITIAL CATALOGUE OF TAU EXECUTABLE UML MODEL REFACTORINGS.... 67

7.1 TRIGGER-ELEMENT – CLASS .. 67
7.1.1 Rename Class (Passive).. 67
7.1.2 Rename Class (Active) .. 70
7.1.3 Remove Middle Man ... 71

7.2 TRIGGER-ELEMENT – ATTRIBUTE OF CLASS .. 76
7.2.1 Rename Attribute (Passive)... 76
7.2.2 Rename Attribute (Active)... 78
7.2.3 Pull Up Attribute (Passive)... 79
7.2.4 Push Down Attribute (Passive)... 80

7.3 TRIGGER-ELEMENT – OPERATION OF CLASS .. 81
7.3.1 Rename Operation (Passive) .. 81
7.3.2 Rename Operation (Active)... 83
7.3.3 Hide Operation (Passive) ... 84
7.3.4 Add Parameter to Operation (Passive)... 85

7.4 TRIGGER-ELEMENT – PARAMETER OF OPERATION... 87
7.4.1 Remove Parameter from Operation (Passive) .. 87

7.5 COMMON OCL QUERIES .. 88
8 IMPLEMENTATION OF REFACTORINGS IN TAU ... 90

8.1 MODEL ACCESS IN TAU .. 90
8.2 IMPLEMENTATION OF REMOVE MIDDLE MAN ... 90
8.3 TRIGGERING REFACTORINGS ... 93

9 CONCLUSIONS & FUTURE WORK... 94
9.1 CONCLUSIONS.. 94
9.2 FUTURE WORK .. 95

10 REFERENCES... 97

APPENDIX A – FOWLER’S CODE REFACTORINGS ... 102

APPENDIX B – BAD SMELLS IN CODE... 106

APPENDIX C – TRIGGER-ELEMENTS OF CODE REFACTORINGS.................................. 107

APPENDIX D – DEPENDENCIES BETWEEN CODE REFACTORINGS 111

APPENDIX E – RESTRICTIONS IN TAU/DEVELOPER 2.4 ... 117

APPENDIX F – UML 2.0 & TAU TRIGGER-ELEMENTS .. 118

APPENDIX G – TAXONOMY OF ATTRIBUTE AND OPERATION IN TAU 119

LIST OF FIGURES

FIGURE 1.1. SOFTWARE MAINTENANCE CLASSIFICATION [CHAPIN ET AL. 2001]..................................... 2
FIGURE 3.1. OVERALL VIEW OF GRAMMYUML METAMODEL [VAN GORP ET AL. 2003B]....................... 24
FIGURE 3.2. REPOSITORY-VIEW (RIGHT) OF A SIMPLE UML MODEL (LEFT) [KAZATO ET AL. 2004] 25
FIGURE 4.1. EXAMPLE ILLUSTRATING THE BASIC CAUSALITY MODEL OF UML 2.0 [OMG 2004]......... 29
FIGURE 4.2. THE ARCHITECTURE OF THE UML 2.0 RUN-TIME SEMANTICS [OMG 2004] 29
FIGURE 4.3. INTER-DEPENDENCIES OF THE ACTIONS PACKAGES [OMG 2004] 30
FIGURE 5.1. STATE-ORIENTED (LEFT) AND TRANSITION-ORIENTED (RIGHT) SYNTAX OF A STATE

MACHINE .. 38
FIGURE 5.2. EXTERNAL VIEW OF THE COUNTING SERVER .. 39
FIGURE 5.3. ADDITIONAL CLASSES OF THE COUNTING SERVER.. 39
FIGURE 5.4. INTERNAL STRUCTURE OF SERVER CLASS .. 40
FIGURE 5.5. STATE MACHINE OF SERVER CLASS.. 40
FIGURE 5.6. STATE MACHINE OF DISPATCHER CLASS .. 40
FIGURE 5.7. STATE MACHINE OF REQUESTHANDLER CLASS .. 41
FIGURE 5.8. AN EXEMPLARY INTERACTION WITHIN THE COUNTING SERVER 41
FIGURE 5.9. PACKAGES OF TAU OBJECT MODEL... 43
FIGURE 5.10. SCHEME OF THE STRUCTURE OF A TAU EXECUTABLE MODEL... 43
FIGURE 5.11. PASSIVE CLASSES MAY NOT REALIZE ANY INTERFACES... 44
FIGURE 5.12. IMPLICIT SIGNAL COMMUNICATION... 45
FIGURE 6.1. A WELL-SHAPED STATE MACHINE OF SHIPMENT CLASS [MELLOR & BALCER 2002] 48
FIGURE 6.2. A “SPIDER-SHAPED” STATE MACHINE OF SHIPMENT CLASS [MELLOR & BALCER 2002].... 48
FIGURE 6.3. STRUCTURAL FEATURE ACTIONS [OMG 2004] .. 49
FIGURE 6.4. CALLOPERATIONACTION [OMG 2004] .. 50
FIGURE 6.5. OBJECT ACTIONS (PART) [OMG 2004] ... 50
FIGURE 6.6. CHANGE PROPAGATION AFTER RENAMING AN ATTRIBUTE .. 51
FIGURE 6.7. READSTRUCTURALFEATUREACTION [OMG 2004].. 51
FIGURE 6.8. CHANGE PROPAGATION AFTER MOVING AN ATTRIBUTE .. 52
FIGURE 6.9. SIX REFACTORING AREAS IN TAU EXECUTABLE MODELS ... 54
FIGURE 6.10. A SIMPLIFIED COMPOSITE STRUCTURE DIAGRAM OF SATELLITE....................................... 56
FIGURE 6.11. A SIMPLIFIED COMPOSITE STRUCTURE DIAGRAM OF SATELLITE AFTER TRIGGERING

EXTRACT PORT AND RENAME PORT ON POUTPUT PORT ... 57
FIGURE 6.12. A STATE CHART DIAGRAM SHOWING IMPLEMENTATION OF A DEFAULT STATE MACHINE OF

INSTRUMENTSCONTROLLER.. 57
FIGURE 6.13. TWO STATE CHART DIAGRAMS SHOWING IMPLEMENTATION OF A DEFAULT STATE

MACHINE OF INSTRUMENTS CONTROLLER (LEFT) AND WORKING STATE (RIGHT), AFTER APPLYING
GROUP STATES ... 58

FIGURE 6.14. A CLASS DIAGRAM SHOWING A SITUATION QUALIFYING FOR APPLICATION OF REPLACE
METHOD WITH METHOD OBJECT.. 58

FIGURE 6.15. A CLASS DIAGRAM SHOWING COLLISIONDETECTOR AFTER APPLICATION REPLACE
METHOD WITH METHOD OBJECT ON THE BODY OF AVOID OPERATION.. 59

FIGURE 6.16. A CLASS DIAGRAM SHOWING A SITUATION QUALIFYING FOR APPLICATION OF HIDE
DELEGATE .. 59

FIGURE 6.17. A CLASS DIAGRAM SHOWING THE EFFECT OF APPLICATION OF HIDE DELEGATE 60
FIGURE 6.18. ATTRIBUTE METACLASS IN THE ROLE OF AN ATTRIBUTE OF A CLASS................................ 61
FIGURE 6.19. ATTRIBUTE METACLASS IT THE ROLE OF AN ASSOCIATION END.. 61
FIGURE 6.20. ATTRIBUTE METACLASS USED BY FIELDEXPR AND IDENT IN ACTIONS.............................. 62
FIGURE 6.21. OPERATION METACLASS IN THE ROLE OF AN OPERATION OF A CLASS 63
FIGURE 6.22. CALLEXPR – A FRAGMENT OF TAU OBJECT MODEL.. 63
FIGURE 7.1. RENAME OF A CLASS AND BINDING MECHANISM ... 68
FIGURE 7.2. RENAME OF A CLASS NOT ACCOMPANIED BY RENAME OF CONSTRUCTORS........................ 69
FIGURE 7.3. REMOVE MIDDLE MAN – AN EXAMPLE ... 72
FIGURE 7.4. REPOSITORY VIEW OF THE BODY OF A SIMPLE DELEGATING OPERATION 73
FIGURE 7.5. DIFFERENCES BETWEEN A VALUE-RETURNING AND NON-RETURNING OPERATION 73
FIGURE 7.6. FRAGMENT OF TAU OBJECT MODEL – OPERATION BODY OF A DELEGATING OPERATION . 74
FIGURE 7.7. REPLACEMENT OF INVOCATIONS OF DELEGATING OPERATIONS .. 75
FIGURE 7.8. RENAME OF AN ATTRIBUTE NOT ACCOMPANIED BY RENAME OF ITS SIBLINGS................... 78
FIGURE 7.9. RENAME ATTRIBUTE - CHANGE PROPAGATION THROUGH AN INTERFACE 79

FIGURE 7.10. RENAME OF AN OPERATION NOT ACCOMPANIED BY RENAME OF ITS SIBLINGS 83
FIGURE 7.11. RENAME OPERATION – CHANGE PROPAGATION THROUGH AN INTERFACE 84
FIGURE 8.1. PACKAGE STRUCTURE OF THE IMPLEMENTATION OF REMOVE MIDDLE MAN 91
FIGURE 8.2. A SEQUENCE DIAGRAM ILLUSTRATING DETECTION OF MIDDLE MEN 91
FIGURE 8.3. A SEQUENCE DIAGRAM ILLUSTRATING A SUCCESSFUL REMOVAL OF A MIDDLE MAN 92
FIGURE 8.4. RELATION BETWEEN PRESENTATION ELEMENTS AND MODEL ELEMENTS 93

LIST OF TABLES

TABLE 2.1. FOWLER’S REFACTORING CATEGORIES [FOWLER ET AL. 1999] ... 8
TABLE 2.2. DEPENDENCIES BETWEEN REFACTORINGS .. 15
TABLE 3.1. THE AMOUNT OF FOWLER’S REFACTORINGS ILLUSTRATED WITH UML.............................. 16
TABLE 5.1. COMMUNICATION BETWEEN CLASSES IN TAU ... 44

 1

1 INTRODUCTION

This is an introductory chapter of the thesis. It is structured as follows: Section 1.1

situates refactoring against a background of software maintenance; Section 1.2
presents both the aim of the thesis as well as objectives and posed research questions.
Finally, Section 1.3 outlines the remainder of the thesis.

1.1 Background and Motivation

The background of the thesis is software maintenance and a related phenomenon

of design erosion.

1.1.1 Software Maintenance and Evolution

Software maintenance is one of the key issues in the overall software construction

and management. Chapin et al. [2001] define software maintenance as “the deliberate
application of activities and processes (…) to existing software that modify either the
way the software directs hardware of the system, or the way the system (…)
contributes to the business of the system’s stakeholders.” In the modern approach,
software maintenance encompasses activities and processes involving existing
software not only after its delivery but also during its development. Worth mentioning
is the fact that nowadays more than 80% of total software life-cycle costs is devoted to
its maintenance [Pigoski 1997].

Swanson [1976] distinguishes and describes three kinds of software maintenance:

1. Corrective maintenance – performed in response to processing,
performance and implementation failures;

2. Adaptive maintenance – performed in response to changes in data and
processing environments;

3. Perfective maintenance – performed to eliminate processing inefficiencies,
enhance performance, or improve maintainability.

Chapin et al. [2001] argue that in practice it is often difficult to classify

unambiguously a software maintainer’s work to one of the Swanson’s categories.
These difficulties result from the fact that this taxonomy is (1) too coarse-grained and
(2) based on the intensions. Therefore, proposed is a clarifying redefinition of the types
of software maintenance and a new semi-hierarchical classification that bases on
“objective evidence of maintainer’s activities [ibid.].” Their categorisation groups
twelve types of software maintenance into four clusters, which are gathered in a
decision tree shown in Figure 1.1.

 2

��������	�	��� ��� ��	 �
����	 ���
 	 �
 �������
 ���� ���� � �� ������� ����� � ���

According to Bennett & Rajlich [2000], currently there is no one commonly accepted

definition of software evolution, and in a wide sense, it is often used as a synonym of
software maintenance. However, Chapin et al. [2001] distinguish between software
maintenance and software evolution. In their opinion, the latter one occurs when
enhancive, corrective, reductive, adaptive or performance maintenance is carried out. In
other words, software evolution happens when business rules, or software properties that
are sensible for customer, are changed.

1.1.2 Design Erosion

As indicated by Van Gurp & Bosch [2002], despite many years of research and

many suggested approaches, it is inevitable that a software system finally erodes under
the pressure of ever-changing requirements. This negative effect of software evolution
is known in the literature as software aging [Parnas 1994], and one of its dimensions is
design erosion.

During evolution, almost each change of requirements imposed on a software

system enforces the introduction of small adaptations to its design. These adjustments
are taken in the context of (1) all previous changes, and (2) predictions about possible
future changes that may need to be made. It is obvious that some of these predictions
can be wrong. As a consequence, the system may evolve in a direction where it is hard
to make the necessary adjustments. Two trends that were observed by Van Gurp &
Bosch [2002] are that (1) fixing design erosion is expensive, and (2) eroded software
may become an obstacle to further development.

What can be done to stop or at least delay software erosion? As a solution to the

problem of software aging, Parnas [1994] suggests (1) designing for change, (2)
paying more attention to documentation and design reviews, and (3) not implementing
before a proper design is available. Svahnberg [2003] suggests a complementary
approach, which relies on establishing a software architecture that is flexible (variable)

 3

in the right places. To avoid taking bad architectural and design decisions, one can
furthermore use architectural styles, architectural patterns, and design patterns.

Another approach is to pursue separation of concerns, what causes that effects of

changes can be isolated. For instance, by separating the concern synchronisation from
the rest of the system, changes in the synchronisation code will not affect the rest of
the system. Some examples of approaches towards achievement of separation of
concerns are Aspect Oriented Programming, Subject Oriented Programming, and
Multi-Dimensional Separation of Concerns. Van Gurp et al. [2002] propose an
architecture-level design notation that is aimed at modelling concerns on an
architecture level while preserving information about the decisions taken during the
architecture design.

1.1.3 Refactoring

Another approach to software evolution is represented by agile software

development methodologies such as eXtreme Programming (XP) [Beck 2000]. These
methodologies advocate that one should develop only for current requirements, as it is
impossible to predict what may be required of a software system a few years or more
from now [Beck & Fowler 2001]. In XP, the process of implementation is interleaved
with the process of refactoring, which main goal is to safely and stepwisely improve
the design of an existing application without altering its externally observable
behaviour, what enables controlled transformation between any two designs.

Lehman [1980] argues that proper maintenance work can avoid or at least

postpone the decay. In the context of Swanson’s classification [1976], refactoring is
an activity that supports a subset of perfective maintenance that aims at software
maintainability improvement. In the context of the categorisation provided by Chapin
et al. [2001], refactoring is an activity that directly supports the types of maintenance
present in the software properties cluster. It is particularly suitable for groomative
maintenance that involves among others “replacing components or algorithms with
more elegant ones, (…) changing data naming conventions, altering code readability or
understandability [ibid.].” Refactoring can be also useful in preventive maintenance
activities, which example is “participation in software reuse [ibid.].” Adaptive
maintenance encompasses activities like “reallocating functions among components or
subsystems, (…) and changing design and implementation practices [ibid.]”, what also
can be achieved by the use of refactoring. The only type of maintenance from software
properties group that is not directly supported by refactoring is performance, although
some of refactoring transformations (e.g. Inline Method) can be used in this category
as well.

Refactoring supports neither the three kinds of software maintenance from support

interface cluster, nor both types from documentation one, since they all occur when
source code is not changed. As refactoring preserves system’s externally observable
behaviour, it is also inadequate in the case of the three types of software maintenance
from business rules cluster. However, in the work on problems and causes of design
erosion, Van Gurp & Bosch [2002] identify two extremely different strategies for
incorporating change requests into a software system, namely minimal effort strategy
and optimal design strategy. The former approach relies on incorporating changes in
the next iteration of the development while preserving as much of the old system as
possible, and in the latter one, all the necessary changes to the software artefacts are
made in order to get an optimal system for the new set of requirements. Refactoring
very well fits to the optimal design strategy. Therefore, refactoring software before

 4

performing its enhancive maintenance can significantly reduce effort needed to
enhance the customer-experienced functionality.

1.1.4 UML Model Refactoring

Besides many theoretical advantages of refactoring software in the form of UML

models over programming language code, which result mainly from the possibility to
specify systems on a higher level of abstraction and to present them visually, this
approach has at least one key drawback. Namely, the majority1 of research papers on
UML model refactoring concern models built with the use of UML 1.4 or one of its
earlier versions, what implies that no formally defined behaviour of these models can
be specified. This lack of formal specification of model’s behaviour is contradictory
with a requirement imposed by a definition of refactoring [Fowler et al. 1999] stating
that the transformation does not change system's observable behaviour, what – in this
case – obviously cannot be proven2. Moreover, this approach carries another large
problem, namely vertical consistency between refactored models and code.

One of the solutions of these issues is to use a UML profile that is extended to

enable modelling information required for source-consistent and behaviour-preserving
refactoring. An example of such an extension is GrammyUML provided by Van Gorp
et al. [2003], which allows modelling certain constructs that may occur in method
bodies. However, this approach does not solve another problem of prior studies on
UML model refactoring that concerns passing of the effects of a transformation to the
underlying source code. Moreover, this approach still does not enable to perform on
the model level many “fine grained” code refactorings.

An approach free of the issues described in the preceding paragraphs relies on

using an executable UML, which is considered to be a major innovation in the field of
software development. It is a graphical specification language, which combines a
streamlined, computationally complete subset of the UML with executable semantics
and timing rules. In contrast to traditional specifications, an executable specification
can be run, tested, debugged and measured for quality attributes. However, the main
benefit of this approach is the possibility of fully automated translation of executable
UML models into source code. Executable models confer independence from the
software platform, which makes them portable across multiple development and
execution environments.

The phenomenon of design erosion occurs also in the context of executable UML

models, which are the primary artefacts in e.g. Agile MDA [Mellor et al. 2004]
software development methodology and thus have to be maintained throughout the
whole lifetime of modelled applications.

1.2 Research Questions and Objectives

Although the concept of refactoring is being researched more and more

thoroughly, to the knowledge of the authors there is only one research paper that takes
the subject of refactoring of executable UML models [Kazato et al. 2004]. The aim of
this thesis is to fill up this gap by applying refactoring to the area of maintenance of
executable UML models.

1 Generally all except for one – [Kazato et al. 2004].
2 Assuming that the system’s behaviour is specified in the underlying code.

 5

The thesis addresses following research questions:

1. What is the state-of-the-art in UML model refactoring?
2. What is an executable UML model and how can it be built and executed?
3. Which code refactorings are applicable for executable UML models?
4. How can one specify executable UML model refactorings?
5. How can one automate the processes of applying executable UML model

refactorings in a state-of-the-art UML CASE tool?

The objectives of the thesis are as follows:

1. Perform literature search and review on:
a. software refactoring,
b. UML model refactoring,
c. executable modelling with UML.

2. Create an initial catalogue of executable UML model refactorings
consisting of their informal specifications.

3. Formalize the refactorings from the catalogue with the use of Object
Constraint Language (OCL).

4. Implement an exemplary refactoring from the catalogue in a state-of-the-
art UML CASE tool.

The type of the thesis is problem solving, which is defined by Dawson [2000] in

the following way: “(…) this can involve the development of a new technique to solve
a problem or might involve improving the efficiency of existing approaches. It might
also involve the application of an existing problem solving technique to a new
area.” In the context of the thesis, the problem is design erosion, the existing problem
solving technique is refactoring, and the new area is maintenance of executable UML
models.

1.3 Outline of Thesis

Although Opdyke [1992] adopted the scientific approach to the idea of refactoring

over a decade ago, it gained a deserved researchers' attention just in 1999, when
Fowler published book entitled Refactoring: Improving the Design of Existing Code
[Fowler et al. 1999]. The concepts of UML model refactoring and Executable UML
are even more innovative – first papers concerning UML model refactoring appeared
in 2001 [e.g. Sunyé et al. 2001; France & Bieman 2001] and first books about
Executable UML in 2002 [Starr 2002a; Mellor & Balcer 2002].

The novelty of above-mentioned ideas, which lay the basis for the research,

motivates to provide thorough background information on software refactoring
(Section 2), UML model refactoring (Section 3), and executable UML (Section 4). The
remainder of the thesis is structured as follows: Section 5 provides an overview of
executable UML models that can be built and executed in Telelogic TAU; Section 6
presents the results of an initial study on refactoring executable UML models; Section
7 constitutes an initial catalogue of specifications of refactorings of TAU executable
models; Section 8 shows how refactorings specified in the previous section can be
implemented in TAU. Finally, Section 9 concludes the thesis and points out possible
directions of a future work.

 6

2 REFACTORING

The main goal of this chapter is to present a literature survey on software

refactoring. It is structured as follows: Section 2.1 provides an overview of definitions
of refactoring; Section 2.2 presents classifications of refactoring transformations;
Section 2.3 outlines the refactoring process; Section 2.4 presents benefits of
refactoring; Sections 2.5 and 2.6 introduce notions of behaviour preservation and bad
smells, respectively. Finally, Section 2.7 concludes this chapter with identification of
among others trigger-elements of refactorings.

It is noteworthy that an extensive literature survey on software refactoring [Mens

et al. 2002; Mens & Van Deursen 2003; Du Bois et al. 2004; Mens & Tourwé 2004]
has been performed in the framework of “The Refactoring Project”3 at University of
Antwerp.

2.1 Introduction

The term refactoring probably originates from Deutch’s quote, who wrote

“interface design and functional factoring constitute the key intellectual content of
software [Deutch 1989, cited by Roberts 1999].” Therefore, refactoring can be
understood as a process of internal redistribution of functionality provided by a
software system. In the context of object-oriented paradigm, this redistribution
concerns classes, attributes and operations, which are the carriers of software
functionality.

The first definition of refactoring was provided by Opdyke in his PhD thesis

[1992] as “program restructuring transformation that supports the design, evolution
and reuse of object-oriented application frameworks.”

According to Chikofsky & Cross [1990], restructuring is “the transformation from

one representation form to another at the same relative abstraction level, while
preserving the subject system’s external behaviour (functionality and semantics).”

Restructuring and refactoring are very similar terms but according to Fowler

[2004], they are not the same - refactoring is a “very specific technique to do the more
general activity of restructuring (…) founded on using small behaviour-preserving
transformations (themselves called refactorings).” It means that while refactoring, the
subject system should not be broken for more than a few minutes at a time.

The term restructuring has also a broader meaning, which does not demand the

preservation of system’s external behaviour. Its definition, provided by Chikofsky &
Cross [1990], recognizes restructuring process as “the application of similar
transformations and recasting techniques in reshaping data models, design plans, and
requirements structures.” This meaning of restructuring is inconsistent with the idea of
refactoring, because one cannot refactor something that does not have a well-defined
behaviour.

Roberts in his PhD thesis [1999] changed the definition of refactorings to be

“program transformations that have particular preconditions that must be satisfied

3 http://win-www.uia.ac.be/u/lore/refactoringProject

 7

before the transformation can be legally performed.” This definition encompasses both
behaviour-preserving and non-behaviour-preserving transformations. Additionally,
Roberts augmented Opdyke’s definition of refactorings by postconditions, which
specify how the preconditions, introduced by Opdyke in his thesis [1992], are
transformed by the refactorings. More formally, “a refactoring is an ordered triple R =
(pre, T, P) where pre is an assertion that must be true on a program for R to be legal, T
is the program transformation, and P is a function from assertions to assertions that
transforms legal assertions whenever T transforms programs [Roberts 1999].”

Fowler in his book [Fowler et al. 1999] provides two definitions of refactoring:

“Refactoring (noun): a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its
observable behaviour.”

“Refactor (verb): to restructure software by applying a series of refactorings
without changing its observable behaviour.”

The second definition is tautological, because as well software restructuring as

refactoring (noun) are, by definition, behaviour preserving.

Fowler’s definition of refactoring emphasizes that the purpose of refactoring is to

make the software easier to understand (improve its readability) and modify (improve
its maintainability). That is why e.g. performance optimization, which usually alters
only the internal structure of software and preserves its behaviour (excluding its timing
characteristics), cannot be classified as a refactoring.

The second important thing is that refactoring does not change the observable

behaviour of the software. The intention of refactoring is neither adding new nor
altering existing functionality. In this aspect, refactoring is very similar to
restructuring, which “does not normally involve modifications because of new
requirements. However, it may lead to better observations of the subject system that
suggest changes that would improve aspects of the system [Chikofsky & Cross 1990].”

According to Wake [2003], refactoring is “the art of safely improving the design

of existing code. Refactoring provides us with ways to recognize problematic code and
gives us recipes for improving it.” In Wake’s opinion, refactoring:

1. does not include just any changes in a system – refactoring itself does not
add new features;

2. is not rewriting from scratch – refactoring makes possible to improve
code;

3. is not just any restructuring intended to improve code – refactorings are
small and safe transformations;

4. changes the balance point between up-front design and emergent design –
refactoring lowers the cost and risk of the emergent approach;

5. can be small or large – hopefully large refactorings are rarely needed.

2.2 Classifications of Refactorings

All refactorings mentioned in this section are understood as code refactorings –

more precisely as class-based object-oriented refactorings, i.e. behaviour-preserving
transformations of object-oriented source code written in among others Smalltalk,

 8

C++, or Java. The other niche kinds of refactorings like e.g. imperative, functional or
logic ones are not subject of this thesis.

Opdyke [1992] defined in terms of preconditions:

1. twenty three low-level refactorings concerning creating, deleting,
changing program entities and moving member variable,

2. three composite (also low-level) refactorings, namely:
• abstract access to a member variable,
• convert a code segment to a function,
• move a class,

3. three high-level refactorings concerning:
• creating an abstract superclass,
• subclassing and simplifying conditions,
• creating aggregations and reusable components.

Roberts’s [1999] refactorings, defined in terms of pre- and postconditions, are

grouped into three categories: class, method and variable refactorings.

The most extensive catalogue of refactorings is provided by Fowler in his book

[Fowler et al. 1999]. A description of each refactoring contains following sections: a
name, a short summary, a motivation behind the transformation, a mechanics
describing how to carry out the refactoring, and examples illustrating its use. All
seventy-two refactorings collected by Fowler are grouped into seven categories (see
Table 2.1). The full list of Fowler’s refactorings, containing their problem and solution
statements from summary sections, can be found in Appendix A.

 � �
���	�	��� � �	 �����	 ��
 �� ���� �
 ��	 � � ��	 ����� � �	 ������ ���������

�

� � ���� �� � � �� � ��� ��� � ���� ��� � �� ��� �� ��� � �� �

� �
� � ���� �� 	 �� � � �� � � 	 �� �
 �
� � �	 �
	 �� � � ���� �� �
 �� 	 �
 � � 	 �� �� � 	 ��! �

� � " ��� ��	 ��# �	 ��$	 �� 	 	 ��% & '	
 ��� � �	 ��
 � ��� 	 �� 	
 ���� ���� � 	 �	 ��� �� # ���	 �� � ���& �����	 ���

% �� ���(��� �) ���� �
� 	 �� � � ��� �� ��� �� ����	 ���	 ��

��
� ���! ��� �� � �� ���� ����* + � �	 ���� ��� � �	 ����
� ���! ����
 ! �
 � �� ���� ������ � �
 �

� � ��� �� 	 �� � � �� �������
� �	 �� �
� 	 ����	 ���
 	 ��� ��
 ����	 ��
� �	 ������� � ��� �� ��� �

) 	 ����� �� ��� �,	 �	 ����(���� �� � � 	 ���� ��� �
� " ��� �
	 �� � � ����� # �� ���� �	 ���
 � ! �� ����� 	 �����
 	 �

$�� �- 	 ��
 �� ���� �� � ��	 �	 + �
� �	 ��� ��� � � ��� �# �	 ������ �� 	 ���	 ��
 �� ���� ���� ��	 ��
 �� ��
�� ���
	 �� # �� � �	 �

An up-to-date list consisting of all refactorings from Fowler’s book [Fowler et al.

1999] and several dozen other, including all J2EE refactorings described by Alur et al.
[2001] is maintained by Fowler and available from Internet [1999].

Gamma et al. [1995] wrote that design patterns provide targets for refactorings.

Fowler has later paraphrased this thought in words: “There is a natural relation
between patterns and refactorings. Patterns are where you want to be; refactorings are
ways to get there from somewhere else [Fowler et al. 1999].” As indicated by Roberts
[1999], design patterns create many opportunities for refactoring that can be used to
both introduce new design patterns into existing programs, and to remove the ones
which add the flexibility that is not needed.

Five refactorings in Fowler’s catalogue belong to the group of so-called

refactorings to patterns, namely:
• Duplicate Observer Data,
• Replace Type Code with State/Strategy,
• Introduce Null Object,

 9

• Replace Constructor with Factory Method,
• Form Template Method.

Inspired by the work initiated by Fowler, Kerievsky [2004] described twenty-

seven high-level refactorings composed of low-level ones that provide insights into
implementing design patterns.

2.3 Refactoring Process

The refactoring process (cycle) suggested by Wake [2003] consists of three

iteratively repeated steps:
1. Identify parts of software that should be refactored.
2. Choose appropriate refactoring(s) to the identified places.
3. Apply the refactoring(s).

Mens & Tourwé [2004] identified three additional distinct activities, so that the

complete refactoring process consists of following six steps:
1. Identify parts of software that should be refactored.
2. Choose appropriate refactoring(s) to the identified places.
3. Ensure that selected refactoring(s) will be behaviour preserving.
4. Apply the refactoring(s).
5. Assess the effect of the refactoring on quality characteristics of the

software (mainly maintainability) and/or the process (e.g., productivity).
6. Maintain the consistency between the refactored program code and other

software artefacts (e.g. requirements specification, analysis models, design
models, tests).

Kataoka et al. [2002] suggest that to be able to assess whether a particular

refactoring it economically justified, the validation of refactoring effect (step 5) should
be carried out before application of refactoring(s) (step 4). The approach to the
refactoring effect evaluation proposed by Kataoka et al. [ibid.] consists of two major
steps: (1) selection of appropriate maintainability quantification metrics, e.g. coupling
metrics, and (2) measurement and comparison of selected metrics before and after
refactoring.

2.4 Motivation for Refactoring

According to Opdyke [1992], in the context of object-oriented systems, refactoring

is needed to “refine the design of an already structured program, and make it easier to
reuse.” He enumerates three cases where refactorings might be applied:

1. extracting a reusable component;
2. improving a consistency among components;
3. supporting the iterative design of an Object-Oriented Application

Framework.

Fowler lists four purposes that motivate refactoring in the context of XP [Fowler et

al. 1999]:
1. improving the design of software – preventing program’s design from

decay and eliminating duplicate code;
2. making software easier to understand – well factored code better

communicates its purpose;

 10

3. helping finding bugs – while clarifying the structure of the program it is
easy to spot the bugs;

4. helping programming faster – a good design is conducive to rapid
software development.

Developers from XP circles usually use subjective criteria in assessing the quality

of software designs, what leads to situations in which a design that is found by some
developers to be “good”, for others “screams for improvement.” It results from the fact
that the quality of a software design depends on the quality attributes which one takes
into consideration during the assessment. For example, a design that is “good” from
the performance point of view can be found “bad” from the maintainability
perspective. Reassuming, one can say that the design of software is “good” if it fulfils
the quality requirements imposed on the system.

As it is possible to measure or estimate for each piece of software its external

quality attributes, Mens & Tourwé [2004] argue that refactorings can be classified
according to which of these quality attributes they affect. It allows improving the
quality of software by applying the relevant refactorings at the right places. Each
refactoring has its particular effect (e.g. removal of code redundancy or enhancement
of the reusability), which can be estimated by expressing the refactoring in terms of the
internal quality attributes it affects (such as size, complexity, coupling, and cohesion).
According to Mens & Tourwé [2004], some of the techniques that can be used to
measure or estimate the impact of a refactoring on quality characteristics are software
metrics, empirical measurements, controlled experiments, and statistical techniques.

According to Bosch [2000], quality requirements can be categorized as either

development or operational quality requirements. Development quality requirements
are “qualities of the system that are relevant from a software engineering perspective”,
e.g. maintainability, reusability, flexibility and demonstrability. Operational quality
requirements are “qualities of the system in operation”, e.g. performance, reliability,
robustness and fault-tolerance. The goal of refactoring is to improve mainly
development quality attributes, however it can positively affect also operational quality
ones, including – what astonishing – performance [Demeyer 2002].

2.5 Behaviour Preservation of Refactorings

According to Mens & Tourwé [2004], “the preservation property of a program

transformation guarantees that (some aspect of) the program behaviour is preserved by
the transformation.” Ó Cinnéide [2000] distinguishes three possible approaches to
behaviour-preservation, namely (1) a non-formal approach (e.g. [Fowler et al. 1999]),
(2) a semi-formal approach (e.g. [Roberts 1999]), and (3) a fully formal approach.
However, even with the use of the last approach it is impossible to guarantee full
behaviour preservation in its generality [Mens & Tourwé 2004].

The idea of behaviour preservation in the context of refactoring was introduced by

Opdyke [1992] who defined it intuitively in this way: “if the program is called twice
(before and after a refactoring) with the same set of inputs, the resulting set of output
values will be the same.” The behaviour preservation of Opdyke’s refactorings [ibid.]
is argued in terms of the following set of syntactic and semantic program properties:

1. Unique Superclass,
2. Distinct Class Names,
3. Distinct Member Names,
4. Inherited Member Variables Not Redefined,

 11

5. Compatible Signatures in Member Function Redefinition,
6. Type-Safe Assignments,
7. Semantically Equivalent References and Operations.

A compiler can detect violations of the first six properties, but the verification of
preservation of the semantic equivalence requires much more effort.

Each primitive refactoring specified in Opdyke’s PhD thesis [ibid.] has a set of

preconditions, which have to be met in order to ensure that behaviour of refactored
program will not be altered. The behaviour-preservation of high-level refactorings
results from the fact that they are composed of the proven low-level ones.

Roberts [1999] specified the refactorings’ preconditions in first-order predicate

logic (FOPL) with the use of the analysis functions that describe relationships between
methods, classes, and instance variables. These functions are divided into two
categories, namely (1) primitive, and (2) derived, which can be computed from
primitive ones.

Mens et al. [2005] maintain that for each refactoring one may list a set of

behaviour-related and statically verifiable properties that need to be preserved. Three
examples of these properties are as follows:

• Access preservation - each method implementation accesses at least the
same variables after the refactoring as it did before the refactoring;

• Update preservation - each method implementation performs at least the
same variable updates after the refactoring as it did before the refactoring;

• Call preservation - each method implementation still performs at least the
same method calls after the refactoring as it did before the refactoring.

As indicated by Van Gorp et al. [2003b], a careful selection of pre- and
postconditions of a refactoring can guarantee preservation of the above-mentioned
properties.

2.6 Bad Smells in Code

According to Beck & Fowler, bad smells in code are “certain structures in the code

that suggest (sometimes they scream for) the possibility of refactoring [Fowler et al.
1999].” Fowler’s book contains descriptions of twenty-one bad smells in code. For
each bad smell, a set of refactorings that can remove it is provided.

According to Wake [2003], code smells are “warning signs about potential

problems in code.” The word “potential” suggests that smells are not synonymous with
problems, but always worthy of an inspection. Wake [ibid.] proposed a standard
format for describing smells consisting of: smell’s name, symptoms, causes, possible
refactorings, payoffs (what will be improved) and contradictions (when not to fix it).
Moreover, He refined Fowler’s code smells and classified them into two groups,
namely (1) Smells Within Classes, and (2) Smells Between Classes, with several
subgroups in each one4.
�

Another taxonomy of Fowler’s bad smells is provided by Mika Mäntylä [2003;
2004], who divided them into five following groups:

1. The Bloaters,
2. The Object-Orientation Abusers,
3. The Change Preventers,

4 A complete list of Fowler’s and Wake’s bad smells can be found in Appendix B.

 12

4. The Dispensables,
5. The Couplers.

During the work on refactoring to patterns, Kerievsky [2004] discovered five new

code smells that suggest the need for pattern-directed refactorings, namely Conditional
Complexity5, Indecent Exposure, Solution Sprawl, Combinatorial Explosion6 and
Oddball Solution.

Presence of bad smells in object-oriented software hints at its low maintainability,

which can be measured with the use of various maintainability quantification metrics.
Some of these metrics concern such aspects of software maintainability like coupling,
cohesion, size and complexity, or description [Kataoka et al. 2002]. Therefore, at least
theoretically, the enhancement of the software maintainability can be identified with
the reduction of bad smells. However, as stated by Beck & Fowler [Fowler et al.
1999], “no set of metrics rivals informed human intuition”, what implies that not all
bad smells can be revealed with the use of metrics. According to Mäntylä [2003], only
about half of code bad smells can be effectively measured.

2.7 Towards Better Comprehension of Refactorings

Mechanics sections of Fowler’s refactorings are terse and often incomplete. They

are rather guidelines how to perform manually refactorings in the most common cases
than ready-to-implement precise algorithms. Some of them contain imprecise
statements like – in the case of Substitute Algorithm – “get it so that it compiles”.
Moreover, in many cases their realisation differs depending on the initial state of the
code before refactoring. Therefore, an attempt to classify them unambiguously is not a
trivial task.

In this section, no refactorings from the Big Refactorings category, i.e. Tease

Apart Inheritance, Convert Procedural Design to Objects, Separate Domain from
Presentation, and Extract Hierarchy, are taken into consideration due to their
ambiguity and complexity.

2.7.1 Trigger-Elements

With the aim of better comprehension of refactorings, their trigger-elements are

determined, i.e. language elements, on which they can be triggered. From the practical
point of view, a trigger-element of a refactoring is the type of a code element on which
it can be triggered in an IDE tool. For instance, a trigger-element of Inline Temp,
Replace Temp with Query, Split Temporary Variable, and Remove Control Flag is
Temporary Variable. These are the refactorings, which one expects to be able to apply
after selecting a temporary variable in the body of an operation belonging to a class,
while browsing a code.

All trigger-elements have contexts. For example, the trigger-element of Extract

Method is a fragment of code, and the context of this element is a body of a method,
which in turn belongs to a class.

In many cases, the type of a trigger-element is contained in the name of a

refactoring (e.g. the trigger-element of Inline Class is a class). However, it is not the

5 An equivalent of Wake’s Complicated Boolean Expression.
6 Not an equivalent of Wake’s Combinatorial Explosion.

 13

rule since the name can be sometimes misleading (e.g. the trigger element of Remove
Setting Method is a field). In several cases, the name of a refactoring contains the
name of a role that a trigger-element plays in the transformation and not a trigger-
element itself, like in the case of Hide Delegate, where a delegate is a class.

For each refactoring one can also specify the multiplicity of its trigger-elements.

This results from the fact that some refactorings require more than one trigger-element,
like in the case of Replace Subclass with Fields, which trigger-elements are at least
two classes (multiplicity denoted as [2..*]). The default cardinality of trigger-elements
is one.

It should be noted that for some refactorings the indication of a trigger-element is

ambiguous, what is a consequence of vagueness of descriptions of Fowler’s
refactorings. For example, the trigger-element of Introduce Foreign Method could be
as well either server- or client class as a fragment of code being an invocation of a
constructor of a server class in the body of a method of a client class.

Fowler’s refactorings are triggered by following elements:

• Association (Field)
• Generalization (Class [2])
• Record
• Class
• Class::Field
• Class::Method
• Class::Method::MethodBody
• Class::Method::MethodBody::CodeFragment
• Class::Method::MethodBody::LiteralNumber
• Class::Method::MethodBody::TemporaryVariable
• Class::Method::Parameter

It is noteworthy that elements like association and generalization do not exist

explicitly in Java, which is the language that is used in Fowler’s book to illustrate
examples of refactorings. Therefore, a field and two classes can replace them
accordingly. The only non-object-oriented element is a record, which triggers one
refactoring (Replace Record with Data Class). Additionally, the distinction between
method and method body is made, where the former one means method declaration (in
terms of UML – an operation), and the latter one stays for method implementation (in
terms of UML – a method or operation body). Some examples of refactorings that are
triggered by a method are Move Method and Add Parameter, whereas e.g. Inline
Method and Separate Query from Modifier are rather, in opinion of the authors,
triggered by method body.

Sometimes a trigger-element can be constrained, like e.g. in the case of Introduce

Explaining Variable, which trigger-element is constrained by expression, what means
that the fragment of code triggering the refactoring has to be an expression that returns
one value.

All trigger-elements are classified into two disjoint groups: (1) structural elements

and (2) behavioural elements. The method body and its internals, i.e. code fragment,
literal number, and temporary variable, belong to the latter group, and the rest of them
are structural ones. Refactorings triggered on structural elements are structure-
triggered (S-T), and the ones triggered on behavioural elements – behaviour-triggered
(B-T).

 14

It is noteworthy that there is difference between “triggerness” and “driveness” of
refactorings, which are triggered on code elements and driven by the presence of bad
smells.

2.7.2 Behavioural and Structural Modifications

Another feature that can be determined for code refactorings is the type of

modifications that they introduce. The majority of refactorings change as well
structure as behaviour of software7. Therefore, especially interesting is determination
whether particular refactorings involve modifications of only either structural or
behavioural parts of programs.

This way, singled out are refactorings, which modification scope is restricted to

the method bodies, in which defined are their trigger-elements. Obviously, the trigger-
elements of these lowest granularity (behavioural) refactorings are behavioural. These
are:

• Inline Temp (3),
• Introduce Explaining Variable (5),
• Split Temporary Variable (6),
• Remove Assignments to Parameters (7) – not in all languages,
• Substitute Algorithm (9),
• Replace Magic Number with Symbolic Constant (26),
• Consolidate Duplicate Conditional Fragments (36),
• Remove Control Flag (37),
• Replace Nested Conditional with Guard Clauses (38),
• Introduce Assertion (41) – depending on the way the assertion is realized.

Another group of refactorings form the ones that do not introduce behavioural

modifications, namely – structural refactorings. However, their unequivocal
identification is very difficult, because this feature depends on the realization of the
refactoring. Nevertheless, these seem to be:

• Hide Method (52),
• Pull Up Field (57),
• Pull Up Method (58),
• Push Down Method (60),
• Push Down Field (61),
• Extract Interface (64).

The list of all8 sixty-eight Fowler’s refactorings with their trigger-elements and

their modification characteristics can be found in Appendix C.

2.7.3 Dependencies between Refactorings

Basing on Fowler’s catalogue, five kinds of dependencies between refactorings

have been identified (see Table 2.2). For instance, Extract Method is a transformation
that can be inversed by Inline method, and which may be enabled by Split Temporary
Variable or Replace Temp with Query in the case when local-scope variables are
modified by the extracted code.

7 More precisely – structure of both structural and behavioural descriptions of the system.
8 All besides the ones from Big Refactorings category.

 15

 � �
���	�	�) 	 � 	 �� 	 �
 �	 ��& 	 �� 	 	 ���	 ��
 �� ���� ��
�

� �� �� � �� � � �� �� � � ��� � �� ��

.�" 	 ��	 �� - 	 ��
 �� ���� �/� ��" 	 ��	 �� �	 ��
 �� ���� �$� �����
� � ���
 ���� �� ����� � #
 	 � � & ! �$�
 ���
& 	 �
 ��
 	 ��	 � �& ! ��� � ��
 ���� ��� ��/0���� �" �
 	 �" 	 �����

.�
 �# � 	 �� - 	 ��
 �� ���� � /� ��
 �# � 	 �� �	 ��
 �� ���� � $� ���
	
 � ���
 �� � �� /� ��
 �# � 	 �� � ��
�! �
��
 �# � 	 ��� 	 �# �	 �� ��$��

.��	 ��& �	 � �& ! � - 	 ��
 �� ���� �/� ��� 	 ��& �	 � � & ! � �	 ��
 �� ���� �$� ���/� � ����� � �	
 � �� ���� �� �� ���
 ���
& 	 ��# �����	 � �& ! ��� � ��
 ���� ��� ��$��

.��# �# ���! �� �	
 	 � 	 � �& ! � - 	 ��
 �� ���� �/����# �# ���! �� �	
 	 � 	 � �& ! ��	 ��
 �� ���� �$����$����# �# ���! �� 	 ��� �
	 � �
& 	 �� �	 ��� � ��
 ���� ��� ��/��

.��# �# ���! ��� ��� � 	 � �& ! � - 	 ��
 �� ���� �/����# �# ���! ��� ��� � 	 � �& ! ��	 ��
 �� ���� �$����$����# �# ���! �� 	 ��� �
	 � �
���	 ���� � ��
 ���� ��� ��/��

A table with Fowler’s refactorings and their inter-dependencies can be found in a

table in Appendix D. It is noteworthy that this table is by no means complete, because
– except for “Inverses – it encompasses only these relations between refactorings that
have been identified (in the case of “Includes” and “Is enabled by”) and observed (in
the case of “Is usually preceded by” and “Is usually followed by”) by Fowler.

 16

3 UML MODEL REFACTORING

The main goal of this chapter is to present a literature survey on refactoring of

UML models. It is structured as follows: Section 3.1 argues that code refactorings can
be applied to UML models; Section 3.2 situates model refactoring against a
background of model transformations; Section 3.3 presents advantages of refactoring
software in the form of UML models over programming language code; Section 3.4
contains an overview of recent approaches to UML model refactoring; Section 3.5
describes the problem of vertical software consistency; Section 3.6 concerns source-
consistent UML model refactoring. Finally, Section 3.7 concludes this paper with an
outline of a study on refactoring executable UML models.

3.1 Introduction

Although Fowler’s book [Fowler et al. 1999] concerns code refactorings, over

60% of them (44 of 72) are illustrated with the use of UML class diagrams. This
observation motivates a question whether code refactorings can be applied to UML
models. Zhang et al. [2004] states that it is obvious that some code refactorings can
also be used to transform class diagrams. According to Boger et al. [2003], for some
refactorings, like e.g. Extract Method, it is natural to apply them on the code
representation level. Other, like Rename Class or Pull Up Method can be applied on
code as well as on the model level, and refactorings like Replace Inheritance with
Delegation or Extract Interface are more apparent on the model level.

Table 3.1 presents the amount of Fowler’s refactorings illustrated with UML in

each category. Boldfaced are the rows that correspond to the categories of refactorings
that seem to be most naturally applicable at the UML model level.

 � �
�� 	�	�1� 	 ��
� # ���� ���� � �	 �����	 ��
 �� ���� �����# �����	 � �� ��� �2 � 3 �

�

4 � �� � ��	 � � �! � 4 � ��� ��
�	 ��
 �� ���� ��

4 � ��� ���	 ��
 �� ���� ��
���# �����	 � �� ��� �

2 � 3 �

5 	 �
 	 ���� 	 �� ��
�	 ��
 �� ���� ��

���# �����	 � �� ��� �
2 � 3 �

��� � �
� � ���� �� 	 �� � � �� �� �� ���

�	� �� ! �� ����� ����� �" ��# ��� �$ � %�� �� � &� '� &'�

6 �� % �� ���(��� �) ���� �7 � ��� 7 8�

9�� ��
� ���! ��� �� � �� ���� ����* + � �	 ���� �� 8� �� �:
: �� � � ��� �� 	 �� � � �� �������
� �	 �� �: � 8� : 6 �

(� � ��
�� ��# ��� �) �� ���
�* � ��� � � ��� ��� +��

'	� " ���� ��� � �� ��� �� � ,� ,� �- - �

It should be noted that when one writes about refactoring of a particular kind of

diagrams (e.g. class diagrams), meant is the refactoring of a part of a UML model,
which is usually shown on diagrams of this type. The taxonomy of different kinds of
diagrams [OMG 2004] provides only a logical organization for them and it does not
preclude the mixing of e.g. structural and behavioural elements on one diagram, which
would show a state machine nested inside an internal structure. This results from the
fact that the boundaries between different kinds of diagram types are not strictly
enforced, i.e. there are no metamodels for UML diagrams.

 17

Since most approaches to UML model refactoring presented in research papers,
and consequently in this section, concern design models, we will use terms “model
refactoring” and “design refactoring” interchangeably.

3.2 Refactoring as Model Transformation

Model transformation can be defined as a mapping of a set of source model(s)

onto a set of target model(s), following a set of transformation rules [Sendall &
Kozaczy�ski 2003; Sendall et al. 2004].

Sendall & Kozaczy�ski [2003] list five kinds of model transformations, which

automation would greatly improve the productivity of developers and the quality of the
models: refinement, model reverse engineering, generation of new views, application
of design patterns and model refactoring.

According to Massoni [2003], model refactoring can be defined as “model

transformation that improves specific qualities of the model, such as extensibility,
making the perfective evolution task more manageable.”

France & Bieman [2001] identify two broad classes of model transformations:

vertical and horizontal. In vertical transformations, source and target models are at
different levels of abstraction. Two examples of vertical transformations are
refinement and abstraction. A horizontal transformation results in target model that is
at the same abstraction level as the source one. Horizontal transformations usually
occur for two reasons: (1) to improve specific quality attributes and (2) support
analysis of models. Model refactoring is a horizontal model transformation that occurs
to improve specific quality attributes of models.

Pollet et al. [2002] distinguish three types of model transformations:

1. creational – usually model import from an external source (e.g. XMI);
2. endomorphic – from UML to UML;
3. exomorphic – from UML to other formats (e.g. XMI or source code).

Model refactoring belongs to the second group of endomorphic transformations.

According to Porres [2003], there are two main approaches to describe and

implement model transformations: mapping and update. Mapping transformations
“translate each element from a source model into zero, one or more elements in a
target model”, so that the source model is not altered. In contrast, update
transformations modify, i.e. add, delete and update source model’s elements in place.
Model refactoring is an example of a behaviour-preserving update transformation of a
small and chosen by the designer subset of the model.

Zhang et al. [2004] provide yet another definition of model refactoring based on

the one given by Roberts [1999]: “A Model refactoring is a pair R = (pre; T) where pre
is the precondition that the model must satisfy, and T is the model transformation.”

Sendall et al. [2004] distinguish two broad categories of model transformations:

language translation, where a model is translated into another one in a different
language, and language rephrasing, where a source model is altered or a new, changed
one is produced. Language translation is further sub-divided into migration – target
model and source model are at the same level of abstraction, synthesis – target model
is at a lower level of abstraction, and reverse engineering – target model is at a higher
level of abstraction. Language rephrasing is sub-divided into normalisation – reduction

 18

to a sublanguage, correction of errors, adaptation to new or modified requirements,
and refactoring – “a model is restructured, improving the design, so that it becomes
easier to understand and maintain while still preserving its externally observable
behaviour.”

3.3 Motivation for UML Model Refactoring

Astels [2002], who investigates refactoring in the context of agile modelling, gives

several reasons motivating refactoring in UML. First, it is easier to comprehend
software’s structure when looking at an UML class diagram rather than at a source
code. Furthermore, behavioural aspects of software can be modelled and shown in
behavioural UML diagrams. For example, instead of having to trace the call sequence
of a given scenario in a code editor and switch between several files, the complete
scenario can be expressed in one sequence or collaboration diagram [Boger et al.
2003]. Such code visualization can help in detecting bad smells and design flaws, and
in presenting the impact of the refactoring on the software. Moreover, manipulation of
code on higher level of granularity (i.e. methods, variables and classes) can make
refactoring more efficient.

According to France & Bieman [2001], applying refactorings on an abstract view

of the system facilitates meeting design goals and addressing deficiencies uncovered
by evaluations, i.e. improving specific quality attributes directly on a model. It also
enables relatively cheap exploring of alternative decision paths in system’s design.

Astels [2002] provides examples of using UML to detect following common bad

smells: Data Class, Large Class, Lazy Class and Middle Man. He also shows that the
following exemplary refactorings: Move Method, Move Field, Make Inner Class
Freestanding, Replace Inheritance With Delegation and Replace Delegation With
Inheritance, can be performed easier and faster in a UML CASE tool than in an IDE.

Sunyé et al. [2001] mention that the primary advantage of UML over other

modelling languages, in the context of model refactoring, is the syntax, which is
precisely defined by a metamodel. Therefore, the metamodel can be used to control the
impact of a transformation and provide means for ensuring its behaviour-preservation.

3.4 Recent and Current Research

There are several attempts to perform refactoring on models expressed in UML.

The most representative of them are briefed in this section. The survey was performed
basing on the descriptions of the attempts contained in research papers. Mainly due to
the unavailability of described tools, neither a detailed comparison nor a classification
of these approaches could be prepared.

3.4.1 UMLAUT

Sunyé et al. [2001] attempted to transpose some of Robert’s [1999] refactorings to

UML models. In the result of their work, they created an initial set of UML class
diagram refactorings, consisting of:

1. Addition of features (attributes and methods) and associations to a class;
2. Removal of features and associations from a class;
3. Insert Generalizable Element – addition of a class to inheritance hierarchy;

 19

4. Remove Generalizable Element – removal of a class from inheritance
hierarchy;

5. Move Method (from one class to another);
6. Generalization of elements owned by classes, such as attributes, methods,

operations, association ends and statecharts;
7. Specialization – the exact opposite of Generalization.

For each refactoring, a textual description of preconditions that have to be satisfied

before performing the transformation is provided.

Besides class refactorings, Sunyé et al. [2001] describe six novel statechart

refactorings:
1. State

a. Fold Incoming/Outgoing Actions;
b. Unfold Entry/Exit Action;
c. Group Sates;

2. Composite State
a. Fold Outgoing Transitions;
b. Unfold Outgoing Transitions;
c. Move State into Composite.

Behaviour-preservation of each statechart refactoring is expressed with the use of

pre- and postconditions specified in OCL at the metamodel level. For the sake of
simplicity, no details of how each refactoring accomplishes its intent, is given in the
research paper. However, the authors suggest the use of their UML general-purpose
transformation framework called UMLAUT (Unified Modeling Language All
pUrposes Transformer) [Ho 1999; Ho 2000].

3.4.2 Refactoring Browser for UML

Boger et al. [2003] focus on such UML model refactorings that apply to structure

information of software that is not evident while browsing its source code. In their
research, they restricted themselves to activity diagram and statechart diagam next to
class diagram refactorings.

Some refactorings of class and all of activity and statechart diagrams described in

their paper were implemented in a refactoring browser for UML as a part of the
Gentleware tool Poseidon for UML. Class diagrams refactorings have been
implemented down to the level of method signatures. Refactorings covering the
method bodies were omitted due to missing notation for them in UML 1.3, on which
metamodel is based Poseidon’s repository.

Boger et al. identified and implemented following statechart refactorings:

1. Merge States;
2. Decompose Sequential Composite State;
3. Form Composite State;
4. Sequentialize Concurrent Composite State,

as well as two activity diagrams refactorings, namely: Make Actions Concurrent and
its opposition – Sequentialize Concurrent Actions.

Behaviour-preservation of each refactoring is defined in a form of preconditions

that are evaluated for currently selected model elements. Each precondition is mapped
to appropriate messages, which are presented to the user in the case of its violation.
These messages correspond to conflicts that are grouped into warnings, indicating that

 20

the refactoring might cause side effects, while leaving the model in a well-formed
state, and errors, indicating that the refactoring will break the consistency of the
model.

3.4.3 SMW Toolkit

Porres describes in his technical report [2003] how a UML model refactoring can

be implemented as a sequence of transformation rules or guarded actions. Each
transformation rule consists of five elements: its name, a documentation string, a
sequence of formal parameters, a guard defining when the rule can be applied, and a
body, i.e. the implementation of the rule. A rule takes one or more model elements as
actual parameters and performs a basic transformation action based on these
parameters.

Porres presents an execution algorithm for the transformation rules and describes a

mechanism that ensures that the transformed models are well formed. However, he
does not discuss the behaviour-preservation property of refactorings.

In the absence of a standardized language for model transformations, Porres

implements refactorings using SMW – a scripting language based on the Python
programming language. In many respects, SMW is similar to OCL, but it additionally
provides a set of operations enabling implementation of model transformations. The
idea of extending OCL with action features has been already discussed by Pollet et al.
[2002]. The main advantage of this approach is the possibility of implementing model
transformations in one language along with defining their pre- and post-conditions.

Models can be accessed from SMW scripts via a metamodel-based interface. Each

metaclass from the metamodel is represented in SMW as a Python class and each
element in a model – as an instance of an appropriate class. The classes representing
the metamodel have the names, attributes and associations as defined in the UML 1.4
standard [OMG 2002].

In order to validate the execution algorithms and to evaluate how difficult it is to

implement new refactorings in practice, Porres constructed – using the SMW toolkit –
an experimental, metamodel-driven refactoring tool, and integrated it with an existing
UML editor.

3.4.4 C-SAW and GME

Zhang et al. [2004] describe an approach to model refactoring with the use of the

Constraint-Specification Aspect Weaver9 (C-SAW) model transformation engine, a
plug-in component for Generic Modeling Environment (GME). GME is a UML-based
meta-modelling environment that can be configured and adapted from loaded into it
meta-level specifications (called the modelling paradigm) that define all the modelling
elements and valid relationships between them in a particular domain. The UML/OCL
meta-metamodel of GME is based on its own specification instead of Meta-Object
Facility (MOF). However, an ongoing project incorporates OMG’s MOF into GME.

A prototype model refactoring browser operating with the underlying C-SAW has

been developed as a plug-in for GME. It provides automation of generic pre-defined
refactorings within the GME metamodel domain. Additionally, it enables the

9 http://www.gray-area.org/Research/C-SAW

 21

specification of user-defined refactorings of both generic and domain-specific models
(e.g. Petri Nets, AQML models, or finite state machines).

A list of implemented UML class diagram refactorings contains:

1. Extract Superclass;
2. Collapse Hierarchy;
3. {Add, Extract, Remove, Move, Rename} Class;
4. {Add, Remove, Rename, Pull Up, Push Down} Attribute.

These generic, pre-defined refactorings can be used for any GME metamodel.
Refactoring strategies for user-defined refactorings can be specified and implemented
using a special underlying language, called Embedded Constraint Language (ECL).
Users of the refactoring browser are also allowed to customize pre-defined refactorings
by modifying the corresponding ECL code. Generally, a refactoring is composed of a
name, several parameters, preconditions and a sequence of strategies.

According to Zhang et al. [2004], ECL is an extension of OCL providing many of

the common features of OCL, such as arithmetic, logical and collection operators.
Additionally, it provides special operators supporting model aggregates, connections
and transformations (e.g. addModel, setAttribute or removeNode) that can access
model elements stored in GME.

3.4.5 Odyssey-PSW

Correa & Werner [2004] discuss how refactoring techniques can be applied in

order to improve the understandability and support the evolution of UML/OCL
models, i.e. models consisting of UML class diagrams and OCL expressions.

Analogously to “code smells”, the term “OCL smell” is introduced and defined as

“a hint that some part of an OCL specification or even of the underlying class model
should be refactored.” Correa and Werner identified and described five the most
common OCL smells:

1. Magic Literal – “a numeric or string literal that appears on the middle of
an expression without explanation”;

2. And Chain – “a single constraint (invariant, precondition or postcondition)
composed of two or more expressions connected by and operators”;

3. Long Journey – “an OCL expression that traverses many associations
between different classes of the model”;

4. Rules Exposure – “business rules details are specified in the preconditions
or postconditions of system-level operations”;

5. Duplicated Code – “the presence of duplicate OCL expressions”.

The research paper contains also descriptions and examples of a number of

UML/OCL model refactorings which are classified into three categories:
1. OCL-exclusive refactorings (affect only OCL expressions):

a. Add Variable From Expression;
b. Replace Expression By Variable;
c. Split AND Expression;

2. UML diagram refactorings (changes in class definitions that may have an
impact on OCL expressions) - all refactorings discussed by Sunyé et al.
[2001] plus renaming refactorings;

3. OCL definition constraint refactorings (changes made to OCL expressions
that: introduce new elements in the class definitions or are related to OCL
definition constraints):

a. Add Operation Definition From Expression;

 22

b. Replace Expression By Operation Call Expression.
Analogously to the research carried out by Sunyé et al. [2001], supported are only

these UML diagram refactorings that are based on rules that can be verified through
analysis of structural relationships between model elements. Refactorings that demand
more complex semantic equivalence analyses (e.g. involving type casting and
polymorphic operations) have been deferred to a future work.

The OCL refactorings described by Correa & Werner [2004] have been defined

and automated in a prototype tool Odyssey-PSW (Precise Specification Workbench),
which is an add-in to existing OO CASE tools able to access a UML model through a
XMI interface. A refactoring is defined as an update operation having: a name, a
textual documentation, parameters, pre- and postconditions (defined in OCL) and a
body that implements the transformation (in OCL-Script). OCL-Script is an imperative
language, similarly to ECL [Zhang et al. 2004] based on OCL. It allows, among other
things, actions such as: creation and deletion of instances of a MOF compliant
metamodel, assignment to attributes and association ends, operation calls, and
operations that modify the contents of a collection.

Correa & Werner [2004] propose an interesting, so called regression animation

technique for checking whether or not the semantics of the model is preserved when a
refactoring is performed manually. To be animated by Odyssey-PSW, all query
operations in a UML/OCL model must have their bodies defined in OCL and non-
query operations – in OCL-Script. Additionally, the designer must specify a set of test
cases that define states of the model before and after execution of some of the
operation defined in the model. The Odyssey-PSW animation module checks whether
any invariant, pre- or postcondition is violated during an animation scenario.

3.5 Vertical Software Consistency

Usually, software is composed of many different kinds of software artefacts, such

as requirements documents, analysis models, design models, source code, test suites,
etc. Therefore, if any of these software artefacts are being refactored, the others have
to be kept consistent.

In this section we will focus on the vertical, as opposed to horizontal, consistency

between UML models and code, which maintenance – in the context of software
consistency and model refactoring – is the most vexed issue.

Massoni [2003], who investigates introduction of refactoring to heavyweight

software methodologies – in particular to the Rational Unified Process – lists three,
commonly used in software development, code-model consistency approaches: simple
forward engineering, successive reverse engineering and round-trip engineering. Next,
he identifies potential problems that may occur during refactoring source code (Java),
design models or analysis models and trying to maintain a vertical consistency
between them with the use of round-trip engineering.

Most of the problems mentioned by Massoni appear when source code is

regenerated from refactored models, another result from difficulties in dealing with
different levels of abstraction and implementation specifics. All these issues are caused
by the fact that although there is a similarity between UML models and object-oriented
code, there is no fixed correspondence between them [Fowler 2003]. Round-trip-
engineering bases on two kinds of mappings: code to model and model to code, which,
from the mathematical point of view, are not isomorphic, i.e. there occurs an

 23

information loss in the case of both mappings [Rumpe 2002]. The primary intention of
UML models is not to represent underlying source code but rather to provide means
for object-oriented analysis and design. That is why concepts like invocations and
accesses are especially hard to model using UML [Tichelaar et al. 2000; Tichelaar
2001].

According to Van Gorp et al. [2003b], although model refactorings are expressed

at the design level, they must be aware of all the detailed code-level issues. This
problem was already noticed by Demeyer et al. in a research paper concerning UML
shortcomings for coping with round-trip engineering [1999], as well as by Sunyé et al.
[2001] who provide two examples of refactorings (Move Method and Specialization)
which pre- and postconditions – in the absence of information about method bodies of
particular operations – cannot be verified at the model level. In the case of Move
Method, the body of the concerned operation must not refer to attributes and only
navigate through an association to the target classifier. Therefore, the transformation
requires information about attributes and methods used inside the body of the method
being implementation of this operation. A precondition for the Specialization
refactoring states that the reference context of a pushed down element (attribute or
operation) must not be its owner class. There is no other way to obtain the reference
context of an attribute than analyze method bodies of operations from associated
classes.

Van Gorp et al. [2003b] argue that the UML 1.4 [OMG 2002] metamodel is

inadequate for maintaining the consistency between design models and corresponding
program code. The UML 1.4 metamodel considers method bodies as implementation
specific and therefore, typical UML tools treat them as “protected areas”, which must
be supplied manually and are not altered during code (re)generation. After refactoring
a UML model and next regenerating a source code, it is common that inconsistencies
appear in these “protected areas”. For example, in the case of Pull Up Method
refactoring, a UML 1.4 metamodel based tool must be able to decide on equality of
methods, in order to remove from superclasses all copies of a pulled up method. Even
in the case of the simple Rename Class refactoring, such a tool is not able to update the
refactored class’s name in type declarations, type casts and exceptions. On the other
hand, given a precise model of statements in a method body, a UML tool would be
able to perform even such typical code level refactorings, like Extract Method.

3.6 Source-Consistent UML Model Refactoring

For the needs of this section, let us define a source-consistent UML model

refactoring as a UML refactoring that maintains consistency between refactored model
and underlying source code.

In order to prove that the UML 1.4 metamodel is almost sufficient to allow for

expressing source-consistent model refactorings, Van Gorp et al. [2003b] carried out
an experiment, which goal was to provide concrete suggestions on realization of an
ultimate UML refactoring extension. Within the framework of the experiment, they
constructed GrammyUML metamodel (see Figure 3.1), which bases on the UML 1.4
metamodel and includes eight additive extensions that allow for, among others,
modelling statements in method bodies and use of typed local variables in a given
scope. With the purpose of verifying access-, call- and update-preservation of
refactorings (see Section 2.5), several stereotypes have been defined and incorporated
into GrammyUML, along with four new refactoring Well-Formedness Rules.

 24

������� 	�	�% " 	 �����" �	 � �� ��� �� 	 	
 � �
 �
	 ��
� � 	 ���;���,� �� ����� ����� � 6 & ��

In the next step, Van Gorp et al. [2003b] described in OCL, at the level of

GrammyUML metamodel, the refactoring contracts, i.e. associated bad smells, pre-
and postconditions, of two sample refactorings, namely Extract Method and Pull Up
Method. As already stated in Section 3.5, it would be impossible to express refactoring
contracts of these refactorings at the level of UML 1.4 metamodel.

Van Gorp et al. [2003a; 2003c] validated their approach by implementing Pull Up

Method refactoring in an open source UML CASE tool called Fujaba, with the use of
Story Driven Modeling (SDM), a visual programming language based on UML and
graph rewriting. The most straightforward solution would be to use instead of Fujaba
an OCL-enabled tool, however they did not do this due to “the practical unpopularity
of OCL (both in use by developers as in tool support) [Van Gorp et al. 2003a].”

Fujaba’s metamodel consists of two layers of abstraction: the first one is

equivalent to the UML 1.4 metamodel and the second one refines the method body as
a Java abstract syntax tree (AST). However, the second layer, as it does not contain the
explicit access, update and call information, is not suitable for reasoning about
refactoring. To solve this problem, it was replaced by GrammyUML extensions.
Unfortunately, also the SDM turned out to be not expressive enough for refactoring
purposes. Van Gorp et al. bypassed its shortcomings by implementing SDM-
inexpressible constraints in Java but because it is not an “elegant” solution, they
proposed additionally to extend SDM with parameterisation of graph expressions and
story patterns.

In order to ensure appropriate source code regeneration from refactored models,

Van Gorp et al. suggest introduction of a new component called Code Preserver into
the Fujaba architecture. They define it as “a development tool component that stores
all the required source code files from which a model is extracted in such a way that
the complete system can be regenerated from a transformation of the input model [Van
Gorp et al. 2003c].” The need for Code Preserver results mainly from the fact that
GrammyUML metamodel, since it includes only a minimal set of information
sufficient for reasoning about refactoring, does not contain all syntactically possible
source code constructs.

3.7 Executable UML Model Refactoring in AGG

According to Massoni [2003], other – alternative to round-trip engineering –

approaches addressing code-model consistency issue are (1) attaching source code to

 25

models, (2) recording refactorings, and (3) executable UML. The second approach can
be realized by e.g. describing refactorings as coordinated graph transformation
schemes that are instantiated according to the specific code modification and applied
to the design models affected by the change [Bottoni et al. 2003]. The last method, i.e.
executable UML (for details see Section 4) seems most promising since in this
approach, as the models are automatically translated into executable entities, the
problem of vertical code-model consistency does not exist.

To our knowledge, so far there is only one research paper that concerns refactoring

of executable UML models, namely “Formalizing Refactoring by Using Graph
Transformation”, published by Kazato et al. in 2004. The authors of this article deal
with refactoring of design models comprising of both structural and behavioural parts.
The former is expressed by classes and related structural concepts, and the latter is
specified with the use of operation bodies implemented in action semantics.

Kazato et al. [ibid.] defined a set of twenty-eight basic transformations of design

models, of which various refactorings can be composed. For example, the Push Down
Attribute refactoring (derived from Fowler’s Push Down Field) consists of two basic
transformations, namely push down attribute to the subclass, and remove attribute. As
in all other studies, refactoring preconditions are specified with the use of OCL.

The approach to implementation of model refactorings proposed by Kazato et al.

[ibid.] bases on an observation, that each UML model may be represented as an object
model comprised of instances of metaclasses of the UML metamodel. A part of an
exemplary model and its so-called repository-view [Bock 2003] are shown in Figure
3.2. Each such an object model is essentially a typed and attributed directed graph, and
therefore each basic model transformation can be treated as a graph transformation
with rules described as a part of the graph grammar.

������� 	�	�- 	 � � ���� �! <" �	 � �=��� � �>�� ������
� �	 �2 � 3 �
� � 	 ��=�	 ��>��? �(��� ����� ����� � 9��

From the implementation-viewpoint, i.e. when considering the repository

representation of the model, basic transformations can be further decomposed. In our
previous example, push down attribute to the subclass consists of create attribute and
create association, executed for each subclass.

Kazato et al. [ibid.] successfully implemented six10 compound refactorings as well

as their preconditions, in the form of twenty-five OCL queries, in a graph
transformation system called Attribute Graph Grammar (AGG).

10 Mentioned are only: Self Encapsulate Attribute, Remove Setting Method, and Extract Class.

 26

4 EXECUTABLE MODELLING WITH UML

The main goal of this chapter is to present a literature survey on executable

modelling with UML. It is structured as follows: Section 4.1 situates executable UML
against a background of the evolution of software engineering; Section 4.2 identifies
an executable subset of UML 2.0; Section 4.3 provides an overview of several
exemplary attempts to achieve executable UML. Finally, Section 4.4 concludes this
chapter with a discussion on advantages and disadvantages of UML as a programming
language.

4.1 Introduction

Grady Booch, the chief scientists for former Rational Software, said in an

interview for CHIPS Magazine “the history of software engineering has been one of
growing levels of abstraction (…) This growth has occurred simply as a meaningful
engineering response to the growth in complexity in the kinds of software systems we
as an industry are asked to create [Booch 2002].” The complexity of software systems
can be measured e.g. using function points (FP) that are a unit measure for software
that quantifies its functionality provided to the user basing primarily on the logical
design [LC 2004]. According to Longstreet Consulting Inc., [LC 2004a] the size of
large projects increased 10 times between years 1970 (1000 FP/project) and 2000
(10000 FP/project).

The evolution of software engineering, although present in development methods

and software platforms, is most clearly apparent in the history of programming
languages. Richard M. Soley wrote in the foreword to a book on MDA [Mellor et al.
2004] that a “critically important” first step in this evolution was, developed in 1954
and released in 1957, FORTRAN language (FORmula TRANslation system).
However, one should bear in mind that this evolution began even earlier [Hightower
1996]. First programmers had to load programs manually into memory, and after their
completions unload them, using switches and buttons. The invention of operating
systems automated this process and the introduction of assembly languages allowed
developers to program computers without worrying about the correctness of used
instructions.

The development of FORTRAN not only accelerated the process of programming

but also, due to the application of compilers, enabled portability of programs that could
be finally written once and automatically translated for different machines. In this way,
independence from hardware platforms has been achieved, and “since then, we have
apparently flown up the abstraction ladder [R.M. Soley in Mellor et al. 2004].” Later
languages, offering e.g. automatic memory management, let programmers focus more
and more on application domain instead of on solution domain, what significantly
increased their productivity. In the same time, the biggest problem became software
portability across different operating systems. Programming languages operated on
abstraction level that turned out to be too low to be able to write an application that
could be directly compiled and run on e.g. Microsoft Windows and UNIX, not
mentioning MacOS or any of the mobile phone operating systems. This shortcoming
was the main reason for introduction of software platforms like CORBA, J2SE, J2EE
or .NET that are independent from underlying operating systems. Additionally, they
provide mechanisms for, among others, transparent distribution, concurrency and

 27

persistency, what again soars programmers productivity, which increased between
years 1970 and 2000 more than 3 times [LC 2004a].

Did the evolution reach its end? Boyd [2002] gives a negative answer to this

question. In his opinion, the next logical, and perhaps inevitable, evolutionary step is
executable UML [ibid.]. According to Pender, the term executable UML is used to
describe “the application of a UML profile in the context of a method that aims to
automatically generate an executable application from an abstract UML model
[2003]”. Ivar Jacobson states in the foreword to a book on Executable UML11 (xUML)
that the software community for a long time aimed at creating a modelling language
that is also an executable one [Mellor & Balcer 2002]. He notices analogy between
UML and another modelling language, namely Specification and Description
Language (SDL), which was crated in the International Telecommunication Union
(ITU). In the early 1980s, SDL has been extended by constructs to formally define
algorithms and data structures, and thus evolved into a high-level programming
language. However, neither SDL was the first one, since it was inspired by its (and
UML’s) forerunner, so called “The Ericsson Language”, created already in 1968. It
served to model telecommunication components with the use of sequence diagrams,
collaboration diagrams and state transition diagrams (a combination of statechart and
activity diagrams), and it enabled generation of almost 90% of the source code.

4.2 Executable Subset of UML 2.0

Before answering a research question, whether UML has potential for being a

programming language, one has to ensure that it can be executed. The IEEE standard
610.12-1990 defines computer program as a “combination of computer instructions
and data definitions that enable computer hardware to perform computational or
control functions [IEEE 1990].” One can therefore assume that an executable model of
a system shall consist of a specification of its structure (data definitions) and behaviour
(computer instructions).

According to Rumpe [2002], already in UML 1.3 there is a large subset of

modelling constructs, which can be animated and therefore used to specify as well
executable models as test cases for them. This subset consists of class diagrams, object
diagrams, statechart diagrams, activity diagrams, sequence diagrams, collaboration
diagrams and OCL constraints. Sequence or collaboration diagrams are suitable to
specify test cases, and statechart or activity diagrams are appropriate to describe
behaviour of a single object. Class and object diagrams along with OCL constraints
can be used as an input to as well object code as test code generation.

4.2.1 General Information on UML 2.0

UML 2.0 specification consists of four parts, namely:

• UML 2.0 Superstructure [OMG 2004] – it defines the user level
constructs;

• UML 2.0 Infrastructure [OMG 2003] – it defines the foundation language
constructs for both UML 2.0 superstructure and MOF 2.0;

• UML 2.0 Diagram Interchange [OMG 2003a] – it defines a
supplementary package for graph-oriented information, enabling a smooth
and seamless exchange of models between different software tools.

11 It should be noted the difference and relation between executable UML and Executable UML
(xUML), namely xUML is one of the approaches to achieve executable UML.

 28

• UML 2.0 Object Constraint Language (OCL) [OMG 2003b] – it defines a
formal language used to specify expressions on UML models;

Adoption of the UML 2.0 Superstructure is complete, and so-called Available
Specifications of other three parts of UML 2.0 are supposed to be posted for non-OMG
members in the middle of 2005.

According to Kobryn [2004], the major improvements in UML 2.0 are:

1. Support for component-based development via composite structures – both
Classes and Components can be decomposed and assembled via Parts,
Ports, and Connectors;

2. Hierarchical decomposition of structure (Classes and Components) and
behaviour (e.g. Interactions, State Machines, Activities);

3. Cross integration of structure and behaviour – the same model element
can be used in different kinds of diagrams;

4. Integration of action semantics with behavioural constructs – UML
actions are defined in as much detail as a programming language’s
statements;

5. Layered architecture to facilitate incremental implementation and
compliance testing – UML concepts are contained in Packages, which are
in turn partitioned into four horizontal layers of increasing capability
called compliance levels.

4.2.2 Run-Time Semantics of UML 2.0

Run-time semantics of UML 2.0 [OMG 2004; Selic 2004] are specified as a

mapping of modelling concepts into corresponding program execution phenomena.
They are based on two fundamental premises:

1. All behaviour in a modelled system is caused by actions executed by so-
called active objects;

2. UML behavioural semantics deal only with event-driven (discrete)
behaviours.

The causality model of UML 2.0, i.e. a “specification how things happen at run-

time [ibid.]”, can be summarised as follows – objects respond to messages sent by the
ones that execute communication actions, by executing behaviours attached to these
messages. An exemplary scenario12 is depicted in a communication diagram in Figure
4.1. The example shows two independent and possibly concurrent threads of causally
chained interactions. The first, identified by the thread prefix ‘A’, consists of a
sequence of events that begin with activeObject1 sending signal s1 to activeObject2.
In turn, activeObject2 responds by invoking operation op1() on passiveObject1 after
which it sends signal s2 to activeObject3. The second thread, distinguished by the
thread prefix ‘B’, starts with activeObject4 invoking operation op2() on
passiveObject1. The latter responds by executing the method that realizes this
operation, in which it sends signal s3 to activeObject2.

12 This example is taken directly from the Superstructure specification [OMG 2004].

 29

�������,	�	�* + �
� �	 ����# �������� ��� 	 �& ���
 �
 �# �����! �
� � 	 ��� ��2 � 3 ���� ��% � ,��� � 9��

The key semantic areas covered by UML 2.0 and the relation between them are

presented in Figure 4.2. At the highest level of abstraction, the architecture of UML
2.0 run-time semantics consists of three composite layers13: (1) Structural Foundations,
(2) Behavioural Base, and (3) High-Level Formalisms.

�������,	�	�1� 	 ���
 � ��	
 �# �	 �� ���� 	 �2 � 3 ���� ��# �<��
	 ��	
����
 ���% � ,��� � 9��

The first layer reflects the premise stating that in UML there is no disembodied

behaviour. The second layer provides the base for the semantic description of all the
higher-level behavioural formalisms. It consists of three separate sub-areas arranged
into two sub-layers. The bottom sub-layer is composed of the inter-object behaviour
base, which concerns communication between structural entities, and the intra-object
behaviour base, which addresses the behaviour occurring within them. The actions
sub-layer, described in the sequel of this section, defines the semantics of individual
actions. The topmost layer in the architecture defines the semantics of the following
high-level behavioural formalisms of UML: activities, state machines, and
interactions.

A more detailed explanation of the two bottom layers can be found in a paper

written by Selic [2004]. Obviously, a thorough description of the whole run-time
semantics of UML is given in the UML 2.0 Superstructure specification [OMG 2004].
Therefore, this section contains only a presentation of the core actions sub-layer.

According to Pender [2003], the primary reason for having action semantics is to

provide a standard for the exchange of action specifications between tools. On the
contrary, Rumpe [2002] states, that the main reason for extending UML by an action
language is the shortcoming to generate code from OCL constraints. Nevertheless,
integration of actions with behavioural constructs is – from the viewpoint of model
execution and simulation – the most significant improvement in UML 2.0.

13 The items in the upper layers depend on the items in the lower ones.

 30

As defined by the UML 2.0 standard, an action is “the fundamental unit of

behaviour specification [OMG 2004]”, that converts a set of inputs into a set of
outputs. The actions are organized into four packages, which are shown – together
with their inter-dependencies – in Figure 4.3. BasicActions package is required at the
Compliance Level 1, StructuredActions and IntermediateActions – at the Level 2, and
CompleteActions – at the Level 3.

�������,	 	�.��	 �<� 	 � 	 �� 	 �
 �	 ��� ���� 	 �/
 ��� ���� �
 �� 	 ���% � ,��� � 9��

BasicActions contain various actions that invoke behaviour, namely

SendSignalAction that creates a signal instance from its inputs and transmits it to a
target object, CallOperationAction that transmits an operation call request to a target
object, and CallBehaviorAction for direct behaviour invocations. Additionally, the
basic package includes OpaqueAction with implementation-specific semantics.

The characteristic feature of intermediate actions is that they either carry out a

computation or access object memory. IntermediateActions contains two additional
invocation actions, namely BroadcastSignalAction that transmits a signal instance to
all the potential target objects in the system, and SendObjectAction for transmission of
objects. Another set of intermediate actions constitute so-called object actions, i.e.
CreateObjectAction, DestroyObjectAction, TestIdentityAction to test if two values are
identical objects, and ReadSelfAction that retrieves its host object. The package
contains four actions that concern structural features – ReadStructuralFeatureAction,
AddStructuralFeatureValueAction, RemoveStructuralFeatureValueAction, and
ClearStructuralFeatureAction that removes all values of a structural feature. Link
actions constitute another group of intermediate actions – these are ReadLinkAction
that navigates across associations to retrieve objects on one end, CreateLinkAction,
DestroyLinkAction that destroys links and link objects, and ClearAssociationAction for
destroying all links of an association in which a particular object participates.
Additionally, the intermediate package includes ValueSpecificationAction that returns
the result of evaluating a value specification.

StructuredActions contains RaiseExceptionAction that causes an exception to

occur, and variable actions organized similarly to structural feature ones (from
IntermediateActions) – these are ReadVariableAction, AddVariableValueAction,
RemoveVariableValueAction, and ClearVariableAction.

One of the groups of actions from CompleteActions deals with accepting events,

and it constitutes of AcceptEventAction, AcceptCallAction, ReplayAction, and
UnmarshallAction. The package contains four object actions, namely

 31

ReadExtentAction that retrieves the current instances of a classifier,
ReclassifyObjectAction that changes a classifier of an object, and
StartClassifierBehaviorAction that provides a way to indicate when the execution of
the classifier behaviour of a newly created object should begin. Link object actions
from CompleteActions operate on instances of association classes – these are
CreateLinkObjectAction, ReadLinkObjectEndAction that retrieves an end object from a
link object, and ReadLinkObjectEndQualifierAction.

Additionally, the UML standard defines two actions for dealing with time values,

namely TimeObservationAction that observes the current point in time, and
DurationObservationAction that observes duration in time. Both these actions come
from CommonBehaviors::SimpleTime, and they write values of their observations to
structural features.

4.3 Attempts to Achieve Executable UML

As indicated by Mellor & Balcer [2002], there are many executable subsets of

UML. The goal of this section is to provide an overview of several exemplary as well
commercial as research attempts to achieve executable UML. Description of each
approach focuses particularly on two aspects, namely (1) what means can be used to
specify a model, and (2) how is the model executed.

4.3.1 Combining UML with Programming Languages

Combining UML models with fragments of code written in one of the

contemporary programming languages (e.g. C++ or Java) is the most straightforward
attempt to achieve an executable UML model. This approach merges two distinct
activities of design and implementation into one, which is usually followed by source
code generation and testing.

The metamodel of e.g. UML 1.4 [OMG 2002] contains several places in which

UML can be mixed with programming languages. One of the examples is
ProgrammingLanguageDataType, which can be used to capture type constructs not
included as UML classifiers. Another example is ProcedureExpression – according to
the abstract syntax for the Core package of UML 1.4, the type of body attribute of the
Method metaclass, i.e. an implementation of method’s body, is a
ProcedureExpression, which “defines a statement that will result in a change to the
values of its environment when evaluated [OMG 2002]”. Such statements can be
therefore written in any of programming languages.

4.3.2 Executable UML (xUML)

Executable UML (xUML) [Starr 2002a; Mellor & Balcer 2002; Mellor et al. 2004]

is a profile of UML that defines execution semantics for a computationally complete
subset of this language14. It originates from Shlaer-Mellor community and it can be
used to build Platform-Independent Models (PIMs) that make no decisions about a
particular hardware and software environment. According to Ivar Jacobson [Mellor &
Balcer 2002], xUML is one of the cornerstones on which rests the Model Driven
Architecture (MDA) initiative.

14 For an open source, and unfortunately incomplete version of the xUML metamodel see [Starr
2002b].

 32

A complete xUML specification of a system consists of a number of autonomous,

reusable, and replaceable domains, which aggregate sets of entities modelled with the
use of UML classes, which in turn may have lifecycles (behaviours over time) that are
abstracted as state machines. The behaviour of the system is driven by objects moving
from one stage in their lifecycles to another in response to events. Each state machine
has a set of procedures, one of which is executed when the object changes state, thus
establishing the new state. Each procedure comprises a set of actions, being primitive
units of computation, which cause e.g. synchronization or data access to be executed.
In the matter of actions, xUML relies on the UML 1.4 with Action Semantics [OMG
2002a] and allows using any surface language that is compliant with this specification.

The classes and their relationships are illustrated on class diagrams, and their state

machines with procedures embedded in states are shown on statechart diagrams. Other
kinds of diagrams, i.e. collaboration diagrams and sequence diagrams, can be
automatically generated from xUML models. What mostly distinguish xUML from the
ordinary UML are operations, which are derived from actions on state machines.
Moreover, neither aggregation nor composition relationships are supported.

The next step after creation of complete models of domains is determination of

how these models are supposed to be linked together, especially which identifiable
entities in one model correspond to other ones in another models. This activity is
called bridging domains, and it can be performed in both explicit and implicit style
[Mellor & Balcer 2002]. The source models can be optionally coloured with
performance and deployment decisions [Starr 2002a] called in the MDA terminology
marks [Mellor et al. 2004]. Afterwards, a model compiler weaves together the models
according to a single set of architectural rules, so called archetypes, i.e. fragments of
data access and text manipulation logic that state formally how to translate an xUML
model into text being e.g source code written in Java, C++, VHDL, or COBOL.
Besides weaving and translating all source models into code, the model compiler must
also incorporate elements than enable among others storing instances, generating calls
and signals across task and processor boundaries, and traversing state machines [ibid.].
All this elements constitute a xUML execution engine targeted to a selected software
platform.

4.3.3 UML Virtual Machine

Schattkowsky & Müller [2004; 2004a] present an approach for model-based

development of embedded systems applying a well-defined UML 2.0 subset with
precise execution semantics, and support for timeouts as well as exception and
interrupt modelling.

The structure of systems built in this approach can be specified with the use a

subset of UML 2.0 Classes package, which encompasses among others classes having
attributes and operations (called only synchronously), support for single inheritance as
well as realization of multiple interfaces.

The behaviour of each non-abstract operation is modelled with the use of a state

machine, and each activity of a state or a transition in these state machines is specified
via an interaction, illustrated in a sequence diagram. Such a combination of state
machines and interactions allows overcoming the limitations of state machines when
expressing complex algorithms and deeply nested control flows [ibid.].

 33

A state machine consists of start and final pseudo states, as well as of simple and
composite ones, where each latter contains another state machine. Transitions between
states can be triggered by among others an occurrence of a timeout or hardware
interruption, a software exception, i.e. division by zero, or an explicit trigger from the
current state’s implementation. The whole operation completes when the associated
state machine terminates by reaching a final state.

The surface syntax of the language used to specify single actions is derived from

C++ and Java. The language allows value assignments based on nested expressions
and operation invocations using variables in the current scope [ibid.]. As well basic
math and bit as logic operations are covered, and their semantics is comparable to the
one of their Java equivalents.

The complete UML specifications are automatically transformed to equivalent

executable state-oriented models, consisting of binary finite state machines (obtained
from UML state machines) with byte code (obtained from UML interactions)
embedded in states. The mapping between input and output model elements is not of
the one-to-one type – e.g. entry-, exit-, and transition-activities in input state machines
are transformed to additional states and transitions in output ones. Such a semantics-
preserving simplification reduces the number of elements of which the execution
environment has to be aware. After the transformation, the output models can be
executed directly by a dedicated UML Virtual Machine (UVM), implemented in either
hardware or software.

Riehle et al. [2001] provide the description of both logical and physical

architecture of another UML Virtual Machine, which is implemented in Java as an
object-oriented framework that has ability to execute models by interpreting them
according to UML semantics. Models are built with inter-related classes, and their
behaviour is specified by state charts reacting to events that they receive. Class
descriptions are enriched by OCL constraints that represent the inter-object
dependencies resulting from among others business rules – this way, state transitions
in one object are translated into events relevant to other objects that are not connected
with the originating object through a state chart. Unfortunately, since models created
for this virtual machine are based on UML 1.3, detailed operational behaviour has to
be implemented manually using native Java, what is doubtlessly the major drawback
of this immensely interesting approach.

4.3.4 Comparison of the Attempts

The goal on this section is to introduce a coarse categorisation of approaches to

achieve executable UML, as well as indicate their major strengths and weaknesses.

Basing on several exemplary, as well commercial as research solutions described

in literature, two main variation points of the approaches have been identified, namely
system specification and model execution. In the context of system specification, it has
been discovered that (1) in all the attempts, structural aspects of systems are modelled
with the use of classes, and (2) different subsets of UML along with either
programming languages or action semantics are used to model systems’ behaviour.
From the model execution perspective, all the approaches fall into two broad categories
of (1) platform-specific code generation, and (2) execution on a virtual machine.

Feng [2003] mentions several disadvantages of combining UML with

programming languages, namely:
• No programming language contains all the useful software concepts;

 34

• Not all UML concepts are directly supported by contemporary
programming languages;

• Using a programming language enforces to focus on implementation
details too early;

• Models created in this way are not portable across different modelling
tools.

There are two kinds of platform-specific code generation, namely naive code

generation that is usually preceded by specification of system’s behaviour using a
programming language, and more sophisticated model compilation. In the former
approach, unchanged language-specific expressions and statements are naively placed
in the source code generated from UML specification of system’s structure, where in
the latter one, a model compiler is aware of syntax and semantics of an action
language used to express system’s behaviour.

The major drawbacks of the naive code generation are [Feng 2003]:

• Modellers are not able to test the system until the source code is finally
generated;

• Modellers must have a comprehensive knowledge of code generation
rules;

• Automatic model analysis and verification is difficult, what makes the
generated software error-prone and hinders debugging;

• The process of code generation is time-consuming, what significantly
increases system’s time-to-market.

Model compilation approaches are free from above-mentioned weaknesses,

because model verificators and simulators usually accompany development
environments supporting model compilation. However, disregarding the way the
source code is obtained, the process of its generation is time-consuming, what
significantly increases system’s time-to-market. Moreover, the time delay caused by
code generation, its compilation, shutting down the existing system, installing and
configuring the new one and starting it up, makes simulation of new models with
immediate user feedback uncomfortable if not impossible. The resulting models easily
become not optimal [Riehle et al. 2001].

As indicated by Schattkowsky & Müller [2004], the use of a virtual machine

eliminates the need to compile models to different platforms – instead, only the virtual
machine itself needs to be ported to each platform. As a model is supposed to run on
any VM implementation, improvements to the runtime environment are immediately
beneficial for existing software, what also significantly reduces cost for application
development and testing.

Platform-specific code generation, in its two variants, is a much more common and

mature technique for execution of UML models that the use of a virtual machine.
Actually, all commercial tools that were investigated by the authors support this
approach and only few research projects use the latter one.

Furthermore, with respect to behavioural specifications, models can be categorized

into state-oriented and stateless. In the state-oriented paradigm, a structural entity may
have a state machine that describes its lifecycle. On the contrary, stateless models are
very similar to programs written in object-oriented languages.

The attempts to achieve executable UML that are described in Section 4.3 are of

course not the only ones. Among others, there are several commercial UML 2.0 based

 35

tools15, which enable creation and execution of models, like I-Logix Rhapsody16
[Niemann 2004] or Telelogic TAU17 [Björkander & Kobryn 2003; Kobryn &
Samuelsson 2003; Leblanc 2004; Telelogic 2004]. A detailed description of TAU
executable models, which can be treated as a supplement to this chapter, can be found
in Section 5.

4.4 UML as a Programming Language

Being executable is an essential, but not a sufficient condition that UML has to

meet in order to replace currently used high-level programming languages. Rumpe, in
a paper on UML in the context of extreme modelling [2002], poses on UML six
following requirements:

1. UML needs to be fully expressive,
2. UML needs to be more compact notation than an ordinary programming

language,
3. UML needs a simple and usable module concept,
4. UML needs support for testing,
5. UML needs an adequate tool support.
6. UML needs an effective translation into efficient code,

In fact, only four first requirements concern UML as a language. The state-of-the-

art UML 2.0 seems to fulfil them, as it (1) includes a wide set of actions that make it
fully expressive, (2) is more compact than programming languages by disregarding
implementation (platform) details, (3) has a simple and usable module concept in the
form of a package, and (4) contains interactions that are particularly suitable for testing
purposes. The adequate tool support for executable UML and its effective translation
into efficient code are just the matter of time.

4.4.1 Advantages of Executable UML

Four interrelated categories of advantages of programming directly in the

modelling language have been identified, namely the ones resulting from:
• the elimination of the two-language problem;
• the platform- and target-language-independence;
• the compact and graphical notation of UML;
• the early model execution and automatic code generation capabilities.

One of the advantages resulting from the elimination of the two-language problem,

i.e. modelling in UML, and programming in e.g. C# or Java [Jacobson in Mellor &
Balcer 2002], is improved communication. Analysts, designers, programmers, and
testers all use the same language, what “reduces the differences between their roles in
the development process and helps to remove natural barriers that moving from the
model domain to the code domain inadvertently introduces [Björkander 2000].” Next
advantages in this category are reduced number of artefacts, and no need for code-
model synchronization, which both result from the fact that the model and the code
are essentially the same [ibid.].

The second category encompasses benefits resulting from the platform- and target-

language-independence of executable UML models. One of these advantages, called

15 A list of several UML 2.0 based tools can be found at http://www.uml.org/#Links-UML2Tools.
16 http://www.ilogix.com/rhapsody/rhapsody.cfm
17 http://www.telelogic.com/products/tau/tg2.cfm

 36

by us one model – multiple implementations, relies on the fact, that an executable
model can be interpreted or compiled – without altering it – to code in any desired
programming language running on any target platform [Björkander 2000, Björkander
& Kobryn 2003]. Modellers that use executable UML are supposed to focus only on
what their system should really do. They are allowed to disregard as well certain
details of the implementation (e.g. how should an association be implemented?) as
other architectural considerations (e.g. concerning distribution – should we use
CORBA or COM?) that can be handled later in the development process or left a
compiler or code generator. This benefit can be called focus on functionality.

As indicated by Soley [Mellor et al. 2004], the compact and graphical notation of

executable UML, as opposed to textual programming languages, allows the
construction of computing systems from models that can be understood very quickly
and deeply. This causes another benefit of using executable UML, namely easier and
cheaper software maintenance. In addition, the tests can be described in a more
compact way, what gives rise for specification-based testing [Rumpe 2002], which
can be even more facilitated by tools that graphically show where a test situation is
violated [ibid.].

The fourth category covers advantages resulting from the early model execution

and automatic code generation, which render possibility of model-level debugging
[Björkander 2000], short development cycles, and early feedback for developer that
experiences his model’s actual behaviour [Rumpe 2002]. Furthermore, generating code
from a model gives a distinctive time and market advantage [ibid.].

4.4.2 Doubts Concerning Executable UML

As observed by Björkander [2000], accepting that a modelling language can be

used as a programming one may encounter mental hurdles – a common reaction is
mistrusting the code that is generated from models. Another doubtful matter is the
efficiency of the automatically produced code. However, the same issues raised doubts
in the context of e.g. FORTRAN language, which turned out to produce code that was
reliable and nearly as efficient as the one written by good programmers. This proves
that somehow the high level of abstraction offered by a language does not always have
significant run-time costs [Soley in Mellor et al. 2004].

According to Fowler [2003], it is worth using the UML as a programming

language only if it results in a significant productivity gain when compared to current
object-oriented programming languages. However, even if it is more productive, “it
still needs to get a critical mass of users for it to make the mainstream [ibid.].”
Otherwise, executable UML might meet the same fate as Smalltalk programming
language that, despite being very productive, is currently a niche one.

The main doubt seems to be raised by tools, which currently are not mature

enough to generate multi-language and multi-platform business applications. Ambler
[2003] points out that currently (1) it is difficult to integrate a collection of tools to
support executable UML, and that (2) an opposite approach, in which as well a
modelling subsystem as code generators are delivered by a single vendor, will likely
prove too narrow. As maintained by Ambler [2003], “the complexity of software
development and the pace of technological change will outstrip the ability of tools
vendors to generate reasonably efficient source code.” During several nearest years, it
will turn out whether it is true or not.

 37

5 TELELOGIC TAU EXECUTABLE UML MODELS

The goal of this chapter is to provide an overview of executable UML models that

can be built and executed in Telelogic TAU. It is structured as follows: Section 5.1
presents the main features of the tool; Section 5.2 describes elements that a TAU
executable model must be composed of; Section 5.3 presents an exemplary model built
in the tool; Section 5.4 discusses TAU’s compliance with UML 2.0. Finally, Section
5.5 presents allowed means of communication between classes in TAU models.

5.1 Introduction

Telelogic TAU Generation2 is the state-of-the-art family of advanced systems and

software development and testing tools. It consists of four products directed towards
different users, namely:

• TAU/Architect - for systems architecture and design,
• TAU/Developer – for model-driven software development,
• TAU/Tester – for systems and integration testing,
• TAU/Logiscope – for software quality assurance and metrics.

In the context of model execution, the highest capability offers TAU/Developer –

a UML 2.0 based tool that enables designing, debugging and delivering advanced
software components and applications. It enables to:

• create precise visual definitions of software behaviour with the use of a
comprehensive action language,

• optimize, compile (to C, C++ or Java) and execute detailed design
models,

• graphically trace a running model using sequence diagrams,
• examine a model’s behaviour by step-by-step debugging through UML

state machines,
• record and rerun model execution steps for future regression testing.

The behaviour of a UML model and its implementation may be verified with the

use of the Model Verifier. First, the Application Builder generates an executable
program in the C language from the model linked with a predefined run-time library
customized for simulation purposes. Next, the program is executed – either
automatically or manually, i.e. in a step-by-step manner using various commands and
breakpoints. The execution of the session can be traced graphically in state machine
and sequence diagrams or textually in the output console window. If the application
communicates with the environment, this also may be simulated by sending manually
prepared signals.

For the sake of the thesis, Telelogic TAU has been chosen to be the tool, in which

selected refactorings are automated. The justification of this choice can be found in
Section 6.5.

5.2 Basic TAU Executable Models

In order to be executable with the Model Verifier, a UML model must have a

certain level of completion. It must be composed of:

 38

• a package (optional),
• a class diagram (optional),
• at least one active class (the so-called top-level active class),
• at least one state machine with an implementation (optional – in the sense

that it can be implicit).

An active class, i.e. a class with its own thread of control, must have a port to be

able to communicate with other active classes and/or its environment with the use of
signals. A port – a named interaction point of an active class – is defined by the
signals, usually encapsulated in interfaces, which it can transmit. A model with
(internal or external) communication has:

• at least one signal,
• at least one port,
• an interface (optional).

The lifecycle of an active class is described with a state machine – named initialize

or having the same name as its owner. The implementation of the state machine is
visualized on a statechart diagram (alternatively – in a text diagram). There are two
different styles of drawing statechart diagrams supported (see Figure 5.1) – the state-
oriented view and the transition-oriented one. The first one gives a good overview of a
complex state machine but is less practical when focusing on the control flow and
communication aspects of a specific set of transitions. For this reason, it is also
possible to describe a state machine in the transition-oriented way, with explicit
symbols for different actions that can be performed during the transition.

Signal1()Signal1()

Signal2()Signal2()

StateState

StateState

Signal1() / Attribute1++; ^Signal2();Signal1() / Attribute1++; ^Signal2(); Attribute1++;Attribute1++;

�������.	�	�����	 <� ��	 ��	 � �=�	 ��>���� ���������� �<� ��	 ��	 � �=��� � �>��! ���+ �� ��������	 �
�
 � ��	 �

Each active class may have its internal run-time structure defined in terms of other

active classes, referred to as parts. A composite structure diagram may be used to
visualize this architecture as well as to express the communication within an active
class by showing connectors between the ports of the parts. A special kind of ports,
namely behaviour ports, may be used to enable the communication between a part and
the state machine in an instance of the class that owns the part.

More information on TAU executable models in the form of a list of unsupported

UML constructs can be found in Appendix E.

5.3 Exemplary Model – Counting Server

The simple exemplary model outlined in this section – Counting Server – is a

modified and extended version of one of the projects – Echo Server – supplied with

 39

TAU. The externally observable functionality of the system can be summarized as
follows: an actor of the system sends into it two values - an integer number and a time
interval – and receives an integer value being either the number multiplied or divided
by two – depending on the value of the number.

Figure 5.2 shows a class diagram illustrating the top-level active class of the

system – Server and two signals – Count and Reply. Server has a port called EnvPort
used for communication with its environment. The port realizes the Count signal, i.e. it
declares that Server can handle receipts of this one. Moreover, it requires Reply signal,
i.e. it expects that an actor of the system can handle this one.

Server

Server

EnvPortEnvPort

Count

Reply

<<signal>>

Count

<<signal>>

Count

<<signal>>

Reply

<<signal>>

Reply

�������.	�	�* + �	 �����" �	 � �� ���� 	 �� � # ����� ��	 �" 	 ��

Two latter active classes that fulfil the functionality of the system are Dispatcher

and RequestHandler. The first one has a port called DPort that realizes Count and
requires Confirm signals. RequestHandler may communicate via its RHPort, but only
in one direction. Additionally, there is a composition association between
RequestHandler and a passive class RequestProcessor, which implies that each newly
created instance of the former one has an attribute processor containing an instance of
the latter one. All these three classes as well as an additional signal Confirm are
depicted in a class diagram shown in Figure 5.3.

Dispatcher

Dispatcher

RequestHandler

RequestHandler

RequestProcessor

+ process (number : Integer) : Integer

RequestProcessor

+ process (number : Integer) : Integer

 processor

 processor

RHPortRHPortReplyReply

DPortDPort

CountCount

Confirm

<<signal>>

Confirm
<<signal>>

Confirm

�������.	 	�/� � ���� ����
 ����	 ��� ���� 	 �� � # ����� ��	 �" 	 ��

Server has its internal structure depicted on a composite structure diagram shown

in Figure 5.4. This is the so-called white-box, as opposed to black-box (see Figure
5.2), view of the system [Björkander & Kobryn 2003]. It reveals that the active class
Server has two parts – d and rh typed by Dispatcher and RequestHandler respectively.
It is noteworthy that the initial number of instances of RequestHandler is zero, what
indicates that probably they will be created dynamically during execution of the
system. Additionally, the composite structure diagram illustrates communication paths
– connectors – between ports of all active classes of the system. Therefore, d may
receive Count signals from the environment of Server via EnvToD connector.
Moreover, it can communicate with Server’s state machine by sending Confirm signals
to an unnamed behaviour port. Finally, RequestHandler may send Reply signals to the
environment using RHToEnv connector.

 40

EnvPortEnvPort

rh : RequestHandler[0..*]/0

rh : RequestHandler[0..*]/0
RHPortRHPort

d : Dispatcher

d : Dispatcher
DPortDPort

EnvToD

Count

EnvToD

Count

RHToEnv

Reply

RHToEnv

Reply

DToS

Confirm

DToS

Confirm

�������.	,	�.��	 ��������#
 �# �	 �� ��� ��� ���
 �����

Behaviour of the Counting Server is specified with the use of simple state

machines that define lifecycles of the active classes.

Server (see Figure 5.5) remains in Idle state until it receives a parameter less

Confirm signal that triggers a transition back to the same state. An action that is
performed on the transition increments by one the value of an integer attribute
noOfRequests.

�������.	.	�����	 �
�
 � ��	 �� ��� ��� ���
 �����

Dispatcher (see Figure 5.6) responds to Count signal by creating a new instance

of RequestHandler and sending Confirm signal to Server. The state machine has two
temporary variables – number and pause – that are used to receive the values carried
by Count signal and pass them to an instance of RequestHandler. It is noteworthy that
a constructor of RequestHandler is not an operation but a state machine.

IdleIdle

Count(number, pause)Count(number, pause)

Integer number;
Duration pause;
Integer number;
Duration pause;

rh.append(new RequestHandler(number, pause));rh.append(new RequestHandler(number, pause));

Confirm()Conf irm()

�������.	(������	 �
�
 � ��	 �� ��� �� � � �� � ���
 �����

An instance of RequestHandler (see Figure 5.7) starts its lifecycle by creating a

timer called PauseTimer and setting it to trigger a transition after a period determined
by the pause parameter. As the transition is triggered, RequestHandler invokes process

 41

operation of an associated RequestProcessor class. The operation computes the return
value according to a simple algorithm, expressed in the U2 Action Language. Finally,
RequestHandler sends Reply signal with the calculated value to the environment and
destroys itself by performing a stop action.

�������.	'	�����	 �
�
 � ��	 �� ��� �� � �� �� � � � ����
 �����

In order to run the complete model of the system, a build artefact needs to be

created, compiled, and launched. An exemplary interaction between objects of the
Counting Server is illustrated in a sequence diagram in Figure 5.8. It shows behaviour
of the system in response for sending it a signal Count(8, 5.0), where 8 is a number
that is processed by the server, and 5.0 is the delay after which a RequestHandler starts
computation of the result. As expected, the value returned by the system is 16.

�������.	&	�/��	 + 	
� ���! ����	 ��
 ��� ��� ��� ����� 	 �� � # ����� ��	 �" 	 ��

 42

5.4 TAU’s Compliance with UML 2.0

In the article on the future of software modelling, Kobryn [2004] foresees

production and release of UML 2.0 tools supporting a wide variety of dialects loosely
based on subsets of the UML 2.0 specification. These are subsets, because UML 2.0 is
too large to be completely implemented by any vendor in one product release. The
loose connection between the dialects and the UML 2.0 specification results mainly
from the lack of a reference implementation and an appropriate test suite that could
enforce and reliably measure the compliance.

A dialect of UML used in TAU is based on one of the submissions of the UML 2.0

Superstructure specification. However, in some cases TAU’s UML differs even from
this working version of the standard. This is mainly due to tool optimizations and
foundation of some design decisions on yet earlier submissions. TAU also includes
some extensions to the language, e.g. the possibility to use a textual syntax (the so-
called U2 Textual Syntax) in conjunction with the graphical notation defined for UML.
This syntax is based on C++ and Java and it additionally covers non-programming
language concepts like stereotypes and tagged values.

The model repository of TAU is based on the so-called Object Model that is

composed of around 200 metaclasses. Views of the underlying repository are provided
by metamodels. An example of such a metamodel is the built-in TTDMetamodel
which includes only the classes that are useful to be stereotyped, and omits almost all
of the associations and attributes found in the core repository.

5.4.1 TAU Object Model

The metamodel18 of TAU consists of eight inter-dependent packages (see Figure

5.9):
1. U2Build – contains one metaclass Artifact for modelling how to build and

deploy a system;
2. U2Dynamic – contains entities for modelling dynamic behaviour of a

system;
3. U2Entity – contains one metaclass Entity being the top-most superclass of

all other metaclasses;
4. U2Persistence – contains entities for modelling how to store a model in a

persistent way;
5. U2PredefinedTypes – contains the following primitive types: einteger,

eboolean, estring, evoid, ereal, and echaracter;
6. U2Presentation – contains entities for modelling how to visualise a model

using items like diagrams, symbols, lines, and text labels;
7. U2Scope – contains entities for modelling different kinds of scopes;
8. U2Static – contains some core entities for modelling static structural

aspects of a system.

18 Starting from this section, TAU metamodel refers to TAU Object Model.

 43

�������.	+	�5 �
 �� 	 ��� ��1/2 �% & '	
 ��� � � 	 ��

A detailed presentation and a description of the whole TAU Object Model or even

an overview of the key aspects of the part that can be used to build executable UML
models goes far beyond the scope of this thesis. However, without the knowledge of
some of its fragments, it would be very hard, if not impossible, to comprehend in depth
the details of the refactorings specifications from their catalogue (see Section 7).
Therefore, a brief presentation of the parts of TAU Object Model that are particularly
important in the context of these refactorings19 is provided in Section 6.9. Moreover, a
set of diagrams giving an overview of the whole TAU Object Model [Telelogic 2005]
can be found on a CD attached to the thesis.

5.5 Communication between Classes

The structural part of a TAU executable model can be described with the use of

collaborating active and passive classes. This fact is illustrated in Figure 5.10, which
shows TopLevelClass having several parts – among others ActiveClass1 and
ActiveClass2 – which may in turn be composed of other parts. All these active classes
form the architecture of the system. However, in order to fulfil their responsibilities,
active classes may use passive ones.

�������.	�- 	��
 � 	
	 �� ���� 	 ����#
 �# �	 �� ����1/2 �	 + 	
 # ��& �	 �
� � 	 ��

19 It is noteworthy that this part of TAU Object Model is not necessarily the most important in the
context of another refactorings, e.g. refactorings specific for executable UML models.

 44

Classes may communicate with each other by calling operations and sending
signals. Table 5.1 contains information on allowed methods of communication
between two types of classes.

 � �
��.	�	�� �

��
 ���� ��& 	 �� 	 	 ��
 ����	 �����1/2 �

�

�� $ ��

/ 0 1 1 23 4 � 0 �
 23 4 �

�

$ � ��� ��� � � 1 ��� �
� $ � ��� ��� � � 1 ��� �
�

/ 0 1 1 23 4 � 5 4 1 � 4 % � 5 4 1 � 4 % �

 $ �

0 �
 23 4 � 4 % � 4 % � 5 4 1 � 5 4 1 �

From passive to passive

Passive classes may communicate with each other only with the use of operations

invoked via associations. It is noteworthy that passive classes may not realize any
interfaces (neither via realization nor via ports). Therefore, situations like the ones in
Figure 5.11 are illegal.

�������.	��	�5 ����" 	 �
 ����	 ��
�! ��� ���	 ���(���! ����	 ���
 	 ��

From passive to active

A passive class may not initiate communication with an active one. It results from

the constraints valid for TAU executable models stating that (1) methods of a passive
class cannot call methods of an active one, and (2) passive classes cannot send signals.
As passive classes do not have lifecycles described by state machines, the first rule
prevents from any operational communication from them to active classes. Moreover,
the second rule forbids passive classes to send signals to active ones. This constraint is
not compliant with the basic causality model of UML 2.0 (see Section 4.2.2), which
enables communication from passive classes to active ones via signals. Nevertheless,
the only legal way to pass information from a passive class to an active one is the use
of return parameters of operations.

From active to passive

The only way an active class may initiate communication with a passive one is the

use of an operation call via an association. Passive classes cannot receive signals,
mainly because they do not have state machines that would handle them.

 45

From active to active

Active classes may communicate with each other with the use of both operations

and signals. These are handled by their state machines as soon as an adequate state is
reached, i.e. a state in which the particular operation call or signal receipt may trigger a
transition to another state.

Judging from the exemplary projects supplied with TAU, the most common way

of communication between active classes being parts is sending signals via connectors.
This seems to result from the fact that sending a signal, as opposed to invoking an
operation, is asynchronous and thus it does not suspend the execution of the state
machine of the sender. Connectors may be used also as a communication medium for
operation calls.

A top-level class (or a container) may use its composite associations to invoke

operations or send signals to its parts. On the contrary, communication in the opposite
direction, i.e. from a part to its owner is not possible, even if the composition
association between them is navigable in both directions. Therefore, a container class
may have behaviour ports that enable communication between its state machine (if it
exists) and its parts.

Communication with the use of associations between parts – but only calling

operations – is also technically possible. However, it is not justified, because active
classes are supposed to be as much independent as possible and communicate via ports
and connectors.

It is noteworthy that explicit connectors between ports are necessary only when

there is an ambiguity in how signals can be transmitted in a model. An example of
implicit communication is shown in Figure 5.12, where Class1 and Class2 are parts of
the top-level active class called RootClass. Class1 requires interface I1 containing
operation op2(), and Class2 realizes it. Remarkable is the fact, that part c1 may call
op2() via port1, and – assuming that the state machine of c2 is in a proper state – op2()
in c2 is invoked. This is possible, because in this model there is no uncertainty in
signal communication.

�������.	��	�.
� ��
 ������ ����
 �

��
 ���� ��

 46

6 EXECUTABLE UML MODEL REFACTORING

The main goal of this chapter is to present the results of an initial study on

refactoring executable UML models. It is structured as follows: Section 6.1 discusses
the role of behaviour in model refactoring; Section 6.2 emphasises the need for
refactoring executable UML models; Section 6.3 investigates whether an executable
subset of UML 2.0 could be used as a basis for a repository of a programming
language-independent refactoring tool; Section 6.4 illustrates the phenomenon of
change propagation in UML models; Section 6.5 defines executable UML in the
context of the thesis; Section 6.6 argues that all Fowler’s code refactorings [Fowler et
al.1999] can be applied to both UML 2.0 as well as TAU models; Section 6.7
identifies six refactoring areas in TAU executable models; Section 6.8 shows how
exemplary refactorings can be applied in the identified areas; Section 6.9 presents
several fragments of TAU Object Model, which are particularly important in the
context of refactorings triggered in ESPC area. Finally, Section 6.10 proposes a
specification template for refactorings of executable UML models.

6.1 Introduction

In order to comprehend the role of behaviour in UML model refactoring, we

differentiate two disjoint categories of structural UML models and executable UML
models. The former ones specify only static structure of systems, and the latter ones
can additionally specify their dynamic behaviour. As “there is no disembodied
behaviour in UML” [OMG 2004], we assume that each model that has a behavioural
part has a structural one as well, but the vice-versa does not have to be true.

The majority of previous studies presented in Section 3 focused on refactoring of

structural models with the use of transformations – let us call them structural
refactorings – derived from the majority of Fowler’s structure-triggered refactorings.
As well pre- and postconditions as transformation steps of these refactorings are
simplified when compared to their code equivalents. This is caused by the lack of
behavioural specification that normally would be taken into consideration in
preconditions, and next transformed by a refactoring.

To answer a question whether these transformations are suitable for different kinds

of UML models, we distinguish three states in which UML models can be during their
development:

1. Structure of the system is modelled, but its behaviour is not yet defined.
2. Structure of the system is modelled, but its behaviour is defined only in

the underlying code.
3. Both structure and behaviour of the system is modelled.

The first category encompasses both (a) structural models created in the context of

simple forward engineering and (b) early executable models. These models can be
safely refactored with the use of transformations originating from the majority of
Fowler’s structure-triggered refactorings. However, the question that arises in the
context of this model category is whether these transformations are still refactorings.
As argued by Fowler [2004], one cannot refactor anything that does not have a well-
defined behaviour. Otherwise, how can one guarantee the behaviour-preservation of
these transformations? This argument speaks for calling application of refactoring
transformations to structural and early executable models – restructurings. On the

 47

other hand, can a transformation not preserve properties of something that does not yet
exist?

The second category covers structural models created with the use of round-trip

engineering. The models in this state outwardly do not differ from the ones from the
first group. However, application of above-mentioned simplified refactorings to these
models and a successive synchronization of the underlying source code with an altered
model will likely introduce errors. Therefore, suitable versions of refactorings for this
category of models need to somehow (1) obtain information necessary for their
preconditions from the corresponding source code, and (2) update not only structural
but also behavioural parts of this code to reflect changes introduced to the model. The
refactoring of UML models from this category with the emphasis on the problem of
vertical software consistency is considered in more detail in Sections 3.5 and 3.6.

The third category encompasses late executable models. By “late” understood is

the presence of a behavioural part of a model that will eventually allow execution of
the modelled application by e.g. automated source code generation. Structural
refactorings applied to a model from this category transform only its structural part,
what usually causes horizontal inconsistency between its structural and behavioural
descriptions. Appropriate versions of refactorings for this category of UML models
should take into account in their preconditions and update both structural and
behavioural information available in the model. More concretely, it is necessary to
capture at least the actions that create and delete objects, get and set attribute values,
and call operations [Kazato et al. 2004].

6.2 Motivation for Refactoring Executable UML Models

In this section, we present two exemplary common scenarios emphasising the need

for refactoring of executable UML models.

In the first scenario, an inexperienced modeller builds a too simple class model,

what in turn enforces construction of too large and too complex state machines
describing the lifecycles of the initially identified classes. Mellor & Balcer [2002], in
their book on Executable UML [2002], illustrate this problem of “incomplete factoring
of classes” on an example20, in which a part of the responsibility of a class Order is
extracted into a new class ShoppingCart. This transformation, called by the authors
Refactoring Behaviour, leads to the simplification of as well structure of Order as its
statechart diagram. In this case, the refactoring is triggered on the class model, and the
state machines are supposed to be simplified in a behaviour-preserving way, i.e. the
externally observable behaviour of the system cannot change. An attempt to carry out
this task in an ad hoc manner, i.e. without the use of behaviour-preserving
refactorings, would likely lead to a failure.

In the second scenario, an inexperienced modeller fails to construct good state

machines for previously properly identified classes. Mellor & Balcer [2002] provide
an example21 of two statechart diagrams representing the lifecycle of a Shipment class.

20 Chapter 12.2 “Reworking the Class Diagram”.
21 Chapter 12.1 “Statechart Diagram Construction Techniques”.

 48

�������(�	�/�� 	 ��<�� �� 	 � �����	 �
�
 � ��	 �� ��� � �� 	 �� ��
 ������� 	 ��� ��@�$��
 	 ���� � ���

The first statechart is built in accordance with “Modelling Intention” technique, in

which a class relies on itself in fulfilling its lifecycle (see Figure 6.1), and the second
one is constructed with the use of an opposite approach that leads to a “spider” shape,
with a central state that waits for requests and a set of “legs” that respond to each of
them (see Figure 6.2).

�������(�	�/�A�� �� 	 �<�� �� 	 � B�����	 �
�
 � ��	 �� ��� � �� 	 �� ��
 ������� 	 ��� ��@�$��
 	 ���� � ���

 From an external viewpoint, both statecharts may describe the same behaviour of

the Shipment class. However, from the development perspective, the first statechart is
more readable, comprehensible, and results in a much more maintainable model than
in the case of the “spider-shaped” one, which obscures key sequencing issues, what
causes that e.g. it can be tricky to determine the state in which an object really is. If for
some reason, a modeller ends up with “spider-shaped” statecharts and subsequently
with an unmanageable model, the only alternative for removing and creating the part
of the model from scratch is to refactor these state machines, consequently modifying
also the class model. The use of this technique enables the modeller to obtain, in a safe
and stepwise manner, a well-formed model from an ill-formed one.

These two scenarios are not the only ones that motivate refactoring of executable

models. Moreover, even very experienced modellers can benefit from using this
technique. Mellor & Balcer [2002] emphasise that the process of building Executable
UML models is incremental and iterative – starting from simple models with limited
capabilities, additional functionality is added incrementally. As one cannot foresee all
the emerging requirements, refactoring can be used to make the model more
maintainable, so that the new functionality can be next incorporated to it faster than to
a bad-factored one.

 49

6.3 Language-Independent Code Refactoring with UML

Starting from Section 6.5, executable UML is treated as a concrete language used

for development of models that are expressive enough to be compiled to source code
in any programming language. This fact indicates that the opposite process, i.e.
regeneration of a model from a code, is also likely to be possible, what gives rise to the
question whether an executable subset of UML 2.0 could be used as a basis for a
repository of a programming language-independent22 refactoring tool? Such a tool
would be very useful for companies that for some reasons hesitate to shift from the
traditional to the model-driven development, in which it would be redundant, but still
want to benefit from round-trip engineering. Van Gorp et al. [2003a] describe an
example of this kind of a tool, which however bases not on UML 2.0 but the on
GrammyUML metamodel.

To answer the above-posed question one has to first identify the information

needed to reason about code refactoring, and next determine whether this information
can be expressed with the use of UML 2.0. Particularly important are constructs that
may appear in method bodies, because UML actions that may be used to model them
have been rapidly evolving over successive versions of the UML specification.

According to Van Gorp et al. [2003a; 2003b], a stable basis to reason about

consistent refactoring is the notion of access-, call-, and update-behaviour augmented
with the concept of type checking and type casting. It turns out that the UML 2.0
Actions package contains metaclasses to model all these constructs.

Attributes of classes can be accesses with the use of ReadStructuralFeatureAction,

and updated by as well ClearStructuralFeatureAction as two subclasses of
WriteStructuralFeatureAction, namely AddStructuralFeatureValueAction and
RemoveStructuralFeatureValueAction (see Figure 6.3).

�������(����#
 �# �����	 ��# �	 �/
 ��� ����% � ,��� � 9��

CallOperationAction is suitable for modelling operation calls (see Figure 6.4).

22 Since UML is object-oriented, concerned here is the family of object-oriented languages.

 50

�������(,	��� ��� � ��� ��� � � � ��� � ��% � ,��� � 9��

The notion of type checking and type casting is expressible by

ReadIsClassifiedObjectAction (or ReadExtentAction) and ReclassifyObjectAction
respectively (see Figure 6.5).

�������(.	�% & '	
 ��/
 ��� ���=� ���>��% � ,��� � 9��

As stated by Mens & Tourwé [2004], a tool or a formal model for refactoring,

besides being sufficiently abstract to be applicable to different programming
languages, should also provide the necessary hooks to add language-specific
behaviour. In the case when the set of actions offered by UML 2.0 is not sufficient to
model them, one can use OpaqueAction introduced to define actions with
implementation-specific semantics.

6.4 Change Propagation in UML Models

As already stated in Section 3.1, according to UML specification [OMG 2004]

diagrams are not parts of UML models, but just graphical representations of their parts.
However, since diagrams are expected to be stored together with models is a
repository, some state-of-the-art UML CASE tools like Telelogic TAU extend UML

 51

metamodel and treat diagrams and their contents as e.g. instances of subclasses of
PresentationElement23 metaclass, being a subclass of Element – the root UML
metaclass. Disregarding the way the diagrams are stored by tools, we distinguish two
kinds of modifications – model modifications, and diagram modifications, where each
former one may trigger zero to many latter ones. This distinction is based on an
assumption that diagrams are automatically regenerated from a model repository after
each change of any model element, so that they always reflect an up-to-date state of a
part of the model they show.

In some cases, a modification of a model element in one part of the model seems

to causes several other model modifications in other parts of this model. For example,
if the name of an attribute attrA is changed to attrB, then this modification is reflected
in all parts of the model, in which this attribute is referenced, i.e. each occurrence of
attribute attrA in bodies of all operations24 will be substituted with attrB (see Figure
6.6).

�������((�� � ��� 	 �� �� � �� ���� �����	 ���	 ��
��� ���������& # �	 �

However, these automatic updates of operations’ bodies are ostensible, and the

only actual model modification that occurred in this example was the change of the
attribute’s name. The explanation of this phenomenon requires comprehension of the
UML metamodel, on which – at least conceptually – are based model repositories of
all UML metamodel-driven tools.

In the example, each instance of ReadStructuralFeatureAction metaclass that

references attribute attrA has an association, represented by structuralFeature
attribute, to the same instance of Property (subclass of StrcturalFeature) metaclass
being attribute attrA. This Property has a metaattribute name (inherited from
NamedElement), and after the change to the value of this metaattribute, associations
represented by structuralFeature attributes still point at former attrA, which is now
called attrB. The corresponding part of the UML 2.0 metamodel is shown in Figure
6.7.

�������('	�� �� � � ��� � �� �� � �� �� ��� � ��� � ��% � ,��� � 9��

23 PresentationElement is not a UML 2.0 metaclass
24 Generally – in all Activities

 52

In the context of refactoring, Sunyé et al. [2001; 2002] noticed this observable fact
that some model elements shown in one view, e.g. in class diagrams, may have a direct
connection to the elements of other views, and therefore some refactorings that apply
to elements in one view may have an impact on different UML views. This
phenomenon is often called change propagation. In some cases, a change propagates
in a way that no additional modifications are needed to restore the consistency and
correctness of a model. In this simple example, this fact was very helpful, because it
prevented us from the necessity of manual adjustment of attribute names in operation
bodies. However, the lack of precise knowledge of UML metamodel could lead to
misguided conclusions that e.g. in Figure 6.8, after moving attribute attrX from class
ClassB to ClassC, operation body of operation op1() from ClassA would contain the
following expression: Integer i = asC.attrX.

�������(&	�� � ��� 	 �� �� � �� ���� �����	 ��
� " ��� ���������& # �	 �

However, each instance of StructuralFeatureAction metaclass obtains the object,

whose structural feature is to be read or written, not from the value of the
qualifiedName metaattribute of this structural feature, but via the object association
(see Figure 6.7).

As it will be shown in next sections, even simple rename refactorings, i.e. Rename

Attribute, Rename Operation, and Rename Class, cannot be fully accomplished by
application of only corresponding rename operations – even they may require
additional adjustments.

6.5 Executable UML in the Context of the Thesis

Although the UML 2.0 Superstructure specification [OMG 2004] defines the run-

time semantics of the executable subset of UML, an attempt to refactor executable
models fully compliant with the standard has been abandoned due to the following
reasons:

1. The specification has been rapidly evolving25, and its currently available
version is not yet the final one;

2. The executable subset:
a. contains many semantic variation points,
b. contains overlapping constructs,
c. is not streamlined strictly enough.

Therefore, it has been decided to focus on refactoring of models that can be built

and executed in one of the state-of-the-art UML CASE tools that fulfil two following
criterions:

25 See the list of almost 900 issues submitted to UML 2.0 Superstructure Finalization Task Force at
http://www.omg.org/issues/uml2-superstructure-ftf.html.

 53

1. Models executed by this tool have to be as much compliant as possible
with the UML 2.0 standard [ibid.];

2. The tool has to be either free-of-charge or available at no less than one
university at which this thesis is written.

The only tool that satisfies both requirements is Telelogic TAU Generation2. For

that reason, the catalogue of model refactorings in Section 7 concerns executable UML
models that can be compiled to TAU Model Verifiers, i.e. applications instrumented to
support simulation, tracing, and detailed debugging at the UML level (refer to Section
5). This category of models has been chosen, mainly because (1) they are proven to be
executable, and (2) their behaviour can be visualised and thus easily verified.

6.6 Determination of Candidate Refactorings

The work on composition of the catalogue of executable UML model refactorings

starts with determination of candidate refactorings, i.e. Fowler’s refactorings, which
can be basis for model ones. In other words, chosen are going to be only these
refactorings from Fowler’s catalogue, from which executable UML model refactorings
can be easily derived.

The four refactorings from Fowler’s Big Refactorings group are not taken into

consideration, since they seem to be too ambiguous to become simple model
transformations. Instead, they are rather examples how different refactorings can be
employed in order to perform a serious architectural transformation of a piece of
software. Therefore, model transformations derived from Tease Apart Inheritance,
Extract Hierarchy, and Separate Domain from Presentation26 could be performed with
the use of a sufficiently expressive set of model refactorings. The refactoring Convert
Procedural Design to Objects is hardly expressible in UML, because it concerns
systems created with the use of structural, as opposed to object-oriented, paradigm.

The selection is based on an obvious assumption that only the refactorings that are

triggered on elements existing in a language may by applied to programs written in
this language. For example, it is not possible to perform Replace Nested Conditional
with Guard Clauses in a language that does not support nesting of conditional
statements. Therefore, a mapping between all twenty-one code trigger-elements and
their counterparts in TAU (in the form of TAU Object Model metaclasses) has been
prepared (see Appendix F). Additionally, a similar mapping is provided between these
metaclasses and their equivalents in the UML 2.0 metamodel [OMG 2004], what is a
great starting point for a future work on refactoring of executable UML models fully
compliant with the standard. Moreover, this comparison shows how incompatible with
the UML 2.0 metamodel is the one implemented in TAU.

In the effect of the work on the mapping, equivalents for all code trigger-elements

have been identified – both among TAU and among UML 2.0 metaclasses. This
implies that all Fowler’s code refactorings can be triggered on as well TAU as UML
2.0 executable models. Assuming that the solution domains of refactorings do not
require any additional language elements or constructs, all of them may be performed
on executable UML models.

26 Assuming the existence of a GUI modelling library.

 54

6.7 Refactoring Areas in TAU Executable Models

As already indicated in Section 2.7.1, each code refactoring may be triggered on

either a structural (e.g. field) or a behavioural (e.g. temporary variable) element. This
implies that in programs written in object-oriented programming languages there are
two refactoring areas, namely (1) structure – inter-related classes and their features,
and (2) behaviour – bodies of methods.

In the context of UML, a refactoring area may be defined as a certain part of a

model containing particular trigger-elements. Refactorings applicable for UML 1.x
models are only the structure-triggered ones, because in these models there is only one
refactoring area – the structure. On the other hand, in TAU executable models, six
refactoring areas can be distinguished (see Figure 6.9).

�������(+	���+ ��	 ��
 �� ���� ���	 ������1/2 �	 + 	
 # ��& �	 �
� � 	 ���

6.7.1 External Structure of Active Classes (ESAC)

The area consists mainly of active classes that have attributes, operations, and

ports that require and realize single signals and/or whole interfaces. Additionally,
active classes may have (composite/shared) associations to passive classes and
composite associations to their parts being other active classes. All these elements may
be show in class diagrams, and some of them (e.g. parts and ports) additionally in
composite structure diagrams. Candidates for transformations that can be triggered on
model elements from this area are all of the structure-triggered code refactorings.
However, in many cases their practical realization may considerably differ from the
ones provided by Fowler [Fowler et al. 1999]. Moreover, in the area there are
potentially many other, so far unidentified refactorings triggered on among others
ports, signals, timers, and interfaces.

6.7.2 Internal Structure of an Active Class (ISAC)

The area consists of active classes that are parts of their container, and which

communicate with each other by sending signals and invoking operations via ports
wired by connectors. Some aspects of this area may be illustrated in class diagrams,
but e.g. connectors – only in composite structure diagrams. As composite structures
are new to UML 2.0, so far, there exists no literature concerning refactorings
applicable to this area. Nevertheless, these transformations would deal mainly with
reorganization of internal structure and communication infrastructure of active classes,
and thus they have no equivalents among code refactorings.

 55

6.7.3 Life Cycle of an Active Class (LCAC)

The area constitutes implementation of a default state machine of an active class,

represented in a statechart diagram. In this area, there are two kinds of trigger-
elements: (1) states and transitions between them, and (2) (elements of) compound
actions on transitions. Refactorings triggered on the elements from the first group are
mainly specific versions of some behaviour-triggered code refactorings. Other, but
already UML specific, transformations identified and described by Sunyé et al. [2001]
and Boger et al. [2003] can be applied to the elements from the second group.

6.7.4 Operation Implementation of an Active Class (OIAC)

The area constitutes implementation of an operation belonging to an active class.

In the context of active classes, this implementation may be either state or stateless.
However, the former solution introduces only new presentation elements for
corresponding triggers being the same model elements, namely (elements of) various
actions, as in the latter case. Refactorings triggered on elements from this area may be
derived from code behaviour-triggered ones. However, their realizations may differ
from the ones provided by Fowler [Fowler et al. 1999] due to the possibility of among
others communication with the use of signals and via connectors.

6.7.5 External Structure of Passive Classes (ESPC)

The area consists of passive classes that may have attributes and operations as well

as (composite/shared) associations and generalizations to other passive ones. All these
elements may be show in class diagrams. Candidates for transformations that can be
triggered on model elements from this area are the same as in the case of ESAC, i.e. all
of the structure-triggered code refactorings. However, their practical realizations are
usually simplified with respect to their equivalents from ESAC.

6.7.6 Operation Implementation of a Passive Class (OIPC)

The area constitutes implementation of an operation belonging to a passive class.

In the context of passive classes, this implementation may be only stateless, i.e. in the
form of actions written in U2 Action Language contained in a text diagram. As in the
case of OIAC, the refactorings triggered on elements from this area may be derived
from code behaviour-triggered ones, but their practical realizations are usually
simplified with respect to their equivalents from OIAC.

6.8 Application of Exemplary Refactorings

To facilitate the understanding of refactoring areas, we choose four

transformations27 and show how they can be applied to an exemplary TAU executable
UML model of a satellite28. The selected transformations are:

1. Area ISAC – Extract Port29 – triggered on a port of an active class, which
is used for communication with several different parts. It relies on creating

27 It is worthy noting that refactorings Replace Method with Method Object and Hide Delegate can be
triggered also on the elements in the OIPC and ESAC areas, respectively.
28 For the sake of conciseness, only these parts of the model, which are important in the context of
particular transformations, are presented.

 56

a new port and reconnecting some connectors of the old one to the new
one.

2. Area LCAC – Group States – triggered on a simple state in a default state
machine of an active class. It relies on transforming the state into a
composite one, and thus reduces the number of redundant transitions.

3. Area OIAC – Replace Method with Method Object – triggered on an
implementation of an operation of an active class, which is too long and
cannot be decomposed with the use of other refactorings. It relies on
turning the operation into a class.

4. Area ESPC – Hide Delegate – triggered on a passive class. It relies on
encapsulating it from other ones, and thus reduces the coupling between
classes in the model.

6.8.1 Area ISAC – Extract Port

The top-level active class of the model is Satellite, which has several parts typed

by EarthCommunicator, Navigator, and InstrumentsController. As can be observed in
Figure 6.10, pOutput port of earthCommunicator serves for communication with two
different parts with the use of two semantically unrelated signals – plan, containing the
most recent plan of the mission, and command, carrying new instructions for scientific
and navigational instruments. A refactoring that should be triggered on pOutput is
Extract Port.

�������(�- 	�/���
� ����	 � �
 �
� � ���	 ����#
 �# �	 �� ��� ��
�� ��� � ��������

As the result of the refactoring, a new port pCommand is added to

EarthCommunicator, and the connector that transmits command is reconnected to it.
Next, on a class diagram showing EarthCommunicator, command is moved from to
the list of signals required by pOutput to the one belonging to pCommand. Assuming
that in all output actions – be it in a default state machine of EarthCommunicator or in
bodies of its operations – signals are sent without via keyword, the refactoring finishes,
otherwise each expression “[output] command(instr) via pOutput” has to be changed
to “[output] command(instr) via pCommand”. Subsequently, one can apply Rename
Port refactoring to pOutput in order to give it a more meaningful name, e.g. pPlan (see
Figure 6.11). Finally, one can consider merging pPosInfo and pPlan in both
EarthCommunicator and Navigator with the use of Merge Ports refactoring.

29 This refactoring has not been previously mentioned in the literature.

 57

�������(��	�/���
� ����	 � �
 �
� � ���	 ����#
 �# �	 �� ��� ��
�� ��� � �����������	 ������ � 	 ���� �* + ���
 ��5 � ������ �

- 	 ��
	 �5 � ���� ��� � � �� � ��� � ���

6.8.2 Area LCAC – Group States

The lifecycle of InstrumentsController is defined by a state machine shown in

Figure 6.12. Just after creation, an instance of the class finds itself in Idle state, in
which it awaits for command signal sent by earthCommunicator. The signal triggers a
transition to Decoding state. Next, after going through Calculating and Encoding
states, the state machine reaches Adjusting state, in which it adjusts every 10 ms the
instruments, as long as new instructions appear.

�������(��	�/�����	 �
 � ����� ��� ��
��� � � ��� ��
� �	
	 ������ ��� ����� 	 ��# �������	 �
�
 � ��	 �� ��
!� � ��� 	 �� �� �� � ��� �����

It can be noted that from each state there is a transition to Idle state triggered by

error signal. These redundant transitions can be eliminated by the application of a
refactoring known as Group States [Sunyé et al. 2001]. During the refactoring, first a
new state Working is created. Next, three transitions triggered by error from
Calculating, Encoding, and Adjusting are deleted, and the one from Decoding is
reconnected to the new state, as well as a transition triggered by command from Idle.
Subsequently, a new state machine is created in Working, what makes this state
composite. Finally, Decoding, Calculating, Encoding, and Adjusting are moved
together with their transitions to the new state. The transformation is completed by
addition of a start symbol. Its effects can be seen in Figure 6.13.

 58

�������(� 	�1� � �����	 �
 � ����� ��� ��
���� � � ��� ��
� �	
	 ������ ��� ����� 	 ��# �������	 �
�
 � ��	 �� ��!� � ��� 	 �� �� �
�� � ��� �����=�	 ��>���� �" � �# �� $ �����	 �=��� � �>0����	 ���� � �! ��� �,�� # � �����	 ��

6.8.3 Area OIAC – Replace Method with Method Object

Navigator component of Satellite is a compound object, which has as one of its

parts an instance of an active class CollisionDetector. The class has among others an
operation avoid, that takes as a parameter an instance of Collision class obtained from
invocation of detect operation. The responsibility of avoid is to (1) determine how to
avoid the collision and (2) return the result of computation in the form of an instance
of AvoidancePlan class. The problem with avoid is that its operation body is too long,
what is an unequivocal symptom of Long Method bad smell [Fowler et al. 1999].
However, the operation uses its local variables dimX, dimY, and dimZ in such a way
that even after application of Replace Temp with Query, its decomposition with the
use of Extract Method is impossible. Therefore, instead of Extract Method, Replace
Method with Method Object is triggered on avoid. The described part of the model
before the transformation is shown in Figure 6.14.

�������(�,	�/�
 ������ ��� ��
��� � � ��� ������# ���� ��C # ����! ��� ��� ���� � ��
 ���� ��� ��- 	 � ��
 	 �� 	 �� � � �� ��� �

� 	 �� � � �% & '	
 ��

In the first step, a new passive class is created and named by the operation. Next,

an attribute for each temporary variable (dimX, dimY, and dimZ) and the parameter
(collision) of avoid is created in the new class. Then, Avoid is given a constructor that
initializes collision attribute. Subsequently, in the new class a new operation compute
is created with the body copied from avoid. Next, all temporary variables are removed
from the body of compute, and the body of avoid is replaced with one that creates an
instance of Avoid and calls compute. The effect of the transformation is shown in
Figure 6.15. Because all the previous local variables of avoid are now attributes, one
can easily decompose the operation with the use of Extract Method.

 59

�������(�.	�/�
 ������ ��� ��
��� � � ��� ��� ���� �� � � ���� �� �����	 ���� � ��
 ���� ��- 	 � ��
 	 �� 	 �� � � �� ��� �� 	 �� � � �
% & '	
 ��� ���� 	 �& � � ! �� ��� � � �� �� � 	 ����� ��

It is worth to observe that the model after Replace Method with Method Object

will not work properly if avoid invokes any operation of CollisionDetector or any
operation of any other class accessible from it. In such a situation, Fowler [Fowler et
al. 1999] advises to give the new class an attribute for the object that hosts the original
operation (the source object), initialize it in the constructor, and use it for any
invocations of operations on the original class. However, in this case it cannot be done,
because CollisionDetector is an active class, and passive classes are not allowed to
invoke any operations of active ones. Moreover, avoid can include neither output
actions responsible for sending signals nor actions concerning timers, i.e. timer set or
timer reset actions, because these are also not permitted in operation bodies of passive
classes.

6.8.4 Areas ESAC & ESPC – Hide Delegate

The refactoring discussed here relates to the Fowler’s statement saying that “one

of the keys, if not the key, to objects is encapsulation [Fowler et al. 1999].” In general,
the less each class in a model needs to know about other classes, the less possible is
that a change in one place causes the necessity to adjust other parts of the model, what
makes the model maintenance easier and cheaper. For instance (see Figure 6.16), let
us consider a situation in which a client class (PlanSupplier) invokes an operation
(getDestination) defined on one of the attributes (plans accessible via getDestination)
of a server class (PlanStorage).

�������(�(�/�
 ������ ��� ��
��� � � ��� ������# ���� ��C # ����! ��� ��� ���� � ��
 ���� ��� ��D �� 	 �) 	 �	 � ��	 �

As the client has to know about the delegate class (Plan), each change of the

delegate may propagate to the client. This redundant dependency can be removed by
placing a simple delegating operation on the server, which hides the delegate. A
refactoring that performs this task is known as Hide Delegate. First, getCurrentPlan is
renamed with the use of Rename Operation to getCurrentDestination. Then, assuming
that the most recent plan is always the first one in the plan collection, the body of the
operation is changed from “return plan[0]” to “return plan[0].getDestination()”.
Finally, each statement in the form of “Destination d =

 60

planStorage.getCurrentDestination().getDestination()”30 is replaced by “Destination d
= planStorage.getCurrentDestination()”. These statements may occur in bodies of all
operations of both passive and active clients of PlanStorage, as well as on transitions
in state machines of active ones. After the refactoring, changes become limited to the
server and do not propagate to the client (see Figure 6.17).

�������(�'	�/�
 ������ ��� ��
��� � � ��� ��� 	 �	 ��	
 ��� ���� � ��
 ���� ��� ��D �� 	 �) 	 �	 � ��	 �

6.9 Metamodel of ESPC Area

The initial catalogue of TAU refactorings in Section 7 contains specifications of

transformations triggered mainly on elements from the ESPC (External Structure of
Passive Classes) area, namely:

• Class
• Class::Attribute
• Class::Operation
• Class::Operation::Parameter

Comprehension of formal specifications of these refactorings requires detailed

knowledge of the part of TAU metamodel that enables modelling of external structures
of passive classes, and how constructs from this part are related to, i.e. use or are used
by, elements from other views. Therefore, this Section presents shortly several
fragments of TAU Object Model, which are particularly important in the context of
refactorings triggered in ESPC area, organized around attributes and operations of
passive classes.

6.9.1 Attribute of a Passive Class

An attribute of a class, modelled with the use of Attribute metaclass31, is owned by

a class via ownedMember association, and all attributes of a class can be determined
using attribute association. The type of an attribute can be determined via type
association inherited by Attribute from Typed metaclass, and a class in which it is
defined – among others with the use of namespace association inherited by Class (an
indirect superclass of StructuredClassifier) from Namespace, or source association
inherited from Signature being also a superclass of Class (see Figure 6.18).

30 It is noteworthy that the presence of getCurrentDestination in this statement is caused by
application of Rename Operation.
31 For the taxonomy of Attribute metaclass refer to Appendix G.

 61

�������(�&	�� ����% � ���
	 ��
 ���������� 	 ��� �	 �� ����������& # �	 �� ����
 �����

In the context of TAU executable UML, an association is a relationship between

two signatures, indicating that instances of these signatures will be directly or
indirectly connected to each other. An association has two association ends,
represented as attributes accessible via associationEnd (see Figure 6.19).

�������(�+	�� ����% � ���
	 ��
 ���������� 	 ��� �	 �� ���������
 ����� ��	 �� �

6.9.1.1 Attribute reference and access

The only way to reference/access an attribute of a class from a foreign one is to

use an instance of FieldExpr, being one of direct subclasses of Expression, which can
be owned by ExpressionAction via expression association (see Figure 6.20).
FieldExpr points referenced/accessed attribute using field association. Additionally, it
owns an Expression, being for example an identifier (Ident inherits from Expression)
pointing another, certainly local, attribute via definition association.

 62

�������(�- 	�� ����% � ���
	 ��
 �����# �	 � �& ! � ���� & ' � ����� �!� �� ������
 ��� ���

Locally, i.e. in the scope of a class owning it, an attribute can be read/wrote as a

definition of an Ident, or alternatively as a field in a FieldExpr, but it the latter case,
only if it is typed by a class in which it is defined.

Instances of CompoundAction from Figure 6.20, containing – probably nested –

field expressions and identifiers pointing attributes of passive classes, can potentially
model following elements:

• implementations of operations:
o in passive classes,
o in active classes,

• implementations of “initialize” state machines of active classes in:
o actions performed on triggered transitions,
o conditions evaluated in guards of guarded transitions.

6.9.2 Operation of a Passive Class

Operation32, next to Signal and Timer, is one of so-called event classes. All

operations of a class can be obtained via behavioralFeature association (see Figure
6.21). Some of these operations may be constructors (constructor association) or
destructors (destructor association). UML standard defines a constructor as “any
operation having a single return result parameter of the type of the owning class [OMG
2004].” On the contrary, constructors in TAU are operations having the same names as
classes to which they belong, and that do not have any explicit result parameters. A
Class may have one default constructor accessible via parameterlessConstructor
association.

32 For the taxonomy of Operation metaclass refer to Appendix G.

 63

�������(��	�� � ��� ��� � �
	 ��
 ���������� 	 ��� �	 �� ������ � 	 ����� ��� ����
 �����

All parameters of an operation can be obtained via parameter association, and the

return one – using return association. In operation bodies, they can be
referenced/accessed via definitions indicated by instances of Ident metaclass.

6.9.2.1 Operation invocation

An invocation of an operation of a passive class that is not a constructor can be

modelled with the use of CallExpr that has two important attributes – called pointing
the called operation, and to optionally indicating the Ident of an attribute on which the
operation is invoked (see Figure 6.22). As CallExpr inherits from
ActualArgumentContainer, it enables invocation of operations with actual arguments
accessible via argument association.

�������(��	��� ��& ' � ��E�������
	 ���� ��1/2 �% & '	
 ��� � � 	 ��

A CallExpr can be contained directly in an ExpressionAction or indirectly in

another expression or action in a CompoundAction representing either a body of an
operation in a passive or an active class or actions on a triggered transition in a state
machine of an active one. It is noteworthy that in the latter case the transition can
connect two states in a state machine nested in another state.

 64

6.10 Specification of TAU Executable UML Refactorings

As indicated by Staro� & Ku�niarz [2004], there are many different ways of

defining UML model transformations, but in a practical approach, a specification of
such a transformation consists of two parts – an informal one and a formal one. In the
former, basic ideas behind a transformation are expressed, usually in the natural
language, and the latter formalizes (usually in OCL) both conditions for the allowable
usage of the transformation (preconditions) and its obligations (postconditions). The
informal part makes the transformation more comprehendible, and the formal one
facilitates its implementation. Moreover, as stated by Kazato et al. [2004],
formalization of refactoring transformations is a necessary step on the way to their
automation.

Each refactoring in this thesis is specified according to the following template:

1. Informal specification:
a. Name the name of a model refactoring
b. Origin

(optional)
the name of a code refactoring from which it is
derived, and a reference to its description – only if it
is derived from a code refactoring

c. Areas the refactoring area(s) of the transformation
d. Trigger-element the trigger-element of the transformation
e. Definitions a list of definitions used in the informal

specification – each definition has a name and an
explanation of its meaning; the symbol [T] after the
name indicates that the definition is a trigger-
element; in specifications, definitions are referred to
via their names in curly brackets

f. Aim the goal of the transformation (one sentence)
g. Reasons probable reason(s) for performing the refactoring
h. Description

(optional)
a short explanation of the refactoring – only if its
intent is not obvious

i. Bad smell
(optional)

a description of a bad smell tightly coupled with the
refactoring, i.e. the one that can be usually removed
with the use of the transformation

j. Preconditions a list of requirements that have to be fulfilled by a
model in order to enable an execution of the
transformation, as well as their explanation and
justification

k. Postconditions a list of properties that have to be satisfied by the
model in order to approve the refactoring – these
conditions are based on the frame assumption, i.e.
all modifications are limited to the ones mentioned
in postconditions

l. Mechanics a mechanics of the transformation – identification of
basic operations and/or other refactorings and the
order in which they should be applied to cause
fulfilment of the postconditions

m. Algorithm an algorithm of the transformation outlined in
section 1.l, expressed with the use of basic
operations and/or other refactorings

2. Formal specification:
a. Signature the transformation heading in the OCL-like format

 65

b. Bad smell The bad smell from section 1.i
c. Preconditions the preconditions from section 1.j expressed in OCL
d. Postconditions the postconditions from section 1.k expressed in

OCL

The format of the transformation signature (2.a) is following:

context ModelElement::RefactoringName(ArgumentsList),

where ModelElement is a metaclass of TAU Object Model being the type of the
context element, RefactoringName is the unique name of a refactoring (written without
spaces), and ArgumentsList is a list of any number of transformation formal
parameters, which define existing model elements or some properties – usually names
– of model elements that will be created and added to the model during the
transformation. Each argument is specified in the following way:

ArgumentName : ArgumentType,

where ArgumentName is a symbolic name of the parameter that can be later used in
pre- and postconditions, and ArgumentType is a TAU Object Model metaclass being
the type of this parameter. Arguments are separated from each other with comas.

6.10.1 Basic Operations

As already observed by Kazato et al. [2004], each refactoring can be expresses as

a sequence of basic operations that introduce (1) modifications that are essential for a
given refactoring, and (2) changes that ensure that an output model will be consistent
and correct.

In this thesis, two kinds of basic operations are distinguished, namely (1)

structural basic operations that modify structural model elements, and (2) behavioural
basic operations that modify behavioural model elements. If a basic operation seems
to be both structural and behavioural, then is should be split into two parts – one
structural and one behavioural.

Some basic operations have the same names and parameters as refactorings. To

distinguish between them, the names of the latter ones are capitalized (e.g.
renameClass and RenameClass). The main difference between basic operations and
refactorings is that the latter ones are behaviour preserving. In practice, it means that
e.g. renameAttribute (basic operation), as opposed to RenameAttribute (refactoring),
can give an attribute defined in a class ClA a name that is already used by another one
in ClA. If needed, a refactoring can be a part of the algorithm of another refactoring,
what reflects the presence of “includes” relationship between these transformations.

In the frames of the work on an initial catalogue of TAU executable UML model

refactorings (see Section 7), following (in alphabetical order) basic operations33 have
been identified:

context Class::renameClass(newName: String)
post: name = newName

context Operation::renameOperation(newName: String)
post: name = newName

33 Their specifications are provided in OCL [Warmer & Kleppe 1999].

 66

context Class::addGetter(a: Attribute)
post: behavioralFeature->exists(o: Operation | o.isGetter(a))
/* query isGetter is defined in Section 7.1.3 */

context CallExpr::replaceInvocation(accessor: Operation, o: Operation)
post: called = o and to.notEmpty() and to.oclIsTypeOf(CallExpr) and to.called =
accessor and to.to = to@pre)

context Operation::removeOperation()
post: not self@pre.namespace.behavioralFeature->exists(o: Operation | o =
self@pre)

context Attribute::renameAttribute(newName: String)
post: name = newName

context Attribute::moveAttribute(from: Class, to: Class)
post: not from.attribute->exists(a: Attribute | a = self) and to.attribute-
>exists(a: Attribute | a = self)

context Attribute::removeAttribute()
post: not self@pre.namespace.attribute->exists(o: Attribute | o = self@pre)

context Class::addAttribute(a: Attribute)
post: attribute->exists(attr: Attribute | attr.name = a.name and attr.type =
a.type and attr.visibility = a.visibility)

context Operation::changeVisibility(vk: VisibilityKind)
post: visibility = vk

context Operation::appendParameter(n: String, t: Type)
post: parameter->exists(p: Parameter | p.name = n and p.type = t)

context CallExpr::addDefaultValueForParameter(n: String)
post: let pos = called.parameter->iterate(p: Parameter; position: Integer = 0 |
if p.name<>n then position+1 else position endif) in
let arg = argument->at(pos) in
arg.oclIsTypeOf(Ident) and arg.definition.oclIsTypeOf(Literal) and
arg.definition.name = ‘NULL’

context Parameter::removeParameter()
post: not self@pre.namespace.parameter->exists(p: Parameter | p = self@pre)

 67

7 INITIAL CATALOGUE OF TAU EXECUTABLE
UML MODEL REFACTORINGS

The catalogue contains twelve specifications of exemplary TAU executable UML

model refactorings triggered on the following elements from ESPC and ESAC areas:
• Class
• Class::Attribute
• Class::Operation
• Class::Operation::Parameter

The majority of presented transformations are derived from Fowler’s catalogue

[Fowler et al. 1999]. All refactorings are specified in accordance with the template
introduced in Section 6.10. They are assumed to work properly only on a model that
can be compiled without any errors and warnings to the Model Verifier.

By an inheritance hierarchy of class ClA understood are all – both direct as well

as indirect – subclasses and superclasses of ClA. A term sibling should be understood
in the following way:

• A sibling operation of operation opA – an operation having the same
name and the same non-return parameters as opA;

• A sibling attribute of attribute atA – an attribute having the same name
and the same type as atA.

Formal specifications of transformations are written in OCL [Warmer & Kleppe

1999]. Queries that are used in more than one specification are listed (in alphabetical
order) and defined in Section 7.5.

In the opinion of the authors, the catalogue will be useful for both model designers

and maintainers as well as for vendors of UML CASE tools.

7.1 Trigger-element – Class

This section contains specifications of following refactorings:

1. Rename Class (Passive)
2. Rename Class (Active)
3. Remove Middle Man

7.1.1 Rename Class (Passive)

Informal specification

Areas: ESPC
Trigger-element: PassiveClass

Definitions:

1. class [T] – a class that is to be renamed
2. newName – a new name of {class}
3. constructor – a constructor of {class}
4. destructor – a destructor of {class}

 68

Aim: Change the name of {class} to {newName}.

Reasons: The current name of {class} does not reflect its purpose.

Preconditions:

1. {class} is passive.
2. {newName} adheres to TAU naming rules.
3. There is no classifier with the name {newName} in the namespace in

which {class} is defined.

The precondition results from the UML constraint stating that all the members of a

namespace are distinguishable within it. The default rule is that two elements are
distinguishable if they have unrelated types, or related types but different names
[OMG 2004]. Both the constraint and the rule are valid in TAU34.

4. In {class} there is no operation with the name {newName} and the same

parameters as any {constructor}.

The precondition results from the same constraint and the same rule as the first

one. In this case, the transformation has to assure that new signatures35 of any
{constructors} named after {class} will not conflict with signatures of operations that
are already defined in it.

5. There is no class with the name {newName} in any class defined in the

same namespace as {class}.

This precondition is necessary due to the TAU binding mechanism that may cause

a situation like the one shown in Figure 7.1, where after renaming Class1 to Class3,
Class1 in create expression in Class2.op1() is rebound to Class3 nested in Class2.

�������'	�	�- 	 ��
	 �� ����
 �������� �& ��� ��� �
	
 � ����
��

Postconditions:

1. The name of {class} is {newName}.
2. All references to {class} are via {newName}.
3. Names of all {constructors} are {newName}.
4. All invocations of all {constructors} are via {newName}.
5. Names of all {destructors} are {~newName}.
6. All invocations of all {destructors} are via {~newName}.

34 Additionally, in TAU each model element is distinguishable by a Globally Unique Identifier
(GUID) that remains unchanged for its entire lifetime.
35 Operations are distinguished by their signatures, i.e. their names and non-return parameters.

 69

Mechanics

The first step in the mechanics of Rename Class is a single invocation of

renameClass – this causes fulfilment of the first two preconditions. Additionally, this
operation causes automatic adjustment of invocations of all {constructors} (the fourth
precondition). However, this modification is not accompanied by rename of definitions
of {constructors}, what is highly undesired. It is difficult to explain this phenomenon
by investigating TAU Object Model, because it turns out that a create expression
references a constructor, and not a class, which instance is intended to be created.
Nevertheless, it can lead to a situation like the one depicted in Figure 7.2, where all
invocations of an overloaded default constructor ClassA(), that e.g. initializes an
attribute i, are replaced by invocations of an implicit one (e.g. in the state machine of
ClassB). This results in the change in behaviour that is not detected by the component
responsible for model checking - the attribute i is not initialized during creation of an
instance of ClassC.

�������'	�	�- 	 ��
	 �� ����
 ������� ���

 �
� ���	 � �& ! ��	 ��
	 �� ��
 � ����#
 �� ���

Therefore, the second step of the transformation is to invoke renameOperation for

all {constructors}. Moreover, since in the effect of renameClass names of
{destructors} are updated neither in their definitions nor in their explicit invocations,
renameOperation should be invoked also for all {destructors}.

Algorithm:

1. {class}.renameClass({newName})
2. for each {constructor} – {constructor}.renameOperation({newName})
3. for each {destructor} – {destructor}.renameOperation(~{newName})

Formal specification

context Class::RenameClass(newName: String)

pre : not isActive --1
and newName.isValidName() --2
and not namespace.ownedMember->exists(c: Classifier | c.name = newName) --3
and not behavioralFeature->exists(o: Operation | o.name = newName and
o.hasTheSameParameters(constructor)) --4
and not namespace.ownedMember->exists(c: Class | c.ownedMember->exists(cl:
Class | cl.name = newName)) --5

post: name = newName --1&2
and behavioralFeature->forAll(o: Operation | constructor@pre->includes(o)
implies o.name = newName) --3&4
and behavioralFeature->forAll(o: Operation | destructor@pre->includes(o)
implies o.name = ‘~’+newName) --5&6

 70

7.1.2 Rename Class (Active)

Informal specification

Areas: ESAC
Trigger-element: ActiveClass
Definitions – unchanged
Aim – unchanged
Reasons – unchanged

Preconditions:

1. {class} is active.
2. Unchanged
3. Unchanged
4. There is no event class with the name {newName} and the same

parameters as any constructor named after {class} in the namespace
determined by {class}.

5. Unchanged

Postconditions:

1. Unchanged
2. Unchanged
3. Names of all constructors, besides a state machine named initialize (if

such exists), of {class} are {newName}.
4. Unchanged
5. Invalid
6. Invalid

Mechanics

Renamed are all constructors of {class} except for a state machine named initialize

(if such exists). As active classes do not support destructors, they are not renamed by
the refactoring.

Algorithm:

1. Unchanged
2. for each constructor (besides initialize state machine) of {class} –

{constructor}.renameOperation({newName})
3. Invalid

Formal specification

context Class::RenameClass(newName: String)

pre : isActive --1
and (…) --2&3 unchanged
and not behavioralFeature->exists(ec: EventClass | ec.name = newName and
ec.hasTheSameParameters(constructor)) --4
and (…)--5 unchanged

post: (…) --1&2 unchanged
and behavioralFeature->forAll(o: Operation | (o.oclIsTypeOf(StateMachine) and
o@pre.name <> ‘initialize’) and constructor@pre->includes(o) implies o.name =
newName) --3&4; 5&6 invalid

 71

7.1.3 Remove Middle Man

Informal specification

Origin: Remove Middle Man [Fowler et al. 1999]
Areas: ESPC/ESAC
Trigger-element: PassiveClass/ActiveClass

Definitions:

1. middleMan [T] – a class being a “middle man”
2. delegate – a class being a “delegate”
3. delegateAttribute – an attribute of {middleMan} typed by {delegate}
4. delegatingOperation – an operation in {middleMan} which only invokes

{delegatedOperation} via {delegateAttribute}
5. delegatedOperation – an operation in {delegate} which is invoked by

{delegatingOperation}
6. getter – accessor for {delegateAttribute}

Aim: Stop {middleMan} from being a mediator for {delegate}

Reasons: {middleMan} is doing too much simple delegation

Description

As stated by Fowler, “one of the keys, if not the key, to objects is encapsulation

[Fowler et al. 1999].” In general, the less each class in a model needs to know about
other classes, the less possible is that a change in one place causes the necessity to
adjust other parts of the model, what makes the model maintenance easier and cheaper.
For instance, let us consider a situation in which a client class invokes an operation
defined on one of the attributes of a server class. As the client has to know about the
delegate class, each change of the delegate may propagate to the client. This redundant
dependency can be removed by placing a simple delegating operation on the server,
which hides the delegate. Now, changes become limited to the server and do not
propagate to the client. However, as observed by Fowler [ibid.], the price for this
encapsulation is that every time the client wants to use a new feature of the delegate,
another delegating method has to be added to the server what can become awkward. Is
such a situation, it may be convenient to apply on the server Remove Middle Man
refactoring.

A part of an exemplary model illustrating Remove Middle Man is shown in

Figure 7.3. Before the transformation, MiddleMan gives Client the use of two simple
delegating operations – delegatingOp1() and delegatingOp2() – that do nothing else
besides invoking appropriate operations on Delegate – delegatedOp1() and
delegatedOp2() respectively. The refactoring removes both delegating operations,
introduces getDelegate() accessor for delegate attribute in MiddleMan, and replaces all
invocations of deleted delegating operations by calls of corresponding delegated ones
via the accessor. The main benefits of the application of the transformation are (1)
reduced number of operations in MiddleMan, and (2) improved communication.

 72

�������'	 	�- 	
� " 	 �� �� � �	 �� ���E����	 + �
� �	 �

This version of Remove Middle Man works for a pair of classes A and B, where A

is a middle man of a delegate B. However, even after performing the refactoring for a
middle man A and its delegate B, A can still be a middle man for other delegates. If
needed, the transformation can be repeated for any pair consisting of A and a delegate
class until A stops being a middle man at all.

Bad smell

A bad smell directly associated with the refactoring is called Middle Man. Wake

[2003] defines its symptom in the following way: “most methods of a class call the
same or a similar method on another object.” Usually, it may occur in a model from
applying Hide Delegate to address another bad smell called Message Chains that
trades off against Middle Man. One should be careful in removing middle men,
because they may be intentionally created by some design patterns (e.g., Proxy or
Decorator). Moreover, as middle men provide a sort of façade, removing them can
expose clients to more information than they should know [ibid.].

In the context of this bad smell, a middle man for a delegate can be defined as a

class that has at least two simple delegating operations for any delegated operations of
this delegate. A simple delegating operation is characterised by its body that has only
one statement in the form of either

�
� 	 �	 � ��	 �� 	 �	 � ��	 � % � => or �	 �# ���� 	 �	 � ��	 �� 	 �	 � ��	 � % � =>0�

where delegate is an attribute typed by potential delegate class, and delegatedOp() is
one of its operations. Obviously, in the latter case, the return parameter of a delegating
operation has the same type as delegatedOp(). The repository view [Bock 2003] of the
operation body of the delegating operation delegatingOp1() owned by the class
MiddleMan, which is introduced in the example illustrated in Figure 7.3, is shown in
Figure 7.4.

 73

�������'	,	�- 	 � � ���� �! �" �	 � �� ���� 	 �& � � ! �� ������
� �	 �� 	 �	 � ����� �� � 	 ����� ��

The body consists of one CompoundAction that in turn contains an

ExpressionAction having a CallExpression, which owns an Ident, typed by Delegate
class, pointing the delegate attribute of MiddleMan class. Additionally, the
CallExpression indicates invoked delegatedOp1() that belongs to Delegate. The
repository view of the value-returning version of a delegating operation differs from
the non-returning one in the following way – the ExpressionAction is replaced by a
ReturnAction, and the CallExpresion has an additional attribute type indicating the
type of the return parameter (see Figure 7.5).

�������'	.	�) ���	 �	 �
 	 ��& 	 �� 	 	 ����" ��# 	 <�	 �# ����� ���� ��� �<�	 �# ����� �� � 	 ����� ��

An extracted fragment of TAU Object Model that corresponds to the examples of

the bodies of delegating operations is presented in Figure 7.6.

 74

�������'	(�����
	 ���� ��1/2 �% & '	
 ��� � � 	 ��E�� � 	 ����� ��& � � ! �� ����� 	 �	 � ����� �� � 	 ����� ��

To be able to automatically detect all potential middle men in a model, one has to

define and implement a query checking whether a given class has at least two simple
delegating operations for a particular attribute. Next, this query can be run for each
pair consisting of a class (possible middle man) and its attribute typed by another class
(possible delegate).

A simple delegating operation for an attribute A fulfils following conditions:

1. The non-value returning version:
a. It has a body with a CompoundAction;
b. The CompoundAction owned by the body contains one

ExpressionAction;
c. The ExpressionAction owns a CallExpr;
d. The to attribute of the CallExpr points an Ident;
e. The definition attribute of the Ident points A;
f. The called attribute of the CallExpr indicates an Operation that is

a behavioural feature of a Class typed by the Ident.
2. The value returning version:

a. Unchanged;
b. The CompoundAction owned by the body contains one

ReturnAction;
c. The ReturnAction owns a CallExpr;
d. Unchanged;
e. Unchanged;
f. Unchanged;
g. The type attribute of CallExpr points the same Type as the type

attribute of the return parameter of the Operation.

 75

The first version of the operation could have an additional condition stating that it
has no parameters, and the second one – that it has one return parameter of the same
type as the Operation (i.e. the delegated operation). However, it is not necessary,
because the latter conditions enforce their fulfilment.

Preconditions:

1. {delegateAttribute} is an attribute of {middleMan}.
2. {delegateAttribute} is typed by a class.
3. {middleMan} has at least one {delegatingOperation} for

{delegateAttribute}

Postconditions:

1. There is {getter} in {middleMan}.
2. Each invocation of each {delegatingOperation} is replaced by invocation

of corresponding {delegatedOperation} via {getter}.
3. There is no {delegatingOperation} in {middleMan}.

Mechanics

The first step in the mechanics of Remove Middle Man is creation of an accessor

for {delegateAttribute} – of course, only if it does not yet exist. Next, each invocation
of each {delegatingOperation} is replaced by invocation of a corresponding
{delegatedOperation} via just created {getter} (see Figure 7.7). Finally, each
{delegatingOperation} should be removed from {middleMan}.

�������'	'	�- 	 � ��
 	
	 ���� ����" �
 ���� ���� ��� 	 �	 � ����� �� � 	 ����� ���

Algorithm:

1. {getter} = {middleMan}.addGetter({delegateAttribute})
2. for each invocation of each {delegatingOperation} –

{invocationOfDelegatingOperation}.replaceInvocation({getter},{delegate
dOperation})

3. for each {delegatingOperation} –
{delegatingOperation}.removeOperation()

Formal specification

context Class::RemoveMiddleMan(delegate: Attribute)

smell: isMiddleMan(delegate)

 76

context Class::isMiddleMan(A: Attribute): Boolean
body: self.simpleDelegatingOperations(A)->size() >= 2

context Class::simpleDelegatingOperations(A: Attribute): Set(Operation)
body: behavioralFeature->select(o: Operation |
o.isSimpleDelegatingOperation(A))

context Operation::isSimpleDelegatingOperation(A: Attribute): Boolean
body: isNonValueReturningSDO(A) or isValueReturningSDO(A)

context Operation::isNonValueReturningSDO(A: Attribute): Boolean
body:
let ac = inlineMethod.action.action in
let ex = ac.expression in
inlineMethod->notEmpty() and inlineMethod.action->notEmpty() --a
and (ac->size() = 1 and ac->first().oclIsTypeOf(ExpressionAction)) --b
and ex.oclIsTypeOf(CallExpr) --c
and (ex.to->notEmpty() and ex.to.oclIsTypeOf(Ident)) --d
and ex.to.definition = A --e
and ex.called.oclIsTypeOf(Operation) --f
and ex.to.type.behavioralFeature->includes(ex.called) --g

context Operation::isValueReturningSDO(A: Attribute): Boolean
body:
let ac = inlineMethod.action.action in
let ex = ac.expression in
(…) --a: as in isNonValueReturningSDO
and (ac->size() = 1 and ac->first().oclIsTypeOf(ReturnAction)) --b
and (…) --from c to g: as in isNonValueReturningSDO
and ex.type->first() = ex.called.return.type.first() --h

pre : attribute->includes(delegate) --1
and delegate.type.oclIsTypeOf(Class) --2
and self.simpleDelegatingOperations(delegate)->size() >= 1 --3

post: behavioralFeature->exists(o: Operation | o.isGetter(delegate)) --1
and session.getAllCallExpr()->forAll(e: CallExpr |
e.called@pre.isSimpleDelegatingOperation(delegate) implies e.called =
e.called@pre.inlineMethod.action.action.expression.called and let e2 =
e.called.to in (e2->notEmpty() and e2.oclIsTypeOf(CallExpr) and
e2.called.isGetter(delegate) and e2.to = e.to@pre)) --2
and not behaviouralFeature->exists(o: Operation |
o.isSimpleDelegatingOperation(A)) --3

context Operation::isGetter(A: Attribute): Boolean
body:
let ac = inlineMethod.action.action in
let ex = ac.expression in
visibility = #VkPublic and name = ‘get’.concat(A.name)
and parameter->size() = 1 and (return->notEmpty() and return.type = A.type)
and inlineMethod->notEmpty()
and (ac->size() = 1 and ac->first().oclIsTypeOf(ReturnAction))
and (ex->first().oclIsTypeOf(Ident) and ex.definition = A)

7.2 Trigger-element – Attribute of Class

This section contains specifications of following refactorings:

1. Rename Attribute (Passive)
2. Rename Attribute (Active)
3. Pull Up Attribute (Passive)
4. Push Down Attribute (Active)

7.2.1 Rename Attribute (Passive)

Informal specification

Areas: ESPC

 77

Trigger-element: PassiveClass::Attribute

Definitions:

1. attribute [T] – an attribute that is to be renamed
2. class – a class in which {attribute} is defined
3. newName – a new name of {attribute}

Aim: Change the name of {attribute} defined in {class} to {newName}.

Reasons: The current name of {attribute} does not reflect its purpose.

Preconditions:

1. {class} is passive.
2. {newName} adheres to TAU naming rules.
3. There is no attribute with the name {newName} in the inheritance

hierarchy of {class}.

Rename Attribute changes names of all attributes having the same name as

{attribute} in the whole inheritance hierarchy of {class}. This precondition assures that
there will be no name conflicts between renamed attributes and already existing ones.

4. There is no operation with a parameter or a local variable with the name

{newName} in the inheritance hierarchy of {class}.

Operations can read and write attributes of classes to which they belong.

Therefore, after renaming an attribute to a name of a parameter or a local variable of
an operation, each reference to the attribute in the body of the operation is immediately
rebound to the parameter/variable. The Model Checker detects this situation only if
types of the attribute and the parameter/variable are incompatible.

Postconditions:

1. The name of {attribute} is {newName}.
2. All references to {attribute} are via {newName}.
3. Names of all attributes with the same name as {attribute} defined in the

inheritance hierarchy of {class} are {newName}.
4. All references to all attributes with the same name as {attribute} defined in

the inheritance hierarchy of {class} are via {newName}.

Mechanics

The first step in the mechanics of Rename Attribute is a single invocation of

renameAttribute – this causes fulfilment of the first two preconditions. If {class} has
neither super- nor subclasses with sibling attributes of {attribute}, then the refactoring
finishes. Otherwise, it is necessary to rename also these sibling attributes, what
satisfies the latter two preconditions. This transformation step bases on the assumption
that attributes in an inheritance hierarchy having the same names are semantically
related, and thus they should evolve together. Moreover, omission of this step could
lead to a situation like the one shown in Figure 7.836, where after renaming a1 to a2 in
ClassB, reference to a1 in ClassC causes access of a1 from ClassA, instead of a1 from
ClassB, as it was before refactoring37.

36 It is noteworthy that the binding mechanism of TAU prevents from this threat.
37 Assuming that a1 in ClassB does not have private visibility.

 78

�������'	&	�- 	 ��
	 �� ����������& # �	 ��� ���

 �
� ���	 � �& ! ��	 ��
	 �� ��������& ���� ��

Algorithm:

1. {attribute}.renameAttribute({newName})
2. for each sibling attribute of {attribute} –

{sibling_attribute}.renameAttribute({newName})

Formal specification

context Attribute::RenameAttribute(newName: String)

pre : not isActive --1
and newName.isValidName() --2
and let allClasses = namespace.getAllClassesFromInheritanceHierarchy() in
not allClasses.attribute->exists(a: Attribute | a.name = newName) --3
and not allClasses.behavioralFeature->exists(o: Operation |
o.hasParameterNamed(newName) or o.hasLocalVariableNamed(newName)) --4

post: name = newName --1&2
and namespace.getAllClassesFromInheritanceHierarchy().attribute->forAll(a:
Attribute | a.name@pre = self.name@pre implies a.name = newName) --3&4

context Operation::hasParameterNamed(n: String): Boolean
body: parameter->exists(p: Parameter | p.name = n)

7.2.2 Rename Attribute (Active)

Informal specification

Areas: ESAC
Trigger-element: ActiveClass::Attribute
Definitions – unchanged
Aim – unchanged
Reasons – unchanged

Preconditions:

1. {class} is active.
2. Unchanged
3. Unchanged
4. Unchanged
5. {attribute} is not declared in any interface realized by any class in the

inheritance hierarchy of {class}.

 79

The precondition prevents from renaming attributes that implement the
corresponding ones declared in realized interfaces. It reduces the scope of change of
the refactoring. Otherwise, it would be also necessary to rename the attributes in these
interfaces, what would cause the need for renaming attributes in all inheritance
hierarchies of classes that realize these interfaces. An example of such a chain of
changes is shown in Figure 7.9, where renaming a1 to a3 in Class1 enforces renaming
a1 in Class2, Interface1, Class3, and Class4. In the opinion of the authors of the
catalogue, this is another refactoring (called e.g. Rename Interface Attribute) that is
triggered on an attribute contained in an interface, and not in a class.

�������'	+	�- 	 ��
	 �/����& # �	 �<�
 � ��� 	 �� �� � �� ���� ���� �� # � � �������	 ���
 	 �

Postconditions – unchanged
Mechanics – unchanged
Algorithm – unchanged

Formal specification

context Attribute::RenameAttribute(newName: String)

pre : isActive --1
and (…) --2&3&4 unchanged
and not
namespace.getAllClassesFromInheritanceHierarchy().port.realized.attribute-
>exists(a: Attribute | a.name = newName) --5

post: (…) --1&2&3&4 unchanged

7.2.3 Pull Up Attribute (Passive)

Informal specification

Origin: Pull Up Field [Fowler et al. 1999]
Areas: ESPC
Trigger-element: PassiveClass::Attribute

Definitions:

1. attribute [T] – an attribute that is to be pulled up
2. class – a class in which {attribute} is defined
3. superclass – a superclass of {class}
4. subclasses – all direct subclasses of {superclass} except for {class}

Aim: Move {attribute} and its siblings from all {subclasses} to {superclass}

Reasons: {attribute} has siblings in all {subclasses}

 80

Preconditions:

1. {class} is passive.
2. {class} has a superclass.
3. In all {subclasses} defined is a sibling of {attribute}.
4. There is no attribute with the name of {attribute} in {superclass}.

Postconditions:

1. {attribute} is defined in {superclass}.
2. Siblings of {attribute} are not defined in {subclasses}.

Mechanics

First, {attribute} is moved from {class} to {superclass}. Next, all siblings of

{attribute} are removed from {subclasses}.

Algorithm:

1. {attribute}.moveAttribute({class},{superclass})
2. for each sibling of {attribute} – {sibling_attribute}.removeAttribute()

Formal specification

context Attribute::PullUpAttribute()

pre : not namespace.isActive --1
and namespace.supertype->notEmpty() --2
and namespace.subtypes->forAll(c: Class | c.attribute->exists(a: Attribute |
a.name = self.name and a.type = self.type)) --3
and not namespace.supertype.attribute->exists(a: Attribute | a.name =
self.name) --4

post: namespace=namespace@pre.supertype --1
and namespace.subclasses->forAll(c: Class | not c.exists(a: Attribute | a.name
= self.name and a.type = self.type)) --2

7.2.4 Push Down Attribute (Passive)

Informal specification

Origin: Push Down Field [Fowler et al. 1999]
Areas: ESPC
Trigger-element: PassiveClass::Attribute

Definitions:

1. attribute [T] – an attribute that is to be pushed down
2. class – a class in which {attribute} is defined
3. subclasses – all direct subclasses of {class}

Aim: Move {attribute} to only these {subclasses} that use it

Reasons: {attribute} is used only by some {subclasses}

Preconditions:

1. {class} is passive.
2. {attribute} is neither read nor written in/through {class}.
3. No {subclass} contains an attribute with the same name as {attribute}.

 81

Postconditions:
1. {attribute} is not defined in {class}.
2. Siblings of {attribute} are defined in {subclasses} that use it.

Mechanics

First, a copy of {attribute} is added to each {subclass} that needs it. Next,

{attribute} is removed from {class}.

Algorithm:

1. for each {subclass} that needs {attribute} –
{subclass}.addAttribute({attribute})

2. {attribute}.removeAttribute()

Formal specification

context Attribute::PushDownAttribute()

pre : not isActive --1
and session.getAllFieldExpr()->forAll(fe: FieldExpr | fe.field = self implies
fe.expression.type <> self.namespace) and namespace.behavioralFeature-
>forAll(o: Operation | not o.inlineMethod.getAllIdent()->exists(i: Ident |
i.definition = self)) --2
and namespace.namespace.allSubclasses->forAll(c: Class | not c.attribute-
>exists(a: Attribute | a.name = self.name)) --3

post: not namespace@pre.attribute->exists(a: Attribute | a = self@pre) --1
and namespace@pre.subclasses->select(c: Class |
self.session@pre.getAllFieldExpr()->exists(fe: FieldExpr | fe.field = self and
fe.expression.definition.type = c) or c.behavioralFeature->exists(o: Operation
| o.inlineMethod.getAllIdent()->exists(i: Ident | i.definition = self)))-
>forAll(c: Class | c.attribute->exists(a: Attribute | a.name = self.name and
a.type = self.type)) --2

context Session::getAllFieldExpr(): Set(FieldExpr)
/* the query returns a set containing all instances of FieldExpr in the model
*/

7.3 Trigger-element – Operation of Class

This section contains specifications of following refactorings:

1. Rename Operation (Passive)
2. Rename Operation (Active)
3. Hide Operation (Passive)
4. Add Parameter to Operation (Passive)

7.3.1 Rename Operation (Passive)

Informal specification

Origin: Rename Method [Fowler et al. 1999]
Areas: ESPC
Trigger-element: PassiveClass::Operation

Definitions:

1. operation [T] – an operation that is to be renamed
2. class – a class in which {operation} is defined
3. newName – a new name of {operation}

 82

Aim: Change the name of {operation} defined in {class} to {newName}.

Reasons: The current name of {operation} does not reflect its purpose.

Preconditions:

1. {class} is passive.
2. {newName} adheres to TAU naming rules.
3. There is no operation with the name {newName} and the same non-return

parameters as {operation} in the inheritance hierarchy of {class}.

Rename Operation changes names of all operations having the same names and the

same parameters as {operation} in the whole inheritance hierarchy of {class}. This
precondition assures that there will be no conflicts between signatures of renamed
operations and other ones.

4. {operation} is neither a constructor nor a destructor.

Names of both constructors and destructors are strictly determined by names of

classes in which they are defined. Therefore, they cannot be renamed separately from
their containers.

Postconditions:

1. The name of {operation} is {newName}.
2. All references to {operation} are via {newName}.
3. Names of all operations with the same signature as {operation} defined in

the inheritance hierarchy of {class} are {newName}.
4. All references to all operations with the same signature as {operation}

defined in the inheritance hierarchy of {class} are via {newName}.

Mechanics

The first step in the mechanics of Rename Operation is a single invocation of

renameOperation – this causes fulfilment of the first two preconditions. If {class} has
neither super- nor subclasses with sibling operations of {operation}, then the
refactoring finishes. Otherwise, it is necessary to rename also these sibling operations,
what satisfies the latter two preconditions. This transformation step bases on the
assumption that operations in an inheritance hierarchy that have the same signatures
are semantically related, and thus they should evolve together. Moreover, omission of
this step could lead to a situation like the one shown in Figure 7.1038, where after
renaming op1() to op2() in ClassB, invocation of op1() in ClassC causes call of op1()
from ClassA, instead of op1() from ClassB, as it was before refactoring39.

38 It is noteworthy that the binding mechanism of TAU prevents from this threat.
39 Assuming that op1() in ClassB does not have private visibility.

 83

�������'	�- 	�- 	 ��
	 �� ������ � 	 ����� ���� ���

 �
� ���	 � �& ! ��	 ��
	 �� ��������& ���� ��

Algorithm:

1. {operation}.renameOperation({newName})
2. for each sibling operation of {operation} –

{sibling_operation}.renameOperation({newName})

Formal specification

context Operation::RenameOperation(newName: String)

pre : not isActive --1
and newName.isValidName() --2
and not namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(o: Operation | o.name = newName and o.hasTheSameParameters(self)) --3
and operationKind <> #OkConstructor and operationKind <> #OkDestructor --4

post: name = newName --1&2
and namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>forAll(o: Operation | o.name@pre = self.name@pre and
o.hasTheSameParameters(self) implies o.name = newName) --3&4

7.3.2 Rename Operation (Active)

Informal specification

Areas: ESAC
Trigger-element: ActiveClass::Operation
Definitions – unchanged
Aim – unchanged
Reasons – unchanged

Preconditions:

1. {class} is active.
2. {newName} adheres to TAU naming rules.
3. There is no event class with the name {newName} and the same non-

return parameters as {operation} in the inheritance hierarchy of {class}.
4. {operation} is not a constructor.
5. {operation} is not declared in any interface realized by any class in the

inheritance hierarchy of {class}.

The precondition prevents from renaming operations that implement the

corresponding ones declared in realized interfaces. It reduces the scope of change of

 84

the refactoring. Otherwise, it would be also necessary to rename the operations in these
interfaces, what would cause the need for renaming operations in all inheritance
hierarchies of classes that realize these interfaces. An example of such a chain of
changes is shown in Figure 7.11, where renaming op1() to op3() in Class1 enforces
renaming op1() in Class2, Interface1, Class3, and Class4. In the opinion of the authors
of the catalogue, this is another refactoring (called e.g. Rename Interface Operation)
that is triggered on an operation contained in an interface, and not in a class.

�������'	��	�- 	 ��
	 �% � 	 ����� ��E�� � ��� 	 �� �� � �� ���� ���� �� # � � �������	 ���
 	 �

Postconditions – unchanged
Mechanics – unchanged
Algorithm – unchanged

Formal specification

context Operation::RenameOperation(newName: String)

pre : isActive --1
and (…) –--2 unchanged
and not namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(ec: EventClass | ec.name = newName and ec.hasTheSameParameters(self)) -
-3
and operationKind <> #OkConstructor --4
and not
namespace.getAllClassesFromInheritanceHierarchy().port.realized.behavioralFeatu
re->exists(o: Operation | o.name = newName and o.hasTheSameParameters(self)) --
5

post: (…) --1&2&3&4 unchanged

7.3.3 Hide Operation (Passive)

Informal specification

Origin: Hide Method [Fowler et al. 1999]
Areas: ESPC
Trigger-element: PassiveClass::Operation

Definitions:

1. operation [T] – an operation that is to be hidden
2. class – a class in which {operation} is defined
3. subclasses – all subclasses of {class}

Aim: Hide {operation} defined in {class} from all classes except for {subclasses}

Reasons: Only {class} and {subclasses} should be allowed to invoke {operation}

 85

Description

The refactoring hides not only {operation} but also all its siblings in {subclasses}.

Preconditions:

1. {class} is passive.
2. {operation} is invoked only by {class} or {subclasses}.
3. Siblings of {operation} in {subclasses} are invoked only by their owners

or owners’ subclasses.

Postconditions:

1. If {class} has no subclasses or visibility of {operation} was private, then
its visibility is private, else it is protected.

2. Private siblings of {operation} in {subclasses} remain private – the rest of
them have protected visibility.

Mechanics

As the realization of the transformation relies on changing visibility of operations,

it uses only one basic operation – changeVisibility – applied to {operation} and all its
siblings in {subclasses}. First, the refactoring changes the visibility of {operation} –
only if it is not private – to protected or private, depending whether it has subclasses.
Finally, non-private siblings of {class} in {subclasses} become protected.

Algorithm:

1. if visibility of operation is not private then – (if {operation} has no
subclasses then {operation}.changeVisibility(private) else
{operation}.changeVisibility(protected))

2. for each sibling operation of {operation} in {subclasses} – if visibility of
{sibling_operation} is not private then
{sibling_operation}.changeVisibility(protected)

Formal specification

context Operation::HideOperation()

pre : not isActive --1
and session.getAllCallExpr()->forAll(ce: CallExpr | Set{self}-
>union(self.getSiblingOperationsSub())->exists(ce.called) implies ce.to-
>isEmpty) --2&3

post: if namespace.allSubclasses->isEmpty or visibility@pre = #VkPrivate then
visibility = #VkPrivate else visibility = #VkProtected endif --1 and
self.getSiblingOperationsSub()->forAll(o: Operation | o.visibility@pre <>
#VkPrivate implies o.visibility = #VkProtected) --2

7.3.4 Add Parameter to Operation (Passive)

Informal specification

Origin: Add Parameter [Fowler et al. 1999]
Areas: ESPC
Trigger-element: PassiveClass::Operation

 86

Definitions:
1. parameter – a parameter that is to be added
2. name – the name of {parameter}
3. type – the type of {parameter}
4. operation [T] – an operation to which {parameter} is added
5. class – a class in which {operation} is defined

Aim: Add {parameter} to {operation}

Reasons: {operation} needs more information from its callers

Description

{parameter} is added to {operation} and to all its siblings in the inheritance

hierarchy of {class}.

Preconditions:

1. {class} is passive.
2. {name} adheres to TAU naming rules.
3. {operation} does not have a parameter called {name}.
4. There is no local variable called {name} in the bodies of {operation} and

its siblings in the inheritance hierarchy of {class}.
5. There is no attribute called {name} in the inheritance hierarchy of {class}.
6. No operation with the signature implied by adding {parameter} to

{operation} exists in the inheritance hierarchy of {class}.

Postconditions:

1. {parameter} exists – at the last position – in the signatures of {operation}
and its siblings.

2. {operation} and its siblings are invoked with {parameter} having a default
value.

Mechanics

After creation of {parameter}, it is added to {operation} and to all its siblings in

the inheritance hierarchy of {class}. Next, in each invocation of {operation} and all its
siblings, a new actual argument with a default value (NULL) is appended.

Algorithm:

1. {operation}.appendParameter({name},{type})
2. for each sibling operation of {operation} –

{sibling_operation}.appendParameter({name},{type})
3. for each invocation of {operation} and its siblings –

{operation_invocation}.addDefaultValueForParameter({name})

Formal specification

context Operation::AddParameter(p: Parameter)

pre : not namespace.isActive --1
and p.name.isValidName() --2
and not parameter->exists(pa: Parameter | pa.name = p.name) --3
and not Set{self}->union(self.getSiblingOperationsSub())-
>union(self.getSiblingOperationsSup())->exists(o: Operation |
o.hasLocalVariableNamed(p.name)) --4
and not namespace.getAllClassesFromInheritanceHierarchy().attribute->exists(pa:
Parameter | pa.name = p.name) --5

 87

and not namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(o: Operation | o.name = self.name and
o.hasTheSameParameterList(self.parameter->append(p))) --6

post: let allOp = Set{self}->union(self.getSiblingOperationsSub())-
>union(self.getSiblingOperationsSup()) in
allOp->forAll(o: Operation | let lp = o.parameter->last() in lp.name = p.name
and lp.type = p.type) --1
and session.getAllCallExpr()->forAll(ce: CallExpr | allOp->exists(o: Operation
| o = ce.called) implies (let arg = ce.argument->last() in
arg.oclIsTypeOf(Ident) and arg.definition.oclIsTypeOf(Literal) and
arg.definition.name = ‘NULL’)) --2

7.4 Trigger-element – Parameter of Operation

This section contains specifications of following refactorings:

1. Remove Parameter from Operation (Passive)

7.4.1 Remove Parameter from Operation (Passive)

Informal specification

Origin: Remove Parameter [Fowler et al. 1999]
Areas: ESPC
Trigger-element: PassiveClass::Operation::Parameter

Definitions:

1. parameter [T] – a parameter that is to be removed
2. operation – an operation in which {parameter} is defined
3. class - a class in which {operation} is defined

Aim: Remove {parameter} from {operation}

Reasons: {parameter} is no longer needed by the implementation of {operation}

Description

{parameter} is removed from {operation} and from all its siblings in the

inheritance hierarchy of {class}.

Preconditions:

1. {class} is passive.
2. {parameter} is not used in the bodies of {operation} and its siblings from

the inheritance hierarchy of {class}.
3. No operation with the signature implied by removing {parameter} from

{operation} exists in the inheritance hierarchy of {class}.

Postconditions:

1. {parameter} does not exist in signatures of {operation} and its siblings.
2. {operation} and its siblings are invoked without {parameter}.

Mechanics

First, {parameter} is removed from {operation}, and next, its sibling parameters

are deleted from all siblings of {operation}.

 88

Algorithm:
1. {parameter}.removeParameter()
2. for each sibling parameter of {parameter} –

{sibling_parameter}.removeParameter()

Formal specification

context Parameter::RemoveParameter()

pre : not eventClass.isActive --1
and Set{self.eventClass}->union(self.eventClass.getSiblingOperationsSub())-
>union(self.eventClass.getSiblingOperationsSup())->forAll(o: Operation | not
o.isParameterUsed(self.name)) --2
and not
eventClass.namespace.getAllClassesFromInheritanceHierarchy().behavioralFeature-
>exists(o: Operation | o.name = self.eventClass.name and let pList =
self.eventClass.parameter in o.hasTheSameParameterList(pList->excluding(pList-
>last()))) --3

post: let allOp = Set{self.eventClass}-
>union(self.eventClass.getSiblingOperationsSub())-
>union(self.eventClass.getSiblingOperationsSup()) in
not allOp->exists(o: Operation | o.parameter->exists(p: Parameter | p.name =
self.name and p.type = self.type)) --1
and session.getAllCallExpr()->forAll(ce: CallExpr | allOp->exists(ce.called)
implies ce.argument->asSequence() = ce.argument@pre->asSequence()-
>excluding(ce.argument@pre->asSequence()->last())) --2

context Operation::isParameterUsed(pName: String): Boolean
body: inlineMethod.getAllIdent()->exists(i: Ident |
i.definition.oclIsTypeOf(Parameter) and i.definition.name = pName)

7.5 Common OCL Queries

context String::consistsOfAllowedCharacters(): Boolean
/* the query returns true if the context element consists of characters allowed
in names of model elements (refer to [Telelogic 2004] – Names) */

context Session::getAllCallExpr(): Set(CallExpr)
/* the query returns a set containing all instances of CallExpr in the model */

context Class::getAllClassesFromInheritanceHierarchy(): Set(Class)
body: self->union(self.allSupertypes)->union(self.allSubtypes)

context OperationBody::getAllIdent(): Set(Ident)
/* the query returns all instances of Ident used in all expressions in the
context operation body */

context CompoundAction::getAllSimpleActions(): Set(Action)
body: self->iterate(a: Action; resultActions: Set(Action) = {} |
if a.oclIsTypeOf(CompoundAction) then
resultActions->union(a.getAllSimpleActions())
else resultActions->union(a) endif)

context Operation::getSiblingOperationsSub(): Set(Operation)
body: namespace.allSubclasses.behavioralFeature->select(o: Operation | o.name =
self.name and o.hasTheSameParameters(self))

context Operation::getSiblingOperationsSup(): Set(Operation)
body: namespace.allSuperclasses.behavioralFeature->select(o: Operation | o.name
= self.name and o.hasTheSameParameters(self))

context Operation::hasLocalVariableNamed(n: String): Boolean
body: inlineMethod->notEmpyt and inlineMethod.action.getAllSimpleActions()-
>exists(a: DefAction | a.definition.name = n)

context Operation::hasTheSameParameterList(p: Sequence(Parameter)): Boolean
body: parameter->reject(direction = #DkReturn)->collect(type) = p-
>reject(direction = #DkReturn)->collect(type)

 89

context Operation::hasTheSameParameters(ops: Set(Operation)): Boolean
body: ops->exists(o: Operation | o.hasTheSameParameterList(self.parameter))

context String::isValidName(): Boolean
body: not isReservedWord() and consistsOfAllowedCharacters()

context String::isReservedWord(): Boolean
/* the query returns true if the context element is one of the reserved words
(refer to [Telelogic 2004] – Names) */

 90

8 IMPLEMENTATION OF REFACTORINGS IN TAU

The goal of this chapter is to show how refactorings specified in the previous

Section can be implemented in TAU. It is structured as follows: Section 8.1 provides
basic information on model access in TAU; Section 8.2 describes implementation of
an exemplary refactoring – Remove Middle Man – that has been performed within the
frames of the thesis. The full source code of the application can be found on the
attached CD. Finally, Section 8.3 explains how refactorings that are not driven by bad
smells can be triggered on presentation elements.

8.1 Model Access in TAU

A TAU model can be accessed either using TCL Script or via a COM API from an

application written in any COM-enabled programming language. The latter solution
offers higher execution performance, but on the other hand, it requires more
development effort. The COM API is primarily intended to be used by applications
running in their own memory space, referred to as non-interactive clients. They work
on their own private copy of a model, and the information exchange with other
applications is therefore typically at file level. However, the COM API can also be
used by interactive clients that access the model loaded by TAU.

A non-interactive client accesses the COM API by creating an instance of the only

one exposed COM class TTD_ModelAccess, which implements ITtdModelAccess
interface. An interactive client must implement ITtdInteractiveClient interface. This
interface contains a method OnExecute which is called by TAU when the interactive
client it to execute. The first argument of OnExecute method is a pointer to an
ITtdInteractiveServer interface, which represents the application which acts as the
server for the interactive client. The second argument of OnExecute method is an
ITtdEntities collection of entities.

Unfortunately, it is currently not possible to develop the entire add-in using only a

COM client – TAU requires at least a minimal TCL script to execute. In order to
transfer execution to the COM client, this script can use a TCL API command
ExecuteCOMClient (see UMLref.tcl on attached CD).

8.2 Implementation of Remove Middle Man

Taking into account probable performance and usability requirements imposed on

a refactoring add-in, the access via the COM API has been chosen – the exemplary
refactoring is implemented as an interactive client – called UMLref – written in
Borland Delphi’s Object Pascal.

The structure of UMLref can be overviewed in Figure 8.1. The implementation

consists of seven packages representing Delphi units. Each package contains one class
named after its container. TMiddleMan is responsible for detecting middle men in
models, TMiddleManUI is a user interface class enabling selection of a middle man
and triggering the transformation, and TRemoveMiddleMan implements the
refactoring. TClassMV and TInvocationReplacerMV are two classes which presence is
enforced by the use of the COM API. The former has the ability to traverse a model
and to find all potential middle men, and the latter searches for all invocations of

 91

delegating operations. They both realize ITtdMetaVisitCallback interface, containing
OnVisitedEntity method called for each entity that is visited during the model
traversal. Two last classes, namely TChecker and TTransformer, contain operations
used mainly in checking pre- and postconditions, and transforming models,
respectively. These two classes are the only ones that are intended to be reused in
implementations of other refactorings.

�������&	�	�5 �
 �� 	 ����#
 �# �	 �� ���� 	 ��
� �	
	 ������ ��� ��- 	
� " 	 �� �� � �	 �� ���

Each bad smell driven refactoring is performed in two phases – in the case of

Remove Middle Man, in the former, a model is traversed in the search for classes that
are suspected to be middle men, and in the latter, a user triggers the transformation on
a chosen pair consisting of a class and one of its delegate attributes. An interaction
illustrating the first phase is shown in Figure 8.2. In the source code, findMiddleMen
operation is realized by OnVisitedEntity operation.

�������&	�	�/��	 C # 	 �
 	 �� ��� ��
����# �������� �� 	 �	
 ��� ��� ��
�� � �	 �
	 ��

An overall refactoring algorithm for the second phase can be defined as follows:

 if preconditionsFulfilled() then
 begin
 transform();
 if not postconditionsFulfilled() then
 rollback();
 end;

Its realization can be overviewed in a sequence diagram in Figure 8.3.

 92

�������&	 	�/��	 C # 	 �
 	 �� ��� ��
����# �������� ����#

 	 ���# ���	
� " ���� ����
�� � �	 �
���

Although the current version (2.4) of TAU does not provide support for OCL on

the metamodel level, transition from the formal specification of both queries detecting
bad smells as well as pre- and postconditions to their implementation is quite
straightforward. It results from the fact that interfaces exposed by TAU COM API,
realized by classes representing metaclasses in the implementation of TAU Object
Model, enable – just like OCL – a metamodel-based navigation through models40.
Therefore, for instance two first preconditions and the first and the third postcondition
of Remove Middle Man boil down to the following statements:

 Pre 1) result:=dAttr.GetOwner()=mMan
 Pre 2) result:=dAttr.GetEntity('type',1).GetMetaClassName='Class'
 Post 1) result:=checker.hasGetter(mMan,dAttr)
 Post 3) result:=not checker.hasDelegatingOps(mMan,dAttr)

In the case of the transforming part, it is noteworthy that the three basic operations

identified in the mechanics section of the informal specification of Remove Middle
Man, i.e. addGetter, replaceInvocation, and removeOperation, have their
correspondents in the implementation (see Figure 8.3). For instance,
replaceInvocations procedure calls replaceInvocation for each instance of CallExpr
that calls a delegating operation of a suspected class. The implementation of
replaceInvocation (see below) transforms the model in accordance with Figure 7.7.

 1 procedure TInvocationReplacerMV.replaceInvocation
 2 (callExpr, accessor, op: ITtdEntity);
 3 (…)
 4 toPre:=callExpr.GetEntity('to',1);
 5 model:=callExpr;
 6 while not model.IsKindOf('Session') do
 7 model:=model.GetOwner;
 8 newCallExpr:=(model as ITtdModel).New('CallExpr');
 9 newCallExpr.SetEntity('called',accessor,1);
 10 newCallExpr.SetEntity('to',toPre,1);
 11 callExpr.SetEntity('called',op,1);
 12 callExpr.SetEntity('to',newCallExpr,1);

First (4), an identifier, pointing an element on which a delegating operation is

invoked, is stored in a temporary variable toPre. Next (5-7), the instance of Session

40 This way, changes to TAU Object Model do not propagate to the COM API, but on the other hand,
this solution requires thorough knowledge and comprehension of TAU’s metamodel.

 93

metaclass is found, to be able to create (8) a new instance of CallExpr41. Subsequently,
the most important attributes (called and to) of the created call expression are set to
point adequate elements (9-10). Finally, the initial invocation is adjusted to call an
appropriate delegated operation via the new call expression (11-12).

8.3 Triggering Refactorings

In the case of refactorings that are not driven by bad smells, there is a need to

enable triggering them on both model elements in the model view as well as on their
representations in diagrams. In the latter case, a corresponding model element has to
be determined and passed to the transformation. Figure 8.4 shows relation between
ClassSymbol, GeneralizationLine, and AssociationLine presentation metaclasses and
their model counterparts pointed by modelElement attribute and represented by
corresponding (indirect) subclasses of ModelElement – Class, Generalization, and
Association.

�������&	,	�- 	 ����� ��& 	 �� 	 	 ��� �	 �	 ������ ��	 �	
	 ������� �
� � 	 ��	 �	
	 ����

It is noteworthy that modelElement of AssociationLine is always not Association

but Attribute. Additionally, in the case of GeneralizationLine and AssociationLine, two
attributes – dst and src – point ClassSymbols of related classes. The source for
Generalization is a superclass and its destination – a subclass.

Having established relation between presentation and model elements, one can

trigger refactorings from TCL scripts in the following way:

 set sel [std::GetSelection]
 if { [u2::GetMetaClassName $sel] == "ClassSymbol" } {
 set sel [u2::GetEntity $sel "ModelElement"]
 }
 std::ExecuteCOMClient "UMLref.RenameClass" $sel

where GetSelection returns selected in TAU model/presentation element, and
ExecuteCOMClient invokes an interactive COM client that performs – in this case –
Rename Class refactoring.

41 In this particular case, the use of Create method defined in ITtdEntity interface, instead of New,
fails – this is probably due to a bug in the COM API.

 94

9 CONCLUSIONS & FUTURE WORK

This is the last chapter of the thesis. It concludes it (Section 9.1) and points out

possible directions of a future work (Section 9.2).

9.1 Conclusions

All objectives of the thesis have been successfully accomplished. Literature survey

on software refactoring (Section 2), UML model refactoring (Section 3), and
executable modelling with UML (Section 4) has been performed. An initial catalogue
of executable UML model refactorings has been created (Section 7), and the
transformations have been formalized with the use of OCL. Finally, an exemplary
refactoring from the catalogue has been implemented in TAU (Section 8).

The majority of previous studies on UML model refactoring presented in Section 3

concern refactoring of non-executable UML models, in which operation bodies are
treated as protected areas. The main difference between transformations used in these
approaches and refactorings of executable models relies on the fact that the latter ones
have to take into account and to update not only structural but also behavioural aspects
of transformed models. The key challenges in the area of refactoring of executable
models that base on UML 2.0 result mainly from the necessity to consider following
new features of the language: (1) cross integration of structure and behaviour, (2)
support for component-based development via composite structures, and (3)
integration of action semantics with behavioural constructs.

With the intention of enabling a systematic approach to the mentioned issues, in

this thesis a notion of refactoring trigger-element has been introduced. Next, trigger-
elements of all Fowler’s code refactorings [Fowler et al. 1999] have been determined.
Subsequently, a mapping between all these trigger-elements and their equivalents in
the UML 2.0 metamodel and TAU Object Model have been established, indicating that
all code refactorings can be applied to executable UML models. The thesis elaborates
categorization of model refactorings in the form of refactoring areas based on the
notion of trigger-elements. Exemplary transformations from each area are presented,
and the overall ideas are illustrated on a study executable UML model built in TAU.
The identified refactoring areas are specific for TAU executable models, but one may
expect that similar ones could be distinguished in e.g. I-Logix Rhapsody models.
Basing on the initial research, a systematic approach to specification of both
executable UML model refactorings as well as associated bad smells has been
elaborated. Using a proposed specification template, twelve refactorings have been
specified, and one of them – Remove Middle Man – implemented in TAU. It is worthy
noting that both specifications as well as implementations of the transformations are
specific for Telelogic TAU, i.e. they are not straightforwardly portable to other UML
CASE tools. This results mainly from the fact that TAU Object Model substantially
differs from UML 2.0 metamodel.

The issue of refactoring executable UML models, introduced by Sunyé et al.

[2002], is addressed by Kazato et al. [2004] (see Section 3.7) in a paper, which seems
to be the only one on the topic published so far. Although their approach has a
significant research value, its practical application seems rather inconvenient. First, it
is not dedicated to UML CASE tools, but to graph transformation systems. This
implies that each attempt to refactor a design model requires exporting, transforming,

 95

and importing it back again42. In the current prototype tool, each refactoring is
performed in accordance with the following scenario:

1. Edit the model in the transformation system;
2. Create refactoring node and set its “name” attribute to the name of the

desired refactoring;
3. Connect the node to the model element relevant to the transformation by

using “target” edge;
4. Launch the transformation.

Second, the design models refactored by Kazato et al. are based on an already
depreciated UML 1.5 instead of being compliant with the completely rebuilt state-of-
the-art UML 2.0. Moreover, refactored are only stateless models, which have more in
common with programs written in modern object-oriented programming languages
than with state-oriented executable models.

In comparison with the work performed by Kazato et al., this thesis focuses on

refactoring more complex, state-based TAU executable models. What is also important
from the point of view of the practitioner building UML models with a professional
tool such as TAU, the refactoring transformations and detection of related bad smells
are programmed in the tool using its metamodel-based COM API instead of
implementation of the transformations in a foreign environment such as a graph-
rewriting tool.

The key problems encountered during the work are connected mainly with TAU

Object Model, which is quite complex (ca. 200 metaclasses), not compliant with the
UML 2.0 metamodel, and supplied only in the form of a model that can be opened and
browsed in TAU [Telelogic 2005]. Moreover, the part that can be used while building
executable UML models is not strictly defined.

9.2 Future Work

Several topics can be pointed out as a possible future work based on the approach

presented in this thesis. These are as follows:

1. Identification and definition of refactorings and associated bad smells
specific for executable UML models. By specific understood are the
ones that cannot be applied/do not occur in programming language code.
These are mainly refactorings triggered on elements in ISAC and LCAC
areas. Two examples of them, namely Extract Port and Group States, are
given in Section 6.8.1 and 6.8.2, respectively.

2. Development of a professional industrial refactoring add-in to TAU.

This add-in would (1) support users in detecting bad smells and (2)
suggest appropriate refactorings to remove them. Moreover, it would
enable to trigger user-defined transformations.

3. Automation of generating implementations of refactorings from their

formal specifications. This topic bases on an observation that
implementation of both queries as well as pre- and postconditions in TAU
COM API, from OCL specifications, is straightforward.

42 Assuming that the graph transformation system is not a part of the UML CASE tool.

 96

4. Refactoring of executable models in a tool fully compliant with UML
2.0. Refactorings specified for such a tool would be portable across all
tools compliant with UML 2.0 – as soon as they appear on the market.

5. Specification of refactorings with the use of action semantics. This

topic bases on an observation that action semantics can be used also to
transform UML models [Sunyé et al. 2002; Varro & Pataricza 2003].

6. Discovering refactoring preconditions in a systematic manner. The

most problematic step during specifying a refactoring seems to be
determination of its preconditions. This results from the fact that is very
difficult to foresee all situations is which the refactoring will not be
behaviour preserving.

7. An experiment with human subjects, evaluating:

a. influence of automation of executable UML model refactoring on
productivity of software developers,

b. the effect of the refactoring on maintainability of executable
UML models.

8. Construction of a catalogue of executable UML model refactorings.

The refactorings should be specified according to the template enhanced
by among others sections concerning (1) classification of refactorings, (2)
related refactorings, and (3) consequences of refactorings.

 97

10 REFERENCES

1. Alur, D., Crupi, J. and Malks, D. (2001) Core J2EE Patterns: Best Practices and Design
Strategies, Prentice Hall.

2. Ambler, S.W. (2003) ‘Be Realistic About the UML: It’s Simply Not Sufficient’, available
from Internet <http://www.agilemodeling.com/essays/realisticUML.htm> (5 April 2005).

3. Astels, D. (2002) ‘Refactoring with UML’, in Proceedings of the 3rd International
Conference on eXtreme Programming and Flexible Processes in Software Engineering,
Alghero, 26 – 29 May 2002, 67-70.

4. Beck, K. (2000) Extreme Programming Explained: Embrace Change, Addison Wesley.

5. Beck, K. and Fowler, M. (2001) Planning Extreme Programming, Addison Wesley.

6. Bennett, K.H. and Rajlich, V.T. (2000) ‘Software maintenance and evolution: a roadmap’, in
Proceedings of the 22nd International Conference on Software Engineering, 75-87.

7. Björkander, M. (2000) ‘Graphical programming using UML and SDL’, Computer, 33(12),
30-35.

8. Björkander, M. and Kobryn, C. (2003) ‘Architecting Systems with UML 2.0’, IEEE
Software, 20(4), 57-61.

9. Boger, M., Sturm, T. and Fragemann, P. (2003) ‘Refactoring Browser for UML’, Lecture
Notes in Computer Science, 2591, 366-377.

10. Bock, C. (2003) ‘UML without Pictures’, IEEE Software, 20(5), 33-35.

11. Booch G. (2002) ‘The Future of Software Technology’, CHIPS Magazine, 20(4).

12. Bosch, J. (2000) Design and use of software architectures, Addison-Wesley.

13. Bottoni, P., Parisi-Presicce, F. and Taentzer, G. (2003) ‘Coordinated Distributed Diagram
Transformation for Software Evolution’, Electronic Notes in Theoretical Computer Science,
72(4), 1-12.

14. Boyd, G. (2003) ‘Executable UML: Diagrams for the Future’, available from Internet
<http://www.devx.com/enterprise/Article/10717> (30 December 2004).

15. Chapin, N., Hale, J.E., Md. Khan, K., Ramil, J.F. and Tan, W.-G. (2001) ‘Types of software
evolution and software maintenance’, Journal of Software Maintenance and Evolution:
Research and Practice, 13, 3-30.

16. Chikofsky, E.J. and Cross, J.H.II (1990) ‘Reverse engineering and design recovery: a
taxonomy’, IEEE Software, 7(1), 13-17.

17. Correa, A.L. and Werner, C.M.L. (2004) ‘Applying Refactoring Techniques to UML/OCL
Models’, in International Conference on the Unified Modeling Language (UML’04), Lisbon,
October 2004, 173-187.

18. Dawson, C.W. (2000) The essence of computing projects : a student’s guide, Pearson
Education Limited.

19. Demeyer, S. (2002) ‘Maintainability versus Performance: What’s the Effect of Introducing
Polymorphism’, Technical Report, University of Antwerp, Belgium.

20. Demeyer, S., Ducasse, S. and Tichelaar, S. (1999) ‘Why Unified is not Universal: UML
Shortcomings for Coping with Round-trip Engineering’, in Proceedings of 2nd International
Conference UML’99 – Unified Modeling Language – Beyond the Standard (Lecture Notes in
Computer Science 1723), 630-44.

21. Du Bois, B., Van Gorp, P., Amsel. A., Van Eetvelde, N., Stenten, H., Demeyer, S. and Mens,
T. (2004) ‘A discussion of refactoring in research and practice’, Technical Report (number
2004-03), University of Antwerp, Belgium.

 98

22. Feng, T. (2003) ‘Action Semantics for an Executable UML’, available from Internet
<http://moncs.cs.mcgill.ca/people/tfeng/docs/as/> (1 January 2005).

23. Fowler, M. (1999) ‘Alpha list of Refactorings’, available from Internet
<http://www.refactoring.com/catalog/index.html> (4 October 2004).

24. Fowler, M. (2003) UML Distilled, 3rd edition, Addison Wesley.

25. Fowler, M. (2004) ‘RefactoringMalapropism’, available from Internet
<http://martinfowler.com/bliki/RefactoringMalapropism.html> (2 October 2004).

26. Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. (1999) Refactoring: Improving
the Design of Existing Code, Addison-Wesley.

27. France, R. and Bieman, J.M. (2001) ‘Multi-View Software Evolution: A UML-based
Framework for Evolving Object-Oriented Software’, in Proceedings IEEE International
Conference on Software Maintenance (ICSM), Florence, 6 – 10 November 2001, 386-395.

28. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

29. Hightower, J. (1996) ‘On the Evolution of Programming’, Colorado Engineer Magazine, vol.
Fall-Winter.

30. Ho, W.-M.., Jézéquel, J.-M.., Le Guennec, A. and Pennaneac’h, F. (1999) ‘UMLAUT: an
extendible UML transformation framework’, in Proceedings of 14th IEEE International
Conference on Automated Software Engineering (ASE’99), 12 – 15 October 1999, Florida,
275-278.

31. Ho, W.-M.., Pennaneac’h, F. and Plouzeau, N. (2000) ‘UMLAUT: a framework for weaving
UML-based aspect-oriented designs’, in Proceedings of 33rd International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS 33), 5 – 8 June 2000, St.
Malo, 324-334.

32. IEEE (1990) IEEE standard glossary of software engineering terminology, IEEE Std 610.12-
1999.

33. Kataoka, Y., Imai, T., Andou, H. and Fukaya, T. (2002) ‘A quantitative evaluation of
maintainability enhancement by refactoring’, in Proceedings International Conference on
Software Maintenance, 576-585.

34. Kazato, H., Takaishi, M., Kobayashi, T. and Saeki. M. (2004) ‘Formalizing Refactoring by
Using Graph Transformation’, IEICE Transactions on Information and Systems, E87-D(4),
89-92.

35. Kerievsky, J. (2004) Refactoring to Patterns, Addison-Wesley Professional.

36. Kobryn, C. (2004) ‘UML 3.0 and the future of modeling’, Software and System Modeling,
3(1), 4-8.

37. Kobryn, C. and Samuelsson, E. (2003) ‘Driving Architectures with UML 2.0 – The TAU
Generation2 Approach to Model Driven Architecture’, White Paper, available from Internet
<http://www.telelogic.com/resources/get_file.cfm?id=3537&filetype=Other> (27 April
2005).

38. LC (2004) ‘Function Point Counting’, Longstreet Consulting Inc., available from Internet
<http://www.ifpug.com/fpc.htm> (3 January 2005).

39. LC (2004a) ‘Software Productivity Since 1970’, Longstreet Consulting Inc., available from
Internet <http://www.ifpug.com/Articles/history.htm> (3 January 2005).

40. Leblanc, P. (2004) ‘UML 2.0 Action Semantics and Telelogic TAU/Architect and
TAU/Developer Action Language’, White Paper, available from Internet
<http://whitepapers.zdnet.co.uk/0,39025945,60094585p-39000629q,00.htm> (27 April
2005).

41. Lehman, M.M. (1980) ‘On understanding laws, evolution and conservation in the large
program life cycle’, Journal of Systems and Software, 1(3), 213-221.

 99

42. Mäntylä, M. (2003) ‘Bad Smells in Software – a Taxonomy and an Empirical Study’, MSc
thesis, Department of Computer Science and Engineering, Helsinki University of
Technology.

43. Mäntylä, M. (2004) ‘A Taxonomy for Bad Code Smells’, available from Internet
<http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm> (8 December 2004).

44. Massoni, T. (2003) ‘Introducing Refactoring to Heavyweight Software Processes’, Technical
Report, CIn-UFPE, Brasil.

45. Mellor, S.J. and Balcer, M.J. (2002) Executable UML: A Foundation for Model Driven
Architecture, Addison-Wesley.

46. Mellor, S.J., Scott, K., Uhl, A. and Weise, D. (2004) MDA Distilled, Addison-Wesley
Professional.

47. Mens, T. and Tourwé, T. (2004) ‘A Survey of Software Refactoring’, IEEE Transactions on
Software Engineering, 30(2), 126-139.

48. Mens, T. and Van Deursen, A. (2003) ‘Refactoring: Emerging Trends and Open Problems’,
in Proceedings First International Workshop on REFactoring: Achievements, Challenges,
Effects (REFACE), British Columbia, 13 November 2003.

49. Mens, T., Demeyer, S., Du Bois, B., Stenten, H. and Van Gorp, P. (2002) ‘Refactoring:
Current research and future trends’, Third Workshop on Language Descriptions, Tools and
Applications (LDTA), Warsaw, 6 April 2003.

50. Mens, T., Van Eetvelde, N., Janssens, D. and Demeyer, S. (2005) ‘Formalising Refactorings
with Graph Transformations’, Journal of Software Maintenance and Software Evolution,
scheduled for publication in July/August Issue.

51. Niemann, S. (2004) ‘Executable Systems Design with UML 2.0’, available from Internet
<http://www.omg.org/news/whitepapers/Executable_System_Design_UML.pdf> (15 April
2005).

52. Ó Cinnéide, M. (2000) ‘Automated Application of Design Patterns: A Refactoring
Approach’, PhD thesis, Department of Computer Science, Trinity College, University of
Dublin.

53. OMG (2002) Unified Modeling Language Specification Version 1.4.2, Object Management
Group, available from Internet <http://www.omg.org/cgi-bin/apps/doc?formal/04-07-02.pdf>
(29 November 2004).

54. OMG (2002a) UML 1.4 with Action Semantics, Final Adopted Specification, Object
Management Group, available from Internet <http://www.omg.org/cgi-
bin/apps/do_doc?ptc/02-01-09.pdf> (7 April 2005)

55. OMG (2003) UML 2.0 Infrastructure Final Adopted specification, Object Management
Group, available from Internet <http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf> (1
May 2005).

56. OMG (2003a) UML 2.0 Diagram Interchange Final Adopted specification, Object
Management Group, available from Internet <http://www.omg.org/cgi-bin/apps/doc?ptc/03-
09-01.pdf> (1 May 2005).

57. OMG (2003b) UML 2.0 OCL Final Adopted specification, Object Management Group,
available from Internet <http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf> (1 May
2005).

58. OMG (2004) UML 2.0 Superstructure Revised Final Adopted specification (convenience
document), Object Management Group, available from Internet <http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-02.pdf> (8 April 2004).

59. Opdyke, W.F. (1992) ‘Refactoring Object-Oriented Frameworks’, PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign.

60. Parnas, D.L. (1994) ‘Software Aging’, in Proceedings of the 16th International Conference
on Software Engineering, IEEE Computer Society Press, Los Alamitos, 279-287.

 100

61. Pender, T. (2003) UML Bible, Wiley.

62. Pigoski, T.M. (1997) Practical Software Maintenance – Best Practices for Managing Your
Software Investment, John Wiley & Sons.

63. Pollet, D., Vojtisek, D. and Jézéquel, J.-M. (2002) ‘OCL as a Core UML Transformation
Language’, WITUML Position Paper at 16th European Conference on Object-Oriented
Programming, Málaga, 10-14 June 2002.

64. Porres, I. (2003) ‘Model Refactorings as Rule-Based Update Transformations’, Technical
Report Series No. 525, Turku Center for Computer Science, Finland.

65. Riehle, D., Fraleigh, S., Bucka-Lasses, D. and Omorogbe, N. (2001) ‘The architecture of a
UML virtual machine’, SIGPLAN Notices, 36(11), 327-341.

66. Roberts, D.B. (1999) ‘Practical Analysis for Refactoring’, PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign.

67. Rumpe, B. (2002) ‘Executable modelling with UML: a vision or a nightmare?’, Issues and
Trends of Information Technology Management in Contemporary Organizations. 2002
Information Resources Management Association International Conference, 1(1), 697-701.

68. Schattkowsky, T. and Müller, W. (2004) ‘Model-Based Design of Embedded Systems’, in
Proceedings of Seventh IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, 121-128.

69. Schattkowsky, T. and Müller, W. (2004a) ‘Model-Based Specification and Execution of
Embedded Real-Time Systems’, in Proceedings of Design, Automation and Test in Europe
Conference and Exhibition (DATE ’04), 1392-1393.

70. Sendall, S. and Kozaczy�ski, W. (2003) ‘Model transformation: the heart and soul of model-
driven software development’, IEEE Software, 20(5), 42-45.

71. Sendall, S., Hauser, R., Koehler, J., Küster, J. and Wahler, M. (2004) ‘Understanding Model
Transformation by Classification and Formalization’, in Proceedings of Workshop on
Software Transformation Systems (part of 3rd International Conference on Generative
Programming and Component Engineering), Vancouver, 24 October 2004.

72. Selic, B.V. (2004) ‘On the Semantic Foundations of Standard UML 2.0’, Lecture Notes in
Computer Science, 3185, 181-199.

73. Staro�, M. and Ku�niarz, L. (2004) ‘Implementing UML Model Transformations for MDA’,
11th Nordic Workshop on Programming and Software Development and Tools, Turku,
Finland.

74. Starr, L. (2002a) Executable UML. How to build class models, Prentice Hall.

75. Starr, L. (2002b) ‘Executable UML Metamodel’, available from Internet
<http://www.modelint.com/download.html> (11 October 2004).

76. Sunyé, G., Pollet, D., Le Traon, Y. and Jézéquel, J.-M. (2001) ‘Refactoring UML Models’,
Lecture Notes in Computer Science, 2185, 134-148.

77. Sunyé, G., Le Guennec, A. and Jezequel, J.M. (2002) ‘Using UML Action Semantics for
Model Execution and Transformation’, Information Systems, 27(6), 445-457.

78. Svahnberg, M. (2003) ‘Supporting Software Architecture Evolution. Architecture Selection
and Variability’, PhD thesis, Department of Software Engineering and Computer Science,
Blekinge Institute of Technology.

79. Swanson, E.B. (1976) ‘The Dimensions of Maintenance’, in Proceedings of the 16th
International Conference on Software Engineering, IEEE Computer Society, 492-497.

80. Telelogic (2004) ‘Telelogic TAU 2.4 Help’, a help file attached to TAU.

81. Telelogic (2005) ‘TAU Object Model’, available from Internet for registered TAU users
<https://support.telelogic.com/en/tau/addins/index.cfm?contentid=8046&fieldid=3906> (20
April 2004).

 101

82. Tichelaar, S. (2001) ‘Modeling Object-Oriented Software for Reverse Engineering and
Refactoring’, PhD thesis, Faculty of Science, University of Bern.

83. Tichelaar, S., Ducasse, S., Demeyer, S. and Nierstrasz, O. (2000) ‘A Meta-model for
Language-Independent Refactoring’, in Proceedings International Symposium on Principles
of Software Evolution, Kanazawa, 1 – 2 November 2000, 154-164.

84. Van Gorp, P., Stenten, P., Mens, T. and Demeyer, S. (2003a) ‘Enabling and using the UML
for model driven refactoring’, in Proceedings of the 4th International Workshop on Object-
Oriented Reengineering (WOOR), Darmstadt, 21 July 2003.

85. Van Gorp, P., Stenten, P., Mens, T. and Demeyer, S. (2003b) ‘Towards automating source-
consistent UML refactorings’, in Proceedings of the 6th International Conference on UML –
The Unified Modeling Language, San Francisco, 20 – 24 October 2003.

86. Van Gorp, P., Van Eetvelde, N. and Janssens, D. (2003c) ‘Generating Refactoring
Implementations from Platform Independent Metamodel Transformations’, in Proceedings
International Workshop on scientiFic engIneering of Distributed Java applIcations (FIDJI
2003), Luxembourg, 27 – 28 November 2003.

87. Van Gurp, J. and Bosch, J. (2002) ‘Design Erosion: Problems & Causes’, Journal of Systems
& Software, 61(2), 105-119.

88. Van Gurp, J., Smedinga, R. and Bosch, J. (2002) ‘Architectural Design Support for
Composition and Superimposition’, in Proceedings of IEEE HICCS 35.

89. Varro, D. and Pataricza, A. (2003) ‘UML actions semantics for model transformation
systems’, Periodica Polytechnica Electrical Engineering, 47(3-4), 167-186.

90. Wake, W.C. (2003) Refactoring Workbook, Addison-Wesley.

91. Warmer, J. and Kleppe, A. (1999) The Object Constraint Language: Precise Modeling with
UML, Addison-Wesley Professional.

92. Zhang, J., Lin, Y. and Gray, J. (2004) ‘Generic and Domain-Specific Model Refactoring
using a Model Transformation Engine’, Model-driven Software Development – Research and
Practice in Software Engineering, accepted for publication in 2005.

 102

APPENDIX A – FOWLER’S CODE REFACTORINGS

Columns:

• Group – name of a group to which refactorings belong
• No. – number of a refactoring
• Refactoring – name of a refactoring
• Summary – a problem and a solution statement [Fowler et al. 1999]

) �� �� � 6 � 	� � ��� � �� ��� �� 1 �7 7 � �� �

��� * + ���
 ��� 	 �� � � �
F� # �� �" 	 ���
 � � 	 �����
	 ����� ���
 ���& 	 �� �� # � 	 � ��� � 	 �� 	 ���
(� �� ��� ��)�� $ 	 �� ���� �� �� �	 ��� � � �* � � � ��� � 	 ���' � �� �� � ��� ��� � �� � � ���)��� ��
	 ��� � � ��

��� .����	 �� 	 �� � � �
/�
	 �� � � G��& � � ! ����'# ������
 �	 ������������
	 ��
+ � ���� ��	 ��� � � ,� �% � �
 ��� �� ��� ��% � �
 ��)���� �� � ����� �� � � ���	 � � ���� ��	 ��� � � ��

6 �� .����	 �1	
� �
F� # �� �" 	 ����	
� ��� ����������� �	 � ��� �� �
 	 �� ��� �����
� �	 �	 + � �	 ���� �0���� ��� 	 �
�	
� ����� 	 ����� ������ 	 �� �! �� ��� �� 	 ���	 ��
 �� ���� ���
� �� �� � ��� �����)���� � �� ��� ��� � ����	 � �* ��� ��� ���' � ��� � �� � ��

9�� - 	 � ��
 	 �1	
� �� ��� �H # 	 �! �
F� # ���	 �# ���� ����	
� � ���! �" ����& �	 ��� �� � �� ��� 	 ��	 �# ���� �����	 + � �	 ���� ���
& ' ��� � ���� ���' � ��� � �� � ��� �� �� �	 ��� � � ��� �� �� � ��� �����)���� � �� ��� ��� ����	 � �
* ��� ��� ��	 ��� � � ��(� ��� �* �	 ��� � � �� � � ��� �� �% ��� � �� ��� �� �� ���	 ��� � � � ��

: �� .���� � #
 	 �* + � ������� �
;����& �	 �

F� # �� �" 	 ���
 �
� ��
 ��	 � �	 + � �	 ���� ���
+ � ���� ����� � ����)��� ���' � ��� � �� � -�� ��� � ��� ��)��� ���' � ��� � �� � -��� �� ���	 � � �� �
 �
� � ��� % ���* ��� �� �� � 	 ���� � ���' � �� �� � ��� ��� � �� � � ���

7 �� �� ����1	
� � ���! �;����& �	 �
F� # �� �" 	 ����	
� � ���! �" ����& �	 ������ �	 � ��� �
� �	 ��� ���� �
 	 0�& # ������� ����
�� � � �" ����& �	 ��� ����
 � ��	
 ���� ��	
� � ���! �" ����& �	 ��
� � # ��� �� �� � �� �����	 � � �� �
 �� � ��� % ���)� ���� � � �� � � �$ � 	 �� ���

I �� - 	
� " 	 �/���� �
	 ������ �
5 ���
	 �	 ���

1� 	 �
 � � 	 ������ ����� ���� ���
	 �	 ���
� � ��� ���	 � � �� �
 �� � ��� % ����� � ��� � ��

8�� - 	 � ��
 	 �� 	 �� � � �� ��� �
� 	 �� � � �% & '	
 ��

F� # �� �" 	 ����� �� �
	 �� � � ��� ���# �	 ����
 ���" ����& �	 ������#
 � ���� �! ��� ���! � # �

 ����� ���� � �! �* + ���
 ��� 	 �� � � ��
(� �� ��� ��	 ��� � � ��� �� ���� �� * � �� % .�� ��� � ��� � ��� ����� ���� � � ��� � ��� % ��� �% �� � 	 ��
)���� � �� � ��� � ��� % .�� ���/ � � �� � � ��� �� �� �� � 	 � � � ���� ��	 ��� � � ��� �� �� �� ���
	 ��� � � � �� � ��� ��� � 	 ��� % .�� ���

�
�

��
��

��
��

	�
��

��
�

��� �# & ����# �	 �/�� � ����
�
F� # �� ������ ��	 � ��
 	 ������� � ����
�� ��� �� �	 ��� ������
 �	 ��	 ���
� �� �� � ���� ��% � �
 ��)��� ��	 ��� � � �* ��� ��� ��� �* �� �$ � ���� 	 ��

�� �� � � " 	 �� 	 �� � � �
/�
	 �� � � ���0�� ��� ����& 	 0�# ���� �� ��# �	 � �& ! �
� �	 ��	 ��# �	 ��� ����� �� 	 ��
 �����
�� ����� 	 �
 ������ ��� � �
 � �������� 	 ���	 � ��
���� ���� �� �* �	 ��� � � �* ��� �� �� �	 ��� ��% � �
 ��� ��� ��� �� � � ����� � �� �	 � � ���& ��� ���
�� �� ��� ��� �� �	 ��� � � ��� �� �� �� �	 � ���� ���$ � ��� � -�� ����	 � � ������ ��� $ ��� ����

���� � � " 	 ���	 �� �
/����	 � ���0�� ��� ����& 	 0�# �	 � �& ! ���� �� 	 ��
 �����
� �	 ��� ����� 	 �
 ������ ��� � �
 � �������
� 	 ���	 � ��
���� ���� �� �* �)���� ��� ��� ���� �$ ���� �� � � -�� � � �� � � � $ ��� ������ �� � ��� ��

���� * + ���
 ��� �����
F� # �� �" 	 �� �	 �
 ������ � ��� �� � � ��� ����� � # �� �& 	 �� � �	 �& ! ��� � ��
���� ���� �� �* �� �� � � �� � � �	 � � ���� ������� � � ��)���� � �� � � �	 ��� � � � �)�� 	 ��� ��� �� �
� �� � � ��� �� ��� ��� �* �� �� � � ��

�6 �� .����	 �� �����
/�
 ��������G��� � ��� �" 	 �! �

 � ��
� � � ��� ������ �)�� �� ��� ��� �� �� � � �� ���� �� � � �� � � �� ����������

�9�� D �� 	 �) 	 �	 � ��	 �
/�
 ��	 ������
 ������ ���� 	 �	 � ��	 �
 ������ ������ & '	
 ���
���� ���	 ��� � � � �� � ��� ��� ��� ����� �� �� ���� ��� ���$ � ����

�: �� - 	
� " 	 �� �� � �	 �� ���
/�
 ��������� � ��� ��� � �

 � ���
� �	 �� 	 �	 � ���� ���
� ����� ��� ���� ���� �� � ����� ��� ���$ � ���� ���� ��
 ��

�7 �� .���� � #
 	 ��� �	 �� ��� 	 �� � � �
/��	 �" 	 ��
 �����! � # ���	 �# ���� ��	 	 � ������� � ���� ����
	 �� � � 0�& # ��! � # �
 ��G��

� � ��! ��� 	 �
 ������
���� ���� �	 ��� � � �� � ��� ��� ���� ��� �� � � �* ��� �� � ��� � �� � � ���)��� ��� ��� ���� �� � � �� � �
��� �)��� ��� �$ � 	 �� ���

�
�"

��
��

�
	�

�#
�	

��
$

	�
�

		
��

%
&'

	

��

�

�I �� .���� � #
 	 �3 �
 ���* + �	 ���� ��
/��	 �" 	 ��
 �����! � # ���	 �# ���� ��	 	 � ���	 " 	 ������ � ���� ����
	 �� � � �0�& # ��! � # �

 ��G��
� � ��! ��� 	 �
 ������
���� ���� �� �* �� �� � � ��� � ��� � � �� �� � ��� �� ���' ��� �	 ��� � � � ��� � # ���� �� ��' ��� � �� � �
� �� � � �� �� � % � �� � � �� ��� �* �� � � ����)��� ��� ��$ �� � ���

 103

) �� �� � 6 � 	� � ��� � �� ��� �� 1 �7 7 � �� �

�8�� �	 ���* �
 �� �# ���	 ���	 �� �
F� # ���	 ��

 	 ����� �����	 �� �� ��	
 ��! 0�& # ���� 	 �
 � # � ���� ��� ��� 	 ���	 �� ����& 	
 �
��� �
�� � ��� ��
���� ���$ ����� $ �� � � �� ����� $ �	 ��� � � � �)� ���� ��)���� �� � � �� � ��� � �
 ��� � � ���� �
� � � �� � ��� ��)���� ��

���� - 	 � ��
 	 �) ����;��# 	 �� ��� �
% & '	
 ��

F� # �� �" 	 ���� ������	
��� ����	 	 � ���� � ���� ����� ����� ��& 	 � �" �� ���
(� �� ��� ��� � �� ����	 ��� �� �� � �� % .�� ���

�� �� � � ��� 	 �;��# 	 ��� �- 	 �	 �	 �
 	 �
F� # �� �" 	 ���
 ������ ��� �
��! �	 C # ���������
 	 ���� ���! � # �� ������ ��	 � ��
 	 �� ��� ���
���� �	 �� & '	
 ���
(� �� ��� ��� % .�� ���� �� �� ���)���� � ��� % .�� ���

���� � � ��� 	 �- 	 �	 �	 �
 	 ��� �;��# 	 �
F� # �� �" 	 ����	 �	 �	 �
 	 �� & '	
 ���� �������
���0��

# ��& �	 0���� ��� � ��� ��� �

���� 	 ��
(� �� ������ �� �� �� � �� ��� % .�� ���

���� - 	 � ��
 	 �/���! �� ��� �% & '	
 ��
F� # �� �" 	 ��������! ����� � �
 � �
 	 ������	 �	
	 ����
	 ���� ���	 �	 ����� ��� ���
� �� �� � ���� ��� ���
 �* ��� �� � �� % .�� ���� � ��� � � �� �)���� �)� ���� � � ����	 �� ���

�6 ��) # � ��
 ��	 �% & �	 �" 	 � �) ����
F� # �� �" 	 �� �
����� �����" ����& �	 �� ��! ������,2 .�
 � ���� �0���� �� �
����
	 �� � � ��
�	 	 � ��

 	 ����
�� �
 ��� ��� � �� ��� �� �� � 	 � �� �� % .�� ���� ���� � �� � �� % � ��� ����� ��
 � � � �� � �0 ���� ��
�* � �� ��� �� ��)�� � �� ��

�9�� � � ��� 	 �2 ��� ��	
 ��� ����
/���
 ����� ���� �$�� ��	
 ��� ����

F� # �� �" 	 ��� � �
 ����	 ���� ����	 	 � ��� �# �	 �	 �
 � �� �� 	 �G���	 ��# �	 �0�& # ���� 	 �	 ����
� ��! ���� �	 <� �! ���� ��
� � � �% � � # �� � �� ���� -�� � � �� � � � $ ��	 � � �)���� ��� �� � � � ���% � �� �� ��� ��

�: �� � � ��� 	 �$�� ��	
 ��� ����
/���
 ����� ���� �2 ��� ��	
 ��� ����

F� # �� �" 	 ����� � <� �! �����
 ����� ��& # ��� �	 �
 ������� ��� �� 	 ���	 	 � ���	 ��# �	 ��
���
��� 	 �� �� 	 ���
� �� � ��� ��� � � ��� �� ��� � ��)��� ��� � � � � �� ��� � ��

�7 �� - 	 � ��
 	 �� �� �
 �4 #
& 	 ��� ��� �
�!
& � ��
 �� � �������

F� # �� �" 	 ������	 �����#
& 	 ��� ��� ���� ����
 # ����
	 ����� ��
���� ���� �� � � � �� � �-�� � 	 ������)������ ��	 �� � �� $ -�� � � ���� �� � ���� ��� � 	 % ���* ��� �
����

�I �� * �
 �� �# ���	 ���	 �� �
1� 	 �	 ������� # & ��
 ���	 �� ��
� � # ������ ��� � ���� � � �� �� � �� ��� � � �� � � �� ��

�8�� * �
 �� �# ���	 �� � ��	
 ��� ��
/�
	 �� � � ��	 �# ������
 � ��	
 ��� ���
� � # ��������� �� �� ���� � 1� � �
 �� ��* �� � � �� �� � �� ��� � � 2��	 � � ��	 ��� � � � ��

���� - 	 � ��
 	 �- 	
 � �� �� ��� �) ����
� �����

F� # ��	 	 � ��� ����	 ���
 	 �� ��� ����	
 � �� ����#
 �# �	 ���������� ���� ����� �� � ��

��� �
	 �" ��� �
	 ����
� � # ��� �� � 	 % �� � �� �� % .�� ��)� ���� ����� � �� ��

6 � �� - 	 � ��
 	 �1! � 	 �� � � 	 �� ��� �
� �����

/�
 ������ ������#
	 ��
 ��! � 	 �
 � � 	 ��� ���� � 	 ���� �����	
 ������& 	 � �" �� ���
� �� �� � ���� ��� � 	 % ���* ��� �� �� �* �� �� � � ��

6 ��� - 	 � ��
 	 �1! � 	 �� � � 	 �� ��� �
�# &
 ����	 ��

F� # �� �" 	 �����

# ��& �	 ��! � 	 �
 � � 	 ��� ������	
 ����� 	 �& 	 � �" �� ��� ����
 ������
� �� �� � ���� ���
 � ��� � � ��* ��� �� � % � �� � � �� ��

6 ��� - 	 � ��
 	 �1! � 	 �� � � 	 �� ��� �
����	 J�����	 � ! �

F� # �� �" 	 ����! � 	 �
 � � 	 ��� ������	
 ����� 	 �& 	 � �" �� ��� ����
 ����0�& # ��! � # �
 ����� ��
# �	 ��# &
 ������� ��
� �� �� � ���� ���
 � ��� � � ��* ��� �� �� �� ���� % .�� ���

%
��

��
�(

��
��

)
��

��

6 6 �� - 	 � ��
 	 ��# &
 ������ ��� �
��	 �� ��

F� # �� �" 	 ��# &
 ����	 ���� ���" ��! �� ��! ����
	 �� � � ���� ����	 �# ���
 � �������� �����
�� � � $ ���� ��	 ��� � � � ��� �� � � ��� �� � � �)���� � �� � � ����	 �� � ����� ��� � % � �� � � �� ��

6 9��) 	
 �
� � �	 �� � �� ���� ����
F� # �� �" 	 ���
 �
� ��
 ��	 � �
 � �� ���� ����=��<�� 	 �<	 ��	 >�����	
	 ����
& ' ��� � ��	 ��� � � � �)�� 	 ��� ��� � � � ���� � -��� �� �� � ��-�� � � ���� ��� � ��� ��

6 : �� � � ��� ��� ��	 �� � �� ���� ����
* + � �	 ���� ��

F� # �� �" 	 ����	 C # 	 �
 	 �� ��
 � �� ���� �����	 ����� ��� ��� 	 ���
	 ��	 �# ����
�� 	 % �� ���� �	 ��� �� �� �� �� $ ���� � � � ���� � � ���' � ��� � �� � �� � � ��' ��� � ������

6 7 �� � � ��� ��� ��	 �) # � ��
 ��	 �
� � �� ���� ��������
	 ����

1� 	 ���
	 �����
	 ���� ��
 � � 	 �����������& ���
 � 	 ��� ����
 � �� ���� ����	 + � �	 ���� ���
� � � ������ � �� �� ���)��� ���' � ��� � �� � ��

6 I �� - 	
� " 	 �� � ���� ������ �
F� # �� �" 	 ���" ����& �	 ��� �������
 ���� ������
 � ���� ������ ��� �����	 ��	 ��� ��& � � �	 ���
	 + � �	 ���� ����
� � ��� �% ��� # �� ������ �� ��� � ��� � ��

6 8�� - 	 � ��
 	 �4 	 ��	 � �� � �� ���� ����
� ��� �,# ��� �� ��# �	 ��

/�
	 �� � � �� ���
 � �� ���� ����& 	 � �" �� ���� ���� � 	 ���� ��
� 	 �
 �	 ����� 	 ��� �
���
� ��� �� ��	 + 	
 # ��� ���
� � ��$ � � �� �� �� � � �� �)� ��� ����� ��� � �� �� ��� � � �� ��

�
�

��
��!

��
��

�
��

��
���

��
��*

+�
�	

��
��

��
�

6 ��� - 	 � ��
 	 �� � �� ���� ����� ��� �
F� # �� �" 	 ���
 � �� ���� ������ ���
 � � � �	 ��� ���	 �	 ���& 	 � �" �� ��� 	 � 	 �� ��� �� ���� 	 �
�! � 	 �� ������ & '	
 ���

 104

) �� �� � 6 � 	� � ��� � �� ��� �� 1 �7 7 � �� �

5 � �!
� �� � ��
� � � � ���� � � ���$ ��)��� ��� � � � ���� � � ���� �� � �� � ����� �� $ �	 ��� � � ��� �� �� � % � �� � � ��
� � # ���� ��� ��$ �� � ��	 ��� � � �� % � ��� � ���

9� �� .���� � #
 	 �4 # ���% & '	
 ��
F� # �� �" 	 ��	 � 	 ��	 � �
 � 	
 ���� �����# ���" ��# 	 ��
� �� �� � ���� ��� � ���� � �� ��* ��� �� �� � ���� % .�� ���

9��� .���� � #
 	 �/��	 ���� ��
/��	
 ��� ��� ��
 � � 	 ����#
	 ����
	 �� ��� ��& � # ���� 	 �����	 �� ���� 	 �� �� � ��
��
� � # ���� ��� � � � 	 � ��� � ��' � ��� ���* ��� �� � �� � � ����� � ��

9��� - 	 ��
	 �� 	 �� � � �
1� 	 ���
	 �� ����
	 �� � � �� � 	 ���� ���	 " 	 �������� # �� � �	 ��
�� � � $ ���� ��� � 	 ���)��� ��	 ��� � � ��

96 �� /� � �5 ���
	 �	 ��
/�
	 �� � � ��	 	 � ��
� �	 ����� �
���� �����
�����
 ���	 ���
� � � �� �� � �� 	 �����)� ��� � �� % .�� ���� � ��� � � �� � � � �� � ��� �� ���)� �	 � ��� � ��

99�� - 	
� " 	 �5 ���
	 �	 ��
/�� ���
	 �	 ������� ��� �� 	 ��# �	 � �& ! ��� 	 �
	 �� � � �& � � ! ��
� �	 � � ������

9: �� �	 � ����	 �H # 	 �! ����
�
� � � ���	 ��

F� # �� �" 	 ���
	 �� � � ��� ����	 �# ������" ��# 	 �& # ������ �
 � ��� 	 ���� 	 �����	 �� �����
� & '	
 ���
���� ����* � �	 ��� � � � -�� � ��)� ���� ��� � ��
 �� � � �� � ��)� ���� ��	 � � �)�� � ��� � ��

97 �� 5 ���
	 �	 ��(�� 	 �� � � �
�	 " 	 ����
	 �� � � ��� � ���
������� ��� ��& # ��� ��� �� ���	 �	 ���" ��# 	 ��
 � �����	 � ������ 	 �

	 �� � � �& � � ! ��
���� ���� � ��	 ��� � � ��� � ��� � �� �� �� � �� 	 �����)� ���� ��� �))���� ��� � �� �� ��

9I �� - 	 � ��
 	 �5 ���
	 �	 ��� ��� �
* + � ��
 ���� 	 �� � � ��

F� # �� �" 	 ���
	 �� � � ��� ����# ���� ���	 �	 ���
 � � 	 �� 	 � 	 �� ��� �� ���� 	 �" ��# 	 ��� �����
	 �#
	 ���	 � �� ���
	 �	 ���
���� ���� �� �� � �� ���	 ��� � � �)� ���� � � �� � �� ���)��� ��� � �� 	 ������

98�� 5 �	 �	 �" 	 �K � � �	 �% & '	
 ��
F� # ���	 �� 	 ����� ��	 " 	 ����" ��# 	 �����
����� & '	
 ����� �� ������ ��� 	 �	 �" ��# 	 �����
� ���
	 �	 ��������
	 �� � � �
 �����
� �� � ��� ��* � � ���� % .�� ���� � ��� � ��

9��� - 	 � ��
 	 �5 ���
	 �	 ��� ��� �
� 	 �� � � �

/��� & '	
 ����" � 	 ����
	 �� � � 0��� 	 ��� ���	 ���� 	 ��	 �# ��������� ���
	 �	 ���� ����

	 �� � � ��1� 	 ��	
 	 �" 	 ��
 ������� ���" � 	 ��� ���
	 �� � � ��
� �	 � � ���� ��� � �� 	 ������ � � ������� ����� ��� ����� � � # ���� ��	 ��� � � ��

: � �� .���� � #
 	 �5 ���
	 �	 ��% & '	
 ��
F� # �� �" 	 ���� �� # � �� ��� ���
	 �	 ����� ������# ����! �� � ��� � 	 �� 	 ���
� �� �� � ���� �	 �* ��� �� � �� % .�� ���

: ��� - 	
� " 	 ��	 ����� �� 	 �� � � �
/���	 �� ��� � # �� �& 	 ��	 �����
 �	 ���� ����
	 ���� ��	 " 	 �����	 �	 � ��
� �	 � � ��� �
 �� ����� $ �	 ��� � � �)� ���� � ��)���� ��

: ��� D �� 	 �� 	 �� � � �
/�
	 �� � � ������ ��# �	 � �& ! ���! �� �� 	 ��
 ������
� � # ���� ��	 ��� � � �� ��� � ����

: 6 �� - 	 � ��
 	 �� � ����#
 �� ��� ��� �
��
 �� �! �� 	 �� � � �

F� # �� ������ �� � �
� �	 ��� �����
� �	 �
 � ����#
 ��� ��� � 	 ��! � # �
 �	 ��	 ����� & '	
 ���
� �� �� � ���� ��� � � � ��� � �� ��* ��� �� �)� � �� �
 �	 ��� � � ��

: 9�� * �
 �� �# ���	 �) � � �
 ����
/�
	 �� � � ��	 �# �������� & '	
 ���� ����	 	 � ���� �& 	 �� � � �
 ���	 � �& ! �����
 ���	 ����
� � � ���� ��� � * � � � � ���� �* ��� �� ��� ��	 ��� � � ��

: : �� - 	 � ��
 	 �* ��� ��� � � 	 �� ��� �
* +
 	 � ��� ��

/�
	 �� � � ��	 �# �������� 	
 ����
 � � 	 ��� ���� �
 ��	 ����	 ��� ���
(� �� * �� � ��' � �� ��� � ��� � ��� � ��

�
�

��
��

�
	�

��
��

�
��

��
��

�

��

	�
�

: 7 �� - 	 � ��
 	 �* +
 	 � ��� ��� ��� �
1	 ���

F� # ���	 ��� �� � ��� ���
 � 	
 	 � �	 +
 	 � ��� ��� ����
 � �� ���� ���� 	 �
 ���	 ��
 � # �� �� �" 	 �

 � 	
 	 � ��������
�� � � $ ���� ��� � ������� �	 � # ���� ����� ��)��� ���

: I �� 5 # ���2 � ���	 �� �
1� � ��# &
 ����	 ��� �" 	 ��� 	 ���
	 ���	 �� ��
� � � ���� ��)���� ��� ��� ��� � � ��� �� � � ��

: 8�� 5 # ���2 � �� 	 �� � � �
F� # �� �" 	 �
	 �� � � ��� ��� ��� 	 ���
 ����	 �# ����� ���# &
 ����	 ���
� � � ���� �	 ��� ��� ��� � � ��� �� � � ��

: ��� 5 # ���2 � �� � ����#
 �� ��$� � ! �
F� # �� �" 	 �
 � ����#
 �� ���� ���# &
 ����	 ��� ��� �
� ���! ��� 	 ���
 ���& � � �	 ���
���� ���� �� � � ��� �� � � �� � � � ��� � �� �3�� � ����� �� �)�� 	 ��� ��� � % � �� � � �	 ��� � � � ��

7 � �� 5 # �� �) � � ��� 	 �� � � �
$	 � �" �� ��� �����# � 	 �
 ���������	 �	 " ����� ��! ��� ����
	 ���������# &
 ����	 ���
� � � ������� ��� � � ��� � % � �� � � �� ��

7 ��� 5 # �� �) � � ����	 �� �
/���	 �� ����# �	 � �� ��! �& ! ���
	 ��# &
 ����	 ���
� � � ���� ��)���� ��� ��� � � ��� � % � �� � � �� ��

7 ��� * + ���
 ���# &
 �����
/�
 ������ ����	 ��# �	 ���� �����	 �# �	 � �� ��! ������
	 �������
 	 ���
���� ���� �� � % � �� � � �)� ���� � ��� � % � ����)�)�� �� ��� ��

7 6 �� * + ���
 ���# � 	 �
 �����
F� # �� �" 	 ��� � �
 ����	 ��� ��� ���
������	 ��# �	 ���
���� ���� �� � � ��� �� � � �� � � �	 � � ���� ��� � 	 	 � � �)�� �� ��� ��� ��� ��� � � ��� �� � � ��

7 9�� * + ���
 ��.��	 ���
 	 �
�	 " 	 ����
 ��	 ����# �	 ��� 	 ���
	 ��# & �	 ��� ����
 ����G�����	 ���
 	 0�� ���� � �
 ����	 ��
� �" 	 �� ����� ���� 	 ������	 ���
 	 �����
 �

� ���
& ' ��� � ���� ��� � % � ����� �� �� � ��� ���)� � ���

)
	�

���
��

�
���

�,
	�

	�
��

�(
��

��
��

7 : �� � � ���� �	 �D �	 ���
 � ! �
/��# � 	 �
 �������� ��# &
 �������	 ��� ��" 	 �! �� ���	 �	 ����
� ��$ ���� �	 ��� $ ��� ����

 105

) �� �� � 6 � 	� � ��� � �� ��� �� 1 �7 7 � �� �

7 7 �� �� �
�1	
� ���	 �� 	 �� � � �
F� # �� �" 	 ��� � �
	 �� � � ������# &
 ����	 ���� ���� 	 ��� �
���
�������	 � ������� 	 ���
	 �
� �� 	 �0�! 	 ���� 	 ���	 � ����	 �� ���	 �	 ����
� ����� ��� ��� � ��� �� �	 ��� � � � �* ��� ��� ��� � 	 ��� �$ � � �� ��-�� � ��� � ���� ��� ��$ �� � ��
	 ��� � � � �% �� � 	 ���� ��� � 	 ���(� �� �
 � � �� � � �� � ����� �	 �� � ��

7 I �� - 	 � ��
 	 �.�� 	 �����
 	 �� ��� �
) 	 �	 � ���� ��

/��# &
 �����# �	 ��� ��! �� ����� �����# � 	 �
 ����	 �����	 ���
 	 �� ��� � 	 ���� ��� ����
��� 	 ����� �����
���� ���� �)���� �)� ���� ��� � � ��� �� � � -�� � .� � ��	 ��� � � � ��� �� ���$ � ����� ��� ��
� � � ��� �� � � -�� � � ���	 � � ���� ��� � % � �� � � �� $ ��

7 8�� - 	 � ��
 	 �) 	 �	 � ���� ��� ��� �
.�� 	 �����
 	 �

F� # G�	 �# ���� �� 	 �	 � ���� ����� ���	 �� ��	 ��� ������ �
��! ���
� �	 �� 	 �	 � ���� ����� ��
�� 	 �	 ����	 ����	 ���
 	 ��
� � # ���� ��� ���$ � ��� $ �� �� � � �� �� � % � �� � � ��)��� ��� ���$ � ����

7 ��� 1	 ��	 �/� ����.�� 	 �����
 	 �
F� # �� �" 	 ������� 	 �����
 	 �� �	 ���
 � ! ��� ������� � ��� ��� � �'� & ������ �
 	 ��
���� ����* � �� ���� �� � ��� �� � � �� � ��� ���$ � ��� � ��� ��� � � # ��� � ��)�� 	 ��� ��� �� ����

I � �� � � �" 	 ���5 ��
 	 � # ����) 	 ��� ��
�� �% & '	
 ���

F� # �� �" 	 �
 � � 	 �� ����	 �������� ��
 	 � # ������! �	 ��
(� �� ��� ��� � �� ���� � �� � ��� �� �� % .�� �� -�% ��� # �� � ��� ��% �� � � �� �-�� � � �	 � � ���� ��
% �� � � �� ���� ��� ��� % .�� �� ��

I ��� �	 � ����	 �) �
�������
�
5 �	 �	 ������ ��

F� # �� �" 	 �,2 .�
 ����	 ���� ���
 � ������� �
������ � �
 ��
� �� � �� ����� ��� � 	 � �� ��� $ �� ��� �� �� �� � �� ���� � 	 � �� �� �� � � �� ��

$
��

�-
	�

�

��

���
��

�

I ��� * + ���
 ��D �	 ���
 � ! �
F� # �� �" 	 ���
 ������� ������� � ��� ��� � �

 � �� � � 0�����	 �������� ������ �� # � � �
��! �

 � �� ���� ��������	
	 �����
���� ���� �� ���� �� �
 ��)�� �� � � �� ��� �* � �� � ��� � � �� � % � �� � � ���� ��� �� �� �� �� � �� �� ��
� � � ���

 106

APPENDIX B – BAD SMELLS IN CODE

Columns:

• Wake’s Group – name of a group to which bad smells belong, according to Wake’s
taxonomy [Wake 2003]

• Wake’s Subgroup – name of a subgroup to which bad smells belong, according to
Wake’s taxonomy [ibid.]

• Wake’s Bad Smell – name of a bad smell, according to Wake’s taxonomy [ibid.]
• Fowler’s Bad Smell – name of a corresponding bad smell from Fowler’s taxonomy

[Fowler et al. 1999]

8 � � �9� �
) �� �� �

8 � � �9� �1 �� ��� �� � 8 � � �9� �" � � �1 7 �

� �� #
��9� �" � � �1 7 �

�

� �

	 ���� � �

	 ����

3 � �� �� 	 �� � � � 3 � �� �� 	 �� � � �

3 ��� 	 �� ����� 3 ��� 	 �� �����

� 	 ��# �	 � ��
	 ����

3 � �� �5 ���
	 �	 ��3 ���� 3 � �� �5 ���
	 �	 ��3 ����

1! � 	 �*
& 	 � � 	 � ����4 �
	 �=.�
 �# � ��� �
D # �� �����>�

�J��

2 �
 �

��
 ���" 	 �4 �
	 � �J��

4 �
	 ��
�

.�
 � �����	 ���4 �
	 �� �J��

) 	 �� �� � � 	 � �� 	
 # ����" 	 �,	 �	 �����! �2 ��	
 	 ����! �
� �
� �	 + ��! � �� 	
 # ����" 	 �,	 �	 �����! � �� 	
 # ����" 	 �,	 �	 �����! �

� �� �
 �4 #
& 	 �� �J��

) # � ��
 ��	 � �� � � 	 �) # � ��
 ��	 � �� � � 	 �

) # � ��
 ���� ��

/��	 �����" 	 �� ����	 ��� ��� �) ���	 �	 ���
.��	 ���
 	 ��

/��	 �����" 	 �� ����	 ��� ��� �) ���	 �	 ���
.��	 ���
 	 ��

4 # ���� � 	
 � �J��

� �
� ��
 ��	 � �$� � �	 ���* + � �	 ���� �� �J��

�� 	
 ����� ��	 � �J��

�

	�
��

�K
���

��
��

��
��

	�
�

� � �� ���� ����3 � � �
 �

��
# ���	 � �.�� 	 �����
 	 � �� ��
 � �����	
	 ���

5 ��
���" 	 �% & �	 ���� �� 5 ��
���" 	 �% & �	 ���� ��

) ����� �����) ����� �����

) ����� �#
� �) ����� �#
� ��

) ����

1	
� � ���! ���	 �� � 1	
� � ���! ���	 �� �

- 	 �# �	 � �$	 C # 	 ��� - 	 �# �	 � �$	 C # 	 ���

.��� � �� � ����	 �.���
�
 ! �=�# &
 ������� �
>� .��� � �� � ����	 �.���
�
 ! �

.�� 	 �����
 	 �

3 �(! �� ����� 3 �(! �� �����

�	 ��# �	 �* �" ! � �	 ��# �	 �* �" ! �

.��� � �� � ����	 �.���
�
 ! �=,	 �	 ������ �
>� .��� � �� � ����	 �.���
�
 ! �

� 	 ���� 	 �� � ����� � 	 ���� 	 �� � �����

- 	 �� � ���& ����! �

� �� � �	 �� ��� � �� � �	 �� ���

) �" 	 �� 	 ���� � ��� 	 �) �" 	 �� 	 ���� � ��� 	 �

�� � �� # ���# �� 	 �! � �� � �� # ���# �� 	 �! �

5 �����	 ��.�� 	 �����
 	 �D �	 ���
 � �	 �� 5 �����	 ��.�� 	 �����
 	 �D �	 ���
 � �	 ��

/

 �

� � ����� �
� � ��� 	 �

� �
& ����� �����* + � �� ��� �� �J��

�

	�
��

�$
	�

�
		

��
�

��
��

	�
�

3 �& ���! �� ����	 �� .�
 �
� �	 �	 �3 �& ���! �� ����� .�
 �
� �	 �	 �3 �& ���! �� �����

 107

APPENDIX C – TRIGGER-ELEMENTS OF CODE
REFACTORINGS

Columns:

• No. – number of a refactoring according to the numbering introduced in Appendix A
• Refactoring – name of a refactoring
• Trigger-element(s) – name of a trigger-element of a refactoring, its optional

multiplicity (in square brackets) and constraint (in curly brackets)
• Role of trigger-element(s) – explanation of the role of a trigger-element in a

refactoring
• Trigg. – “triggerness” of a refactoring – S-T (structure-triggered), B-T (behaviour-

triggered)
• Modifies structure – YES if a transformation modifies a part of a model that

specifies structure of a system, otherwise NO
• Modifies behaviour – YES if a transformation modifies a part of a model that

specifies behaviour of a system, otherwise NO

6 � 	� � ��� � �� ��� ��
 ������:�
�7 �� �;� <� � �
��� ���������:
�
�7 �� �;� <�

 ����	� �� � ����� �
� ���� �����

�� � ����� �
� �� � ! �� ���

�9�� � � ��� 	 �
2 ��� ��	
 ��� ����
/���
 ����� ���� �
$�� ��	
 ��� ����

0 � � � � �� ��� � � /��# ��� ��	
 ��� ����
����
 ����� ���� ���� ����& 	 �

 � ��� 	 � ��� �& �� ��	
 ��� ����=��
��	 �� ��! � 	 � �& ! ���
 ������ ��
�� 	 ��� �<��" �� �& �	 �	 �� �� ��
�� 	 �����
 ����� �>�

�<1� F* �� F* ��

�: �� � � ��� 	 �
$�� ��	
 ��� ����
/���
 ����� ���� �
2 ��� ��	
 ��� ����

0 � � � � �� ��� � � /�& �� ��	
 ��� ��������
 ����� ��
�� ���� ����& 	 �
 � ��� 	 � ��� �
# ��� ��	
 ��� ����=����	 �� ��� ���
� ����& 	 ��	
� " 	 � >�

�<1� F* �� F* ��

�6 �� .����	 �� �����
�
� � � � /�
 ������� ���� ����& 	 ������	 � � �<1� F* �� F* ��

�9�� D �� 	 �) 	 �	 � ��	 �
�
� � � � /�� 	 �	 � ��	 �
 ����� �<1� F* �� F* ��

�: �� - 	
� " 	 �� �� � �	 �
� ���

�
� � � � /��	 �" 	 ��
 �����=A
�� � �	 �

��B>�

�<1� F* �� F* ��

�� �� � � ��� 	 �;��# 	 ��� �
- 	 �	 �	 �
 	 �

�
� � � � /�
 ������ � �
 � ��! � 	 �� ����& 	 �

 � ��� 	 � ����
�" ��# 	 ��� �
�	 �	 �	 �
 	 �

�<1� F* �� F* ��

���� � � ��� 	 �
- 	 �	 �	 �
 	 ��� �
;��# 	 �

�
� � � � /�
 ������ � �
 � ��! � 	 �� ����& 	 �

 � ��� 	 � ����
��	 �	 �	 �
 	 ��� �
" ��# 	 �

�<1� F* �� F* ��

�6 ��) # � ��
 ��	 �
% & �	 �" 	 � �) ����

�
� � � � /�� �	 �	 ������ ��
 ����� �<1� F* �� F* ��

9� �� .���� � #
 	 �4 # ���
% & '	
 ��

�
� � � � /��� # �
 	 �
 ����� �<1� F* �� F* ��

6 6 �� - 	 � ��
 	 ��# &
 �����
� ��� ���	 �� ��

�
� � � �=�		> ?� �# &
 ����	 ��" ��! ��� �� ��! ����

	 �� � � ���	 �# ����� �

 � �������� ����

�<1� F* �� F* ��

7 8�� - 	 � ��
 	 �
) 	 �	 � ���� ��� ��� �
.�� 	 �����
 	 �

�
� � � �=�?� /�� 	 �	 � ��	 ���� ���
� 	 �	 � ����� �
 �����

�<1� F* �� F* ��

 108

6 � 	� � ��� � �� ��� ��
 ������:�
�7 �� �;� <� � �
��� ���������:
�
�7 �� �;� <�

 ����	� �� � ����� �
� ���� �����

�� � ����� �
� �� � ! �� ���

���� � � " 	 ���	 �� �
���
� � /���	 �� ��� ���� ����& 	 �
� " 	 � �

�� ���� �� 	 ��
 �����
�<1� F* �� F* ��

�8�� �	 ���* �
 �� �# ���	 �
��	 �� �

���
� � /���	 �� ��� ���� ����& 	 �
	 �
 �� �# ���	 � �

�<1� F* �� F* ��

���� - 	 � ��
 	 �) ����
;��# 	 �� ��� �% & '	
 ��

���
� � /���	 �� �� � �
 � ��! � 	 �� ����& 	 �

 � ��� 	 � ����
���� ��
���" 	 �
�! � 	 ��� ���
 �����

�<1� F* �� F* ��

�I �� * �
 �� �# ���	 ���	 �� �
���
� � /���	 �� ��� ���� ����& 	 �

	 �
 �� �# ���	 � �
�<1� F* �� F* ��

6 � �� - 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �� �����

���
� � /��! � 	 �
 � � 	 ���	 �� ��� ���� ����
& 	 ��	 � ��
 	 � �& ! ���
 �����

�<1� F* �� F* ��

6 ��� - 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �
�# &
 ����	 ��

���
� � /��! � 	 �
 � � 	 ���	 �� ��� ���� ����
& 	 ��	 � ��
 	 � �& ! ���
�# &
 ����	 ��

�<1� F* �� F* ��

6 ��� - 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �
����	 J�����	 � ! �

���
� � /��! � 	 �
 � � 	 ���	 �� ��� ���� ����
& 	 ��	 � ��
 	 � �& ! ��� 	 �
����	 J�����	 � ! �� 	 ��� ��
� ���	 ���

�<1� F* �� F* ��

: ��� - 	
� " 	 ��	 ����� �
� 	 �� � � �

���
� � /���	 �� ��� ����� � # �� �& 	 ��	 ��
���
 �	 ���� ����
	 ���� ��	 " 	 ��
���	 �	 � �

�<1� F* �� F* ��

7 ��� 5 # �� �) � � ����	 �� �
���
� � /���	 �� ��� ���� ����& 	 �� # �� 	 � �

� � � ���� ��# &
 ����	 ��
�<1� F* �� 4 % �

: I �� 5 # ���2 � ���	 �� �
���
� �=�		> ?� ��	 �� ���� ���� ����& 	 �� # ��	 � �

# � ��� ����# � 	 �
 �����
�<1� F* �� 4 % �

���� - 	 � ��
 	 �/���! �
� ��� �% & '	
 ��

���
� �L/���! M� /������! ��� ����� ����& 	 �
�	 � ��
 	 � �& ! ���
 �����

�<1� F* �� F* ��

�8�� * �
 �� �# ���	 �
� � ��	
 ��� ��

���
� �L� � ��	
 ��� �M� /�
 � ��	
 ��� ���� ���� ����& 	 �
	 �
 �� �# ���	 � �

�<1� F* �� F* ��

7 : �� � � ���� �	 �
D �	 ���
 � ! �

) �� ���
�* � ��� � � � ����	 ���� ���� ����& 	 �'� ��	 � � �<1� F* �� F* ��

7 I �� - 	 � ��
 	 �
.�� 	 �����
 	 �� ��� �
) 	 �	 � ���� ��

) �� ���
�* � ��� � � /�
 �������� ������# � 	 �
 ����� �<1� F* �� F* ��

�� �� � � " 	 �� 	 �� � � �
���� � � � /�
	 �� � � ��� ���� ����& 	 �

� " 	 � ��� ���� �� 	 ��
 �����
�<1� F* �� F* ��

9��� - 	 ��
	 �� 	 �� � � �
���� � � � /�
	 �� � � ��� ���� ����& 	 �

�	 ��
	 � �
�<1� F* �� F* ��

96 �� /� � �5 ���
	 �	 ��
���� � � � /�
	 �� � � ��� �� � �
 � ���

� ���
	 �	 ��� ����& 	 ��� � 	 � �
�<1� F* �� F* ��

: ��� D �� 	 �� 	 �� � � �
���� � � � /�
	 �� � � ��� �������� ��# �	 � �

& ! ���! �� �� 	 ��
 �����
�<1� F* �� 4 % �

: : �� - 	 � ��
 	 �* ��� ��
� � � 	 �� ��� �
* +
 	 � ��� ��

���� � � � /�
	 �� � � ��� ����	 �# �������
	 ��� ��
 � � 	 �

�<1� F* �� F* ��

7 � �� 5 # �� �) � � ��
� 	 �� � � �

���� � � � /�
	 �� � � ��� ���� ����& 	 �
� # �� 	 � �� � � ���� �
�# &
 ����	 ��

�<1� F* �� 4 % �

�I �� .���� � #
 	 �3 �
 ���
* + �	 ���� ��

���� � � �=�		> ?� �� �	 �� ��
	 �� � � ���� ���� ����
& 	 �
� " 	 � ��� �����
 ���
	 + �	 ���� ��

�<1� F* �� F* ��

 109

6 � 	� � ��� � �� ��� ��
 ������:�
�7 �� �;� <� � �
��� ���������:
�
�7 �� �;� <�

 ����	� �� � ����� �
� ���� �����

�� � ����� �
� �� � ! �� ���

97 �� 5 ���
	 �	 ��(�
� 	 �� � � �

���� � � �=�		> ?� � 	 �� � � ���� ���� � ���
�����
�� ��� ��& # ��� ��� �� ���	 �	 ���
" ��# 	 ��
 � �����	 � ������ 	 ���
& � � �	 ��

�<1� F* �� F* ��

: 8�� 5 # ���2 � �� 	 �� � � �
���� � � �=�		> ?� � 	 �� � � ���� ���� ����& 	 �� # ��	 � �

# � ��� ����# � 	 �
 �����
�<1� F* �� 4 % �

: 6 �� - 	 � ��
 	 �
� � ����#
 �� ��� ��� �
��
 �� �! �� 	 �� � � �

���� � � �L� � ����#
 �� �M� /�
 # ��	 ���
 � ����#
 �� �� �<1� F* �� F* ��

���� * + ���
 ��� �����
���� � � @���
� �=�		> ?� �	 ��# �	 ���� ���� ����& 	 �

� " 	 � ��� ����	 � �
 �����
�<1� F* �� F* ��

7 ��� * + ���
 ���# &
 �����
���� � � @���
� �=�		> ?� �	 ��# �	 ���� ���� ����& 	 �

	 + ���
 �	 � ��� ����# &
 �����
�<1� F* �� F* ��

7 6 �� * + ���
 ��
�# � 	 �
 �����

���� � � @���
� �=�		> ?� �	 ��# �	 ���� ���� ����& 	 �
	 + ���
 �	 � ��� ����# � 	 �
 �����

�<1� F* �� F* ��

7 9�� * + ���
 ��.��	 ���
 	 �
���� � � @���
� �=�		> ?� �	 ��# �	 ���� ���� ����& 	 �

	 + ���
 �	 � ��� �������	 ���
 	 �
�<1� F* �� 4 % �

I �� - 	
� " 	 �
/���� �
	 ������ �
5 ���
	 �	 ���

/ � �� 7 ����� /�� ���
	 �	 ���� ���� ����& 	 �
�	 � ��
 	 � �& ! ����	
� �

�<1� 4 % �=F* �����

 ����& ! �

�	 �	 �	 �
 	 >�

F* ��

99�� - 	
� " 	 �
5 ���
	 �	 ��

/ � �� 7 ����� /�� ���
	 �	 ���� ���� ����& 	 �
�	
� " 	 � �

�<1� F* �� F* ��

9I �� - 	 � ��
 	 �
5 ���
	 �	 ��� ��� �
* + � ��
 ���� 	 �� � � ��

/ � �� 7 ����� /��	 �#
	 ���	 � �� ���
	 �	 �� �<1� F* �� F* ��

9��� - 	 � ��
 	 �
5 ���
	 �	 ��� ��� �
� 	 �� � � �

/ � �� 7 ����� /��� & �� �	 �	 �� ���
	 �	 �� �<1� F* �� F* ��

98�� 5 �	 �	 �" 	 �K � � �	 �
% & '	
 ��

/ � �� 7 �����=�		> ?� 5 ���
	 �	 ���� � �
 � �" ��# 	 ��
��	 �� & ����	 � ����
�� �	 �

 �����

�<1� F* �� F* ��

: � �� .���� � #
 	 �
5 ���
	 �	 ��% & '	
 ��

/ � �� 7 �����=�		> ?� 5 ���
	 �	 ����� ������# ����! �
� � ��� � 	 �� 	 ��

�<1� F* �� F* ��

: 9�� * �
 �� �# ���	 �
) � � �
 ����

/ � �� 7 �����L- 	 �# ���
� ���
	 �	 �M�

/��	 �# ���� ���
	 �	 ��� � � �	 �
" ��# 	 ��� ����& 	 �� � � �
 ���	 � �

�<1� F* �� F* ��

���� - 	 � ��
 	 �- 	
 � �� �
� ��� �) ����� �����

� �� � �� � /��	
 � �� ��� ���� ����& 	 �
�	 � ��
 	 � �& ! ���
 �����

�<1� F* �� F* ��

��� * + ���
 ��� 	 �� � � ��
� � � ���� �7 �� �� /�
 � � 	 �����
	 ����� ���� ����

& 	 �	 + ���
 �	 � ����� ���
	 �� � � �
$<1� F* �� F* ��

��� �# & ����# �	 �
/�� � ����
�

� � � ���� �7 �� �� /����� � ����
��� ���� ����& 	 �
�	 � ��
 	 � �

$<1� 4 % � F* ��

9��� .���� � #
 	 �
/��	 ���� ��

� � � ���� �7 �� �� /��	
 ��� ��� ��
 � � 	 �
���#
��� ���
	 �� ��� ��& � # ��
�� 	 �����	 �� ���� 	 �� �� � ��
�

$<1� 4 % JF* ��=���
����� � #
 	 �����

���	 ���� ��

 ����>�

F* ��

: ��� 5 # ���2 � �
� � ����#
 �� ��$� � ! �

� � � ���� �7 �� �� /�����
	 ���� ����

 � ����#
 �� ��& � � ! ��� ���� ����
& 	 �� # ��	 � �# � ��� ��� 	 �� �	 �� ��
���# � 	 �
 �����

$<1� F* �� F* ��

 110

6 � 	� � ��� � �� ��� ��
 ������:�
�7 �� �;� <� � �
��� ���������:
�
�7 �� �;� <�

 ����	� �� � ����� �
� ���� �����

�� � ����� �
� �� � ! �� ���

6 : �� � � ��� ��� ��	 �
� � �� ���� ����
* + � �	 ���� ��

� � � ���� �7 �� ��
L� � �� ���� ��������N �M�
�

/��	 C # 	 �
 	 �� ��
 � �� ���� ����
�	 ������ ���� ����& 	 �	 + ���
 �	 � �
���� ���
	 �� � � �

$<1� F* �� F* ��

6 9��) 	
 �
� � �	 �
� � �� ���� ����

� � � ���� �7 �� ��
L� � �� ���� ���M�
�

/�
 � �� ���� ������ ���� ����& 	 �
��
� ����	 � �& ! �	 + ���
 ���� �����
� ��������� �
	 �� � � ��

$<1� F* �� F* ��

6 7 �� � � ��� ��� ��	 �
) # � ��
 ��	 �
� � �� ���� ����
����
	 ����

� � � ���� �7 �� ��
L� � �� ���� ���M�
�

/�
 � �� ���� ����� ��� �
� # � ��
 ��	 � �����
	 ����� ��

 � � 	 �

$<1� 4 % � F* ��

�7 �� .���� � #
 	 ��� �	 �� ��
� 	 �� � � �

� � � ���� �7 �� ��
L� �	 ��	 �	 + � �	 ���� �M�

/����" �
 ���� ��� ����

 � ����#
 �� ��� �����	 �" 	 ��

 ���������� 	 �& � � ! �� ����

	 �� � � ������
 ��	 ���
 �����

$<1� F* �� F* ��

: 7 �� - 	 � ��
 	 �
* +
 	 � ��� ��� ��� �
1	 ���

� � � ���� �7 �� ��
L* +
 	 � ��� �M�

/��	 +
 	 � ��� ���� ���� ����& 	 �
�	 � ��
 	 � �� ��� ����	 ���

$<1� F* �� F* ��

: �� .���� � #
 	 �
* + � ������� �
;����& �	 �

� � � ���� �7 �� ��
L* + � �	 ���� �M�

/��	 + � �	 ���� ���� ���� ����& 	 �
�	 � ��
 	 � �& ! ����	
� �

$<1� 4 % � F* ��

6 8�� - 	 � ��
 	 �4 	 ��	 � �
� � �� ���� ����� ��� �
,# ��� �� ��# �	 ��

� � � ���� �7 �� ��
L4 	 ��	 � �
 � �� ���� ���M�

/��	 ��	 � �
 � �� ���� ������ ���
� ����& 	 ��	 � ��
 	 � �� ��� �� # ��� �

 ��# �	 ��

$<1� 4 % � F* ��

6 ��� - 	 � ��
 	 �
� � �� ���� ����� ��� �
5 � �!
� �� � ��
�

� � � ���� �7 �� ��
L�� ��
 � �����	
	 ��M�

/��� ��
 � �����	
	 ����� ���
� ����& 	 ��	 � ��
 	 � �& ! �
� � �!
� �� � ��
�

$<1� F* �� F* ��

�7 �� - 	 � ��
 	 �� �� �
 �
4 #
& 	 ��� ��� �
�!
& � ��
 �
� � �������

A �����
6 �7 � ��� /����	 �����#
& 	 ���� ���� ����
& 	 ��	 � ��
 	 � �& ! ���
 � �������

$<1� 4 % � F* ��

��� .����	 �� 	 �� � � �
���� � � " � � � � 1� 	 �& � � ! �� ����
	 �� � � ��� ���

� ����& 	 ������	 � �
$<1� F* �� F* ��

8�� - 	 � ��
 	 �� 	 �� � � �
� ��� �� 	 �� � � �
% & '	
 ��

���� � � " � � � � 1� 	 �& � � ! �� ����
	 �� � � ��� ���
� ����& 	 ��# ��	 � ����� ���
 �����

$<1� F* �� F* ��

9: �� �	 � ����	 �H # 	 �! �
���
�� � � ���	 ��

���� � � " � � � � 1� 	 �& � � ! �� ����
	 �� � � ��� ���
���& � �� ���C # 	 �! ���� ���

� � ���	 ��

$<1� F* �� F* ��

7 7 �� �� �
�1	
� ���	 �
� 	 �� � � �

���� � � " � � � �=�		> ?� $� � 	 ��� ����
�����
	 �� � � �� $<1� F* �� F* ��

6 �� .����	 �1	
� �

 �7 � � �� �� 3 � ��� �
�� /��	
� ��� ���� ����& 	 ������	 � � $<1� 4 % � F* ��

9�� - 	 � ��
 	 �1	
� �
� ��� �H # 	 �! ��

 �7 � � �� �� 3 � ��� �
�� /��	
� �� � �
 � �� ����& 	 �
�	 � ��
 	 � �& ! ���
	 �� � � ��

$<1� F* �� F* ��

7 �� �� ����1	
� � ���! �
;����& �	 �

 �7 � � �� �� 3 � ��� �
�� /��	
� ��� ���� ����& 	 ��� ���� $<1� 4 % � F* ��

6 I �� - 	
� " 	 �� � ���� ��
���� �

 �7 � � �� �� 3 � ��� �
�� /�
 � ���� ������ ��� �����	 ��	 ��
� ��& � � �	 ���	 + � �	 ���� ���

$<1� 4 % � F* ��

 111

APPENDIX D – DEPENDENCIES BETWEEN CODE
REFACTORINGS

Columns:

• No. – number of a refactoring according to the numbering introduced in Appendix A
• Refactoring – name of a refactoring
• Inverses – name of an inverse refactoring
• Includes – names of transformations that the mechanics of the refactoring includes

or may include
• Is enabled by – preconditions of the refactoring and names of transformations by

which it may be enabled, if these preconditions are not fulfilled
• Is usually preceded by – refactorings that usually precede the one
• Is usually followed by – refactorings that usually follow the one

The content of the four last columns is based on descriptions of Fowler’s refactorings
[Fowler et al. 1999].

6 � 	� � ��� � �� ��� �� 2� ! ��� �� � 2� �
�� �� � 2� ��� � �
�� �� � � 2� ��� ��

� �

� ��� �� �� �� � �
2� ��� ��

� �
��

� # �� �� � �

��� * + ���
 ��� 	 �� � � �� .����	 �� 	 �� � � �
=�>�

� 4 � ���
 ��<�
 � � 	 �
" ����& �	 ����	 �

� � ���	 � �& ! ��� 	 �
	 + ���
 �	 � �
 � � 	 O�
<��� ����
1	
� � ���! �
;����& �	 �=7 >�
<�- 	 � ��
 	 �1	
� �
� ��� �H # 	 �! �=9>�

� �

��� .����	 �� 	 �� � � � * + ���
 ��� 	 �� � � �
=�>�

� � � �

6 �� .����	 �1	
� � .���� � #
 	 �
* + � ������� �
;����& �	 �=: >�

� 1� 	 ��	
� ����
����� �	 � ��� �� ��! �
� �
 	 O�
<��� ����
1	
� � ���! �
;����& �	 �=7 >�

� �

9�� - 	 � ��
 	 �1	
� �
� ��� �H # 	 �! ��

�
* + ���
 ��� 	 �� � � �
=�>�
.����	 �1	
� �=6 >�

1� 	 ��	
� ����
����� �	 � ��� �� ��! �
� �
 	 O�
<��� ����
1	
� � ���! �
;����& �	 �=7 >�
* + ���
 �	 � �

	 �� � � ������	 	 �� ��
��� 	 �	 ��	
 ��O�
<��	 � ����	 �
H # 	 �! ����
�
� � � ���	 ��=9: >�

� �

: �� .���� � #
 	 �
* + � ������� �
;����& �	 �

.����	 �1	
� �=6 >�
� � � �

7 �� �� ����1	
� � ���! �
;����& �	 �

�
� � � �

 112

6 � 	� � ��� � �� ��� �� 2� ! ��� �� � 2� �
�� �� � 2� ��� � �
�� �� � � 2� ��� ��

� �
� ��� �� �� �� � �

2� ��� ��

� �
��

� # �� �� � �

I �� - 	
� " 	 �
/���� �
	 ������ �
5 ���
	 �	 ���

�
� � � �

8�� - 	 � ��
 	 �
� 	 �� � � �� ��� �
� 	 �� � � �% & '	
 ��

�
� � � �

��� �# & ����# �	 �
/�� � ����
�

�# & ����# �	 �
/�� � ����
�=�>�

� � � �

�� �� � � " 	 �� 	 �� � � � � � " 	 �� 	 �� � � �
=�� >�

� � � �

���� � � " 	 ���	 �� � � � " 	 ���	 �� �=��>�
� ��	 �� ������ ��

� # & ��
 O�
<�* �
 �� �# ���	 �
��	 �� �=�I >�
<��	 ���
* �
 �� �# ���	 �
��	 �� �=�8>�

� �

���� * + ���
 ��� ����� .����	 �� �����
=�6 >�

� � " 	 ���	 �� �=��>�
� � " 	 �� 	 �� � � �
=�� >�

� � �

�6 �� .����	 �� ����� * + ���
 ��� �����
=��>�

� � " 	 �� 	 �� � � �
=�� >�
� � " 	 ���	 �� �=��>�

� /��	 � ����	 �
���	 ���
 	 �
� 	 ��
�	 ��	 ��� ���� 	 �
�� # �
 	 �
 �����

	 �� � � ��E�
* + ���
 ��.��	 ���
 	 �
=7 9>�

�

�9�� D �� 	 �) 	 �	 � ��	 � - 	
� " 	 �� �� � �	 �
� ���=�: >�

� � �
�

�

�: �� - 	
� " 	 �� �� � �	 �
� ���

D �� 	 �) 	 �	 � ��	 �
=�9>�

� � � �

�7 �� .���� � #
 	 �
�� �	 �� ��� 	 �� � � �

�
� � � �

�I �� .���� � #
 	 �3 �
 ���
* + �	 ���� ��

�
� � " 	 �� 	 �� � � �
=�� >�

� � �

�8�� �	 ���
* �
 �� �# ���	 �
��	 �� �

�
� � � �

���� - 	 � ��
 	 �) ����
;��# 	 �� ��� �
% & '	
 ��

�
� � � F� # �
�! ��� � �# �	 �

� � ��� 	 �;��# 	 ��� �
- 	 �	 �	 �
 	 �=�� >�� ��
�� 	 ��	 � �� & '	
 ��

�� �� � � ��� 	 �;��# 	 �
�� �- 	 �	 �	 �
 	 ��

� � ��� 	 �
- 	 �	 �	 �
 	 ��� �
;��# 	 �=��>�

- 	 � ��
 	 �
� � ����#
 �� ��
� ��� ���
 �� �! �
� 	 �� � � �=: 6 >�

� � F� # �
�! �� ������ �
# �	 �- 	 ��
	 �
� 	 �� � � �=9�>�� ���� 	 �
��
 �� �! ��� �
 � �" 	 ! �
�� �������	 �# �������
	 + ������ �� & '	
 ��

���� � � ��� 	 �
- 	 �	 �	 �
 	 ��� �
;��# 	 �

� � ��� 	 �;��# 	 �
�� �- 	 �	 �	 �
 	 �
=�� >�

� � 1� 	 �� & '	
 �����
�

# ��& �	 �E�
- 	
� " 	 ��	 ����� �
� 	 �� � � �=: �>�

�

 113

6 � 	� � ��� � �� ��� �� 2� ! ��� �� � 2� �
�� �� � 2� ��� � �
�� �� � � 2� ��� ��

� �
� ��� �� �� �� � �

2� ��� ��

� �
��

� # �� �� � �

���� - 	 � ��
 	 �/���! �
� ��� �% & '	
 ��

�
� � � �

�6 ��) # � ��
 ��	 �
% & �	 �" 	 � �) ����

�
�	 ���
* �
 �� �# ���	 �
��	 �� �=�8>�

� � �

�9�� � � ��� 	 �
2 ��� ��	
 ��� ����
/���
 ����� ���� �
$�� ��	
 ��� ����

� � ��� 	 �
$�� ��	
 ��� ����
/���
 ����� ���� �
2 ��� ��	
 ��� ����
=�: >�

� � � �

�: �� � � ��� 	 �
$�� ��	
 ��� ����
/���
 ����� ���� �
2 ��� ��	
 ��� ����

� � ��� 	 �
2 ��� ��	
 ��� ����
/���
 ����� ���� �
$�� ��	
 ��� ����
=�9>�

�# & ����# �	 �
/�� � ����
�=�>�

� � �

�7 �� - 	 � ��
 	 �� �� �
 �
4 #
& 	 ��� ��� �
�!
& � ��
 �
� � �������

�
� � � �

�I �� * �
 �� �# ���	 �
��	 �� �

�
� � � �

�8�� * �
 �� �# ���	 �
� � ��	
 ��� ��

�
- 	 ��
	 �
� 	 �� � � �=9�>�
* + ���
 ��� 	 �� � � �
=�>�
� � " 	 �� 	 �� � � �
=�� >�

� � �

���� - 	 � ��
 	 �- 	
 � �� �
� ��� �) ����� �����

�
� � � �

6 � �� - 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �� �����

�
- 	 ��
	 �
� 	 �� � � �=9�>�

� � �

6 ��� - 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �
�# &
 ����	 ��

�
�	 ���
* �
 �� �# ���	 �
��	 �� �=�8>�

� 1� 	 ��! � 	 �
 � � 	 ����
�� ��� ���	 � ����� �
�� 	 �
 � ����#
 �� ��
E�- 	 � ��
 	 �
� � ����#
 �� ��� ��� �
��
 �� �! �� 	 �� � � �
=: 6 >�

�

6 ��� - 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �
����	 J�����	 � ! �

�
�	 ���
* �
 �� �# ���	 �
��	 �� �=�8>�

� � �

6 6 �� - 	 � ��
 	 �
�# &
 ������ ��� �
��	 �� ��

�
- 	 � ��
 	 �
� � ����#
 �� ��
� ��� ���
 �� �! �
� 	 �� � � �=: 6 >�
.����	 �� 	 �� � � �
=�>�

� � �

6 9��) 	
 �
� � �	 �
� � �� ���� ����

�
* + ���
 ��� 	 �� � � �
=�>�

� � �

6 : �� � � ��� ��� ��	 �
� � �� ���� ����
* + � �	 ���� ��

�
� � � � � ���� 	 ��# ���� �

* + ���
 ��� 	 �� � � �=�>�
� ���� 	 �
 � �� ���� ��

 114

6 � 	� � ��� � �� ��� �� 2� ! ��� �� � 2� �
�� �� � 2� ��� � �
�� �� � � 2� ��� ��

� �
� ��� �� �� �� � �

2� ��� ��

� �
��

� # �� �� � �

6 7 �� � � ��� ��� ��	 �
) # � ��
 ��	 �
� � �� ���� ����
����
	 ����

�
� � � .���� 	 �	 ����
� �	 �

�� ��������� �	 �
����	
	 ��0�# �	 �
* + ���
 ��� 	 �� � � �=�>�
� ���� ���
 � � 	 �

6 I �� - 	
� " 	 �� � ���� ��
���� �

�
* + ���
 ��� 	 �� � � �
=�>�

� � �

6 8�� - 	 � ��
 	 �4 	 ��	 � �
� � �� ���� ����� ��� �
,# ��� �� ��# �	 ��

�
� � � .������� # ��� �
 ��# �	 ��

! �	 �� ��� 	 ���
	 �
�	 �# ��0�# �	 �
� � ��� ��� ��	 �
� � �� ���� ����
* + � �	 ���� ��=6 : >�

6 ��� - 	 � ��
 	 �
� � �� ���� ����� ��� �
5 � �!
� �� � ��
�

�
* + ���
 ��� 	 �� � � �
=�>�
� � " 	 �� 	 �� � � �
=�� >�

1� 	 �	 ������
�	
 	 ����! �
��� 	 �����
 	 �
���#
 �# �	 O�
<�- 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �
�# &
 ����	 ��=6 �>�
<�- 	 � ��
 	 �1! � 	 �
� � � 	 �� ��� �
����	 J�����	 � ! �
=6 �>�

� �

9� �� .���� � #
 	 �4 # ���
% & '	
 ��

�
� � � �

9��� .���� � #
 	 �
/��	 ���� ��

�
* + ���
 ��� 	 �� � � �
=�>�

� � �

9��� - 	 ��
	 �
� 	 �� � � �

- 	 ��
	 �
� 	 �� � � �=9�>�

� � � �

96 �� /� � �5 ���
	 �	 �� - 	
� " 	 �
5 ���
	 �	 ��=99>�

� � � �

99�� - 	
� " 	 �
5 ���
	 �	 ��

/� � �5 ���
	 �	 ��
=96 >�

� � � �

9: �� �	 � ����	 �H # 	 �! �
���
�� � � ���	 ��

�
� � � �

97 �� 5 ���
	 �	 ��(�
� 	 �� � � �

- 	 � ��
 	 �
5 ���
	 �	 ��� ��� �
* + � ��
 ���
� 	 �� � � ��=9I >�

.����	 �� 	 �� � � �
=�>�

� � �

9I �� - 	 � ��
 	 �
5 ���
	 �	 ��� ��� �
* + � ��
 ���
� 	 �� � � ��

5 ���
	 �	 ��(�
� 	 �� � � �=97 >�

� � � �

98�� 5 �	 �	 �" 	 �K � � �	 �
% & '	
 ��

�
� � � �

9��� - 	 � ��
 	 �
5 ���
	 �	 ��� ��� �
� 	 �� � � �

�
* + ���
 ��� 	 �� � � �
=�>�
- 	
� " 	 �
5 ���
	 �	 ��=99>�

� � �

 115

6 � 	� � ��� � �� ��� �� 2� ! ��� �� � 2� �
�� �� � 2� ��� � �
�� �� � � 2� ��� ��

� �
� ��� �� �� �� � �

2� ��� ��

� �
��

� # �� �� � �

: � �� .���� � #
 	 �
5 ���
	 �	 ��
% & '	
 ��

�
/� � �5 ���
	 �	 ��
=96 >�
� � " 	 �� 	 �� � � �
=�� >�
* + ���
 ��� 	 �� � � �
=�>�

� � �

: ��� - 	
� " 	 ��	 ����� �
� 	 �� � � �

�
� � � �

: ��� D �� 	 �� 	 �� � � � �
� � � �

: 6 �� - 	 � ��
 	 �
� � ����#
 �� ��� ��� �
��
 �� �! �� 	 �� � � �

�
� � � �

: 9�� * �
 �� �# ���	 �
) � � �
 ����

�
* �
 �� �# ���	 �
� � ��	
 ��� ��=�8>�

� � �

: : �� - 	 � ��
 	 �* ��� ��
� � � 	 �� ��� �
* +
 	 � ��� ��

�
� � � �

: 7 �� - 	 � ��
 	 �
* +
 	 � ��� ��� ��� �
1	 ���

�
� � � �

: I �� 5 # ���2 � ���	 �� � 5 # �� �) � � ��
��	 �� �=7 �>�

� � � � � ���� 	 ��# ���� �
�	 ���* �
 �� �# ���	 �
��	 �� �=�8>�� ���� 	 �
�	 � ���	 �� �

: 8�� 5 # ���2 � �� 	 �� � � � 5 # �� �) � � ��
� 	 �� � � �=7 � >�

5 # ���2 � ���	 �� �
=: I >�
�	 ���
* �
 �� �# ���	 �
��	 �� �=�8>�

� � 	 �� � � ����	 �
�� 	 ���
 ���<�
�# & ����# �	 �
/�� � ����
�=�>�

�

: ��� 5 # ���2 � �
� � ����#
 �� ��
$� � ! �

�
� � � .���� 	 �	 ������! �

 �

� ��
 � � 	 �
���	 �0�# �	 �* + ���
 ��
� 	 �� � � �=�>��� �
��
 �� ��� # ��
 �

� ��

 � � 	 ���� �# �	 �5 # ���
2 � �� 	 �� � � �=: 8>��� �
� # ������# � �

7 � �� 5 # �� �) � � ��
� 	 �� � � �

5 # ���2 � �� 	 �� � � �
=: 8>�

� � � �

7 ��� 5 # �� �) � � ��
��	 �� �

5 # ���2 � ���	 �� �
=: I >�

� � � �

 116

6 � 	� � ��� � �� ��� �� 2� ! ��� �� � 2� �
�� �� � 2� ��� � �
�� �� � � 2� ��� ��

� �
� ��� �� �� �� � �

2� ��� ��

� �
��

� # �� �� � �

7 ��� * + ���
 ��
�# &
 �����

� � ���� �	 �
D �	 ���
 � ! �=7 : >�

- 	 � ��
 	 �
� � ����#
 �� ��
� ��� ���
 �� �! �
� 	 �� � � �=: 6 >�
- 	 ��
	 �
� 	 �� � � �=9�>�
5 # �� �) � � ��
� 	 �� � � �=7 � >�
5 # �� �) � � ��
���	 � �=7 �>�
�	 ���
* �
 �� �# ���	 �
��	 �� �=�8>�
- 	 � ��
 	 �
� � �� ���� ����� ��� �
5 � �!
� �� � ��
�
=6 �>�
� � " 	 �� 	 �� � � �
=�� >�

� � �

7 6 �� * + ���
 ��
�# � 	 �
 �����

�
5 # ���2 � ���	 �� �
=: I >�
5 # ���2 � �� 	 �� � � �
=: 8>�
5 # ���2 � �
� � ����#
 �� ��
$� � ! �=: �>�
- 	 ��
	 �
� 	 �� � � �=9�>�
�# & ����# �	 �
/�� � ����
�=�>�
* + ���
 ��� 	 �� � � �
=�>�
�� �
�1	
� ���	 �
� 	 �� � � �=7 7 >�

� � �

7 9�� * + ���
 ��
.��	 ���
 	 �

�
� � � �

7 : �� � � ���� �	 �
D �	 ���
 � ! �

* + ���
 ��
�# &
 �����=7 �>�

5 # ���2 � ���	 �� �
=: I >�
5 # ���2 � �� 	 �� � � �
=: 8>�
5 # �� �) � � ��
� 	 �� � � �=7 � >�
5 # �� �) � � ��
��	 �� �=7 �>�

� � �

7 7 �� �� �
�1	
� ���	 �
� 	 �� � � �

�
5 # ���2 � �� 	 �� � � �
=: 8>�
- 	 ��
	 �
� 	 �� � � �=9�>�

� � �

7 I �� - 	 � ��
 	 �
.�� 	 �����
 	 �� ��� �
) 	 �	 � ���� ��

- 	 � ��
 	 �
) 	 �	 � ���� ��� ��� �
.�� 	 �����
 	 �=7 8>�

� � � �

7 8�� - 	 � ��
 	 �
) 	 �	 � ���� ��� ��� �
.�� 	 �����
 	 �

- 	 � ��
 	 �
.�� 	 �����
 	 �� ��� �
) 	 �	 � ���� ��=7 I >�

- 	 ��
	 �
� 	 �� � � �=9�>�

� � �

 117

APPENDIX E – RESTRICTIONS IN TAU/DEVELOPER 2.4
An excerpt from [Telelogic 2004]

Model Verifier does not support the following UML constructs and use of UML.

0 ��� � � �� ���� ��� � �

� ����	 �� • /��������
 	 �� ������
 ��" 	 �
 ������� ���� ������	 ��������#
 �# �	 �
 ���� ��& 	 �� ! ��
�
 ���! �
 �	 ��	 � ��

• � �	 ���� ��� ����� ����" 	 �
 ���������� ������ � 	 � ��� �& 	 �������� ��� �	 ��
 ��� ���

• 5 ����" 	 �
 ����	 ��
�! ��� ��
 � ������� � 	 ����� ���� ��� �����	 ��
� �	
	 ������ ����

• 5 ����" 	 �
 ����	 ��
�! ��� ���	 ���(���! ����	 ���
 	 ���

• � 	 �� � � ��� ����� ����" 	 �
 �����
 ���� ��
 ����
	 �� � � ��� ������
 ��" 	 �� �	 ��

• � # ���� ��
 ��! �
 � ������������	 ��� ���# � � � ��	 � ��� ����� ����" 	 �
 �����������
 	 ��

� � ����#
 �� ��� • /�
 � ����#
 �� ��
# ���� �" 	 ����	 ���(��� �
	 �� � � ��

• �����
 �
 � ����#
 �� ������ �� 	 ���#
 �� �����	 ��� ������ � 	 � ��

• /��
� ���� �	 �
 � ����#
 �� ������	 �
�
 � ��	 �
 ���& 	 �� �	 �	 ��������
 ������

• .������� ��� � ���& �	 ��� �
 ������� 	 ���	 � �
 � ����#
 �� ������
���
 � ����#
 �� �������� ����" 	 �
 ������

) 	 ���#
 �� ��� • /
 ��" 	 �
 ����	 ���� � # �� �& 	 ��& �	 ��� ��	
 	 �" 	 ������ ������ ���	 " 	 ��# ���! ���� � ���� 	 �����	 �
�
 � ��	 ����	 ���	 C # ��	 � �

 �	 ��<# � ��

• .��� ����" 	 �
 ����	 �0�� 	 ���#
 �� ���
 ���� ��
 ����� �� 	 ��� � 	 ����� ����

5 � ���� • 5 � ������	 ��� ������ � 	 � ����� ����" 	 �
 ����	 ���

• 5 � ����
 ���� ��& 	 ��	 � 	 ���	 � ��

% � 	 ����� ��� • - 	 �# ���" ��# 	 ����
�" ��# 	 <�	 �# ����� �� � 	 ����� ���
# ���& 	 �� ��� �	 � ������ 	 ��	 ���� ��� ���� 	 �� ���������� �
	 ���
	 + � �	 ���� ���

• /�A� 	 �	 �	 B�� � 	 ����� ��
�! ��� ��& 	 ��� � ��	 � ��� ���� �����

• - 	 � 	 ������� ��� ����������(� �� � 	 ����� ������� ������ � 	 � ��

• �����
 �� � 	 ����� ���
 ���� ���

 	 ����� �<�����
 ������& # �	 ���

��� ����� • 5 ���
	 �	 ��������� ������� # ��
# ����� ��& 	 ��
���	 � ��

• % # �� # ��" ���A���B������ ���# � � � ��	 � ��

1�
	 ��� • 1�
	 ���
# ���& 	 �� 	 ���	 � �����
 ��" 	 �
 ����	 ������ � �
 � ��� 	 ! ���	 �# �	 � ��

/
 ��� ��� • A1�! B��
 ��� �����	 ��� ���# � � � ��	 � ��

• AP � ��B0�A�	 �# ��B���� �A��� � B��
 ��� �����	 ��� ������ � 	 � ������ 	 ��� � � ���

• A������1�������� �B�
# ���� �" 	 ����	 �
������� ��
 ��� ���

• .�� # ��A�� �	 B������ ���# � � � ��	 � ��

• A) 	 	 � �D ���� �! �4 	 + �����	 B��
 ��� ������� ���# � � � ��	 � ��

/����& # �	 �� • �����
 ������& # �	 ����	 ��� ���# � � � ��	 � ��

• .�� 	 �����
 	 �� ��=" ���# ��>�� � 	 ����� ������
���� ��	 ���
 ������	 C # ��	 ���� 	 ��� ��� � ��� O�
o % � 	 ����� �������& # �	 ��
# ���& 	 ��	 <� 	
 ���	 � ������ 	 �=������(� >�
 � ��� �
 ����0�
o /����& # �	 ��
# ���� � � 	 " 	 ���� ��# �	 ��� 	 ���
	 ���
	 ������ 	 �� ��	 ������ �
 � ��� �� � 	 ����� ���

• !� ��$ ������ ��� � 	 ��! � 	 ����	 ��� ���! � 	 �
 �
� ���& �	 ��/����& # �	 ��� ���#
 � ��! � 	 ��
 ���� ��& 	 �
�+ 	 � ����
	 + � �	 ���� ������ �� � 	 ���� ����

� ��
 	 ����	 � # �� • � # ���� �	 ���� 	 �����
 	 ������ ���# � � � ��	 � ��

•) ! ��
�
 �
 �	 ���� ��� ��������
 	 �� ����
 � � �
 	 ������ ������ � 	 � ��

• 2 �	 �<� 	 ���	 � ��	
� ���	 ����	 ��� ���# � � � ��	 � ��

• A����	 B�	 + � �	 ���� ������� ���# � � � ��	 � ��

 118

APPENDIX F – UML 2.0 & TAU TRIGGER-ELEMENTS

Columns:

• Trigger-element(s) – name of a trigger-element of a code refactoring
• Constraints on trigger-element(s) – constraints that refine the trigger-element(s)
• TAU metaclass(es) – corresponding metaclass(es) of TAU Object Model
• UML 2.0 metaclass(es) - corresponding metaclass(es) of the UML 2.0 metamodel

 ������:
�
�7 �� �;� <�

� � � � ��� �� �� �
� � ��������:
�
�7 �� �;� <�

 0 B �7 ��� �
� � � ;�� <� B �A ��	- �7 ��� �
� � � ;�� <�

0 � � � � �� ��� � � � � 4 � �� ��� 55�����������	 ��� � � �� 556 ��� ��55������������

�
� � � � � � 4 � �� ��� 55
����	 ��� � � �� 556 ��� ��55
�������� �������
 �	
	 ���0���
	 �! �
�� 	 � � � ���� ��� � �� ��� 55� ��� � �� ��� ��� � � �� 55
�������� �
�� 	 	 � � 7 �� � � �� �� 55�� 	 	 � � �� � ��� � � 55
�����

� � 4 �
 � � 	 �� 55
��
����������	 � � ��� ����� 558�� 	 � ����9� ��� � �� ��� � � ��� ����� 55�����������������������
� �������# &
 ������
� � ��� ����� 558�� 	 � ����9� ��� � �� ��� � � ��� ����� 55�������������

� � �� ���� ���� � 4 �
 � � 	 �� 55��������	 � � ��� ����� 558�� 	 � ����9� ��� � �� ��� � � ��� ����� 55
���������������

� �	 ��	 �
	 + � �	 ���� ��

� 4 �
 � � 	 �� 55
�������
�	 � � ��� � � 557 � � �� � � ��� � � 55
����
�������������	

* +
 	 � ��� �� � 4 �
 � � 	 �� 55���������	 � � ��� ����� 55& ' ��� � ��� � �� ��� � � ��� ����� 55����
������������

* + � �	 ���� �� �# &
 ����	 ��� ��
� 4 �
 � � 	 �� 55��
��������
=�& ����
 �>�

�� 	 	 � � 7 �� � � �� �� 557 � � �� 7 �� � � �� �� 55�
������
��������

4 	 ��	 � �

 � �� ���� ����

� 4 �
 � � 	 �� 55���������=�� �� ���� �
��� ��
 ��# �	 ��� ��!)� � ��� � ���	 �

� � 	 ��	 � �� ��� ��� 	 �# �	 �� ��� � ��� � 0�
� � �
 � �������# � 	 �
 ������ ���� ��
)� �	 ��>�

� � ��� ����� 558�� 	 � ����9� ��� � �� ��� � � ��� ����� 55
���������������
=
 ��# �	 ��� ���� � � ���� � � �: � � ����	 �
� � 	 ��	 � �� ��� ��� 	 �# �	 �� ��
� � ��� ��
 : � � �0�� � �
 � ����� �	 �� ���� 	 ��# � 	 �
 ����	 ��� ���� 	 ��� �
	 �>�

� � � ���� �7 �� ��

�� ��
 � �
����	
	 ���

� 4 �
 � � 	 �� 55��������������	 � � ��� ����� 558�� 	 � ����9� ��� � �� ��� � � ��� ����� 55
���������������

� � 4 � �� ��� 55���������	 ��� � � �� 556 ��� ��55 ��
�����

� � ��	
 ��� �� � 4 � �� ��� 55����������=������ 	 ��������
�
(
 � �� ���� ��� # ������ � ��
���� ��
 ��! �
& � # �� ���� �& 	 ��� 	
 ���	 � >�

��� � � �� 556 ��� ��55 ��
�����=������ 	 ��������
�� � ���� ��� ��
 & ��	 �� ����� �
�� # ������ � ��
���� ��
 ��! �& � # �� ���� �& 	 ��� 	
 ���	 � >�

���
� �

/���! � � 4 � �� ��� 55����������=	 �
 � �� ����% � ���
�� ���� ���
���� ��
 ��! �Q ���� 	 ������
�
� ��
 ��������� J/���! �
 � ��	
 ��� ��
�! � 	 >�

��� � � �� 556 ��� ��55 ��
�����=�� � �� ���� �R ���# 	 S��� � � �� � ��R �����	 >�

) �� ���
�* � ��� � � � � 4 � �� ��� 55!�������"�����	 ��� � � �� 556 ��� ��55!�������"�����	

A �����
6 �7 � ��� � � 4 �
 � � 	 �� 55����#��$������ ��
� 4 �
 � � 	 �� 55%���$����	

��� � � �� 556 ��� ��55&����������#���� ��
��� � � �� 556 ��� ��55&������'����������������

� � 4 � �� ��� 55�
�������	 ��� � � �� 556 ��� ��2!� ���)� � �� 55�
����������� �������
 �	
	 ���0���
	 �! �
�� 	 	 � � 7 �� � � �� �� 55�� 	 	 � � �� � ��� � � 55�
����������� �
(�	 � �� ��� 55�
���������

���� � � �

� � ����#
 �� �� � 4 � �� ��� 55�
��������
=� � ��� ��� � 6 �� � �R �% � � ����#
 �� �>�
� �" ��� ��� 	 ���
	 ���
	 ������� � � �
�� ���� � ������

��$ ����� � � �� 556 ��� ��2!� ���)� � �� 55�
��������� �" ��� ��� 	 ���
	 ���
	 �
�������� � � ��� ���� � ������

���� � � " � � � � � � � �
 �	 �	 ��# &
 ����	 ��� ��
� 4 � �� ��� 55(��)���=�& ����
 �>0�
��
	 �! �
� 4 �
 � � 	 �� 55�
�������*������� �
� 4 �
 � � 	 �� 55���
�������(��)����

�� � � �� � % � �� � � ��)��� 	 	 � � 7 �� � � �� �� 557 � � �� 7 �� � � �� �� 55*�)������
=�& ����
 �>�& 	 ��� ���
	 �� � � �� ��� � ��� ��� � �=�# &
 ������ ��
7 �� � � �� �� � �� �� ��>�

� � 4 � �� ��� 55 ��������	 ��� � � �� 556 ��� ��55 ���������/ � �� 7 �����

- 	 �# ���
� ���
	 �	 ��

� 4 � �� ��� 55 ���������=� ��	
 ��� ��R �
�	 �# ��>�

��� � � �� 556 ��� ��55 ���������=� ���� ��� � �R ��	 �# ��>�

� �� � �� � � � 4 � �� ��� 55������
�� ��� � � �� 556 ��� ��55������
�	

 �7 � � �� �� 3 � ��� �
�� � � 4 � �� ��� 55����������� � �	 � �& ! �	 �� ��
� �)� � ��� � �

� � ��� ����� 55� ��� � �� ��� � � ��� ����� 55$��������

 119

APPENDIX G – TAXONOMY OF ATTRIBUTE AND
OPERATION IN TAU

